/*** This file is part of PulseAudio. Copyright 2006 Lennart Poettering Copyright 2006-2007 Pierre Ossman for Cendio AB PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, see . ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include PA_MODULE_AUTHOR("Pierre Ossman"); PA_MODULE_DESCRIPTION("Windows waveOut Sink/Source"); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_USAGE( "sink_name= " "source_name= " "output_device= " "output_device_name= " "input_device= " "input_device_name= " "record= " "playback= " "format= " "rate= " "channels= " "channel_map= " "fragments= " "fragment_size=" "device=" "device_name="); #define DEFAULT_SINK_NAME "wave_output" #define DEFAULT_SOURCE_NAME "wave_input" #define WAVEOUT_MAX_VOLUME 0xFFFF struct userdata { pa_sink *sink; pa_source *source; pa_core *core; pa_usec_t poll_timeout; pa_thread *thread; pa_thread_mq thread_mq; pa_rtpoll *rtpoll; uint32_t fragments, fragment_size; uint32_t free_ofrags, free_ifrags; DWORD written_bytes; int sink_underflow; int cur_ohdr, cur_ihdr; WAVEHDR *ohdrs, *ihdrs; HWAVEOUT hwo; HWAVEIN hwi; pa_module *module; CRITICAL_SECTION crit; }; static const char* const valid_modargs[] = { "sink_name", "source_name", "output_device", "output_device_name", "input_device", "input_device_name", "record", "playback", "fragments", "fragment_size", "format", "rate", "channels", "channel_map", "device", "device_name", NULL }; static void do_write(struct userdata *u) { uint32_t free_frags; pa_memchunk memchunk; WAVEHDR *hdr; MMRESULT res; void *p; if (!u->sink) return; if (!PA_SINK_IS_LINKED(u->sink->state)) return; EnterCriticalSection(&u->crit); free_frags = u->free_ofrags; LeaveCriticalSection(&u->crit); if (!u->sink_underflow && (free_frags == u->fragments)) pa_log_debug("WaveOut underflow!"); while (free_frags) { hdr = &u->ohdrs[u->cur_ohdr]; if (hdr->dwFlags & WHDR_PREPARED) waveOutUnprepareHeader(u->hwo, hdr, sizeof(WAVEHDR)); hdr->dwBufferLength = 0; while (hdr->dwBufferLength < u->fragment_size) { size_t len; len = u->fragment_size - hdr->dwBufferLength; pa_sink_render(u->sink, len, &memchunk); pa_assert(memchunk.memblock); pa_assert(memchunk.length); if (memchunk.length < len) len = memchunk.length; p = pa_memblock_acquire(memchunk.memblock); memcpy(hdr->lpData + hdr->dwBufferLength, (char*) p + memchunk.index, len); pa_memblock_release(memchunk.memblock); hdr->dwBufferLength += len; pa_memblock_unref(memchunk.memblock); memchunk.memblock = NULL; } /* Underflow detection */ if (hdr->dwBufferLength == 0) { u->sink_underflow = 1; break; } u->sink_underflow = 0; res = waveOutPrepareHeader(u->hwo, hdr, sizeof(WAVEHDR)); if (res != MMSYSERR_NOERROR) pa_log_error("Unable to prepare waveOut block: %d", res); res = waveOutWrite(u->hwo, hdr, sizeof(WAVEHDR)); if (res != MMSYSERR_NOERROR) pa_log_error("Unable to write waveOut block: %d", res); u->written_bytes += hdr->dwBufferLength; EnterCriticalSection(&u->crit); u->free_ofrags--; LeaveCriticalSection(&u->crit); free_frags--; u->cur_ohdr++; u->cur_ohdr %= u->fragments; } } static void do_read(struct userdata *u) { uint32_t free_frags; pa_memchunk memchunk; WAVEHDR *hdr; MMRESULT res; void *p; if (!u->source) return; if (!PA_SOURCE_IS_LINKED(u->source->state)) return; EnterCriticalSection(&u->crit); free_frags = u->free_ifrags; u->free_ifrags = 0; LeaveCriticalSection(&u->crit); if (free_frags == u->fragments) pa_log_debug("WaveIn overflow!"); while (free_frags) { hdr = &u->ihdrs[u->cur_ihdr]; if (hdr->dwFlags & WHDR_PREPARED) waveInUnprepareHeader(u->hwi, hdr, sizeof(WAVEHDR)); if (hdr->dwBytesRecorded) { memchunk.memblock = pa_memblock_new(u->core->mempool, hdr->dwBytesRecorded); pa_assert(memchunk.memblock); p = pa_memblock_acquire(memchunk.memblock); memcpy((char*) p, hdr->lpData, hdr->dwBytesRecorded); pa_memblock_release(memchunk.memblock); memchunk.length = hdr->dwBytesRecorded; memchunk.index = 0; pa_source_post(u->source, &memchunk); pa_memblock_unref(memchunk.memblock); } res = waveInPrepareHeader(u->hwi, hdr, sizeof(WAVEHDR)); if (res != MMSYSERR_NOERROR) pa_log_error("Unable to prepare waveIn block: %d", res); res = waveInAddBuffer(u->hwi, hdr, sizeof(WAVEHDR)); if (res != MMSYSERR_NOERROR) pa_log_error("Unable to add waveIn block: %d", res); free_frags--; u->cur_ihdr++; u->cur_ihdr %= u->fragments; } } static void thread_func(void *userdata) { struct userdata *u = userdata; pa_assert(u); pa_assert(u->sink || u->source); pa_log_debug("Thread starting up"); if (u->core->realtime_scheduling) pa_thread_make_realtime(u->core->realtime_priority); pa_thread_mq_install(&u->thread_mq); for (;;) { int ret; bool need_timer = false; if (u->sink) { if (PA_UNLIKELY(u->sink->thread_info.rewind_requested)) pa_sink_process_rewind(u->sink, 0); if (PA_SINK_IS_OPENED(u->sink->thread_info.state)) { do_write(u); need_timer = true; } } if (u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state)) { do_read(u); need_timer = true; } if (need_timer) pa_rtpoll_set_timer_relative(u->rtpoll, u->poll_timeout); else pa_rtpoll_set_timer_disabled(u->rtpoll); /* Hmm, nothing to do. Let's sleep */ if ((ret = pa_rtpoll_run(u->rtpoll)) < 0) goto fail; if (ret == 0) goto finish; } fail: /* If this was no regular exit from the loop we have to continue * processing messages until we received PA_MESSAGE_SHUTDOWN */ pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL); pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN); finish: pa_log_debug("Thread shutting down"); } static void CALLBACK chunk_done_cb(HWAVEOUT hwo, UINT msg, DWORD_PTR inst, DWORD param1, DWORD param2) { struct userdata *u = (struct userdata*) inst; if (msg == WOM_OPEN) pa_log_debug("WaveOut subsystem opened."); if (msg == WOM_CLOSE) pa_log_debug("WaveOut subsystem closed."); if (msg != WOM_DONE) return; EnterCriticalSection(&u->crit); u->free_ofrags++; pa_assert(u->free_ofrags <= u->fragments); LeaveCriticalSection(&u->crit); } static void CALLBACK chunk_ready_cb(HWAVEIN hwi, UINT msg, DWORD_PTR inst, DWORD param1, DWORD param2) { struct userdata *u = (struct userdata*) inst; if (msg == WIM_OPEN) pa_log_debug("WaveIn subsystem opened."); if (msg == WIM_CLOSE) pa_log_debug("WaveIn subsystem closed."); if (msg != WIM_DATA) return; EnterCriticalSection(&u->crit); u->free_ifrags++; pa_assert(u->free_ifrags <= u->fragments); LeaveCriticalSection(&u->crit); } static