• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/hash/hash.h"
16 
17 #include <array>
18 #include <bitset>
19 #include <cstring>
20 #include <deque>
21 #include <forward_list>
22 #include <functional>
23 #include <iterator>
24 #include <limits>
25 #include <list>
26 #include <map>
27 #include <memory>
28 #include <numeric>
29 #include <random>
30 #include <set>
31 #include <string>
32 #include <tuple>
33 #include <type_traits>
34 #include <unordered_map>
35 #include <utility>
36 #include <vector>
37 
38 #include "gmock/gmock.h"
39 #include "gtest/gtest.h"
40 #include "absl/container/flat_hash_set.h"
41 #include "absl/hash/hash_testing.h"
42 #include "absl/hash/internal/spy_hash_state.h"
43 #include "absl/meta/type_traits.h"
44 #include "absl/numeric/int128.h"
45 
46 namespace {
47 
48 using absl::Hash;
49 using absl::hash_internal::SpyHashState;
50 
51 template <typename T>
52 class HashValueIntTest : public testing::Test {
53 };
54 TYPED_TEST_SUITE_P(HashValueIntTest);
55 
56 template <typename T>
SpyHash(const T & value)57 SpyHashState SpyHash(const T& value) {
58   return SpyHashState::combine(SpyHashState(), value);
59 }
60 
61 // Helper trait to verify if T is hashable. We use absl::Hash's poison status to
62 // detect it.
63 template <typename T>
64 using is_hashable = std::is_default_constructible<absl::Hash<T>>;
65 
TYPED_TEST_P(HashValueIntTest,BasicUsage)66 TYPED_TEST_P(HashValueIntTest, BasicUsage) {
67   EXPECT_TRUE((is_hashable<TypeParam>::value));
68 
69   TypeParam n = 42;
70   EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42}));
71   EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0}));
72   EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()),
73             SpyHash(std::numeric_limits<TypeParam>::min()));
74 }
75 
TYPED_TEST_P(HashValueIntTest,FastPath)76 TYPED_TEST_P(HashValueIntTest, FastPath) {
77   // Test the fast-path to make sure the values are the same.
78   TypeParam n = 42;
79   EXPECT_EQ(absl::Hash<TypeParam>{}(n),
80             absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n)));
81 }
82 
83 REGISTER_TYPED_TEST_CASE_P(HashValueIntTest, BasicUsage, FastPath);
84 using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
85                                 uint64_t, size_t>;
86 INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueIntTest, IntTypes);
87 
88 enum LegacyEnum { kValue1, kValue2, kValue3 };
89 
90 enum class EnumClass { kValue4, kValue5, kValue6 };
91 
TEST(HashValueTest,EnumAndBool)92 TEST(HashValueTest, EnumAndBool) {
93   EXPECT_TRUE((is_hashable<LegacyEnum>::value));
94   EXPECT_TRUE((is_hashable<EnumClass>::value));
95   EXPECT_TRUE((is_hashable<bool>::value));
96 
97   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
98       LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3)));
99   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
100       EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6)));
101   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
102       std::make_tuple(true, false)));
103 }
104 
TEST(HashValueTest,FloatingPoint)105 TEST(HashValueTest, FloatingPoint) {
106   EXPECT_TRUE((is_hashable<float>::value));
107   EXPECT_TRUE((is_hashable<double>::value));
108   EXPECT_TRUE((is_hashable<long double>::value));
109 
110   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
111       std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(),
112                       -std::numeric_limits<float>::infinity())));
113 
114   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
115       std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(),
116                       -std::numeric_limits<double>::infinity())));
117 
118   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
119       // Add some values with small exponent to test that NORMAL values also
120       // append their category.
121       .5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L,
122       17 * static_cast<long double>(std::numeric_limits<double>::max()),
123       std::numeric_limits<long double>::infinity(),
124       -std::numeric_limits<long double>::infinity())));
125 }
126 
TEST(HashValueTest,Pointer)127 TEST(HashValueTest, Pointer) {
128   EXPECT_TRUE((is_hashable<int*>::value));
129 
130   int i;
131   int* ptr = &i;
132   int* n = nullptr;
133 
134   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
135       std::make_tuple(&i, ptr, nullptr, ptr + 1, n)));
136 }
137 
TEST(HashValueTest,PointerAlignment)138 TEST(HashValueTest, PointerAlignment) {
139   // We want to make sure that pointer alignment will not cause bits to be
140   // stuck.
