1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Copyright (c) 2013 Google, Inc
4 *
5 * (C) Copyright 2012
6 * Pavel Herrmann <morpheus.ibis@gmail.com>
7 * Marek Vasut <marex@denx.de>
8 */
9
10 #ifndef _DM_DEVICE_H
11 #define _DM_DEVICE_H
12
13 #include <dm/ofnode.h>
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/printk.h>
21
22 struct driver_info;
23
24 /* Driver is active (probed). Cleared when it is removed */
25 #define DM_FLAG_ACTIVATED (1 << 0)
26
27 /* DM is responsible for allocating and freeing platdata */
28 #define DM_FLAG_ALLOC_PDATA (1 << 1)
29
30 /* DM should init this device prior to relocation */
31 #define DM_FLAG_PRE_RELOC (1 << 2)
32
33 /* DM is responsible for allocating and freeing parent_platdata */
34 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3)
35
36 /* DM is responsible for allocating and freeing uclass_platdata */
37 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4)
38
39 /* Allocate driver private data on a DMA boundary */
40 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5)
41
42 /* Device is bound */
43 #define DM_FLAG_BOUND (1 << 6)
44
45 /* Device name is allocated and should be freed on unbind() */
46 #define DM_FLAG_NAME_ALLOCED (1 << 7)
47
48 #define DM_FLAG_OF_PLATDATA (1 << 8)
49
50 /*
51 * Call driver remove function to stop currently active DMA transfers or
52 * give DMA buffers back to the HW / controller. This may be needed for
53 * some drivers to do some final stage cleanup before the OS is called
54 * (U-Boot exit)
55 */
56 #define DM_FLAG_ACTIVE_DMA (1 << 9)
57
58 /*
59 * Call driver remove function to do some final configuration, before
60 * U-Boot exits and the OS is started
61 */
62 #define DM_FLAG_OS_PREPARE (1 << 10)
63
64 /* DM does not enable/disable the power domains corresponding to this device */
65 #define DM_FLAG_DEFAULT_PD_CTRL_OFF (1 << 11)
66
67 /*
68 * One or multiple of these flags are passed to device_remove() so that
69 * a selective device removal as specified by the remove-stage and the
70 * driver flags can be done.
71 */
72 enum {
73 /* Normal remove, remove all devices */
74 DM_REMOVE_NORMAL = 1 << 0,
75
76 /* Remove devices with active DMA */
77 DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
78
79 /* Remove devices which need some final OS preparation steps */
80 DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
81
82 /* Add more use cases here */
83
84 /* Remove devices with any active flag */
85 DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
86 };
87
88 /**
89 * struct udevice - An instance of a driver
90 *
91 * This holds information about a device, which is a driver bound to a
92 * particular port or peripheral (essentially a driver instance).
93 *
94 * A device will come into existence through a 'bind' call, either due to
95 * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
96 * in the device tree (in which case of_offset is >= 0). In the latter case
97 * we translate the device tree information into platdata in a function
98 * implemented by the driver ofdata_to_platdata method (called just before the
99 * probe method if the device has a device tree node.
100 *
101 * All three of platdata, priv and uclass_priv can be allocated by the
102 * driver, or you can use the auto_alloc_size members of struct driver and
103 * struct uclass_driver to have driver model do this automatically.
104 *
105 * @driver: The driver used by this device
106 * @name: Name of device, typically the FDT node name
107 * @platdata: Configuration data for this device
108 * @parent_platdata: The parent bus's configuration data for this device
109 * @uclass_platdata: The uclass's configuration data for this device
110 * @node: Reference to device tree node for this device
111 * @driver_data: Driver data word for the entry that matched this device with
112 * its driver
113 * @parent: Parent of this device, or NULL for the top level device
114 * @priv: Private data for this device
115 * @uclass: Pointer to uclass for this device
116 * @uclass_priv: The uclass's private data for this device
117 * @parent_priv: The parent's private data for this device
118 * @uclass_node: Used by uclass to link its devices
119 * @child_head: List of children of this device
120 * @sibling_node: Next device in list of all devices
121 * @flags: Flags for this device DM_FLAG_...
122 * @req_seq: Requested sequence number for this device (-1 = any)
123 * @seq: Allocated sequence number for this device (-1 = none). This is set up
124 * when the device is probed and will be unique within the device's uclass.
125 * @devres_head: List of memory allocations associated with this device.
