• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020-2021 Huawei Device Co., Ltd.
3  *
4  * HDF is dual licensed: you can use it either under the terms of
5  * the GPL, or the BSD license, at your option.
6  * See the LICENSE file in the root of this repository for complete details.
7  */
8 
9 #include "sensor_config_parser.h"
10 #include <securec.h>
11 #include "device_resource_if.h"
12 #include "osal_mem.h"
13 #include "sensor_platform_if.h"
14 
15 #define HDF_LOG_TAG    hdf_sensor_commom
16 
17 static char *g_sensorRegGroupName[SENSOR_GROUP_MAX] = {
18     "initSeqConfig",
19     "enableSeqConfig",
20     "disableSeqConfig",
21 };
22 
GetSensorRegGroupNameIndex(const char * name)23 static uint32_t GetSensorRegGroupNameIndex(const char *name)
24 {
25     uint32_t index;
26 
27     if (name == NULL) {
28         return SENSOR_GROUP_MAX;
29     }
30 
31     for (index = 0; index < SENSOR_GROUP_MAX; ++index) {
32         if ((g_sensorRegGroupName[index] != NULL) && (strcmp(name, g_sensorRegGroupName[index]) == 0)) {
33             break;
34         }
35     }
36 
37     return index;
38 }
39 
ReleaseSensorAllRegConfig(struct SensorCfgData * config)40 void ReleaseSensorAllRegConfig(struct SensorCfgData *config)
41 {
42     int32_t index;
43 
44     if (config == NULL || config->regCfgGroup == NULL) {
45         return;
46     }
47 
48     for (index = 0; index < SENSOR_GROUP_MAX; ++index) {
49         if (config->regCfgGroup[index] != NULL) {
50             if (config->regCfgGroup[index]->regCfgItem != NULL) {
51                 OsalMemFree(config->regCfgGroup[index]->regCfgItem);
52                 config->regCfgGroup[index]->regCfgItem = NULL;
53             }
54             OsalMemFree(config->regCfgGroup[index]);
55             config->regCfgGroup[index] = NULL;
56         }
57     }
58 }
59 
ParseSensorRegItem(struct DeviceResourceIface * parser,const struct DeviceResourceNode * regNode,const char * groupName,struct SensorRegCfgGroupNode * group)60 static int32_t ParseSensorRegItem(struct DeviceResourceIface *parser, const struct DeviceResourceNode *regNode,
61     const char *groupName, struct SensorRegCfgGroupNode *group)
62 {
63     int32_t ret;
64     int32_t step;
65     uint32_t index;
66     int32_t num;
67     uint32_t itemNum = group->itemNum;
68     uint16_t *buf = NULL;
69 
70     CHECK_NULL_PTR_RETURN_VALUE(group->regCfgItem, HDF_ERR_INVALID_PARAM);
71     CHECK_NULL_PTR_RETURN_VALUE(groupName, HDF_ERR_INVALID_PARAM);
72 
73     num = parser->GetElemNum(regNode, groupName);
74     if (num <= 0 || num > SENSOR_CONFIG_MAX_ITEM) {
75         HDF_LOGE("%s: parser %s element num failed", __func__, groupName);
76         return HDF_SUCCESS;
77     }
78 
79     buf = (uint16_t *)OsalMemCalloc(sizeof(uint16_t) * num);
80     CHECK_NULL_PTR_RETURN_VALUE(buf, HDF_ERR_MALLOC_FAIL);
81 
82     ret = parser->GetUint16Array(regNode, groupName, buf, num, 0);
83     if (ret != HDF_SUCCESS) {
84         HDF_LOGE("%s: parser %s reg array failed", __func__, groupName);
85         OsalMemFree(buf);
86         return HDF_SUCCESS;
87     }
88 
89     for (index = 0; index < itemNum; ++index) {
90         step = SENSOR_REG_CFG_INDEX_MAX * index;
91         if (step + SENSOR_REG_CFG_SAVE_INDEX >= num) {
92             break;
93         }
94         group->regCfgItem[index].regAddr = buf[step + SENSOR_REG_CFG_ADDR_INDEX];
95         group->regCfgItem[index].value = buf[step + SENSOR_REG_CFG_VALUE_INDEX];
96         group->regCfgItem[index].mask = buf[step + SENSOR_REG_CFG_MASK_INDEX];
97         group->regCfgItem[index].len = buf[step + SENSOR_REG_CFG_LEN_INDEX];
98         group->regCfgItem[index].delay = buf[step + SENSOR_REG_CFG_DELAY_INDEX];
