• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static const char rcsid[] =
15     "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
16 #endif
17 
18 /*
19  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
20  * double x[],y[]; int e0,nx,prec; int ipio2[];
21  *
22  * __kernel_rem_pio2 return the last three digits of N with
23  *		y = x - N*pi/2
24  * so that |y| < pi/2.
25  *
26  * The method is to compute the integer (mod 8) and fraction parts of
27  * (2/pi)*x without doing the full multiplication. In general we
28  * skip the part of the product that are known to be a huge integer (
29  * more accurately, = 0 mod 8 ). Thus the number of operations are
30  * independent of the exponent of the input.
31  *
32  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
33  *
34  * Input parameters:
35  * 	x[]	The input value (must be positive) is broken into nx
36  *		pieces of 24-bit integers in double precision format.
37  *		x[i] will be the i-th 24 bit of x. The scaled exponent
38  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
39  *		match x's up to 24 bits.
40  *
41  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
42  *			e0 = ilogb(z)-23
43  *			z  = scalbn(z,-e0)
44  *		for i = 0,1,2
45  *			x[i] = floor(z)
46  *			z    = (z-x[i])*2**24
47  *
48  *
49  *	y[]	ouput result in an array of double precision numbers.
50  *		The dimension of y[] is:
51  *			24-bit  precision	1
52  *			53-bit  precision	2
53  *			64-bit  precision	2
54  *			113-bit precision	3
55  *		The actual value is the sum of them. Thus for 113-bit
56  *		precison, one may have to do something like:
57  *
58  *		long double t,w,r_head, r_tail;
59  *		t = (long double)y[2] + (long double)y[1];
60  *		w = (long double)y[0];
61  *		r_head = t+w;
62  *		r_tail = w - (r_head - t);
63  *
64  *	e0	The exponent of x[0]
65  *
66  *	nx	dimension of x[]
67  *
68  *  	prec	an integer indicating the precision:
69  *			0	24  bits (single)
70  *			1	53  bits (double)
71  *			2	64  bits (extended)
72  *			3	113 bits (quad)
73  *
74  *	ipio2[]
75  *		integer array, contains the (24*i)-th to (24*i+23)-th
76  *		bit of 2/pi after binary point. The corresponding
77  *		floating value is
78  *
79  *			ipio2[i] * 2^(-24(i+1)).
80  *
81  * External function:
82  *	double scalbn(), floor();
83  *
84  *
85  * Here is the description of some local variables:
86  *
87  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
88  *		in the computation. The recommended value is 2,3,4,
89  *		6 for single, double, extended,and quad.
90  *
91  * 	jz	local integer variable indicating the number of
92  *		terms of ipio2[] used.
93  *
94  *	jx	nx - 1
95  *
96  *	jv	index for pointing to the suitable ipio2[] for the
97  *		computation. In general, we want
98  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
99  *		is an integer. Thus
100  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
101  *		Hence jv = max(0,(e0-3)/24).
102  *
103  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
104  *
105  * 	q[]	double array with integral value, representing the
106  *		24-bits chunk of the product of x and 2/pi.
107  *
108  *	q0	the corresponding exponent of q[0]. Note that the
109  *		exponent for q[i] would be q0-24*i.
110  *
111  *	PIo2[]	double precision array, obtained by cutting pi/2
112  *		into 24 bits chunks.
113  *
114  *	f[]	ipio2[] in floating point
115  *
116  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
117  *
118  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
119  *
120  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
121  *		it also indicates the *sign* of the result.
122  *
123  */
124 
125 
126 /*
127  * Constants:
128  * The hexadecimal values are the intended ones for the following
129  * constants. The decimal values may be used, provided that the
130  * compiler will convert from decimal to binary accurately enough
131  * to produce the hexadecimal values shown.
132  */
133 
134 #include "math_libm.h"
135 #include "math_private.h"
136 
137 #include "SDL_assert.h"
138 
139 libm_hidden_proto(scalbn)
140     libm_hidden_proto(floor)
141 #ifdef __STDC__
142      static const int init_jk[] = { 2, 3, 4, 6 };       /* initial value for jk */
143 #else
144      static int init_jk[] = { 2, 3, 4, 6 };
145 #endif
146 
147 #ifdef __STDC__
148 static const double PIo2[] = {
149 #else
150 static double PIo2[] = {
151 #endif
152     1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
153     7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
154     5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
155     3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
156     1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
157     1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
158     2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
159     2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
160 };
161 
162 #ifdef __STDC__
163 static const double
164 #else
165 static double
166 #endif
167   zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07,    /* 0x41700000, 0x00000000 */
168     twon24 = 5.96046447753906250000e-08;        /* 0x3E700000, 0x00000000 */
169 
170 #ifdef __STDC__
171 int attribute_hidden
__kernel_rem_pio2(double * x,double * y,int e0,int nx,int prec,const int32_t * ipio2)172 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec,
173                   const int32_t * ipio2)
174 #else
175 int attribute_hidden
176 __kernel_rem_pio2(x, y, e0, nx, prec, ipio2)
177      double x[], y[];
178      int e0, nx, prec;
179      int32_t ipio2[];
180 #endif
181 {
182     int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
