1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/hash/hash.h"
16
17 #include <array>
18 #include <bitset>
19 #include <cstring>
20 #include <deque>
21 #include <forward_list>
22 #include <functional>
23 #include <iterator>
24 #include <limits>
25 #include <list>
26 #include <map>
27 #include <memory>
28 #include <numeric>
29 #include <random>
30 #include <set>
31 #include <string>
32 #include <tuple>
33 #include <type_traits>
34 #include <unordered_map>
35 #include <utility>
36 #include <vector>
37
38 #include "gmock/gmock.h"
39 #include "gtest/gtest.h"
40 #include "absl/container/flat_hash_set.h"
41 #include "absl/hash/hash_testing.h"
42 #include "absl/hash/internal/spy_hash_state.h"
43 #include "absl/meta/type_traits.h"
44 #include "absl/numeric/int128.h"
45
46 namespace {
47
48 using absl::Hash;
49 using absl::hash_internal::SpyHashState;
50
51 template <typename T>
52 class HashValueIntTest : public testing::Test {
53 };
54 TYPED_TEST_SUITE_P(HashValueIntTest);
55
56 template <typename T>
SpyHash(const T & value)57 SpyHashState SpyHash(const T& value) {
58 return SpyHashState::combine(SpyHashState(), value);
59 }
60
61 // Helper trait to verify if T is hashable. We use absl::Hash's poison status to
62 // detect it.
63 template <typename T>
64 using is_hashable = std::is_default_constructible<absl::Hash<T>>;
65
TYPED_TEST_P(HashValueIntTest,BasicUsage)66 TYPED_TEST_P(HashValueIntTest, BasicUsage) {
67 EXPECT_TRUE((is_hashable<TypeParam>::value));
68
69 TypeParam n = 42;
70 EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42}));
71 EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0}));
72 EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()),
73 SpyHash(std::numeric_limits<TypeParam>::min()));
74 }
75
TYPED_TEST_P(HashValueIntTest,FastPath)76 TYPED_TEST_P(HashValueIntTest, FastPath) {
77 // Test the fast-path to make sure the values are the same.
78 TypeParam n = 42;
79 EXPECT_EQ(absl::Hash<TypeParam>{}(n),
80 absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n)));
81 }
82
83 REGISTER_TYPED_TEST_CASE_P(HashValueIntTest, BasicUsage, FastPath);
84 using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
85 uint64_t, size_t>;
86 INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueIntTest, IntTypes);
87
88 enum LegacyEnum { kValue1, kValue2, kValue3 };
89
90 enum class EnumClass { kValue4, kValue5, kValue6 };
91
TEST(HashValueTest,EnumAndBool)92 TEST(HashValueTest, EnumAndBool) {
93 EXPECT_TRUE((is_hashable<LegacyEnum>::value));
94 EXPECT_TRUE((is_hashable<EnumClass>::value));
95 EXPECT_TRUE((is_hashable<bool>::value));
96
97 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
98 LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3)));
99 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
100 EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6)));
101 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
102 std::make_tuple(true, false)));
103 }
104
TEST(HashValueTest,FloatingPoint)105 TEST(HashValueTest, FloatingPoint) {
106 EXPECT_TRUE((is_hashable<float>::value));
107 EXPECT_TRUE((is_hashable<double>::value));
108 EXPECT_TRUE((is_hashable<long double>::value));
109
110 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
111 std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(),
112 -std::numeric_limits<float>::infinity())));
113
114 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
115 std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(),
116 -std::numeric_limits<double>::infinity())));
117
118 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
119 // Add some values with small exponent to test that NORMAL values also
120 // append their category.
121 .5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L,
122 17 * static_cast<long double>(std::numeric_limits<double>::max()),
123 std::numeric_limits<long double>::infinity(),
124 -std::numeric_limits<long double>::infinity())));
125 }
126
TEST(HashValueTest,Pointer)127 TEST(HashValueTest, Pointer) {
128 EXPECT_TRUE((is_hashable<int*>::value));
129
130 int i;
131 int* ptr = &i;
132 int* n = nullptr;
133
134 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
135 std::make_tuple(&i, ptr, nullptr, ptr + 1, n)));
136 }
137
TEST(HashValueTest,PointerAlignment)138 TEST(HashValueTest, PointerAlignment) {
139 // We want to make sure that pointer alignment will not cause bits to be
140 // stuck.
