1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This file implements Matcher<const string&>, Matcher<string>, and
34 // utilities for defining matchers.
35
36 #include "gmock/gmock-matchers.h"
37 #include "gmock/gmock-generated-matchers.h"
38
39 #include <string.h>
40 #include <iostream>
41 #include <sstream>
42 #include <string>
43
44 namespace testing {
45
46 // Constructs a matcher that matches a const std::string& whose value is
47 // equal to s.
Matcher(const std::string & s)48 Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); }
49
50 #if GTEST_HAS_GLOBAL_STRING
51 // Constructs a matcher that matches a const std::string& whose value is
52 // equal to s.
Matcher(const::string & s)53 Matcher<const std::string&>::Matcher(const ::string& s) {
54 *this = Eq(static_cast<std::string>(s));
55 }
56 #endif // GTEST_HAS_GLOBAL_STRING
57
58 // Constructs a matcher that matches a const std::string& whose value is
59 // equal to s.
Matcher(const char * s)60 Matcher<const std::string&>::Matcher(const char* s) {
61 *this = Eq(std::string(s));
62 }
63
64 // Constructs a matcher that matches a std::string whose value is equal to
65 // s.
Matcher(const std::string & s)66 Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); }
67
68 #if GTEST_HAS_GLOBAL_STRING
69 // Constructs a matcher that matches a std::string whose value is equal to
70 // s.
Matcher(const::string & s)71 Matcher<std::string>::Matcher(const ::string& s) {
72 *this = Eq(static_cast<std::string>(s));
73 }
74 #endif // GTEST_HAS_GLOBAL_STRING
75
76 // Constructs a matcher that matches a std::string whose value is equal to
77 // s.
Matcher(const char * s)78 Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); }
79
80 #if GTEST_HAS_GLOBAL_STRING
81 // Constructs a matcher that matches a const ::string& whose value is
82 // equal to s.
Matcher(const std::string & s)83 Matcher<const ::string&>::Matcher(const std::string& s) {
84 *this = Eq(static_cast<::string>(s));
85 }
86
87 // Constructs a matcher that matches a const ::string& whose value is
88 // equal to s.
Matcher(const::string & s)89 Matcher<const ::string&>::Matcher(const ::string& s) { *this = Eq(s); }
90
91 // Constructs a matcher that matches a const ::string& whose value is
92 // equal to s.
Matcher(const char * s)93 Matcher<const ::string&>::Matcher(const char* s) { *this = Eq(::string(s)); }
94
95 // Constructs a matcher that matches a ::string whose value is equal to s.
Matcher(const std::string & s)96 Matcher<::string>::Matcher(const std::string& s) {
97 *this = Eq(static_cast<::string>(s));
98 }
99
100 // Constructs a matcher that matches a ::string whose value is equal to s.
Matcher(const::string & s)101 Matcher<::string>::Matcher(const ::string& s) { *this = Eq(s); }
102
103 // Constructs a matcher that matches a string whose value is equal to s.
Matcher(const char * s)104 Matcher<::string>::Matcher(const char* s) { *this = Eq(::string(s)); }
105 #endif // GTEST_HAS_GLOBAL_STRING
106
107 #if GTEST_HAS_ABSL
108 // Constructs a matcher that matches a const absl::string_view& whose value is
109 // equal to s.
Matcher(const std::string & s)110 Matcher<const absl::string_view&>::Matcher(const std::string& s) {
111 *this = Eq(s);
112 }
113
114 #if GTEST_HAS_GLOBAL_STRING
115 // Constructs a matcher that matches a const absl::string_view& whose value is
116 // equal to s.
Matcher(const::string & s)117 Matcher<const absl::string_view&>::Matcher(const ::string& s) { *this = Eq(s); }
118 #endif // GTEST_HAS_GLOBAL_STRING
119
120 // Constructs a matcher that matches a const absl::string_view& whose value is
121 // equal to s.
Matcher(const char * s)122 Matcher<const absl::string_view&>::Matcher(const char* s) {
123 *this = Eq(std::string(s));
124 }
125
126 // Constructs a matcher that matches a const absl::string_view& whose value is
127 // equal to s.
