1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(void);
181 #else
update_cpu_load_nohz(void)182 static inline void update_cpu_load_nohz(void) { }
183 #endif
184
185 extern unsigned long get_parent_ip(unsigned long addr);
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_STATE_MAX 2048
223
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225
226 extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
233
234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240 /* get_task_state() */
241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
253
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256 #define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261 #define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
264 smp_store_mb((tsk)->state, (state_value)); \
265 } while (0)
266
267 /*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278 #define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283 #define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
286 smp_store_mb(current->state, (state_value)); \
287 } while (0)
288
289 #else
290
291 #define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value) \
294 smp_store_mb((tsk)->state, (state_value))
295
296 /*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
307 #define __set_current_state(state_value) \
308 do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value) \
310 smp_store_mb(current->state, (state_value))
311
312 #endif
313
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
316
317 #include <linux/spinlock.h>
318
319 /*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325 extern rwlock_t tasklist_lock;
326 extern spinlock_t mmlist_lock;
327
328 struct task_struct;
329
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
333
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage void schedule_tail(struct task_struct *prev);
337 extern void init_idle(struct task_struct *idle, int cpu);
338 extern void init_idle_bootup_task(struct task_struct *idle);
339
340 extern cpumask_var_t cpu_isolated_map;
341
342 extern int runqueue_is_locked(int cpu);
343
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
348 #else
nohz_balance_enter_idle(int cpu)349 static inline void nohz_balance_enter_idle(int cpu) { }
set_cpu_sd_state_idle(void)350 static inline void set_cpu_sd_state_idle(void) { }
351 #endif
352
353 /*
354 * Only dump TASK_* tasks. (0 for all tasks)
355 */
356 extern void show_state_filter(unsigned long state_filter);
357
show_state(void)358 static inline void show_state(void)
359 {
360 show_state_filter(0);
361 }
362
363 extern void show_regs(struct pt_regs *);
364
365 /*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370 extern void show_stack(struct task_struct *task, unsigned long *sp);
371
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user);
375 extern void scheduler_tick(void);
376
377 extern void sched_show_task(struct task_struct *p);
378
379 #ifdef CONFIG_LOCKUP_DETECTOR
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386 extern unsigned int softlockup_panic;
387 extern unsigned int hardlockup_panic;
388 void lockup_detector_init(void);
389 #else
touch_softlockup_watchdog(void)390 static inline void touch_softlockup_watchdog(void)
391 {
392 }
touch_softlockup_watchdog_sync(void)393 static inline void touch_softlockup_watchdog_sync(void)
394 {
395 }
touch_all_softlockup_watchdogs(void)396 static inline void touch_all_softlockup_watchdogs(void)
397 {
398 }
lockup_detector_init(void)399 static inline void lockup_detector_init(void)
400 {
401 }
402 #endif
403
404 #ifdef CONFIG_DETECT_HUNG_TASK
405 void reset_hung_task_detector(void);
406 #else
reset_hung_task_detector(void)407 static inline void reset_hung_task_detector(void)
408 {
409 }
410 #endif
411
412 /* Attach to any functions which should be ignored in wchan output. */
413 #define __sched __attribute__((__section__(".sched.text")))
414
415 /* Linker adds these: start and end of __sched functions */
416 extern char __sched_text_start[], __sched_text_end[];
417
418 /* Is this address in the __sched functions? */
419 extern int in_sched_functions(unsigned long addr);
420
421 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
422 extern signed long schedule_timeout(signed long timeout);
423 extern signed long schedule_timeout_interruptible(signed long timeout);
424 extern signed long schedule_timeout_killable(signed long timeout);
425 extern signed long schedule_timeout_uninterruptible(signed long timeout);
426 asmlinkage void schedule(void);
427 extern void schedule_preempt_disabled(void);
428
429 extern long io_schedule_timeout(long timeout);
430
io_schedule(void)431 static inline void io_schedule(void)
432 {
433 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
434 }
435
436 struct nsproxy;
437 struct user_namespace;
438
439 #ifdef CONFIG_MMU
440 extern void arch_pick_mmap_layout(struct mm_struct *mm);
441 extern unsigned long
442 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
443 unsigned long, unsigned long);
444 extern unsigned long
445 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
446 unsigned long len, unsigned long pgoff,
447 unsigned long flags);
448 #else
arch_pick_mmap_layout(struct mm_struct * mm)449 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
450 #endif
451
452 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
453 #define SUID_DUMP_USER 1 /* Dump as user of process */
454 #define SUID_DUMP_ROOT 2 /* Dump as root */
455
456 /* mm flags */
457
458 /* for SUID_DUMP_* above */
459 #define MMF_DUMPABLE_BITS 2
460 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
461
462 extern void set_dumpable(struct mm_struct *mm, int value);
463 /*
464 * This returns the actual value of the suid_dumpable flag. For things
465 * that are using this for checking for privilege transitions, it must
466 * test against SUID_DUMP_USER rather than treating it as a boolean
467 * value.
468 */
__get_dumpable(unsigned long mm_flags)469 static inline int __get_dumpable(unsigned long mm_flags)
470 {
471 return mm_flags & MMF_DUMPABLE_MASK;
472 }
473
get_dumpable(struct mm_struct * mm)474 static inline int get_dumpable(struct mm_struct *mm)
475 {
476 return __get_dumpable(mm->flags);
477 }
478
479 /* coredump filter bits */
480 #define MMF_DUMP_ANON_PRIVATE 2
481 #define MMF_DUMP_ANON_SHARED 3
482 #define MMF_DUMP_MAPPED_PRIVATE 4
483 #define MMF_DUMP_MAPPED_SHARED 5
484 #define MMF_DUMP_ELF_HEADERS 6
485 #define MMF_DUMP_HUGETLB_PRIVATE 7
486 #define MMF_DUMP_HUGETLB_SHARED 8
487 #define MMF_DUMP_DAX_PRIVATE 9
488 #define MMF_DUMP_DAX_SHARED 10
489
490 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
491 #define MMF_DUMP_FILTER_BITS 9
492 #define MMF_DUMP_FILTER_MASK \
493 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
494 #define MMF_DUMP_FILTER_DEFAULT \
495 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
496 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
497
498 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
499 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
500 #else
501 # define MMF_DUMP_MASK_DEFAULT_ELF 0
502 #endif
503 /* leave room for more dump flags */
504 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
505 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
506 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
507
508 #define MMF_HAS_UPROBES 19 /* has uprobes */
509 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
510
511 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
512
513 struct sighand_struct {
514 atomic_t count;
515 struct k_sigaction action[_NSIG];
516 spinlock_t siglock;
517 wait_queue_head_t signalfd_wqh;
518 };
519
520 struct pacct_struct {
521 int ac_flag;
522 long ac_exitcode;
523 unsigned long ac_mem;
524 cputime_t ac_utime, ac_stime;
525 unsigned long ac_minflt, ac_majflt;
526 };
527
528 struct cpu_itimer {
529 cputime_t expires;
530 cputime_t incr;
531 u32 error;
532 u32 incr_error;
533 };
534
535 /**
536 * struct prev_cputime - snaphsot of system and user cputime
537 * @utime: time spent in user mode
538 * @stime: time spent in system mode
539 * @lock: protects the above two fields
540 *
541 * Stores previous user/system time values such that we can guarantee
542 * monotonicity.
543 */
544 struct prev_cputime {
545 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
546 cputime_t utime;
547 cputime_t stime;
548 raw_spinlock_t lock;
549 #endif
550 };
551
prev_cputime_init(struct prev_cputime * prev)552 static inline void prev_cputime_init(struct prev_cputime *prev)
553 {
554 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
555 prev->utime = prev->stime = 0;
556 raw_spin_lock_init(&prev->lock);
557 #endif
558 }
559
560 /**
561 * struct task_cputime - collected CPU time counts
562 * @utime: time spent in user mode, in &cputime_t units
563 * @stime: time spent in kernel mode, in &cputime_t units
564 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
565 *
566 * This structure groups together three kinds of CPU time that are tracked for
567 * threads and thread groups. Most things considering CPU time want to group
568 * these counts together and treat all three of them in parallel.
569 */
570 struct task_cputime {
571 cputime_t utime;
572 cputime_t stime;
573 unsigned long long sum_exec_runtime;
574 };
575
576 /* Alternate field names when used to cache expirations. */
577 #define virt_exp utime
578 #define prof_exp stime
579 #define sched_exp sum_exec_runtime
580
581 #define INIT_CPUTIME \
582 (struct task_cputime) { \
583 .utime = 0, \
584 .stime = 0, \
585 .sum_exec_runtime = 0, \
586 }
587
588 /*
589 * This is the atomic variant of task_cputime, which can be used for
590 * storing and updating task_cputime statistics without locking.
591 */
592 struct task_cputime_atomic {
593 atomic64_t utime;
594 atomic64_t stime;
595 atomic64_t sum_exec_runtime;
596 };
597
598 #define INIT_CPUTIME_ATOMIC \
599 (struct task_cputime_atomic) { \
600 .utime = ATOMIC64_INIT(0), \
601 .stime = ATOMIC64_INIT(0), \
602 .sum_exec_runtime = ATOMIC64_INIT(0), \
603 }
604
605 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
606
607 /*
608 * Disable preemption until the scheduler is running -- use an unconditional
609 * value so that it also works on !PREEMPT_COUNT kernels.
610 *
611 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
612 */
613 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
614
615 /*
616 * Initial preempt_count value; reflects the preempt_count schedule invariant
617 * which states that during context switches:
618 *
619 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
620 *
621 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
622 * Note: See finish_task_switch().
623 */
624 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
625
626 /**
627 * struct thread_group_cputimer - thread group interval timer counts
628 * @cputime_atomic: atomic thread group interval timers.
629 * @running: true when there are timers running and
630 * @cputime_atomic receives updates.
631 * @checking_timer: true when a thread in the group is in the
632 * process of checking for thread group timers.
633 *
634 * This structure contains the version of task_cputime, above, that is
635 * used for thread group CPU timer calculations.
636 */
637 struct thread_group_cputimer {
638 struct task_cputime_atomic cputime_atomic;
639 bool running;
640 bool checking_timer;
641 };
642
643 #include <linux/rwsem.h>
644 struct autogroup;
645
646 /*
647 * NOTE! "signal_struct" does not have its own
648 * locking, because a shared signal_struct always
649 * implies a shared sighand_struct, so locking
650 * sighand_struct is always a proper superset of
651 * the locking of signal_struct.
652 */
653 struct signal_struct {
654 atomic_t sigcnt;
655 atomic_t live;
656 int nr_threads;
657 struct list_head thread_head;
658
659 wait_queue_head_t wait_chldexit; /* for wait4() */
660
661 /* current thread group signal load-balancing target: */
662 struct task_struct *curr_target;
663
664 /* shared signal handling: */
665 struct sigpending shared_pending;
666
667 /* thread group exit support */
668 int group_exit_code;
669 /* overloaded:
670 * - notify group_exit_task when ->count is equal to notify_count
671 * - everyone except group_exit_task is stopped during signal delivery
672 * of fatal signals, group_exit_task processes the signal.
673 */
674 int notify_count;
675 struct task_struct *group_exit_task;
676
677 /* thread group stop support, overloads group_exit_code too */
678 int group_stop_count;
679 unsigned int flags; /* see SIGNAL_* flags below */
680
681 /*
682 * PR_SET_CHILD_SUBREAPER marks a process, like a service
683 * manager, to re-parent orphan (double-forking) child processes
684 * to this process instead of 'init'. The service manager is
685 * able to receive SIGCHLD signals and is able to investigate
686 * the process until it calls wait(). All children of this
687 * process will inherit a flag if they should look for a
688 * child_subreaper process at exit.
