• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -------------------------------------------------------------------- */
2 /*
3  * lookup3.c, by Bob Jenkins, May 2006, Public Domain.
4  *
5  * These are functions for producing 32-bit hashes for hash table lookup.
6  * jlu32w(), jlu32l(), jlu32lpair(), jlu32b(), _JLU3_MIX(), and _JLU3_FINAL()
7  * are externally useful functions.  Routines to test the hash are included
8  * if SELF_TEST is defined.  You can use this free for any purpose.  It's in
9  * the public domain.  It has no warranty.
10  *
11  * You probably want to use jlu32l().  jlu32l() and jlu32b()
12  * hash byte arrays.  jlu32l() is is faster than jlu32b() on
13  * little-endian machines.  Intel and AMD are little-endian machines.
14  * On second thought, you probably want jlu32lpair(), which is identical to
15  * jlu32l() except it returns two 32-bit hashes for the price of one.
16  * You could implement jlu32bpair() if you wanted but I haven't bothered here.
17  *
18  * If you want to find a hash of, say, exactly 7 integers, do
19  *   a = i1;  b = i2;  c = i3;
20  *   _JLU3_MIX(a,b,c);
21  *   a += i4; b += i5; c += i6;
22  *   _JLU3_MIX(a,b,c);
23  *   a += i7;
24  *   _JLU3_FINAL(a,b,c);
25  * then use c as the hash value.  If you have a variable size array of
26  * 4-byte integers to hash, use jlu32w().  If you have a byte array (like
27  * a character string), use jlu32l().  If you have several byte arrays, or
28  * a mix of things, see the comments above jlu32l().
29  *
30  * Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
31  * then mix those integers.  This is fast (you can do a lot more thorough
32  * mixing with 12*3 instructions on 3 integers than you can with 3 instructions
33  * on 1 byte), but shoehorning those bytes into integers efficiently is messy.
34 */
35 /* -------------------------------------------------------------------- */
36 
37 #include <stdint.h>
38 
39 #if defined(_JLU3_SELFTEST)
40 # define _JLU3_jlu32w		1
41 # define _JLU3_jlu32l		1
42 # define _JLU3_jlu32lpair	1
43 # define _JLU3_jlu32b		1
44 #endif
45 
46 /*@-redef@*/
47 /*@unchecked@*/
48 static const union _dbswap {
49     const uint32_t ui;
50     const unsigned char uc[4];
51 } endian = { .ui = 0x11223344 };
52 # define HASH_LITTLE_ENDIAN	(endian.uc[0] == (unsigned char) 0x44)
53 # define HASH_BIG_ENDIAN	(endian.uc[0] == (unsigned char) 0x11)
54 /*@=redef@*/
55 
56 #ifndef ROTL32
57 # define ROTL32(x, s) (((x) << (s)) | ((x) >> (32 - (s))))
58 #endif
59 
60 /* NOTE: The _size parameter should be in bytes. */
61 #define	_JLU3_INIT(_h, _size)	(0xdeadbeef + ((uint32_t)(_size)) + (_h))
62 
63 /* -------------------------------------------------------------------- */
64 /*
65  * _JLU3_MIX -- mix 3 32-bit values reversibly.
66  *
67  * This is reversible, so any information in (a,b,c) before _JLU3_MIX() is
68  * still in (a,b,c) after _JLU3_MIX().
69  *
70  * If four pairs of (a,b,c) inputs are run through _JLU3_MIX(), or through
71  * _JLU3_MIX() in reverse, there are at least 32 bits of the output that
72  * are sometimes the same for one pair and different for another pair.
73  * This was tested for:
74  * * pairs that differed by one bit, by two bits, in any combination
75  *   of top bits of (a,b,c), or in any combination of bottom bits of
76  *   (a,b,c).
77  * * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
78  *   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
79  *   is commonly produced by subtraction) look like a single 1-bit
80  *   difference.
81  * * the base values were pseudorandom, all zero but one bit set, or
82  *   all zero plus a counter that starts at zero.
83  *
84  * Some k values for my "a-=c; a^=ROTL32(c,k); c+=b;" arrangement that
85  * satisfy this are
86  *     4  6  8 16 19  4
87  *     9 15  3 18 27 15
88  *    14  9  3  7 17  3
89  * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
90  * for "differ" defined as + with a one-bit base and a two-bit delta.  I
91  * used http://burtleburtle.net/bob/hash/avalanche.html to choose
92  * the operations, constants, and arrangements of the variables.
93  *
94  * This does not achieve avalanche.  There are input bits of (a,b,c)
95  * that fail to affect some output bits of (a,b,c), especially of a.  The
96  * most thoroughly mixed value is c, but it doesn't really even achieve
97  * avalanche in c.
98  *
99  * This allows some parallelism.  Read-after-writes are good at doubling
100  * the number of bits affected, so the goal of mixing pulls in the opposite
101  * direction as the goal of parallelism.  I did what I could.  Rotates
102  * seem to cost as much as shifts on every machine I could lay my hands
103  * on, and rotates are much kinder to the top and bottom bits, so I used
104  * rotates.
