• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
16 #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
17 
18 #ifdef ADDRESS_SANITIZER
19 #include <sanitizer/asan_interface.h>
20 #endif
21 
22 #ifdef MEMORY_SANITIZER
23 #include <sanitizer/msan_interface.h>
24 #endif
25 
26 #include <cassert>
27 #include <cstddef>
28 #include <memory>
29 #include <tuple>
30 #include <type_traits>
31 #include <utility>
32 
33 #include "absl/memory/memory.h"
34 #include "absl/utility/utility.h"
35 
36 namespace absl {
37 ABSL_NAMESPACE_BEGIN
38 namespace container_internal {
39 
40 // Allocates at least n bytes aligned to the specified alignment.
41 // Alignment must be a power of 2. It must be positive.
42 //
43 // Note that many allocators don't honor alignment requirements above certain
44 // threshold (usually either alignof(std::max_align_t) or alignof(void*)).
45 // Allocate() doesn't apply alignment corrections. If the underlying allocator
46 // returns insufficiently alignment pointer, that's what you are going to get.
47 template <size_t Alignment, class Alloc>
Allocate(Alloc * alloc,size_t n)48 void* Allocate(Alloc* alloc, size_t n) {
49   static_assert(Alignment > 0, "");
50   assert(n && "n must be positive");
51   struct alignas(Alignment) M {};
52   using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
53   using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
54   A mem_alloc(*alloc);
55   void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
56   assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
57          "allocator does not respect alignment");
58   return p;
59 }
60 
61 // The pointer must have been previously obtained by calling
62 // Allocate<Alignment>(alloc, n).
63 template <size_t Alignment, class Alloc>
Deallocate(Alloc * alloc,void * p,size_t n)64 void Deallocate(Alloc* alloc, void* p, size_t n) {
65   static_assert(Alignment > 0, "");
66   assert(n && "n must be positive");
67   struct alignas(Alignment) M {};
68   using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
69   using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
70   A mem_alloc(*alloc);
71   AT::deallocate(mem_alloc, static_cast<M*>(p),
72                  (n + sizeof(M) - 1) / sizeof(M));
73 }
74 
75 namespace memory_internal {
76 
77 // Constructs T into uninitialized storage pointed by `ptr` using the args
78 // specified in the tuple.
79 template <class Alloc, class T, class Tuple, size_t... I>
ConstructFromTupleImpl(Alloc * alloc,T * ptr,Tuple && t,absl::index_sequence<I...>)80 void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
81                             absl::index_sequence<I...>) {
82   absl::allocator_traits<Alloc>::construct(
83       *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
84 }
85 
86 template <class T, class F>
87 struct WithConstructedImplF {
88   template <class... Args>
decltypeWithConstructedImplF89   decltype(std::declval<F>()(std::declval<T>())) operator()(
90       Args&&... args) const {
91     return std::forward<F>(f)(T(std::forward<Args>(args)...));
92   }
93   F&& f;
94 };
95 
96 template <class T, class Tuple, size_t... Is, class F>
decltype(std::declval<F> ()(std::declval<T> ()))97 decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
98     Tuple&& t, absl::index_sequence<Is...>, F&& f) {
99   return WithConstructedImplF<T, F>{std::forward<F>(f)}(
100       std::get<Is>(std::forward<Tuple>(t))...);
101 }
102 
103 template <class T, size_t... Is>
104 auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
105     -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
106   return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
107 }
108 
109 // Returns a tuple of references to the elements of the input tuple. T must be a
110 // tuple.
111 template <class T>
112 auto TupleRef(T&& t) -> decltype(
113     TupleRefImpl(std::forward<T>(t),
114                  absl::make_index_sequence<
115                      std::tuple_size<typename std::decay<T>::type>::value>())) {
116   return TupleRefImpl(
117       std::forward<T>(t),
118       absl::make_index_sequence<
119           std::tuple_size<typename std::decay<T>::type>::value>());
120 }
121 
122 template <class F, class K, class V>
decltype(std::declval<F> ()(std::declval<const K &> (),std::piecewise_construct,std::declval<std::tuple<K>> (),std::declval<V> ()))123 decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
124                            std::declval<std::tuple<K>>(), std::declval<V>()))
125 DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
126   const auto& key = std::get<0>(p.first);
127   return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
128                             std::move(p.second));
129 }
130 
131 }  // namespace memory_internal
132 
133 // Constructs T into uninitialized storage pointed by `ptr` using the args
134 // specified in the tuple.
135 template <class Alloc, class T, class Tuple>
ConstructFromTuple(Alloc * alloc,T * ptr,Tuple && t)136 void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
137   memory_internal::ConstructFromTupleImpl(
138       alloc, ptr, std::forward<Tuple>(t),
139       absl::make_index_sequence<
140           std::tuple_size<typename std::decay<Tuple>::type>::value>());
141 }
142 
143 // Constructs T using the args specified in the tuple and calls F with the
144 // constructed value.