689 */
690 unsigned int is_child_subreaper:1;
691 unsigned int has_child_subreaper:1;
692
693 /* POSIX.1b Interval Timers */
694 int posix_timer_id;
695 struct list_head posix_timers;
696
697 /* ITIMER_REAL timer for the process */
698 struct hrtimer real_timer;
699 struct pid *leader_pid;
700 ktime_t it_real_incr;
701
702 /*
703 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
704 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
705 * values are defined to 0 and 1 respectively
706 */
707 struct cpu_itimer it[2];
708
709 /*
710 * Thread group totals for process CPU timers.
711 * See thread_group_cputimer(), et al, for details.
712 */
713 struct thread_group_cputimer cputimer;
714
715 /* Earliest-expiration cache. */
716 struct task_cputime cputime_expires;
717
718 struct list_head cpu_timers[3];
719
720 struct pid *tty_old_pgrp;
721
722 /* boolean value for session group leader */
723 int leader;
724
725 struct tty_struct *tty; /* NULL if no tty */
726
727 #ifdef CONFIG_SCHED_AUTOGROUP
728 struct autogroup *autogroup;
729 #endif
730 /*
731 * Cumulative resource counters for dead threads in the group,
732 * and for reaped dead child processes forked by this group.
733 * Live threads maintain their own counters and add to these
734 * in __exit_signal, except for the group leader.
735 */
736 seqlock_t stats_lock;
737 cputime_t utime, stime, cutime, cstime;
738 cputime_t gtime;
739 cputime_t cgtime;
740 struct prev_cputime prev_cputime;
741 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
742 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
743 unsigned long inblock, oublock, cinblock, coublock;
744 unsigned long maxrss, cmaxrss;
745 struct task_io_accounting ioac;
746
747 /*
748 * Cumulative ns of schedule CPU time fo dead threads in the
749 * group, not including a zombie group leader, (This only differs
750 * from jiffies_to_ns(utime + stime) if sched_clock uses something
751 * other than jiffies.)
752 */
753 unsigned long long sum_sched_runtime;
754
755 /*
756 * We don't bother to synchronize most readers of this at all,
757 * because there is no reader checking a limit that actually needs
758 * to get both rlim_cur and rlim_max atomically, and either one
759 * alone is a single word that can safely be read normally.
760 * getrlimit/setrlimit use task_lock(current->group_leader) to
761 * protect this instead of the siglock, because they really
762 * have no need to disable irqs.
763 */
764 struct rlimit rlim[RLIM_NLIMITS];
765
766 #ifdef CONFIG_BSD_PROCESS_ACCT
767 struct pacct_struct pacct; /* per-process accounting information */
768 #endif
769 #ifdef CONFIG_TASKSTATS
770 struct taskstats *stats;
771 #endif
772 #ifdef CONFIG_AUDIT
773 unsigned audit_tty;
774 unsigned audit_tty_log_passwd;
775 struct tty_audit_buf *tty_audit_buf;
776 #endif
777
778 oom_flags_t oom_flags;
779 short oom_score_adj; /* OOM kill score adjustment */
780 short oom_score_adj_min; /* OOM kill score adjustment min value.
781 * Only settable by CAP_SYS_RESOURCE. */
782
783 struct mutex cred_guard_mutex; /* guard against foreign influences on
784 * credential calculations
785 * (notably. ptrace) */
786 };
787
788 /*
789 * Bits in flags field of signal_struct.
790 */
791 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
792 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
793 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
794 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
795 /*
796 * Pending notifications to parent.
797 */
798 #define SIGNAL_CLD_STOPPED 0x00000010
799 #define SIGNAL_CLD_CONTINUED 0x00000020
800 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
801
802 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
803
804 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)805 static inline int signal_group_exit(const struct signal_struct *sig)
806 {
807 return (sig->flags & SIGNAL_GROUP_EXIT) ||
808 (sig->group_exit_task != NULL);
809 }
810
811 /*
812 * Some day this will be a full-fledged user tracking system..
813 */
814 struct user_struct {
815 atomic_t __count; /* reference count */
816 atomic_t processes; /* How many processes does this user have? */
817 atomic_t sigpending; /* How many pending signals does this user have? */
818 #ifdef CONFIG_INOTIFY_USER
819 atomic_t inotify_watches; /* How many inotify watches does this user have? */
820 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
821 #endif
822 #ifdef CONFIG_FANOTIFY
823 atomic_t fanotify_listeners;
824 #endif
825 #ifdef CONFIG_EPOLL
826 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
827 #endif
828 #ifdef CONFIG_POSIX_MQUEUE
829 /* protected by mq_lock */
830 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
831 #endif
832 unsigned long locked_shm; /* How many pages of mlocked shm ? */
833
834 #ifdef CONFIG_KEYS
835 struct key *uid_keyring; /* UID specific keyring */
836 struct key *session_keyring; /* UID's default session keyring */
837 #endif
838
839 /* Hash table maintenance information */
840 struct hlist_node uidhash_node;
841 kuid_t uid;
842
843 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
844 atomic_long_t locked_vm;
845 #endif
846 };
847
848 extern int uids_sysfs_init(void);
849
850 extern struct user_struct *find_user(kuid_t);
851
852 extern struct user_struct root_user;
853 #define INIT_USER (&root_user)
854
855
856 struct backing_dev_info;
857 struct reclaim_state;
858
859 #ifdef CONFIG_SCHED_INFO
860 struct sched_info {
861 /* cumulative counters */
862 unsigned long pcount; /* # of times run on this cpu */
863 unsigned long long run_delay; /* time spent waiting on a runqueue */
864
865 /* timestamps */
866 unsigned long long last_arrival,/* when we last ran on a cpu */
867 last_queued; /* when we were last queued to run */
868 };
869 #endif /* CONFIG_SCHED_INFO */
870
871 #ifdef CONFIG_TASK_DELAY_ACCT
872 struct task_delay_info {
873 spinlock_t lock;
874 unsigned int flags; /* Private per-task flags */
875
876 /* For each stat XXX, add following, aligned appropriately
877 *
878 * struct timespec XXX_start, XXX_end;
879 * u64 XXX_delay;
880 * u32 XXX_count;
881 *
882 * Atomicity of updates to XXX_delay, XXX_count protected by
883 * single lock above (split into XXX_lock if contention is an issue).
884 */
885
886 /*
887 * XXX_count is incremented on every XXX operation, the delay
888 * associated with the operation is added to XXX_delay.
889 * XXX_delay contains the accumulated delay time in nanoseconds.
890 */
891 u64 blkio_start; /* Shared by blkio, swapin */
892 u64 blkio_delay; /* wait for sync block io completion */
893 u64 swapin_delay; /* wait for swapin block io completion */
894 u32 blkio_count; /* total count of the number of sync block */
895 /* io operations performed */
896 u32 swapin_count; /* total count of the number of swapin block */
897 /* io operations performed */
898
899 u64 freepages_start;
900 u64 freepages_delay; /* wait for memory reclaim */
901 u32 freepages_count; /* total count of memory reclaim */
902 };
903 #endif /* CONFIG_TASK_DELAY_ACCT */
904
sched_info_on(void)905 static inline int sched_info_on(void)
906 {
907 #ifdef CONFIG_SCHEDSTATS
908 return 1;
909 #elif defined(CONFIG_TASK_DELAY_ACCT)
910 extern int delayacct_on;
911 return delayacct_on;
912 #else
913 return 0;
914 #endif
915 }
916
917 enum cpu_idle_type {
918 CPU_IDLE,
919 CPU_NOT_IDLE,
920 CPU_NEWLY_IDLE,
921 CPU_MAX_IDLE_TYPES
922 };
923
924 /*
925 * Increase resolution of cpu_capacity calculations
926 */
927 #define SCHED_CAPACITY_SHIFT 10
928 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
929
930 /*
931 * Wake-queues are lists of tasks with a pending wakeup, whose
932 * callers have already marked the task as woken internally,
933 * and can thus carry on. A common use case is being able to
934 * do the wakeups once the corresponding user lock as been
935 * released.
936 *
937 * We hold reference to each task in the list across the wakeup,
938 * thus guaranteeing that the memory is still valid by the time
939 * the actual wakeups are performed in wake_up_q().
940 *
941 * One per task suffices, because there's never a need for a task to be
942 * in two wake queues simultaneously; it is forbidden to abandon a task
943 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
944 * already in a wake queue, the wakeup will happen soon and the second
945 * waker can just skip it.
946 *
947 * The WAKE_Q macro declares and initializes the list head.
948 * wake_up_q() does NOT reinitialize the list; it's expected to be
949 * called near the end of a function, where the fact that the queue is
950 * not used again will be easy to see by inspection.
951 *
952 * Note that this can cause spurious wakeups. schedule() callers
953 * must ensure the call is done inside a loop, confirming that the
954 * wakeup condition has in fact occurred.
955 */
956 struct wake_q_node {
957 struct wake_q_node *next;
958 };
959
960 struct wake_q_head {
961 struct wake_q_node *first;
962 struct wake_q_node **lastp;
963 };
964
965 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
966
967 #define WAKE_Q(name) \
968 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
969
970 extern void wake_q_add(struct wake_q_head *head,
971 struct task_struct *task);
972 extern void wake_up_q(struct wake_q_head *head);
973
974 /*
975 * sched-domains (multiprocessor balancing) declarations:
976 */
977 #ifdef CONFIG_SMP
978 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
979 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
980 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
981 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
982 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
983 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
984 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
985 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
986 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
987 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
988 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
989 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
990 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
991 #define SD_NUMA 0x4000 /* cross-node balancing */
992
993 #ifdef CONFIG_SCHED_SMT
cpu_smt_flags(void)994 static inline int cpu_smt_flags(void)
995 {
996 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
997 }
998 #endif
999
1000 #ifdef CONFIG_SCHED_MC
cpu_core_flags(void)1001 static inline int cpu_core_flags(void)
1002 {
1003 return SD_SHARE_PKG_RESOURCES;
1004 }
1005 #endif
1006
1007 #ifdef CONFIG_NUMA
cpu_numa_flags(void)1008 static inline int cpu_numa_flags(void)
1009 {
1010 return SD_NUMA;
1011 }
1012 #endif
1013
1014 struct sched_domain_attr {
1015 int relax_domain_level;
1016 };
1017
1018 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1019 .relax_domain_level = -1, \
1020 }
1021
1022 extern int sched_domain_level_max;
1023
1024 struct sched_group;
1025
1026 struct sched_domain {
1027 /* These fields must be setup */
1028 struct sched_domain *parent; /* top domain must be null terminated */
1029 struct sched_domain *child; /* bottom domain must be null terminated */
1030 struct sched_group *groups; /* the balancing groups of the domain */
1031 unsigned long min_interval; /* Minimum balance interval ms */
1032 unsigned long max_interval; /* Maximum balance interval ms */
1033 unsigned int busy_factor; /* less balancing by factor if busy */
1034 unsigned int imbalance_pct; /* No balance until over watermark */
1035 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1036 unsigned int busy_idx;
1037 unsigned int idle_idx;
1038 unsigned int newidle_idx;
1039 unsigned int wake_idx;
1040 unsigned int forkexec_idx;
1041 unsigned int smt_gain;
1042
1043 int nohz_idle; /* NOHZ IDLE status */
1044 int flags; /* See SD_* */
1045 int level;
1046
1047 /* Runtime fields. */
1048 unsigned long last_balance; /* init to jiffies. units in jiffies */
1049 unsigned int balance_interval; /* initialise to 1. units in ms. */
1050 unsigned int nr_balance_failed; /* initialise to 0 */
1051
1052 /* idle_balance() stats */
1053 u64 max_newidle_lb_cost;
1054 unsigned long next_decay_max_lb_cost;
1055
1056 #ifdef CONFIG_SCHEDSTATS
1057 /* load_balance() stats */
1058 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1059 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1060 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1061 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1062 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1063 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1064 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1065 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1066
1067 /* Active load balancing */
1068 unsigned int alb_count;
1069 unsigned int alb_failed;
1070 unsigned int alb_pushed;
1071
1072 /* SD_BALANCE_EXEC stats */
1073 unsigned int sbe_count;
1074 unsigned int sbe_balanced;
1075 unsigned int sbe_pushed;
1076
1077 /* SD_BALANCE_FORK stats */
1078 unsigned int sbf_count;
1079 unsigned int sbf_balanced;
1080 unsigned int sbf_pushed;
1081
1082 /* try_to_wake_up() stats */
1083 unsigned int ttwu_wake_remote;
1084 unsigned int ttwu_move_affine;
1085 unsigned int ttwu_move_balance;
1086 #endif
1087 #ifdef CONFIG_SCHED_DEBUG
1088 char *name;
1089 #endif
1090 union {
1091 void *private; /* used during construction */
1092 struct rcu_head rcu; /* used during destruction */
1093 };
1094
1095 unsigned int span_weight;
1096 /*
1097 * Span of all CPUs in this domain.
