• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (c) 2013 Google, Inc
4  *
5  * (C) Copyright 2012
6  * Pavel Herrmann <morpheus.ibis@gmail.com>
7  * Marek Vasut <marex@denx.de>
8  */
9 
10 #ifndef _DM_DEVICE_H
11 #define _DM_DEVICE_H
12 
13 #include <dm/ofnode.h>
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/printk.h>
21 
22 struct driver_info;
23 
24 /* Driver is active (probed). Cleared when it is removed */
25 #define DM_FLAG_ACTIVATED		(1 << 0)
26 
27 /* DM is responsible for allocating and freeing platdata */
28 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
29 
30 /* DM should init this device prior to relocation */
31 #define DM_FLAG_PRE_RELOC		(1 << 2)
32 
33 /* DM is responsible for allocating and freeing parent_platdata */
34 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
35 
36 /* DM is responsible for allocating and freeing uclass_platdata */
37 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
38 
39 /* Allocate driver private data on a DMA boundary */
40 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
41 
42 /* Device is bound */
43 #define DM_FLAG_BOUND			(1 << 6)
44 
45 /* Device name is allocated and should be freed on unbind() */
46 #define DM_FLAG_NAME_ALLOCED		(1 << 7)
47 
48 #define DM_FLAG_OF_PLATDATA		(1 << 8)
49 
50 /*
51  * Call driver remove function to stop currently active DMA transfers or
52  * give DMA buffers back to the HW / controller. This may be needed for
53  * some drivers to do some final stage cleanup before the OS is called
54  * (U-Boot exit)
55  */
56 #define DM_FLAG_ACTIVE_DMA		(1 << 9)
57 
58 /*
59  * Call driver remove function to do some final configuration, before
60  * U-Boot exits and the OS is started
61  */
62 #define DM_FLAG_OS_PREPARE		(1 << 10)
63 
64 /* DM does not enable/disable the power domains corresponding to this device */
65 #define DM_FLAG_DEFAULT_PD_CTRL_OFF	(1 << 11)
66 
67 /*
68  * One or multiple of these flags are passed to device_remove() so that
69  * a selective device removal as specified by the remove-stage and the
70  * driver flags can be done.
71  */
72 enum {
73 	/* Normal remove, remove all devices */
74 	DM_REMOVE_NORMAL     = 1 << 0,
75 
76 	/* Remove devices with active DMA */
77 	DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
78 
79 	/* Remove devices which need some final OS preparation steps */
80 	DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
81 
82 	/* Add more use cases here */
83 
84 	/* Remove devices with any active flag */
85 	DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
86 };
87 
88 /**
89  * struct udevice - An instance of a driver
90  *
91  * This holds information about a device, which is a driver bound to a
92  * particular port or peripheral (essentially a driver instance).
93  *
94  * A device will come into existence through a 'bind' call, either due to
95  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
96  * in the device tree (in which case of_offset is >= 0). In the latter case
97  * we translate the device tree information into platdata in a function
98  * implemented by the driver ofdata_to_platdata method (called just before the
99  * probe method if the device has a device tree node.
100  *
101  * All three of platdata, priv and uclass_priv can be allocated by the
102  * driver, or you can use the auto_alloc_size members of struct driver and
103  * struct uclass_driver to have driver model do this automatically.
104  *
105  * @driver: The driver used by this device
106  * @name: Name of device, typically the FDT node name
107  * @platdata: Configuration data for this device
108  * @parent_platdata: The parent bus's configuration data for this device
109  * @uclass_platdata: The uclass's configuration data for this device
110  * @node: Reference to device tree node for this device
111  * @driver_data: Driver data word for the entry that matched this device with
112  *		its driver
113  * @parent: Parent of this device, or NULL for the top level device
114  * @priv: Private data for this device
115  * @uclass: Pointer to uclass for this device
116  * @uclass_priv: The uclass's private data for this device
117  * @parent_priv: The parent's private data for this device
118  * @uclass_node: Used by uclass to link its devices
119  * @child_head: List of children of this device
120  * @sibling_node: Next device in list of all devices
121  * @flags: Flags for this device DM_FLAG_...
122  * @req_seq: Requested sequence number for this device (-1 = any)
123  * @seq: Allocated sequence number for this device (-1 = none). This is set up
124  * when the device is probed and will be unique within the device's uclass.
125  * @devres_head: List of memory allocations associated with this device.
