• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2021 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include "geomagnetic_field.h"
17 #include "sensors_log_domain.h"
18 
19 using namespace OHOS::HiviewDFX;
20 using namespace std;
21 namespace {
22 constexpr HiLogLabel LABEL = {LOG_CORE, OHOS::SensorsLogDomain::SENSORS_INTERFACE, "GeomagneticField"};
23 constexpr float EARTH_MAJOR_AXIS_RADIUS = 6378.137f;
24 constexpr float EARTH_MINOR_AXIS_RADIUS = 6356.7523142f;
25 constexpr float EARTH_REFERENCE_RADIUS = 6371.2f;
26 constexpr float PRECISION = 1e-5f;
27 constexpr float LATITUDE_MAX = 90.0f;
28 constexpr float LATITUDE_MIN = -90.0f;
29 constexpr float CONVERSION_FACTOR = 1000.0f;
30 constexpr float DERIVATIVE_FACTOR = 1.0f;
31 // the time from 1970-01-01 to 2020-01-01 as UTC milliseconds from the epoch
32 constexpr int64_t WMM_BASE_TIME = 1580486400000;
33 // The following Gaussian coefficients are derived from the US/ United Kingdom World Magnetic Model 2020-2025.
34 constexpr float GAUSS_COEFFICIENT_G[13][13] = {
35     {0.0f},
36     {-29404.5f, -1450.7f},
37     {-2500.0f, 2982.0f, 1676.8f},
38     {1363.9f, -2381.0f, 1236.2f, 525.7f},
39     {903.1f, 809.4f, 86.2f, -309.4f, 47.9f},
40     {-234.4f, 363.1f, 187.8f, -140.7f, -151.2f, 13.7f},
41     {65.9f, 65.6f, 73.0f, -121.5f, -36.2f, 13.5f, -64.7f},
42     {80.6f, -76.8f, -8.3f, 56.5f, 15.8f, 6.4f, -7.2f, 9.8f},
43     {23.6f, 9.8f, -17.5f, -0.4f, -21.1f, 15.3f, 13.7f, -16.5f, -0.3f},
44     {5.0f, 8.2f, 2.9f, -1.4f, -1.1f, -13.3f, 1.1f, 8.9f, -9.3f, -11.9f},
45     {-1.9f, -6.2f, -0.1f, 1.7f, -0.9f, 0.6f, -0.9f, 1.9f, 1.4f, -2.4f, -3.9f},
46     {3.0f, -1.4f, -2.5f, 2.4f, -0.9f, 0.3f, -0.7f, -0.1f, 1.4f, -0.6f, 0.2f, 3.1f},
47     {-2.0f, -0.1f, 0.5f, 1.3f, -1.2f, 0.7f, 0.3f, 0.5f, -0.2f, -0.5f, 0.1f, -1.1f, -0.3f}
48 };
49 constexpr float GAUSS_COEFFICIENT_H[13][13] = {
50     {0.0f},
51     {0.0f, 4652.9f},
52     {0.0f, -2991.6f, -734.8f},
53     {0.0f, -82.2f, 241.8f, -542.9f},
54     {0.0f, 282.0f, -158.4f, 199.8f, -350.1f},
55     {0.0f, 47.7f, 208.4f, -121.3f, 32.2f, 99.1f},
56     {0.0f, -19.1f, 25.0f, 52.7f, -64.4f, 9.0f, 68.1f},
57     {0.0f, -51.4f, -16.8f, 2.3f, 23.5f, -2.2f, -27.2f, -1.9f},
58     {0.0f, 8.4f, -15.3f, 12.8f, -11.8f, 14.9f, 3.6f, -6.9f, 2.8f},
59     {0.0f, -23.3f, 11.1f, 9.8f, -5.1f, -6.2f, 7.8f, 0.4f, -1.5f, 9.7f},
60     {0.0f, 3.4f, -0.2f, 3.5f, 4.8f, -8.6f, -0.1f, -4.2f, -3.4f, -0.1f, -8.8f},
61     {0.0f, 0.0f, 2.6f, -0.5f, -0.4f, 0.6f, -0.2f, -1.7f, -1.6f, -3.0f, -2.0f, -2.6f},
62     {0.0f, -1.2f, 0.5f, 1.3f, -1.8f, 0.1f, 0.7f, -0.1f, 0.6f, 0.2f, -0.9f, 0.0f, 0.5f}
63 };
64 constexpr float DELTA_GAUSS_COEFFICIENT_G[13][13] = {
65     {0.0f},
66     {6.7f, 7.7f},
67     {-11.5f, -7.1f, -2.2f},
68     {2.8f, -6.2f, 3.4f, -12.2f},
69     {-1.1f, -1.6f, -6.0f, 5.4f, -5.5f},
70     {-0.3f, 0.6f, -0.7f, 0.1f, 1.2f, 1.0f},
71     {-0.6f, -0.4f, 0.5f, 1.4f, -1.4f, 0.0f, 0.8f},
72     {-0.1f, -0.3f, -0.1f, 0.7f, 0.2f, -0.5f, -0.8f, 1.0f},
73     {-0.1f, 0.1f, -0.1f, 0.5f, -0.1f, 0.4f, 0.5f, 0.0f, 0.4f},