1098 *
1099 * NOTE: this field is variable length. (Allocated dynamically
1100 * by attaching extra space to the end of the structure,
1101 * depending on how many CPUs the kernel has booted up with)
1102 */
1103 unsigned long span[0];
1104 };
1105
sched_domain_span(struct sched_domain * sd)1106 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1107 {
1108 return to_cpumask(sd->span);
1109 }
1110
1111 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1112 struct sched_domain_attr *dattr_new);
1113
1114 /* Allocate an array of sched domains, for partition_sched_domains(). */
1115 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1116 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1117
1118 bool cpus_share_cache(int this_cpu, int that_cpu);
1119
1120 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1121 typedef int (*sched_domain_flags_f)(void);
1122
1123 #define SDTL_OVERLAP 0x01
1124
1125 struct sd_data {
1126 struct sched_domain **__percpu sd;
1127 struct sched_group **__percpu sg;
1128 struct sched_group_capacity **__percpu sgc;
1129 };
1130
1131 struct sched_domain_topology_level {
1132 sched_domain_mask_f mask;
1133 sched_domain_flags_f sd_flags;
1134 int flags;
1135 int numa_level;
1136 struct sd_data data;
1137 #ifdef CONFIG_SCHED_DEBUG
1138 char *name;
1139 #endif
1140 };
1141
1142 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1143 extern void wake_up_if_idle(int cpu);
1144
1145 #ifdef CONFIG_SCHED_DEBUG
1146 # define SD_INIT_NAME(type) .name = #type
1147 #else
1148 # define SD_INIT_NAME(type)
1149 #endif
1150
1151 #else /* CONFIG_SMP */
1152
1153 struct sched_domain_attr;
1154
1155 static inline void
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1156 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1157 struct sched_domain_attr *dattr_new)
1158 {
1159 }
1160
cpus_share_cache(int this_cpu,int that_cpu)1161 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1162 {
1163 return true;
1164 }
1165
1166 #endif /* !CONFIG_SMP */
1167
1168
1169 struct io_context; /* See blkdev.h */
1170
1171
1172 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1173 extern void prefetch_stack(struct task_struct *t);
1174 #else
prefetch_stack(struct task_struct * t)1175 static inline void prefetch_stack(struct task_struct *t) { }
1176 #endif
1177
1178 struct audit_context; /* See audit.c */
1179 struct mempolicy;
1180 struct pipe_inode_info;
1181 struct uts_namespace;
1182
1183 struct load_weight {
1184 unsigned long weight;
1185 u32 inv_weight;
1186 };
1187
1188 /*
1189 * The load_avg/util_avg accumulates an infinite geometric series.
1190 * 1) load_avg factors frequency scaling into the amount of time that a
1191 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1192 * aggregated such weights of all runnable and blocked sched_entities.
1193 * 2) util_avg factors frequency and cpu scaling into the amount of time
1194 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1195 * For cfs_rq, it is the aggregated such times of all runnable and
1196 * blocked sched_entities.
1197 * The 64 bit load_sum can:
1198 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1199 * the highest weight (=88761) always runnable, we should not overflow
1200 * 2) for entity, support any load.weight always runnable
1201 */
1202 struct sched_avg {
1203 u64 last_update_time, load_sum;
1204 u32 util_sum, period_contrib;
1205 unsigned long load_avg, util_avg;
1206 };
1207
1208 #ifdef CONFIG_SCHEDSTATS
1209 struct sched_statistics {
1210 u64 wait_start;
1211 u64 wait_max;
1212 u64 wait_count;
1213 u64 wait_sum;
1214 u64 iowait_count;
1215 u64 iowait_sum;
1216
1217 u64 sleep_start;
1218 u64 sleep_max;
1219 s64 sum_sleep_runtime;
1220
1221 u64 block_start;
1222 u64 block_max;
1223 u64 exec_max;
1224 u64 slice_max;
1225
1226 u64 nr_migrations_cold;
1227 u64 nr_failed_migrations_affine;
1228 u64 nr_failed_migrations_running;
1229 u64 nr_failed_migrations_hot;
1230 u64 nr_forced_migrations;
1231
1232 u64 nr_wakeups;
1233 u64 nr_wakeups_sync;
1234 u64 nr_wakeups_migrate;
1235 u64 nr_wakeups_local;
1236 u64 nr_wakeups_remote;
1237 u64 nr_wakeups_affine;
1238 u64 nr_wakeups_affine_attempts;
1239 u64 nr_wakeups_passive;
1240 u64 nr_wakeups_idle;
1241 };
1242 #endif
1243
1244 struct sched_entity {
1245 struct load_weight load; /* for load-balancing */
1246 struct rb_node run_node;
1247 struct list_head group_node;
1248 unsigned int on_rq;
1249
1250 u64 exec_start;
1251 u64 sum_exec_runtime;
1252 u64 vruntime;
1253 u64 prev_sum_exec_runtime;
1254
1255 u64 nr_migrations;
1256
1257 #ifdef CONFIG_SCHEDSTATS
1258 struct sched_statistics statistics;
1259 #endif
1260
1261 #ifdef CONFIG_FAIR_GROUP_SCHED
1262 int depth;
1263 struct sched_entity *parent;
1264 /* rq on which this entity is (to be) queued: */
1265 struct cfs_rq *cfs_rq;
1266 /* rq "owned" by this entity/group: */
1267 struct cfs_rq *my_q;
1268 #endif
1269
1270 #ifdef CONFIG_SMP
1271 /* Per entity load average tracking */
1272 struct sched_avg avg;
1273 #endif
1274 };
1275
1276 struct sched_rt_entity {
1277 struct list_head run_list;
1278 unsigned long timeout;
1279 unsigned long watchdog_stamp;
1280 unsigned int time_slice;
1281
1282 struct sched_rt_entity *back;
1283 #ifdef CONFIG_RT_GROUP_SCHED
1284 struct sched_rt_entity *parent;
1285 /* rq on which this entity is (to be) queued: */
1286 struct rt_rq *rt_rq;
1287 /* rq "owned" by this entity/group: */
1288 struct rt_rq *my_q;
1289 #endif
1290 };
1291
1292 struct sched_dl_entity {
1293 struct rb_node rb_node;
1294
1295 /*
1296 * Original scheduling parameters. Copied here from sched_attr
1297 * during sched_setattr(), they will remain the same until
1298 * the next sched_setattr().
1299 */
1300 u64 dl_runtime; /* maximum runtime for each instance */
1301 u64 dl_deadline; /* relative deadline of each instance */
1302 u64 dl_period; /* separation of two instances (period) */
1303 u64 dl_bw; /* dl_runtime / dl_deadline */
1304
1305 /*
1306 * Actual scheduling parameters. Initialized with the values above,
1307 * they are continously updated during task execution. Note that
1308 * the remaining runtime could be < 0 in case we are in overrun.
1309 */
1310 s64 runtime; /* remaining runtime for this instance */
1311 u64 deadline; /* absolute deadline for this instance */
1312 unsigned int flags; /* specifying the scheduler behaviour */
1313
1314 /*
1315 * Some bool flags:
1316 *
1317 * @dl_throttled tells if we exhausted the runtime. If so, the
1318 * task has to wait for a replenishment to be performed at the
1319 * next firing of dl_timer.
1320 *
1321 * @dl_new tells if a new instance arrived. If so we must
1322 * start executing it with full runtime and reset its absolute
1323 * deadline;
1324 *
1325 * @dl_boosted tells if we are boosted due to DI. If so we are
1326 * outside bandwidth enforcement mechanism (but only until we
1327 * exit the critical section);
1328 *
1329 * @dl_yielded tells if task gave up the cpu before consuming
1330 * all its available runtime during the last job.
1331 */
1332 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1333
1334 /*
1335 * Bandwidth enforcement timer. Each -deadline task has its
1336 * own bandwidth to be enforced, thus we need one timer per task.
1337 */
1338 struct hrtimer dl_timer;
1339 };
1340
1341 union rcu_special {
1342 struct {
1343 u8 blocked;
1344 u8 need_qs;
1345 u8 exp_need_qs;
1346 u8 pad; /* Otherwise the compiler can store garbage here. */
1347 } b; /* Bits. */
1348 u32 s; /* Set of bits. */
1349 };
1350 struct rcu_node;
1351
1352 enum perf_event_task_context {
1353 perf_invalid_context = -1,
1354 perf_hw_context = 0,
1355 perf_sw_context,
1356 perf_nr_task_contexts,
1357 };
1358
1359 /* Track pages that require TLB flushes */
1360 struct tlbflush_unmap_batch {
1361 /*
1362 * Each bit set is a CPU that potentially has a TLB entry for one of
1363 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1364 */
1365 struct cpumask cpumask;
1366
1367 /* True if any bit in cpumask is set */
1368 bool flush_required;
1369
1370 /*
1371 * If true then the PTE was dirty when unmapped. The entry must be
1372 * flushed before IO is initiated or a stale TLB entry potentially
1373 * allows an update without redirtying the page.