141
142 constexpr size_t kTotalSize = 1 << 20;
143 std::unique_ptr<char[]> data(new char[kTotalSize]);
144 constexpr size_t kLog2NumValues = 5;
145 constexpr size_t kNumValues = 1 << kLog2NumValues;
146
147 for (size_t align = 1; align < kTotalSize / kNumValues;
148 align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) {
149 SCOPED_TRACE(align);
150 ASSERT_LE(align * kNumValues, kTotalSize);
151
152 size_t bits_or = 0;
153 size_t bits_and = ~size_t{};
154
155 for (size_t i = 0; i < kNumValues; ++i) {
156 size_t hash = absl::Hash<void*>()(data.get() + i * align);
157 bits_or |= hash;
158 bits_and &= hash;
159 }
160
161 // Limit the scope to the bits we would be using for Swisstable.
162 constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1;
163 size_t stuck_bits = (~bits_or | bits_and) & kMask;
164 EXPECT_EQ(stuck_bits, 0) << "0x" << std::hex << stuck_bits;
165 }
166 }
167
TEST(HashValueTest,PairAndTuple)168 TEST(HashValueTest, PairAndTuple) {
169 EXPECT_TRUE((is_hashable<std::pair<int, int>>::value));
170 EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value));
171 EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value));
172 EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value));
173
174 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
175 std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0),
176 std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42))));
177
178 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
179 std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42),
180 std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0),
181 std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9),
182 std::make_tuple(0, 0, -42))));
183
184 // Test that tuples of lvalue references work (so we need a few lvalues):
185 int a = 0, b = 1, c = 17, d = 23;
186 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
187 std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d))));
188
189 // Test that tuples of rvalue references work:
190 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
191 std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42),
192 std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0),
193 std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9),
194 std::forward_as_tuple(0, 0, -42))));
195 }
196
TEST(HashValueTest,CombineContiguousWorks)197 TEST(HashValueTest, CombineContiguousWorks) {
198 std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)};
199 std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)};
200
201 auto vh1 = SpyHash(v1);
202 auto vh2 = SpyHash(v2);
203 EXPECT_NE(vh1, vh2);
204 }
205
206 struct DummyDeleter {
207 template <typename T>
operator ()__anondd8f00c30111::DummyDeleter208 void operator() (T* ptr) {}
209 };
210
211 struct SmartPointerEq {
212 template <typename T, typename U>
operator ()__anondd8f00c30111::SmartPointerEq213 bool operator()(const T& t, const U& u) const {
214 return GetPtr(t) == GetPtr(u);
215 }
216
217 template <typename T>
GetPtr__anondd8f00c30111::SmartPointerEq218 static auto GetPtr(const T& t) -> decltype(&*t) {
219 return t ? &*t : nullptr;
220 }
221
GetPtr__anondd8f00c30111::SmartPointerEq222 static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; }
223 };
224
TEST(HashValueTest,SmartPointers)225 TEST(HashValueTest, SmartPointers) {
226 EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value));
227 EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value));
228 EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value));
229
230 int i, j;
231 std::unique_ptr<int, DummyDeleter> unique1(&i);
232 std::unique_ptr<int, DummyDeleter> unique2(&i);
233 std::unique_ptr<int, DummyDeleter> unique_other(&j);
234 std::unique_ptr<int, DummyDeleter> unique_null;
235
236 std::shared_ptr<int> shared1(&i, DummyDeleter());
237 std::shared_ptr<int> shared2(&i, DummyDeleter());
238 std::shared_ptr<int> shared_other(&j, DummyDeleter());
239 std::shared_ptr<int> shared_null;
240
241 // Sanity check of the Eq function.
242 ASSERT_TRUE(SmartPointerEq{}(unique1, shared1));
243 ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other));
244 ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr));
245 ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr));
246
247 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
248 std::forward_as_tuple(&i, nullptr, //
249 unique1, unique2, unique_null, //
250 absl::make_unique<int>(), //
251 shared1, shared2, shared_null, //
252 std::make_shared<int>()),
253 SmartPointerEq{}));
254 }
255
TEST(HashValueTest,FunctionPointer)256 TEST(HashValueTest, FunctionPointer) {
257 using Func = int (*)();
258 EXPECT_TRUE(is_hashable<Func>::value);
259
260 Func p1 = [] { return 2; }, p2 = [] { return 1; };
261 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
262 std::make_tuple(p1, p2, nullptr)));
263 }
264
265 struct WrapInTuple {
266 template <typename T>
operator ()__anondd8f00c30111::WrapInTuple267 std::tuple<int, T, size_t> operator()(const T& t) const {
268 return std::make_tuple(7, t, 0xdeadbeef);
269 }
270 };
271
TEST(HashValueTest,Strings)272 TEST(HashValueTest, Strings) {
273 EXPECT_TRUE((is_hashable<std::string>::value));
274
275 const std::string small = "foo";
276 const std::string dup = "foofoo";
277 const std::string large = std::string(2048, 'x'); // multiple of chunk size
278 const std::string huge = std::string(5000, 'a'); // not a multiple
279
280 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
281 std::string(), absl::string_view(),
282 std::string(""), absl::string_view(""),
283 std::string(small), absl::string_view(small),
284 std::string(dup), absl::string_view(dup),
285 std::string(large), absl::string_view(large),
286 std::string(huge), absl::string_view(huge))));
287
288 // Also check that nested types maintain the same hash.