126 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
127 * add to this list. Memory so-allocated will be freed
128 * automatically when the device is removed / unbound
129 */
130 struct udevice {
131 const struct driver *driver;
132 const char *name;
133 void *platdata;
134 void *parent_platdata;
135 void *uclass_platdata;
136 ofnode node;
137 ulong driver_data;
138 struct udevice *parent;
139 void *priv;
140 struct uclass *uclass;
141 void *uclass_priv;
142 void *parent_priv;
143 struct list_head uclass_node;
144 struct list_head child_head;
145 struct list_head sibling_node;
146 uint32_t flags;
147 int req_seq;
148 int seq;
149 #ifdef CONFIG_DEVRES
150 struct list_head devres_head;
151 #endif
152 };
153
154 /* Maximum sequence number supported */
155 #define DM_MAX_SEQ 999
156
157 /* Returns the operations for a device */
158 #define device_get_ops(dev) (dev->driver->ops)
159
160 /* Returns non-zero if the device is active (probed and not removed) */
161 #define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED)
162
dev_of_offset(const struct udevice * dev)163 static inline int dev_of_offset(const struct udevice *dev)
164 {
165 return ofnode_to_offset(dev->node);
166 }
167
dev_set_of_offset(struct udevice * dev,int of_offset)168 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
169 {
170 dev->node = offset_to_ofnode(of_offset);
171 }
172
dev_has_of_node(struct udevice * dev)173 static inline bool dev_has_of_node(struct udevice *dev)
174 {
175 return ofnode_valid(dev->node);
176 }
177
178 /**
179 * struct udevice_id - Lists the compatible strings supported by a driver
180 * @compatible: Compatible string
181 * @data: Data for this compatible string
182 */
183 struct udevice_id {
184 const char *compatible;
185 ulong data;
186 };
187
188 #if CONFIG_IS_ENABLED(OF_CONTROL)
189 #define of_match_ptr(_ptr) (_ptr)
190 #else
191 #define of_match_ptr(_ptr) NULL
192 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
193
194 /**
195 * struct driver - A driver for a feature or peripheral
196 *
197 * This holds methods for setting up a new device, and also removing it.
198 * The device needs information to set itself up - this is provided either
199 * by platdata or a device tree node (which we find by looking up
200 * matching compatible strings with of_match).
201 *
202 * Drivers all belong to a uclass, representing a class of devices of the
203 * same type. Common elements of the drivers can be implemented in the uclass,
204 * or the uclass can provide a consistent interface to the drivers within
205 * it.
206 *
207 * @name: Device name
208 * @id: Identifies the uclass we belong to
209 * @of_match: List of compatible strings to match, and any identifying data
210 * for each.
211 * @bind: Called to bind a device to its driver
212 * @probe: Called to probe a device, i.e. activate it
213 * @remove: Called to remove a device, i.e. de-activate it
214 * @unbind: Called to unbind a device from its driver
215 * @ofdata_to_platdata: Called before probe to decode device tree data
216 * @child_post_bind: Called after a new child has been bound
217 * @child_pre_probe: Called before a child device is probed. The device has
218 * memory allocated but it has not yet been probed.
219 * @child_post_remove: Called after a child device is removed. The device
220 * has memory allocated but its device_remove() method has been called.
221 * @priv_auto_alloc_size: If non-zero this is the size of the private data
222 * to be allocated in the device's ->priv pointer. If zero, then the driver
223 * is responsible for allocating any data required.
224 * @platdata_auto_alloc_size: If non-zero this is the size of the
225 * platform data to be allocated in the device's ->platdata pointer.
226 * This is typically only useful for device-tree-aware drivers (those with
227 * an of_match), since drivers which use platdata will have the data
228 * provided in the U_BOOT_DEVICE() instantiation.
229 * @per_child_auto_alloc_size: Each device can hold private data owned by
230 * its parent. If required this will be automatically allocated if this
231 * value is non-zero.
232 * @per_child_platdata_auto_alloc_size: A bus likes to store information about
233 * its children. If non-zero this is the size of this data, to be allocated
234 * in the child's parent_platdata pointer.
235 * @ops: Driver-specific operations. This is typically a list of function
236 * pointers defined by the driver, to implement driver functions required by
237 * the uclass.
238 * @flags: driver flags - see DM_FLAGS_...