1374 */
1375 bool writable;
1376 };
1377
1378 struct task_struct {
1379 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1380 void *stack;
1381 atomic_t usage;
1382 unsigned int flags; /* per process flags, defined below */
1383 unsigned int ptrace;
1384
1385 #ifdef CONFIG_SMP
1386 struct llist_node wake_entry;
1387 int on_cpu;
1388 unsigned int wakee_flips;
1389 unsigned long wakee_flip_decay_ts;
1390 struct task_struct *last_wakee;
1391
1392 int wake_cpu;
1393 #endif
1394 int on_rq;
1395
1396 int prio, static_prio, normal_prio;
1397 unsigned int rt_priority;
1398 const struct sched_class *sched_class;
1399 struct sched_entity se;
1400 struct sched_rt_entity rt;
1401 #ifdef CONFIG_CGROUP_SCHED
1402 struct task_group *sched_task_group;
1403 #endif
1404 struct sched_dl_entity dl;
1405
1406 #ifdef CONFIG_PREEMPT_NOTIFIERS
1407 /* list of struct preempt_notifier: */
1408 struct hlist_head preempt_notifiers;
1409 #endif
1410
1411 #ifdef CONFIG_BLK_DEV_IO_TRACE
1412 unsigned int btrace_seq;
1413 #endif
1414
1415 unsigned int policy;
1416 int nr_cpus_allowed;
1417 cpumask_t cpus_allowed;
1418
1419 #ifdef CONFIG_PREEMPT_RCU
1420 int rcu_read_lock_nesting;
1421 union rcu_special rcu_read_unlock_special;
1422 struct list_head rcu_node_entry;
1423 struct rcu_node *rcu_blocked_node;
1424 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1425 #ifdef CONFIG_TASKS_RCU
1426 unsigned long rcu_tasks_nvcsw;
1427 bool rcu_tasks_holdout;
1428 struct list_head rcu_tasks_holdout_list;
1429 int rcu_tasks_idle_cpu;
1430 #endif /* #ifdef CONFIG_TASKS_RCU */
1431
1432 #ifdef CONFIG_SCHED_INFO
1433 struct sched_info sched_info;
1434 #endif
1435
1436 struct list_head tasks;
1437 #ifdef CONFIG_SMP
1438 struct plist_node pushable_tasks;
1439 struct rb_node pushable_dl_tasks;
1440 #endif
1441
1442 struct mm_struct *mm, *active_mm;
1443 /* per-thread vma caching */
1444 u32 vmacache_seqnum;
1445 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1446 #if defined(SPLIT_RSS_COUNTING)
1447 struct task_rss_stat rss_stat;
1448 #endif
1449 /* task state */
1450 int exit_state;
1451 int exit_code, exit_signal;
1452 int pdeath_signal; /* The signal sent when the parent dies */
1453 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1454
1455 /* Used for emulating ABI behavior of previous Linux versions */
1456 unsigned int personality;
1457
1458 /* scheduler bits, serialized by scheduler locks */
1459 unsigned sched_reset_on_fork:1;
1460 unsigned sched_contributes_to_load:1;
1461 unsigned sched_migrated:1;
1462 unsigned :0; /* force alignment to the next boundary */
1463
1464 /* unserialized, strictly 'current' */
1465 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1466 unsigned in_iowait:1;
1467 #ifdef CONFIG_MEMCG
1468 unsigned memcg_may_oom:1;
1469 #endif
1470 #ifdef CONFIG_MEMCG_KMEM
1471 unsigned memcg_kmem_skip_account:1;
1472 #endif
1473 #ifdef CONFIG_COMPAT_BRK
1474 unsigned brk_randomized:1;
1475 #endif
1476
1477 unsigned long atomic_flags; /* Flags needing atomic access. */
1478
1479 struct restart_block restart_block;
1480
1481 pid_t pid;
1482 pid_t tgid;
1483
1484 #ifdef CONFIG_CC_STACKPROTECTOR
1485 /* Canary value for the -fstack-protector gcc feature */
1486 unsigned long stack_canary;
1487 #endif
1488 /*
1489 * pointers to (original) parent process, youngest child, younger sibling,
1490 * older sibling, respectively. (p->father can be replaced with
1491 * p->real_parent->pid)
1492 */
1493 struct task_struct __rcu *real_parent; /* real parent process */
1494 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1495 /*
1496 * children/sibling forms the list of my natural children
1497 */
1498 struct list_head children; /* list of my children */
1499 struct list_head sibling; /* linkage in my parent's children list */
1500 struct task_struct *group_leader; /* threadgroup leader */
1501
1502 /*
1503 * ptraced is the list of tasks this task is using ptrace on.
1504 * This includes both natural children and PTRACE_ATTACH targets.
1505 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1506 */
1507 struct list_head ptraced;
1508 struct list_head ptrace_entry;
1509
1510 /* PID/PID hash table linkage. */
1511 struct pid_link pids[PIDTYPE_MAX];
1512 struct list_head thread_group;
1513 struct list_head thread_node;
1514
1515 struct completion *vfork_done; /* for vfork() */
1516 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1517 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1518
1519 cputime_t utime, stime, utimescaled, stimescaled;
1520 cputime_t gtime;
1521 struct prev_cputime prev_cputime;
1522 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1523 seqlock_t vtime_seqlock;
1524 unsigned long long vtime_snap;
1525 enum {
1526 VTIME_SLEEPING = 0,
1527 VTIME_USER,
1528 VTIME_SYS,
1529 } vtime_snap_whence;
1530 #endif
1531 unsigned long nvcsw, nivcsw; /* context switch counts */
1532 u64 start_time; /* monotonic time in nsec */
1533 u64 real_start_time; /* boot based time in nsec */
1534 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1535 unsigned long min_flt, maj_flt;
1536
1537 struct task_cputime cputime_expires;
1538 struct list_head cpu_timers[3];
1539
1540 /* process credentials */
1541 const struct cred __rcu *real_cred; /* objective and real subjective task
1542 * credentials (COW) */
1543 const struct cred __rcu *cred; /* effective (overridable) subjective task
1544 * credentials (COW) */
1545 char comm[TASK_COMM_LEN]; /* executable name excluding path
1546 - access with [gs]et_task_comm (which lock
1547 it with task_lock())
1548 - initialized normally by setup_new_exec */
1549 /* file system info */
1550 struct nameidata *nameidata;
1551 #ifdef CONFIG_SYSVIPC
1552 /* ipc stuff */
1553 struct sysv_sem sysvsem;
1554 struct sysv_shm sysvshm;
1555 #endif
1556 #ifdef CONFIG_DETECT_HUNG_TASK
1557 /* hung task detection */
1558 unsigned long last_switch_count;
1559 #endif
1560 /* filesystem information */
1561 struct fs_struct *fs;
1562 /* open file information */
1563 struct files_struct *files;
1564 /* namespaces */
1565 struct nsproxy *nsproxy;
1566 /* signal handlers */
1567 struct signal_struct *signal;
1568 struct sighand_struct *sighand;
1569
1570 sigset_t blocked, real_blocked;
1571 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1572 struct sigpending pending;
1573
1574 unsigned long sas_ss_sp;
1575 size_t sas_ss_size;
1576
1577 struct callback_head *task_works;
1578
1579 struct audit_context *audit_context;
1580 #ifdef CONFIG_AUDITSYSCALL
1581 kuid_t loginuid;
1582 unsigned int sessionid;
1583 #endif
1584 struct seccomp seccomp;
1585
1586 /* Thread group tracking */
1587 u32 parent_exec_id;
1588 u32 self_exec_id;
1589 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1590 * mempolicy */
1591 spinlock_t alloc_lock;
1592
1593 /* Protection of the PI data structures: */
1594 raw_spinlock_t pi_lock;
1595
1596 struct wake_q_node wake_q;
1597
1598 #ifdef CONFIG_RT_MUTEXES
1599 /* PI waiters blocked on a rt_mutex held by this task */
1600 struct rb_root pi_waiters;
1601 struct rb_node *pi_waiters_leftmost;
1602 /* Deadlock detection and priority inheritance handling */
1603 struct rt_mutex_waiter *pi_blocked_on;
1604 #endif
1605
1606 #ifdef CONFIG_DEBUG_MUTEXES
1607 /* mutex deadlock detection */
1608 struct mutex_waiter *blocked_on;
1609 #endif
1610 #ifdef CONFIG_TRACE_IRQFLAGS
1611 unsigned int irq_events;
1612 unsigned long hardirq_enable_ip;
1613 unsigned long hardirq_disable_ip;
1614 unsigned int hardirq_enable_event;
1615 unsigned int hardirq_disable_event;
1616 int hardirqs_enabled;
1617 int hardirq_context;
1618 unsigned long softirq_disable_ip;
1619 unsigned long softirq_enable_ip;
1620 unsigned int softirq_disable_event;
1621 unsigned int softirq_enable_event;
1622 int softirqs_enabled;
1623 int softirq_context;
1624 #endif
1625 #ifdef CONFIG_LOCKDEP
1626 # define MAX_LOCK_DEPTH 48UL
1627 u64 curr_chain_key;
1628 int lockdep_depth;
1629 unsigned int lockdep_recursion;
1630 struct held_lock held_locks[MAX_LOCK_DEPTH];
1631 gfp_t lockdep_reclaim_gfp;
1632 #endif
1633
1634 /* journalling filesystem info */
1635 void *journal_info;
1636
1637 /* stacked block device info */
1638 struct bio_list *bio_list;
1639
1640 #ifdef CONFIG_BLOCK
1641 /* stack plugging */
1642 struct blk_plug *plug;
1643 #endif
1644
1645 /* VM state */
1646 struct reclaim_state *reclaim_state;
1647
1648 struct backing_dev_info *backing_dev_info;
1649
1650 struct io_context *io_context;
1651
1652 unsigned long ptrace_message;
1653 siginfo_t *last_siginfo; /* For ptrace use. */
1654 struct task_io_accounting ioac;
1655 #if defined(CONFIG_TASK_XACCT)
1656 u64 acct_rss_mem1; /* accumulated rss usage */
1657 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1658 cputime_t acct_timexpd; /* stime + utime since last update */
1659 #endif
1660 #ifdef CONFIG_CPUSETS
1661 nodemask_t mems_allowed; /* Protected by alloc_lock */
1662 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1663 int cpuset_mem_spread_rotor;
1664 int cpuset_slab_spread_rotor;
1665 #endif
1666 #ifdef CONFIG_CGROUPS
1667 /* Control Group info protected by css_set_lock */
1668 struct css_set __rcu *cgroups;
1669 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1670 struct list_head cg_list;
1671 #endif
1672 #ifdef CONFIG_FUTEX
1673 struct robust_list_head __user *robust_list;
1674 #ifdef CONFIG_COMPAT
1675 struct compat_robust_list_head __user *compat_robust_list;
1676 #endif
1677 struct list_head pi_state_list;
1678 struct futex_pi_state *pi_state_cache;
1679 #endif
1680 #ifdef CONFIG_PERF_EVENTS
1681 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1682 struct mutex perf_event_mutex;
1683 struct list_head perf_event_list;
1684 #endif
1685 #ifdef CONFIG_DEBUG_PREEMPT
1686 unsigned long preempt_disable_ip;
1687 #endif
1688 #ifdef CONFIG_NUMA
1689 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1690 short il_next;
1691 short pref_node_fork;
1692 #endif
1693 #ifdef CONFIG_NUMA_BALANCING
1694 int numa_scan_seq;
1695 unsigned int numa_scan_period;
1696 unsigned int numa_scan_period_max;
1697 int numa_preferred_nid;
1698 unsigned long numa_migrate_retry;
1699 u64 node_stamp; /* migration stamp */
1700 u64 last_task_numa_placement;
1701 u64 last_sum_exec_runtime;
1702 struct callback_head numa_work;
1703
1704 struct list_head numa_entry;
1705 struct numa_group *numa_group;
1706
1707 /*
1708 * numa_faults is an array split into four regions:
1709 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1710 * in this precise order.
1711 *
1712 * faults_memory: Exponential decaying average of faults on a per-node
1713 * basis. Scheduling placement decisions are made based on these
1714 * counts. The values remain static for the duration of a PTE scan.
1715 * faults_cpu: Track the nodes the process was running on when a NUMA
1716 * hinting fault was incurred.
1717 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1718 * during the current scan window. When the scan completes, the counts
1719 * in faults_memory and faults_cpu decay and these values are copied.