289 const WrapInTuple t{};
290 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
291 t(std::string()), t(absl::string_view()),
292 t(std::string("")), t(absl::string_view("")),
293 t(std::string(small)), t(absl::string_view(small)),
294 t(std::string(dup)), t(absl::string_view(dup)),
295 t(std::string(large)), t(absl::string_view(large)),
296 t(std::string(huge)), t(absl::string_view(huge)))));
297
298 // Make sure that hashing a `const char*` does not use its std::string-value.
299 EXPECT_NE(SpyHash(static_cast<const char*>("ABC")),
300 SpyHash(absl::string_view("ABC")));
301 }
302
TEST(HashValueTest,WString)303 TEST(HashValueTest, WString) {
304 EXPECT_TRUE((is_hashable<std::wstring>::value));
305
306 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
307 std::wstring(), std::wstring(L"ABC"), std::wstring(L"ABC"),
308 std::wstring(L"Some other different string"),
309 std::wstring(L"Iñtërnâtiônàlizætiøn"))));
310 }
311
TEST(HashValueTest,U16String)312 TEST(HashValueTest, U16String) {
313 EXPECT_TRUE((is_hashable<std::u16string>::value));
314
315 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
316 std::u16string(), std::u16string(u"ABC"), std::u16string(u"ABC"),
317 std::u16string(u"Some other different string"),
318 std::u16string(u"Iñtërnâtiônàlizætiøn"))));
319 }
320
TEST(HashValueTest,U32String)321 TEST(HashValueTest, U32String) {
322 EXPECT_TRUE((is_hashable<std::u32string>::value));
323
324 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
325 std::u32string(), std::u32string(U"ABC"), std::u32string(U"ABC"),
326 std::u32string(U"Some other different string"),
327 std::u32string(U"Iñtërnâtiônàlizætiøn"))));
328 }
329
TEST(HashValueTest,StdArray)330 TEST(HashValueTest, StdArray) {
331 EXPECT_TRUE((is_hashable<std::array<int, 3>>::value));
332
333 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
334 std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}})));
335 }
336
TEST(HashValueTest,StdBitset)337 TEST(HashValueTest, StdBitset) {
338 EXPECT_TRUE((is_hashable<std::bitset<257>>::value));
339
340 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
341 {std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"),
342 std::bitset<2>("11")}));
343 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
344 {std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()}));
345
346 constexpr int kNumBits = 256;
347 std::array<std::string, 6> bit_strings;
348 bit_strings.fill(std::string(kNumBits, '1'));
349 bit_strings[1][0] = '0';
350 bit_strings[2][1] = '0';
351 bit_strings[3][kNumBits / 3] = '0';
352 bit_strings[4][kNumBits - 2] = '0';
353 bit_strings[5][kNumBits - 1] = '0';
354 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
355 {std::bitset<kNumBits>(bit_strings[0].c_str()),
356 std::bitset<kNumBits>(bit_strings[1].c_str()),
357 std::bitset<kNumBits>(bit_strings[2].c_str()),
358 std::bitset<kNumBits>(bit_strings[3].c_str()),
359 std::bitset<kNumBits>(bit_strings[4].c_str()),
360 std::bitset<kNumBits>(bit_strings[5].c_str())}));
361 } // namespace
362
363 template <typename T>
364 class HashValueSequenceTest : public testing::Test {
365 };
366 TYPED_TEST_SUITE_P(HashValueSequenceTest);
367
TYPED_TEST_P(HashValueSequenceTest,BasicUsage)368 TYPED_TEST_P(HashValueSequenceTest, BasicUsage) {
369 EXPECT_TRUE((is_hashable<TypeParam>::value));
370
371 using ValueType = typename TypeParam::value_type;
372 auto a = static_cast<ValueType>(0);
373 auto b = static_cast<ValueType>(23);
374 auto c = static_cast<ValueType>(42);
375
376 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
377 std::make_tuple(TypeParam(), TypeParam{}, TypeParam{a, b, c},
378 TypeParam{a, b}, TypeParam{b, c})));
379 }
380
381 REGISTER_TYPED_TEST_CASE_P(HashValueSequenceTest, BasicUsage);
382 using IntSequenceTypes =
383 testing::Types<std::deque<int>, std::forward_list<int>, std::list<int>,
384 std::vector<int>, std::vector<bool>, std::set<int>,
385 std::multiset<int>>;
386 INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueSequenceTest, IntSequenceTypes);
387
388 // Private type that only supports AbslHashValue to make sure our chosen hash
389 // implentation is recursive within absl::Hash.