126  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
127  *		add to this list. Memory so-allocated will be freed
128  *		automatically when the device is removed / unbound
129  */
130 struct udevice {
131 	const struct driver *driver;
132 	const char *name;
133 	void *platdata;
134 	void *parent_platdata;
135 	void *uclass_platdata;
136 	ofnode node;
137 	ulong driver_data;
138 	struct udevice *parent;
139 	void *priv;
140 	struct uclass *uclass;
141 	void *uclass_priv;
142 	void *parent_priv;
143 	struct list_head uclass_node;
144 	struct list_head child_head;
145 	struct list_head sibling_node;
146 	uint32_t flags;
147 	int req_seq;
148 	int seq;
149 #ifdef CONFIG_DEVRES
150 	struct list_head devres_head;
151 #endif
152 };
153 
154 /* Maximum sequence number supported */
155 #define DM_MAX_SEQ	999
156 
157 /* Returns the operations for a device */
158 #define device_get_ops(dev)	(dev->driver->ops)
159 
160 /* Returns non-zero if the device is active (probed and not removed) */
161 #define device_active(dev)	((dev)->flags & DM_FLAG_ACTIVATED)
162 
dev_of_offset(const struct udevice * dev)163 static inline int dev_of_offset(const struct udevice *dev)
164 {
165 	return ofnode_to_offset(dev->node);
166 }
167 
dev_set_of_offset(struct udevice * dev,int of_offset)168 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
169 {
170 	dev->node = offset_to_ofnode(of_offset);
171 }
172 
dev_has_of_node(struct udevice * dev)173 static inline bool dev_has_of_node(struct udevice *dev)
174 {
175 	return ofnode_valid(dev->node);
176 }
177 
178 /**
179  * struct udevice_id - Lists the compatible strings supported by a driver
180  * @compatible: Compatible string
181  * @data: Data for this compatible string
182  */
183 struct udevice_id {
184 	const char *compatible;
185 	ulong data;
186 };
187 
188 #if CONFIG_IS_ENABLED(OF_CONTROL)
189 #define of_match_ptr(_ptr)	(_ptr)
190 #else
191 #define of_match_ptr(_ptr)	NULL
192 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
193 
194 /**
195  * struct driver - A driver for a feature or peripheral
196  *
197  * This holds methods for setting up a new device, and also removing it.
198  * The device needs information to set itself up - this is provided either
199  * by platdata or a device tree node (which we find by looking up
200  * matching compatible strings with of_match).
201  *
202  * Drivers all belong to a uclass, representing a class of devices of the
203  * same type. Common elements of the drivers can be implemented in the uclass,
204  * or the uclass can provide a consistent interface to the drivers within
205  * it.
206  *
207  * @name: Device name
208  * @id: Identifies the uclass we belong to
209  * @of_match: List of compatible strings to match, and any identifying data
210  * for each.
211  * @bind: Called to bind a device to its driver
212  * @probe: Called to probe a device, i.e. activate it
213  * @remove: Called to remove a device, i.e. de-activate it
214  * @unbind: Called to unbind a device from its driver
215  * @ofdata_to_platdata: Called before probe to decode device tree data
216  * @child_post_bind: Called after a new child has been bound
217  * @child_pre_probe: Called before a child device is probed. The device has
218  * memory allocated but it has not yet been probed.
219  * @child_post_remove: Called after a child device is removed. The device
220  * has memory allocated but its device_remove() method has been called.
221  * @priv_auto_alloc_size: If non-zero this is the size of the private data
222  * to be allocated in the device's ->priv pointer. If zero, then the driver
223  * is responsible for allocating any data required.
224  * @platdata_auto_alloc_size: If non-zero this is the size of the
225  * platform data to be allocated in the device's ->platdata pointer.
226  * This is typically only useful for device-tree-aware drivers (those with
227  * an of_match), since drivers which use platdata will have the data
228  * provided in the U_BOOT_DEVICE() instantiation.
229  * @per_child_auto_alloc_size: Each device can hold private data owned by
230  * its parent. If required this will be automatically allocated if this
231  * value is non-zero.
232  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
233  * its children. If non-zero this is the size of this data, to be allocated
234  * in the child's parent_platdata pointer.
235  * @ops: Driver-specific operations. This is typically a list of function
236  * pointers defined by the driver, to implement driver functions required by
237  * the uclass.
238  * @flags: driver flags - see DM_FLAGS_...