1720 */
1721 unsigned long *numa_faults;
1722 unsigned long total_numa_faults;
1723
1724 /*
1725 * numa_faults_locality tracks if faults recorded during the last
1726 * scan window were remote/local or failed to migrate. The task scan
1727 * period is adapted based on the locality of the faults with different
1728 * weights depending on whether they were shared or private faults
1729 */
1730 unsigned long numa_faults_locality[3];
1731
1732 unsigned long numa_pages_migrated;
1733 #endif /* CONFIG_NUMA_BALANCING */
1734
1735 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1736 struct tlbflush_unmap_batch tlb_ubc;
1737 #endif
1738
1739 struct rcu_head rcu;
1740
1741 /*
1742 * cache last used pipe for splice
1743 */
1744 struct pipe_inode_info *splice_pipe;
1745
1746 struct page_frag task_frag;
1747
1748 #ifdef CONFIG_TASK_DELAY_ACCT
1749 struct task_delay_info *delays;
1750 #endif
1751 #ifdef CONFIG_FAULT_INJECTION
1752 int make_it_fail;
1753 #endif
1754 /*
1755 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1756 * balance_dirty_pages() for some dirty throttling pause
1757 */
1758 int nr_dirtied;
1759 int nr_dirtied_pause;
1760 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1761
1762 #ifdef CONFIG_LATENCYTOP
1763 int latency_record_count;
1764 struct latency_record latency_record[LT_SAVECOUNT];
1765 #endif
1766 /*
1767 * time slack values; these are used to round up poll() and
1768 * select() etc timeout values. These are in nanoseconds.
1769 */
1770 unsigned long timer_slack_ns;
1771 unsigned long default_timer_slack_ns;
1772
1773 #ifdef CONFIG_KASAN
1774 unsigned int kasan_depth;
1775 #endif
1776 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1777 /* Index of current stored address in ret_stack */
1778 int curr_ret_stack;
1779 /* Stack of return addresses for return function tracing */
1780 struct ftrace_ret_stack *ret_stack;
1781 /* time stamp for last schedule */
1782 unsigned long long ftrace_timestamp;
1783 /*
1784 * Number of functions that haven't been traced
1785 * because of depth overrun.
1786 */
1787 atomic_t trace_overrun;
1788 /* Pause for the tracing */
1789 atomic_t tracing_graph_pause;
1790 #endif
1791 #ifdef CONFIG_TRACING
1792 /* state flags for use by tracers */
1793 unsigned long trace;
1794 /* bitmask and counter of trace recursion */
1795 unsigned long trace_recursion;
1796 #endif /* CONFIG_TRACING */
1797 #ifdef CONFIG_MEMCG
1798 struct mem_cgroup *memcg_in_oom;
1799 gfp_t memcg_oom_gfp_mask;
1800 int memcg_oom_order;
1801
1802 /* number of pages to reclaim on returning to userland */
1803 unsigned int memcg_nr_pages_over_high;
1804 #endif
1805 #ifdef CONFIG_UPROBES
1806 struct uprobe_task *utask;
1807 #endif
1808 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1809 unsigned int sequential_io;
1810 unsigned int sequential_io_avg;
1811 #endif
1812 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1813 unsigned long task_state_change;
1814 #endif
1815 int pagefault_disabled;
1816 /* CPU-specific state of this task */
1817 struct thread_struct thread;
1818 /*
1819 * WARNING: on x86, 'thread_struct' contains a variable-sized
1820 * structure. It *MUST* be at the end of 'task_struct'.
1821 *
1822 * Do not put anything below here!
1823 */
1824 };
1825
1826 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1827 extern int arch_task_struct_size __read_mostly;
1828 #else
1829 # define arch_task_struct_size (sizeof(struct task_struct))
1830 #endif
1831
1832 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1833 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1834
1835 #define TNF_MIGRATED 0x01
1836 #define TNF_NO_GROUP 0x02
1837 #define TNF_SHARED 0x04
1838 #define TNF_FAULT_LOCAL 0x08
1839 #define TNF_MIGRATE_FAIL 0x10
1840
1841 #ifdef CONFIG_NUMA_BALANCING
1842 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1843 extern pid_t task_numa_group_id(struct task_struct *p);
1844 extern void set_numabalancing_state(bool enabled);
1845 extern void task_numa_free(struct task_struct *p);
1846 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1847 int src_nid, int dst_cpu);
1848 #else
task_numa_fault(int last_node,int node,int pages,int flags)1849 static inline void task_numa_fault(int last_node, int node, int pages,
1850 int flags)
1851 {
1852 }
task_numa_group_id(struct task_struct * p)1853 static inline pid_t task_numa_group_id(struct task_struct *p)
1854 {
1855 return 0;
1856 }
set_numabalancing_state(bool enabled)1857 static inline void set_numabalancing_state(bool enabled)
1858 {
1859 }
task_numa_free(struct task_struct * p)1860 static inline void task_numa_free(struct task_struct *p)
1861 {
1862 }
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1863 static inline bool should_numa_migrate_memory(struct task_struct *p,
1864 struct page *page, int src_nid, int dst_cpu)
1865 {
1866 return true;
1867 }
1868 #endif
1869
task_pid(struct task_struct * task)1870 static inline struct pid *task_pid(struct task_struct *task)
1871 {
1872 return task->pids[PIDTYPE_PID].pid;
1873 }
1874
task_tgid(struct task_struct * task)1875 static inline struct pid *task_tgid(struct task_struct *task)
1876 {
1877 return task->group_leader->pids[PIDTYPE_PID].pid;
1878 }
1879
1880 /*
1881 * Without tasklist or rcu lock it is not safe to dereference
1882 * the result of task_pgrp/task_session even if task == current,
1883 * we can race with another thread doing sys_setsid/sys_setpgid.
1884 */
task_pgrp(struct task_struct * task)1885 static inline struct pid *task_pgrp(struct task_struct *task)
1886 {
1887 return task->group_leader->pids[PIDTYPE_PGID].pid;
1888 }
1889
task_session(struct task_struct * task)1890 static inline struct pid *task_session(struct task_struct *task)
1891 {
1892 return task->group_leader->pids[PIDTYPE_SID].pid;
1893 }
1894
1895 struct pid_namespace;
1896
1897 /*
1898 * the helpers to get the task's different pids as they are seen
1899 * from various namespaces
1900 *
1901 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1902 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1903 * current.
1904 * task_xid_nr_ns() : id seen from the ns specified;
1905 *
1906 * set_task_vxid() : assigns a virtual id to a task;
1907 *
1908 * see also pid_nr() etc in include/linux/pid.h
1909 */
1910 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1911 struct pid_namespace *ns);
1912
task_pid_nr(struct task_struct * tsk)1913 static inline pid_t task_pid_nr(struct task_struct *tsk)
1914 {
1915 return tsk->pid;
1916 }
1917
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1918 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1919 struct pid_namespace *ns)
1920 {
1921 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1922 }
1923
task_pid_vnr(struct task_struct * tsk)1924 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1925 {
1926 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1927 }
1928
1929
task_tgid_nr(struct task_struct * tsk)1930 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1931 {
1932 return tsk->tgid;
1933 }
1934
1935 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1936
task_tgid_vnr(struct task_struct * tsk)1937 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1938 {
1939 return pid_vnr(task_tgid(tsk));
1940 }
1941
1942
1943 static inline int pid_alive(const struct task_struct *p);
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1944 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1945 {
1946 pid_t pid = 0;
1947
1948 rcu_read_lock();
1949 if (pid_alive(tsk))
1950 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1951 rcu_read_unlock();
1952
1953 return pid;
1954 }
1955
task_ppid_nr(const struct task_struct * tsk)1956 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1957 {
1958 return task_ppid_nr_ns(tsk, &init_pid_ns);
1959 }
1960
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1961 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1962 struct pid_namespace *ns)
1963 {
1964 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1965 }
1966
task_pgrp_vnr(struct task_struct * tsk)1967 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1968 {
1969 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1970 }
1971
1972
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1973 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1974 struct pid_namespace *ns)
1975 {
1976 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1977 }
1978
task_session_vnr(struct task_struct * tsk)1979 static inline pid_t task_session_vnr(struct task_struct *tsk)
1980 {
1981 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1982 }
1983
1984 /* obsolete, do not use */
task_pgrp_nr(struct task_struct * tsk)1985 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1986 {
1987 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1988 }
1989
1990 /**
1991 * pid_alive - check that a task structure is not stale
1992 * @p: Task structure to be checked.
1993 *
1994 * Test if a process is not yet dead (at most zombie state)
1995 * If pid_alive fails, then pointers within the task structure
1996 * can be stale and must not be dereferenced.
1997 *
1998 * Return: 1 if the process is alive. 0 otherwise.
1999 */
pid_alive(const struct task_struct * p)2000 static inline int pid_alive(const struct task_struct *p)
2001 {
2002 return p->pids[PIDTYPE_PID].pid != NULL;
2003 }
2004
2005 /**
2006 * is_global_init - check if a task structure is init. Since init
2007 * is free to have sub-threads we need to check tgid.
2008 * @tsk: Task structure to be checked.
2009 *
2010 * Check if a task structure is the first user space task the kernel created.
2011 *
2012 * Return: 1 if the task structure is init. 0 otherwise.
2013 */
is_global_init(struct task_struct * tsk)2014 static inline int is_global_init(struct task_struct *tsk)
2015 {
2016 return task_tgid_nr(tsk) == 1;
2017 }
2018
2019 extern struct pid *cad_pid;
2020
2021 extern void free_task(struct task_struct *tsk);
2022 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2023
2024 extern void __put_task_struct(struct task_struct *t);
2025
put_task_struct(struct task_struct * t)2026 static inline void put_task_struct(struct task_struct *t)
2027 {
2028 if (atomic_dec_and_test(&t->usage))
2029 __put_task_struct(t);
2030 }
2031
2032 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2033 extern void task_cputime(struct task_struct *t,
2034 cputime_t *utime, cputime_t *stime);
2035 extern void task_cputime_scaled(struct task_struct *t,
2036 cputime_t *utimescaled, cputime_t *stimescaled);
2037 extern cputime_t task_gtime(struct task_struct *t);
2038 #else
task_cputime(struct task_struct * t,cputime_t * utime,cputime_t * stime)2039 static inline void task_cputime(struct task_struct *t,
2040 cputime_t *utime, cputime_t *stime)
2041 {
2042 if (utime)
2043 *utime = t->utime;
2044 if (stime)
2045 *stime = t->stime;
2046 }
2047
task_cputime_scaled(struct task_struct * t,cputime_t * utimescaled,cputime_t * stimescaled)2048 static inline void task_cputime_scaled(struct task_struct *t,
2049 cputime_t *utimescaled,
2050 cputime_t *stimescaled)
2051 {
2052 if (utimescaled)
2053 *utimescaled = t->utimescaled;
2054 if (stimescaled)
2055 *stimescaled = t->stimescaled;
2056 }
2057
task_gtime(struct task_struct * t)2058 static inline cputime_t task_gtime(struct task_struct *t)
2059 {
2060 return t->gtime;
2061 }
2062 #endif
2063 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2064 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2065
2066 /*
2067 * Per process flags
2068 */
2069 #define PF_EXITING 0x00000004 /* getting shut down */
2070 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2071 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2072 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2073 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2074 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2075 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2076 #define PF_DUMPCORE 0x00000200 /* dumped core */
2077 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2078 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2079 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2080 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2081 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2082 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2083 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2084 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2085 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2086 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2087 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2088 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2089 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2090 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2091 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2092 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2093 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2094 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2095 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2096
2097 /*
2098 * Only the _current_ task can read/write to tsk->flags, but other
2099 * tasks can access tsk->flags in readonly mode for example
2100 * with tsk_used_math (like during threaded core dumping).
2101 * There is however an exception to this rule during ptrace
2102 * or during fork: the ptracer task is allowed to write to the
2103 * child->flags of its traced child (same goes for fork, the parent
2104 * can write to the child->flags), because we're guaranteed the
2105 * child is not running and in turn not changing child->flags
2106 * at the same time the parent does it.
2107 */
2108 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2109 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2110 #define clear_used_math() clear_stopped_child_used_math(current)
2111 #define set_used_math() set_stopped_child_used_math(current)
2112 #define conditional_stopped_child_used_math(condition, child) \
2113 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2114 #define conditional_used_math(condition) \
2115 conditional_stopped_child_used_math(condition, current)
2116 #define copy_to_stopped_child_used_math(child) \
2117 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2118 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2119 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2120 #define used_math() tsk_used_math(current)
2121
2122 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2123 * __GFP_FS is also cleared as it implies __GFP_IO.