390 // It uses std::abs() on the value to provide different bitwise representations
391 // of the same logical value.
392 struct Private {
393 int i;
394 template <typename H>
AbslHashValue(H h,Private p)395 friend H AbslHashValue(H h, Private p) {
396 return H::combine(std::move(h), std::abs(p.i));
397 }
398
operator ==(Private a,Private b)399 friend bool operator==(Private a, Private b) {
400 return std::abs(a.i) == std::abs(b.i);
401 }
402
operator <<(std::ostream & o,Private p)403 friend std::ostream& operator<<(std::ostream& o, Private p) {
404 return o << p.i;
405 }
406 };
407
408 // Test helper for combine_piecewise_buffer. It holds a string_view to the
409 // buffer-to-be-hashed. Its AbslHashValue specialization will split up its
410 // contents at the character offsets requested.
411 class PiecewiseHashTester {
412 public:
413 // Create a hash view of a buffer to be hashed contiguously.
PiecewiseHashTester(absl::string_view buf)414 explicit PiecewiseHashTester(absl::string_view buf)
415 : buf_(buf), piecewise_(false), split_locations_() {}
416
417 // Create a hash view of a buffer to be hashed piecewise, with breaks at the
418 // given locations.
PiecewiseHashTester(absl::string_view buf,std::set<size_t> split_locations)419 PiecewiseHashTester(absl::string_view buf, std::set<size_t> split_locations)
420 : buf_(buf),
421 piecewise_(true),
422 split_locations_(std::move(split_locations)) {}
423
424 template <typename H>
AbslHashValue(H h,const PiecewiseHashTester & p)425 friend H AbslHashValue(H h, const PiecewiseHashTester& p) {
426 if (!p.piecewise_) {
427 return H::combine_contiguous(std::move(h), p.buf_.data(), p.buf_.size());
428 }
429 absl::hash_internal::PiecewiseCombiner combiner;
430 if (p.split_locations_.empty()) {
431 h = combiner.add_buffer(std::move(h), p.buf_.data(), p.buf_.size());
432 return combiner.finalize(std::move(h));
433 }
434 size_t begin = 0;
435 for (size_t next : p.split_locations_) {
436 absl::string_view chunk = p.buf_.substr(begin, next - begin);
437 h = combiner.add_buffer(std::move(h), chunk.data(), chunk.size());
438 begin = next;
439 }
440 absl::string_view last_chunk = p.buf_.substr(begin);
441 if (!last_chunk.empty()) {
442 h = combiner.add_buffer(std::move(h), last_chunk.data(),
443 last_chunk.size());
444 }
445 return combiner.finalize(std::move(h));
446 }
447
448 private:
449 absl::string_view buf_;
450 bool piecewise_;
451 std::set<size_t> split_locations_;
452 };
453
454 // Dummy object that hashes as two distinct contiguous buffers, "foo" followed
455 // by "bar"
456 struct DummyFooBar {
457 template <typename H>
AbslHashValue(H h,const DummyFooBar &)458 friend H AbslHashValue(H h, const DummyFooBar&) {
459 const char* foo = "foo";
460 const char* bar = "bar";
461 h = H::combine_contiguous(std::move(h), foo, 3);
462 h = H::combine_contiguous(std::move(h), bar, 3);
463 return h;
464 }
465 };
466
TEST(HashValueTest,CombinePiecewiseBuffer)467 TEST(HashValueTest, CombinePiecewiseBuffer) {
468 absl::Hash<PiecewiseHashTester> hash;
469
470 // Check that hashing an empty buffer through the piecewise API works.