239  */
240 struct driver {
241 	char *name;
242 	enum uclass_id id;
243 	const struct udevice_id *of_match;
244 	int (*bind)(struct udevice *dev);
245 	int (*probe)(struct udevice *dev);
246 	int (*remove)(struct udevice *dev);
247 	int (*unbind)(struct udevice *dev);
248 	int (*ofdata_to_platdata)(struct udevice *dev);
249 	int (*child_post_bind)(struct udevice *dev);
250 	int (*child_pre_probe)(struct udevice *dev);
251 	int (*child_post_remove)(struct udevice *dev);
252 	int priv_auto_alloc_size;
253 	int platdata_auto_alloc_size;
254 	int per_child_auto_alloc_size;
255 	int per_child_platdata_auto_alloc_size;
256 	const void *ops;	/* driver-specific operations */
257 	uint32_t flags;
258 };
259 
260 /* Declare a new U-Boot driver */
261 #define U_BOOT_DRIVER(__name)						\
262 	ll_entry_declare(struct driver, __name, driver)
263 
264 /* Get a pointer to a given driver */
265 #define DM_GET_DRIVER(__name)						\
266 	ll_entry_get(struct driver, __name, driver)
267 
268 /**
269  * dev_get_platdata() - Get the platform data for a device
270  *
271  * This checks that dev is not NULL, but no other checks for now
272  *
273  * @dev		Device to check
274  * @return platform data, or NULL if none
275  */
276 void *dev_get_platdata(const struct udevice *dev);
277 
278 /**
279  * dev_get_parent_platdata() - Get the parent platform data for a device
280  *
281  * This checks that dev is not NULL, but no other checks for now
282  *
283  * @dev		Device to check
284  * @return parent's platform data, or NULL if none
285  */
286 void *dev_get_parent_platdata(const struct udevice *dev);
287 
288 /**
289  * dev_get_uclass_platdata() - Get the uclass platform data for a device
290  *
291  * This checks that dev is not NULL, but no other checks for now
292  *
293  * @dev		Device to check
294  * @return uclass's platform data, or NULL if none
295  */
296 void *dev_get_uclass_platdata(const struct udevice *dev);
297 
298 /**
299  * dev_get_priv() - Get the private data for a device
300  *
301  * This checks that dev is not NULL, but no other checks for now
302  *
303  * @dev		Device to check
304  * @return private data, or NULL if none
305  */
306 void *dev_get_priv(const struct udevice *dev);
307 
308 /**
309  * dev_get_parent_priv() - Get the parent private data for a device
310  *
311  * The parent private data is data stored in the device but owned by the
312  * parent. For example, a USB device may have parent data which contains
313  * information about how to talk to the device over USB.
314  *
315  * This checks that dev is not NULL, but no other checks for now
316  *
317  * @dev		Device to check
318  * @return parent data, or NULL if none
319  */
320 void *dev_get_parent_priv(const struct udevice *dev);
321 
322 /**
323  * dev_get_uclass_priv() - Get the private uclass data for a device
324  *
325  * This checks that dev is not NULL, but no other checks for now
326  *
327  * @dev		Device to check
328  * @return private uclass data for this device, or NULL if none
329  */
330 void *dev_get_uclass_priv(const struct udevice *dev);
331 
332 /**
333  * struct dev_get_parent() - Get the parent of a device
334  *
335  * @child:	Child to check
336  * @return parent of child, or NULL if this is the root device
337  */
338 struct udevice *dev_get_parent(const struct udevice *child);
339 
340 /**
341  * dev_get_driver_data() - get the driver data used to bind a device
342  *
343  * When a device is bound using a device tree node, it matches a
344  * particular compatible string in struct udevice_id. This function
345  * returns the associated data value for that compatible string. This is
346  * the 'data' field in struct udevice_id.
347  *
348  * As an example, consider this structure:
349  * static const struct udevice_id tegra_i2c_ids[] = {
350  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
351  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
352  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
353  *	{ }
354  * };
355  *
356  * When driver model finds a driver for this it will store the 'data' value
357  * corresponding to the compatible string it matches. This function returns
358  * that value. This allows the driver to handle several variants of a device.
359  *
360  * For USB devices, this is the driver_info field in struct usb_device_id.
361  *
362  * @dev:	Device to check
363  * @return driver data (0 if none is provided)
364  */
365 ulong dev_get_driver_data(const struct udevice *dev);
366 
367 /**
368  * dev_get_driver_ops() - get the device's driver's operations
369  *
370  * This checks that dev is not NULL, and returns the pointer to device's
371  * driver's operations.