105  */
106 /* -------------------------------------------------------------------- */
107 #define _JLU3_MIX(a,b,c) \
108 { \
109   a -= c;  a ^= ROTL32(c, 4);  c += b; \
110   b -= a;  b ^= ROTL32(a, 6);  a += c; \
111   c -= b;  c ^= ROTL32(b, 8);  b += a; \
112   a -= c;  a ^= ROTL32(c,16);  c += b; \
113   b -= a;  b ^= ROTL32(a,19);  a += c; \
114   c -= b;  c ^= ROTL32(b, 4);  b += a; \
115 }
116 
117 /* -------------------------------------------------------------------- */
118 /**
119  * _JLU3_FINAL -- final mixing of 3 32-bit values (a,b,c) into c
120  *
121  * Pairs of (a,b,c) values differing in only a few bits will usually
122  * produce values of c that look totally different.  This was tested for
123  * * pairs that differed by one bit, by two bits, in any combination
124  *   of top bits of (a,b,c), or in any combination of bottom bits of
125  *   (a,b,c).
126  * * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
127  *   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
128  *   is commonly produced by subtraction) look like a single 1-bit
129  *   difference.
130  * * the base values were pseudorandom, all zero but one bit set, or
131  *   all zero plus a counter that starts at zero.
132  *
133  * These constants passed:
134  *  14 11 25 16 4 14 24
135  *  12 14 25 16 4 14 24
136  * and these came close:
137  *   4  8 15 26 3 22 24
138  *  10  8 15 26 3 22 24
139  *  11  8 15 26 3 22 24
140  */
141 /* -------------------------------------------------------------------- */
142 #define _JLU3_FINAL(a,b,c) \
143 { \
144   c ^= b; c -= ROTL32(b,14); \
145   a ^= c; a -= ROTL32(c,11); \
146   b ^= a; b -= ROTL32(a,25); \
147   c ^= b; c -= ROTL32(b,16); \
148   a ^= c; a -= ROTL32(c,4);  \
149   b ^= a; b -= ROTL32(a,14); \
150   c ^= b; c -= ROTL32(b,24); \
151 }
152 
153 #if defined(_JLU3_jlu32w)
154 uint32_t jlu32w(uint32_t h, /*@null@*/ const uint32_t *k, size_t size)
155 	/*@*/;
156 /* -------------------------------------------------------------------- */
157 /**
158  *  This works on all machines.  To be useful, it requires
159  *  -- that the key be an array of uint32_t's, and
160  *  -- that the size be the number of uint32_t's in the key
161  *
162  *  The function jlu32w() is identical to jlu32l() on little-endian
163  *  machines, and identical to jlu32b() on big-endian machines,
164  *  except that the size has to be measured in uint32_ts rather than in
165  *  bytes.  jlu32l() is more complicated than jlu32w() only because
166  *  jlu32l() has to dance around fitting the key bytes into registers.
167  *
168  * @param h		the previous hash, or an arbitrary value
169  * @param *k		the key, an array of uint32_t values
170  * @param size		the size of the key, in uint32_ts
171  * @return		the lookup3 hash
172  */
173 /* -------------------------------------------------------------------- */
jlu32w(uint32_t h,const uint32_t * k,size_t size)174 uint32_t jlu32w(uint32_t h, const uint32_t *k, size_t size)
175 {
176     uint32_t a = _JLU3_INIT(h, (size * sizeof(*k)));
177     uint32_t b = a;
178     uint32_t c = a;
179 
180     if (k == NULL)
181 	goto exit;
182 
183     /*----------------------------------------------- handle most of the key */
184     while (size > 3) {
185 	a += k[0];
186 	b += k[1];
187 	c += k[2];
188 	_JLU3_MIX(a,b,c);
189 	size -= 3;
190 	k += 3;
191     }
192 
193     /*----------------------------------------- handle the last 3 uint32_t's */
194     switch (size) {
195     case 3 : c+=k[2];
196     case 2 : b+=k[1];
197     case 1 : a+=k[0];
198 	_JLU3_FINAL(a,b,c);
199 	/*@fallthrough@*/
200     case 0:
201 	break;
202     }
203     /*---------------------------------------------------- report the result */
204 exit:
205     return c;
206 }
207 #endif	/* defined(_JLU3_jlu32w) */
208 
209 #if defined(_JLU3_jlu32l)
210 uint32_t jlu32l(uint32_t h, const void *key, size_t size)
211 	/*@*/;
212 /* -------------------------------------------------------------------- */
213 /*
214  * jlu32l() -- hash a variable-length key into a 32-bit value
215  *   h       : can be any 4-byte value
216  *   k       : the key (the unaligned variable-length array of bytes)
217  *   size    : the size of the key, counting by bytes
218  * Returns a 32-bit value.  Every bit of the key affects every bit of
219  * the return value.  Two keys differing by one or two bits will have
220  * totally different hash values.
221  *
222  * The best hash table sizes are powers of 2.  There is no need to do
223  * mod a prime (mod is sooo slow!).  If you need less than 32 bits,
224  * use a bitmask.  For example, if you need only 10 bits, do
225  *   h = (h & hashmask(10));
226  * In which case, the hash table should have hashsize(10) elements.
227  *
228  * If you are hashing n strings (uint8_t **)k, do it like this:
229  *   for (i=0, h=0; i<n; ++i) h = jlu32l(h, k[i], len[i]);
230  *
231  * By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
232  * code any way you wish, private, educational, or commercial.  It's free.
