• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
dev_xmit_complete(int rc)122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306 	struct list_head	list;
307 	int			count;
308 };
309 
310 /*
311  * size of gro hash buckets, must less than bit number of
312  * napi_struct::gro_bitmask
313  */
314 #define GRO_HASH_BUCKETS	8
315 
316 /*
317  * Structure for NAPI scheduling similar to tasklet but with weighting
318  */
319 struct napi_struct {
320 	/* The poll_list must only be managed by the entity which
321 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
322 	 * whoever atomically sets that bit can add this napi_struct
323 	 * to the per-CPU poll_list, and whoever clears that bit
324 	 * can remove from the list right before clearing the bit.
325 	 */
326 	struct list_head	poll_list;
327 
328 	unsigned long		state;
329 	int			weight;
330 	unsigned long		gro_bitmask;
331 	int			(*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 	int			poll_owner;
334 #endif
335 	struct net_device	*dev;
336 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
337 	struct sk_buff		*skb;
338 	struct hrtimer		timer;
339 	struct list_head	dev_list;
340 	struct hlist_node	napi_hash_node;
341 	unsigned int		napi_id;
342 };
343 
344 enum {
345 	NAPI_STATE_SCHED,	/* Poll is scheduled */
346 	NAPI_STATE_MISSED,	/* reschedule a napi */
347 	NAPI_STATE_DISABLE,	/* Disable pending */
348 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
349 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
350 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
360 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363 
364 enum gro_result {
365 	GRO_MERGED,
366 	GRO_MERGED_FREE,
367 	GRO_HELD,
368 	GRO_NORMAL,
369 	GRO_DROP,
370 	GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373 
374 /*
375  * enum rx_handler_result - Possible return values for rx_handlers.
376  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377  * further.
378  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379  * case skb->dev was changed by rx_handler.
380  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382  *
383  * rx_handlers are functions called from inside __netif_receive_skb(), to do
384  * special processing of the skb, prior to delivery to protocol handlers.
385  *
386  * Currently, a net_device can only have a single rx_handler registered. Trying
387  * to register a second rx_handler will return -EBUSY.
388  *
389  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390  * To unregister a rx_handler on a net_device, use
391  * netdev_rx_handler_unregister().
392  *
393  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394  * do with the skb.
395  *
396  * If the rx_handler consumed the skb in some way, it should return
397  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398  * the skb to be delivered in some other way.
399  *
400  * If the rx_handler changed skb->dev, to divert the skb to another
401  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402  * new device will be called if it exists.
403  *
404  * If the rx_handler decides the skb should be ignored, it should return
405  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406  * are registered on exact device (ptype->dev == skb->dev).
407  *
408  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409  * delivered, it should return RX_HANDLER_PASS.
410  *
411  * A device without a registered rx_handler will behave as if rx_handler
412  * returned RX_HANDLER_PASS.
413  */
414 
415 enum rx_handler_result {
416 	RX_HANDLER_CONSUMED,
417 	RX_HANDLER_ANOTHER,
418 	RX_HANDLER_EXACT,
419 	RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423 
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426 
napi_disable_pending(struct napi_struct * n)427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 	return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431 
432 bool napi_schedule_prep(struct napi_struct *n);
433 
434 /**
435  *	napi_schedule - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Schedule NAPI poll routine to be called if it is not already
439  * running.
440  */
napi_schedule(struct napi_struct * n)441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule(n);
445 }
446 
447 /**
448  *	napi_schedule_irqoff - schedule NAPI poll
449  *	@n: NAPI context
450  *
451  * Variant of napi_schedule(), assuming hard irqs are masked.
452  */
napi_schedule_irqoff(struct napi_struct * n)453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule_irqoff(n);
457 }
458 
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 	if (napi_schedule_prep(napi)) {
463 		__napi_schedule(napi);
464 		return true;
465 	}
466 	return false;
467 }
468 
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471  *	napi_complete - NAPI processing complete
472  *	@n: NAPI context
473  *
474  * Mark NAPI processing as complete.
475  * Consider using napi_complete_done() instead.
476  * Return false if device should avoid rearming interrupts.
477  */
napi_complete(struct napi_struct * n)478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 	return napi_complete_done(n, 0);
481 }
482 
483 /**
484  *	napi_hash_del - remove a NAPI from global table
485  *	@napi: NAPI context
486  *
487  * Warning: caller must observe RCU grace period
488  * before freeing memory containing @napi, if
489  * this function returns true.
490  * Note: core networking stack automatically calls it
491  * from netif_napi_del().
492  * Drivers might want to call this helper to combine all
493  * the needed RCU grace periods into a single one.
