/* * * Copyright 2016 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #ifndef GRPC_CORE_LIB_SLICE_SLICE_INTERNAL_H #define GRPC_CORE_LIB_SLICE_SLICE_INTERNAL_H #include #include #include #include #include #include "src/core/lib/gpr/murmur_hash.h" #include "src/core/lib/gprpp/memory.h" #include "src/core/lib/gprpp/ref_counted.h" #include "src/core/lib/slice/slice_utils.h" #include "src/core/lib/transport/static_metadata.h" // Interned slices have specific fast-path operations for hashing. To inline // these operations, we need to forward declare them here. extern uint32_t grpc_static_metadata_hash_values[GRPC_STATIC_MDSTR_COUNT]; // grpc_slice_refcount : A reference count for grpc_slice. // // Non-inlined grpc_slice objects are refcounted. Historically this was // implemented via grpc_slice_refcount, a C-style polymorphic class using a // manually managed vtable of operations. Subclasses would define their own // vtable; the 'virtual' methods (ref, unref, equals and hash) would simply call // the function pointers in the vtable as necessary. // // Unfortunately, this leads to some inefficiencies in the generated code that // can be improved upon. For example, equality checking for interned slices is a // simple equality check on the refcount pointer. With the vtable approach, this // would translate to roughly the following (high-level) instructions: // // grpc_slice_equals(slice1, slice2): // load vtable->eq -> eq_func // call eq_func(slice1, slice2) // // interned_slice_equals(slice1, slice2) // load slice1.ref -> r1 // load slice2.ref -> r2 // cmp r1, r2 -> retval // ret retval // // This leads to a function call for a function defined in another translation // unit, which imposes memory barriers, which reduces the compiler's ability to // optimize (in addition to the added overhead of call/ret). Additionally, it // may be harder to reason about branch prediction when we're jumping to // essentially arbitrarily provided function pointers. // // In addition, it is arguable that while virtualization was helpful for // Equals()/Hash() methods, that it was fundamentally unnecessary for // Ref()/Unref(). // // Instead, grpc_slice_refcount provides the same functionality as the C-style // virtual class, but in a de-virtualized manner - Eq(), Hash(), Ref() and // Unref() are provided within this header file. Fastpaths for Eq()/Hash() // (interned and static metadata slices), as well as the Ref() operation, can // all be inlined without any memory barriers. // // It does this by: // 1. Using grpc_core::RefCount<> (header-only) for Ref/Unref. Two special cases // need support: No-op ref/unref (eg. static metadata slices) and stream // slice references (where all the slices share the streamref). This is in // addition to the normal case of '1 slice, 1 ref'. // To support these cases, we explicitly track a nullable pointer to the // underlying RefCount<>. No-op ref/unref is used by checking the pointer for // null, and doing nothing if it is. Both stream slice refs and 'normal' // slices use the same path for Ref/Unref (by targeting the non-null // pointer). // // 2. introducing the notion of grpc_slice_refcount::Type. This describes if a // slice ref is used by a static metadata slice, an interned slice, or other // slices. We switch on the slice ref type in order to provide fastpaths for // Equals() and Hash(). // // In total, this saves us roughly 1-2% latency for unary calls, with smaller // calls benefitting. The effect is present, but not as useful, for larger calls // where the cost of sending the data dominates. // TODO(arjunroy): Investigate if this can be removed with strongly typed // grpc_slices. struct grpc_slice_refcount { public: enum class Type { STATIC, // Refcount for a static metadata slice. INTERNED, // Refcount for an interned slice. NOP, // No-Op REGULAR // Refcount for non-static-metadata, non-interned