233  *
234  * Use for hash table lookup, or anything where one collision in 2^^32 is
235  * acceptable.  Do NOT use for cryptographic purposes.
236  *
237  * @param h		the previous hash, or an arbitrary value
238  * @param *k		the key, an array of uint8_t values
239  * @param size		the size of the key
240  * @return		the lookup3 hash
241  */
242 /* -------------------------------------------------------------------- */
jlu32l(uint32_t h,const void * key,size_t size)243 uint32_t jlu32l(uint32_t h, const void *key, size_t size)
244 {
245     union { const void *ptr; size_t i; } u;
246     uint32_t a = _JLU3_INIT(h, size);
247     uint32_t b = a;
248     uint32_t c = a;
249 
250     if (key == NULL)
251 	goto exit;
252 
253     u.ptr = key;
254     if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
255 	const uint32_t *k = (const uint32_t *)key;	/* read 32-bit chunks */
256 #ifdef	VALGRIND
257 	const uint8_t  *k8;
258 #endif
259 
260     /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
261 	while (size > 12) {
262 	    a += k[0];
263 	    b += k[1];
264 	    c += k[2];
265 	    _JLU3_MIX(a,b,c);
266 	    size -= 12;
267 	    k += 3;
268 	}
269 
270 	/*------------------------- handle the last (probably partial) block */
271 	/*
272 	 * "k[2]&0xffffff" actually reads beyond the end of the string, but
273 	 * then masks off the part it's not allowed to read.  Because the
274 	 * string is aligned, the masked-off tail is in the same word as the
275 	 * rest of the string.  Every machine with memory protection I've seen
276 	 * does it on word boundaries, so is OK with this.  But VALGRIND will
277 	 * still catch it and complain.  The masking trick does make the hash
278 	 * noticably faster for short strings (like English words).
279 	 */
280 #ifndef VALGRIND
281 
282 	switch (size) {
283 	case 12:	c += k[2]; b+=k[1]; a+=k[0]; break;
284 	case 11:	c += k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
285 	case 10:	c += k[2]&0xffff; b+=k[1]; a+=k[0]; break;
286 	case  9:	c += k[2]&0xff; b+=k[1]; a+=k[0]; break;
287 	case  8:	b += k[1]; a+=k[0]; break;
288 	case  7:	b += k[1]&0xffffff; a+=k[0]; break;
289 	case  6:	b += k[1]&0xffff; a+=k[0]; break;
290 	case  5:	b += k[1]&0xff; a+=k[0]; break;
291 	case  4:	a += k[0]; break;
292 	case  3:	a += k[0]&0xffffff; break;
293 	case  2:	a += k[0]&0xffff; break;
294 	case  1:	a += k[0]&0xff; break;
295 	case  0:	goto exit;
296 	}
297 
298 #else /* make valgrind happy */
299 
300 	k8 = (const uint8_t *)k;
301 	switch (size) {
302 	case 12:	c += k[2]; b+=k[1]; a+=k[0]	break;
303 	case 11:	c += ((uint32_t)k8[10])<<16;	/*@fallthrough@*/
304 	case 10:	c += ((uint32_t)k8[9])<<8;	/*@fallthrough@*/
305 	case  9:	c += k8[8];			/*@fallthrough@*/
306 	case  8:	b += k[1]; a+=k[0];		break;
307 	case  7:	b += ((uint32_t)k8[6])<<16;	/*@fallthrough@*/
308 	case  6:	b += ((uint32_t)k8[5])<<8;	/*@fallthrough@*/
309 	case  5:	b += k8[4];			/*@fallthrough@*/
310 	case  4:	a += k[0];			break;
311 	case  3:	a += ((uint32_t)k8[2])<<16;	/*@fallthrough@*/
312 	case  2:	a += ((uint32_t)k8[1])<<8;	/*@fallthrough@*/
313 	case  1:	a += k8[0];			break;
314 	case  0:	goto exit;
315 	}
316 
317 #endif /* !valgrind */
318 
319     } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
320 	const uint16_t *k = (const uint16_t *)key;	/* read 16-bit chunks */
321 	const uint8_t  *k8;
322 
323 	/*----------- all but last block: aligned reads and different mixing */
324 	while (size > 12) {
325 	    a += k[0] + (((uint32_t)k[1])<<16);
326 	    b += k[2] + (((uint32_t)k[3])<<16);
327 	    c += k[4] + (((uint32_t)k[5])<<16);
328 	    _JLU3_MIX(a,b,c);
329 	    size -= 12;
330 	    k += 6;
331 	}
332 
333 	/*------------------------- handle the last (probably partial) block */
334 	k8 = (const uint8_t *)k;
335 	switch (size) {
336 	case 12:
337 	    c += k[4]+(((uint32_t)k[5])<<16);
338 	    b += k[2]+(((uint32_t)k[3])<<16);
339 	    a += k[0]+(((uint32_t)k[1])<<16);
340 	    break;
341 	case 11:
342 	    c += ((uint32_t)k8[10])<<16;
343 	    /*@fallthrough@*/
344 	case 10:
345 	    c += (uint32_t)k[4];
346 	    b += k[2]+(((uint32_t)k[3])<<16);
347 	    a += k[0]+(((uint32_t)k[1])<<16);
348 	    break;
349 	case  9:
350 	    c += (uint32_t)k8[8];
351 	    /*@fallthrough@*/
352 	case  8:
353 	    b += k[2]+(((uint32_t)k[3])<<16);
354 	    a += k[0]+(((uint32_t)k[1])<<16);
355 	    break;
356 	case  7:
357 	    b += ((uint32_t)k8[6])<<16;
358 	    /*@fallthrough@*/