471 EXPECT_EQ(hash(PiecewiseHashTester("")), hash(PiecewiseHashTester("", {})));
472
473 // Similarly, small buffers should give consistent results
474 EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
475 hash(PiecewiseHashTester("foobar", {})));
476 EXPECT_EQ(hash(PiecewiseHashTester("foobar")),
477 hash(PiecewiseHashTester("foobar", {3})));
478
479 // But hashing "foobar" in pieces gives a different answer than hashing "foo"
480 // contiguously, then "bar" contiguously.
481 EXPECT_NE(hash(PiecewiseHashTester("foobar", {3})),
482 absl::Hash<DummyFooBar>()(DummyFooBar{}));
483
484 // Test hashing a large buffer incrementally, broken up in several different
485 // ways. Arrange for breaks on and near the stride boundaries to look for
486 // off-by-one errors in the implementation.
487 //
488 // This test is run on a buffer that is a multiple of the stride size, and one
489 // that isn't.
490 for (size_t big_buffer_size : {1024 * 2 + 512, 1024 * 3}) {
491 SCOPED_TRACE(big_buffer_size);
492 std::string big_buffer;
493 for (int i = 0; i < big_buffer_size; ++i) {
494 // Arbitrary std::string
495 big_buffer.push_back(32 + (i * (i / 3)) % 64);
496 }
497 auto big_buffer_hash = hash(PiecewiseHashTester(big_buffer));
498
499 const int possible_breaks = 9;
500 size_t breaks[possible_breaks] = {1, 512, 1023, 1024, 1025,
501 1536, 2047, 2048, 2049};
502 for (unsigned test_mask = 0; test_mask < (1u << possible_breaks);
503 ++test_mask) {
504 SCOPED_TRACE(test_mask);
505 std::set<size_t> break_locations;
506 for (int j = 0; j < possible_breaks; ++j) {
507 if (test_mask & (1u << j)) {
508 break_locations.insert(breaks[j]);
509 }
510 }
511 EXPECT_EQ(
512 hash(PiecewiseHashTester(big_buffer, std::move(break_locations))),
513 big_buffer_hash);
514 }
515 }
516 }
517
TEST(HashValueTest,PrivateSanity)518 TEST(HashValueTest, PrivateSanity) {
519 // Sanity check that Private is working as the tests below expect it to work.
520 EXPECT_TRUE(is_hashable<Private>::value);
521 EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1}));
522 EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1}));
523 }
524
TEST(HashValueTest,Optional)525 TEST(HashValueTest, Optional) {
526 EXPECT_TRUE(is_hashable<absl::optional<Private>>::value);
527
528 using O = absl::optional<Private>;
529 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
530 std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}})));
531 }
532
TEST(HashValueTest,Variant)533 TEST(HashValueTest, Variant) {
534 using V = absl::variant<Private, std::string>;
535 EXPECT_TRUE(is_hashable<V>::value);
536
537 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
538 V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD"))));
539
540 #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
541 struct S {};
542 EXPECT_FALSE(is_hashable<absl::variant<S>>::value);
543 #endif
544 }
545
TEST(HashValueTest,Maps)546 TEST(HashValueTest, Maps) {
547 EXPECT_TRUE((is_hashable<std::map<int, std::string>>::value));
548
549 using M = std::map<int, std::string>;
550 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
551 M{}, M{{0, "foo"}}, M{{1, "foo"}}, M{{0, "bar"}}, M{{1, "bar"}},
552 M{{0, "foo"}, {42, "bar"}}, M{{1, "foo"}, {42, "bar"}},
553 M{{1, "foo"}, {43, "bar"}}, M{{1, "foo"}, {43, "baz"}})));
554
555 using MM = std::multimap<int, std::string>;
556 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
557 MM{}, MM{{0, "foo"}}, MM{{1, "foo"}}, MM{{0, "bar"}}, MM{{1, "bar"}},
558 MM{{0, "foo"}, {0, "bar"}}, MM{{0, "bar"}, {0, "foo"}},
559 MM{{0, "foo"}, {42, "bar"}}, MM{{1, "foo"}, {42, "bar"}},
560 MM{{1, "foo"}, {1, "foo"}, {43, "bar"}}, MM{{1, "foo"}, {43, "baz"}})));
561 }
562
563 template <typename T, typename = void>
564 struct IsHashCallable : std::false_type {};
565
566 template <typename T>
567 struct IsHashCallable<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()(
568 std::declval<const T&>()))>> : std::true_type {};
569
570 template <typename T, typename = void>
571 struct IsAggregateInitializable : std::false_type {};
572
573 template <typename T>
574 struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>>
575 : std::true_type {};
576
TEST(IsHashableTest,ValidHash)577 TEST(IsHashableTest, ValidHash) {
578 EXPECT_TRUE((is_hashable<int>::value));
579 EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value);
580 EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value);
581 EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value);
582 EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value);
583 EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value);
584 EXPECT_TRUE(IsHashCallable<int>::value);
585 EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value);
586 }
587
588 #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
TEST(IsHashableTest,PoisonHash)589 TEST(IsHashableTest, PoisonHash) {
590 struct X {};
591 EXPECT_FALSE((is_hashable<X>::value));
592 EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value);
593 EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value);
594 EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value);
595 EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value);
596 EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value);
597 EXPECT_FALSE(IsHashCallable<X>::value);
598 #if !defined(__GNUC__) || __GNUC__ < 9
599 // This doesn't compile on GCC 9.