141 
142   constexpr size_t kTotalSize = 1 << 20;
143   std::unique_ptr<char[]> data(new char[kTotalSize]);
144   constexpr size_t kLog2NumValues = 5;
145   constexpr size_t kNumValues = 1 << kLog2NumValues;
146 
147   for (size_t align = 1; align < kTotalSize / kNumValues;
148        align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) {
149     SCOPED_TRACE(align);
150     ASSERT_LE(align * kNumValues, kTotalSize);
151 
152     size_t bits_or = 0;
153     size_t bits_and = ~size_t{};
154 
155     for (size_t i = 0; i < kNumValues; ++i) {
156       size_t hash = absl::Hash<void*>()(data.get() + i * align);
157       bits_or |= hash;
158       bits_and &= hash;
159     }
160 
161     // Limit the scope to the bits we would be using for Swisstable.
162     constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1;
163     size_t stuck_bits = (~bits_or | bits_and) & kMask;
164     EXPECT_EQ(stuck_bits, 0) << "0x" << std::hex << stuck_bits;
165   }
166 }
167 
TEST(HashValueTest,PairAndTuple)168 TEST(HashValueTest, PairAndTuple) {
169   EXPECT_TRUE((is_hashable<std::pair<int, int>>::value));
170   EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value));
171   EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value));
172   EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value));
173 
174   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
175       std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0),
176       std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42))));
177 
178   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
179       std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42),
180                       std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0),
181                       std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9),
182                       std::make_tuple(0, 0, -42))));
183 
184   // Test that tuples of lvalue references work (so we need a few lvalues):
185   int a = 0, b = 1, c = 17, d = 23;
186   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
187       std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d))));
188 
189   // Test that tuples of rvalue references work:
190   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
191       std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42),
192       std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0),
193       std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9),
194       std::forward_as_tuple(0, 0, -42))));
195 }
196 
TEST(HashValueTest,CombineContiguousWorks)197 TEST(HashValueTest, CombineContiguousWorks) {
198   std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)};
199   std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)};
200 
201   auto vh1 = SpyHash(v1);
202   auto vh2 = SpyHash(v2);
203   EXPECT_NE(vh1, vh2);
204 }
205 
206 struct DummyDeleter {
207   template <typename T>
operator ()__anondd8f00c30111::DummyDeleter208   void operator() (T* ptr) {}
209 };
210 
211 struct SmartPointerEq {
212   template <typename T, typename U>
operator ()__anondd8f00c30111::SmartPointerEq213   bool operator()(const T& t, const U& u) const {
214     return GetPtr(t) == GetPtr(u);
215   }
216 
217   template <typename T>
GetPtr__anondd8f00c30111::SmartPointerEq218   static auto GetPtr(const T& t) -> decltype(&*t) {
219     return t ? &*t : nullptr;
220   }
221 
GetPtr__anondd8f00c30111::SmartPointerEq222   static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; }
223 };
224 
TEST(HashValueTest,SmartPointers)225 TEST(HashValueTest, SmartPointers) {
226   EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value));
227   EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value));
228   EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value));
229 
230   int i, j;
231   std::unique_ptr<int, DummyDeleter> unique1(&i);
232   std::unique_ptr<int, DummyDeleter> unique2(&i);
233   std::unique_ptr<int, DummyDeleter> unique_other(&j);
234   std::unique_ptr<int, DummyDeleter> unique_null;
235 
236   std::shared_ptr<int> shared1(&i, DummyDeleter());
237   std::shared_ptr<int> shared2(&i, DummyDeleter());
238   std::shared_ptr<int> shared_other(&j, DummyDeleter());
239   std::shared_ptr<int> shared_null;
240 
241   // Sanity check of the Eq function.
242   ASSERT_TRUE(SmartPointerEq{}(unique1, shared1));
243   ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other));
244   ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr));
245   ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr));
246 
247   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
248       std::forward_as_tuple(&i, nullptr,                    //
249                             unique1, unique2, unique_null,  //
250                             absl::make_unique<int>(),       //
251                             shared1, shared2, shared_null,  //
252                             std::make_shared<int>()),
253       SmartPointerEq{}));
254 }
255 
TEST(HashValueTest,FunctionPointer)256 TEST(HashValueTest, FunctionPointer) {
257   using Func = int (*)();
258   EXPECT_TRUE(is_hashable<Func>::value);
259 
260   Func p1 = [] { return 2; }, p2 = [] { return 1; };
261   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
262       std::make_tuple(p1, p2, nullptr)));
263 }
264 
265 struct WrapInTuple {
266   template <typename T>
operator ()__anondd8f00c30111::WrapInTuple267   std::tuple<int, T, size_t> operator()(const T& t) const {
268     return std::make_tuple(7, t, 0xdeadbeef);
269   }
270 };
271 
TEST(HashValueTest,Strings)272 TEST(HashValueTest, Strings) {
273   EXPECT_TRUE((is_hashable<std::string>::value));
274 
275   const std::string small = "foo";
276   const std::string dup = "foofoo";
277   const std::string large = std::string(2048, 'x');  // multiple of chunk size
278   const std::string huge = std::string(5000, 'a');   // not a multiple
279 
280   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
281       std::string(), absl::string_view(),
282       std::string(""), absl::string_view(""),
283       std::string(small), absl::string_view(small),
284       std::string(dup), absl::string_view(dup),
285       std::string(large), absl::string_view(large),
286       std::string(huge), absl::string_view(huge))));
287 
288   // Also check that nested types maintain the same hash.
