/*
* hi3516cv500.c
*
* The board init for hisilicon
*
* Copyright (c) 2020 HiSilicon (Shanghai) Technologies CO., LIMITED.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifndef CONFIG_SYS_DCACHE_OFF
void enable_caches(void)
{
/* Enable D-cache. I-cache is already enabled in start.S */
dcache_enable();
}
#endif
static int boot_media = BOOT_MEDIA_UNKNOWN;
int get_boot_media(void)
{
unsigned int reg_val, boot_mode, spi_device_mode;
int boot_media = BOOT_MEDIA_UNKNOWN;
reg_val = readl(SYS_CTRL_REG_BASE + REG_SYSSTAT);
boot_mode = get_sys_boot_mode(reg_val);
switch (boot_mode) {
case BOOT_FROM_SPI:
spi_device_mode = get_spi_device_type(reg_val);
if (spi_device_mode)
boot_media = BOOT_MEDIA_NAND;
else
boot_media = BOOT_MEDIA_SPIFLASH;
break;
case BOOT_FROM_EMMC:
boot_media = BOOT_MEDIA_EMMC;
break;
default:
boot_media = BOOT_MEDIA_UNKNOWN;
break;
}
return boot_media;
}
#if defined(CONFIG_SHOW_BOOT_PROGRESS)
void show_boot_progress(int progress)
{
printf("Boot reached stage %d\n", progress);
}
#endif
#define COMP_MODE_ENABLE ((unsigned int)0x0000EAEF)
static inline void delay(unsigned long loops)
{
__asm__ volatile("1:\n"
"subs %0, %1, #1\n"
"bne 1b" : "=r"(loops) : "0"(loops));
}
int get_text_base(void)
{
return CONFIG_SYS_TEXT_BASE;
}
static void boot_flag_init(void)
{
unsigned int reg, boot_mode, spi_device_mode;
/* get boot mode */
reg = __raw_readl(SYS_CTRL_REG_BASE + REG_SYSSTAT);
boot_mode = get_sys_boot_mode(reg);
switch (boot_mode) {
case BOOT_FROM_SPI:
spi_device_mode = get_spi_device_type(reg);
if (spi_device_mode)
boot_media = BOOT_MEDIA_NAND;
else
boot_media = BOOT_MEDIA_SPIFLASH;
break;
case BOOT_FROM_EMMC: /* emmc mode */
boot_media = BOOT_MEDIA_EMMC;
break;
default:
boot_media = BOOT_MEDIA_UNKNOWN;
break;
}
}
int board_early_init_f(void)
{
return 0;
}
#define UBOOT_DATA_ADDR 0x81000000UL
#define UBOOT_DATA_SIZE 0x80000UL
int data_to_spiflash(void)
{
static struct spi_flash *flash = NULL;
void *buf = NULL;
unsigned int val;
/* 0:bus 0:cs 1000000:max_hz 0x3:spi_mode */
flash = spi_flash_probe(0, 0, 1000000, 0x3);
if (!flash) {
printf("Failed to initialize SPI flash\n");
return -1; /* -1:failed */
}
/* erase the address range. */
printf("Spi flash erase...\n");
val = spi_flash_erase(flash, NUM_0, UBOOT_DATA_SIZE);
if (val) {
printf("SPI flash sector erase failed\n");
return 1; /* 1:failed */
}
buf = map_physmem((unsigned long)UBOOT_DATA_ADDR,
UBOOT_DATA_SIZE, MAP_WRBACK);
if (!buf) {
puts("Failed to map physical memory\n");
return 1; /* 1:failed */
}
/* copy the data from RAM to FLASH */
printf("Spi flash write...\n");
val = flash->write(flash, NUM_0, UBOOT_DATA_SIZE, buf);
if (val) {
printf("SPI flash write failed, return %u\n",
val);
unmap_physmem(buf, UBOOT_DATA_SIZE);
return 1; /* 1:failed */
}
unmap_physmem(buf, UBOOT_DATA_SIZE);
return 0; /* 0:success */
}
int data_to_nandflash(void)
{
struct mtd_info *nand_flash = NULL;
void *buf = NULL;
size_t length = UBOOT_DATA_SIZE;
unsigned int val;
nand_flash = nand_info[0];
printf("Nand flash erase...\n");
val = nand_erase(nand_flash, 0, UBOOT_DATA_SIZE);
if (val) {
printf("Nand flash erase failed\n");
return 1;
}
buf = map_physmem((unsigned long)UBOOT_DATA_ADDR,
UBOOT_DATA_SIZE, MAP_WRBACK);
if (!buf) {
puts("Failed to map physical memory\n");
return 1;