239 */
240 struct driver {
241 char *name;
242 enum uclass_id id;
243 const struct udevice_id *of_match;
244 int (*bind)(struct udevice *dev);
245 int (*probe)(struct udevice *dev);
246 int (*remove)(struct udevice *dev);
247 int (*unbind)(struct udevice *dev);
248 int (*ofdata_to_platdata)(struct udevice *dev);
249 int (*child_post_bind)(struct udevice *dev);
250 int (*child_pre_probe)(struct udevice *dev);
251 int (*child_post_remove)(struct udevice *dev);
252 int priv_auto_alloc_size;
253 int platdata_auto_alloc_size;
254 int per_child_auto_alloc_size;
255 int per_child_platdata_auto_alloc_size;
256 const void *ops; /* driver-specific operations */
257 uint32_t flags;
258 };
259
260 /* Declare a new U-Boot driver */
261 #define U_BOOT_DRIVER(__name) \
262 ll_entry_declare(struct driver, __name, driver)
263
264 /* Get a pointer to a given driver */
265 #define DM_GET_DRIVER(__name) \
266 ll_entry_get(struct driver, __name, driver)
267
268 /**
269 * dev_get_platdata() - Get the platform data for a device
270 *
271 * This checks that dev is not NULL, but no other checks for now
272 *
273 * @dev Device to check
274 * @return platform data, or NULL if none
275 */
276 void *dev_get_platdata(const struct udevice *dev);
277
278 /**
279 * dev_get_parent_platdata() - Get the parent platform data for a device
280 *
281 * This checks that dev is not NULL, but no other checks for now
282 *
283 * @dev Device to check
284 * @return parent's platform data, or NULL if none
285 */
286 void *dev_get_parent_platdata(const struct udevice *dev);
287
288 /**
289 * dev_get_uclass_platdata() - Get the uclass platform data for a device
290 *
291 * This checks that dev is not NULL, but no other checks for now
292 *
293 * @dev Device to check
294 * @return uclass's platform data, or NULL if none
295 */
296 void *dev_get_uclass_platdata(const struct udevice *dev);
297
298 /**
299 * dev_get_priv() - Get the private data for a device
300 *
301 * This checks that dev is not NULL, but no other checks for now
302 *
303 * @dev Device to check
304 * @return private data, or NULL if none
305 */
306 void *dev_get_priv(const struct udevice *dev);
307
308 /**
309 * dev_get_parent_priv() - Get the parent private data for a device
310 *
311 * The parent private data is data stored in the device but owned by the
312 * parent. For example, a USB device may have parent data which contains
313 * information about how to talk to the device over USB.
314 *
315 * This checks that dev is not NULL, but no other checks for now
316 *
317 * @dev Device to check
318 * @return parent data, or NULL if none
319 */
320 void *dev_get_parent_priv(const struct udevice *dev);
321
322 /**
323 * dev_get_uclass_priv() - Get the private uclass data for a device
324 *
325 * This checks that dev is not NULL, but no other checks for now
326 *
327 * @dev Device to check
328 * @return private uclass data for this device, or NULL if none
329 */
330 void *dev_get_uclass_priv(const struct udevice *dev);
331
332 /**
333 * struct dev_get_parent() - Get the parent of a device
334 *
335 * @child: Child to check
336 * @return parent of child, or NULL if this is the root device
337 */
338 struct udevice *dev_get_parent(const struct udevice *child);
339
340 /**
341 * dev_get_driver_data() - get the driver data used to bind a device
342 *
343 * When a device is bound using a device tree node, it matches a
344 * particular compatible string in struct udevice_id. This function
345 * returns the associated data value for that compatible string. This is
346 * the 'data' field in struct udevice_id.
347 *
348 * As an example, consider this structure:
349 * static const struct udevice_id tegra_i2c_ids[] = {
350 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
351 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
352 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
353 * { }
354 * };
355 *
356 * When driver model finds a driver for this it will store the 'data' value
357 * corresponding to the compatible string it matches. This function returns
358 * that value. This allows the driver to handle several variants of a device.
359 *
360 * For USB devices, this is the driver_info field in struct usb_device_id.
361 *
362 * @dev: Device to check
363 * @return driver data (0 if none is provided)
364 */
365 ulong dev_get_driver_data(const struct udevice *dev);
366
367 /**
368 * dev_get_driver_ops() - get the device's driver's operations
369 *
370 * This checks that dev is not NULL, and returns the pointer to device's
371 * driver's operations.