372  *
373  * @dev:	Device to check
374  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
375  */
376 const void *dev_get_driver_ops(const struct udevice *dev);
377 
378 /**
379  * device_get_uclass_id() - return the uclass ID of a device
380  *
381  * @dev:	Device to check
382  * @return uclass ID for the device
383  */
384 enum uclass_id device_get_uclass_id(const struct udevice *dev);
385 
386 /**
387  * dev_get_uclass_name() - return the uclass name of a device
388  *
389  * This checks that dev is not NULL.
390  *
391  * @dev:	Device to check
392  * @return  pointer to the uclass name for the device
393  */
394 const char *dev_get_uclass_name(const struct udevice *dev);
395 
396 /**
397  * device_get_child() - Get the child of a device by index
398  *
399  * Returns the numbered child, 0 being the first. This does not use
400  * sequence numbers, only the natural order.
401  *
402  * @dev:	Parent device to check
403  * @index:	Child index
404  * @devp:	Returns pointer to device
405  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
406  *	   to probe
407  */
408 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
409 
410 /**
411  * device_get_child_count() - Get the available child count of a device
412  *
413  * Returns the number of children to a device.
414  *
415  * @parent:	Parent device to check
416  */
417 int device_get_child_count(struct udevice *parent);
418 
419 /**
420  * device_find_child_by_seq() - Find a child device based on a sequence
421  *
422  * This searches for a device with the given seq or req_seq.
423  *
424  * For seq, if an active device has this sequence it will be returned.
425  * If there is no such device then this will return -ENODEV.
426  *
427  * For req_seq, if a device (whether activated or not) has this req_seq
428  * value, that device will be returned. This is a strong indication that
429  * the device will receive that sequence when activated.
430  *
431  * @parent: Parent device
432  * @seq_or_req_seq: Sequence number to find (0=first)
433  * @find_req_seq: true to find req_seq, false to find seq
434  * @devp: Returns pointer to device (there is only one per for each seq).
435  * Set to NULL if none is found
436  * @return 0 if OK, -ve on error
437  */
438 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
439 			     bool find_req_seq, struct udevice **devp);
440 
441 /**
442  * device_get_child_by_seq() - Get a child device based on a sequence
443  *
444  * If an active device has this sequence it will be returned. If there is no
445  * such device then this will check for a device that is requesting this
446  * sequence.
447  *
448  * The device is probed to activate it ready for use.
449  *
450  * @parent: Parent device
451  * @seq: Sequence number to find (0=first)
452  * @devp: Returns pointer to device (there is only one per for each seq)
453  * Set to NULL if none is found
454  * @return 0 if OK, -ve on error
455  */
456 int device_get_child_by_seq(struct udevice *parent, int seq,
457 			    struct udevice **devp);
458 
459 /**
460  * device_find_child_by_of_offset() - Find a child device based on FDT offset
461  *
462  * Locates a child device by its device tree offset.
463  *
464  * @parent: Parent device
465  * @of_offset: Device tree offset to find
466  * @devp: Returns pointer to device if found, otherwise this is set to NULL
467  * @return 0 if OK, -ve on error
468  */
469 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
470 				   struct udevice **devp);
471 
472 /**
473  * device_get_child_by_of_offset() - Get a child device based on FDT offset
474  *
475  * Locates a child device by its device tree offset.
476  *
477  * The device is probed to activate it ready for use.
478  *
479  * @parent: Parent device
480  * @of_offset: Device tree offset to find
481  * @devp: Returns pointer to device if found, otherwise this is set to NULL
482  * @return 0 if OK, -ve on error
483  */
484 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
485 				  struct udevice **devp);
486 
487 /**
488  * device_find_global_by_ofnode() - Get a device based on ofnode
489  *
490  * Locates a device by its device tree ofnode, searching globally throughout
491  * the all driver model devices.
492  *
493  * The device is NOT probed
494  *
495  * @node: Device tree ofnode to find
496  * @devp: Returns pointer to device if found, otherwise this is set to NULL
497  * @return 0 if OK, -ve on error
498  */
499 
500 int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
501 
502 /**
503  * device_get_global_by_ofnode() - Get a device based on ofnode
504  *
505  * Locates a device by its device tree ofnode, searching globally throughout
506  * the all driver model devices.
507  *
508  * The device is probed to activate it ready for use.