359 	case  6:
360 	    b += (uint32_t)k[2];
361 	    a += k[0]+(((uint32_t)k[1])<<16);
362 	    break;
363 	case  5:
364 	    b += (uint32_t)k8[4];
365 	    /*@fallthrough@*/
366 	case  4:
367 	    a += k[0]+(((uint32_t)k[1])<<16);
368 	    break;
369 	case  3:
370 	    a += ((uint32_t)k8[2])<<16;
371 	    /*@fallthrough@*/
372 	case  2:
373 	    a += (uint32_t)k[0];
374 	    break;
375 	case  1:
376 	    a += (uint32_t)k8[0];
377 	    break;
378 	case  0:
379 	    goto exit;
380 	}
381 
382     } else {		/* need to read the key one byte at a time */
383 	const uint8_t *k = (const uint8_t *)key;
384 
385 	/*----------- all but the last block: affect some 32 bits of (a,b,c) */
386 	while (size > 12) {
387 	    a += (uint32_t)k[0];
388 	    a += ((uint32_t)k[1])<<8;
389 	    a += ((uint32_t)k[2])<<16;
390 	    a += ((uint32_t)k[3])<<24;
391 	    b += (uint32_t)k[4];
392 	    b += ((uint32_t)k[5])<<8;
393 	    b += ((uint32_t)k[6])<<16;
394 	    b += ((uint32_t)k[7])<<24;
395 	    c += (uint32_t)k[8];
396 	    c += ((uint32_t)k[9])<<8;
397 	    c += ((uint32_t)k[10])<<16;
398 	    c += ((uint32_t)k[11])<<24;
399 	    _JLU3_MIX(a,b,c);
400 	    size -= 12;
401 	    k += 12;
402 	}
403 
404 	/*---------------------------- last block: affect all 32 bits of (c) */
405 	switch (size) {
406 	case 12:	c += ((uint32_t)k[11])<<24;	/*@fallthrough@*/
407 	case 11:	c += ((uint32_t)k[10])<<16;	/*@fallthrough@*/
408 	case 10:	c += ((uint32_t)k[9])<<8;	/*@fallthrough@*/
409 	case  9:	c += (uint32_t)k[8];		/*@fallthrough@*/
410 	case  8:	b += ((uint32_t)k[7])<<24;	/*@fallthrough@*/
411 	case  7:	b += ((uint32_t)k[6])<<16;	/*@fallthrough@*/
412 	case  6:	b += ((uint32_t)k[5])<<8;	/*@fallthrough@*/
413 	case  5:	b += (uint32_t)k[4];		/*@fallthrough@*/
414 	case  4:	a += ((uint32_t)k[3])<<24;	/*@fallthrough@*/
415 	case  3:	a += ((uint32_t)k[2])<<16;	/*@fallthrough@*/
416 	case  2:	a += ((uint32_t)k[1])<<8;	/*@fallthrough@*/
417 	case  1:	a += (uint32_t)k[0];
418 	    break;
419 	case  0:
420 	    goto exit;
421 	}
422     }
423 
424     _JLU3_FINAL(a,b,c);
425 
426 exit:
427     return c;
428 }
429 #endif	/* defined(_JLU3_jlu32l) */
430 
431 #if defined(_JLU3_jlu32lpair)
432 /**
433  * jlu32lpair: return 2 32-bit hash values.
434  *
435  * This is identical to jlu32l(), except it returns two 32-bit hash
436  * values instead of just one.  This is good enough for hash table
437  * lookup with 2^^64 buckets, or if you want a second hash if you're not
438  * happy with the first, or if you want a probably-unique 64-bit ID for
439  * the key.  *pc is better mixed than *pb, so use *pc first.  If you want
440  * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
441  *
442  * @param h		the previous hash, or an arbitrary value
443  * @param *key		the key, an array of uint8_t values
444  * @param size		the size of the key in bytes
445  * @retval *pc,		IN: primary initval, OUT: primary hash
446  * *retval *pb		IN: secondary initval, OUT: secondary hash
447  */
jlu32lpair(const void * key,size_t size,uint32_t * pc,uint32_t * pb)448 void jlu32lpair(const void *key, size_t size, uint32_t *pc, uint32_t *pb)
449 {
450     union { const void *ptr; size_t i; } u;
451     uint32_t a = _JLU3_INIT(*pc, size);
452     uint32_t b = a;
453     uint32_t c = a;
454 
455     if (key == NULL)
456 	goto exit;
457 
458     c += *pb;	/* Add the secondary hash. */
459 
460     u.ptr = key;
461     if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
462 	const uint32_t *k = (const uint32_t *)key;	/* read 32-bit chunks */
463 #ifdef	VALGRIND
464 	const uint8_t  *k8;
465 #endif
466 
467 	/*-- all but last block: aligned reads and affect 32 bits of (a,b,c) */
468 	while (size > (size_t)12) {
469 	    a += k[0];
470 	    b += k[1];
471 	    c += k[2];
472 	    _JLU3_MIX(a,b,c);
473 	    size -= 12;
474 	    k += 3;
475 	}
476 	/*------------------------- handle the last (probably partial) block */
477 	/*
478 	 * "k[2]&0xffffff" actually reads beyond the end of the string, but
479 	 * then masks off the part it's not allowed to read.  Because the
480 	 * string is aligned, the masked-off tail is in the same word as the
481 	 * rest of the string.  Every machine with memory protection I've seen
482 	 * does it on word boundaries, so is OK with this.  But VALGRIND will
483 	 * still catch it and complain.  The masking trick does make the hash
484 	 * noticably faster for short strings (like English words).