372 *
373 * @dev: Device to check
374 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
375 */
376 const void *dev_get_driver_ops(const struct udevice *dev);
377
378 /**
379 * device_get_uclass_id() - return the uclass ID of a device
380 *
381 * @dev: Device to check
382 * @return uclass ID for the device
383 */
384 enum uclass_id device_get_uclass_id(const struct udevice *dev);
385
386 /**
387 * dev_get_uclass_name() - return the uclass name of a device
388 *
389 * This checks that dev is not NULL.
390 *
391 * @dev: Device to check
392 * @return pointer to the uclass name for the device
393 */
394 const char *dev_get_uclass_name(const struct udevice *dev);
395
396 /**
397 * device_get_child() - Get the child of a device by index
398 *
399 * Returns the numbered child, 0 being the first. This does not use
400 * sequence numbers, only the natural order.
401 *
402 * @dev: Parent device to check
403 * @index: Child index
404 * @devp: Returns pointer to device
405 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
406 * to probe
407 */
408 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
409
410 /**
411 * device_get_child_count() - Get the available child count of a device
412 *
413 * Returns the number of children to a device.
414 *
415 * @parent: Parent device to check
416 */
417 int device_get_child_count(struct udevice *parent);
418
419 /**
420 * device_find_child_by_seq() - Find a child device based on a sequence
421 *
422 * This searches for a device with the given seq or req_seq.
423 *
424 * For seq, if an active device has this sequence it will be returned.
425 * If there is no such device then this will return -ENODEV.
426 *
427 * For req_seq, if a device (whether activated or not) has this req_seq
428 * value, that device will be returned. This is a strong indication that
429 * the device will receive that sequence when activated.
430 *
431 * @parent: Parent device
432 * @seq_or_req_seq: Sequence number to find (0=first)
433 * @find_req_seq: true to find req_seq, false to find seq
434 * @devp: Returns pointer to device (there is only one per for each seq).
435 * Set to NULL if none is found
436 * @return 0 if OK, -ve on error
437 */
438 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
439 bool find_req_seq, struct udevice **devp);
440
441 /**
442 * device_get_child_by_seq() - Get a child device based on a sequence
443 *
444 * If an active device has this sequence it will be returned. If there is no
445 * such device then this will check for a device that is requesting this
446 * sequence.
447 *
448 * The device is probed to activate it ready for use.
449 *
450 * @parent: Parent device
451 * @seq: Sequence number to find (0=first)
452 * @devp: Returns pointer to device (there is only one per for each seq)
453 * Set to NULL if none is found
454 * @return 0 if OK, -ve on error
455 */
456 int device_get_child_by_seq(struct udevice *parent, int seq,
457 struct udevice **devp);
458
459 /**
460 * device_find_child_by_of_offset() - Find a child device based on FDT offset
461 *
462 * Locates a child device by its device tree offset.
463 *
464 * @parent: Parent device
465 * @of_offset: Device tree offset to find
466 * @devp: Returns pointer to device if found, otherwise this is set to NULL
467 * @return 0 if OK, -ve on error
468 */
469 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
470 struct udevice **devp);
471
472 /**
473 * device_get_child_by_of_offset() - Get a child device based on FDT offset
474 *
475 * Locates a child device by its device tree offset.
476 *
477 * The device is probed to activate it ready for use.
478 *
479 * @parent: Parent device
480 * @of_offset: Device tree offset to find
481 * @devp: Returns pointer to device if found, otherwise this is set to NULL
482 * @return 0 if OK, -ve on error
483 */
484 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
485 struct udevice **devp);
486
487 /**
488 * device_find_global_by_ofnode() - Get a device based on ofnode
489 *
490 * Locates a device by its device tree ofnode, searching globally throughout
491 * the all driver model devices.
492 *
493 * The device is NOT probed
494 *
495 * @node: Device tree ofnode to find
496 * @devp: Returns pointer to device if found, otherwise this is set to NULL
497 * @return 0 if OK, -ve on error
498 */
499
500 int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
501
502 /**
503 * device_get_global_by_ofnode() - Get a device based on ofnode
504 *
505 * Locates a device by its device tree ofnode, searching globally throughout
506 * the all driver model devices.
507 *
508 * The device is probed to activate it ready for use.