Matcher(absl::string_view s)128 Matcher<const absl::string_view&>::Matcher(absl::string_view s) {
129 *this = Eq(std::string(s));
130 }
131
132 // Constructs a matcher that matches a absl::string_view whose value is equal to
133 // s.
Matcher(const std::string & s)134 Matcher<absl::string_view>::Matcher(const std::string& s) { *this = Eq(s); }
135
136 #if GTEST_HAS_GLOBAL_STRING
137 // Constructs a matcher that matches a absl::string_view whose value is equal to
138 // s.
Matcher(const::string & s)139 Matcher<absl::string_view>::Matcher(const ::string& s) { *this = Eq(s); }
140 #endif // GTEST_HAS_GLOBAL_STRING
141
142 // Constructs a matcher that matches a absl::string_view whose value is equal to
143 // s.
Matcher(const char * s)144 Matcher<absl::string_view>::Matcher(const char* s) {
145 *this = Eq(std::string(s));
146 }
147
148 // Constructs a matcher that matches a absl::string_view whose value is equal to
149 // s.
Matcher(absl::string_view s)150 Matcher<absl::string_view>::Matcher(absl::string_view s) {
151 *this = Eq(std::string(s));
152 }
153 #endif // GTEST_HAS_ABSL
154
155 namespace internal {
156
157 // Returns the description for a matcher defined using the MATCHER*()
158 // macro where the user-supplied description string is "", if
159 // 'negation' is false; otherwise returns the description of the
160 // negation of the matcher. 'param_values' contains a list of strings
161 // that are the print-out of the matcher's parameters.
FormatMatcherDescription(bool negation,const char * matcher_name,const Strings & param_values)162 GTEST_API_ std::string FormatMatcherDescription(bool negation,
163 const char* matcher_name,
164 const Strings& param_values) {
165 std::string result = ConvertIdentifierNameToWords(matcher_name);
166 if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
167 return negation ? "not (" + result + ")" : result;
168 }
169
170 // FindMaxBipartiteMatching and its helper class.
171 //
172 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
173 // bipartite matching. Flow is considered to be from left to right.
174 // There is an implicit source node that is connected to all of the left
175 // nodes, and an implicit sink node that is connected to all of the
176 // right nodes. All edges have unit capacity.
177 //
178 // Neither the flow graph nor the residual flow graph are represented
179 // explicitly. Instead, they are implied by the information in 'graph' and
180 // a vector<int> called 'left_' whose elements are initialized to the
181 // value kUnused. This represents the initial state of the algorithm,
182 // where the flow graph is empty, and the residual flow graph has the
183 // following edges:
184 // - An edge from source to each left_ node
185 // - An edge from each right_ node to sink
186 // - An edge from each left_ node to each right_ node, if the
187 // corresponding edge exists in 'graph'.
188 //
189 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
190 // nodes l and r. This induces the following changes:
191 // - The edges (source, l), (l, r), and (r, sink) are added to the
192 // flow graph.
193 // - The same three edges are removed from the residual flow graph.
194 // - The reverse edges (l, source), (r, l), and (sink, r) are added
195 // to the residual flow graph, which is a directional graph
196 // representing unused flow capacity.
197 //
198 // When the method augments a flow (moving left_[l] from some r1 to some
199 // other r2), this can be thought of as "undoing" the above steps with
200 // respect to r1 and "redoing" them with respect to r2.
201 //
202 // It bears repeating that the flow graph and residual flow graph are
203 // never represented explicitly, but can be derived by looking at the
204 // information in 'graph' and in left_.
205 //
206 // As an optimization, there is a second vector<int> called right_ which
207 // does not provide any new information. Instead, it enables more
208 // efficient queries about edges entering or leaving the right-side nodes
209 // of the flow or residual flow graphs. The following invariants are
210 // maintained:
211 //
212 // left[l] == kUnused or right[left[l]] == l
213 // right[r] == kUnused or left[right[r]] == r
214 //
215 // . [ source ] .
216 // . ||| .
217 // . ||| .
218 // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ .
219 // . || | | .
220 // . |\---> left[1]=-1 \--> right[1]=0 ---\| .
221 // . | || .