74     {-0.1f, -0.2f, 0.0f, 0.4f, -0.3f, 0.0f, 0.3f, 0.0f, 0.0f, -0.4f},
75     {0.0f, 0.0f, 0.0f, 0.2f, -0.1f, -0.2f, 0.0f, -0.1f, -0.2f, -0.1f, 0.0f},
76     {0.0f, -0.1f, 0.0f, 0.0f, 0.0f, -0.1f, 0.0f, 0.0f, -0.1f, -0.1f, -0.1f, -0.1f},
77     {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f}
78 };
79 constexpr float DELTA_GAUSS_COEFFICIENT_H[13][13] = {
80     {0.0f},
81     {0.0f, -25.1f},
82     {0.0f, -30.2f, -23.9f},
83     {0.0f, 5.7f, -1.0f, 1.1f},
84     {0.0f, 0.2f, 6.9f, 3.7f, -5.6f},
85     {0.0f, 0.1f, 2.5f, -0.9f, 3.0f, 0.5f},
86     {0.0f, 0.1f, -1.8f, -1.4f, 0.9f, 0.1f, 1.0f},
87     {0.0f, 0.5f, 0.6f, -0.7f, -0.2f, -1.2f, 0.2f, 0.3f},
88     {0.0f, -0.3f, 0.7f, -0.2f, 0.5f, -0.3f, -0.5f, 0.4f, 0.1f},
89     {0.0f, -0.3f, 0.2f, -0.4f, 0.4f, 0.1f, 0.0f, -0.2f, 0.5f, 0.2f},
90     {0.0f, 0.0f, 0.1f, -0.3f, 0.1f, -0.2f, 0.1f, 0.0f, -0.1f, 0.2f, 0.0f},
91     {0.0f, 0.0f, 0.1f, 0.0f, 0.2f, 0.0f, 0.0f, 0.1f, 0.0f, -0.1f, 0.0f, 0.0f},
92     {0.0f, 0.0f, 0.0f, -0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, -0.1f}
93 };
94 constexpr int32_t GAUSSIAN_COEFFICIENT_DIMENSION = 13;
95 std::mutex mutex_;
96 
97 float northComponent;
98 float eastComponent;
99 float downComponent;
100 float geocentricLatitude;
101 float geocentricLongitude;
102 float geocentricRadius;
103 
104 std::vector<std::vector<float>> schmidtQuasiNormalFactors;
105 std::vector<std::vector<float>> polynomials(GAUSSIAN_COEFFICIENT_DIMENSION);
106 std::vector<std::vector<float>> polynomialsDerivative(GAUSSIAN_COEFFICIENT_DIMENSION);
107 std::vector<float> relativeRadiusPower(GAUSSIAN_COEFFICIENT_DIMENSION + 2);
108 std::vector<float> sinMLongitude(GAUSSIAN_COEFFICIENT_DIMENSION);
109 std::vector<float> cosMLongitude(GAUSSIAN_COEFFICIENT_DIMENSION);
110 }
111 
GeomagneticField(float latitude,float longitude,float altitude,int64_t timeMillis)112 GeomagneticField::GeomagneticField(float latitude, float longitude, float altitude, int64_t timeMillis)
113 {
114     std::lock_guard<std::mutex> geomagneticLock(mutex_);
115     schmidtQuasiNormalFactors = GetSchmidtQuasiNormalFactors(GAUSSIAN_COEFFICIENT_DIMENSION);
116     float gcLatitude = fmax(LATITUDE_MIN + PRECISION, fmin(LATITUDE_MAX - PRECISION, latitude));
117     CalibrateGeocentricCoordinates(gcLatitude, longitude, altitude);
118     InitLegendreTable(GAUSSIAN_COEFFICIENT_DIMENSION - 1, static_cast<float>(M_PI / 2.0 - geocentricLatitude));
119     GetRelativeRadiusPower();
120     double latDiffRad = ToRadians(gcLatitude) - geocentricLatitude;
121     CalculateGeomagneticComponent(latDiffRad, timeMillis);
122 }
123 
GetSchmidtQuasiNormalFactors(int32_t expansionDegree)124 std::vector<std::vector<float>> GeomagneticField::GetSchmidtQuasiNormalFactors(int32_t expansionDegree)
125 {
126     std::vector<std::vector<float>> schmidtQuasiNormFactors(expansionDegree + 1);
127     schmidtQuasiNormFactors[0].resize(1);
128     schmidtQuasiNormFactors[0][0] = 1.0f;
129     for (int32_t row = 1; row <= expansionDegree; row++) {
130         schmidtQuasiNormFactors[row].resize(row + 1);
131         schmidtQuasiNormFactors[row][0] =