509 *
510 * @node: Device tree ofnode to find
511 * @devp: Returns pointer to device if found, otherwise this is set to NULL
512 * @return 0 if OK, -ve on error
513 */
514 int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
515
516 /**
517 * device_find_first_child() - Find the first child of a device
518 *
519 * @parent: Parent device to search
520 * @devp: Returns first child device, or NULL if none
521 * @return 0
522 */
523 int device_find_first_child(struct udevice *parent, struct udevice **devp);
524
525 /**
526 * device_find_next_child() - Find the next child of a device
527 *
528 * @devp: Pointer to previous child device on entry. Returns pointer to next
529 * child device, or NULL if none
530 * @return 0
531 */
532 int device_find_next_child(struct udevice **devp);
533
534 /**
535 * device_find_first_inactive_child() - Find the first inactive child
536 *
537 * This is used to locate an existing child of a device which is of a given
538 * uclass.
539 *
540 * The device is NOT probed
541 *
542 * @parent: Parent device to search
543 * @uclass_id: Uclass to look for
544 * @devp: Returns device found, if any
545 * @return 0 if found, else -ENODEV
546 */
547 int device_find_first_inactive_child(struct udevice *parent,
548 enum uclass_id uclass_id,
549 struct udevice **devp);
550
551 /**
552 * device_find_first_child_by_uclass() - Find the first child of a device in uc
553 *
554 * @parent: Parent device to search
555 * @uclass_id: Uclass to look for
556 * @devp: Returns first child device in that uclass, if any
557 * @return 0 if found, else -ENODEV
558 */
559 int device_find_first_child_by_uclass(struct udevice *parent,
560 enum uclass_id uclass_id,
561 struct udevice **devp);
562
563 /**
564 * device_find_child_by_name() - Find a child by device name
565 *
566 * @parent: Parent device to search
567 * @name: Name to look for
568 * @devp: Returns device found, if any
569 * @return 0 if found, else -ENODEV
570 */
571 int device_find_child_by_name(struct udevice *parent, const char *name,
572 struct udevice **devp);
573
574 /**
575 * device_has_children() - check if a device has any children
576 *
577 * @dev: Device to check
578 * @return true if the device has one or more children
579 */
580 bool device_has_children(const struct udevice *dev);
581
582 /**
583 * device_has_active_children() - check if a device has any active children
584 *
585 * @dev: Device to check
586 * @return true if the device has one or more children and at least one of
587 * them is active (probed).
588 */
589 bool device_has_active_children(struct udevice *dev);
590
591 /**
592 * device_is_last_sibling() - check if a device is the last sibling
593 *
594 * This function can be useful for display purposes, when special action needs
595 * to be taken when displaying the last sibling. This can happen when a tree
596 * view of devices is being displayed.
597 *
598 * @dev: Device to check
599 * @return true if there are no more siblings after this one - i.e. is it
600 * last in the list.
601 */
602 bool device_is_last_sibling(struct udevice *dev);
603
604 /**
605 * device_set_name() - set the name of a device
606 *
607 * This must be called in the device's bind() method and no later. Normally
608 * this is unnecessary but for probed devices which don't get a useful name
609 * this function can be helpful.
610 *
611 * The name is allocated and will be freed automatically when the device is
612 * unbound.
613 *
614 * @dev: Device to update
615 * @name: New name (this string is allocated new memory and attached to
616 * the device)
617 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
618 * string
619 */
620 int device_set_name(struct udevice *dev, const char *name);
621
622 /**
623 * device_set_name_alloced() - note that a device name is allocated
624 *
625 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
626 * unbound the name will be freed. This avoids memory leaks.
627 *
628 * @dev: Device to update
629 */
630 void device_set_name_alloced(struct udevice *dev);
631
632 /**
633 * device_is_compatible() - check if the device is compatible with the compat
634 *
635 * This allows to check whether the device is comaptible with the compat.
636 *
637 * @dev: udevice pointer for which compatible needs to be verified.
638 * @compat: Compatible string which needs to verified in the given
639 * device
640 * @return true if OK, false if the compatible is not found
641 */
642 bool device_is_compatible(struct udevice *dev, const char *compat);
643
644 /**
645 * of_machine_is_compatible() - check if the machine is compatible with
646 * the compat
647 *
648 * This allows to check whether the machine is comaptible with the compat.
