• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Beta Distribution</title>
5<link rel="stylesheet" href="../../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../dists.html" title="Distributions">
9<link rel="prev" href="bernoulli_dist.html" title="Bernoulli Distribution">
10<link rel="next" href="binomial_dist.html" title="Binomial Distribution">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="bernoulli_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="binomial_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h4 class="title">
27<a name="math_toolkit.dist_ref.dists.beta_dist"></a><a class="link" href="beta_dist.html" title="Beta Distribution">Beta Distribution</a>
28</h4></div></div></div>
29<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">beta</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></pre>
30<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
31
32 <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
33           <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a>   <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy&lt;&gt;</a> <span class="special">&gt;</span>
34<span class="keyword">class</span> <span class="identifier">beta_distribution</span><span class="special">;</span>
35
36<span class="comment">// typedef beta_distribution&lt;double&gt; beta;</span>
37<span class="comment">// Note that this is deliberately NOT provided,</span>
38<span class="comment">// to avoid a clash with the function name beta.</span>
39
40<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
41<span class="keyword">class</span> <span class="identifier">beta_distribution</span>
42<span class="special">{</span>
43<span class="keyword">public</span><span class="special">:</span>
44   <span class="keyword">typedef</span> <span class="identifier">RealType</span>  <span class="identifier">value_type</span><span class="special">;</span>
45   <span class="keyword">typedef</span> <span class="identifier">Policy</span>    <span class="identifier">policy_type</span><span class="special">;</span>
46   <span class="comment">// Constructor from two shape parameters, alpha &amp; beta:</span>
47   <span class="identifier">beta_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">b</span><span class="special">);</span>
48
49   <span class="comment">// Parameter accessors:</span>
50   <span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
51   <span class="identifier">RealType</span> <span class="identifier">beta</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
52
53   <span class="comment">// Parameter estimators of alpha or beta from mean and variance.</span>
54   <span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_alpha</span><span class="special">(</span>
55     <span class="identifier">RealType</span> <span class="identifier">mean</span><span class="special">,</span> <span class="comment">// Expected value of mean.</span>
56     <span class="identifier">RealType</span> <span class="identifier">variance</span><span class="special">);</span> <span class="comment">// Expected value of variance.</span>
57
58   <span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_beta</span><span class="special">(</span>
59     <span class="identifier">RealType</span> <span class="identifier">mean</span><span class="special">,</span> <span class="comment">// Expected value of mean.</span>
60     <span class="identifier">RealType</span> <span class="identifier">variance</span><span class="special">);</span> <span class="comment">// Expected value of variance.</span>
61
62   <span class="comment">// Parameter estimators from</span>
63   <span class="comment">// either alpha or beta, and x and probability.</span>
64
65   <span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_alpha</span><span class="special">(</span>
66     <span class="identifier">RealType</span> <span class="identifier">beta</span><span class="special">,</span> <span class="comment">// from beta.</span>
67     <span class="identifier">RealType</span> <span class="identifier">x</span><span class="special">,</span> <span class="comment">//  x.</span>
68     <span class="identifier">RealType</span> <span class="identifier">probability</span><span class="special">);</span> <span class="comment">// cdf</span>
69
70   <span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_beta</span><span class="special">(</span>
71     <span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">,</span> <span class="comment">// alpha.</span>
72     <span class="identifier">RealType</span> <span class="identifier">x</span><span class="special">,</span> <span class="comment">// probability x.</span>
73     <span class="identifier">RealType</span> <span class="identifier">probability</span><span class="special">);</span> <span class="comment">// probability cdf.</span>
74<span class="special">};</span>
75
76<span class="special">}}</span> <span class="comment">// namespaces</span>
77</pre>
78<p>
79          The class type <code class="computeroutput"><span class="identifier">beta_distribution</span></code>
80          represents a <a href="http://en.wikipedia.org/wiki/Beta_distribution" target="_top">beta
81          </a> <a href="http://en.wikipedia.org/wiki/Probability_distribution" target="_top">probability
82          distribution function</a>.
83        </p>
84<p>
85          The <a href="http://mathworld.wolfram.com/BetaDistribution.htm" target="_top">beta
86          distribution </a> is used as a <a href="http://en.wikipedia.org/wiki/Prior_distribution" target="_top">prior
87          distribution</a> for binomial proportions in <a href="http://mathworld.wolfram.com/BayesianAnalysis.html" target="_top">Bayesian
88          analysis</a>.