600 EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value);
601 #endif
602 }
603 #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
604
605 // Hashable types
606 //
607 // These types exist simply to exercise various AbslHashValue behaviors, so
608 // they are named by what their AbslHashValue overload does.
609 struct NoOp {
610 template <typename HashCode>
AbslHashValue(HashCode h,NoOp n)611 friend HashCode AbslHashValue(HashCode h, NoOp n) {
612 return h;
613 }
614 };
615
616 struct EmptyCombine {
617 template <typename HashCode>
AbslHashValue(HashCode h,EmptyCombine e)618 friend HashCode AbslHashValue(HashCode h, EmptyCombine e) {
619 return HashCode::combine(std::move(h));
620 }
621 };
622
623 template <typename Int>
624 struct CombineIterative {
625 template <typename HashCode>
AbslHashValue(HashCode h,CombineIterative c)626 friend HashCode AbslHashValue(HashCode h, CombineIterative c) {
627 for (int i = 0; i < 5; ++i) {
628 h = HashCode::combine(std::move(h), Int(i));
629 }
630 return h;
631 }
632 };
633
634 template <typename Int>
635 struct CombineVariadic {
636 template <typename HashCode>
AbslHashValue(HashCode h,CombineVariadic c)637 friend HashCode AbslHashValue(HashCode h, CombineVariadic c) {
638 return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3),
639 Int(4));
640 }
641 };
642 enum class InvokeTag {
643 kUniquelyRepresented,
644 kHashValue,
645 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
646 kLegacyHash,
647 #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
648 kStdHash,
649 kNone
650 };
651
652 template <InvokeTag T>
653 using InvokeTagConstant = std::integral_constant<InvokeTag, T>;
654
655 template <InvokeTag... Tags>
656 struct MinTag;
657
658 template <InvokeTag a, InvokeTag b, InvokeTag... Tags>
659 struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {};
660
661 template <InvokeTag a>
662 struct MinTag<a> : InvokeTagConstant<a> {};
663
664 template <InvokeTag... Tags>
665 struct CustomHashType {
CustomHashType__anondd8f00c30111::CustomHashType666 explicit CustomHashType(size_t val) : value(val) {}
667 size_t value;
668 };
669
670 template <InvokeTag allowed, InvokeTag... tags>
671 struct EnableIfContained
672 : std::enable_if<absl::disjunction<
673 std::integral_constant<bool, allowed == tags>...>::value> {};
674
675 template <
676 typename H, InvokeTag... Tags,
677 typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type>
AbslHashValue(H state,CustomHashType<Tags...> t)678 H AbslHashValue(H state, CustomHashType<Tags...> t) {
679 static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, "");
680 return H::combine(std::move(state),
681 t.value + static_cast<int>(InvokeTag::kHashValue));
682 }
683
684 } // namespace
685
686 namespace absl {
687 ABSL_NAMESPACE_BEGIN
688 namespace hash_internal {
689 template <InvokeTag... Tags>
690 struct is_uniquely_represented<
691 CustomHashType<Tags...>,
692 typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type>
693 : std::true_type {};
694 } // namespace hash_internal
695 ABSL_NAMESPACE_END
696 } // namespace absl
697
698 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
699 namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE {
700 template <InvokeTag... Tags>
701 struct hash<CustomHashType<Tags...>> {
702 template <InvokeTag... TagsIn, typename = typename EnableIfContained<
703 InvokeTag::kLegacyHash, TagsIn...>::type>
operator ()ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash704 size_t operator()(CustomHashType<TagsIn...> t) const {
705 static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, "");
706 return t.value + static_cast<int>(InvokeTag::kLegacyHash);
707 }
708 };
709 } // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE
710 #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
711
712 namespace std {
713 template <InvokeTag... Tags> // NOLINT
714 struct hash<CustomHashType<Tags...>> {
715 template <InvokeTag... TagsIn, typename = typename EnableIfContained<
716 InvokeTag::kStdHash, TagsIn...>::type>
operator ()std::hash717 size_t operator()(CustomHashType<TagsIn...> t) const {
718 static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, "");
719 return t.value + static_cast<int>(InvokeTag::kStdHash);
720 }
721 };
722 } // namespace std
723
724 namespace {
725
726 template <typename... T>
TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>,T...)727 void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) {
728 using type = CustomHashType<T::value...>;
729 SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...}));
730 EXPECT_TRUE(is_hashable<type>());
731 EXPECT_TRUE(is_hashable<const type>());
732 EXPECT_TRUE(is_hashable<const type&>());
733
734 const size_t offset = static_cast<int>(std::min({T::value...}));
735 EXPECT_EQ(SpyHash(type(7)), SpyHash(size_t{7 + offset}));
736 }
737
TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>)738 void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) {
739 #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
740 // is_hashable is false if we don't support any of the hooks.