99         group->regCfgItem[index].opsType = buf[step + SENSOR_REG_CFG_OPS_INDEX];
100         group->regCfgItem[index].calType = buf[step + SENSOR_REG_CFG_CAL_INDEX];
101         group->regCfgItem[index].shiftNum = buf[step + SENSOR_REG_CFG_SHIFT_INDEX];
102         group->regCfgItem[index].debug = buf[step + SENSOR_REG_CFG_DEBUG_INDEX];
103         group->regCfgItem[index].save = buf[step + SENSOR_REG_CFG_SAVE_INDEX];
104     }
105     OsalMemFree(buf);
106 
107     return HDF_SUCCESS;
108 }
109 
ParseSensorRegGroup(struct DeviceResourceIface * parser,const struct DeviceResourceNode * regCfgNode,const char * groupName,struct SensorRegCfgGroupNode ** groupNode)110 int32_t ParseSensorRegGroup(struct DeviceResourceIface *parser, const struct DeviceResourceNode *regCfgNode,
111     const char *groupName, struct SensorRegCfgGroupNode **groupNode)
112 {
113     int32_t num;
114     struct SensorRegCfgGroupNode *group = NULL;
115 
116     CHECK_NULL_PTR_RETURN_VALUE(parser, HDF_ERR_INVALID_PARAM);
117     CHECK_NULL_PTR_RETURN_VALUE(regCfgNode, HDF_ERR_INVALID_PARAM);
118     CHECK_NULL_PTR_RETURN_VALUE(groupName, HDF_ERR_INVALID_PARAM);
119     CHECK_NULL_PTR_RETURN_VALUE(groupNode, HDF_ERR_INVALID_PARAM);
120 
121     num = parser->GetElemNum(regCfgNode, groupName);
122     group = *groupNode;
123 
124     if (num > 0) {
125         if (group != NULL) {
126             if (group->regCfgItem != NULL) {
127                 OsalMemFree(group->regCfgItem);
128             }
129             OsalMemFree(group);
130         }
131 
132         group = (struct SensorRegCfgGroupNode*)OsalMemCalloc(sizeof(*group));
133         if (group == NULL) {
134             HDF_LOGE("%s: malloc sensor reg config group failed", __func__);
135             return HDF_ERR_MALLOC_FAIL;
136         }
137 
138         *groupNode = group;
139         group->itemNum = (uint32_t)(num / SENSOR_REG_CFG_INDEX_MAX);
140         group->itemNum = ((SENSOR_REG_CFG_INDEX_MAX * group->itemNum) < (uint32_t)num) ?
141             (group->itemNum + 1) : group->itemNum;
142 
143         group->regCfgItem = (struct SensorRegCfg*)OsalMemCalloc(group->itemNum * sizeof(*(group->regCfgItem)));
144         if (group->regCfgItem == NULL) {
145             HDF_LOGE("%s: malloc sensor reg config item failed", __func__);
146             return HDF_ERR_MALLOC_FAIL;
147         }
148 
149         if (ParseSensorRegItem(parser, regCfgNode, groupName, group) != HDF_SUCCESS) {
150             HDF_LOGE("%s: malloc sensor reg config item data failed", __func__);
151             return HDF_FAILURE;
152         }
153     }
154 
155     return HDF_SUCCESS;
156 }
157 
ParseSensorRegConfig(struct SensorCfgData * config)158 int32_t ParseSensorRegConfig(struct SensorCfgData *config)
159 {
160     uint32_t index;
161     const struct DeviceResourceNode *regCfgNode = NULL;
162     struct DeviceResourceIface *parser = NULL;
163     const struct DeviceResourceAttr *regAttr = NULL;
164 
165     CHECK_NULL_PTR_RETURN_VALUE(config->root, HDF_ERR_INVALID_PARAM);
166     parser = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
167     CHECK_NULL_PTR_RETURN_VALUE(parser, HDF_ERR_INVALID_PARAM);
168 
169     regCfgNode = parser->GetChildNode(config->root, "sensorRegConfig");
170     CHECK_NULL_PTR_RETURN_VALUE(regCfgNode, HDF_ERR_INVALID_PARAM);
171 
172     DEV_RES_NODE_FOR_EACH_ATTR(regCfgNode, regAttr) {
173         if (regAttr == NULL || regAttr->name == NULL) {
174             HDF_LOGE("%s:sensor reg node attr is null", __func__);
175             break;
176         }
177 
178         index = GetSensorRegGroupNameIndex(regAttr->name);
179         if (index >= SENSOR_GROUP_MAX) {
180             HDF_LOGE("%s: get sensor register group index failed", __func__);
181             goto error;