132             schmidtQuasiNormFactors[row - 1][0] * (2 * row - 1) / static_cast<float>(row);
133         for (int32_t column = 1; column <= row; column++) {
134             schmidtQuasiNormFactors[row][column] = schmidtQuasiNormFactors[row][column - 1]
135                 * static_cast<float>(sqrt((row - column + 1) * ((column == 1) ? 2 : 1)
136                 / static_cast<float>(row + column)));
137         }
138     }
139     return schmidtQuasiNormFactors;
140 }
141 
CalculateGeomagneticComponent(double latDiffRad,int64_t timeMillis)142 void GeomagneticField::CalculateGeomagneticComponent(double latDiffRad, int64_t timeMillis)
143 {
144     HiLog::Info(LABEL, "%{public}s begin", __func__);
145     float yearsSinceBase = (timeMillis - WMM_BASE_TIME) / (365.0f * 24.0f * 60.0f * 60.0f * 1000.0f);
146     float inverseCosLatitude = DERIVATIVE_FACTOR / static_cast<float>(cos(geocentricLatitude));
147     GetLongitudeTrigonometric();
148     float gcX = 0.0f;
149     float gcY = 0.0f;
150     float gcZ = 0.0f;
151     for (int32_t row = 1; row < GAUSSIAN_COEFFICIENT_DIMENSION; row++) {
152         for (int32_t column = 0; column <= row; column++) {
153             float g = GAUSS_COEFFICIENT_G[row][column] + yearsSinceBase
154                 * DELTA_GAUSS_COEFFICIENT_G[row][column];
155             float h = GAUSS_COEFFICIENT_H[row][column] + yearsSinceBase
156                 * DELTA_GAUSS_COEFFICIENT_H[row][column];
157             gcX += relativeRadiusPower[row + 2]
158                 * (g * cosMLongitude[column] + h * sinMLongitude[column])
159                 * polynomialsDerivative[row][column]
160                 * schmidtQuasiNormalFactors[row][column];
161             gcY += relativeRadiusPower[row + 2] * column
162                 * (g * sinMLongitude[column] - h * cosMLongitude[column])
163                 * polynomials[row][column]
164                 * schmidtQuasiNormalFactors[row][column]
165                 * inverseCosLatitude;
166             gcZ -= (row + 1) * relativeRadiusPower[row + 2]
167                 * (g * cosMLongitude[column] + h * sinMLongitude[column])
168                 * polynomials[row][column]
169                 * schmidtQuasiNormalFactors[row][column];
170         }
171         northComponent = static_cast<float>(gcX * cos(latDiffRad) + gcZ * sin(latDiffRad));
172         eastComponent = gcY;
173         downComponent = static_cast<float>(-gcX * sin(latDiffRad) + gcZ * cos(latDiffRad));
174     }
175 }
176 
GetLongitudeTrigonometric()177 void GeomagneticField::GetLongitudeTrigonometric()
178 {
179     HiLog::Info(LABEL, "%{public}s begin", __func__);
180     sinMLongitude[0] = 0.0f;
181     cosMLongitude[0] = 1.0f;
182     sinMLongitude[1] = static_cast<float>(sin(geocentricLongitude));
183     cosMLongitude[1] = static_cast<float>(cos(geocentricLongitude));
184     for (uint32_t index = 2; index < GAUSSIAN_COEFFICIENT_DIMENSION; ++index) {
185         uint32_t x = index >> 1;
186         sinMLongitude[index] = (sinMLongitude[index - x] * cosMLongitude[x]