485 	 */
486 #ifndef VALGRIND
487 
488 	switch (size) {
489 	case 12:	c += k[2]; b+=k[1]; a+=k[0]; break;
490 	case 11:	c += k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
491 	case 10:	c += k[2]&0xffff; b+=k[1]; a+=k[0]; break;
492 	case  9:	c += k[2]&0xff; b+=k[1]; a+=k[0]; break;
493 	case  8:	b += k[1]; a+=k[0]; break;
494 	case  7:	b += k[1]&0xffffff; a+=k[0]; break;
495 	case  6:	b += k[1]&0xffff; a+=k[0]; break;
496 	case  5:	b += k[1]&0xff; a+=k[0]; break;
497 	case  4:	a += k[0]; break;
498 	case  3:	a += k[0]&0xffffff; break;
499 	case  2:	a += k[0]&0xffff; break;
500 	case  1:	a += k[0]&0xff; break;
501 	case  0:	goto exit;
502 	}
503 
504 #else /* make valgrind happy */
505 
506 	k8 = (const uint8_t *)k;
507 	switch (size) {
508 	case 12:	c += k[2]; b+=k[1]; a+=k[0];	break;
509 	case 11:	c += ((uint32_t)k8[10])<<16;	/*@fallthrough@*/
510 	case 10:	c += ((uint32_t)k8[9])<<8;	/*@fallthrough@*/
511 	case  9:	c += k8[8];			/*@fallthrough@*/
512 	case  8:	b += k[1]; a+=k[0];		break;
513 	case  7:	b += ((uint32_t)k8[6])<<16;	/*@fallthrough@*/
514 	case  6:	b += ((uint32_t)k8[5])<<8;	/*@fallthrough@*/
515 	case  5:	b += k8[4];			/*@fallthrough@*/
516 	case  4:	a += k[0];			break;
517 	case  3:	a += ((uint32_t)k8[2])<<16;	/*@fallthrough@*/
518 	case  2:	a += ((uint32_t)k8[1])<<8;	/*@fallthrough@*/
519 	case  1:	a += k8[0];			break;
520 	case  0:	goto exit;
521 	}
522 
523 #endif /* !valgrind */
524 
525     } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
526 	const uint16_t *k = (const uint16_t *)key;	/* read 16-bit chunks */
527 	const uint8_t  *k8;
528 
529 	/*----------- all but last block: aligned reads and different mixing */
530 	while (size > (size_t)12) {
531 	    a += k[0] + (((uint32_t)k[1])<<16);
532 	    b += k[2] + (((uint32_t)k[3])<<16);
533 	    c += k[4] + (((uint32_t)k[5])<<16);
534 	    _JLU3_MIX(a,b,c);
535 	    size -= 12;
536 	    k += 6;
537 	}
538 
539 	/*------------------------- handle the last (probably partial) block */
540 	k8 = (const uint8_t *)k;
541 	switch (size) {
542 	case 12:
543 	    c += k[4]+(((uint32_t)k[5])<<16);
544 	    b += k[2]+(((uint32_t)k[3])<<16);
545 	    a += k[0]+(((uint32_t)k[1])<<16);
546 	    break;
547 	case 11:
548 	    c += ((uint32_t)k8[10])<<16;
549 	    /*@fallthrough@*/
550 	case 10:
551 	    c += k[4];
552 	    b += k[2]+(((uint32_t)k[3])<<16);
553 	    a += k[0]+(((uint32_t)k[1])<<16);
554 	    break;
555 	case  9:
556 	    c += k8[8];
557 	    /*@fallthrough@*/
558 	case  8:
559 	    b += k[2]+(((uint32_t)k[3])<<16);
560 	    a += k[0]+(((uint32_t)k[1])<<16);
561 	    break;
562 	case  7:
563 	    b += ((uint32_t)k8[6])<<16;
564 	    /*@fallthrough@*/
565 	case  6:
566 	    b += k[2];
567 	    a += k[0]+(((uint32_t)k[1])<<16);
568 	    break;
569 	case  5:
570 	    b += k8[4];
571 	    /*@fallthrough@*/
572 	case  4:
573 	    a += k[0]+(((uint32_t)k[1])<<16);
574 	    break;
575 	case  3:
576 	    a += ((uint32_t)k8[2])<<16;
577 	    /*@fallthrough@*/
578 	case  2:
579 	    a += k[0];
580 	    break;
581 	case  1:
582 	    a += k8[0];
583 	    break;
584 	case  0:
585 	    goto exit;
586 	}
587 
588     } else {		/* need to read the key one byte at a time */
589 	const uint8_t *k = (const uint8_t *)key;
590 
591 	/*----------- all but the last block: affect some 32 bits of (a,b,c) */