2124 */
memalloc_noio_flags(gfp_t flags)2125 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2126 {
2127 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2128 flags &= ~(__GFP_IO | __GFP_FS);
2129 return flags;
2130 }
2131
memalloc_noio_save(void)2132 static inline unsigned int memalloc_noio_save(void)
2133 {
2134 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2135 current->flags |= PF_MEMALLOC_NOIO;
2136 return flags;
2137 }
2138
memalloc_noio_restore(unsigned int flags)2139 static inline void memalloc_noio_restore(unsigned int flags)
2140 {
2141 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2142 }
2143
2144 /* Per-process atomic flags. */
2145 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2146 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2147 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2148
2149
2150 #define TASK_PFA_TEST(name, func) \
2151 static inline bool task_##func(struct task_struct *p) \
2152 { return test_bit(PFA_##name, &p->atomic_flags); }
2153 #define TASK_PFA_SET(name, func) \
2154 static inline void task_set_##func(struct task_struct *p) \
2155 { set_bit(PFA_##name, &p->atomic_flags); }
2156 #define TASK_PFA_CLEAR(name, func) \
2157 static inline void task_clear_##func(struct task_struct *p) \
2158 { clear_bit(PFA_##name, &p->atomic_flags); }
2159
2160 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2161 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2162
2163 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2164 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2165 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2166
2167 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2168 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2169 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2170
2171 /*
2172 * task->jobctl flags
2173 */
2174 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2175
2176 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2177 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2178 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2179 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2180 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2181 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2182 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2183
2184 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2185 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2186 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2187 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2188 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2189 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2190 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2191
2192 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2193 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2194
2195 extern bool task_set_jobctl_pending(struct task_struct *task,
2196 unsigned long mask);
2197 extern void task_clear_jobctl_trapping(struct task_struct *task);
2198 extern void task_clear_jobctl_pending(struct task_struct *task,
2199 unsigned long mask);
2200
rcu_copy_process(struct task_struct * p)2201 static inline void rcu_copy_process(struct task_struct *p)
2202 {
2203 #ifdef CONFIG_PREEMPT_RCU
2204 p->rcu_read_lock_nesting = 0;
2205 p->rcu_read_unlock_special.s = 0;
2206 p->rcu_blocked_node = NULL;
2207 INIT_LIST_HEAD(&p->rcu_node_entry);
2208 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2209 #ifdef CONFIG_TASKS_RCU
2210 p->rcu_tasks_holdout = false;
2211 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2212 p->rcu_tasks_idle_cpu = -1;
2213 #endif /* #ifdef CONFIG_TASKS_RCU */
2214 }
2215
tsk_restore_flags(struct task_struct * task,unsigned long orig_flags,unsigned long flags)2216 static inline void tsk_restore_flags(struct task_struct *task,
2217 unsigned long orig_flags, unsigned long flags)
2218 {
2219 task->flags &= ~flags;
2220 task->flags |= orig_flags & flags;
2221 }
2222
2223 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2224 const struct cpumask *trial);
2225 extern int task_can_attach(struct task_struct *p,
2226 const struct cpumask *cs_cpus_allowed);
2227 #ifdef CONFIG_SMP
2228 extern void do_set_cpus_allowed(struct task_struct *p,
2229 const struct cpumask *new_mask);
2230
2231 extern int set_cpus_allowed_ptr(struct task_struct *p,
2232 const struct cpumask *new_mask);
2233 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2234 static inline void do_set_cpus_allowed(struct task_struct *p,
2235 const struct cpumask *new_mask)
2236 {
2237 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2238 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2239 const struct cpumask *new_mask)
2240 {
2241 if (!cpumask_test_cpu(0, new_mask))
2242 return -EINVAL;
2243 return 0;
2244 }
2245 #endif
2246
2247 #ifdef CONFIG_NO_HZ_COMMON
2248 void calc_load_enter_idle(void);
2249 void calc_load_exit_idle(void);
2250 #else
calc_load_enter_idle(void)2251 static inline void calc_load_enter_idle(void) { }
calc_load_exit_idle(void)2252 static inline void calc_load_exit_idle(void) { }
2253 #endif /* CONFIG_NO_HZ_COMMON */
2254
2255 /*
2256 * Do not use outside of architecture code which knows its limitations.
2257 *
2258 * sched_clock() has no promise of monotonicity or bounded drift between
2259 * CPUs, use (which you should not) requires disabling IRQs.
2260 *
2261 * Please use one of the three interfaces below.
2262 */
2263 extern unsigned long long notrace sched_clock(void);
2264 /*
2265 * See the comment in kernel/sched/clock.c
2266 */
2267 extern u64 cpu_clock(int cpu);
2268 extern u64 local_clock(void);
2269 extern u64 running_clock(void);
2270 extern u64 sched_clock_cpu(int cpu);
2271
2272
2273 extern void sched_clock_init(void);
2274
2275 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_tick(void)2276 static inline void sched_clock_tick(void)
2277 {
2278 }
2279
sched_clock_idle_sleep_event(void)2280 static inline void sched_clock_idle_sleep_event(void)
2281 {
2282 }
2283
sched_clock_idle_wakeup_event(u64 delta_ns)2284 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2285 {
2286 }
2287 #else
2288 /*
2289 * Architectures can set this to 1 if they have specified
2290 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2291 * but then during bootup it turns out that sched_clock()
2292 * is reliable after all:
2293 */
2294 extern int sched_clock_stable(void);
2295 extern void set_sched_clock_stable(void);
2296 extern void clear_sched_clock_stable(void);
2297
2298 extern void sched_clock_tick(void);
2299 extern void sched_clock_idle_sleep_event(void);
2300 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2301 #endif
2302
2303 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2304 /*
2305 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2306 * The reason for this explicit opt-in is not to have perf penalty with
2307 * slow sched_clocks.
2308 */
2309 extern void enable_sched_clock_irqtime(void);
2310 extern void disable_sched_clock_irqtime(void);
2311 #else
enable_sched_clock_irqtime(void)2312 static inline void enable_sched_clock_irqtime(void) {}
disable_sched_clock_irqtime(void)2313 static inline void disable_sched_clock_irqtime(void) {}
2314 #endif
2315
2316 extern unsigned long long
2317 task_sched_runtime(struct task_struct *task);
2318
2319 /* sched_exec is called by processes performing an exec */
2320 #ifdef CONFIG_SMP
2321 extern void sched_exec(void);
2322 #else
2323 #define sched_exec() {}
2324 #endif
2325
2326 extern void sched_clock_idle_sleep_event(void);
2327 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2328
2329 #ifdef CONFIG_HOTPLUG_CPU
2330 extern void idle_task_exit(void);
2331 #else
idle_task_exit(void)2332 static inline void idle_task_exit(void) {}
2333 #endif
2334
2335 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2336 extern void wake_up_nohz_cpu(int cpu);
2337 #else
wake_up_nohz_cpu(int cpu)2338 static inline void wake_up_nohz_cpu(int cpu) { }
2339 #endif
2340
2341 #ifdef CONFIG_NO_HZ_FULL
2342 extern bool sched_can_stop_tick(void);
2343 extern u64 scheduler_tick_max_deferment(void);
2344 #else
sched_can_stop_tick(void)2345 static inline bool sched_can_stop_tick(void) { return false; }
2346 #endif
2347
2348 #ifdef CONFIG_SCHED_AUTOGROUP
2349 extern void sched_autogroup_create_attach(struct task_struct *p);
2350 extern void sched_autogroup_detach(struct task_struct *p);
2351 extern void sched_autogroup_fork(struct signal_struct *sig);
2352 extern void sched_autogroup_exit(struct signal_struct *sig);
2353 #ifdef CONFIG_PROC_FS
2354 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2355 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2356 #endif
2357 #else
sched_autogroup_create_attach(struct task_struct * p)2358 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
sched_autogroup_detach(struct task_struct * p)2359 static inline void sched_autogroup_detach(struct task_struct *p) { }
sched_autogroup_fork(struct signal_struct * sig)2360 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
sched_autogroup_exit(struct signal_struct * sig)2361 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2362 #endif
2363
2364 extern int yield_to(struct task_struct *p, bool preempt);
2365 extern void set_user_nice(struct task_struct *p, long nice);
2366 extern int task_prio(const struct task_struct *p);
2367 /**
2368 * task_nice - return the nice value of a given task.
2369 * @p: the task in question.
2370 *
2371 * Return: The nice value [ -20 ... 0 ... 19 ].
2372 */
task_nice(const struct task_struct * p)2373 static inline int task_nice(const struct task_struct *p)
2374 {
2375 return PRIO_TO_NICE((p)->static_prio);
2376 }
2377 extern int can_nice(const struct task_struct *p, const int nice);
2378 extern int task_curr(const struct task_struct *p);
2379 extern int idle_cpu(int cpu);
2380 extern int sched_setscheduler(struct task_struct *, int,
2381 const struct sched_param *);
2382 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2383 const struct sched_param *);
2384 extern int sched_setattr(struct task_struct *,
2385 const struct sched_attr *);
2386 extern struct task_struct *idle_task(int cpu);
2387 /**
2388 * is_idle_task - is the specified task an idle task?
2389 * @p: the task in question.
2390 *
2391 * Return: 1 if @p is an idle task. 0 otherwise.