289   const WrapInTuple t{};
290   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
291       t(std::string()), t(absl::string_view()),
292       t(std::string("")), t(absl::string_view("")),
293       t(std::string(small)), t(absl::string_view(small)),
294       t(std::string(dup)), t(absl::string_view(dup)),
295       t(std::string(large)), t(absl::string_view(large)),
296       t(std::string(huge)), t(absl::string_view(huge)))));
297 
298   // Make sure that hashing a `const char*` does not use its std::string-value.
299   EXPECT_NE(SpyHash(static_cast<const char*>("ABC")),
300             SpyHash(absl::string_view("ABC")));
301 }
302 
TEST(HashValueTest,WString)303 TEST(HashValueTest, WString) {
304   EXPECT_TRUE((is_hashable<std::wstring>::value));
305 
306   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
307       std::wstring(), std::wstring(L"ABC"), std::wstring(L"ABC"),
308       std::wstring(L"Some other different string"),
309       std::wstring(L"Iñtërnâtiônàlizætiøn"))));
310 }
311 
TEST(HashValueTest,U16String)312 TEST(HashValueTest, U16String) {
313   EXPECT_TRUE((is_hashable<std::u16string>::value));
314 
315   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
316       std::u16string(), std::u16string(u"ABC"), std::u16string(u"ABC"),
317       std::u16string(u"Some other different string"),
318       std::u16string(u"Iñtërnâtiônàlizætiøn"))));
319 }
320 
TEST(HashValueTest,U32String)321 TEST(HashValueTest, U32String) {
322   EXPECT_TRUE((is_hashable<std::u32string>::value));
323 
324   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
325       std::u32string(), std::u32string(U"ABC"), std::u32string(U"ABC"),
326       std::u32string(U"Some other different string"),
327       std::u32string(U"Iñtërnâtiônàlizætiøn"))));
328 }
329 
TEST(HashValueTest,StdArray)330 TEST(HashValueTest, StdArray) {
331   EXPECT_TRUE((is_hashable<std::array<int, 3>>::value));
332 
333   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
334       std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}})));
335 }
336 
TEST(HashValueTest,StdBitset)337 TEST(HashValueTest, StdBitset) {
338   EXPECT_TRUE((is_hashable<std::bitset<257>>::value));
339 
340   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
341       {std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"),
342        std::bitset<2>("11")}));
343   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
344       {std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()}));
345 
346   constexpr int kNumBits = 256;
347   std::array<std::string, 6> bit_strings;
348   bit_strings.fill(std::string(kNumBits, '1'));
349   bit_strings[1][0] = '0';
350   bit_strings[2][1] = '0';
351   bit_strings[3][kNumBits / 3] = '0';
352   bit_strings[4][kNumBits - 2] = '0';
353   bit_strings[5][kNumBits - 1] = '0';
354   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
355       {std::bitset<kNumBits>(bit_strings[0].c_str()),
356        std::bitset<kNumBits>(bit_strings[1].c_str()),
357        std::bitset<kNumBits>(bit_strings[2].c_str()),
358        std::bitset<kNumBits>(bit_strings[3].c_str()),
359        std::bitset<kNumBits>(bit_strings[4].c_str()),
360        std::bitset<kNumBits>(bit_strings[5].c_str())}));
361 }  // namespace
362 
363 template <typename T>
364 class HashValueSequenceTest : public testing::Test {
365 };
366 TYPED_TEST_SUITE_P(HashValueSequenceTest);
367 
TYPED_TEST_P(HashValueSequenceTest,BasicUsage)368 TYPED_TEST_P(HashValueSequenceTest, BasicUsage) {
369   EXPECT_TRUE((is_hashable<TypeParam>::value));
370 
371   using ValueType = typename TypeParam::value_type;
372   auto a = static_cast<ValueType>(0);
373   auto b = static_cast<ValueType>(23);
374   auto c = static_cast<ValueType>(42);
375 
376   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
377       std::make_tuple(TypeParam(), TypeParam{}, TypeParam{a, b, c},
378                       TypeParam{a, b}, TypeParam{b, c})));
379 }
380 
381 REGISTER_TYPED_TEST_CASE_P(HashValueSequenceTest, BasicUsage);
382 using IntSequenceTypes =
383     testing::Types<std::deque<int>, std::forward_list<int>, std::list<int>,
384                    std::vector<int>, std::vector<bool>, std::set<int>,
385                    std::multiset<int>>;
386 INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueSequenceTest, IntSequenceTypes);
387 
388 // Private type that only supports AbslHashValue to make sure our chosen hash
389 // implentation is recursive within absl::Hash.