pa_usec_t sink_get_latency(struct userdata *u) { uint32_t free_frags; MMTIME mmt; pa_assert(u); pa_assert(u->sink); memset(&mmt, 0, sizeof(mmt)); mmt.wType = TIME_BYTES; if (waveOutGetPosition(u->hwo, &mmt, sizeof(mmt)) == MMSYSERR_NOERROR) return pa_bytes_to_usec(u->written_bytes - mmt.u.cb, &u->sink->sample_spec); else { EnterCriticalSection(&u->crit); free_frags = u->free_ofrags; LeaveCriticalSection(&u->crit); return pa_bytes_to_usec((u->fragments - free_frags) * u->fragment_size, &u->sink->sample_spec); } } static pa_usec_t source_get_latency(struct userdata *u) { pa_usec_t r = 0; uint32_t free_frags; pa_assert(u); pa_assert(u->source); EnterCriticalSection(&u->crit); free_frags = u->free_ifrags; LeaveCriticalSection(&u->crit); r += pa_bytes_to_usec((free_frags + 1) * u->fragment_size, &u->source->sample_spec); return r; } static int process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u; if (pa_sink_isinstance(o)) { u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_GET_LATENCY: { pa_usec_t r = 0; if (u->hwo) r = sink_get_latency(u); *((int64_t*) data) = (int64_t)r; return 0; } } return pa_sink_process_msg(o, code, data, offset, chunk); } if (pa_source_isinstance(o)) { u = PA_SOURCE(o)->userdata; switch (code) { case PA_SOURCE_MESSAGE_GET_LATENCY: { pa_usec_t r = 0; if (u->hwi) r = source_get_latency(u); *((int64_t*) data) = (int64_t)r; return 0; } } return pa_source_process_msg(o, code, data, offset, chunk); } return -1; } static void sink_get_volume_cb(pa_sink *s) { struct userdata *u = s->userdata; WAVEOUTCAPS caps; DWORD vol; pa_volume_t left, right; if (waveOutGetDevCaps(u->hwo, &caps, sizeof(caps)) != MMSYSERR_NOERROR) return; if (!(caps.dwSupport & WAVECAPS_VOLUME)) return; if (waveOutGetVolume(u->hwo, &vol) != MMSYSERR_NOERROR) return; left = PA_CLAMP_VOLUME((vol & 0xFFFF) * PA_VOLUME_NORM / WAVEOUT_MAX_VOLUME); if (caps.dwSupport & WAVECAPS_LRVOLUME) right = PA_CLAMP_VOLUME(((vol >> 16) & 0xFFFF) * PA_VOLUME_NORM / WAVEOUT_MAX_VOLUME); else right = left; /* Windows supports > 2 channels, except for volume control */ if (s->real_volume.channels > 2) pa_cvolume_set(&s->real_volume, s->real_volume.channels, (left + right)/2); s->real_volume.values[0] = left; if (s->real_volume.channels > 1) s->real_volume.values[1] = right; } static void sink_set_volume_cb(pa_sink *s) { struct userdata *u = s->userdata; WAVEOUTCAPS caps; DWORD vol; if (waveOutGetDevCaps(u->hwo, &caps, sizeof(caps)) != MMSYSERR_NOERROR) return; if (!(caps.dwSupport & WAVECAPS_VOLUME)) return; if (s->real_volume.channels == 2 && caps.dwSupport & WAVECAPS_LRVOLUME) { vol = (s->real_volume.values[0] * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM) | (s->real_volume.values[1] * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM) << 16; } else { vol = (pa_cvolume_avg(&(s->real_volume)) * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM) | (pa_cvolume_avg(&(s->real_volume)) * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM) << 16; } if (waveOutSetVolume(u->hwo, vol) != MMSYSERR_NOERROR) return; } static int ss_to_waveformat(pa_sample_spec *ss, LPWAVEFORMATEX wf) { wf->wFormatTag = WAVE_FORMAT_PCM; if (ss->channels > 2) { pa_log_error("More than two channels not supported."); return -1; } wf->nChannels = ss->channels; wf->nSamplesPerSec = ss->rate; if (ss->format == PA_SAMPLE_U8) wf->wBitsPerSample = 8; else if (ss->format == PA_SAMPLE_S16NE) wf->wBitsPerSample = 16; else { pa_log_error("Unsupported sample format, only u8 and s16 are supported."); return -1; } wf->nBlockAlign = wf->nChannels * wf->wBitsPerSample/8; wf->nAvgBytesPerSec = wf->nSamplesPerSec * wf->nBlockAlign; wf->cbSize = 0; return 0; } int pa__get_n_used(pa_module *m) { struct userdata *u; pa_assert(m); pa_assert(m->userdata); u = (struct userdata*) m->userdata; return (u->sink ? pa_sink_used_by(u->sink) : 0) + (u->source ? pa_source_used_by(u->source) : 0); } int pa__init(pa_module *m) { struct userdata *u = NULL; HWAVEOUT hwo = INVALID_HANDLE_VALUE; HWAVEIN hwi = INVALID_HANDLE_VALUE; WAVEFORMATEX wf; WAVEOUTCAPS pwoc; WAVEINCAPS pwic; MMRESULT result; int nfrags, frag_size; bool record = true, playback = true; unsigned int input_device; unsigned int output_device; pa_sample_spec ss; pa_channel_map map; pa_modargs *ma = NULL; const char *input_device_name = NULL; const char *output_device_name = NULL; unsigned int i; pa_assert(m); pa_assert(m->core); if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("failed to parse module arguments."); goto fail; } /* Check whether deprecated arguments have been used. */ if (pa_modargs_get_value(ma, "device", NULL) != NULL || pa_modargs_get_value(ma, "device_name", NULL) != NULL) { pa_log("device and device_name are no longer supported. Please use input_device, input_device_name, output_device and output_device_name."); goto fail; } if (pa_modargs_get_value_boolean(ma, "record", &record) < 0 || pa_modargs_get_value_boolean(ma, "playback", &playback) < 0) { pa_log("record= and playback= expect boolean argument."); goto fail; } if (!playback && !record) { pa_log("neither playback nor record enabled for device."); goto fail; } /* Set the output_device to be opened. If set output_device_name is used, * else output_device if set and lastly WAVE_MAPPER is the default */ output_device = WAVE_MAPPER; if (pa_modargs_get_value_u32(ma, "output_device", &output_device) < 0) { pa_log("failed to parse output_device argument"); goto fail; } if ((output_device_name = pa_modargs_get_value(ma, "output_device_name", NULL)) != NULL) { unsigned int num_output_devices = waveOutGetNumDevs(); for (i = 0; i < num_output_devices; i++) { if (waveOutGetDevCaps(i, &pwoc, sizeof(pwoc)) == MMSYSERR_NOERROR) if (strcmp(output_device_name, pwoc.szPname) == 0) break; } if (i < num_output_devices) output_device = i; else { pa_log("output_device not found: %s", output_device_name); goto fail; } } if (waveOutGetDevCaps(output_device, &pwoc, sizeof(pwoc)) == MMSYSERR_NOERROR) output_device_name = pwoc.szPname; else output_device_name = "unknown"; /* Set the input_device to be opened. If set input_device_name is used, * else input_device if set and lastly WAVE_MAPPER is the default */ input_device = WAVE_MAPPER; if (pa_modargs_get_value_u32(ma, "input_device", &input_device) < 0) { pa_log("failed to parse input_device argument"); goto fail; } if ((input_device_name = pa_modargs_get_value(ma, "input_device_name", NULL)) != NULL) { unsigned int num_input_devices = waveInGetNumDevs(); for (i = 0; i < num_input_devices; i++) { if (waveInGetDevCaps(i, &pwic, sizeof(pwic)) == MMSYSERR_NOERROR) if (strcmp(input_device_name, pwic.szPname) == 0) break; } if (i < num_input_devices) input_device = i; else { pa_log("input_device not found: %s", input_device_name); goto fail; } } if (waveInGetDevCaps(input_device, &pwic, sizeof(pwic)) == MMSYSERR_NOERROR) input_device_name = pwic.szPname; else input_device_name = "unknown"; nfrags = 5; frag_size = 8192; if (pa_modargs_get_value_s32(ma, "fragments", &nfrags) < 0 || pa_modargs_get_value_s32(ma, "fragment_size", &frag_size) < 0) { pa_log("failed to parse fragments arguments"); goto fail; } ss = m->core->default_sample_spec; if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_WAVEEX) < 0) { pa_log("failed to parse sample specification"); goto fail; } if (ss_to_waveformat(&ss, &wf) < 0) goto fail; u = pa_xmalloc(sizeof(struct userdata)); if (record) { result = waveInOpen(&hwi, input_device, &wf, 0, 0, WAVE_FORMAT_DIRECT | WAVE_FORMAT_QUERY); if (result != MMSYSERR_NOERROR) { pa_log_warn("Sample spec not supported by WaveIn, falling back to default sample rate."); ss.rate = wf.nSamplesPerSec = m->core->default_sample_spec.rate; } result = waveInOpen(&hwi, input_device, &wf, (DWORD_PTR) chunk_ready_cb, (DWORD_PTR) u, CALLBACK_FUNCTION); if (result != MMSYSERR_NOERROR) { char errortext[MAXERRORLENGTH]; pa_log("Failed to open WaveIn."); if (waveInGetErrorText(result, errortext, sizeof(errortext)) == MMSYSERR_NOERROR) pa_log("Error: %s", errortext); goto fail; } if (waveInStart(hwi) != MMSYSERR_NOERROR) { pa_log("failed to start waveIn"); goto fail; } } if (playback) { result = waveOutOpen(&hwo, output_device, &wf, 0, 0, WAVE_FORMAT_DIRECT | WAVE_FORMAT_QUERY); if (result != MMSYSERR_NOERROR) { pa_log_warn("Sample spec not supported by WaveOut, falling back to default sample rate."); ss.rate = wf.nSamplesPerSec = m->core->default_sample_spec.rate; } result = waveOutOpen(&hwo, output_device, &wf, (DWORD_PTR) chunk_done_cb, (DWORD_PTR) u, CALLBACK_FUNCTION); if (result != MMSYSERR_NOERROR) { char errortext[MAXERRORLENGTH]; pa_log("Failed to open WaveOut."); if (waveOutGetErrorText(result, errortext, sizeof(errortext)) == MMSYSERR_NOERROR) pa_log("Error: %s", errortext); goto fail; } } InitializeCriticalSection(&u->crit); if (hwi != INVALID_HANDLE_VALUE) { pa_source_new_data data; pa_source_new_data_init(&data); data.driver = __FILE__; data.module = m; pa_source_new_data_set_sample_spec(&data, &ss); pa_source_new_data_set_channel_map(&data, &map); pa_source_new_data_set_name(&data, pa_modargs_get_value(ma, "source_name", DEFAULT_SOURCE_NAME)); pa_proplist_setf(data.proplist, PA_PROP_DEVICE_DESCRIPTION, "WaveIn on %s", input_device_name); u->source = pa_source_new(m->core, &data, PA_SOURCE_HARDWARE|PA_SOURCE_LATENCY); pa_source_new_data_done(&data); pa_assert(u->source); u->source->userdata = u; u->source->parent.process_msg = process_msg; } else u->source = NULL; if (hwo != INVALID_HANDLE_VALUE) { pa_sink_new_data