509  *
510  * @node: Device tree ofnode to find
511  * @devp: Returns pointer to device if found, otherwise this is set to NULL
512  * @return 0 if OK, -ve on error
513  */
514 int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
515 
516 /**
517  * device_find_first_child() - Find the first child of a device
518  *
519  * @parent: Parent device to search
520  * @devp: Returns first child device, or NULL if none
521  * @return 0
522  */
523 int device_find_first_child(struct udevice *parent, struct udevice **devp);
524 
525 /**
526  * device_find_next_child() - Find the next child of a device
527  *
528  * @devp: Pointer to previous child device on entry. Returns pointer to next
529  *		child device, or NULL if none
530  * @return 0
531  */
532 int device_find_next_child(struct udevice **devp);
533 
534 /**
535  * device_find_first_inactive_child() - Find the first inactive child
536  *
537  * This is used to locate an existing child of a device which is of a given
538  * uclass.
539  *
540  * The device is NOT probed
541  *
542  * @parent:	Parent device to search
543  * @uclass_id:	Uclass to look for
544  * @devp:	Returns device found, if any
545  * @return 0 if found, else -ENODEV
546  */
547 int device_find_first_inactive_child(struct udevice *parent,
548 				     enum uclass_id uclass_id,
549 				     struct udevice **devp);
550 
551 /**
552  * device_find_first_child_by_uclass() - Find the first child of a device in uc
553  *
554  * @parent: Parent device to search
555  * @uclass_id:	Uclass to look for
556  * @devp: Returns first child device in that uclass, if any
557  * @return 0 if found, else -ENODEV
558  */
559 int device_find_first_child_by_uclass(struct udevice *parent,
560 				      enum uclass_id uclass_id,
561 				      struct udevice **devp);
562 
563 /**
564  * device_find_child_by_name() - Find a child by device name
565  *
566  * @parent:	Parent device to search
567  * @name:	Name to look for
568  * @devp:	Returns device found, if any
569  * @return 0 if found, else -ENODEV
570  */
571 int device_find_child_by_name(struct udevice *parent, const char *name,
572 			      struct udevice **devp);
573 
574 /**
575  * device_has_children() - check if a device has any children
576  *
577  * @dev:	Device to check
578  * @return true if the device has one or more children
579  */
580 bool device_has_children(const struct udevice *dev);
581 
582 /**
583  * device_has_active_children() - check if a device has any active children
584  *
585  * @dev:	Device to check
586  * @return true if the device has one or more children and at least one of
587  * them is active (probed).
588  */
589 bool device_has_active_children(struct udevice *dev);
590 
591 /**
592  * device_is_last_sibling() - check if a device is the last sibling
593  *
594  * This function can be useful for display purposes, when special action needs
595  * to be taken when displaying the last sibling. This can happen when a tree
596  * view of devices is being displayed.
597  *
598  * @dev:	Device to check
599  * @return true if there are no more siblings after this one - i.e. is it
600  * last in the list.
601  */
602 bool device_is_last_sibling(struct udevice *dev);
603 
604 /**
605  * device_set_name() - set the name of a device
606  *
607  * This must be called in the device's bind() method and no later. Normally
608  * this is unnecessary but for probed devices which don't get a useful name
609  * this function can be helpful.
610  *
611  * The name is allocated and will be freed automatically when the device is
612  * unbound.
613  *
614  * @dev:	Device to update
615  * @name:	New name (this string is allocated new memory and attached to
616  *		the device)
617  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
618  * string
619  */
620 int device_set_name(struct udevice *dev, const char *name);
621 
622 /**
623  * device_set_name_alloced() - note that a device name is allocated
624  *
625  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
626  * unbound the name will be freed. This avoids memory leaks.
627  *
628  * @dev:	Device to update
629  */
630 void device_set_name_alloced(struct udevice *dev);
631 
632 /**
633  * device_is_compatible() - check if the device is compatible with the compat
634  *
635  * This allows to check whether the device is comaptible with the compat.
636  *
637  * @dev:	udevice pointer for which compatible needs to be verified.
638  * @compat:	Compatible string which needs to verified in the given
639  *		device
640  * @return true if OK, false if the compatible is not found
641  */
642 bool device_is_compatible(struct udevice *dev, const char *compat);
643 
644 /**
645  * of_machine_is_compatible() - check if the machine is compatible with
646  *				the compat
647  *
648  * This allows to check whether the machine is comaptible with the compat.