}
printf("Nand flash write...\n");
val = nand_write(nand_flash, 0, &length, buf);
if (val) {
printf("Nand flash write failed, return %u\n",
val);
unmap_physmem(buf, UBOOT_DATA_SIZE);
return 1;
}
unmap_physmem(buf, UBOOT_DATA_SIZE);
return 0;
}
int data_to_emmc(void)
{
struct mmc *mmc = find_mmc_device(0);
void *buf = NULL;
if (!mmc)
return 1;
(void)mmc_init(mmc);
buf = map_physmem((unsigned long)UBOOT_DATA_ADDR,
UBOOT_DATA_SIZE, MAP_WRBACK);
if (!buf) {
puts("Failed to map physical memory\n");
return 1;
}
printf("MMC write...\n");
blk_dwrite(mmc_get_blk_desc(mmc), 0, (UBOOT_DATA_SIZE >> NUM_9), buf);
unmap_physmem(buf, UBOOT_DATA_SIZE);
return 0;
}
int save_bootdata_to_flash(void)
{
unsigned int sd_update_flag = 0;
int ret = 0;
sd_update_flag = readl(REG_BASE_SCTL + REG_SC_GEN4);
if (sd_update_flag == START_MAGIC) {
#if defined(CONFIG_HIFMC)
if (boot_media == BOOT_MEDIA_SPIFLASH) {
ret = data_to_spiflash();
if (ret != 0)
return ret;
}
if (boot_media == BOOT_MEDIA_NAND) {
ret = data_to_nandflash();
if (ret != 0)
return ret;
}
#endif
#if defined(CONFIG_SUPPORT_EMMC_BOOT)
if (boot_media == BOOT_MEDIA_EMMC) {
ret = data_to_emmc();
if (ret != 0)
return ret;
}
#endif
printf("update success!\n");
}
return 0;
}
int auto_update_flag = 0;
int bare_chip_program = 0;
#define REG_BASE_GPIO0 0x120d0000
#define GPIO0_0_DATA_OFST 0x4
#define GPIO_DIR_OFST 0x400
int is_bare_program(void)
{
return 0;
}
int is_auto_update(void)
{
#if (defined CONFIG_AUTO_SD_UPDATE) || (defined CONFIG_AUTO_USB_UPDATE)
/* to add some judgement if neccessary */
unsigned int val[NUM_3];
writel(0, REG_BASE_GPIO0 + GPIO_DIR_OFST);
val[NUM_0] = readl(REG_BASE_GPIO0 + GPIO0_0_DATA_OFST);
if (val[NUM_0])
return 0;
udelay(10000); /* delay 10000 us */
val[NUM_1] = readl(REG_BASE_GPIO0 + GPIO0_0_DATA_OFST);
udelay(10000); /* delay 10000 us */
val[NUM_2] = readl(REG_BASE_GPIO0 + GPIO0_0_DATA_OFST);
udelay(10000); /* delay 10000 us */
if (val[NUM_0] == val[NUM_1] && val[NUM_1] == val[NUM_2] && val[NUM_0] == NUM_0)
return 1; /* update enable */
else
return 0;
#else
return 0;
#endif
}
int misc_init_r(void)
{
#ifdef CONFIG_RANDOM_ETHADDR
random_init_r();
#endif
env_set("verify", "n");
#if (CONFIG_AUTO_UPDATE == 1)
/* auto update flag */
if (is_auto_update())
auto_update_flag = 1;
else
auto_update_flag = 0;
/* bare chip program flag */
if (is_bare_program())
bare_chip_program = 1;
else
bare_chip_program = 0;
#ifdef CFG_MMU_HANDLEOK
dcache_stop();
#endif
#ifdef CFG_MMU_HANDLEOK
dcache_start();
#endif
#endif
#if (CONFIG_AUTO_UPDATE == 1)
int update_flag = -1;
if (auto_update_flag)
update_flag = do_auto_update();
if (bare_chip_program && !auto_update_flag)
save_bootdata_to_flash();
if (update_flag == 0)
do_reset(NULL, 0, 0, NULL);
#endif
return 0;
}
int board_init(void)
{
DECLARE_GLOBAL_DATA_PTR;
gd->bd->bi_arch_number = MACH_TYPE_HI3516CV500;
gd->bd->bi_boot_params = CFG_BOOT_PARAMS;
boot_flag_init();
return 0;
}
int dram_init(void)
{
DECLARE_GLOBAL_DATA_PTR;
gd->ram_size = PHYS_SDRAM_1_SIZE;
return 0;
}
void reset_cpu(ulong addr)
{
/* 0x12345678:writing any value will cause a reset. */
writel(0x12345678, REG_BASE_SCTL + REG_SC_SYSRES);
while (1);
}
int timer_init(void)
{
/*
* Under uboot, 0xffffffff is set to load register,]
* timer_clk equals BUSCLK/2/256.