89        </p>
90<p>
91          See also: <a href="http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/BetaDistribution.html" target="_top">beta
92          distribution</a> and <a href="http://en.wikipedia.org/wiki/Bayesian_statistics" target="_top">Bayesian
93          statistics</a>.
94        </p>
95<p>
96          How the beta distribution is used for <a href="http://home.uchicago.edu/~grynav/bayes/ABSLec5.ppt" target="_top">Bayesian
97          analysis of one parameter models</a> is discussed by Jeff Grynaviski.
98        </p>
99<p>
100          The <a href="http://en.wikipedia.org/wiki/Probability_density_function" target="_top">probability
101          density function PDF</a> for the <a href="http://en.wikipedia.org/wiki/Beta_distribution" target="_top">beta
102          distribution</a> defined on the interval [0,1] is given by:
103        </p>
104<div class="blockquote"><blockquote class="blockquote"><p>
105            <span class="serif_italic">f(x;α,β) = x<sup>α - 1</sup> (1 - x)<sup>β -1</sup> / B(α, β)</span>
106          </p></blockquote></div>
107<p>
108          where <span class="serif_italic">B(α, β)</span> is the <a href="http://en.wikipedia.org/wiki/Beta_function" target="_top">beta
109          function</a>, implemented in this library as <a class="link" href="../../sf_beta/beta_function.html" title="Beta">beta</a>.
110          Division by the beta function ensures that the pdf is normalized to the
111          range zero to unity.
112        </p>
113<p>
114          The following graph illustrates examples of the pdf for various values
115          of the shape parameters. Note the <span class="emphasis"><em>α = β = 2</em></span> (blue line)
116          is dome-shaped, and might be approximated by a symmetrical triangular distribution.
117        </p>
118<div class="blockquote"><blockquote class="blockquote"><p>
119            <span class="inlinemediaobject"><img src="../../../../graphs/beta_pdf.svg" align="middle"></span>
120
121          </p></blockquote></div>
122<p>
123          If α = β = 1, then it is a  
124<a href="http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29" target="_top">uniform
125          distribution</a>, equal to unity in the entire interval x = 0 to 1.
126          If α and β are &lt; 1, then the pdf is U-shaped. If α != β, then the shape is
127          asymmetric and could be approximated by a triangle whose apex is away from
128          the centre (where x = half).
129        </p>
130<h5>
131<a name="math_toolkit.dist_ref.dists.beta_dist.h0"></a>
132          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.member_functions"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.member_functions">Member
133          Functions</a>
134        </h5>
135<h6>
136<a name="math_toolkit.dist_ref.dists.beta_dist.h1"></a>
137          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.constructor"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.constructor">Constructor</a>
138        </h6>
139<pre class="programlisting"><span class="identifier">beta_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">beta</span><span class="special">);</span>
140</pre>
141<p>
142          Constructs a beta distribution with shape parameters <span class="emphasis"><em>alpha</em></span>
143          and <span class="emphasis"><em>beta</em></span>.
144        </p>
145<p>
146          Requires alpha,beta &gt; 0,otherwise <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
147          is called. Note that technically the beta distribution is defined for alpha,beta
148          &gt;= 0, but it's not clear whether any program can actually make use of
149          that latitude or how many of the non-member functions can be usefully defined
150          in that case. Therefore for now, we regard it as an error if alpha or beta
151          is zero.
152        </p>
153<p>
154          For example:
155        </p>
156<pre class="programlisting"><span class="identifier">beta_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">mybeta</span><span class="special">(</span><span class="number">2</span><span class="special">,</span> <span class="number">5</span><span class="special">);</span>
157</pre>
158<p>
159          Constructs a the beta distribution with alpha=2 and beta=5 (shown in yellow
160          in the graph above).
161        </p>
162<h6>
163<a name="math_toolkit.dist_ref.dists.beta_dist.h2"></a>
164          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.parameter_accessors"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.parameter_accessors">Parameter
165          Accessors</a>
166        </h6>
167<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
168</pre>
169<p>
170          Returns the parameter <span class="emphasis"><em>alpha</em></span> from which this distribution
171          was constructed.
172        </p>
173<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">beta</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
174</pre>
175<p>
176          Returns the parameter <span class="emphasis"><em>beta</em></span> from which this distribution
177          was constructed.