649 *
650 * @compat: Compatible string which needs to verified
651 * @return true if OK, false if the compatible is not found
652 */
653 bool of_machine_is_compatible(const char *compat);
654
655 /**
656 * dev_disable_by_path() - Disable a device given its device tree path
657 *
658 * @path: The device tree path identifying the device to be disabled
659 * @return 0 on success, -ve on error
660 */
661 int dev_disable_by_path(const char *path);
662
663 /**
664 * dev_enable_by_path() - Enable a device given its device tree path
665 *
666 * @path: The device tree path identifying the device to be enabled
667 * @return 0 on success, -ve on error
668 */
669 int dev_enable_by_path(const char *path);
670
671 /**
672 * device_is_on_pci_bus - Test if a device is on a PCI bus
673 *
674 * @dev: device to test
675 * @return: true if it is on a PCI bus, false otherwise
676 */
device_is_on_pci_bus(struct udevice * dev)677 static inline bool device_is_on_pci_bus(struct udevice *dev)
678 {
679 return device_get_uclass_id(dev->parent) == UCLASS_PCI;
680 }
681
682 /**
683 * device_foreach_child_safe() - iterate through child devices safely
684 *
685 * This allows the @pos child to be removed in the loop if required.
686 *
687 * @pos: struct udevice * for the current device
688 * @next: struct udevice * for the next device
689 * @parent: parent device to scan
690 */
691 #define device_foreach_child_safe(pos, next, parent) \
692 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
693
694 /**
695 * device_foreach_child() - iterate through child devices
696 *
697 * @pos: struct udevice * for the current device
698 * @parent: parent device to scan
699 */
700 #define device_foreach_child(pos, parent) \
701 list_for_each_entry(pos, &parent->child_head, sibling_node)
702
703 /**
704 * dm_scan_fdt_dev() - Bind child device in a the device tree
705 *
706 * This handles device which have sub-nodes in the device tree. It scans all
707 * sub-nodes and binds drivers for each node where a driver can be found.
708 *
709 * If this is called prior to relocation, only pre-relocation devices will be
710 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
711 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
712 * be bound.
713 *
714 * @dev: Device to scan
715 * @return 0 if OK, -ve on error
716 */
717 int dm_scan_fdt_dev(struct udevice *dev);
718
719 /* device resource management */
720 typedef void (*dr_release_t)(struct udevice *dev, void *res);
721 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
722
723 #ifdef CONFIG_DEVRES
724
725 #ifdef CONFIG_DEBUG_DEVRES
726 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
727 const char *name);
728 #define _devres_alloc(release, size, gfp) \
729 __devres_alloc(release, size, gfp, #release)
730 #else
731 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
732 #endif
733
734 /**
735 * devres_alloc() - Allocate device resource data
736 * @release: Release function devres will be associated with
737 * @size: Allocation size
738 * @gfp: Allocation flags
739 *
740 * Allocate devres of @size bytes. The allocated area is associated
741 * with @release. The returned pointer can be passed to
742 * other devres_*() functions.
743 *
744 * RETURNS:
745 * Pointer to allocated devres on success, NULL on failure.
746 */
747 #define devres_alloc(release, size, gfp) \
748 _devres_alloc(release, size, gfp | __GFP_ZERO)
749
750 /**
751 * devres_free() - Free device resource data
752 * @res: Pointer to devres data to free
753 *
754 * Free devres created with devres_alloc().
755 */
756 void devres_free(void *res);
757
758 /**
759 * devres_add() - Register device resource
760 * @dev: Device to add resource to
761 * @res: Resource to register
762 *
763 * Register devres @res to @dev. @res should have been allocated
764 * using devres_alloc(). On driver detach, the associated release
765 * function will be invoked and devres will be freed automatically.
766 */
767 void devres_add(struct udevice *dev, void *res);
768
769 /**
770 * devres_find() - Find device resource
771 * @dev: Device to lookup resource from
772 * @release: Look for resources associated with this release function
773 * @match: Match function (optional)
774 * @match_data: Data for the match function
775 *
776 * Find the latest devres of @dev which is associated with @release
777 * and for which @match returns 1. If @match is NULL, it's considered
778 * to match all.
779 *
780 * @return pointer to found devres, NULL if not found.
781 */
782 void *devres_find(struct udevice *dev, dr_release_t release,
783 dr_match_t match, void *match_data);
784
785 /**
786 * devres_get() - Find devres, if non-existent, add one atomically
787 * @dev: Device to lookup or add devres for
788 * @new_res: Pointer to new initialized devres to add if not found
789 * @match: Match function (optional)
790 * @match_data: Data for the match function
791 *
792 * Find the latest devres of @dev which has the same release function
793 * as @new_res and for which @match return 1. If found, @new_res is
794 * freed; otherwise, @new_res is added atomically.
795 *
796 * @return ointer to found or added devres.