390 // It uses std::abs() on the value to provide different bitwise representations
391 // of the same logical value.
392 struct Private {
393   int i;
394   template <typename H>
AbslHashValue(H h,Private p)395   friend H AbslHashValue(H h, Private p) {
396     return H::combine(std::move(h), std::abs(p.i));
397   }
398 
operator ==(Private a,Private b)399   friend bool operator==(Private a, Private b) {
400     return std::abs(a.i) == std::abs(b.i);
401   }
402 
operator <<(std::ostream & o,Private p)403   friend std::ostream& operator<<(std::ostream& o, Private p) {
404     return o << p.i;
405   }
406 };
407 
408 // Test helper for combine_piecewise_buffer.  It holds a string_view to the
409 // buffer-to-be-hashed.  Its AbslHashValue specialization will split up its
410 // contents at the character offsets requested.
411 class PiecewiseHashTester {
412  public:
413   // Create a hash view of a buffer to be hashed contiguously.
PiecewiseHashTester(absl::string_view buf)414   explicit PiecewiseHashTester(absl::string_view buf)
415       : buf_(buf), piecewise_(false), split_locations_() {}
416 
417   // Create a hash view of a buffer to be hashed piecewise, with breaks at the
418   // given locations.
PiecewiseHashTester(absl::string_view buf,std::set<size_t> split_locations)419   PiecewiseHashTester(absl::string_view buf, std::set<size_t> split_locations)
420       : buf_(buf),
421         piecewise_(true),
422         split_locations_(std::move(split_locations)) {}
423 
424   template <typename H>
AbslHashValue(H h,const PiecewiseHashTester & p)425   friend H AbslHashValue(H h, const PiecewiseHashTester& p) {
426     if (!p.piecewise_) {
427       return H::combine_contiguous(std::move(h), p.buf_.data(), p.buf_.size());
428     }
429     absl::hash_internal::PiecewiseCombiner combiner;
430     if (p.split_locations_.empty()) {
431       h = combiner.add_buffer(std::move(h), p.buf_.data(), p.buf_.size());
432       return combiner.finalize(std::move(h));
433     }
434     size_t begin = 0;
435     for (size_t next : p.split_locations_) {
436       absl::string_view chunk = p.buf_.substr(begin, next - begin);
437       h = combiner.add_buffer(std::move(h), chunk.data(), chunk.size());
438       begin = next;
439     }
440     absl::string_view last_chunk = p.buf_.substr(begin);
441     if (!last_chunk.empty()) {
442       h = combiner.add_buffer(std::move(h), last_chunk.data(),
443                               last_chunk.size());
444     }
445     return combiner.finalize(std::move(h));
446   }
447 
448  private:
449   absl::string_view buf_;
450   bool piecewise_;
451   std::set<size_t> split_locations_;
452 };
453 
454 // Dummy object that hashes as two distinct contiguous buffers, "foo" followed
455 // by "bar"
456 struct DummyFooBar {
457   template <typename H>
AbslHashValue(H h,const DummyFooBar &)458   friend H AbslHashValue(H h, const DummyFooBar&) {
459     const char* foo = "foo";
460     const char* bar = "bar";
461     h = H::combine_contiguous(std::move(h), foo, 3);
462     h = H::combine_contiguous(std::move(h), bar, 3);
463     return h;
464   }
465 };
466 
TEST(HashValueTest,CombinePiecewiseBuffer)467 TEST(HashValueTest, CombinePiecewiseBuffer) {
468   absl::Hash<PiecewiseHashTester> hash;
469 
470   // Check that hashing an empty buffer through the piecewise API works.
