1// Copyright 2018 The Abseil Authors. 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// https://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14 15// This library provides Symbolize() function that symbolizes program 16// counters to their corresponding symbol names on linux platforms. 17// This library has a minimal implementation of an ELF symbol table 18// reader (i.e. it doesn't depend on libelf, etc.). 19// 20// The algorithm used in Symbolize() is as follows. 21// 22// 1. Go through a list of maps in /proc/self/maps and find the map 23// containing the program counter. 24// 25// 2. Open the mapped file and find a regular symbol table inside. 26// Iterate over symbols in the symbol table and look for the symbol 27// containing the program counter. If such a symbol is found, 28// obtain the symbol name, and demangle the symbol if possible. 29// If the symbol isn't found in the regular symbol table (binary is 30// stripped), try the same thing with a dynamic symbol table. 31// 32// Note that Symbolize() is originally implemented to be used in 33// signal handlers, hence it doesn't use malloc() and other unsafe 34// operations. It should be both thread-safe and async-signal-safe. 35// 36// Implementation note: 37// 38// We don't use heaps but only use stacks. We want to reduce the 39// stack consumption so that the symbolizer can run on small stacks. 40// 41// Here are some numbers collected with GCC 4.1.0 on x86: 42// - sizeof(Elf32_Sym) = 16 43// - sizeof(Elf32_Shdr) = 40 44// - sizeof(Elf64_Sym) = 24 45// - sizeof(Elf64_Shdr) = 64 46// 47// This implementation is intended to be async-signal-safe but uses some 48// functions which are not guaranteed to be so, such as memchr() and 49// memmove(). We assume they are async-signal-safe. 50 51#include <dlfcn.h> 52#include <elf.h> 53#include <fcntl.h> 54#include <link.h> // For ElfW() macro. 55#include <sys/stat.h> 56#include <sys/types.h> 57#include <unistd.h> 58 59#include <algorithm> 60#include <atomic> 61#include <cerrno> 62#include <cinttypes> 63#include <climits> 64#include <cstdint> 65#include <cstdio> 66#include <cstdlib> 67#include <cstring> 68 69#include "absl/base/casts.h" 70#include "absl/base/dynamic_annotations.h" 71#include "absl/base/internal/low_level_alloc.h" 72#include "absl/base/internal/raw_logging.h" 73#include "absl/base/internal/spinlock.h" 74#include "absl/base/port.h" 75#include "absl/debugging/internal/demangle.h" 76#include "absl/debugging/internal/vdso_support.h" 77 78namespace absl { 79ABSL_NAMESPACE_BEGIN 80 81// Value of argv[0]. Used by MaybeInitializeObjFile(). 82static char *argv0_value = nullptr; 83 84void InitializeSymbolizer(const char *argv0) { 85 if (argv0_value != nullptr) { 86 free(argv0_value); 87 argv0_value = nullptr; 88 } 89 if (argv0 != nullptr && argv0[0] != '\0') { 90 argv0_value = strdup(argv0); 91 } 92} 93 94namespace debugging_internal { 95namespace { 96 97// Re-runs fn until it doesn't cause EINTR. 98#define NO_INTR(fn) \ 99 do { \ 100 } while ((fn) < 0 && errno == EINTR) 101 102// On Linux, ELF_ST_* are defined in <linux/elf.h>. To make this portable 103// we define our own ELF_ST_BIND and ELF_ST_TYPE if not available. 104#ifndef ELF_ST_BIND 105#define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4) 106#endif 107 108#ifndef ELF_ST_TYPE 109#define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF) 110#endif 111 112// Some platforms use a special .opd section to store function pointers. 113const char kOpdSectionName[] = ".opd"; 114 115#if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64) 116// Use opd section for function descriptors on these platforms, the function 117// address is the first word of the descriptor. 118enum { kPlatformUsesOPDSections = 1 }; 119#else // not PPC or IA64 120enum { kPlatformUsesOPDSections = 0 }; 121#endif 122 123// This works for PowerPC & IA64 only. A function descriptor consist of two 124// pointers and the first one is the function's entry. 125const size_t kFunctionDescriptorSize = sizeof(void *) * 2; 126 127const int kMaxDecorators = 10; // Seems like a reasonable upper limit. 128 129struct InstalledSymbolDecorator { 130 SymbolDecorator fn; 131 void *arg; 132 int ticket; 133}; 134 135int g_num_decorators; 136InstalledSymbolDecorator g_decorators[kMaxDecorators]; 137 138struct FileMappingHint { 139 const void *start; 140 const void *end; 141 uint64_t offset; 142 const char *filename; 143}; 144 145// Protects g_decorators. 146// We are using SpinLock and not a Mutex here, because we may be called 147// from inside Mutex::Lock itself, and it prohibits recursive calls. 148// This happens in e.g. base/stacktrace_syscall_unittest. 149// Moreover, we are using only TryLock(), if the decorator list 150// is being modified (is busy), we skip all decorators, and possibly 151// loose some info. Sorry, that's the best we could do. 152base_internal::SpinLock g_decorators_mu(base_internal::kLinkerInitialized); 153 154const int kMaxFileMappingHints = 8; 155int g_num_file_mapping_hints; 156FileMappingHint g_file_mapping_hints[kMaxFileMappingHints]; 157// Protects g_file_mapping_hints. 158base_internal::SpinLock g_file_mapping_mu(base_internal::kLinkerInitialized); 159 160// Async-signal-safe function to zero a buffer. 161// memset() is not guaranteed to be async-signal-safe. 162static void SafeMemZero(void* p, size_t size) { 163 unsigned char *c = static_cast<unsigned char *>(p); 164 while (size--) { 165 *c++ = 0; 166 } 167} 168 169struct ObjFile { 170 ObjFile() 171 : filename(nullptr), 172 start_addr(nullptr), 173 end_addr(nullptr), 174 offset(0), 175 fd(-1), 176 elf_type(-1) { 177 SafeMemZero(&elf_header, sizeof(elf_header)); 178 } 179 180 char *filename; 181 const void *start_addr; 182 const void *end_addr; 183 uint64_t offset; 184 185 // The following fields are initialized on the first access to the 186 // object file. 187 int fd; 188 int elf_type; 189 ElfW(Ehdr) elf_header; 190}; 191 192// Build 4-way associative cache for symbols. Within each cache line, symbols 193// are replaced in LRU order. 