183     double z, fw, f[20], fq[20], q[20];
184 
185     /* initialize jk */
186     SDL_assert((prec >= 0) && (prec < SDL_arraysize(init_jk)));
187     jk = init_jk[prec];
188     SDL_assert((jk >= 2) && (jk <= 6));
189     jp = jk;
190 
191     /* determine jx,jv,q0, note that 3>q0 */
192     SDL_assert(nx > 0);
193     jx = nx - 1;
194     jv = (e0 - 3) / 24;
195     if (jv < 0)
196         jv = 0;
197     q0 = e0 - 24 * (jv + 1);
198 
199     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
200     j = jv - jx;
201     m = jx + jk;
202     for (i = 0; i <= m; i++, j++)
203         f[i] = (j < 0) ? zero : (double) ipio2[j];
204 
205     /* compute q[0],q[1],...q[jk] */
206     for (i = 0; i <= jk; i++) {
207         for (j = 0, fw = 0.0; j <= jx; j++)
208             fw += x[j] * f[jx + i - j];
209         q[i] = fw;
210     }
211 
212     jz = jk;
213   recompute:
214     /* distill q[] into iq[] reversingly */
215     for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
216         fw = (double) ((int32_t) (twon24 * z));
217         iq[i] = (int32_t) (z - two24 * fw);
218         z = q[j - 1] + fw;
219     }
220 
221     /* compute n */
222     z = scalbn(z, q0);          /* actual value of z */
223     z -= 8.0 * floor(z * 0.125);        /* trim off integer >= 8 */
224     n = (int32_t) z;
225     z -= (double) n;
226     ih = 0;
227     if (q0 > 0) {               /* need iq[jz-1] to determine n */
228         i = (iq[jz - 1] >> (24 - q0));
229         n += i;
230         iq[jz - 1] -= i << (24 - q0);
231         ih = iq[jz - 1] >> (23 - q0);
232     } else if (q0 == 0)
233         ih = iq[jz - 1] >> 23;
234     else if (z >= 0.5)
235         ih = 2;
236 
237     if (ih > 0) {               /* q > 0.5 */
238         n += 1;
239         carry = 0;
240         for (i = 0; i < jz; i++) {      /* compute 1-q */
241             j = iq[i];
242             if (carry == 0) {
243                 if (j != 0) {
244                     carry = 1;
245                     iq[i] = 0x1000000 - j;
246                 }
247             } else
248                 iq[i] = 0xffffff - j;
249         }
250         if (q0 > 0) {           /* rare case: chance is 1 in 12 */
251             switch (q0) {
252             case 1:
253                 iq[jz - 1] &= 0x7fffff;
254                 break;
255             case 2:
256                 iq[jz - 1] &= 0x3fffff;
257                 break;
258             }
259         }
260         if (ih == 2) {
261             z = one - z;
262             if (carry != 0)
263                 z -= scalbn(one, q0);
264         }
265     }
266 
267     /* check if recomputation is needed */
268     if (z == zero) {
269         j = 0;
270         for (i = jz - 1; i >= jk; i--)
271             j |= iq[i];
272         if (j == 0) {           /* need recomputation */
273             for (k = 1; iq[jk - k] == 0; k++);  /* k = no. of terms needed */
274 
275             for (i = jz + 1; i <= jz + k; i++) {        /* add q[jz+1] to q[jz+k] */
276                 f[jx + i] = (double) ipio2[jv + i];
277                 for (j = 0, fw = 0.0; j <= jx; j++)
278                     fw += x[j] * f[jx + i - j];
279                 q[i] = fw;
280             }
281             jz += k;
282             goto recompute;
283         }
284     }
285 
286     /* chop off zero terms */
287     if (z == 0.0) {
288         jz -= 1;
289         q0 -= 24;
290         while (iq[jz] == 0) {
291             jz--;
292             q0 -= 24;
293         }
294     } else {                    /* break z into 24-bit if necessary */
295         z = scalbn(z, -q0);
296         if (z >= two24) {
297             fw = (double) ((int32_t) (twon24 * z));
298             iq[jz] = (int32_t) (z - two24 * fw);
299             jz += 1;
300             q0 += 24;
301             iq[jz] = (int32_t) fw;
302         } else
303             iq[jz] = (int32_t) z;
304     }
305 
306     /* convert integer "bit" chunk to floating-point value */
307     fw = scalbn(one, q0);
308     for (i = jz; i >= 0; i--) {
309         q[i] = fw * (double) iq[i];
310         fw *= twon24;
311     }
312 
313     /* compute PIo2[0,...,jp]*q[jz,...,0] */
314     for (i = jz; i >= 0; i--) {
315         for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
316             fw += PIo2[k] * q[i + k];
317         fq[jz - i] = fw;
318     }
319 
320     /* compress fq[] into y[] */
321     switch (prec) {
322     case 0:
323         fw = 0.0;
324         for (i = jz; i >= 0; i--)
325             fw += fq[i];
326         y[0] = (ih == 0) ? fw : -fw;
327         break;
328     case 1:
329     case 2:
330         fw = 0.0;
331         for (i = jz; i >= 0; i--)
332             fw += fq[i];
333         y[0] = (ih == 0) ? fw : -fw;
334         fw = fq[0] - fw;
335         for (i = 1; i <= jz; i++)
336             fw += fq[i];
337         y[1] = (ih == 0) ? fw : -fw;
338         break;
339     case 3:                    /* painful */
340         for (i = jz; i > 0; i--) {
341             fw = fq[i - 1] + fq[i];
342             fq[i] += fq[i - 1] - fw;
343             fq[i - 1] = fw;
344         }
345         for (i = jz; i > 1; i--) {
346             fw = fq[i - 1] + fq[i];
347             fq[i] += fq[i - 1] - fw;
348             fq[i - 1] = fw;
349         }
350         for (fw = 0.0, i = jz; i >= 2; i--)
351             fw += fq[i];
352         if (ih == 0) {
353             y[0] = fq[0];
354             y[1] = fq[1];
355             y[2] = fw;
356         } else {
357             y[0] = -fq[0];
358             y[1] = -fq[1];
359             y[2] = -fw;
360         }
361     }
362     return n & 7;
363 }
364