649  *
650  * @compat:	Compatible string which needs to verified
651  * @return true if OK, false if the compatible is not found
652  */
653 bool of_machine_is_compatible(const char *compat);
654 
655 /**
656  * dev_disable_by_path() - Disable a device given its device tree path
657  *
658  * @path:	The device tree path identifying the device to be disabled
659  * @return 0 on success, -ve on error
660  */
661 int dev_disable_by_path(const char *path);
662 
663 /**
664  * dev_enable_by_path() - Enable a device given its device tree path
665  *
666  * @path:	The device tree path identifying the device to be enabled
667  * @return 0 on success, -ve on error
668  */
669 int dev_enable_by_path(const char *path);
670 
671 /**
672  * device_is_on_pci_bus - Test if a device is on a PCI bus
673  *
674  * @dev:	device to test
675  * @return:	true if it is on a PCI bus, false otherwise
676  */
device_is_on_pci_bus(struct udevice * dev)677 static inline bool device_is_on_pci_bus(struct udevice *dev)
678 {
679 	return device_get_uclass_id(dev->parent) == UCLASS_PCI;
680 }
681 
682 /**
683  * device_foreach_child_safe() - iterate through child devices safely
684  *
685  * This allows the @pos child to be removed in the loop if required.
686  *
687  * @pos: struct udevice * for the current device
688  * @next: struct udevice * for the next device
689  * @parent: parent device to scan
690  */
691 #define device_foreach_child_safe(pos, next, parent)	\
692 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
693 
694 /**
695  * device_foreach_child() - iterate through child devices
696  *
697  * @pos: struct udevice * for the current device
698  * @parent: parent device to scan
699  */
700 #define device_foreach_child(pos, parent)	\
701 	list_for_each_entry(pos, &parent->child_head, sibling_node)
702 
703 /**
704  * dm_scan_fdt_dev() - Bind child device in a the device tree
705  *
706  * This handles device which have sub-nodes in the device tree. It scans all
707  * sub-nodes and binds drivers for each node where a driver can be found.
708  *
709  * If this is called prior to relocation, only pre-relocation devices will be
710  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
711  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
712  * be bound.
713  *
714  * @dev:	Device to scan
715  * @return 0 if OK, -ve on error
716  */
717 int dm_scan_fdt_dev(struct udevice *dev);
718 
719 /* device resource management */
720 typedef void (*dr_release_t)(struct udevice *dev, void *res);
721 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
722 
723 #ifdef CONFIG_DEVRES
724 
725 #ifdef CONFIG_DEBUG_DEVRES
726 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
727 		     const char *name);
728 #define _devres_alloc(release, size, gfp) \
729 	__devres_alloc(release, size, gfp, #release)
730 #else
731 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
732 #endif
733 
734 /**
735  * devres_alloc() - Allocate device resource data
736  * @release: Release function devres will be associated with
737  * @size: Allocation size
738  * @gfp: Allocation flags
739  *
740  * Allocate devres of @size bytes.  The allocated area is associated
741  * with @release.  The returned pointer can be passed to
742  * other devres_*() functions.
743  *
744  * RETURNS:
745  * Pointer to allocated devres on success, NULL on failure.
746  */
747 #define devres_alloc(release, size, gfp) \
748 	_devres_alloc(release, size, gfp | __GFP_ZERO)
749 
750 /**
751  * devres_free() - Free device resource data
752  * @res: Pointer to devres data to free
753  *
754  * Free devres created with devres_alloc().
755  */
756 void devres_free(void *res);
757 
758 /**
759  * devres_add() - Register device resource
760  * @dev: Device to add resource to
761  * @res: Resource to register
762  *
763  * Register devres @res to @dev.  @res should have been allocated
764  * using devres_alloc().  On driver detach, the associated release
765  * function will be invoked and devres will be freed automatically.
766  */
767 void devres_add(struct udevice *dev, void *res);
768 
769 /**
770  * devres_find() - Find device resource
771  * @dev: Device to lookup resource from
772  * @release: Look for resources associated with this release function
773  * @match: Match function (optional)
774  * @match_data: Data for the match function
775  *
776  * Find the latest devres of @dev which is associated with @release
777  * and for which @match returns 1.  If @match is NULL, it's considered
778  * to match all.
779  *
780  * @return pointer to found devres, NULL if not found.
781  */
782 void *devres_find(struct udevice *dev, dr_release_t release,
783 		  dr_match_t match, void *match_data);
784 
785 /**
786  * devres_get() - Find devres, if non-existent, add one atomically
787  * @dev: Device to lookup or add devres for
788  * @new_res: Pointer to new initialized devres to add if not found
789  * @match: Match function (optional)
790  * @match_data: Data for the match function
791  *
792  * Find the latest devres of @dev which has the same release function
793  * as @new_res and for which @match return 1.  If found, @new_res is
794  * freed; otherwise, @new_res is added atomically.