194enum { 195 ASSOCIATIVITY = 4, 196}; 197struct SymbolCacheLine { 198 const void *pc[ASSOCIATIVITY]; 199 char *name[ASSOCIATIVITY]; 200 201 // age[i] is incremented when a line is accessed. it's reset to zero if the 202 // i'th entry is read. 203 uint32_t age[ASSOCIATIVITY]; 204}; 205 206// --------------------------------------------------------------- 207// An async-signal-safe arena for LowLevelAlloc 208static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena; 209 210static base_internal::LowLevelAlloc::Arena *SigSafeArena() { 211 return g_sig_safe_arena.load(std::memory_order_acquire); 212} 213 214static void InitSigSafeArena() { 215 if (SigSafeArena() == nullptr) { 216 base_internal::LowLevelAlloc::Arena *new_arena = 217 base_internal::LowLevelAlloc::NewArena( 218 base_internal::LowLevelAlloc::kAsyncSignalSafe); 219 base_internal::LowLevelAlloc::Arena *old_value = nullptr; 220 if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena, 221 std::memory_order_release, 222 std::memory_order_relaxed)) { 223 // We lost a race to allocate an arena; deallocate. 224 base_internal::LowLevelAlloc::DeleteArena(new_arena); 225 } 226 } 227} 228 229// --------------------------------------------------------------- 230// An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation. 231 232class AddrMap { 233 public: 234 AddrMap() : size_(0), allocated_(0), obj_(nullptr) {} 235 ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); } 236 int Size() const { return size_; } 237 ObjFile *At(int i) { return &obj_[i]; } 238 ObjFile *Add(); 239 void Clear(); 240 241 private: 242 int size_; // count of valid elements (<= allocated_) 243 int allocated_; // count of allocated elements 244 ObjFile *obj_; // array of allocated_ elements 245 AddrMap(const AddrMap &) = delete; 246 AddrMap &operator=(const AddrMap &) = delete; 247}; 248 249void AddrMap::Clear() { 250 for (int i = 0; i != size_; i++) { 251 At(i)->~ObjFile(); 252 } 253 size_ = 0; 254} 255 256ObjFile *AddrMap::Add() { 257 if (size_ == allocated_) { 258 int new_allocated = allocated_ * 2 + 50; 259 ObjFile *new_obj_ = 260 static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena( 261 new_allocated * sizeof(*new_obj_), SigSafeArena())); 262 if (obj_) { 263 memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_)); 264 base_internal::LowLevelAlloc::Free(obj_); 265 } 266 obj_ = new_obj_; 267 allocated_ = new_allocated; 268 } 269 return new (&obj_[size_++]) ObjFile; 270} 271 272// --------------------------------------------------------------- 273 274enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND }; 275 276class Symbolizer { 277 public: 278 Symbolizer(); 279 ~Symbolizer(); 280 const char *GetSymbol(const void *const pc); 281 282 private: 283 char *CopyString(const char *s) { 284 int len = strlen(s); 285 char *dst = static_cast<char *>( 286 base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena())); 287 ABSL_RAW_CHECK(dst != nullptr, "out of memory"); 288 memcpy(dst, s, len + 1); 289 return dst; 290 } 291 ObjFile *FindObjFile(const void *const start, 292 size_t size) ABSL_ATTRIBUTE_NOINLINE; 293 static bool RegisterObjFile(const char *filename, 294 const void *const start_addr, 295 const void *const end_addr, uint64_t offset, 296 void *arg); 297 SymbolCacheLine *GetCacheLine(const void *const pc); 298 const char *FindSymbolInCache(const void *const pc); 299 const char *InsertSymbolInCache(const void *const pc, const char *name); 300 void AgeSymbols(SymbolCacheLine *line); 301 void ClearAddrMap(); 302 FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj, 303 const void *const pc, 304 const ptrdiff_t relocation, 305 char *out, int out_size, 306 char *tmp_buf, int tmp_buf_size); 307 308 enum { 309 SYMBOL_BUF_SIZE = 3072, 310 TMP_BUF_SIZE = 1024, 311 SYMBOL_CACHE_LINES = 128, 312 }; 313 314 AddrMap addr_map_; 315 316 bool ok_; 317 bool addr_map_read_; 318 319 char symbol_buf_[SYMBOL_BUF_SIZE]; 320 321 // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym) 322 // so we ensure that tmp_buf_ is properly aligned to store either. 323 alignas(16) char tmp_buf_[TMP_BUF_SIZE]; 324 static_assert(alignof(ElfW(Shdr)) <= 16, 325 "alignment of tmp buf too small for Shdr"); 326 static_assert(alignof(ElfW(Sym)) <= 16, 327 "alignment of tmp buf too small for Sym"); 328 329 SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES]; 330}; 331 332static std::atomic<Symbolizer *> g_cached_symbolizer; 333 334} // namespace 335 336static int SymbolizerSize() { 337#if defined(__wasm__) || defined(__asmjs__) 338 int pagesize = getpagesize(); 339#else 340 int pagesize = sysconf(_SC_PAGESIZE); 341#endif 342 return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize; 343} 344 345// Return (and set null) g_cached_symbolized_state if it is not null. 346// Otherwise return a new symbolizer. 347static Symbolizer *AllocateSymbolizer() { 348 InitSigSafeArena(); 349 Symbolizer *symbolizer = 350 g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire); 351 if (symbolizer != nullptr) { 352 return symbolizer; 353 } 354 return new (base_internal::LowLevelAlloc::AllocWithArena( 355 SymbolizerSize(), SigSafeArena())) Symbolizer(); 356} 357 358// Set g_cached_symbolize_state to s if it is null, otherwise 359// delete s. 360static void FreeSymbolizer(Symbolizer *s) { 361 Symbolizer *old_cached_symbolizer = nullptr; 362 if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s, 363 std::memory_order_release, 364 std::memory_order_relaxed)) { 365 s->~Symbolizer(); 366 base_internal::LowLevelAlloc::Free(s); 367 } 368} 369 370Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) { 371 for (SymbolCacheLine &symbol_cache_line : symbol_cache_) { 372 for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) { 373 symbol_cache_line.pc[j] = nullptr; 374 symbol_cache_line.name[j] = nullptr; 375 symbol_cache_line.age[j] = 0; 376 } 377 } 378} 379 380Symbolizer::~Symbolizer() { 381 for (SymbolCacheLine &symbol_cache_line : symbol_cache_) { 382 for (char *s : symbol_cache_line.name) { 383 base_internal::LowLevelAlloc::Free(s); 384 } 385 } 386 ClearAddrMap(); 387} 388 389// We don't use assert() since it's not guaranteed to be 390// async-signal-safe. Instead we define a minimal assertion 391// macro. So far, we don't need pretty printing for __FILE__, etc. 392#define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort()) 393 394// Read up to "count" bytes from file descriptor "fd" into the buffer 395// starting at "buf" while handling short reads and EINTR. On 396// success, return the number of bytes read. Otherwise, return -1. 