178        </p>
179<p>
180          So for example:
181        </p>
182<pre class="programlisting"><span class="identifier">beta_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">mybeta</span><span class="special">(</span><span class="number">2</span><span class="special">,</span> <span class="number">5</span><span class="special">);</span>
183<span class="identifier">assert</span><span class="special">(</span><span class="identifier">mybeta</span><span class="special">.</span><span class="identifier">alpha</span><span class="special">()</span> <span class="special">==</span> <span class="number">2.</span><span class="special">);</span>  <span class="comment">// mybeta.alpha() returns 2</span>
184<span class="identifier">assert</span><span class="special">(</span><span class="identifier">mybeta</span><span class="special">.</span><span class="identifier">beta</span><span class="special">()</span> <span class="special">==</span> <span class="number">5.</span><span class="special">);</span>   <span class="comment">// mybeta.beta()  returns 5</span>
185</pre>
186<h5>
187<a name="math_toolkit.dist_ref.dists.beta_dist.h3"></a>
188          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.parameter_estimators"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.parameter_estimators">Parameter
189          Estimators</a>
190        </h5>
191<p>
192          Two pairs of parameter estimators are provided.
193        </p>
194<p>
195          One estimates either α  or β
196from presumed-known mean and variance.
197        </p>
198<p>
199          The other pair estimates either α or β from the cdf and x.
200        </p>
201<p>
202          It is also possible to estimate α and β  from 'known' mode &amp; quantile. For
203          example, calculators are provided by the <a href="http://www.ausvet.com.au/pprev/content.php?page=PPscript" target="_top">Pooled
204          Prevalence Calculator</a> and <a href="http://www.epi.ucdavis.edu/diagnostictests/betabuster.html" target="_top">Beta
205          Buster</a> but this is not yet implemented here.
206        </p>
207<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_alpha</span><span class="special">(</span>
208  <span class="identifier">RealType</span> <span class="identifier">mean</span><span class="special">,</span> <span class="comment">// Expected value of mean.</span>
209  <span class="identifier">RealType</span> <span class="identifier">variance</span><span class="special">);</span> <span class="comment">// Expected value of variance.</span>
210</pre>
211<p>
212          Returns the unique value of α that corresponds to a beta distribution with
213          mean <span class="emphasis"><em>mean</em></span> and variance <span class="emphasis"><em>variance</em></span>.
214        </p>
215<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_beta</span><span class="special">(</span>
216  <span class="identifier">RealType</span> <span class="identifier">mean</span><span class="special">,</span> <span class="comment">// Expected value of mean.</span>
217  <span class="identifier">RealType</span> <span class="identifier">variance</span><span class="special">);</span> <span class="comment">// Expected value of variance.</span>
218</pre>
219<p>
220          Returns the unique value of β that corresponds to a beta distribution with
221          mean <span class="emphasis"><em>mean</em></span> and variance <span class="emphasis"><em>variance</em></span>.
222        </p>
223<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_alpha</span><span class="special">(</span>
224  <span class="identifier">RealType</span> <span class="identifier">beta</span><span class="special">,</span> <span class="comment">// from beta.</span>
225  <span class="identifier">RealType</span> <span class="identifier">x</span><span class="special">,</span> <span class="comment">//  x.</span>
226  <span class="identifier">RealType</span> <span class="identifier">probability</span><span class="special">);</span> <span class="comment">// probability cdf</span>
227</pre>
228<p>
229          Returns the value of α that gives: <code class="computeroutput"><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">beta_distribution</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;(</span><span class="identifier">alpha</span><span class="special">,</span> <span class="identifier">beta</span><span class="special">),</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">==</span> <span class="identifier">probability</span></code>.
230        </p>
231<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_beta</span><span class="special">(</span>
232  <span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">,</span> <span class="comment">// alpha.</span>
233  <span class="identifier">RealType</span> <span class="identifier">x</span><span class="special">,</span> <span class="comment">// probability x.</span>
234  <span class="identifier">RealType</span> <span class="identifier">probability</span><span class="special">);</span> <span class="comment">// probability cdf.</span>
235</pre>
236<p>
237          Returns the value of β that gives: <code class="computeroutput"><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">beta_distribution</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;(</span><span class="identifier">alpha</span><span class="special">,</span> <span class="identifier">beta</span><span class="special">),</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">==</span> <span class="identifier">probability</span></code>.