471   EXPECT_EQ(hash(PiecewiseHashTester("")), hash(PiecewiseHashTester("", {})));
472 
473   // Similarly, small buffers should give consistent results
474   EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
475             hash(PiecewiseHashTester("foobar", {})));
476   EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
477             hash(PiecewiseHashTester("foobar", {3})));
478 
479   // But hashing "foobar" in pieces gives a different answer than hashing "foo"
480   // contiguously, then "bar" contiguously.
481   EXPECT_NE(hash(PiecewiseHashTester("foobar", {3})),
482             absl::Hash<DummyFooBar>()(DummyFooBar{}));
483 
484   // Test hashing a large buffer incrementally, broken up in several different
485   // ways.  Arrange for breaks on and near the stride boundaries to look for
486   // off-by-one errors in the implementation.
487   //
488   // This test is run on a buffer that is a multiple of the stride size, and one
489   // that isn't.
490   for (size_t big_buffer_size : {1024 * 2 + 512, 1024 * 3}) {
491     SCOPED_TRACE(big_buffer_size);
492     std::string big_buffer;
493     for (int i = 0; i < big_buffer_size; ++i) {
494       // Arbitrary std::string
495       big_buffer.push_back(32 + (i * (i / 3)) % 64);
496     }
497     auto big_buffer_hash = hash(PiecewiseHashTester(big_buffer));
498 
499     const int possible_breaks = 9;
500     size_t breaks[possible_breaks] = {1,    512,  1023, 1024, 1025,
501                                       1536, 2047, 2048, 2049};
502     for (unsigned test_mask = 0; test_mask < (1u << possible_breaks);
503          ++test_mask) {
504       SCOPED_TRACE(test_mask);
505       std::set<size_t> break_locations;
506       for (int j = 0; j < possible_breaks; ++j) {
507         if (test_mask & (1u << j)) {
508           break_locations.insert(breaks[j]);
509         }
510       }
511       EXPECT_EQ(
512           hash(PiecewiseHashTester(big_buffer, std::move(break_locations))),
513           big_buffer_hash);
514     }
515   }
516 }
517 
TEST(HashValueTest,PrivateSanity)518 TEST(HashValueTest, PrivateSanity) {
519   // Sanity check that Private is working as the tests below expect it to work.
520   EXPECT_TRUE(is_hashable<Private>::value);
521   EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1}));
522   EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1}));
523 }
524 
TEST(HashValueTest,Optional)525 TEST(HashValueTest, Optional) {
526   EXPECT_TRUE(is_hashable<absl::optional<Private>>::value);
527 
528   using O = absl::optional<Private>;
529   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
530       std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}})));
531 }
532 
TEST(HashValueTest,Variant)533 TEST(HashValueTest, Variant) {
534   using V = absl::variant<Private, std::string>;
535   EXPECT_TRUE(is_hashable<V>::value);
536 
537   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
538       V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD"))));
539 
540 #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
541   struct S {};
542   EXPECT_FALSE(is_hashable<absl::variant<S>>::value);
543 #endif
544 }
545 
TEST(HashValueTest,Maps)546 TEST(HashValueTest, Maps) {
547   EXPECT_TRUE((is_hashable<std::map<int, std::string>>::value));
548 
549   using M = std::map<int, std::string>;
550   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
551       M{}, M{{0, "foo"}}, M{{1, "foo"}}, M{{0, "bar"}}, M{{1, "bar"}},
552       M{{0, "foo"}, {42, "bar"}}, M{{1, "foo"}, {42, "bar"}},
553       M{{1, "foo"}, {43, "bar"}}, M{{1, "foo"}, {43, "baz"}})));
554 
555   using MM = std::multimap<int, std::string>;
556   EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
557       MM{}, MM{{0, "foo"}}, MM{{1, "foo"}}, MM{{0, "bar"}}, MM{{1, "bar"}},
558       MM{{0, "foo"}, {0, "bar"}}, MM{{0, "bar"}, {0, "foo"}},
559       MM{{0, "foo"}, {42, "bar"}}, MM{{1, "foo"}, {42, "bar"}},
560       MM{{1, "foo"}, {1, "foo"}, {43, "bar"}}, MM{{1, "foo"}, {43, "baz"}})));
561 }
562 
563 template <typename T, typename = void>
564 struct IsHashCallable : std::false_type {};
565 
566 template <typename T>
567 struct IsHashCallable<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()(
568                             std::declval<const T&>()))>> : std::true_type {};
569 
570 template <typename T, typename = void>
571 struct IsAggregateInitializable : std::false_type {};
572 
573 template <typename T>
574 struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>>
575     : std::true_type {};
576 
TEST(IsHashableTest,ValidHash)577 TEST(IsHashableTest, ValidHash) {
578   EXPECT_TRUE((is_hashable<int>::value));
579   EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value);
580   EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value);
581   EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value);
582   EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value);
583   EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value);
584   EXPECT_TRUE(IsHashCallable<int>::value);
585   EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value);
586 }
587 
588 #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
TEST(IsHashableTest,PoisonHash)589 TEST(IsHashableTest, PoisonHash) {
590   struct X {};
591   EXPECT_FALSE((is_hashable<X>::value));
592   EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value);
593   EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value);
594   EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value);
595   EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value);
596   EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value);
597   EXPECT_FALSE(IsHashCallable<X>::value);
598 #if !defined(__GNUC__) || __GNUC__ < 9
599   // This doesn't compile on GCC 9.