slices. }; typedef void (*DestroyerFn)(void*); grpc_slice_refcount() = default; explicit grpc_slice_refcount(Type t) : ref_type_(t) {} explicit grpc_slice_refcount(grpc_slice_refcount* sub) : sub_refcount_(sub) {} // Regular constructor for grpc_slice_refcount. // // Parameters: // 1. grpc_slice_refcount::Type type // Whether we are the refcount for a static // metadata slice, an interned slice, or any other kind of slice. // // 2. RefCount* ref // The pointer to the actual underlying grpc_core::RefCount. Rather than // performing struct offset computations as in the original implementation to // get to the refcount, which requires a virtual method, we devirtualize by // using a nullable pointer to allow a single pair of Ref/Unref methods. // // 3. DestroyerFn destroyer_fn // Called when the refcount goes to 0, with destroyer_arg as parameter. // // 4. void* destroyer_arg // Argument for the virtualized destructor. // // 5. grpc_slice_refcount* sub // Argument used for interned slices. grpc_slice_refcount(grpc_slice_refcount::Type type, grpc_core::RefCount* ref, DestroyerFn destroyer_fn, void* destroyer_arg, grpc_slice_refcount* sub) : ref_(ref), ref_type_(type), sub_refcount_(sub), dest_fn_(destroyer_fn), destroy_fn_arg_(destroyer_arg) {} // Initializer for static refcounts. grpc_slice_refcount(grpc_slice_refcount* sub, Type type) : ref_type_(type), sub_refcount_(sub) {} Type GetType() const { return ref_type_; } int Eq(const grpc_slice& a, const grpc_slice& b); uint32_t Hash(const grpc_slice& slice); void Ref() { if (ref_ == nullptr) return; ref_->RefNonZero(); } void Unref() { if (ref_ == nullptr) return; if (ref_->Unref()) { dest_fn_(destroy_fn_arg_); } } grpc_slice_refcount* sub_refcount() const { return sub_refcount_; } private: grpc_core::RefCount* ref_ = nullptr; const Type ref_type_ = Type::REGULAR; grpc_slice_refcount* sub_refcount_ = this; DestroyerFn dest_fn_ = nullptr; void* destroy_fn_arg_ = nullptr; }; namespace grpc_core { struct StaticSliceRefcount { static grpc_slice_refcount kStaticSubRefcount; explicit StaticSliceRefcount(uint32_t index) : base(&kStaticSubRefcount, grpc_slice_refcount::Type::STATIC), index(index) {} grpc_slice_refcount base; const uint32_t index; }; extern grpc_slice_refcount kNoopRefcount; struct InternedSliceRefcount { static void Destroy(void* arg) { auto* rc = static_cast(arg); rc->~InternedSliceRefcount(); gpr_free(rc); } InternedSliceRefcount(size_t length, uint32_t hash, InternedSliceRefcount* bucket_next) : base(grpc_slice_refcount::Type::INTERNED, &refcnt, Destroy, this, &sub), sub(grpc_slice_refcount::Type::REGULAR, &refcnt, Destroy, this, &sub), length(length), hash(hash), bucket_next(bucket_next) {} ~InternedSliceRefcount(); grpc_slice_refcount base; grpc_slice_refcount sub; const size_t length; RefCount refcnt; const uint32_t hash; InternedSliceRefcount* bucket_next; }; } // namespace grpc_core inline size_t grpc_refcounted_slice_length(const grpc_slice& slice) { GPR_DEBUG_ASSERT(slice.refcount != nullptr); return slice.data.refcounted.length; } inline const uint8_t* grpc_refcounted_slice_data(const grpc_slice& slice) { GPR_DEBUG_ASSERT(slice.refcount != nullptr); return slice.data.refcounted.bytes; } inline int grpc_slice_refcount::Eq(const grpc_slice& a, const grpc_slice& b) { GPR_DEBUG_ASSERT(a.refcount != nullptr); GPR_DEBUG_ASSERT(a.refcount == this); switch (ref_type_) { case Type::STATIC: GPR_DEBUG_ASSERT( (GRPC_STATIC_METADATA_INDEX(a) == GRPC_STATIC_METADATA_INDEX(b)) == (a.refcount == b.refcount)); case Type::INTERNED: return a.refcount == b.refcount; case Type::NOP: case Type::REGULAR: break; } if (grpc_refcounted_slice_length(a) != GRPC_SLICE_LENGTH(b)) return false; if (grpc_refcounted_slice_length(a) == 0) return true; return 0 == memcmp(grpc_refcounted_slice_data(a), GRPC_SLICE_START_PTR(b), grpc_refcounted_slice_length(a)); } inline uint32_t grpc_slice_refcount::Hash(const