238        </p>
239<h5>
240<a name="math_toolkit.dist_ref.dists.beta_dist.h4"></a>
241          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.non_member_accessor_functions"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.non_member_accessor_functions">Non-member
242          Accessor Functions</a>
243        </h5>
244<p>
245          All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
246          functions</a> that are generic to all distributions are supported:
247          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
248          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
249          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
250          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
251          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
252          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
253          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
254          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
255        </p>
256<p>
257          The formulae for calculating these are shown in the table below, and at
258          <a href="http://mathworld.wolfram.com/BetaDistribution.html" target="_top">Wolfram
259          Mathworld</a>.
260        </p>
261<h5>
262<a name="math_toolkit.dist_ref.dists.beta_dist.h5"></a>
263          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.applications"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.applications">Applications</a>
264        </h5>
265<p>
266          The beta distribution can be used to model events constrained to take place
267          within an interval defined by a minimum and maximum value: so it is used
268          in project management systems.
269        </p>
270<p>
271          It is also widely used in <a href="http://en.wikipedia.org/wiki/Bayesian_inference" target="_top">Bayesian
272          statistical inference</a>.
273        </p>
274<h5>
275<a name="math_toolkit.dist_ref.dists.beta_dist.h6"></a>
276          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.related_distributions"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.related_distributions">Related
277          distributions</a>
278        </h5>
279<p>
280          The beta distribution with both α and β = 1 follows a <a href="http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29" target="_top">uniform
281          distribution</a>.
282        </p>
283<p>
284          The <a href="http://en.wikipedia.org/wiki/Triangular_distribution" target="_top">triangular</a>
285          is used when less precise information is available.
286        </p>
287<p>
288          The <a href="http://en.wikipedia.org/wiki/Binomial_distribution" target="_top">binomial
289          distribution</a> is closely related when α and β  are integers.
290        </p>
291<p>
292          With integer values of α  and β the distribution B(i, j) is that of the j-th
293          highest of a sample of i + j + 1 independent random variables uniformly
294          distributed between 0 and 1. The cumulative probability from 0 to x is
295          thus the probability that the j-th highest value is less than x. Or it
296          is the probability that at least i of the random variables are less than
297          x, a probability given by summing over the <a class="link" href="binomial_dist.html" title="Binomial Distribution">Binomial
298          Distribution</a> with its p parameter set to x.
299        </p>
300<h5>
301<a name="math_toolkit.dist_ref.dists.beta_dist.h7"></a>
302          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.accuracy"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.accuracy">Accuracy</a>
303        </h5>
304<p>
305          This distribution is implemented using the <a class="link" href="../../sf_beta/beta_function.html" title="Beta">beta
306          functions</a> <a class="link" href="../../sf_beta/beta_function.html" title="Beta">beta</a>
307          and <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">incomplete beta
308          functions</a> <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibeta</a>
309          and <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibetac</a>;
310          please refer to these functions for information on accuracy.
311        </p>
312<h5>
313<a name="math_toolkit.dist_ref.dists.beta_dist.h8"></a>
314          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.implementation"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.implementation">Implementation</a>
315        </h5>
316<p>
317          In the following table <span class="emphasis"><em>a</em></span> and <span class="emphasis"><em>b</em></span>
318          are the parameters α and β, <span class="emphasis"><em>x</em></span> is the random variable,
319          <span class="emphasis"><em>p</em></span> is the probability and <span class="emphasis"><em>q = 1-p</em></span>.
320        </p>
321<div class="informaltable"><table class="table">
322<colgroup>
323<col>
324<col>
325</colgroup>
326<thead><tr>
327<th>
328                  <p>
329                    Function
330                  </p>
331                </th>
332<th>
333                  <p>
334                    Implementation Notes
335                  </p>
336                </th>
337</tr></thead>
338<tbody>
339<tr>
340<td>
341                  <p>
342                    pdf
343                  </p>
344                </td>
345<td>
346                  <p>
347                    <span class="serif_italic">f(x;α,β) = x<sup>α - 1</sup> (1 - x)<sup>β -1</sup> / B(α, β)</span>
348                  </p>
349                  <p>
350                    Implemented using <a class="link" href="../../sf_beta/beta_derivative.html" title="Derivative of the Incomplete Beta Function">ibeta_derivative</a>(a,
351                    b, x).