222 // . \----> left[2]=2 ------> right[2]=2 --\|| .
223 // . ||| .
224 // . elements matchers vvv .
225 // . [ sink ] .
226 //
227 // See Also:
228 // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
229 // "Introduction to Algorithms (Second ed.)", pp. 651-664.
230 // [2] "Ford-Fulkerson algorithm", Wikipedia,
231 // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
232 class MaxBipartiteMatchState {
233 public:
MaxBipartiteMatchState(const MatchMatrix & graph)234 explicit MaxBipartiteMatchState(const MatchMatrix& graph)
235 : graph_(&graph),
236 left_(graph_->LhsSize(), kUnused),
237 right_(graph_->RhsSize(), kUnused) {}
238
239 // Returns the edges of a maximal match, each in the form {left, right}.
Compute()240 ElementMatcherPairs Compute() {
241 // 'seen' is used for path finding { 0: unseen, 1: seen }.
242 ::std::vector<char> seen;
243 // Searches the residual flow graph for a path from each left node to
244 // the sink in the residual flow graph, and if one is found, add flow
245 // to the graph. It's okay to search through the left nodes once. The
246 // edge from the implicit source node to each previously-visited left
247 // node will have flow if that left node has any path to the sink
248 // whatsoever. Subsequent augmentations can only add flow to the
249 // network, and cannot take away that previous flow unit from the source.
250 // Since the source-to-left edge can only carry one flow unit (or,
251 // each element can be matched to only one matcher), there is no need
252 // to visit the left nodes more than once looking for augmented paths.
253 // The flow is known to be possible or impossible by looking at the
254 // node once.
255 for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
256 // Reset the path-marking vector and try to find a path from
257 // source to sink starting at the left_[ilhs] node.
258 GTEST_CHECK_(left_[ilhs] == kUnused)
259 << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
260 // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
261 seen.assign(graph_->RhsSize(), 0);
262 TryAugment(ilhs, &seen);
263 }
264 ElementMatcherPairs result;
265 for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
266 size_t irhs = left_[ilhs];
267 if (irhs == kUnused) continue;
268 result.push_back(ElementMatcherPair(ilhs, irhs));
269 }
270 return result;
271 }
272
273 private:
274 static const size_t kUnused = static_cast<size_t>(-1);
275
276 // Perform a depth-first search from left node ilhs to the sink. If a
277 // path is found, flow is added to the network by linking the left and
278 // right vector elements corresponding each segment of the path.
279 // Returns true if a path to sink was found, which means that a unit of
280 // flow was added to the network. The 'seen' vector elements correspond
281 // to right nodes and are marked to eliminate cycles from the search.
282 //
283 // Left nodes will only be explored at most once because they
284 // are accessible from at most one right node in the residual flow
285 // graph.
286 //
287 // Note that left_[ilhs] is the only element of left_ that TryAugment will
288 // potentially transition from kUnused to another value. Any other
289 // left_ element holding kUnused before TryAugment will be holding it
290 // when TryAugment returns.
291 //
TryAugment(size_t ilhs,::std::vector<char> * seen)292 bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
293 for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
294 if ((*seen)[irhs]) continue;
295 if (!graph_->HasEdge(ilhs, irhs)) continue;
296 // There's an available edge from ilhs to irhs.
297 (*seen)[irhs] = 1;
298 // Next a search is performed to determine whether
299 // this edge is a dead end or leads to the sink.
300 //
301 // right_[irhs] == kUnused means that there is residual flow from
302 // right node irhs to the sink, so we can use that to finish this
303 // flow path and return success.
304 //
305 // Otherwise there is residual flow to some ilhs. We push flow
306 // along that path and call ourselves recursively to see if this
307 // ultimately leads to sink.
308 if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
309 // Add flow from left_[ilhs] to right_[irhs].
310 left_[ilhs] = irhs;
311 right_[irhs] = ilhs;
312 return true;
313 }
314 }
315 return false;
316 }
317
318 const MatchMatrix* graph_; // not owned
319 // Each element of the left_ vector represents a left hand side node
320 // (i.e. an element) and each element of right_ is a right hand side
321 // node (i.e. a matcher). The values in the left_ vector indicate
322 // outflow from that node to a node on the right_ side. The values
323 // in the right_ indicate inflow, and specify which left_ node is
324 // feeding that right_ node, if any. For example, left_[3] == 1 means
325 // there's a flow from element #3 to matcher #1. Such a flow would also
326 // be redundantly represented in the right_ vector as right_[1] == 3.