795  *
796  * @return ointer to found or added devres.
797  */
798 void *devres_get(struct udevice *dev, void *new_res,
799 		 dr_match_t match, void *match_data);
800 
801 /**
802  * devres_remove() - Find a device resource and remove it
803  * @dev: Device to find resource from
804  * @release: Look for resources associated with this release function
805  * @match: Match function (optional)
806  * @match_data: Data for the match function
807  *
808  * Find the latest devres of @dev associated with @release and for
809  * which @match returns 1.  If @match is NULL, it's considered to
810  * match all.  If found, the resource is removed atomically and
811  * returned.
812  *
813  * @return ointer to removed devres on success, NULL if not found.
814  */
815 void *devres_remove(struct udevice *dev, dr_release_t release,
816 		    dr_match_t match, void *match_data);
817 
818 /**
819  * devres_destroy() - Find a device resource and destroy it
820  * @dev: Device to find resource from
821  * @release: Look for resources associated with this release function
822  * @match: Match function (optional)
823  * @match_data: Data for the match function
824  *
825  * Find the latest devres of @dev associated with @release and for
826  * which @match returns 1.  If @match is NULL, it's considered to
827  * match all.  If found, the resource is removed atomically and freed.
828  *
829  * Note that the release function for the resource will not be called,
830  * only the devres-allocated data will be freed.  The caller becomes
831  * responsible for freeing any other data.
832  *
833  * @return 0 if devres is found and freed, -ENOENT if not found.
834  */
835 int devres_destroy(struct udevice *dev, dr_release_t release,
836 		   dr_match_t match, void *match_data);
837 
838 /**
839  * devres_release() - Find a device resource and destroy it, calling release
840  * @dev: Device to find resource from
841  * @release: Look for resources associated with this release function
842  * @match: Match function (optional)
843  * @match_data: Data for the match function
844  *
845  * Find the latest devres of @dev associated with @release and for
846  * which @match returns 1.  If @match is NULL, it's considered to
847  * match all.  If found, the resource is removed atomically, the
848  * release function called and the resource freed.
849  *
850  * @return 0 if devres is found and freed, -ENOENT if not found.
851  */
852 int devres_release(struct udevice *dev, dr_release_t release,
853 		   dr_match_t match, void *match_data);
854 
855 /* managed devm_k.alloc/kfree for device drivers */
856 /**
857  * devm_kmalloc() - Resource-managed kmalloc
858  * @dev: Device to allocate memory for
859  * @size: Allocation size
860  * @gfp: Allocation gfp flags
861  *
862  * Managed kmalloc.  Memory allocated with this function is
863  * automatically freed on driver detach.  Like all other devres
864  * resources, guaranteed alignment is unsigned long long.
865  *
866  * @return pointer to allocated memory on success, NULL on failure.
867  */
868 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)869 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
870 {
871 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
872 }
devm_kmalloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)873 static inline void *devm_kmalloc_array(struct udevice *dev,
874 				       size_t n, size_t size, gfp_t flags)
875 {
876 	if (size != 0 && n > SIZE_MAX / size)
877 		return NULL;
878 	return devm_kmalloc(dev, n * size, flags);
879 }
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)880 static inline void *devm_kcalloc(struct udevice *dev,
881 				 size_t n, size_t size, gfp_t flags)
882 {
883 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
884 }
885 
886 /**
887  * devm_kfree() - Resource-managed kfree
888  * @dev: Device this memory belongs to
889  * @ptr: Memory to free
890  *
891  * Free memory allocated with devm_kmalloc().