397static ssize_t ReadPersistent(int fd, void *buf, size_t count) { 398 SAFE_ASSERT(fd >= 0); 399 SAFE_ASSERT(count <= SSIZE_MAX); 400 char *buf0 = reinterpret_cast<char *>(buf); 401 size_t num_bytes = 0; 402 while (num_bytes < count) { 403 ssize_t len; 404 NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes)); 405 if (len < 0) { // There was an error other than EINTR. 406 ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno); 407 return -1; 408 } 409 if (len == 0) { // Reached EOF. 410 break; 411 } 412 num_bytes += len; 413 } 414 SAFE_ASSERT(num_bytes <= count); 415 return static_cast<ssize_t>(num_bytes); 416} 417 418// Read up to "count" bytes from "offset" in the file pointed by file 419// descriptor "fd" into the buffer starting at "buf". On success, 420// return the number of bytes read. Otherwise, return -1. 421static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count, 422 const off_t offset) { 423 off_t off = lseek(fd, offset, SEEK_SET); 424 if (off == (off_t)-1) { 425 ABSL_RAW_LOG(WARNING, "lseek(%d, %ju, SEEK_SET) failed: errno=%d", fd, 426 static_cast<uintmax_t>(offset), errno); 427 return -1; 428 } 429 return ReadPersistent(fd, buf, count); 430} 431 432// Try reading exactly "count" bytes from "offset" bytes in a file 433// pointed by "fd" into the buffer starting at "buf" while handling 434// short reads and EINTR. On success, return true. Otherwise, return 435// false. 436static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count, 437 const off_t offset) { 438 ssize_t len = ReadFromOffset(fd, buf, count, offset); 439 return len >= 0 && static_cast<size_t>(len) == count; 440} 441 442// Returns elf_header.e_type if the file pointed by fd is an ELF binary. 443static int FileGetElfType(const int fd) { 444 ElfW(Ehdr) elf_header; 445 if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { 446 return -1; 447 } 448 if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) { 449 return -1; 450 } 451 return elf_header.e_type; 452} 453 454// Read the section headers in the given ELF binary, and if a section 455// of the specified type is found, set the output to this section header 456// and return true. Otherwise, return false. 457// To keep stack consumption low, we would like this function to not get 458// inlined. 459static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType( 460 const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type, 461 ElfW(Shdr) * out, char *tmp_buf, int tmp_buf_size) { 462 ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf); 463 const int buf_entries = tmp_buf_size / sizeof(buf[0]); 464 const int buf_bytes = buf_entries * sizeof(buf[0]); 465 466 for (int i = 0; i < sh_num;) { 467 const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]); 468 const ssize_t num_bytes_to_read = 469 (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes; 470 const off_t offset = sh_offset + i * sizeof(buf[0]); 471 const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, offset); 472 if (len % sizeof(buf[0]) != 0) { 473 ABSL_RAW_LOG( 474 WARNING, 475 "Reading %zd bytes from offset %ju returned %zd which is not a " 476 "multiple of %zu.", 477 num_bytes_to_read, static_cast<uintmax_t>(offset), len, 478 sizeof(buf[0])); 479 return false; 480 } 481 const ssize_t num_headers_in_buf = len / sizeof(buf[0]); 482 SAFE_ASSERT(num_headers_in_buf <= buf_entries); 483 for (int j = 0; j < num_headers_in_buf; ++j) { 484 if (buf[j].sh_type == type) { 485 *out = buf[j]; 486 return true; 487 } 488 } 489 i += num_headers_in_buf; 490 } 491 return false; 492} 493 494// There is no particular reason to limit section name to 63 characters, 495// but there has (as yet) been no need for anything longer either. 496const int kMaxSectionNameLen = 64; 497 498bool ForEachSection(int fd, 499 const std::function<bool(const std::string &name, 500 const ElfW(Shdr) &)> &callback) { 501 ElfW(Ehdr) elf_header; 502 if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { 503 return false; 504 } 505 506 ElfW(Shdr) shstrtab; 507 off_t shstrtab_offset = 508 (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx); 509 if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) { 510 return false; 511 } 512 513 for (int i = 0; i < elf_header.e_shnum; ++i) { 514 ElfW(Shdr) out; 515 off_t section_header_offset = 516 (elf_header.e_shoff + elf_header.e_shentsize * i); 517 if (!ReadFromOffsetExact(fd, &out, sizeof(out), section_header_offset)) { 518 return false; 519 } 520 off_t name_offset = shstrtab.sh_offset + out.sh_name; 521 char header_name[kMaxSectionNameLen + 1]; 522 ssize_t n_read = 523 ReadFromOffset(fd, &header_name, kMaxSectionNameLen, name_offset); 524 if (n_read == -1) { 525 return false; 526 } else if (n_read > kMaxSectionNameLen) { 527 // Long read? 528 return false; 529 } 530 header_name[n_read] = '\0'; 531 532 std::string name(header_name); 533 if (!callback(name, out)) { 534 break; 535 } 536 } 537 return true; 538} 539 540// name_len should include terminating '\0'. 541bool GetSectionHeaderByName(int fd, const char *name, size_t name_len, 542 ElfW(Shdr) * out) { 543 char header_name[kMaxSectionNameLen]; 544 if (sizeof(header_name) < name_len) { 545 ABSL_RAW_LOG(WARNING, 546 "Section name '%s' is too long (%zu); " 547 "section will not be found (even if present).", 548 name, name_len); 549 // No point in even trying. 550 return false; 551 } 552 553 ElfW(Ehdr) elf_header; 554 if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { 555 return false; 556 } 557 558 ElfW(Shdr) shstrtab; 559 off_t shstrtab_offset = 560 (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx); 561 if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) { 562 return false; 563 } 564 565 for (int i = 0; i < elf_header.e_shnum; ++i) { 566 off_t section_header_offset = 567 (elf_header.e_shoff + elf_header.e_shentsize * i); 568 if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) { 569 return false; 570 } 571 off_t name_offset = shstrtab.sh_offset + out->sh_name; 572 ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset); 573 if (n_read < 0) { 574 return false; 575 } else if (static_cast<size_t>(n_read) != name_len) { 576 // Short read -- name could be at end of file. 577 continue; 578 } 579 if (memcmp(header_name, name, name_len) == 0) { 580 return true; 581 } 582 } 583 return false; 584} 585 586// Compare symbols at in the same address. 