494  */
495 bool napi_hash_del(struct napi_struct *napi);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
napi_enable(struct napi_struct * n)513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
napi_synchronize(const struct napi_struct * n)529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 enum netdev_queue_state_t {
539 	__QUEUE_STATE_DRV_XOFF,
540 	__QUEUE_STATE_STACK_XOFF,
541 	__QUEUE_STATE_FROZEN,
542 };
543 
544 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
545 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
546 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
547 
548 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
549 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
550 					QUEUE_STATE_FROZEN)
551 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
552 					QUEUE_STATE_FROZEN)
553 
554 /*
555  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
556  * netif_tx_* functions below are used to manipulate this flag.  The
557  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
558  * queue independently.  The netif_xmit_*stopped functions below are called
559  * to check if the queue has been stopped by the driver or stack (either
560  * of the XOFF bits are set in the state).  Drivers should not need to call
561  * netif_xmit*stopped functions, they should only be using netif_tx_*.
562  */
563 
564 struct netdev_queue {
565 /*
566  * read-mostly part
567  */
568 	struct net_device	*dev;
569 	struct Qdisc __rcu	*qdisc;
570 	struct Qdisc		*qdisc_sleeping;
571 #ifdef CONFIG_SYSFS
572 	struct kobject		kobj;
573 #endif
574 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
575 	int			numa_node;
576 #endif
577 	unsigned long		tx_maxrate;
578 	/*
579 	 * Number of TX timeouts for this queue
580 	 * (/sys/class/net/DEV/Q/trans_timeout)
581 	 */
582 	unsigned long		trans_timeout;
583 
584 	/* Subordinate device that the queue has been assigned to */
585 	struct net_device	*sb_dev;
586 /*
587  * write-mostly part
588  */
589 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
590 	int			xmit_lock_owner;
591 	/*
592 	 * Time (in jiffies) of last Tx
593 	 */
594 	unsigned long		trans_start;
595 
596 	unsigned long		state;
597 
598 #ifdef CONFIG_BQL
599 	struct dql		dql;
600 #endif
601 } ____cacheline_aligned_in_smp;
602 
603 extern int sysctl_fb_tunnels_only_for_init_net;
604 
net_has_fallback_tunnels(const struct net * net)605 static inline bool net_has_fallback_tunnels(const struct net *net)
606 {
607 	return net == &init_net ||
608 	       !IS_ENABLED(CONFIG_SYSCTL) ||
609 	       !sysctl_fb_tunnels_only_for_init_net;
610 }
611 
netdev_queue_numa_node_read(const struct netdev_queue * q)612 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
613 {
614 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
615 	return q->numa_node;
616 #else
617 	return NUMA_NO_NODE;
618 #endif
619 }
620 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)621 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
622 {
623 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
624 	q->numa_node = node;
625 #endif
626 }
627 
628 #ifdef CONFIG_RPS
629 /*
630  * This structure holds an RPS map which can be of variable length.  The
631  * map is an array of CPUs.
632  */
633 struct rps_map {
634 	unsigned int len;
635 	struct rcu_head rcu;
636 	u16 cpus[0];
637 };
638 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
639 
640 /*
641  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
642  * tail pointer for that CPU's input queue at the time of last enqueue, and
643  * a hardware filter index.
644  */
645 struct rps_dev_flow {
646 	u16 cpu;
647 	u16 filter;
648 	unsigned int last_qtail;
649 };
650 #define RPS_NO_FILTER 0xffff
651 
652 /*
653  * The rps_dev_flow_table structure contains a table of flow mappings.
654  */
655 struct rps_dev_flow_table {
656 	unsigned int mask;
657 	struct rcu_head rcu;
658 	struct rps_dev_flow flows[0];
659 };
660 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
661     ((_num) * sizeof(struct rps_dev_flow)))
662 
663 /*
664  * The rps_sock_flow_table contains mappings of flows to the last CPU
665  * on which they were processed by the application (set in recvmsg).
666  * Each entry is a 32bit value. Upper part is the high-order bits
667  * of flow hash, lower part is CPU number.
668  * rps_cpu_mask is used to partition the space, depending on number of
669  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
670  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
671  * meaning we use 32-6=26 bits for the hash.
672  */
673 struct rps_sock_flow_table {
674 	u32	mask;
675 
676 	u32	ents[0] ____cacheline_aligned_in_smp;
677 };
678 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
679 
680 #define RPS_NO_CPU 0xffff
681 
682 extern u32 rps_cpu_mask;
683 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
684 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)685 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
686 					u32 hash)
687 {
688 	if (table && hash) {
689 		unsigned int index = hash & table->mask;
690 		u32 val = hash & ~rps_cpu_mask;
691 
692 		/* We only give a hint, preemption can change CPU under us */
693 		val |= raw_smp_processor_id();
694 
695 		if (table->ents[index] != val)
696 			table->ents[index] = val;
697 	}
698 }
699 
700 #ifdef CONFIG_RFS_ACCEL
701 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
702 			 u16 filter_id);
703 #endif
704 #endif /* CONFIG_RPS */
705 
706 /* This structure contains an instance of an RX queue. */
707 struct netdev_rx_queue {
708 #ifdef CONFIG_RPS
709 	struct rps_map __rcu		*rps_map;
710 	struct rps_dev_flow_table __rcu	*rps_flow_table;
711 #endif
712 	struct kobject			kobj;
713 	struct net_device		*dev;
714 	struct xdp_rxq_info		xdp_rxq;
715 } ____cacheline_aligned_in_smp;
716 
717 /*
718  * RX queue sysfs structures and functions.