2392 */
is_idle_task(const struct task_struct * p)2393 static inline bool is_idle_task(const struct task_struct *p)
2394 {
2395 return p->pid == 0;
2396 }
2397 extern struct task_struct *curr_task(int cpu);
2398 extern void set_curr_task(int cpu, struct task_struct *p);
2399
2400 void yield(void);
2401
2402 union thread_union {
2403 struct thread_info thread_info;
2404 unsigned long stack[THREAD_SIZE/sizeof(long)];
2405 };
2406
2407 #ifndef __HAVE_ARCH_KSTACK_END
kstack_end(void * addr)2408 static inline int kstack_end(void *addr)
2409 {
2410 /* Reliable end of stack detection:
2411 * Some APM bios versions misalign the stack
2412 */
2413 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2414 }
2415 #endif
2416
2417 extern union thread_union init_thread_union;
2418 extern struct task_struct init_task;
2419
2420 extern struct mm_struct init_mm;
2421
2422 extern struct pid_namespace init_pid_ns;
2423
2424 /*
2425 * find a task by one of its numerical ids
2426 *
2427 * find_task_by_pid_ns():
2428 * finds a task by its pid in the specified namespace
2429 * find_task_by_vpid():
2430 * finds a task by its virtual pid
2431 *
2432 * see also find_vpid() etc in include/linux/pid.h
2433 */
2434
2435 extern struct task_struct *find_task_by_vpid(pid_t nr);
2436 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2437 struct pid_namespace *ns);
2438
2439 /* per-UID process charging. */
2440 extern struct user_struct * alloc_uid(kuid_t);
get_uid(struct user_struct * u)2441 static inline struct user_struct *get_uid(struct user_struct *u)
2442 {
2443 atomic_inc(&u->__count);
2444 return u;
2445 }
2446 extern void free_uid(struct user_struct *);
2447
2448 #include <asm/current.h>
2449
2450 extern void xtime_update(unsigned long ticks);
2451
2452 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2453 extern int wake_up_process(struct task_struct *tsk);
2454 extern void wake_up_new_task(struct task_struct *tsk);
2455 #ifdef CONFIG_SMP
2456 extern void kick_process(struct task_struct *tsk);
2457 #else
kick_process(struct task_struct * tsk)2458 static inline void kick_process(struct task_struct *tsk) { }
2459 #endif
2460 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2461 extern void sched_dead(struct task_struct *p);
2462
2463 extern void proc_caches_init(void);
2464 extern void flush_signals(struct task_struct *);
2465 extern void ignore_signals(struct task_struct *);
2466 extern void flush_signal_handlers(struct task_struct *, int force_default);
2467 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2468
kernel_dequeue_signal(siginfo_t * info)2469 static inline int kernel_dequeue_signal(siginfo_t *info)
2470 {
2471 struct task_struct *tsk = current;
2472 siginfo_t __info;
2473 int ret;
2474
2475 spin_lock_irq(&tsk->sighand->siglock);
2476 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2477 spin_unlock_irq(&tsk->sighand->siglock);
2478
2479 return ret;
2480 }
2481
kernel_signal_stop(void)2482 static inline void kernel_signal_stop(void)
2483 {
2484 spin_lock_irq(¤t->sighand->siglock);
2485 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2486 __set_current_state(TASK_STOPPED);
2487 spin_unlock_irq(¤t->sighand->siglock);
2488
2489 schedule();
2490 }
2491
2492 extern void release_task(struct task_struct * p);
2493 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2494 extern int force_sigsegv(int, struct task_struct *);
2495 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2496 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2497 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2498 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2499 const struct cred *, u32);
2500 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2501 extern int kill_pid(struct pid *pid, int sig, int priv);
2502 extern int kill_proc_info(int, struct siginfo *, pid_t);
2503 extern __must_check bool do_notify_parent(struct task_struct *, int);
2504 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2505 extern void force_sig(int, struct task_struct *);
2506 extern int send_sig(int, struct task_struct *, int);
2507 extern int zap_other_threads(struct task_struct *p);
2508 extern struct sigqueue *sigqueue_alloc(void);
2509 extern void sigqueue_free(struct sigqueue *);
2510 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2511 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2512
restore_saved_sigmask(void)2513 static inline void restore_saved_sigmask(void)
2514 {
2515 if (test_and_clear_restore_sigmask())
2516 __set_current_blocked(¤t->saved_sigmask);
2517 }
2518
sigmask_to_save(void)2519 static inline sigset_t *sigmask_to_save(void)
2520 {
2521 sigset_t *res = ¤t->blocked;
2522 if (unlikely(test_restore_sigmask()))
2523 res = ¤t->saved_sigmask;
2524 return res;
2525 }
2526
kill_cad_pid(int sig,int priv)2527 static inline int kill_cad_pid(int sig, int priv)
2528 {
2529 return kill_pid(cad_pid, sig, priv);
2530 }
2531
2532 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2533 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2534 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2535 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2536
2537 /*
2538 * True if we are on the alternate signal stack.
2539 */
on_sig_stack(unsigned long sp)2540 static inline int on_sig_stack(unsigned long sp)
2541 {
2542 #ifdef CONFIG_STACK_GROWSUP
2543 return sp >= current->sas_ss_sp &&
2544 sp - current->sas_ss_sp < current->sas_ss_size;
2545 #else
2546 return sp > current->sas_ss_sp &&
2547 sp - current->sas_ss_sp <= current->sas_ss_size;
2548 #endif
2549 }
2550
sas_ss_flags(unsigned long sp)2551 static inline int sas_ss_flags(unsigned long sp)
2552 {
2553 if (!current->sas_ss_size)
2554 return SS_DISABLE;
2555
2556 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2557 }
2558
sigsp(unsigned long sp,struct ksignal * ksig)2559 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2560 {
2561 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2562 #ifdef CONFIG_STACK_GROWSUP
2563 return current->sas_ss_sp;
2564 #else
2565 return current->sas_ss_sp + current->sas_ss_size;
2566 #endif
2567 return sp;
2568 }
2569
2570 /*
2571 * Routines for handling mm_structs
2572 */
2573 extern struct mm_struct * mm_alloc(void);
2574
2575 /* mmdrop drops the mm and the page tables */
2576 extern void __mmdrop(struct mm_struct *);
mmdrop(struct mm_struct * mm)2577 static inline void mmdrop(struct mm_struct * mm)
2578 {
2579 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2580 __mmdrop(mm);
2581 }
2582
2583 /* mmput gets rid of the mappings and all user-space */
2584 extern void mmput(struct mm_struct *);
2585 /* Grab a reference to a task's mm, if it is not already going away */
2586 extern struct mm_struct *get_task_mm(struct task_struct *task);
2587 /*
2588 * Grab a reference to a task's mm, if it is not already going away
2589 * and ptrace_may_access with the mode parameter passed to it
2590 * succeeds.
2591 */
2592 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2593 /* Remove the current tasks stale references to the old mm_struct */
2594 extern void mm_release(struct task_struct *, struct mm_struct *);
2595
2596 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2597 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2598 struct task_struct *, unsigned long);
2599 #else
2600 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2601 struct task_struct *);
2602
2603 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2604 * via pt_regs, so ignore the tls argument passed via C. */
copy_thread_tls(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)2605 static inline int copy_thread_tls(
2606 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2607 struct task_struct *p, unsigned long tls)
2608 {
2609 return copy_thread(clone_flags, sp, arg, p);
2610 }
2611 #endif
2612 extern void flush_thread(void);
2613 extern void exit_thread(void);
2614
2615 extern void exit_files(struct task_struct *);
2616 extern void __cleanup_sighand(struct sighand_struct *);
2617
2618 extern void exit_itimers(struct signal_struct *);
2619 extern void flush_itimer_signals(void);
2620
2621 extern void do_group_exit(int);
2622
2623 extern int do_execve(struct filename *,
2624 const char __user * const __user *,
2625 const char __user * const __user *);
2626 extern int do_execveat(int, struct filename *,
2627 const char __user * const __user *,
2628 const char __user * const __user *,
2629 int);
2630 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2631 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2632 struct task_struct *fork_idle(int);
2633 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2634
2635 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
set_task_comm(struct task_struct * tsk,const char * from)2636 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2637 {
2638 __set_task_comm(tsk, from, false);
2639 }
2640 extern char *get_task_comm(char *to, struct task_struct *tsk);
2641
2642 #ifdef CONFIG_SMP
2643 void scheduler_ipi(void);
2644 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2645 #else
scheduler_ipi(void)2646 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)2647 static inline unsigned long wait_task_inactive(struct task_struct *p,
2648 long match_state)
2649 {
2650 return 1;
2651 }
2652 #endif
2653
2654 #define tasklist_empty() \
2655 list_empty(&init_task.tasks)
2656
2657 #define next_task(p) \
2658 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2659
2660 #define for_each_process(p) \
2661 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2662
2663 extern bool current_is_single_threaded(void);
2664
2665 /*
2666 * Careful: do_each_thread/while_each_thread is a double loop so
2667 * 'break' will not work as expected - use goto instead.
2668 */
2669 #define do_each_thread(g, t) \
2670 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2671
2672 #define while_each_thread(g, t) \
2673 while ((t = next_thread(t)) != g)
2674
2675 #define __for_each_thread(signal, t) \
2676 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2677
2678 #define for_each_thread(p, t) \
2679 __for_each_thread((p)->signal, t)
2680
2681 /* Careful: this is a double loop, 'break' won't work as expected. */
2682 #define for_each_process_thread(p, t) \
2683 for_each_process(p) for_each_thread(p, t)
2684
get_nr_threads(struct task_struct * tsk)2685 static inline int get_nr_threads(struct task_struct *tsk)
2686 {
2687 return tsk->signal->nr_threads;
2688 }
2689
thread_group_leader(struct task_struct * p)2690 static inline bool thread_group_leader(struct task_struct *p)
2691 {
2692 return p->exit_signal >= 0;
2693 }
2694
2695 /* Do to the insanities of de_thread it is possible for a process
2696 * to have the pid of the thread group leader without actually being
2697 * the thread group leader. For iteration through the pids in proc
2698 * all we care about is that we have a task with the appropriate
2699 * pid, we don't actually care if we have the right task.
2700 */
has_group_leader_pid(struct task_struct * p)2701 static inline bool has_group_leader_pid(struct task_struct *p)
2702 {
2703 return task_pid(p) == p->signal->leader_pid;
2704 }
2705
2706 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)2707 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2708 {
2709 return p1->signal == p2->signal;
2710 }
2711
next_thread(const struct task_struct * p)2712 static inline struct task_struct *next_thread(const struct task_struct *p)
2713 {
2714 return list_entry_rcu(p->thread_group.next,
2715 struct task_struct, thread_group);
2716 }
2717
thread_group_empty(struct task_struct * p)2718 static inline int thread_group_empty(struct task_struct *p)
2719 {
2720 return list_empty(&p->thread_group);
2721 }
2722
2723 #define delay_group_leader(p) \
2724 (thread_group_leader(p) && !thread_group_empty(p))
2725
2726 /*
2727 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2728 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2729 * pins the final release of task.io_context. Also protects ->cpuset and
2730 * ->cgroup.subsys[]. And ->vfork_done.
2731 *
2732 * Nests both inside and outside of read_lock(&tasklist_lock).
2733 * It must not be nested with write_lock_irq(&tasklist_lock),
2734 * neither inside nor outside.
2735 */
task_lock(struct task_struct * p)2736 static inline void task_lock(struct task_struct *p)
2737 {
2738 spin_lock(&p->alloc_lock);
2739 }
2740
task_unlock(struct task_struct * p)2741 static inline void task_unlock(struct task_struct *p)
2742 {
2743 spin_unlock(&p->alloc_lock);
2744 }
2745
2746 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2747 unsigned long *flags);
2748
lock_task_sighand(struct task_struct * tsk,unsigned long * flags)2749 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2750 unsigned long *flags)
2751 {
2752 struct sighand_struct *ret;
2753
2754 ret = __lock_task_sighand(tsk, flags);
2755 (void)__cond_lock(&tsk->sighand->siglock, ret);
2756 return ret;
2757 }
2758
unlock_task_sighand(struct task_struct * tsk,unsigned long * flags)2759 static inline void unlock_task_sighand(struct task_struct *tsk,
2760 unsigned long *flags)
2761 {
2762 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2763 }
2764
2765 /**
2766 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2767 * @tsk: task causing the changes
2768 *
2769 * All operations which modify a threadgroup - a new thread joining the
2770 * group, death of a member thread (the assertion of PF_EXITING) and
2771 * exec(2) dethreading the process and replacing the leader - are wrapped
2772 * by threadgroup_change_{begin|end}(). This is to provide a place which
2773 * subsystems needing threadgroup stability can hook into for
2774 * synchronization.
2775 */
threadgroup_change_begin(struct task_struct * tsk)2776 static inline void threadgroup_change_begin(struct task_struct *tsk)
2777 {
2778 might_sleep();
2779 cgroup_threadgroup_change_begin(tsk);
2780 }
2781
2782 /**
2783 * threadgroup_change_end - mark the end of changes to a threadgroup
2784 * @tsk: task causing the changes
2785 *
2786 * See threadgroup_change_begin().
2787 */
threadgroup_change_end(struct task_struct * tsk)2788 static inline void threadgroup_change_end(struct task_struct *tsk)
2789 {
2790 cgroup_threadgroup_change_end(tsk);
2791 }
2792
2793 #ifndef __HAVE_THREAD_FUNCTIONS
2794
2795 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2796 #define task_stack_page(task) ((task)->stack)
2797
setup_thread_stack(struct task_struct * p,struct task_struct * org)2798 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2799 {
2800 *task_thread_info(p) = *task_thread_info(org);
2801 task_thread_info(p)->task = p;
2802 }
2803
2804 /*
2805 * Return the address of the last usable long on the stack.
2806 *
2807 * When the stack grows down, this is just above the thread
2808 * info struct. Going any lower will corrupt the threadinfo.