587// Return true if we should pick symbol1. 588static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1, 589 const ElfW(Sym) & symbol2) { 590 // If one of the symbols is weak and the other is not, pick the one 591 // this is not a weak symbol. 592 char bind1 = ELF_ST_BIND(symbol1.st_info); 593 char bind2 = ELF_ST_BIND(symbol1.st_info); 594 if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false; 595 if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true; 596 597 // If one of the symbols has zero size and the other is not, pick the 598 // one that has non-zero size. 599 if (symbol1.st_size != 0 && symbol2.st_size == 0) { 600 return true; 601 } 602 if (symbol1.st_size == 0 && symbol2.st_size != 0) { 603 return false; 604 } 605 606 // If one of the symbols has no type and the other is not, pick the 607 // one that has a type. 608 char type1 = ELF_ST_TYPE(symbol1.st_info); 609 char type2 = ELF_ST_TYPE(symbol1.st_info); 610 if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) { 611 return true; 612 } 613 if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) { 614 return false; 615 } 616 617 // Pick the first one, if we still cannot decide. 618 return true; 619} 620 621// Return true if an address is inside a section. 622static bool InSection(const void *address, const ElfW(Shdr) * section) { 623 const char *start = reinterpret_cast<const char *>(section->sh_addr); 624 size_t size = static_cast<size_t>(section->sh_size); 625 return start <= address && address < (start + size); 626} 627 628static const char *ComputeOffset(const char *base, ptrdiff_t offset) { 629 // Note: cast to uintptr_t to avoid undefined behavior when base evaluates to 630 // zero and offset is non-zero. 631 return reinterpret_cast<const char *>( 632 reinterpret_cast<uintptr_t>(base) + offset); 633} 634 635// Read a symbol table and look for the symbol containing the 636// pc. Iterate over symbols in a symbol table and look for the symbol 637// containing "pc". If the symbol is found, and its name fits in 638// out_size, the name is written into out and SYMBOL_FOUND is returned. 639// If the name does not fit, truncated name is written into out, 640// and SYMBOL_TRUNCATED is returned. Out is NUL-terminated. 641// If the symbol is not found, SYMBOL_NOT_FOUND is returned; 642// To keep stack consumption low, we would like this function to not get 643// inlined. 644static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol( 645 const void *const pc, const int fd, char *out, int out_size, 646 ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab, 647 const ElfW(Shdr) * opd, char *tmp_buf, int tmp_buf_size) { 648 if (symtab == nullptr) { 649 return SYMBOL_NOT_FOUND; 650 } 651 652 // Read multiple symbols at once to save read() calls. 653 ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf); 654 const int buf_entries = tmp_buf_size / sizeof(buf[0]); 655 656 const int num_symbols = symtab->sh_size / symtab->sh_entsize; 657 658 // On platforms using an .opd section (PowerPC & IA64), a function symbol 659 // has the address of a function descriptor, which contains the real 660 // starting address. However, we do not always want to use the real 661 // starting address because we sometimes want to symbolize a function 662 // pointer into the .opd section, e.g. FindSymbol(&foo,...). 663 const bool pc_in_opd = 664 kPlatformUsesOPDSections && opd != nullptr && InSection(pc, opd); 665 const bool deref_function_descriptor_pointer = 666 kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd; 667 668 ElfW(Sym) best_match; 669 SafeMemZero(&best_match, sizeof(best_match)); 670 bool found_match = false; 671 for (int i = 0; i < num_symbols;) { 672 off_t offset = symtab->sh_offset + i * symtab->sh_entsize; 673 const int num_remaining_symbols = num_symbols - i; 674 const int entries_in_chunk = std::min(num_remaining_symbols, buf_entries); 675 const int bytes_in_chunk = entries_in_chunk * sizeof(buf[0]); 676 const ssize_t len = ReadFromOffset(fd, buf, bytes_in_chunk, offset); 677 SAFE_ASSERT(len % sizeof(buf[0]) == 0); 678 const ssize_t num_symbols_in_buf = len / sizeof(buf[0]); 679 SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk); 680 for (int j = 0; j < num_symbols_in_buf; ++j) { 681 const ElfW(Sym) &symbol = buf[j]; 682 683 // For a DSO, a symbol address is relocated by the loading address. 684 // We keep the original address for opd redirection below. 685 const char *const original_start_address = 686 reinterpret_cast<const char *>(symbol.st_value); 687 const char *start_address = 688 ComputeOffset(original_start_address, relocation); 689 690 if (deref_function_descriptor_pointer && 691 InSection(original_start_address, opd)) { 692 // The opd section is mapped into memory. Just dereference 693 // start_address to get the first double word, which points to the 694 // function entry. 695 start_address = *reinterpret_cast<const char *const *>(start_address); 696 } 697 698 // If pc is inside the .opd section, it points to a function descriptor. 699 const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size; 700 const void *const end_address = ComputeOffset(start_address, size); 701 if (symbol.st_value != 0 && // Skip null value symbols. 702 symbol.st_shndx != 0 && // Skip undefined symbols. 703#ifdef STT_TLS 704 ELF_ST_TYPE(symbol.st_info) != STT_TLS && // Skip thread-local data. 705#endif // STT_TLS 706 ((start_address <= pc && pc < end_address) || 707 (start_address == pc && pc == end_address))) { 708 if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) { 709 found_match = true; 710 best_match = symbol; 711 } 712 } 713 } 714 i += num_symbols_in_buf; 715 } 716 717 if (found_match) { 718 const size_t off = strtab->sh_offset + best_match.st_name; 719 const ssize_t n_read = ReadFromOffset(fd, out, out_size, off); 720 if (n_read <= 0) { 721 // This should never happen. 