352                  </p>
353                </td>
354</tr>
355<tr>
356<td>
357                  <p>
358                    cdf
359                  </p>
360                </td>
361<td>
362                  <p>
363                    Using the incomplete beta function <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibeta</a>(a,
364                    b, x)
365                  </p>
366                </td>
367</tr>
368<tr>
369<td>
370                  <p>
371                    cdf complement
372                  </p>
373                </td>
374<td>
375                  <p>
376                    <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibetac</a>(a,
377                    b, x)
378                  </p>
379                </td>
380</tr>
381<tr>
382<td>
383                  <p>
384                    quantile
385                  </p>
386                </td>
387<td>
388                  <p>
389                    Using the inverse incomplete beta function <a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibeta_inv</a>(a,
390                    b, p)
391                  </p>
392                </td>
393</tr>
394<tr>
395<td>
396                  <p>
397                    quantile from the complement
398                  </p>
399                </td>
400<td>
401                  <p>
402                    <a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibetac_inv</a>(a,
403                    b, q)
404                  </p>
405                </td>
406</tr>
407<tr>
408<td>
409                  <p>
410                    mean
411                  </p>
412                </td>
413<td>
414                  <p>
415                    <code class="computeroutput"><span class="identifier">a</span><span class="special">/(</span><span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span><span class="special">)</span></code>
416                  </p>
417                </td>
418</tr>
419<tr>
420<td>
421                  <p>
422                    variance
423                  </p>
424                </td>
425<td>
426                  <p>
427                    <code class="computeroutput"><span class="identifier">a</span> <span class="special">*</span>
428                    <span class="identifier">b</span> <span class="special">/</span>
429                    <span class="special">(</span><span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span><span class="special">)^</span><span class="number">2</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span>
430                    <span class="identifier">b</span> <span class="special">+</span>
431                    <span class="number">1</span><span class="special">)</span></code>
432                  </p>
433                </td>
434</tr>
435<tr>
436<td>
437                  <p>
438                    mode
439                  </p>
440                </td>
441<td>
442                  <p>
443                    <code class="computeroutput"><span class="special">(</span><span class="identifier">a</span><span class="special">-</span><span class="number">1</span><span class="special">)</span> <span class="special">/</span>
444                    <span class="special">(</span><span class="identifier">a</span>
445                    <span class="special">+</span> <span class="identifier">b</span>
446                    <span class="special">-</span> <span class="number">2</span><span class="special">)</span></code>
447                  </p>
448                </td>
449</tr>
450<tr>
451<td>
452                  <p>
453                    skewness
454                  </p>
455                </td>
456<td>
457                  <p>
458                    <code class="computeroutput"><span class="number">2</span> <span class="special">(</span><span class="identifier">b</span><span class="special">-</span><span class="identifier">a</span><span class="special">)</span>
459                    <span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span><span class="special">+</span><span class="number">1</span><span class="special">)/(</span><span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span><span class="special">+</span><span class="number">2</span><span class="special">)</span> <span class="special">*</span> <span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">a</span>
460                    <span class="special">*</span> <span class="identifier">b</span><span class="special">)</span></code>
461                  </p>
462                </td>
463</tr>
464<tr>
465<td>
466                  <p>
467                    kurtosis excess
468                  </p>
469                </td>
470<td>
471                  <div class="blockquote"><blockquote class="blockquote"><p>
472                      <span class="inlinemediaobject"><img src="../../../../equations/beta_dist_kurtosis.svg"></span>
473
474                    </p></blockquote></div>
475                </td>
476</tr>
477<tr>
478<td>
479                  <p>
480                    kurtosis
481                  </p>
482                </td>
483<td>
484                  <p>
485                    <code class="computeroutput"><span class="identifier">kurtosis</span> <span class="special">+</span>
486                    <span class="number">3</span></code>
487                  </p>
488                </td>
489</tr>
490<tr>
491<td>
492                  <p>
493                    parameter estimation
494                  </p>
495                </td>
496<td>
497                </td>
498</tr>
499<tr>
500<td>
501                  <p>
502                    alpha (from mean and variance)
503                  </p>
504                </td>
505<td>
506                  <p>
507                    <code class="computeroutput"><span class="identifier">mean</span> <span class="special">*</span>