741 using type = CustomHashType<>;
742 EXPECT_FALSE(is_hashable<type>());
743 EXPECT_FALSE(is_hashable<const type>());
744 EXPECT_FALSE(is_hashable<const type&>());
745 #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
746 }
747
748 template <InvokeTag Tag, typename... T>
TestCustomHashType(InvokeTagConstant<Tag> tag,T...t)749 void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) {
750 constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1);
751 TestCustomHashType(InvokeTagConstant<next>(), tag, t...);
752 TestCustomHashType(InvokeTagConstant<next>(), t...);
753 }
754
TEST(HashTest,CustomHashType)755 TEST(HashTest, CustomHashType) {
756 TestCustomHashType(InvokeTagConstant<InvokeTag{}>());
757 }
758
TEST(HashTest,NoOpsAreEquivalent)759 TEST(HashTest, NoOpsAreEquivalent) {
760 EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({}));
761 EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({}));
762 }
763
764 template <typename T>
765 class HashIntTest : public testing::Test {
766 };
767 TYPED_TEST_SUITE_P(HashIntTest);
768
TYPED_TEST_P(HashIntTest,BasicUsage)769 TYPED_TEST_P(HashIntTest, BasicUsage) {
770 EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0));
771 EXPECT_NE(Hash<NoOp>()({}),
772 Hash<TypeParam>()(std::numeric_limits<TypeParam>::max()));
773 if (std::numeric_limits<TypeParam>::min() != 0) {
774 EXPECT_NE(Hash<NoOp>()({}),
775 Hash<TypeParam>()(std::numeric_limits<TypeParam>::min()));
776 }
777
778 EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}),
779 Hash<CombineVariadic<TypeParam>>()({}));
780 }
781
782 REGISTER_TYPED_TEST_CASE_P(HashIntTest, BasicUsage);
783 using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
784 uint64_t, size_t>;
785 INSTANTIATE_TYPED_TEST_CASE_P(My, HashIntTest, IntTypes);
786
787 struct StructWithPadding {
788 char c;
789 int i;
790
791 template <typename H>
AbslHashValue(H hash_state,const StructWithPadding & s)792 friend H AbslHashValue(H hash_state, const StructWithPadding& s) {
793 return H::combine(std::move(hash_state), s.c, s.i);
794 }
795 };
796
797 static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int),
798 "StructWithPadding doesn't have padding");
799 static_assert(std::is_standard_layout<StructWithPadding>::value, "");
800
801 // This check has to be disabled because libstdc++ doesn't support it.
802 // static_assert(std::is_trivially_constructible<StructWithPadding>::value, "");
803
804 template <typename T>
805 struct ArraySlice {
806 T* begin;
807 T* end;
808
809 template <typename H>
AbslHashValue(H hash_state,const ArraySlice & slice)810 friend H AbslHashValue(H hash_state, const ArraySlice& slice) {
811 for (auto t = slice.begin; t != slice.end; ++t) {
812 hash_state = H::combine(std::move(hash_state), *t);
813 }
814 return hash_state;
815 }
816 };
817
TEST(HashTest,HashNonUniquelyRepresentedType)818 TEST(HashTest, HashNonUniquelyRepresentedType) {
819 // Create equal StructWithPadding objects that are known to have non-equal
820 // padding bytes.