182         }
183 
184         if (ParseSensorRegGroup(parser, regCfgNode, regAttr->name, &config->regCfgGroup[index]) != HDF_SUCCESS) {
185             HDF_LOGE("%s: parse sensor register group failed", __func__);
186             goto error;
187         }
188     }
189     return HDF_SUCCESS;
190 
191 error:
192     ReleaseSensorAllRegConfig(config);
193     HDF_LOGE("%s: parse sensor reg config failed", __func__);
194     return HDF_FAILURE;
195 }
196 
GetSensorBusHandle(struct SensorBusCfg * busCfg)197 int32_t GetSensorBusHandle(struct SensorBusCfg *busCfg)
198 {
199     CHECK_NULL_PTR_RETURN_VALUE(busCfg, HDF_ERR_INVALID_PARAM);
200 
201     if (busCfg->busType == SENSOR_BUS_I2C) {
202         uint16_t busNum = busCfg->i2cCfg.busNum;
203         busCfg->i2cCfg.handle = I2cOpen(busNum);
204         if (busCfg->i2cCfg.handle == NULL) {
205             HDF_LOGE("%s: sensor i2c Handle invalid", __func__);
206             return HDF_FAILURE;
207         }
208 
209 #if defined(LOSCFG_DRIVERS_HDF_PLATFORM_SPI) || defined(CONFIG_DRIVERS_HDF_PLATFORM_SPI)
210     } else if (busCfg->busType == SENSOR_BUS_SPI) {
211         struct SpiDevInfo spiDevinfo;
212         struct SpiCfg cfg;
213         int32_t ret;
214 
215         spiDevinfo.busNum = busCfg->spiCfg.busNum;
216         spiDevinfo.csNum = busCfg->spiCfg.csNum;
217         busCfg->i2cCfg.handle = SpiOpen(&spiDevinfo);
218 
219         cfg.mode = SPI_CLK_PHASE | SPI_CLK_POLARITY;
220         cfg.bitsPerWord = SENSOR_DATA_WIDTH_8_BIT;
221         cfg.maxSpeedHz = SENSOR_SPI_MAX_SPEED;
222         ret = SpiSetCfg(busCfg->i2cCfg.handle, &cfg);
223         if (ret != HDF_SUCCESS) {
224             HDF_LOGE("%s: SpiSetCfg failed", __func__);
225             SpiClose(busCfg->i2cCfg.handle);
226             return ret;
227         }
228 #endif
229     }
230 
231     return HDF_SUCCESS;
232 }
233 
ReleaseSensorBusHandle(struct SensorBusCfg * busCfg)234 int32_t ReleaseSensorBusHandle(struct SensorBusCfg *busCfg)
235 {
236     if (busCfg == NULL) {
237         return HDF_SUCCESS;
238     }
239 
240     if (busCfg->busType == SENSOR_BUS_I2C && busCfg->i2cCfg.handle != NULL) {
241         I2cClose(busCfg->i2cCfg.handle);
242         busCfg->i2cCfg.handle = NULL;
243 
244 #if defined(LOSCFG_DRIVERS_HDF_PLATFORM_SPI) || defined(CONFIG_DRIVERS_HDF_PLATFORM_SPI)
245     } else if (busCfg->busType == SENSOR_BUS_SPI) {
246         SpiClose(busCfg->spiCfg.handle);
247         busCfg->spiCfg.handle = NULL;
248 #endif
249     }
250 
251     return HDF_SUCCESS;
252 }
253 
DetectSensorDevice(struct SensorCfgData * config)254 int32_t DetectSensorDevice(struct SensorCfgData *config)
255 {
256     uint8_t value = 0;
257     uint16_t chipIdReg;
258     uint16_t chipIdValue;
259     int32_t ret;
260 
261     CHECK_NULL_PTR_RETURN_VALUE(config, HDF_ERR_INVALID_PARAM);
262 
263     chipIdReg = config->sensorAttr.chipIdReg;
264     chipIdValue = config->sensorAttr.chipIdValue;
265 
266     ret = GetSensorBusHandle(&config->busCfg);
267     if (ret != HDF_SUCCESS) {
268         HDF_LOGE("%s: get sensor bus handle failed", __func__);
269         (void)ReleaseSensorBusHandle(&config->busCfg);
270         return HDF_FAILURE;
271     }
272 
273     ret = ReadSensor(&config->busCfg, chipIdReg, &value, sizeof(value));
274     if (ret != HDF_SUCCESS) {
275         HDF_LOGE("%s: i2c read chip id failed", __func__);
276         (void)ReleaseSensorBusHandle(&config->busCfg);
277         return HDF_FAILURE;
278     }
279 
280     if (value != chipIdValue) {
281         HDF_LOGE("%s: sensor chip[0x%x] id [0x%x] detect value[%u]", __func__, chipIdReg, chipIdValue, value);
282         (void)ReleaseSensorBusHandle(&config->busCfg);
283         return HDF_FAILURE;
284     }