data; pa_sink_new_data_init(&data); data.driver = __FILE__; data.module = m; pa_sink_new_data_set_sample_spec(&data, &ss); pa_sink_new_data_set_channel_map(&data, &map); pa_sink_new_data_set_name(&data, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME)); pa_proplist_setf(data.proplist, PA_PROP_DEVICE_DESCRIPTION, "WaveOut on %s", output_device_name); u->sink = pa_sink_new(m->core, &data, PA_SINK_HARDWARE|PA_SINK_LATENCY); pa_sink_new_data_done(&data); pa_assert(u->sink); pa_sink_set_get_volume_callback(u->sink, sink_get_volume_cb); pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb); u->sink->userdata = u; u->sink->parent.process_msg = process_msg; } else u->sink = NULL; pa_assert(u->source || u->sink); pa_modargs_free(ma); u->core = m->core; u->hwi = hwi; u->hwo = hwo; u->fragments = nfrags; u->free_ifrags = u->fragments; u->free_ofrags = u->fragments; u->fragment_size = frag_size - (frag_size % pa_frame_size(&ss)); u->written_bytes = 0; u->sink_underflow = 1; u->poll_timeout = pa_bytes_to_usec(u->fragments * u->fragment_size / 10, &ss); pa_log_debug("Poll timeout = %.1f ms", (double) u->poll_timeout / PA_USEC_PER_MSEC); u->cur_ihdr = 0; u->cur_ohdr = 0; u->ihdrs = pa_xmalloc0(sizeof(WAVEHDR) * u->fragments); pa_assert(u->ihdrs); u->ohdrs = pa_xmalloc0(sizeof(WAVEHDR) * u->fragments); pa_assert(u->ohdrs); for (i = 0; i < u->fragments; i++) { u->ihdrs[i].dwBufferLength = u->fragment_size; u->ohdrs[i].dwBufferLength = u->fragment_size; u->ihdrs[i].lpData = pa_xmalloc(u->fragment_size); pa_assert(u->ihdrs); u->ohdrs[i].lpData = pa_xmalloc(u->fragment_size); pa_assert(u->ohdrs); } u->module = m; m->userdata = u; /* Read mixer settings */ if (u->sink) sink_get_volume_cb(u->sink); u->rtpoll = pa_rtpoll_new(); if (pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll) < 0) { pa_log("pa_thread_mq_init() failed."); goto fail; } if (u->sink) { pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq); pa_sink_set_rtpoll(u->sink, u->rtpoll); } if (u->source) { pa_source_set_asyncmsgq(u->source, u->thread_mq.inq); pa_source_set_rtpoll(u->source, u->rtpoll); } if (!(u->thread = pa_thread_new("waveout", thread_func, u))) { pa_log("Failed to create thread."); goto fail; } if (u->sink) pa_sink_put(u->sink); if (u->source) pa_source_put(u->source); return 0; fail: if (ma) pa_modargs_free(ma); pa__done(m); return -1; } void pa__done(pa_module *m) { struct userdata *u; unsigned int i; pa_assert(m); pa_assert(m->core); if (!(u = m->userdata)) return; if (u->sink) pa_sink_unlink(u->sink); if (u->source) pa_source_unlink(u->source); pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL); if (u->thread) pa_thread_free(u->thread); pa_thread_mq_done(&u->thread_mq); if (u->sink) pa_sink_unref(u->sink); if (u->source) pa_source_unref(u->source); if (u->rtpoll) pa_rtpoll_free(u->rtpoll); if (u->hwi != INVALID_HANDLE_VALUE) { waveInReset(u->hwi); waveInClose(u->hwi); } if (u->hwo != INVALID_HANDLE_VALUE) { waveOutReset(u->hwo); waveOutClose(u->hwo); } for (i = 0; i < u->fragments; i++) { pa_xfree(u->ihdrs[i].lpData); pa_xfree(u->ohdrs[i].lpData); } pa_xfree(u->ihdrs); pa_xfree(u->ohdrs); DeleteCriticalSection(&u->crit); pa_xfree(u); }