600   EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value);
601 #endif
602 }
603 #endif  // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
604 
605 // Hashable types
606 //
607 // These types exist simply to exercise various AbslHashValue behaviors, so
608 // they are named by what their AbslHashValue overload does.
609 struct NoOp {
610   template <typename HashCode>
AbslHashValue(HashCode h,NoOp n)611   friend HashCode AbslHashValue(HashCode h, NoOp n) {
612     return h;
613   }
614 };
615 
616 struct EmptyCombine {
617   template <typename HashCode>
AbslHashValue(HashCode h,EmptyCombine e)618   friend HashCode AbslHashValue(HashCode h, EmptyCombine e) {
619     return HashCode::combine(std::move(h));
620   }
621 };
622 
623 template <typename Int>
624 struct CombineIterative {
625   template <typename HashCode>
AbslHashValue(HashCode h,CombineIterative c)626   friend HashCode AbslHashValue(HashCode h, CombineIterative c) {
627     for (int i = 0; i < 5; ++i) {
628       h = HashCode::combine(std::move(h), Int(i));
629     }
630     return h;
631   }
632 };
633 
634 template <typename Int>
635 struct CombineVariadic {
636   template <typename HashCode>
AbslHashValue(HashCode h,CombineVariadic c)637   friend HashCode AbslHashValue(HashCode h, CombineVariadic c) {
638     return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3),
639                              Int(4));
640   }
641 };
642 enum class InvokeTag {
643   kUniquelyRepresented,
644   kHashValue,
645 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
646   kLegacyHash,
647 #endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
648   kStdHash,
649   kNone
650 };
651 
652 template <InvokeTag T>
653 using InvokeTagConstant = std::integral_constant<InvokeTag, T>;
654 
655 template <InvokeTag... Tags>
656 struct MinTag;
657 
658 template <InvokeTag a, InvokeTag b, InvokeTag... Tags>
659 struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {};
660 
661 template <InvokeTag a>
662 struct MinTag<a> : InvokeTagConstant<a> {};
663 
664 template <InvokeTag... Tags>
665 struct CustomHashType {
CustomHashType__anondd8f00c30111::CustomHashType666   explicit CustomHashType(size_t val) : value(val) {}
667   size_t value;
668 };
669 
670 template <InvokeTag allowed, InvokeTag... tags>
671 struct EnableIfContained
672     : std::enable_if<absl::disjunction<
673           std::integral_constant<bool, allowed == tags>...>::value> {};
674 
675 template <
676     typename H, InvokeTag... Tags,
677     typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type>
AbslHashValue(H state,CustomHashType<Tags...> t)678 H AbslHashValue(H state, CustomHashType<Tags...> t) {
679   static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, "");
680   return H::combine(std::move(state),
681                     t.value + static_cast<int>(InvokeTag::kHashValue));
682 }
683 
684 }  // namespace
685 
686 namespace absl {
687 ABSL_NAMESPACE_BEGIN
688 namespace hash_internal {
689 template <InvokeTag... Tags>
690 struct is_uniquely_represented<
691     CustomHashType<Tags...>,
692     typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type>
693     : std::true_type {};
694 }  // namespace hash_internal
695 ABSL_NAMESPACE_END
696 }  // namespace absl
697 
698 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
699 namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE {
700 template <InvokeTag... Tags>
701 struct hash<CustomHashType<Tags...>> {
702   template <InvokeTag... TagsIn, typename = typename EnableIfContained<
703                                      InvokeTag::kLegacyHash, TagsIn...>::type>
operator ()ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash704   size_t operator()(CustomHashType<TagsIn...> t) const {
705     static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, "");
706     return t.value + static_cast<int>(InvokeTag::kLegacyHash);
707   }
708 };
709 }  // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE
710 #endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
711 
712 namespace std {
713 template <InvokeTag... Tags>  // NOLINT
714 struct hash<CustomHashType<Tags...>> {
715   template <InvokeTag... TagsIn, typename = typename EnableIfContained<
716                                      InvokeTag::kStdHash, TagsIn...>::type>
operator ()std::hash717   size_t operator()(CustomHashType<TagsIn...> t) const {
718     static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, "");
719     return t.value + static_cast<int>(InvokeTag::kStdHash);
720   }
721 };
722 }  // namespace std
723 
724 namespace {
725 
726 template <typename... T>
TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>,T...)727 void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) {
728   using type = CustomHashType<T::value...>;
729   SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...}));
730   EXPECT_TRUE(is_hashable<type>());
731   EXPECT_TRUE(is_hashable<const type>());
732   EXPECT_TRUE(is_hashable<const type&>());
733 
734   const size_t offset = static_cast<int>(std::min({T::value...}));
735   EXPECT_EQ(SpyHash(type(7)), SpyHash(size_t{7 + offset}));
736 }
737 
TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>)738 void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) {
739 #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
740   // is_hashable is false if we don't support any of the hooks.