2809 *
2810 * When the stack grows up, this is the highest address.
2811 * Beyond that position, we corrupt data on the next page.
2812 */
end_of_stack(struct task_struct * p)2813 static inline unsigned long *end_of_stack(struct task_struct *p)
2814 {
2815 #ifdef CONFIG_STACK_GROWSUP
2816 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2817 #else
2818 return (unsigned long *)(task_thread_info(p) + 1);
2819 #endif
2820 }
2821
2822 #endif
2823 #define task_stack_end_corrupted(task) \
2824 (*(end_of_stack(task)) != STACK_END_MAGIC)
2825
object_is_on_stack(void * obj)2826 static inline int object_is_on_stack(void *obj)
2827 {
2828 void *stack = task_stack_page(current);
2829
2830 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2831 }
2832
2833 extern void thread_info_cache_init(void);
2834
2835 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)2836 static inline unsigned long stack_not_used(struct task_struct *p)
2837 {
2838 unsigned long *n = end_of_stack(p);
2839
2840 do { /* Skip over canary */
2841 n++;
2842 } while (!*n);
2843
2844 return (unsigned long)n - (unsigned long)end_of_stack(p);
2845 }
2846 #endif
2847 extern void set_task_stack_end_magic(struct task_struct *tsk);
2848
2849 /* set thread flags in other task's structures
2850 * - see asm/thread_info.h for TIF_xxxx flags available
2851 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2852 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2853 {
2854 set_ti_thread_flag(task_thread_info(tsk), flag);
2855 }
2856
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2857 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2858 {
2859 clear_ti_thread_flag(task_thread_info(tsk), flag);
2860 }
2861
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2862 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2863 {
2864 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2865 }
2866
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2867 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2868 {
2869 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2870 }
2871
test_tsk_thread_flag(struct task_struct * tsk,int flag)2872 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2873 {
2874 return test_ti_thread_flag(task_thread_info(tsk), flag);
2875 }
2876
set_tsk_need_resched(struct task_struct * tsk)2877 static inline void set_tsk_need_resched(struct task_struct *tsk)
2878 {
2879 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2880 }
2881
clear_tsk_need_resched(struct task_struct * tsk)2882 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2883 {
2884 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2885 }
2886
test_tsk_need_resched(struct task_struct * tsk)2887 static inline int test_tsk_need_resched(struct task_struct *tsk)
2888 {
2889 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2890 }
2891
restart_syscall(void)2892 static inline int restart_syscall(void)
2893 {
2894 set_tsk_thread_flag(current, TIF_SIGPENDING);
2895 return -ERESTARTNOINTR;
2896 }
2897
signal_pending(struct task_struct * p)2898 static inline int signal_pending(struct task_struct *p)
2899 {
2900 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2901 }
2902
__fatal_signal_pending(struct task_struct * p)2903 static inline int __fatal_signal_pending(struct task_struct *p)
2904 {
2905 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2906 }
2907
fatal_signal_pending(struct task_struct * p)2908 static inline int fatal_signal_pending(struct task_struct *p)
2909 {
2910 return signal_pending(p) && __fatal_signal_pending(p);
2911 }
2912
signal_pending_state(long state,struct task_struct * p)2913 static inline int signal_pending_state(long state, struct task_struct *p)
2914 {
2915 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2916 return 0;
2917 if (!signal_pending(p))
2918 return 0;
2919
2920 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2921 }
2922
2923 /*
2924 * cond_resched() and cond_resched_lock(): latency reduction via
2925 * explicit rescheduling in places that are safe. The return
2926 * value indicates whether a reschedule was done in fact.
2927 * cond_resched_lock() will drop the spinlock before scheduling,
2928 * cond_resched_softirq() will enable bhs before scheduling.
2929 */
2930 extern int _cond_resched(void);
2931
2932 #define cond_resched() ({ \
2933 ___might_sleep(__FILE__, __LINE__, 0); \
2934 _cond_resched(); \
2935 })
2936
2937 extern int __cond_resched_lock(spinlock_t *lock);
2938
2939 #define cond_resched_lock(lock) ({ \
2940 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2941 __cond_resched_lock(lock); \
2942 })
2943
2944 extern int __cond_resched_softirq(void);
2945
2946 #define cond_resched_softirq() ({ \
2947 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2948 __cond_resched_softirq(); \
2949 })
2950
cond_resched_rcu(void)2951 static inline void cond_resched_rcu(void)
2952 {
2953 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2954 rcu_read_unlock();
2955 cond_resched();
2956 rcu_read_lock();
2957 #endif
2958 }
2959
2960 /*
2961 * Does a critical section need to be broken due to another
2962 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2963 * but a general need for low latency)
2964 */
spin_needbreak(spinlock_t * lock)2965 static inline int spin_needbreak(spinlock_t *lock)
2966 {
2967 #ifdef CONFIG_PREEMPT
2968 return spin_is_contended(lock);
2969 #else
2970 return 0;
2971 #endif
2972 }
2973
2974 /*
2975 * Idle thread specific functions to determine the need_resched
2976 * polling state.
2977 */
2978 #ifdef TIF_POLLING_NRFLAG
tsk_is_polling(struct task_struct * p)2979 static inline int tsk_is_polling(struct task_struct *p)
2980 {
2981 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2982 }
2983
__current_set_polling(void)2984 static inline void __current_set_polling(void)
2985 {
2986 set_thread_flag(TIF_POLLING_NRFLAG);
2987 }
2988
current_set_polling_and_test(void)2989 static inline bool __must_check current_set_polling_and_test(void)
2990 {
2991 __current_set_polling();
2992
2993 /*
2994 * Polling state must be visible before we test NEED_RESCHED,
2995 * paired by resched_curr()
2996 */
2997 smp_mb__after_atomic();
2998
2999 return unlikely(tif_need_resched());
3000 }
3001
__current_clr_polling(void)3002 static inline void __current_clr_polling(void)
3003 {
3004 clear_thread_flag(TIF_POLLING_NRFLAG);
3005 }
3006
current_clr_polling_and_test(void)3007 static inline bool __must_check current_clr_polling_and_test(void)
3008 {
3009 __current_clr_polling();
3010
3011 /*
3012 * Polling state must be visible before we test NEED_RESCHED,
3013 * paired by resched_curr()
3014 */
3015 smp_mb__after_atomic();
3016
3017 return unlikely(tif_need_resched());
3018 }
3019
3020 #else
tsk_is_polling(struct task_struct * p)3021 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
__current_set_polling(void)3022 static inline void __current_set_polling(void) { }
__current_clr_polling(void)3023 static inline void __current_clr_polling(void) { }
3024
current_set_polling_and_test(void)3025 static inline bool __must_check current_set_polling_and_test(void)
3026 {
3027 return unlikely(tif_need_resched());
3028 }
current_clr_polling_and_test(void)3029 static inline bool __must_check current_clr_polling_and_test(void)
3030 {
3031 return unlikely(tif_need_resched());
3032 }
3033 #endif
3034
current_clr_polling(void)3035 static inline void current_clr_polling(void)
3036 {
3037 __current_clr_polling();
3038
3039 /*
3040 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3041 * Once the bit is cleared, we'll get IPIs with every new
3042 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3043 * fold.
3044 */
3045 smp_mb(); /* paired with resched_curr() */
3046
3047 preempt_fold_need_resched();
3048 }
3049
need_resched(void)3050 static __always_inline bool need_resched(void)
3051 {
3052 return unlikely(tif_need_resched());
3053 }
3054
3055 /*
3056 * Thread group CPU time accounting.
3057 */
3058 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3059 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3060
3061 /*
3062 * Reevaluate whether the task has signals pending delivery.
3063 * Wake the task if so.
3064 * This is required every time the blocked sigset_t changes.
3065 * callers must hold sighand->siglock.
3066 */
3067 extern void recalc_sigpending_and_wake(struct task_struct *t);
3068 extern void recalc_sigpending(void);
3069
3070 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3071
signal_wake_up(struct task_struct * t,bool resume)3072 static inline void signal_wake_up(struct task_struct *t, bool resume)
3073 {
3074 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3075 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)3076 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3077 {
3078 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3079 }
3080
3081 /*
3082 * Wrappers for p->thread_info->cpu access. No-op on UP.
3083 */
3084 #ifdef CONFIG_SMP
3085
task_cpu(const struct task_struct * p)3086 static inline unsigned int task_cpu(const struct task_struct *p)
3087 {
3088 return task_thread_info(p)->cpu;
3089 }
3090
task_node(const struct task_struct * p)3091 static inline int task_node(const struct task_struct *p)
3092 {
3093 return cpu_to_node(task_cpu(p));
3094 }
3095
3096 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3097
3098 #else
3099
task_cpu(const struct task_struct * p)3100 static inline unsigned int task_cpu(const struct task_struct *p)
3101 {
3102 return 0;
3103 }
3104
set_task_cpu(struct task_struct * p,unsigned int cpu)3105 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3106 {
3107 }
3108
3109 #endif /* CONFIG_SMP */
3110
3111 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3112 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3113
3114 #ifdef CONFIG_CGROUP_SCHED
3115 extern struct task_group root_task_group;
3116 #endif /* CONFIG_CGROUP_SCHED */
3117
3118 extern int task_can_switch_user(struct user_struct *up,
3119 struct task_struct *tsk);
3120
3121 #ifdef CONFIG_TASK_XACCT
add_rchar(struct task_struct * tsk,ssize_t amt)3122 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3123 {
3124 tsk->ioac.rchar += amt;
3125 }
3126
add_wchar(struct task_struct * tsk,ssize_t amt)3127 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3128 {
3129 tsk->ioac.wchar += amt;
3130 }
3131
inc_syscr(struct task_struct * tsk)3132 static inline void inc_syscr(struct task_struct *tsk)
3133 {
3134 tsk->ioac.syscr++;
3135 }
3136
inc_syscw(struct task_struct * tsk)3137 static inline void inc_syscw(struct task_struct *tsk)
3138 {
3139 tsk->ioac.syscw++;
3140 }
3141 #else
add_rchar(struct task_struct * tsk,ssize_t amt)3142 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3143 {
3144 }
3145
add_wchar(struct task_struct * tsk,ssize_t amt)3146 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3147 {
3148 }
3149
inc_syscr(struct task_struct * tsk)3150 static inline void inc_syscr(struct task_struct *tsk)
3151 {
3152 }
3153
inc_syscw(struct task_struct * tsk)3154 static inline void inc_syscw(struct task_struct *tsk)
3155 {
3156 }
3157 #endif
3158
3159 #ifndef TASK_SIZE_OF
3160 #define TASK_SIZE_OF(tsk) TASK_SIZE
3161 #endif
3162
3163 #ifdef CONFIG_MEMCG
3164 extern void mm_update_next_owner(struct mm_struct *mm);
3165 #else
mm_update_next_owner(struct mm_struct * mm)3166 static inline void mm_update_next_owner(struct mm_struct *mm)
3167 {
3168 }
3169 #endif /* CONFIG_MEMCG */
3170
task_rlimit(const struct task_struct * tsk,unsigned int limit)3171 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3172 unsigned int limit)
3173 {
3174 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3175 }
3176
task_rlimit_max(const struct task_struct * tsk,unsigned int limit)3177 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3178 unsigned int limit)
3179 {
3180 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3181 }
3182
rlimit(unsigned int limit)3183 static inline unsigned long rlimit(unsigned int limit)
3184 {
3185 return task_rlimit(current, limit);
3186 }
3187
rlimit_max(unsigned int limit)3188 static inline unsigned long rlimit_max(unsigned int limit)
3189 {
3190 return task_rlimit_max(current, limit);
3191 }
3192
3193 #endif
3194