892  */
893 void devm_kfree(struct udevice *dev, void *ptr);
894 
895 #else /* ! CONFIG_DEVRES */
896 
devres_alloc(dr_release_t release,size_t size,gfp_t gfp)897 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
898 {
899 	return kzalloc(size, gfp);
900 }
901 
devres_free(void * res)902 static inline void devres_free(void *res)
903 {
904 	kfree(res);
905 }
906 
devres_add(struct udevice * dev,void * res)907 static inline void devres_add(struct udevice *dev, void *res)
908 {
909 }
910 
devres_find(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)911 static inline void *devres_find(struct udevice *dev, dr_release_t release,
912 				dr_match_t match, void *match_data)
913 {
914 	return NULL;
915 }
916 
devres_get(struct udevice * dev,void * new_res,dr_match_t match,void * match_data)917 static inline void *devres_get(struct udevice *dev, void *new_res,
918 			       dr_match_t match, void *match_data)
919 {
920 	return NULL;
921 }
922 
devres_remove(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)923 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
924 				  dr_match_t match, void *match_data)
925 {
926 	return NULL;
927 }
928 
devres_destroy(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)929 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
930 				 dr_match_t match, void *match_data)
931 {
932 	return 0;
933 }
934 
devres_release(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)935 static inline int devres_release(struct udevice *dev, dr_release_t release,
936 				 dr_match_t match, void *match_data)
937 {
938 	return 0;
939 }
940 
devm_kmalloc(struct udevice * dev,size_t size,gfp_t gfp)941 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
942 {
943 	return kmalloc(size, gfp);
944 }
945 
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)946 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
947 {
948 	return kzalloc(size, gfp);
949 }
950 
devm_kmalloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)951 static inline void *devm_kmalloc_array(struct udevice *dev,
952 				       size_t n, size_t size, gfp_t flags)
953 {
954 	/* TODO: add kmalloc_array() to linux/compat.h */
955 	if (size != 0 && n > SIZE_MAX / size)
956 		return NULL;
957 	return kmalloc(n * size, flags);
958 }
959 
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)960 static inline void *devm_kcalloc(struct udevice *dev,
961 				 size_t n, size_t size, gfp_t flags)
962 {
963 	/* TODO: add kcalloc() to linux/compat.h */
964 	return kmalloc(n * size, flags | __GFP_ZERO);
965 }
966 
devm_kfree(struct udevice * dev,void * ptr)967 static inline void devm_kfree(struct udevice *dev, void *ptr)
968 {
969 	kfree(ptr);
970 }
971 
972 #endif /* ! CONFIG_DEVRES */
973 
974 /*
975  * REVISIT:
976  * remove the following after resolving conflicts with <linux/compat.h>
977  */
978 #ifdef dev_dbg
979 #undef dev_dbg
980 #endif
981 #ifdef dev_vdbg
982 #undef dev_vdbg
983 #endif
984 #ifdef dev_info
985 #undef dev_info
986 #endif
987 #ifdef dev_err
988 #undef dev_err
989 #endif
990 #ifdef dev_warn
991 #undef dev_warn
992 #endif
993 
994 /*
995  * REVISIT:
996  * print device name like Linux
997  */
998 #define dev_printk(dev, fmt, ...)				\
999 ({								\
1000 	printk(fmt, ##__VA_ARGS__);				\
1001 })
1002 
1003 #define __dev_printk(level, dev, fmt, ...)			\
1004 ({								\
1005 	if (level < CONFIG_VAL(LOGLEVEL))			\
1006 		dev_printk(dev, fmt, ##__VA_ARGS__);		\
1007 })
1008 
1009 #define dev_emerg(dev, fmt, ...) \
1010 	__dev_printk(0, dev, fmt, ##__VA_ARGS__)
1011 #define dev_alert(dev, fmt, ...) \
1012 	__dev_printk(1, dev, fmt, ##__VA_ARGS__)
1013 #define dev_crit(dev, fmt, ...) \
1014 	__dev_printk(2, dev, fmt, ##__VA_ARGS__)
1015 #define dev_err(dev, fmt, ...) \
1016 	__dev_printk(3, dev, fmt, ##__VA_ARGS__)
1017 #define dev_warn(dev, fmt, ...) \
1018 	__dev_printk(4, dev, fmt, ##__VA_ARGS__)
1019 #define dev_notice(dev, fmt, ...) \
1020 	__dev_printk(5, dev, fmt, ##__VA_ARGS__)
1021 #define dev_info(dev, fmt, ...) \
1022 	__dev_printk(6, dev, fmt, ##__VA_ARGS__)
1023 
1024 #ifdef DEBUG
1025 #define dev_dbg(dev, fmt, ...) \
1026 	__dev_printk(7, dev, fmt, ##__VA_ARGS__)
1027 #else
1028 #define dev_dbg(dev, fmt, ...)					\
1029 ({								\
1030 	if (0)							\
1031 		__dev_printk(7, dev, fmt, ##__VA_ARGS__);	\
1032 })
1033 #endif
1034 
1035 #ifdef VERBOSE_DEBUG
1036 #define dev_vdbg	dev_dbg
1037 #else
1038 #define dev_vdbg(dev, fmt, ...)					\
1039 ({								\
1040 	if (0)							\
1041 		__dev_printk(7, dev, fmt, ##__VA_ARGS__);	\
1042 })
1043 #endif
1044 
1045 #endif
1046