821 static const size_t kNumStructs = 10;
822 unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)];
823 std::memset(buffer1, 0, sizeof(buffer1));
824 auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1);
825
826 unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)];
827 std::memset(buffer2, 255, sizeof(buffer2));
828 auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2);
829 for (int i = 0; i < kNumStructs; ++i) {
830 SCOPED_TRACE(i);
831 s1[i].c = s2[i].c = '0' + i;
832 s1[i].i = s2[i].i = i;
833 ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding),
834 buffer2 + i * sizeof(StructWithPadding),
835 sizeof(StructWithPadding)) == 0)
836 << "Bug in test code: objects do not have unequal"
837 << " object representations";
838 }
839
840 EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0]));
841 EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}),
842 Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs}));
843 }
844
TEST(HashTest,StandardHashContainerUsage)845 TEST(HashTest, StandardHashContainerUsage) {
846 std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"},
847 {42, "bar"}};
848
849 EXPECT_NE(map.find(0), map.end());
850 EXPECT_EQ(map.find(1), map.end());
851 EXPECT_NE(map.find(0u), map.end());
852 }
853
854 struct ConvertibleFromNoOp {
ConvertibleFromNoOp__anondd8f00c30411::ConvertibleFromNoOp855 ConvertibleFromNoOp(NoOp) {} // NOLINT(runtime/explicit)
856
857 template <typename H>
AbslHashValue(H hash_state,ConvertibleFromNoOp)858 friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) {
859 return H::combine(std::move(hash_state), 1);
860 }
861 };
862
TEST(HashTest,HeterogeneousCall)863 TEST(HashTest, HeterogeneousCall) {
864 EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()),
865 Hash<NoOp>()(NoOp()));
866 }
867
TEST(IsUniquelyRepresentedTest,SanityTest)868 TEST(IsUniquelyRepresentedTest, SanityTest) {
869 using absl::hash_internal::is_uniquely_represented;
870
871 EXPECT_TRUE(is_uniquely_represented<unsigned char>::value);
872 EXPECT_TRUE(is_uniquely_represented<int>::value);
873 EXPECT_FALSE(is_uniquely_represented<bool>::value);
874 EXPECT_FALSE(is_uniquely_represented<int*>::value);
875 }
876
877 struct IntAndString {
878 int i;
879 std::string s;
880
881 template <typename H>
AbslHashValue(H hash_state,IntAndString int_and_string)882 friend H AbslHashValue(H hash_state, IntAndString int_and_string) {
883 return H::combine(std::move(hash_state), int_and_string.s,
884 int_and_string.i);
885 }
886 };
887
TEST(HashTest,SmallValueOn64ByteBoundary)888 TEST(HashTest, SmallValueOn64ByteBoundary) {
889 Hash<IntAndString>()(IntAndString{0, std::string(63, '0')});
890 }
891
892 struct TypeErased {
893 size_t n;
894
895 template <typename H>
AbslHashValue(H hash_state,const TypeErased & v)896 friend H AbslHashValue(H hash_state, const TypeErased& v) {
897 v.HashValue(absl::HashState::Create(&hash_state));
898 return hash_state;
899 }
900
HashValue__anondd8f00c30411::TypeErased901 void HashValue(absl::HashState state) const {
902 absl::HashState::combine(std::move(state), n);
903 }
904 };
905
TEST(HashTest,TypeErased)906 TEST(HashTest, TypeErased) {
907 EXPECT_TRUE((is_hashable<TypeErased>::value));
908 EXPECT_TRUE((is_hashable<std::pair<TypeErased, int>>::value));
909
910 EXPECT_EQ(SpyHash(TypeErased{7}), SpyHash(size_t{7}));
911 EXPECT_NE(SpyHash(TypeErased{7}), SpyHash(size_t{13}));
912
913 EXPECT_EQ(SpyHash(std::make_pair(TypeErased{7}, 17)),
914 SpyHash(std::make_pair(size_t{7}, 17)));
915 }
916
917 struct ValueWithBoolConversion {
operator bool__anondd8f00c30411::ValueWithBoolConversion918 operator bool() const { return false; }
919 int i;
920 };
921
922 } // namespace
923 namespace std {
924 template <>
925 struct hash<ValueWithBoolConversion> {
operator ()std::hash926 size_t operator()(ValueWithBoolConversion v) { return v.i; }
927 };
928 } // namespace std
929
930 namespace {
931
TEST(HashTest,DoesNotUseImplicitConversionsToBool)932 TEST(HashTest, DoesNotUseImplicitConversionsToBool) {
933 EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}),
934 absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1}));
935 }
936
937 } // namespace
938