145 template <class T, class Tuple, class F>
decltype(std::declval<F> ()(std::declval<T> ()))146 decltype(std::declval<F>()(std::declval<T>())) WithConstructed(
147     Tuple&& t, F&& f) {
148   return memory_internal::WithConstructedImpl<T>(
149       std::forward<Tuple>(t),
150       absl::make_index_sequence<
151           std::tuple_size<typename std::decay<Tuple>::type>::value>(),
152       std::forward<F>(f));
153 }
154 
155 // Given arguments of an std::pair's consructor, PairArgs() returns a pair of
156 // tuples with references to the passed arguments. The tuples contain
157 // constructor arguments for the first and the second elements of the pair.
158 //
159 // The following two snippets are equivalent.
160 //
161 // 1. std::pair<F, S> p(args...);
162 //
163 // 2. auto a = PairArgs(args...);
164 //    std::pair<F, S> p(std::piecewise_construct,
165 //                      std::move(p.first), std::move(p.second));
PairArgs()166 inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
167 template <class F, class S>
PairArgs(F && f,S && s)168 std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
169   return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
170           std::forward_as_tuple(std::forward<S>(s))};
171 }
172 template <class F, class S>
PairArgs(const std::pair<F,S> & p)173 std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
174     const std::pair<F, S>& p) {
175   return PairArgs(p.first, p.second);
176 }
177 template <class F, class S>
PairArgs(std::pair<F,S> && p)178 std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
179   return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
180 }
181 template <class F, class S>
182 auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
183     -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
184                                memory_internal::TupleRef(std::forward<S>(s)))) {
185   return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
186                         memory_internal::TupleRef(std::forward<S>(s)));
187 }
188 
189 // A helper function for implementing apply() in map policies.
190 template <class F, class... Args>
191 auto DecomposePair(F&& f, Args&&... args)
192     -> decltype(memory_internal::DecomposePairImpl(
193         std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
194   return memory_internal::DecomposePairImpl(
195       std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
196 }
197 
198 // A helper function for implementing apply() in set policies.
199 template <class F, class Arg>
decltype(std::declval<F> ()(std::declval<const Arg &> (),std::declval<Arg> ()))200 decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
201 DecomposeValue(F&& f, Arg&& arg) {
202   const auto& key = arg;
203   return std::forward<F>(f)(key, std::forward<Arg>(arg));
204 }
205 
206 // Helper functions for asan and msan.
SanitizerPoisonMemoryRegion(const void * m,size_t s)207 inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
208 #ifdef ADDRESS_SANITIZER
209   ASAN_POISON_MEMORY_REGION(m, s);
210 #endif
211 #ifdef MEMORY_SANITIZER
212   __msan_poison(m, s);
213 #endif
214   (void)m;
215   (void)s;
216 }
217 
SanitizerUnpoisonMemoryRegion(const void * m,size_t s)218 inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
219 #ifdef ADDRESS_SANITIZER
220   ASAN_UNPOISON_MEMORY_REGION(m, s);
221 #endif
222 #ifdef MEMORY_SANITIZER
223   __msan_unpoison(m, s);
224 #endif
225   (void)m;
226   (void)s;
227 }
228 
229 template <typename T>
SanitizerPoisonObject(const T * object)230 inline void SanitizerPoisonObject(const T* object) {
231   SanitizerPoisonMemoryRegion(object, sizeof(T));
232 }
233 
234 template <typename T>
SanitizerUnpoisonObject(const T * object)235 inline void SanitizerUnpoisonObject(const T* object) {
236   SanitizerUnpoisonMemoryRegion(object, sizeof(T));
237 }
238 
239 namespace memory_internal {
240 
241 // If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
242 // OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
243 // offsetof(Pair, second) respectively. Otherwise they are -1.
244 //
245 // The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
246 // type, which is non-portable.
247 template <class Pair, class = std::true_type>
248 struct OffsetOf {
249   static constexpr size_t kFirst = -1;
250   static constexpr size_t kSecond = -1;
251 };
252 
253 template <class Pair>
254 struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
255   static constexpr size_t kFirst = offsetof(Pair, first);
256   static constexpr size_t kSecond = offsetof(Pair, second);
257 };
258 
259 template <class K, class V>
260 struct IsLayoutCompatible {
261  private:
262   struct Pair {
263     K first;
264     V second;
265   };
266 
267   // Is P layout-compatible with Pair?
268   template <class P>
269   static constexpr bool LayoutCompatible() {
270     return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
271            alignof(P) == alignof(Pair) &&
272            memory_internal::OffsetOf<P>::kFirst ==
273                memory_internal::OffsetOf<Pair>::kFirst &&
274            memory_internal::OffsetOf<P>::kSecond ==
275                memory_internal::OffsetOf<Pair>::kSecond;
276   }
277 
278  public:
279   // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
280   // then it is safe to store them in a union and read from either.
281   static constexpr bool value = std::is_standard_layout<K>() &&
282                                 std::is_standard_layout<Pair>() &&
283                                 memory_internal::OffsetOf<Pair>::kFirst == 0 &&
284                                 LayoutCompatible<std::pair<K, V>>() &&
285                                 LayoutCompatible<std::pair<const K, V>>();
286 };
287 
288 }  // namespace memory_internal
289 
290 // The internal storage type for key-value containers like flat_hash_map.