327 // Elements of left_ and right_ are either kUnused or mutually
328 // referent. Mutually referent means that left_[right_[i]] = i and
329 // right_[left_[i]] = i.
330 ::std::vector<size_t> left_;
331 ::std::vector<size_t> right_;
332
333 GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
334 };
335
336 const size_t MaxBipartiteMatchState::kUnused;
337
FindMaxBipartiteMatching(const MatchMatrix & g)338 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
339 return MaxBipartiteMatchState(g).Compute();
340 }
341
LogElementMatcherPairVec(const ElementMatcherPairs & pairs,::std::ostream * stream)342 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
343 ::std::ostream* stream) {
344 typedef ElementMatcherPairs::const_iterator Iter;
345 ::std::ostream& os = *stream;
346 os << "{";
347 const char* sep = "";
348 for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
349 os << sep << "\n ("
350 << "element #" << it->first << ", "
351 << "matcher #" << it->second << ")";
352 sep = ",";
353 }
354 os << "\n}";
355 }
356
NextGraph()357 bool MatchMatrix::NextGraph() {
358 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
359 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
360 char& b = matched_[SpaceIndex(ilhs, irhs)];
361 if (!b) {
362 b = 1;
363 return true;
364 }
365 b = 0;
366 }
367 }
368 return false;
369 }
370
Randomize()371 void MatchMatrix::Randomize() {
372 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
373 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
374 char& b = matched_[SpaceIndex(ilhs, irhs)];
375 b = static_cast<char>(rand() & 1); // NOLINT
376 }
377 }
378 }
379
DebugString() const380 std::string MatchMatrix::DebugString() const {
381 ::std::stringstream ss;
382 const char* sep = "";
383 for (size_t i = 0; i < LhsSize(); ++i) {
384 ss << sep;
385 for (size_t j = 0; j < RhsSize(); ++j) {
386 ss << HasEdge(i, j);
387 }
388 sep = ";";
389 }
390 return ss.str();
391 }
392
DescribeToImpl(::std::ostream * os) const393 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
394 ::std::ostream* os) const {
395 switch (match_flags()) {
396 case UnorderedMatcherRequire::ExactMatch:
397 if (matcher_describers_.empty()) {
398 *os << "is empty";
399 return;
400 }
401 if (matcher_describers_.size() == 1) {
402 *os << "has " << Elements(1) << " and that element ";
403 matcher_describers_[0]->DescribeTo(os);
404 return;
405 }
406 *os << "has " << Elements(matcher_describers_.size())
407 << " and there exists some permutation of elements such that:\n";
408 break;
409 case UnorderedMatcherRequire::Superset:
410 *os << "a surjection from elements to requirements exists such that:\n";
411 break;
412 case UnorderedMatcherRequire::Subset:
413 *os << "an injection from elements to requirements exists such that:\n";
414 break;
415 }
416
417 const char* sep = "";
418 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
419 *os << sep;
420 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
421 *os << " - element #" << i << " ";
422 } else {
423 *os << " - an element ";
424 }
425 matcher_describers_[i]->DescribeTo(os);
426 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
427 sep = ", and\n";
428 } else {
429 sep = "\n";
430 }
431 }
432 }
433
DescribeNegationToImpl(::std::ostream * os) const434 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
435 ::std::ostream* os) const {
436 switch (match_flags()) {
437 case UnorderedMatcherRequire::ExactMatch:
438 if (matcher_describers_.empty()) {
439 *os << "isn't empty";
440 return;
441 }
442 if (matcher_describers_.size() == 1) {
443 *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
444 << " that ";
445 matcher_describers_[0]->DescribeNegationTo(os);
446 return;
447 }
448 *os << "doesn't have " << Elements(matcher_describers_.size())
449 << ", or there exists no permutation of elements such that:\n";
450 break;
451 case UnorderedMatcherRequire::Superset:
452 *os << "no surjection from elements to requirements exists such that:\n";
453 break;
454 case UnorderedMatcherRequire::Subset:
455 *os << "no injection from elements to requirements exists such that:\n";
456 break;
457 }
458 const char* sep = "";
459 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
460 *os << sep;
461 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
462 *os << " - element #" << i << " ";
463 } else {
464 *os << " - an element ";
465 }
466 matcher_describers_[i]->DescribeTo(os);
467 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
468 sep = ", and\n";
469 } else {
470 sep = "\n";
471 }
472 }
473 }
474
475 // Checks that all matchers match at least one element, and that all
476 // elements match at least one matcher. This enables faster matching
477 // and better error reporting.