722 ABSL_RAW_LOG(WARNING, 723 "Unable to read from fd %d at offset %zu: n_read = %zd", fd, 724 off, n_read); 725 return SYMBOL_NOT_FOUND; 726 } 727 ABSL_RAW_CHECK(n_read <= out_size, "ReadFromOffset read too much data."); 728 729 // strtab->sh_offset points into .strtab-like section that contains 730 // NUL-terminated strings: '\0foo\0barbaz\0...". 731 // 732 // sh_offset+st_name points to the start of symbol name, but we don't know 733 // how long the symbol is, so we try to read as much as we have space for, 734 // and usually over-read (i.e. there is a NUL somewhere before n_read). 735 if (memchr(out, '\0', n_read) == nullptr) { 736 // Either out_size was too small (n_read == out_size and no NUL), or 737 // we tried to read past the EOF (n_read < out_size) and .strtab is 738 // corrupt (missing terminating NUL; should never happen for valid ELF). 739 out[n_read - 1] = '\0'; 740 return SYMBOL_TRUNCATED; 741 } 742 return SYMBOL_FOUND; 743 } 744 745 return SYMBOL_NOT_FOUND; 746} 747 748// Get the symbol name of "pc" from the file pointed by "fd". Process 749// both regular and dynamic symbol tables if necessary. 750// See FindSymbol() comment for description of return value. 751FindSymbolResult Symbolizer::GetSymbolFromObjectFile( 752 const ObjFile &obj, const void *const pc, const ptrdiff_t relocation, 753 char *out, int out_size, char *tmp_buf, int tmp_buf_size) { 754 ElfW(Shdr) symtab; 755 ElfW(Shdr) strtab; 756 ElfW(Shdr) opd; 757 ElfW(Shdr) *opd_ptr = nullptr; 758 759 // On platforms using an .opd sections for function descriptor, read 760 // the section header. The .opd section is in data segment and should be 761 // loaded but we check that it is mapped just to be extra careful. 762 if (kPlatformUsesOPDSections) { 763 if (GetSectionHeaderByName(obj.fd, kOpdSectionName, 764 sizeof(kOpdSectionName) - 1, &opd) && 765 FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation, 766 opd.sh_size) != nullptr) { 767 opd_ptr = &opd; 768 } else { 769 return SYMBOL_NOT_FOUND; 770 } 771 } 772 773 // Consult a regular symbol table, then fall back to the dynamic symbol table. 774 for (const auto symbol_table_type : {SHT_SYMTAB, SHT_DYNSYM}) { 775 if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum, 776 obj.elf_header.e_shoff, symbol_table_type, 777 &symtab, tmp_buf, tmp_buf_size)) { 778 continue; 779 } 780 if (!ReadFromOffsetExact( 781 obj.fd, &strtab, sizeof(strtab), 782 obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) { 783 continue; 784 } 785 const FindSymbolResult rc = 786 FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab, 787 opd_ptr, tmp_buf, tmp_buf_size); 788 if (rc != SYMBOL_NOT_FOUND) { 789 return rc; 790 } 791 } 792 793 return SYMBOL_NOT_FOUND; 794} 795 796namespace { 797// Thin wrapper around a file descriptor so that the file descriptor 798// gets closed for sure. 799class FileDescriptor { 800 public: 801 explicit FileDescriptor(int fd) : fd_(fd) {} 802 FileDescriptor(const FileDescriptor &) = delete; 803 FileDescriptor &operator=(const FileDescriptor &) = delete; 804 805 ~FileDescriptor() { 806 if (fd_ >= 0) { 807 NO_INTR(close(fd_)); 808 } 809 } 810 811 int get() const { return fd_; } 812 813 private: 814 const int fd_; 815}; 816 817// Helper class for reading lines from file. 818// 819// Note: we don't use ProcMapsIterator since the object is big (it has 820// a 5k array member) and uses async-unsafe functions such as sscanf() 821// and snprintf(). 822class LineReader { 823 public: 824 explicit LineReader(int fd, char *buf, int buf_len) 825 : fd_(fd), 826 buf_len_(buf_len), 827 buf_(buf), 828 bol_(buf), 829 eol_(buf), 830 eod_(buf) {} 831 832 LineReader(const LineReader &) = delete; 833 LineReader &operator=(const LineReader &) = delete; 834 835 // Read '\n'-terminated line from file. On success, modify "bol" 836 // and "eol", then return true. Otherwise, return false. 837 // 838 // Note: if the last line doesn't end with '\n', the line will be 839 // dropped. It's an intentional behavior to make the code simple. 840 bool ReadLine(const char **bol, const char **eol) { 841 if (BufferIsEmpty()) { // First time. 842 const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_); 843 if (num_bytes <= 0) { // EOF or error. 844 return false; 845 } 846 eod_ = buf_ + num_bytes; 847 bol_ = buf_; 848 } else { 849 bol_ = eol_ + 1; // Advance to the next line in the buffer. 850 SAFE_ASSERT(bol_ <= eod_); // "bol_" can point to "eod_". 851 if (!HasCompleteLine()) { 852 const int incomplete_line_length = eod_ - bol_; 853 // Move the trailing incomplete line to the beginning. 854 memmove(buf_, bol_, incomplete_line_length); 855 // Read text from file and append it. 856 char *const append_pos = buf_ + incomplete_line_length; 857 const int capacity_left = buf_len_ - incomplete_line_length; 858 const ssize_t num_bytes = 859 ReadPersistent(fd_, append_pos, capacity_left); 860 if (num_bytes <= 0) { // EOF or error. 861 return false; 862 } 863 eod_ = append_pos + num_bytes; 864 bol_ = buf_; 865 } 866 } 867 eol_ = FindLineFeed(); 868 if (eol_ == nullptr) { // '\n' not found. Malformed line. 869 return false; 870 } 871 *eol_ = '\0'; // Replace '\n' with '\0'. 872 873 *bol = bol_; 874 *eol = eol_; 875 return true; 876 } 877 878 private: 879 char *FindLineFeed() const { 880 return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_)); 881 } 882 883 bool BufferIsEmpty() const { return buf_ == eod_; } 884 885 bool HasCompleteLine() const { 886 return !BufferIsEmpty() && FindLineFeed() != nullptr; 887 } 888 889 const int fd_; 890 const int buf_len_; 891 char *const buf_; 892 char *bol_; 893 char *eol_; 894 const char *eod_; // End of data in "buf_". 895}; 896} // namespace 897 898// Place the hex number read from "start" into "*hex". The pointer to 899// the first non-hex character or "end" is returned. 900static const char *GetHex(const char *start, const char *end, 901 uint64_t *const value) { 902 uint64_t hex = 0; 903 const char *p; 904 for (p = start; p < end; ++p) { 905 int ch = *p; 906 if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') || 907 (ch >= 'a' && ch <= 'f')) { 908 hex = (hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9); 909 } else { // Encountered the first non-hex character. 