285 
286     HDF_LOGD("%s: sensor [%s] detect chip success", __func__, config->sensorInfo.sensorName);
287     return HDF_SUCCESS;
288 }
289 
ParseSensorInfo(struct DeviceResourceIface * parser,const struct DeviceResourceNode * infoNode,struct SensorCfgData * config)290 static int32_t ParseSensorInfo(struct DeviceResourceIface *parser, const struct DeviceResourceNode *infoNode,
291     struct SensorCfgData *config)
292 {
293     int32_t ret;
294     uint16_t id;
295     int32_t value;
296     const char *name = NULL;
297 
298     ret = parser->GetString(infoNode, "sensorName", &name, NULL);
299     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "sensorName");
300     if (strcpy_s(config->sensorInfo.sensorName, SENSOR_INFO_NAME_MAX_LEN, name) != EOK) {
301         HDF_LOGE("%s:copy sensorName failed!", __func__);
302         return HDF_FAILURE;
303     }
304 
305     ret = parser->GetString(infoNode, "vendorName", &name, NULL);
306     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "vendorName");
307     if (strcpy_s(config->sensorInfo.vendorName, SENSOR_INFO_NAME_MAX_LEN, name) != EOK) {
308         HDF_LOGE("%s:copy vendorName failed!", __func__);
309         return HDF_FAILURE;
310     }
311 
312     ret = parser->GetString(infoNode, "firmwareVersion", &name, NULL);
313     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "firmwareVersion");
314     if (strcpy_s(config->sensorInfo.firmwareVersion, SENSOR_INFO_VERSION_MAX_LEN, name) != EOK) {
315         HDF_LOGE("%s:copy firmwareVersion failed!", __func__);
316         return HDF_FAILURE;
317     }
318 
319     ret = parser->GetString(infoNode, "hardwareVersion", &name, NULL);
320     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "hardwareVersion");
321     if (strcpy_s(config->sensorInfo.hardwareVersion, SENSOR_INFO_VERSION_MAX_LEN, name) != EOK) {
322         HDF_LOGE("%s:copy hardwareVersion failed!", __func__);
323         return HDF_FAILURE;
324     }
325 
326     ret = parser->GetUint16(infoNode, "sensorTypeId", &id, 0);
327     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "sensorTypeId");
328     config->sensorInfo.sensorTypeId = id;
329     ret = parser->GetUint16(infoNode, "sensorId", &id, 0);
330     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "sensorId");
331     config->sensorInfo.sensorId = id;
332 
333     ret = parser->GetUint32(infoNode, "maxRange", (uint32_t *)&value, 0);
334     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "maxRange");
335     config->sensorInfo.maxRange = value;
336     ret = parser->GetUint32(infoNode, "accuracy", (uint32_t *)&value, 0);
337     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "accuracy");
338     config->sensorInfo.accuracy = value;
339     ret = parser->GetUint32(infoNode, "power", (uint32_t *)&value, 0);
340     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "power");
341     config->sensorInfo.power = value;
342 
343     return ret;
344 }
345 
ParseSensorBus(struct DeviceResourceIface * parser,const struct DeviceResourceNode * busNode,struct SensorCfgData * config)346 static int32_t ParseSensorBus(struct DeviceResourceIface *parser, const struct DeviceResourceNode *busNode,
347     struct SensorCfgData *config)
348 {
349     int32_t ret;
350 
351     ret = parser->GetUint8(busNode, "busType", &config->busCfg.busType, 0);
352     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "busType");
353     ret = parser->GetUint8(busNode, "regBigEndian", &config->busCfg.regBigEndian, 0);
354     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "regBigEndian");
355 
356     if (config->busCfg.busType == SENSOR_BUS_I2C) {
357         ret = parser->GetUint16(busNode, "busNum", &config->busCfg.i2cCfg.busNum, 0);