187             + cosMLongitude[index - x] * sinMLongitude[x]);
188         cosMLongitude[index] = (cosMLongitude[index - x] * cosMLongitude[x]
189             - sinMLongitude[index - x] * sinMLongitude[x]);
190     }
191 }
192 
GetRelativeRadiusPower()193 void GeomagneticField::GetRelativeRadiusPower()
194 {
195     HiLog::Info(LABEL, "%{public}s begin", __func__);
196     relativeRadiusPower[0] = 1.0f;
197     relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS / geocentricRadius;
198     for (int32_t index = 2; index < static_cast<int32_t>(relativeRadiusPower.size()); ++index) {
199         relativeRadiusPower[index] = relativeRadiusPower[index - 1] * relativeRadiusPower[1];
200     }
201 }
202 
CalibrateGeocentricCoordinates(float latitude,float longitude,float altitude)203 void GeomagneticField::CalibrateGeocentricCoordinates(float latitude, float longitude, float altitude)
204 {
205     HiLog::Info(LABEL, "%{public}s begin", __func__);
206     float altitudeKm = altitude / CONVERSION_FACTOR;
207     float a2 = EARTH_MAJOR_AXIS_RADIUS * EARTH_MAJOR_AXIS_RADIUS;
208     float b2 = EARTH_MINOR_AXIS_RADIUS * EARTH_MINOR_AXIS_RADIUS;
209     double gdLatRad = ToRadians(latitude);
210     float clat = static_cast<float>(cos(gdLatRad));
211     float slat = static_cast<float>(sin(gdLatRad));
212     float tlat = slat / clat;
213     float latRad = static_cast<float>(sqrt(a2 * clat * clat + b2 * slat * slat));
214     geocentricLatitude = static_cast<float>(atan(tlat * (latRad * altitudeKm + b2)
215         / (latRad * altitudeKm + a2)));
216     geocentricLongitude = static_cast<float>(ToRadians(longitude));
217 
218     float radSq = altitudeKm * altitudeKm + 2 * altitudeKm
219         * latRad + (a2 * a2 * clat * clat + b2 * b2 * slat * slat)
220         / (a2 * clat * clat + b2 * slat * slat);
221     geocentricRadius = static_cast<float>(sqrt(radSq));
222 }
223 
InitLegendreTable(int32_t expansionDegree,float thetaRad)224 void GeomagneticField::InitLegendreTable(int32_t expansionDegree, float thetaRad)
225 {
226     HiLog::Info(LABEL, "%{public}s begin", __func__);
227     polynomials[0].resize(1);
228     polynomials[0][0] = 1.0f;
229     polynomialsDerivative[0].resize(1);
230     polynomialsDerivative[0][0] = 0.0f;
231     float cosValue = static_cast<float>(cos(thetaRad));
232     float sinValue = static_cast<float>(sin(thetaRad));
233     for (int32_t row = 1; row <= expansionDegree; row++) {
234         polynomials[row].resize(row + 1);
235         polynomialsDerivative[row].resize(row + 1);
236         for (int32_t column = 0; column <= row; column++) {
237             if (row == column) {
238                 polynomials[row][column] = sinValue * polynomials[row - 1][column - 1];
239                 polynomialsDerivative[row][column] = cosValue * polynomials[row - 1][column - 1]
240                     + sinValue * polynomialsDerivative[row - 1][column - 1];
241             } else if (row == 1 || column == row - 1) {
242                 polynomials[row][column] = cosValue * polynomials[row - 1][column];