478 // Returns false, writing an explanation to 'listener', if and only
479 // if the success criteria are not met.
VerifyMatchMatrix(const::std::vector<std::string> & element_printouts,const MatchMatrix & matrix,MatchResultListener * listener) const480 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
481 const ::std::vector<std::string>& element_printouts,
482 const MatchMatrix& matrix, MatchResultListener* listener) const {
483 bool result = true;
484 ::std::vector<char> element_matched(matrix.LhsSize(), 0);
485 ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
486
487 for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
488 for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
489 char matched = matrix.HasEdge(ilhs, irhs);
490 element_matched[ilhs] |= matched;
491 matcher_matched[irhs] |= matched;
492 }
493 }
494
495 if (match_flags() & UnorderedMatcherRequire::Superset) {
496 const char* sep =
497 "where the following matchers don't match any elements:\n";
498 for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
499 if (matcher_matched[mi]) continue;
500 result = false;
501 if (listener->IsInterested()) {
502 *listener << sep << "matcher #" << mi << ": ";
503 matcher_describers_[mi]->DescribeTo(listener->stream());
504 sep = ",\n";
505 }
506 }
507 }
508
509 if (match_flags() & UnorderedMatcherRequire::Subset) {
510 const char* sep =
511 "where the following elements don't match any matchers:\n";
512 const char* outer_sep = "";
513 if (!result) {
514 outer_sep = "\nand ";
515 }
516 for (size_t ei = 0; ei < element_matched.size(); ++ei) {
517 if (element_matched[ei]) continue;
518 result = false;
519 if (listener->IsInterested()) {
520 *listener << outer_sep << sep << "element #" << ei << ": "
521 << element_printouts[ei];
522 sep = ",\n";
523 outer_sep = "";
524 }
525 }
526 }
527 return result;
528 }
529
FindPairing(const MatchMatrix & matrix,MatchResultListener * listener) const530 bool UnorderedElementsAreMatcherImplBase::FindPairing(
531 const MatchMatrix& matrix, MatchResultListener* listener) const {
532 ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
533
534 size_t max_flow = matches.size();
535 if ((match_flags() & UnorderedMatcherRequire::Superset) &&
536 max_flow < matrix.RhsSize()) {
537 if (listener->IsInterested()) {
538 *listener << "where no permutation of the elements can satisfy all "
539 "matchers, and the closest match is "
540 << max_flow << " of " << matrix.RhsSize()
541 << " matchers with the pairings:\n";
542 LogElementMatcherPairVec(matches, listener->stream());
543 }
544 return false;
545 }
546 if ((match_flags() & UnorderedMatcherRequire::Subset) &&
547 max_flow < matrix.LhsSize()) {
548 if (listener->IsInterested()) {
549 *listener
550 << "where not all elements can be matched, and the closest match is "
551 << max_flow << " of " << matrix.RhsSize()
552 << " matchers with the pairings:\n";
553 LogElementMatcherPairVec(matches, listener->stream());
554 }
555 return false;
556 }
557
558 if (matches.size() > 1) {
559 if (listener->IsInterested()) {
560 const char* sep = "where:\n";
561 for (size_t mi = 0; mi < matches.size(); ++mi) {
562 *listener << sep << " - element #" << matches[mi].first
563 << " is matched by matcher #" << matches[mi].second;
564 sep = ",\n";
565 }
566 }
567 }
568 return true;
569 }
570
571 } // namespace internal
572 } // namespace testing
573