291 //
292 // It is convenient for the value_type of a flat_hash_map<K, V> to be
293 // pair<const K, V>; the "const K" prevents accidental modification of the key
294 // when dealing with the reference returned from find() and similar methods.
295 // However, this creates other problems; we want to be able to emplace(K, V)
296 // efficiently with move operations, and similarly be able to move a
297 // pair<K, V> in insert().
298 //
299 // The solution is this union, which aliases the const and non-const versions
300 // of the pair. This also allows flat_hash_map<const K, V> to work, even though
301 // that has the same efficiency issues with move in emplace() and insert() -
302 // but people do it anyway.
303 //
304 // If kMutableKeys is false, only the value member can be accessed.
305 //
306 // If kMutableKeys is true, key can be accessed through all slots while value
307 // and mutable_value must be accessed only via INITIALIZED slots. Slots are
308 // created and destroyed via mutable_value so that the key can be moved later.
309 //
310 // Accessing one of the union fields while the other is active is safe as
311 // long as they are layout-compatible, which is guaranteed by the definition of
312 // kMutableKeys. For C++11, the relevant section of the standard is
313 // https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19)
314 template <class K, class V>
315 union map_slot_type {
316   map_slot_type() {}
317   ~map_slot_type() = delete;
318   using value_type = std::pair<const K, V>;
319   using mutable_value_type = std::pair<K, V>;
320 
321   value_type value;
322   mutable_value_type mutable_value;
323   K key;
324 };
325 
326 template <class K, class V>
327 struct map_slot_policy {
328   using slot_type = map_slot_type<K, V>;
329   using value_type = std::pair<const K, V>;
330   using mutable_value_type = std::pair<K, V>;
331 
332  private:
333   static void emplace(slot_type* slot) {
334     // The construction of union doesn't do anything at runtime but it allows us
335     // to access its members without violating aliasing rules.
336     new (slot) slot_type;
337   }
338   // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
339   // or the other via slot_type. We are also free to access the key via
340   // slot_type::key in this case.
341   using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>;
342 
343  public:
344   static value_type& element(slot_type* slot) { return slot->value; }
345   static const value_type& element(const slot_type* slot) {
346     return slot->value;
347   }
348 
349   static const K& key(const slot_type* slot) {
350     return kMutableKeys::value ? slot->key : slot->value.first;
351   }
352 
353   template <class Allocator, class... Args>
354   static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
355     emplace(slot);
356     if (kMutableKeys::value) {
357       absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
358                                                    std::forward<Args>(args)...);
359     } else {
360       absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
361                                                    std::forward<Args>(args)...);
362     }
363   }
364 
365   // Construct this slot by moving from another slot.
366   template <class Allocator>
367   static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
368     emplace(slot);
369     if (kMutableKeys::value) {
370       absl::allocator_traits<Allocator>::construct(
371           *alloc, &slot->mutable_value, std::move(other->mutable_value));
372     } else {
373       absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
374                                                    std::move(other->value));
375     }
376   }
377 
378   template <class Allocator>
379   static void destroy(Allocator* alloc, slot_type* slot) {
380     if (kMutableKeys::value) {
381       absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
382     } else {
383       absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
384     }
385   }
386 
387   template <class Allocator>
388   static void transfer(Allocator* alloc, slot_type* new_slot,
389                        slot_type* old_slot) {
390     emplace(new_slot);
391     if (kMutableKeys::value) {
392       absl::allocator_traits<Allocator>::construct(
393           *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
394     } else {
395       absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
396                                                    std::move(old_slot->value));
397     }
398     destroy(alloc, old_slot);
399   }
400 
401   template <class Allocator>
402   static void swap(Allocator* alloc, slot_type* a, slot_type* b) {
403     if (kMutableKeys::value) {
404       using std::swap;
405       swap(a->mutable_value, b->mutable_value);
406     } else {
407       value_type tmp = std::move(a->value);
408       absl::allocator_traits<Allocator>::destroy(*alloc, &a->value);
409       absl::allocator_traits<Allocator>::construct(*alloc, &a->value,
410                                                    std::move(b->value));
411       absl::allocator_traits<Allocator>::destroy(*alloc, &b->value);
412       absl::allocator_traits<Allocator>::construct(*alloc, &b->value,
413                                                    std::move(tmp));
414     }
415   }
416 
417   template <class Allocator>
418   static void move(Allocator* alloc, slot_type* src, slot_type* dest) {
419     if (kMutableKeys::value) {
420       dest->mutable_value = std::move(src->mutable_value);
421     } else {
422       absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value);
423       absl::allocator_traits<Allocator>::construct(*alloc, &dest->value,
424                                                    std::move(src->value));
425     }
426   }
427 
428   template <class Allocator>
429   static void move(Allocator* alloc, slot_type* first, slot_type* last,
430                    slot_type* result) {
431     for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
432       move(alloc, src, dest);
433   }
434 };
435 
436 }  // namespace container_internal
437 ABSL_NAMESPACE_END
438 }  // namespace absl
439 
440 #endif  // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
441