508                    <span class="special">((</span> <span class="special">(</span><span class="identifier">mean</span> <span class="special">*</span>
509                    <span class="special">(</span><span class="number">1</span>
510                    <span class="special">-</span> <span class="identifier">mean</span><span class="special">))</span> <span class="special">/</span>
511                    <span class="identifier">variance</span><span class="special">)-</span>
512                    <span class="number">1</span><span class="special">)</span></code>
513                  </p>
514                </td>
515</tr>
516<tr>
517<td>
518                  <p>
519                    beta (from mean and variance)
520                  </p>
521                </td>
522<td>
523                  <p>
524                    <code class="computeroutput"><span class="special">(</span><span class="number">1</span>
525                    <span class="special">-</span> <span class="identifier">mean</span><span class="special">)</span> <span class="special">*</span>
526                    <span class="special">(((</span><span class="identifier">mean</span>
527                    <span class="special">*</span> <span class="special">(</span><span class="number">1</span> <span class="special">-</span> <span class="identifier">mean</span><span class="special">))</span>
528                    <span class="special">/</span><span class="identifier">variance</span><span class="special">)-</span><span class="number">1</span><span class="special">)</span></code>
529                  </p>
530                </td>
531</tr>
532<tr>
533<td>
534                  <p>
535                    The member functions <code class="computeroutput"><span class="identifier">find_alpha</span></code>
536                    and <code class="computeroutput"><span class="identifier">find_beta</span></code>
537                  </p>
538                  <p>
539                    from cdf and probability x
540                  </p>
541                  <p>
542                    and <span class="bold"><strong>either</strong></span> <code class="computeroutput"><span class="identifier">alpha</span></code>
543                    or <code class="computeroutput"><span class="identifier">beta</span></code>
544                  </p>
545                </td>
546<td>
547                  <p>
548                    Implemented in terms of the inverse incomplete beta functions
549                  </p>
550                  <p>
551                    <a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibeta_inva</a>,
552                    and <a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibeta_invb</a>
553                    respectively.
554                  </p>
555                </td>
556</tr>
557<tr>
558<td>
559                  <p>
560                    <code class="computeroutput"><span class="identifier">find_alpha</span></code>
561                  </p>
562                </td>
563<td>
564                  <p>
565                    <code class="computeroutput"><span class="identifier">ibeta_inva</span><span class="special">(</span><span class="identifier">beta</span><span class="special">,</span>
566                    <span class="identifier">x</span><span class="special">,</span>
567                    <span class="identifier">probability</span><span class="special">)</span></code>
568                  </p>
569                </td>
570</tr>
571<tr>
572<td>
573                  <p>
574                    <code class="computeroutput"><span class="identifier">find_beta</span></code>
575                  </p>
576                </td>
577<td>
578                  <p>
579                    <code class="computeroutput"><span class="identifier">ibeta_invb</span><span class="special">(</span><span class="identifier">alpha</span><span class="special">,</span>
580                    <span class="identifier">x</span><span class="special">,</span>
581                    <span class="identifier">probability</span><span class="special">)</span></code>
582                  </p>
583                </td>
584</tr>
585</tbody>
586</table></div>
587<h5>
588<a name="math_toolkit.dist_ref.dists.beta_dist.h9"></a>
589          <span class="phrase"><a name="math_toolkit.dist_ref.dists.beta_dist.references"></a></span><a class="link" href="beta_dist.html#math_toolkit.dist_ref.dists.beta_dist.references">References</a>
590        </h5>
591<p>
592          <a href="http://en.wikipedia.org/wiki/Beta_distribution" target="_top">Wikipedia Beta
593          distribution</a>
594        </p>
595<p>
596          <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm" target="_top">NIST
597          Exploratory Data Analysis</a>
598        </p>
599<p>
600          <a href="http://mathworld.wolfram.com/BetaDistribution.html" target="_top">Wolfram
601          MathWorld</a>
602        </p>
603</div>
604<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
605<td align="left"></td>
606<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
607      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
608      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
609      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
610      Daryle Walker and Xiaogang Zhang<p>
611        Distributed under the Boost Software License, Version 1.0. (See accompanying
612        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
613      </p>
614</div></td>
615</tr></table>
616<hr>
617<div class="spirit-nav">
618<a accesskey="p" href="bernoulli_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="binomial_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
619</div>
620</body>
621</html>
622