797 */
798 void *devres_get(struct udevice *dev, void *new_res,
799 dr_match_t match, void *match_data);
800
801 /**
802 * devres_remove() - Find a device resource and remove it
803 * @dev: Device to find resource from
804 * @release: Look for resources associated with this release function
805 * @match: Match function (optional)
806 * @match_data: Data for the match function
807 *
808 * Find the latest devres of @dev associated with @release and for
809 * which @match returns 1. If @match is NULL, it's considered to
810 * match all. If found, the resource is removed atomically and
811 * returned.
812 *
813 * @return ointer to removed devres on success, NULL if not found.
814 */
815 void *devres_remove(struct udevice *dev, dr_release_t release,
816 dr_match_t match, void *match_data);
817
818 /**
819 * devres_destroy() - Find a device resource and destroy it
820 * @dev: Device to find resource from
821 * @release: Look for resources associated with this release function
822 * @match: Match function (optional)
823 * @match_data: Data for the match function
824 *
825 * Find the latest devres of @dev associated with @release and for
826 * which @match returns 1. If @match is NULL, it's considered to
827 * match all. If found, the resource is removed atomically and freed.
828 *
829 * Note that the release function for the resource will not be called,
830 * only the devres-allocated data will be freed. The caller becomes
831 * responsible for freeing any other data.
832 *
833 * @return 0 if devres is found and freed, -ENOENT if not found.
834 */
835 int devres_destroy(struct udevice *dev, dr_release_t release,
836 dr_match_t match, void *match_data);
837
838 /**
839 * devres_release() - Find a device resource and destroy it, calling release
840 * @dev: Device to find resource from
841 * @release: Look for resources associated with this release function
842 * @match: Match function (optional)
843 * @match_data: Data for the match function
844 *
845 * Find the latest devres of @dev associated with @release and for
846 * which @match returns 1. If @match is NULL, it's considered to
847 * match all. If found, the resource is removed atomically, the
848 * release function called and the resource freed.
849 *
850 * @return 0 if devres is found and freed, -ENOENT if not found.
851 */
852 int devres_release(struct udevice *dev, dr_release_t release,
853 dr_match_t match, void *match_data);
854
855 /* managed devm_k.alloc/kfree for device drivers */
856 /**
857 * devm_kmalloc() - Resource-managed kmalloc
858 * @dev: Device to allocate memory for
859 * @size: Allocation size
860 * @gfp: Allocation gfp flags
861 *
862 * Managed kmalloc. Memory allocated with this function is
863 * automatically freed on driver detach. Like all other devres
864 * resources, guaranteed alignment is unsigned long long.
865 *
866 * @return pointer to allocated memory on success, NULL on failure.
867 */
868 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)869 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
870 {
871 return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
872 }
devm_kmalloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)873 static inline void *devm_kmalloc_array(struct udevice *dev,
874 size_t n, size_t size, gfp_t flags)
875 {
876 if (size != 0 && n > SIZE_MAX / size)
877 return NULL;
878 return devm_kmalloc(dev, n * size, flags);
879 }
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)880 static inline void *devm_kcalloc(struct udevice *dev,
881 size_t n, size_t size, gfp_t flags)
882 {
883 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
884 }
885
886 /**
887 * devm_kfree() - Resource-managed kfree
888 * @dev: Device this memory belongs to
889 * @ptr: Memory to free
890 *
891 * Free memory allocated with devm_kmalloc().