741   using type = CustomHashType<>;
742   EXPECT_FALSE(is_hashable<type>());
743   EXPECT_FALSE(is_hashable<const type>());
744   EXPECT_FALSE(is_hashable<const type&>());
745 #endif  // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
746 }
747 
748 template <InvokeTag Tag, typename... T>
TestCustomHashType(InvokeTagConstant<Tag> tag,T...t)749 void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) {
750   constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1);
751   TestCustomHashType(InvokeTagConstant<next>(), tag, t...);
752   TestCustomHashType(InvokeTagConstant<next>(), t...);
753 }
754 
TEST(HashTest,CustomHashType)755 TEST(HashTest, CustomHashType) {
756   TestCustomHashType(InvokeTagConstant<InvokeTag{}>());
757 }
758 
TEST(HashTest,NoOpsAreEquivalent)759 TEST(HashTest, NoOpsAreEquivalent) {
760   EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({}));
761   EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({}));
762 }
763 
764 template <typename T>
765 class HashIntTest : public testing::Test {
766 };
767 TYPED_TEST_SUITE_P(HashIntTest);
768 
TYPED_TEST_P(HashIntTest,BasicUsage)769 TYPED_TEST_P(HashIntTest, BasicUsage) {
770   EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0));
771   EXPECT_NE(Hash<NoOp>()({}),
772             Hash<TypeParam>()(std::numeric_limits<TypeParam>::max()));
773   if (std::numeric_limits<TypeParam>::min() != 0) {
774     EXPECT_NE(Hash<NoOp>()({}),
775               Hash<TypeParam>()(std::numeric_limits<TypeParam>::min()));
776   }
777 
778   EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}),
779             Hash<CombineVariadic<TypeParam>>()({}));
780 }
781 
782 REGISTER_TYPED_TEST_CASE_P(HashIntTest, BasicUsage);
783 using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
784                                 uint64_t, size_t>;
785 INSTANTIATE_TYPED_TEST_CASE_P(My, HashIntTest, IntTypes);
786 
787 struct StructWithPadding {
788   char c;
789   int i;
790 
791   template <typename H>
AbslHashValue(H hash_state,const StructWithPadding & s)792   friend H AbslHashValue(H hash_state, const StructWithPadding& s) {
793     return H::combine(std::move(hash_state), s.c, s.i);
794   }
795 };
796 
797 static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int),
798               "StructWithPadding doesn't have padding");
799 static_assert(std::is_standard_layout<StructWithPadding>::value, "");
800 
801 // This check has to be disabled because libstdc++ doesn't support it.
802 // static_assert(std::is_trivially_constructible<StructWithPadding>::value, "");
803 
804 template <typename T>
805 struct ArraySlice {
806   T* begin;
807   T* end;
808 
809   template <typename H>
AbslHashValue(H hash_state,const ArraySlice & slice)810   friend H AbslHashValue(H hash_state, const ArraySlice& slice) {
811     for (auto t = slice.begin; t != slice.end; ++t) {
812       hash_state = H::combine(std::move(hash_state), *t);
813     }
814     return hash_state;
815   }
816 };
817 
TEST(HashTest,HashNonUniquelyRepresentedType)818 TEST(HashTest, HashNonUniquelyRepresentedType) {
819   // Create equal StructWithPadding objects that are known to have non-equal
820   // padding bytes.