910 break; 911 } 912 } 913 SAFE_ASSERT(p <= end); 914 *value = hex; 915 return p; 916} 917 918static const char *GetHex(const char *start, const char *end, 919 const void **const addr) { 920 uint64_t hex = 0; 921 const char *p = GetHex(start, end, &hex); 922 *addr = reinterpret_cast<void *>(hex); 923 return p; 924} 925 926// Normally we are only interested in "r?x" maps. 927// On the PowerPC, function pointers point to descriptors in the .opd 928// section. The descriptors themselves are not executable code, so 929// we need to relax the check below to "r??". 930static bool ShouldUseMapping(const char *const flags) { 931 return flags[0] == 'r' && (kPlatformUsesOPDSections || flags[2] == 'x'); 932} 933 934// Read /proc/self/maps and run "callback" for each mmapped file found. If 935// "callback" returns false, stop scanning and return true. Else continue 936// scanning /proc/self/maps. Return true if no parse error is found. 937static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap( 938 bool (*callback)(const char *filename, const void *const start_addr, 939 const void *const end_addr, uint64_t offset, void *arg), 940 void *arg, void *tmp_buf, int tmp_buf_size) { 941 // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter 942 // requires kernel to stop all threads, and is significantly slower when there 943 // are 1000s of threads. 944 char maps_path[80]; 945 snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid()); 946 947 int maps_fd; 948 NO_INTR(maps_fd = open(maps_path, O_RDONLY)); 949 FileDescriptor wrapped_maps_fd(maps_fd); 950 if (wrapped_maps_fd.get() < 0) { 951 ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno); 952 return false; 953 } 954 955 // Iterate over maps and look for the map containing the pc. Then 956 // look into the symbol tables inside. 957 LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf), 958 tmp_buf_size); 959 while (true) { 960 const char *cursor; 961 const char *eol; 962 if (!reader.ReadLine(&cursor, &eol)) { // EOF or malformed line. 963 break; 964 } 965 966 const char *line = cursor; 967 const void *start_address; 968 // Start parsing line in /proc/self/maps. Here is an example: 969 // 970 // 08048000-0804c000 r-xp 00000000 08:01 2142121 /bin/cat 971 // 972 // We want start address (08048000), end address (0804c000), flags 973 // (r-xp) and file name (/bin/cat). 974 975 // Read start address. 976 cursor = GetHex(cursor, eol, &start_address); 977 if (cursor == eol || *cursor != '-') { 978 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line); 979 return false; 980 } 981 ++cursor; // Skip '-'. 982 983 // Read end address. 984 const void *end_address; 985 cursor = GetHex(cursor, eol, &end_address); 986 if (cursor == eol || *cursor != ' ') { 987 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line); 988 return false; 989 } 990 ++cursor; // Skip ' '. 991 992 // Read flags. Skip flags until we encounter a space or eol. 993 const char *const flags_start = cursor; 994 while (cursor < eol && *cursor != ' ') { 995 ++cursor; 996 } 997 // We expect at least four letters for flags (ex. "r-xp"). 998 if (cursor == eol || cursor < flags_start + 4) { 999 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line); 1000 return false; 1001 } 1002 1003 // Check flags. 1004 if (!ShouldUseMapping(flags_start)) { 1005 continue; // We skip this map. 1006 } 1007 ++cursor; // Skip ' '. 1008 1009 // Read file offset. 1010 uint64_t offset; 1011 cursor = GetHex(cursor, eol, &offset); 1012 ++cursor; // Skip ' '. 1013 1014 // Skip to file name. "cursor" now points to dev. We need to skip at least 1015 // two spaces for dev and inode. 1016 int num_spaces = 0; 1017 while (cursor < eol) { 1018 if (*cursor == ' ') { 1019 ++num_spaces; 1020 } else if (num_spaces >= 2) { 1021 // The first non-space character after skipping two spaces 1022 // is the beginning of the file name. 1023 break; 1024 } 1025 ++cursor; 1026 } 1027 1028 // Check whether this entry corresponds to our hint table for the true 1029 // filename. 1030 bool hinted = 1031 GetFileMappingHint(&start_address, &end_address, &offset, &cursor); 1032 if (!hinted && (cursor == eol || cursor[0] == '[')) { 1033 // not an object file, typically [vdso] or [vsyscall] 1034 continue; 1035 } 1036 if (!callback(cursor, start_address, end_address, offset, arg)) break; 1037 } 1038 return true; 1039} 1040 1041// Find the objfile mapped in address region containing [addr, addr + len). 1042ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) { 1043 for (int i = 0; i < 2; ++i) { 1044 if (!ok_) return nullptr; 1045 1046 // Read /proc/self/maps if necessary 1047 if (!addr_map_read_) { 1048 addr_map_read_ = true; 1049 if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) { 1050 ok_ = false; 1051 return nullptr; 1052 } 1053 } 1054 1055 int lo = 0; 1056 int hi = addr_map_.Size(); 1057 while (lo < hi) { 1058 int mid = (lo + hi) / 2; 1059 if (addr < addr_map_.At(mid)->end_addr) { 1060 hi = mid; 1061 } else { 1062 lo = mid + 1; 1063 } 1064 } 1065 if (lo != addr_map_.Size()) { 1066 ObjFile *obj = addr_map_.At(lo); 1067 SAFE_ASSERT(obj->end_addr > addr); 1068 if (addr >= obj->start_addr && 1069 reinterpret_cast<const char *>(addr) + len <= obj->end_addr) 1070 return obj; 1071 } 1072 1073 // The address mapping may have changed since it was last read. Retry. 1074 ClearAddrMap(); 1075 } 1076 return nullptr; 1077} 1078 1079void Symbolizer::ClearAddrMap() { 1080 for (int i = 0; i != addr_map_.Size(); i++) { 1081 ObjFile *o = addr_map_.At(i); 1082 base_internal::LowLevelAlloc::Free(o->filename); 1083 if (o->fd >= 0) { 1084 NO_INTR(close(o->fd)); 1085 } 1086 } 1087 addr_map_.Clear(); 1088 addr_map_read_ = false; 1089} 1090 1091// Callback for ReadAddrMap to register objfiles in an in-memory table. 