592 	while (size > (size_t)12) {
593 	    a += k[0];
594 	    a += ((uint32_t)k[1])<<8;
595 	    a += ((uint32_t)k[2])<<16;
596 	    a += ((uint32_t)k[3])<<24;
597 	    b += k[4];
598 	    b += ((uint32_t)k[5])<<8;
599 	    b += ((uint32_t)k[6])<<16;
600 	    b += ((uint32_t)k[7])<<24;
601 	    c += k[8];
602 	    c += ((uint32_t)k[9])<<8;
603 	    c += ((uint32_t)k[10])<<16;
604 	    c += ((uint32_t)k[11])<<24;
605 	    _JLU3_MIX(a,b,c);
606 	    size -= 12;
607 	    k += 12;
608 	}
609 
610 	/*---------------------------- last block: affect all 32 bits of (c) */
611 	switch (size) {
612 	case 12:	c += ((uint32_t)k[11])<<24;	/*@fallthrough@*/
613 	case 11:	c += ((uint32_t)k[10])<<16;	/*@fallthrough@*/
614 	case 10:	c += ((uint32_t)k[9])<<8;	/*@fallthrough@*/
615 	case  9:	c += k[8];			/*@fallthrough@*/
616 	case  8:	b += ((uint32_t)k[7])<<24;	/*@fallthrough@*/
617 	case  7:	b += ((uint32_t)k[6])<<16;	/*@fallthrough@*/
618 	case  6:	b += ((uint32_t)k[5])<<8;	/*@fallthrough@*/
619 	case  5:	b += k[4];			/*@fallthrough@*/
620 	case  4:	a += ((uint32_t)k[3])<<24;	/*@fallthrough@*/
621 	case  3:	a += ((uint32_t)k[2])<<16;	/*@fallthrough@*/
622 	case  2:	a += ((uint32_t)k[1])<<8;	/*@fallthrough@*/
623 	case  1:	a += k[0];
624 	    break;
625 	case  0:
626 	    goto exit;
627 	}
628     }
629 
630     _JLU3_FINAL(a,b,c);
631 
632 exit:
633     *pc = c;
634     *pb = b;
635     return;
636 }
637 #endif	/* defined(_JLU3_jlu32lpair) */
638 
639 #if defined(_JLU3_jlu32b)
640 uint32_t jlu32b(uint32_t h, /*@null@*/ const void *key, size_t size)
641 	/*@*/;
642 /*
643  * jlu32b():
644  * This is the same as jlu32w() on big-endian machines.  It is different
645  * from jlu32l() on all machines.  jlu32b() takes advantage of
646  * big-endian byte ordering.
647  *
648  * @param h		the previous hash, or an arbitrary value
649  * @param *k		the key, an array of uint8_t values
650  * @param size		the size of the key
651  * @return		the lookup3 hash
652  */
jlu32b(uint32_t h,const void * key,size_t size)653 uint32_t jlu32b(uint32_t h, const void *key, size_t size)
654 {
655     union { const void *ptr; size_t i; } u;
656     uint32_t a = _JLU3_INIT(h, size);
657     uint32_t b = a;
658     uint32_t c = a;
659 
660     if (key == NULL)
661 	return h;
662 
663     u.ptr = key;
664     if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
665 	const uint32_t *k = (const uint32_t *)key;	/* read 32-bit chunks */
666 #ifdef	VALGRIND
667 	const uint8_t  *k8;
668 #endif
669 
670 	/*-- all but last block: aligned reads and affect 32 bits of (a,b,c) */
671 	while (size > 12) {
672 	    a += k[0];
673 	    b += k[1];
674 	    c += k[2];
675 	    _JLU3_MIX(a,b,c);
676 	    size -= 12;
677 	    k += 3;
678 	}
679 
680 	/*------------------------- handle the last (probably partial) block */
681 	/*
682 	 * "k[2]<<8" actually reads beyond the end of the string, but
683 	 * then shifts out the part it's not allowed to read.  Because the
684 	 * string is aligned, the illegal read is in the same word as the
685 	 * rest of the string.  Every machine with memory protection I've seen
686 	 * does it on word boundaries, so is OK with this.  But VALGRIND will
687 	 * still catch it and complain.  The masking trick does make the hash
688 	 * noticably faster for short strings (like English words).