358         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "busNum");
359         ret = parser->GetUint16(busNode, "busAddr", &config->busCfg.i2cCfg.devAddr, 0);
360         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "busAddr");
361         ret = parser->GetUint16(busNode, "regWidth", &config->busCfg.i2cCfg.regWidth, 0);
362         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "regWidth");
363     } else if (config->busCfg.busType == SENSOR_BUS_SPI) {
364         ret = parser->GetUint32(busNode, "busNum", &config->busCfg.spiCfg.busNum, 0);
365         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "busNum");
366         ret = parser->GetUint32(busNode, "busAddr", &config->busCfg.spiCfg.csNum, 0);
367         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "busAddr");
368     } else if (config->busCfg.busType == SENSOR_BUS_GPIO) {
369         ret = parser->GetUint32(busNode, "gpioIrq1", &config->busCfg.GpioNum[SENSOR_GPIO_NUM1], 0);
370         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "gpioIrq1");
371         ret = parser->GetUint32(busNode, "gpioIrq2", &config->busCfg.GpioNum[SENSOR_GPIO_NUM2], 0);
372         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "gpioIrq2");
373     }
374 
375     return HDF_SUCCESS;
376 }
377 
ParseSensorAttr(struct DeviceResourceIface * parser,const struct DeviceResourceNode * attrNode,struct SensorCfgData * config)378 static int32_t ParseSensorAttr(struct DeviceResourceIface *parser, const struct DeviceResourceNode *attrNode,
379     struct SensorCfgData *config)
380 {
381     int32_t ret;
382     ret = parser->GetString(attrNode, "chipName", &config->sensorAttr.chipName, NULL);
383     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "chipName");
384     ret = parser->GetUint16(attrNode, "chipIdRegister", &config->sensorAttr.chipIdReg, 0);
385     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "chipIdRegister");
386     ret = parser->GetUint16(attrNode, "chipIdValue", &config->sensorAttr.chipIdValue, 0);
387     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "chipIdValue");
388 
389     return ret;
390 }
391 
ReleaseSensorDirectionConfig(struct SensorCfgData * config)392 void ReleaseSensorDirectionConfig(struct SensorCfgData *config)
393 {
394     CHECK_NULL_PTR_RETURN(config);
395 
396     if (config->direction != NULL) {
397         OsalMemFree(config->direction);
398         config->direction = NULL;
399     }
400 }
401 
ParseSensorDirection(struct SensorCfgData * config)402 int32_t ParseSensorDirection(struct SensorCfgData *config)
403 {
404     int32_t num;
405     int32_t ret;
406     uint32_t index;
407     uint32_t *buf = NULL;
408     const struct DeviceResourceNode *directionNode = NULL;
409     struct DeviceResourceIface *parser = NULL;
410 
411     CHECK_NULL_PTR_RETURN_VALUE(config->root, HDF_ERR_INVALID_PARAM);
412     parser = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
413     CHECK_NULL_PTR_RETURN_VALUE(parser, HDF_ERR_INVALID_PARAM);
414 
415     directionNode = parser->GetChildNode(config->root, "sensorDirection");
416     CHECK_NULL_PTR_RETURN_VALUE(directionNode, HDF_ERR_INVALID_PARAM);
417 
418     num = parser->GetElemNum(directionNode, "convert");
419     ret = parser->GetUint32(directionNode, "direction", &index, 0);
420     CHECK_PARSER_RESULT_RETURN_VALUE(ret, "direction");
421     if ((num <= 0 || num > MAX_SENSOR_INDEX_NUM) || (index < 0 || (int32_t)index > num / AXIS_INDEX_MAX)) {
422         return HDF_FAILURE;
423     }
424 
425     buf = (uint32_t *)OsalMemCalloc(sizeof(uint32_t) * num);
426     CHECK_NULL_PTR_RETURN_VALUE(buf, HDF_ERR_MALLOC_FAIL);
427 
428     ret = parser->GetUint32Array(directionNode, "convert", buf, num, 0);