1092bool Symbolizer::RegisterObjFile(const char *filename, 1093 const void *const start_addr, 1094 const void *const end_addr, uint64_t offset, 1095 void *arg) { 1096 Symbolizer *impl = static_cast<Symbolizer *>(arg); 1097 1098 // Files are supposed to be added in the increasing address order. Make 1099 // sure that's the case. 1100 int addr_map_size = impl->addr_map_.Size(); 1101 if (addr_map_size != 0) { 1102 ObjFile *old = impl->addr_map_.At(addr_map_size - 1); 1103 if (old->end_addr > end_addr) { 1104 ABSL_RAW_LOG(ERROR, 1105 "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR 1106 ": %s", 1107 reinterpret_cast<uintptr_t>(end_addr), filename, 1108 reinterpret_cast<uintptr_t>(old->end_addr), old->filename); 1109 return true; 1110 } else if (old->end_addr == end_addr) { 1111 // The same entry appears twice. This sometimes happens for [vdso]. 1112 if (old->start_addr != start_addr || 1113 strcmp(old->filename, filename) != 0) { 1114 ABSL_RAW_LOG(ERROR, 1115 "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s", 1116 reinterpret_cast<uintptr_t>(end_addr), filename, 1117 reinterpret_cast<uintptr_t>(old->end_addr), old->filename); 1118 } 1119 return true; 1120 } 1121 } 1122 ObjFile *obj = impl->addr_map_.Add(); 1123 obj->filename = impl->CopyString(filename); 1124 obj->start_addr = start_addr; 1125 obj->end_addr = end_addr; 1126 obj->offset = offset; 1127 obj->elf_type = -1; // filled on demand 1128 obj->fd = -1; // opened on demand 1129 return true; 1130} 1131 1132// This function wraps the Demangle function to provide an interface 1133// where the input symbol is demangled in-place. 1134// To keep stack consumption low, we would like this function to not 1135// get inlined. 1136static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size, 1137 char *tmp_buf, 1138 int tmp_buf_size) { 1139 if (Demangle(out, tmp_buf, tmp_buf_size)) { 1140 // Demangling succeeded. Copy to out if the space allows. 1141 int len = strlen(tmp_buf); 1142 if (len + 1 <= out_size) { // +1 for '\0'. 1143 SAFE_ASSERT(len < tmp_buf_size); 1144 memmove(out, tmp_buf, len + 1); 1145 } 1146 } 1147} 1148 1149SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) { 1150 uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc); 1151 pc0 >>= 3; // drop the low 3 bits 1152 1153 // Shuffle bits. 1154 pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18); 1155 return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES]; 1156} 1157 1158void Symbolizer::AgeSymbols(SymbolCacheLine *line) { 1159 for (uint32_t &age : line->age) { 1160 ++age; 1161 } 1162} 1163 1164const char *Symbolizer::FindSymbolInCache(const void *const pc) { 1165 if (pc == nullptr) return nullptr; 1166 1167 SymbolCacheLine *line = GetCacheLine(pc); 1168 for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) { 1169 if (line->pc[i] == pc) { 1170 AgeSymbols(line); 1171 line->age[i] = 0; 1172 return line->name[i]; 1173 } 1174 } 1175 return nullptr; 1176} 1177 1178const char *Symbolizer::InsertSymbolInCache(const void *const pc, 1179 const char *name) { 1180 SAFE_ASSERT(pc != nullptr); 1181 1182 SymbolCacheLine *line = GetCacheLine(pc); 1183 uint32_t max_age = 0; 1184 int oldest_index = -1; 1185 for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) { 1186 if (line->pc[i] == nullptr) { 1187 AgeSymbols(line); 1188 line->pc[i] = pc; 1189 line->name[i] = CopyString(name); 1190 line->age[i] = 0; 1191 return line->name[i]; 1192 } 1193 if (line->age[i] >= max_age) { 1194 max_age = line->age[i]; 1195 oldest_index = i; 1196 } 1197 } 1198 1199 AgeSymbols(line); 1200 ABSL_RAW_CHECK(oldest_index >= 0, "Corrupt cache"); 1201 base_internal::LowLevelAlloc::Free(line->name[oldest_index]); 1202 line->pc[oldest_index] = pc; 1203 line->name[oldest_index] = CopyString(name); 1204 line->age[oldest_index] = 0; 1205 return line->name[oldest_index]; 1206} 1207 1208static void MaybeOpenFdFromSelfExe(ObjFile *obj) { 1209 if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) { 1210 return; 1211 } 1212 int fd = open("/proc/self/exe", O_RDONLY); 1213 if (fd == -1) { 1214 return; 1215 } 1216 // Verify that contents of /proc/self/exe matches in-memory image of 1217 // the binary. This can fail if the "deleted" binary is in fact not 1218 // the main executable, or for binaries that have the first PT_LOAD 1219 // segment smaller than 4K. We do it in four steps so that the 1220 // buffer is smaller and we don't consume too much stack space. 1221 const char *mem = reinterpret_cast<const char *>(obj->start_addr); 1222 for (int i = 0; i < 4; ++i) { 1223 char buf[1024]; 1224 ssize_t n = read(fd, buf, sizeof(buf)); 1225 if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) { 1226 close(fd); 1227 return; 1228 } 1229 mem += sizeof(buf); 1230 } 1231 obj->fd = fd; 1232} 1233 1234static bool MaybeInitializeObjFile(ObjFile *obj) { 1235 if (obj->fd < 0) { 1236 obj->fd = open(obj->filename, O_RDONLY); 1237 1238 if (obj->fd < 0) { 1239 // Getting /proc/self/exe here means that we were hinted. 1240 if (strcmp(obj->filename, "/proc/self/exe") == 0) { 1241 // /proc/self/exe may be inaccessible (due to setuid, etc.), so try 1242 // accessing the binary via argv0. 1243 if (argv0_value != nullptr) { 1244 obj->fd = open(argv0_value, O_RDONLY); 1245 } 1246 } else { 1247 MaybeOpenFdFromSelfExe(obj); 1248 } 1249 } 1250 1251 if (obj->fd < 0) { 1252 ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno); 1253 return false; 1254 } 1255 obj->elf_type = FileGetElfType(obj->fd); 1256 if (obj->elf_type < 0) { 1257 ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename, 1258 obj->elf_type); 1259 return false; 1260 } 1261 1262 if (!ReadFromOffsetExact(obj->fd, &obj->elf_header, sizeof(obj->elf_header), 1263 0)) { 1264 ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename); 1265 return false; 1266 } 1267 } 1268 return true; 1269} 1270 1271// The implementation of our symbolization routine. If it 1272// successfully finds the symbol containing "pc" and obtains the 1273// symbol name, returns pointer to that symbol. Otherwise, returns nullptr. 1274// If any symbol decorators have been installed via InstallSymbolDecorator(), 1275// they are called here as well. 1276// To keep stack consumption low, we would like this function to not 1277// get inlined. 