689 	 */
690 #ifndef VALGRIND
691 
692 	switch (size) {
693 	case 12:	c += k[2]; b+=k[1]; a+=k[0]; break;
694 	case 11:	c += k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
695 	case 10:	c += k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
696 	case  9:	c += k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
697 	case  8:	b += k[1]; a+=k[0]; break;
698 	case  7:	b += k[1]&0xffffff00; a+=k[0]; break;
699 	case  6:	b += k[1]&0xffff0000; a+=k[0]; break;
700 	case  5:	b += k[1]&0xff000000; a+=k[0]; break;
701 	case  4:	a += k[0]; break;
702 	case  3:	a += k[0]&0xffffff00; break;
703 	case  2:	a += k[0]&0xffff0000; break;
704 	case  1:	a += k[0]&0xff000000; break;
705 	case  0:	goto exit;
706     }
707 
708 #else  /* make valgrind happy */
709 
710 	k8 = (const uint8_t *)k;
711 	switch (size) {	/* all the case statements fall through */
712 	case 12:	c += k[2]; b+=k[1]; a+=k[0];	break;
713 	case 11:	c += ((uint32_t)k8[10])<<8;	/*@fallthrough@*/
714 	case 10:	c += ((uint32_t)k8[9])<<16;	/*@fallthrough@*/
715 	case  9:	c += ((uint32_t)k8[8])<<24;	/*@fallthrough@*/
716 	case  8:	b += k[1]; a+=k[0];		break;
717 	case  7:	b += ((uint32_t)k8[6])<<8;	/*@fallthrough@*/
718 	case  6:	b += ((uint32_t)k8[5])<<16;	/*@fallthrough@*/
719 	case  5:	b += ((uint32_t)k8[4])<<24;	/*@fallthrough@*/
720 	case  4:	a += k[0];			break;
721 	case  3:	a += ((uint32_t)k8[2])<<8;	/*@fallthrough@*/
722 	case  2:	a += ((uint32_t)k8[1])<<16;	/*@fallthrough@*/
723 	case  1:	a += ((uint32_t)k8[0])<<24;	break;
724 	case  0:	goto exit;
725     }
726 
727 #endif /* !VALGRIND */
728 
729     } else {                        /* need to read the key one byte at a time */
730 	const uint8_t *k = (const uint8_t *)key;
731 
732 	/*----------- all but the last block: affect some 32 bits of (a,b,c) */
733 	while (size > 12) {
734 	    a += ((uint32_t)k[0])<<24;
735 	    a += ((uint32_t)k[1])<<16;
736 	    a += ((uint32_t)k[2])<<8;
737 	    a += ((uint32_t)k[3]);
738 	    b += ((uint32_t)k[4])<<24;
739 	    b += ((uint32_t)k[5])<<16;
740 	    b += ((uint32_t)k[6])<<8;
741 	    b += ((uint32_t)k[7]);
742 	    c += ((uint32_t)k[8])<<24;
743 	    c += ((uint32_t)k[9])<<16;
744 	    c += ((uint32_t)k[10])<<8;
745 	    c += ((uint32_t)k[11]);
746 	    _JLU3_MIX(a,b,c);
747 	    size -= 12;
748 	    k += 12;
749 	}
750 
751 	/*---------------------------- last block: affect all 32 bits of (c) */
752 	switch (size) {	/* all the case statements fall through */
753 	case 12:	c += k[11];			/*@fallthrough@*/
754 	case 11:	c += ((uint32_t)k[10])<<8;	/*@fallthrough@*/
755 	case 10:	c += ((uint32_t)k[9])<<16;	/*@fallthrough@*/
756 	case  9:	c += ((uint32_t)k[8])<<24;	/*@fallthrough@*/
757 	case  8:	b += k[7];			/*@fallthrough@*/
758 	case  7:	b += ((uint32_t)k[6])<<8;	/*@fallthrough@*/
759 	case  6:	b += ((uint32_t)k[5])<<16;	/*@fallthrough@*/
760 	case  5:	b += ((uint32_t)k[4])<<24;	/*@fallthrough@*/
761 	case  4:	a += k[3];			/*@fallthrough@*/
762 	case  3:	a += ((uint32_t)k[2])<<8;	/*@fallthrough@*/
763 	case  2:	a += ((uint32_t)k[1])<<16;	/*@fallthrough@*/
764 	case  1:	a += ((uint32_t)k[0])<<24;	/*@fallthrough@*/
765 	    break;
766 	case  0:
767 	    goto exit;
768 	}
769     }
770 
771     _JLU3_FINAL(a,b,c);
772 
773 exit:
774     return c;
775 }
776 #endif	/* defined(_JLU3_jlu32b) */
777 
778 #if defined(_JLU3_SELFTEST)
779 
780 /* used for timings */
driver1(void)781 static void driver1(void)
782 	/*@*/
783 {
784     uint8_t buf[256];
785     uint32_t i;
786     uint32_t h=0;
787     time_t a,z;
788 
789     time(&a);
790     for (i=0; i<256; ++i) buf[i] = 'x';
791     for (i=0; i<1; ++i) {
792 	h = jlu32l(h, &buf[0], sizeof(buf[0]));
793     }
794     time(&z);
795     if (z-a > 0) printf("time %d %.8x\n", (int)(z-a), h);
796 }
797 
798 /* check that every input bit changes every output bit half the time */
799 #define HASHSTATE 1
800 #define HASHLEN   1
801 #define MAXPAIR 60
802 #define MAXLEN  70
driver2(void)803 static void driver2(void)
804 	/*@*/
805 {
806     uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
807     uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
808     uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
809     uint32_t x[HASHSTATE],y[HASHSTATE];
810     uint32_t hlen;
811 
812     printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
813     for (hlen=0; hlen < MAXLEN; ++hlen) {
814 	z=0;
815 	for (i=0; i<hlen; ++i) {	/*-------------- for each input byte, */
816 	    for (j=0; j<8; ++j) {	/*--------------- for each input bit, */
817 		for (m=1; m<8; ++m) {	/*--- for serveral possible initvals, */
818 		    for (l=0; l<HASHSTATE; ++l)
819 			e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
820 
821 		    /* check that every output bit is affected by that input bit */
822 		    for (k=0; k<MAXPAIR; k+=2) {
823 			uint32_t finished=1;
824 			/* keys have one bit different */
825 			for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
826 			/* have a and b be two keys differing in only one bit */
827 			a[i] ^= (k<<j);
828 			a[i] ^= (k>>(8-j));
829 			c[0] = jlu32l(m, a, hlen);
830 			b[i] ^= ((k+1)<<j);
831 			b[i] ^= ((k+1)>>(8-j));