429     if (ret != HDF_SUCCESS) {
430         HDF_LOGE("%s: parser %s convert failed", __func__, "convert");
431         OsalMemFree(buf);
432         return HDF_FAILURE;
433     }
434 
435     config->direction = (struct SensorDirection*)OsalMemCalloc(sizeof(struct SensorDirection));
436     if (config->direction == NULL) {
437         HDF_LOGE("%s: malloc sensor direction config item failed", __func__);
438         OsalMemFree(buf);
439         return HDF_ERR_MALLOC_FAIL;
440     }
441 
442     index = index * AXIS_INDEX_MAX;
443     config->direction->sign[AXIS_X] = buf[index + SIGN_X_INDEX];
444     config->direction->sign[AXIS_Y] = buf[index + SIGN_Y_INDEX];
445     config->direction->sign[AXIS_Z] = buf[index + SIGN_Z_INDEX];
446     config->direction->map[AXIS_X] = buf[index + AXIS_X_INDEX];
447     config->direction->map[AXIS_Y] = buf[index + AXIS_Y_INDEX];
448     config->direction->map[AXIS_Z] = buf[index + AXIS_Z_INDEX];
449 
450     OsalMemFree(buf);
451     return HDF_SUCCESS;
452 }
453 
SensorRawDataToRemapData(struct SensorDirection * direction,int32_t * remapData,uint32_t num)454 int32_t SensorRawDataToRemapData(struct SensorDirection *direction, int32_t *remapData, uint32_t num)
455 {
456     uint32_t axis;
457     int32_t directionSign[MAX_SENSOR_AXIS_NUM];
458     int32_t newData[MAX_SENSOR_AXIS_NUM];
459 
460     CHECK_NULL_PTR_RETURN_VALUE(direction, HDF_ERR_INVALID_PARAM);
461 
462     for (axis = 0; axis < num; axis++) {
463         if (direction->sign[axis] == 0) {
464             directionSign[axis] = 1;
465         } else {
466             directionSign[axis] = -1;
467         }
468     }
469 
470     newData[direction->map[AXIS_X]] = directionSign[AXIS_X] * remapData[AXIS_X];
471     newData[direction->map[AXIS_Y]] = directionSign[AXIS_Y] * remapData[AXIS_Y];
472     newData[direction->map[AXIS_Z]] = directionSign[AXIS_Z] * remapData[AXIS_Z];
473 
474     remapData[AXIS_X] = newData[direction->map[AXIS_X]];
475     remapData[AXIS_Y] = newData[direction->map[AXIS_Y]];
476     remapData[AXIS_Z] = newData[direction->map[AXIS_Z]];
477 
478     return HDF_SUCCESS;
479 }
480 
GetSensorBaseConfigData(const struct DeviceResourceNode * node,struct SensorCfgData * config)481 int32_t GetSensorBaseConfigData(const struct DeviceResourceNode *node, struct SensorCfgData *config)
482 {
483     int32_t ret;
484     struct DeviceResourceIface *parser = NULL;
485     const struct DeviceResourceNode *infoNode = NULL;
486     const struct DeviceResourceNode *busNode = NULL;
487     const struct DeviceResourceNode *attrNode = NULL;
488 
489     CHECK_NULL_PTR_RETURN_VALUE(node, HDF_ERR_INVALID_PARAM);
490     CHECK_NULL_PTR_RETURN_VALUE(config, HDF_ERR_INVALID_PARAM);
491 
492     parser = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
493     CHECK_NULL_PTR_RETURN_VALUE(parser, HDF_ERR_INVALID_PARAM);
494 
495     config->root = node;
496     CHECK_NULL_PTR_RETURN_VALUE(parser->GetChildNode, HDF_ERR_INVALID_PARAM);
497 
498     infoNode = parser->GetChildNode(node, "sensorInfo");
499     if (infoNode != NULL) {
500         ret = ParseSensorInfo(parser, infoNode, config);
501         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "sensorInfo");
502     }
503 
504     busNode = parser->GetChildNode(node, "sensorBusConfig");
505     if (busNode != NULL) {
506         ret = ParseSensorBus(parser, busNode, config);
507         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "sensorBusConfig");
508     }
509 
510     attrNode = parser->GetChildNode(node, "sensorIdAttr");
511     if (attrNode != NULL) {
512         ret = ParseSensorAttr(parser, attrNode, config);
513         CHECK_PARSER_RESULT_RETURN_VALUE(ret, "sensorIdAttr");
514     }
515 
516     return HDF_SUCCESS;
517 }
518