821   static const size_t kNumStructs = 10;
822   unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)];
823   std::memset(buffer1, 0, sizeof(buffer1));
824   auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1);
825 
826   unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)];
827   std::memset(buffer2, 255, sizeof(buffer2));
828   auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2);
829   for (int i = 0; i < kNumStructs; ++i) {
830     SCOPED_TRACE(i);
831     s1[i].c = s2[i].c = '0' + i;
832     s1[i].i = s2[i].i = i;
833     ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding),
834                         buffer2 + i * sizeof(StructWithPadding),
835                         sizeof(StructWithPadding)) == 0)
836         << "Bug in test code: objects do not have unequal"
837         << " object representations";
838   }
839 
840   EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0]));
841   EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}),
842             Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs}));
843 }
844 
TEST(HashTest,StandardHashContainerUsage)845 TEST(HashTest, StandardHashContainerUsage) {
846   std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"},
847                                                          {42, "bar"}};
848 
849   EXPECT_NE(map.find(0), map.end());
850   EXPECT_EQ(map.find(1), map.end());
851   EXPECT_NE(map.find(0u), map.end());
852 }
853 
854 struct ConvertibleFromNoOp {
ConvertibleFromNoOp__anondd8f00c30411::ConvertibleFromNoOp855   ConvertibleFromNoOp(NoOp) {}  // NOLINT(runtime/explicit)
856 
857   template <typename H>
AbslHashValue(H hash_state,ConvertibleFromNoOp)858   friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) {
859     return H::combine(std::move(hash_state), 1);
860   }
861 };
862 
TEST(HashTest,HeterogeneousCall)863 TEST(HashTest, HeterogeneousCall) {
864   EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()),
865             Hash<NoOp>()(NoOp()));
866 }
867 
TEST(IsUniquelyRepresentedTest,SanityTest)868 TEST(IsUniquelyRepresentedTest, SanityTest) {
869   using absl::hash_internal::is_uniquely_represented;
870 
871   EXPECT_TRUE(is_uniquely_represented<unsigned char>::value);
872   EXPECT_TRUE(is_uniquely_represented<int>::value);
873   EXPECT_FALSE(is_uniquely_represented<bool>::value);
874   EXPECT_FALSE(is_uniquely_represented<int*>::value);
875 }
876 
877 struct IntAndString {
878   int i;
879   std::string s;
880 
881   template <typename H>
AbslHashValue(H hash_state,IntAndString int_and_string)882   friend H AbslHashValue(H hash_state, IntAndString int_and_string) {
883     return H::combine(std::move(hash_state), int_and_string.s,
884                       int_and_string.i);
885   }
886 };
887 
TEST(HashTest,SmallValueOn64ByteBoundary)888 TEST(HashTest, SmallValueOn64ByteBoundary) {
889   Hash<IntAndString>()(IntAndString{0, std::string(63, '0')});
890 }
891 
892 struct TypeErased {
893   size_t n;
894 
895   template <typename H>
AbslHashValue(H hash_state,const TypeErased & v)896   friend H AbslHashValue(H hash_state, const TypeErased& v) {
897     v.HashValue(absl::HashState::Create(&hash_state));
898     return hash_state;
899   }
900 
HashValue__anondd8f00c30411::TypeErased901   void HashValue(absl::HashState state) const {
902     absl::HashState::combine(std::move(state), n);
903   }
904 };
905 
TEST(HashTest,TypeErased)906 TEST(HashTest, TypeErased) {
907   EXPECT_TRUE((is_hashable<TypeErased>::value));
908   EXPECT_TRUE((is_hashable<std::pair<TypeErased, int>>::value));
909 
910   EXPECT_EQ(SpyHash(TypeErased{7}), SpyHash(size_t{7}));
911   EXPECT_NE(SpyHash(TypeErased{7}), SpyHash(size_t{13}));
912 
913   EXPECT_EQ(SpyHash(std::make_pair(TypeErased{7}, 17)),
914             SpyHash(std::make_pair(size_t{7}, 17)));
915 }
916 
917 struct ValueWithBoolConversion {
operator bool__anondd8f00c30411::ValueWithBoolConversion918   operator bool() const { return false; }
919   int i;
920 };
921 
922 }  // namespace
923 namespace std {
924 template <>
925 struct hash<ValueWithBoolConversion> {
operator ()std::hash926   size_t operator()(ValueWithBoolConversion v) { return v.i; }
927 };
928 }  // namespace std
929 
930 namespace {
931 
TEST(HashTest,DoesNotUseImplicitConversionsToBool)932 TEST(HashTest, DoesNotUseImplicitConversionsToBool) {
933   EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}),
934             absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1}));
935 }
936 
937 }  // namespace
938