892 */
893 void devm_kfree(struct udevice *dev, void *ptr);
894
895 #else /* ! CONFIG_DEVRES */
896
devres_alloc(dr_release_t release,size_t size,gfp_t gfp)897 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
898 {
899 return kzalloc(size, gfp);
900 }
901
devres_free(void * res)902 static inline void devres_free(void *res)
903 {
904 kfree(res);
905 }
906
devres_add(struct udevice * dev,void * res)907 static inline void devres_add(struct udevice *dev, void *res)
908 {
909 }
910
devres_find(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)911 static inline void *devres_find(struct udevice *dev, dr_release_t release,
912 dr_match_t match, void *match_data)
913 {
914 return NULL;
915 }
916
devres_get(struct udevice * dev,void * new_res,dr_match_t match,void * match_data)917 static inline void *devres_get(struct udevice *dev, void *new_res,
918 dr_match_t match, void *match_data)
919 {
920 return NULL;
921 }
922
devres_remove(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)923 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
924 dr_match_t match, void *match_data)
925 {
926 return NULL;
927 }
928
devres_destroy(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)929 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
930 dr_match_t match, void *match_data)
931 {
932 return 0;
933 }
934
devres_release(struct udevice * dev,dr_release_t release,dr_match_t match,void * match_data)935 static inline int devres_release(struct udevice *dev, dr_release_t release,
936 dr_match_t match, void *match_data)
937 {
938 return 0;
939 }
940
devm_kmalloc(struct udevice * dev,size_t size,gfp_t gfp)941 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
942 {
943 return kmalloc(size, gfp);
944 }
945
devm_kzalloc(struct udevice * dev,size_t size,gfp_t gfp)946 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
947 {
948 return kzalloc(size, gfp);
949 }
950
devm_kmalloc_array(struct udevice * dev,size_t n,size_t size,gfp_t flags)951 static inline void *devm_kmalloc_array(struct udevice *dev,
952 size_t n, size_t size, gfp_t flags)
953 {
954 /* TODO: add kmalloc_array() to linux/compat.h */
955 if (size != 0 && n > SIZE_MAX / size)
956 return NULL;
957 return kmalloc(n * size, flags);
958 }
959
devm_kcalloc(struct udevice * dev,size_t n,size_t size,gfp_t flags)960 static inline void *devm_kcalloc(struct udevice *dev,
961 size_t n, size_t size, gfp_t flags)
962 {
963 /* TODO: add kcalloc() to linux/compat.h */
964 return kmalloc(n * size, flags | __GFP_ZERO);
965 }
966
devm_kfree(struct udevice * dev,void * ptr)967 static inline void devm_kfree(struct udevice *dev, void *ptr)
968 {
969 kfree(ptr);
970 }
971
972 #endif /* ! CONFIG_DEVRES */
973
974 /*
975 * REVISIT:
976 * remove the following after resolving conflicts with <linux/compat.h>
977 */
978 #ifdef dev_dbg
979 #undef dev_dbg
980 #endif
981 #ifdef dev_vdbg
982 #undef dev_vdbg
983 #endif
984 #ifdef dev_info
985 #undef dev_info
986 #endif
987 #ifdef dev_err
988 #undef dev_err
989 #endif
990 #ifdef dev_warn
991 #undef dev_warn
992 #endif
993
994 /*
995 * REVISIT:
996 * print device name like Linux
997 */
998 #define dev_printk(dev, fmt, ...) \
999 ({ \
1000 printk(fmt, ##__VA_ARGS__); \
1001 })
1002
1003 #define __dev_printk(level, dev, fmt, ...) \
1004 ({ \
1005 if (level < CONFIG_VAL(LOGLEVEL)) \
1006 dev_printk(dev, fmt, ##__VA_ARGS__); \
1007 })
1008
1009 #define dev_emerg(dev, fmt, ...) \
1010 __dev_printk(0, dev, fmt, ##__VA_ARGS__)
1011 #define dev_alert(dev, fmt, ...) \
1012 __dev_printk(1, dev, fmt, ##__VA_ARGS__)
1013 #define dev_crit(dev, fmt, ...) \
1014 __dev_printk(2, dev, fmt, ##__VA_ARGS__)
1015 #define dev_err(dev, fmt, ...) \
1016 __dev_printk(3, dev, fmt, ##__VA_ARGS__)
1017 #define dev_warn(dev, fmt, ...) \
1018 __dev_printk(4, dev, fmt, ##__VA_ARGS__)
1019 #define dev_notice(dev, fmt, ...) \
1020 __dev_printk(5, dev, fmt, ##__VA_ARGS__)
1021 #define dev_info(dev, fmt, ...) \
1022 __dev_printk(6, dev, fmt, ##__VA_ARGS__)
1023
1024 #ifdef DEBUG
1025 #define dev_dbg(dev, fmt, ...) \
1026 __dev_printk(7, dev, fmt, ##__VA_ARGS__)
1027 #else
1028 #define dev_dbg(dev, fmt, ...) \
1029 ({ \
1030 if (0) \
1031 __dev_printk(7, dev, fmt, ##__VA_ARGS__); \
1032 })
1033 #endif
1034
1035 #ifdef VERBOSE_DEBUG
1036 #define dev_vdbg dev_dbg
1037 #else
1038 #define dev_vdbg(dev, fmt, ...) \
1039 ({ \
1040 if (0) \
1041 __dev_printk(7, dev, fmt, ##__VA_ARGS__); \
1042 })
1043 #endif
1044
1045 #endif
1046