832 			d[0] = jlu32l(m, b, hlen);
833 			/* check every bit is 1, 0, set, and not set at least once */
834 			for (l=0; l<HASHSTATE; ++l) {
835 			    e[l] &= (c[l]^d[l]);
836 			    f[l] &= ~(c[l]^d[l]);
837 			    g[l] &= c[l];
838 			    h[l] &= ~c[l];
839 			    x[l] &= d[l];
840 			    y[l] &= ~d[l];
841 			    if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
842 			}
843 			if (finished) break;
844 		    }
845 		    if (k>z) z=k;
846 		    if (k == MAXPAIR) {
847 			printf("Some bit didn't change: ");
848 			printf("%.8x %.8x %.8x %.8x %.8x %.8x  ",
849 				e[0],f[0],g[0],h[0],x[0],y[0]);
850 			printf("i %d j %d m %d len %d\n", i, j, m, hlen);
851 		    }
852 		    if (z == MAXPAIR) goto done;
853 		}
854 	    }
855 	}
856    done:
857 	if (z < MAXPAIR) {
858 	    printf("Mix success  %2d bytes  %2d initvals  ",i,m);
859 	    printf("required  %d  trials\n", z/2);
860 	}
861     }
862     printf("\n");
863 }
864 
865 /* Check for reading beyond the end of the buffer and alignment problems */
driver3(void)866 static void driver3(void)
867 	/*@*/
868 {
869     uint8_t buf[MAXLEN+20], *b;
870     uint32_t len;
871     uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
872     uint32_t h;
873     uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
874     uint32_t i;
875     uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
876     uint32_t j;
877     uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
878     uint32_t ref,x,y;
879     uint8_t *p;
880     uint32_t m = 13;
881 
882     printf("Endianness.  These lines should all be the same (for values filled in):\n");
883     printf("%.8x                            %.8x                            %.8x\n",
884 	jlu32w(m, (const uint32_t *)q, (sizeof(q)-1)/4),
885 	jlu32w(m, (const uint32_t *)q, (sizeof(q)-5)/4),
886 	jlu32w(m, (const uint32_t *)q, (sizeof(q)-9)/4));
887     p = q;
888     printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
889 	jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2),
890 	jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4),
891 	jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6),
892 	jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8),
893 	jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10),
894 	jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12));
895     p = &qq[1];
896     printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
897 	jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2),
898 	jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4),
899 	jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6),
900 	jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8),
901 	jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10),
902 	jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12));
903     p = &qqq[2];
904     printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
905 	jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2),
906 	jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4),
907 	jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6),
908 	jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8),
909 	jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10),
910 	jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12));
911     p = &qqqq[3];
912     printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
913 	jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2),
914 	jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4),
915 	jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6),
916 	jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8),
917 	jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10),
918 	jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12));
919     printf("\n");
920     for (h=0, b=buf+1; h<8; ++h, ++b) {
921 	for (i=0; i<MAXLEN; ++i) {
922 	    len = i;
923 	    for (j=0; j<i; ++j)
924 		*(b+j)=0;
925 
926 	    /* these should all be equal */
927 	    m = 1;
928 	    ref = jlu32l(m, b, len);
929 	    *(b+i)=(uint8_t)~0;
930 	    *(b-1)=(uint8_t)~0;
931 	    x = jlu32l(m, b, len);
932 	    y = jlu32l(m, b, len);
933 	    if ((ref != x) || (ref != y))
934 		printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, h, i);
935 	}
936     }
937 }
938 
939 /* check for problems with nulls */
driver4(void)940 static void driver4(void)
941 	/*@*/
942 {
943     uint8_t buf[1];
944     uint32_t h;
945     uint32_t i;
946     uint32_t state[HASHSTATE];
947 
948     buf[0] = ~0;
949     for (i=0; i<HASHSTATE; ++i)
950 	state[i] = 1;
951     printf("These should all be different\n");
952     h = 0;
953     for (i=0; i<8; ++i) {
954 	h = jlu32l(h, buf, 0);
955 	printf("%2ld  0-byte strings, hash is  %.8x\n", (long)i, h);
956     }
957 }
958 
959 
main(int argc,char ** argv)960 int main(int argc, char ** argv)
961 {
962     driver1();	/* test that the key is hashed: used for timings */
963     driver2();	/* test that whole key is hashed thoroughly */
964     driver3();	/* test that nothing but the key is hashed */
965     driver4();	/* test hashing multiple buffers (all buffers are null) */
966     return 1;
967 }
968 
969 #endif  /* _JLU3_SELFTEST */
970