243                 polynomialsDerivative[row][column] = -sinValue * polynomials[row - 1][column]
244                     + cosValue * polynomialsDerivative[row - 1][column];
245             } else {
246                 float k = ((row - 1) * (row - 1) - column * column)
247                     / static_cast<float>((2 * row - 1) * (2 * row - 3));
248                 polynomials[row][column] = cosValue * polynomials[row - 1][column]
249                     - k * polynomials[row - 2][column];
250                 polynomialsDerivative[row][column] = -sinValue * polynomials[row - 1][column]
251                     + cosValue * polynomialsDerivative[row - 1][column]
252                     - k * polynomialsDerivative[row - 2][column];
253             }
254         }
255     }
256 }
257 
ObtainX()258 float GeomagneticField::ObtainX()
259 {
260     HiLog::Info(LABEL, "%{public}s begin", __func__);
261     std::lock_guard<std::mutex> geomagneticLock(mutex_);
262     return northComponent;
263 }
264 
ObtainY()265 float GeomagneticField::ObtainY()
266 {
267     HiLog::Info(LABEL, "%{public}s begin", __func__);
268     std::lock_guard<std::mutex> geomagneticLock(mutex_);
269     return eastComponent;
270 }
271 
ObtainZ()272 float GeomagneticField::ObtainZ()
273 {
274     HiLog::Info(LABEL, "%{public}s begin", __func__);
275     std::lock_guard<std::mutex> geomagneticLock(mutex_);
276     return downComponent;
277 }
278 
ObtainGeomagneticDip()279 float GeomagneticField::ObtainGeomagneticDip()
280 {
281     std::lock_guard<std::mutex> geomagneticLock(mutex_);
282     float horizontalIntensity = hypot(northComponent, eastComponent);
283     return static_cast<float>(ToDegrees(atan2(downComponent, horizontalIntensity)));
284 }
285 
ToDegrees(double angrad)286 double GeomagneticField::ToDegrees(double angrad)
287 {
288     return angrad * 180.0 / M_PI;
289 }
290 
ToRadians(double angdeg)291 double GeomagneticField::ToRadians(double angdeg)
292 {
293     return angdeg / 180.0 * M_PI;
294 }
295 
ObtainDeflectionAngle()296 float GeomagneticField::ObtainDeflectionAngle()
297 {
298     HiLog::Info(LABEL, "%{public}s begin", __func__);
299     std::lock_guard<std::mutex> geomagneticLock(mutex_);
300     return static_cast<float>(ToDegrees(atan2(eastComponent, northComponent)));
301 }
302 
ObtainLevelIntensity()303 float GeomagneticField::ObtainLevelIntensity()
304 {
305     HiLog::Info(LABEL, "%{public}s begin", __func__);
306     std::lock_guard<std::mutex> geomagneticLock(mutex_);
307     float horizontalIntensity = hypot(northComponent, eastComponent);
308     return horizontalIntensity;
309 }
310 
ObtainTotalIntensity()311 float GeomagneticField::ObtainTotalIntensity()
312 {
313     HiLog::Info(LABEL, "%{public}s begin", __func__);
314     std::lock_guard<std::mutex> geomagneticLock(mutex_);
315     float sumOfSquares = northComponent * northComponent + eastComponent * eastComponent
316         + downComponent * downComponent;
317     float totalIntensity = static_cast<float>(sqrt(sumOfSquares));
318     return totalIntensity;
319 }
320 
321