* e.g. BUSCLK equals 50M, it will roll back after 0xffffffff/timer_clk
* 43980s equals 12hours
*/
__raw_writel(0, CFG_TIMERBASE + REG_TIMER_CONTROL);
__raw_writel(~0, CFG_TIMERBASE + REG_TIMER_RELOAD);
/* 32 bit, periodic */
__raw_writel(CFG_TIMER_CTRL, CFG_TIMERBASE + REG_TIMER_CONTROL);
return 0;
}
int board_eth_init(bd_t *bis)
{
int rc = 0;
#ifdef CONFIG_HISFV300_ETH
rc = hieth_initialize(bis);
#endif
return rc;
}
#ifdef CONFIG_GENERIC_MMC
int board_mmc_init(bd_t *bis)
{
int ret = 0;
int dev_num = 0;
#ifdef CONFIG_SUPPORT_EMMC_BOOT
ret = himci_add_port(dev_num, EMMC_REG_BASE, CONFIG_HIMCI_MAX_FREQ);
if (!ret) {
ret = himci_probe(dev_num);
if (ret)
printf("No EMMC device found !\n");
}
dev_num++;
#endif
#ifdef CONFIG_AUTO_SD_UPDATE
if (is_auto_update()) {
ret = himci_add_port(dev_num, SDIO0_REG_BASE, CONFIG_SDIO0_FREQ);
if (!ret) {
ret = himci_probe(dev_num);
if (ret)
printf("No SD device found !\n");
}
}
#endif
return ret;
}
#endif
int start_other_cpus(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
{
/* prepare two commands for cortex-a17 */
volatile int cmd_address = 0;
volatile int cmd = 0xe51ff004; /* 0xe51ff004:Default liteos address. */
unsigned int regval;
if (argc < NUM_2) {
cmd_usage(cmdtp);
return 1;
}
flush_dcache_all();
asm("str %0, [%1]"::"r"(cmd), "r"(cmd_address): "cc");
cmd = simple_strtoul(argv[NUM_1], NULL, 16); /* 16:base */
printf("starting cpu1 liteos address 0x%x\n", cmd);
asm("str %0, [%1, #4]"::"r"(cmd), "r"(cmd_address): "cc");
/* clear the slave cpu reset */
/* 0x12010000:CRG base address; 0x0078:PERI_CRG30 */
regval = readl(0x12010000 + 0x0078);
regval &= ~(NUM_1 << NUM_2);
/* 0x12010000:CRG base address; 0x0078:PERI_CRG30 */
writel(regval, (0x12010000 + 0x0078));
return 0;
}
U_BOOT_CMD(
go_cpu1, CONFIG_SYS_MAXARGS, 0, start_other_cpus,
"Perform power on and unreset CPU1_A7",
"go_cpu1 \n"
);
#ifdef CONFIG_ARMV7_NONSEC
void smp_set_core_boot_addr(unsigned long addr, int corenr)
{
}
void smp_kick_all_cpus(void)
{
}
void smp_waitloop(unsigned previous_address)
{
}
#endif