1278const char *Symbolizer::GetSymbol(const void *const pc) { 1279 const char *entry = FindSymbolInCache(pc); 1280 if (entry != nullptr) { 1281 return entry; 1282 } 1283 symbol_buf_[0] = '\0'; 1284 1285 ObjFile *const obj = FindObjFile(pc, 1); 1286 ptrdiff_t relocation = 0; 1287 int fd = -1; 1288 if (obj != nullptr) { 1289 if (MaybeInitializeObjFile(obj)) { 1290 if (obj->elf_type == ET_DYN && 1291 reinterpret_cast<uint64_t>(obj->start_addr) >= obj->offset) { 1292 // This object was relocated. 1293 // 1294 // For obj->offset > 0, adjust the relocation since a mapping at offset 1295 // X in the file will have a start address of [true relocation]+X. 1296 relocation = reinterpret_cast<ptrdiff_t>(obj->start_addr) - obj->offset; 1297 } 1298 1299 fd = obj->fd; 1300 } 1301 if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_, 1302 sizeof(symbol_buf_), tmp_buf_, 1303 sizeof(tmp_buf_)) == SYMBOL_FOUND) { 1304 // Only try to demangle the symbol name if it fit into symbol_buf_. 1305 DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_, 1306 sizeof(tmp_buf_)); 1307 } 1308 } else { 1309#if ABSL_HAVE_VDSO_SUPPORT 1310 VDSOSupport vdso; 1311 if (vdso.IsPresent()) { 1312 VDSOSupport::SymbolInfo symbol_info; 1313 if (vdso.LookupSymbolByAddress(pc, &symbol_info)) { 1314 // All VDSO symbols are known to be short. 1315 size_t len = strlen(symbol_info.name); 1316 ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_), 1317 "VDSO symbol unexpectedly long"); 1318 memcpy(symbol_buf_, symbol_info.name, len + 1); 1319 } 1320 } 1321#endif 1322 } 1323 1324 if (g_decorators_mu.TryLock()) { 1325 if (g_num_decorators > 0) { 1326 SymbolDecoratorArgs decorator_args = { 1327 pc, relocation, fd, symbol_buf_, sizeof(symbol_buf_), 1328 tmp_buf_, sizeof(tmp_buf_), nullptr}; 1329 for (int i = 0; i < g_num_decorators; ++i) { 1330 decorator_args.arg = g_decorators[i].arg; 1331 g_decorators[i].fn(&decorator_args); 1332 } 1333 } 1334 g_decorators_mu.Unlock(); 1335 } 1336 if (symbol_buf_[0] == '\0') { 1337 return nullptr; 1338 } 1339 symbol_buf_[sizeof(symbol_buf_) - 1] = '\0'; // Paranoia. 1340 return InsertSymbolInCache(pc, symbol_buf_); 1341} 1342 1343bool RemoveAllSymbolDecorators(void) { 1344 if (!g_decorators_mu.TryLock()) { 1345 // Someone else is using decorators. Get out. 1346 return false; 1347 } 1348 g_num_decorators = 0; 1349 g_decorators_mu.Unlock(); 1350 return true; 1351} 1352 1353bool RemoveSymbolDecorator(int ticket) { 1354 if (!g_decorators_mu.TryLock()) { 1355 // Someone else is using decorators. Get out. 1356 return false; 1357 } 1358 for (int i = 0; i < g_num_decorators; ++i) { 1359 if (g_decorators[i].ticket == ticket) { 1360 while (i < g_num_decorators - 1) { 1361 g_decorators[i] = g_decorators[i + 1]; 1362 ++i; 1363 } 1364 g_num_decorators = i; 1365 break; 1366 } 1367 } 1368 g_decorators_mu.Unlock(); 1369 return true; // Decorator is known to be removed. 1370} 1371 1372int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) { 1373 static int ticket = 0; 1374 1375 if (!g_decorators_mu.TryLock()) { 1376 // Someone else is using decorators. Get out. 1377 return false; 1378 } 1379 int ret = ticket; 1380 if (g_num_decorators >= kMaxDecorators) { 1381 ret = -1; 1382 } else { 1383 g_decorators[g_num_decorators] = {decorator, arg, ticket++}; 1384 ++g_num_decorators; 1385 } 1386 g_decorators_mu.Unlock(); 1387 return ret; 1388} 1389 1390bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset, 1391 const char *filename) { 1392 SAFE_ASSERT(start <= end); 1393 SAFE_ASSERT(filename != nullptr); 1394 1395 InitSigSafeArena(); 1396 1397 if (!g_file_mapping_mu.TryLock()) { 1398 return false; 1399 } 1400 1401 bool ret = true; 1402 if (g_num_file_mapping_hints >= kMaxFileMappingHints) { 1403 ret = false; 1404 } else { 1405 // TODO(ckennelly): Move this into a std::string copy routine. 1406 int len = strlen(filename); 1407 char *dst = static_cast<char *>( 1408 base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena())); 1409 ABSL_RAW_CHECK(dst != nullptr, "out of memory"); 1410 memcpy(dst, filename, len + 1); 1411 1412 auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++]; 1413 hint.start = start; 1414 hint.end = end; 1415 hint.offset = offset; 1416 hint.filename = dst; 1417 } 1418 1419 g_file_mapping_mu.Unlock(); 1420 return ret; 1421} 1422 1423bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset, 1424 const char **filename) { 1425 if (!g_file_mapping_mu.TryLock()) { 1426 return false; 1427 } 1428 bool found = false; 1429 for (int i = 0; i < g_num_file_mapping_hints; i++) { 1430 if (g_file_mapping_hints[i].start <= *start && 1431 *end <= g_file_mapping_hints[i].end) { 1432 // We assume that the start_address for the mapping is the base 1433 // address of the ELF section, but when [start_address,end_address) is 1434 // not strictly equal to [hint.start, hint.end), that assumption is 1435 // invalid. 1436 // 1437 // This uses the hint's start address (even though hint.start is not 1438 // necessarily equal to start_address) to ensure the correct 1439 // relocation is computed later. 1440 *start = g_file_mapping_hints[i].start; 1441 *end = g_file_mapping_hints[i].end; 1442 *offset = g_file_mapping_hints[i].offset; 1443 *filename = g_file_mapping_hints[i].filename; 1444 found = true; 1445 break; 1446 } 1447 } 1448 g_file_mapping_mu.Unlock(); 1449 return found; 1450} 1451 1452} // namespace debugging_internal 1453 1454bool Symbolize(const void *pc, char *out, int out_size) { 1455 // Symbolization is very slow under tsan. 1456 ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); 1457 SAFE_ASSERT(out_size >= 0); 1458 debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer(); 1459 const char *name = s->GetSymbol(pc); 1460 bool ok = false; 1461 if (name != nullptr && out_size > 0) { 1462 strncpy(out, name, out_size); 1463 ok = true; 1464 if (out[out_size - 1] != '\0') { 1465 // strncpy() does not '\0' terminate when it truncates. Do so, with 1466 // trailing ellipsis. 1467 static constexpr char kEllipsis[] = "..."; 1468 int ellipsis_size = 1469 std::min(implicit_cast<int>(strlen(kEllipsis)), out_size - 1); 1470 memcpy(out + out_size - ellipsis_size - 1, kEllipsis, ellipsis_size); 1471 out[out_size - 1] = '\0'; 1472 } 1473 } 1474 debugging_internal::FreeSymbolizer(s); 1475 ANNOTATE_IGNORE_READS_AND_WRITES_END(); 1476 return ok; 1477} 1478 1479ABSL_NAMESPACE_END 1480} // namespace absl 1481