grpc_slice& slice) { GPR_DEBUG_ASSERT(slice.refcount != nullptr); GPR_DEBUG_ASSERT(slice.refcount == this); switch (ref_type_) { case Type::STATIC: return ::grpc_static_metadata_hash_values[GRPC_STATIC_METADATA_INDEX( slice)]; case Type::INTERNED: return reinterpret_cast(slice.refcount) ->hash; case Type::NOP: case Type::REGULAR: break; } return gpr_murmur_hash3(grpc_refcounted_slice_data(slice), grpc_refcounted_slice_length(slice), grpc_core::g_hash_seed); } inline const grpc_slice& grpc_slice_ref_internal(const grpc_slice& slice) { if (slice.refcount) { slice.refcount->Ref(); } return slice; } inline void grpc_slice_unref_internal(const grpc_slice& slice) { if (slice.refcount) { slice.refcount->Unref(); } } void grpc_slice_buffer_reset_and_unref_internal(grpc_slice_buffer* sb); void grpc_slice_buffer_partial_unref_internal(grpc_slice_buffer* sb, size_t idx); void grpc_slice_buffer_destroy_internal(grpc_slice_buffer* sb); // Returns a pointer to the first slice in the slice buffer without giving // ownership to or a reference count on that slice. inline grpc_slice* grpc_slice_buffer_peek_first(grpc_slice_buffer* sb) { GPR_DEBUG_ASSERT(sb->count > 0); return &sb->slices[0]; } // Removes the first slice from the slice buffer. void grpc_slice_buffer_remove_first(grpc_slice_buffer* sb); // Calls grpc_slice_sub with the given parameters on the first slice. void grpc_slice_buffer_sub_first(grpc_slice_buffer* sb, size_t begin, size_t end); /* Check if a slice is interned */ bool grpc_slice_is_interned(const grpc_slice& slice); inline bool grpc_slice_is_interned(const grpc_slice& slice) { return (slice.refcount && (slice.refcount->GetType() == grpc_slice_refcount::Type::INTERNED || slice.refcount->GetType() == grpc_slice_refcount::Type::STATIC)); } inline bool grpc_slice_static_interned_equal(const grpc_slice& a, const grpc_slice& b) { GPR_DEBUG_ASSERT(grpc_slice_is_interned(a) && grpc_slice_is_interned(b)); return a.refcount == b.refcount; } void grpc_slice_intern_init(void); void grpc_slice_intern_shutdown(void); void grpc_test_only_set_slice_hash_seed(uint32_t seed); // if slice matches a static slice, returns the static slice // otherwise returns the passed in slice (without reffing it) // used for surface boundaries where we might receive an un-interned static // string grpc_slice grpc_slice_maybe_static_intern(grpc_slice slice, bool* returned_slice_is_different); uint32_t grpc_static_slice_hash(grpc_slice s); int grpc_static_slice_eq(grpc_slice a, grpc_slice b); inline uint32_t grpc_slice_hash_refcounted(const grpc_slice& s) { GPR_DEBUG_ASSERT(s.refcount != nullptr); return s.refcount->Hash(s); } inline uint32_t grpc_slice_default_hash_internal(const grpc_slice& s) { return gpr_murmur_hash3(GRPC_SLICE_START_PTR(s), GRPC_SLICE_LENGTH(s), grpc_core::g_hash_seed); } inline uint32_t grpc_slice_hash_internal(const grpc_slice& s) { return s.refcount == nullptr ? grpc_slice_default_hash_internal(s) : grpc_slice_hash_refcounted(s); } grpc_slice grpc_slice_from_moved_buffer(grpc_core::UniquePtr p, size_t len); grpc_slice grpc_slice_from_moved_string(grpc_core::UniquePtr p); grpc_slice grpc_slice_from_cpp_string(std::string str); // Returns the memory used by this slice, not counting the slice structure // itself. This means that inlined and slices from static strings will return // 0. All other slices will return the size of the allocated chars. size_t grpc_slice_memory_usage(grpc_slice s); grpc_core::UnmanagedMemorySlice grpc_slice_sub_no_ref( const grpc_core::UnmanagedMemorySlice& source, size_t begin, size_t end); namespace grpc_core { struct SliceHash { std::size_t operator()(const grpc_slice& slice) const { return grpc_slice_hash_internal(slice); } }; } // namespace grpc_core inline bool operator==(const grpc_slice& s1, const grpc_slice& s2) { return grpc_slice_eq(s1, s2); } #endif /* GRPC_CORE_LIB_SLICE_SLICE_INTERNAL_H */