719  */
720 struct rx_queue_attribute {
721 	struct attribute attr;
722 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
723 	ssize_t (*store)(struct netdev_rx_queue *queue,
724 			 const char *buf, size_t len);
725 };
726 
727 #ifdef CONFIG_XPS
728 /*
729  * This structure holds an XPS map which can be of variable length.  The
730  * map is an array of queues.
731  */
732 struct xps_map {
733 	unsigned int len;
734 	unsigned int alloc_len;
735 	struct rcu_head rcu;
736 	u16 queues[0];
737 };
738 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
739 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
740        - sizeof(struct xps_map)) / sizeof(u16))
741 
742 /*
743  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
744  */
745 struct xps_dev_maps {
746 	struct rcu_head rcu;
747 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
748 };
749 
750 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
751 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
752 
753 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
754 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
755 
756 #endif /* CONFIG_XPS */
757 
758 #define TC_MAX_QUEUE	16
759 #define TC_BITMASK	15
760 /* HW offloaded queuing disciplines txq count and offset maps */
761 struct netdev_tc_txq {
762 	u16 count;
763 	u16 offset;
764 };
765 
766 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
767 /*
768  * This structure is to hold information about the device
769  * configured to run FCoE protocol stack.
770  */
771 struct netdev_fcoe_hbainfo {
772 	char	manufacturer[64];
773 	char	serial_number[64];
774 	char	hardware_version[64];
775 	char	driver_version[64];
776 	char	optionrom_version[64];
777 	char	firmware_version[64];
778 	char	model[256];
779 	char	model_description[256];
780 };
781 #endif
782 
783 #define MAX_PHYS_ITEM_ID_LEN 32
784 
785 /* This structure holds a unique identifier to identify some
786  * physical item (port for example) used by a netdevice.
787  */
788 struct netdev_phys_item_id {
789 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
790 	unsigned char id_len;
791 };
792 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)793 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
794 					    struct netdev_phys_item_id *b)
795 {
796 	return a->id_len == b->id_len &&
797 	       memcmp(a->id, b->id, a->id_len) == 0;
798 }
799 
800 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
801 				       struct sk_buff *skb,
802 				       struct net_device *sb_dev);
803 
804 enum tc_setup_type {
805 	TC_SETUP_QDISC_MQPRIO,
806 	TC_SETUP_CLSU32,
807 	TC_SETUP_CLSFLOWER,
808 	TC_SETUP_CLSMATCHALL,
809 	TC_SETUP_CLSBPF,
810 	TC_SETUP_BLOCK,
811 	TC_SETUP_QDISC_CBS,
812 	TC_SETUP_QDISC_RED,
813 	TC_SETUP_QDISC_PRIO,
814 	TC_SETUP_QDISC_MQ,
815 	TC_SETUP_QDISC_ETF,
816 };
817 
818 /* These structures hold the attributes of bpf state that are being passed
819  * to the netdevice through the bpf op.
820  */
821 enum bpf_netdev_command {
822 	/* Set or clear a bpf program used in the earliest stages of packet
823 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
824 	 * is responsible for calling bpf_prog_put on any old progs that are
825 	 * stored. In case of error, the callee need not release the new prog
826 	 * reference, but on success it takes ownership and must bpf_prog_put
827 	 * when it is no longer used.
828 	 */
829 	XDP_SETUP_PROG,
830 	XDP_SETUP_PROG_HW,
831 	XDP_QUERY_PROG,
832 	XDP_QUERY_PROG_HW,
833 	/* BPF program for offload callbacks, invoked at program load time. */
834 	BPF_OFFLOAD_VERIFIER_PREP,
835 	BPF_OFFLOAD_TRANSLATE,
836 	BPF_OFFLOAD_DESTROY,
837 	BPF_OFFLOAD_MAP_ALLOC,
838 	BPF_OFFLOAD_MAP_FREE,
839 	XDP_QUERY_XSK_UMEM,
840 	XDP_SETUP_XSK_UMEM,
841 };
842 
843 struct bpf_prog_offload_ops;
844 struct netlink_ext_ack;
845 struct xdp_umem;
846 
847 struct netdev_bpf {
848 	enum bpf_netdev_command command;
849 	union {
850 		/* XDP_SETUP_PROG */
851 		struct {
852 			u32 flags;
853 			struct bpf_prog *prog;
854 			struct netlink_ext_ack *extack;
855 		};
856 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
857 		struct {
858 			u32 prog_id;
859 			/* flags with which program was installed */
860 			u32 prog_flags;
861 		};
862 		/* BPF_OFFLOAD_VERIFIER_PREP */
863 		struct {
864 			struct bpf_prog *prog;
865 			const struct bpf_prog_offload_ops *ops; /* callee set */
866 		} verifier;
867 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
868 		struct {
869 			struct bpf_prog *prog;
870 		} offload;
871 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
872 		struct {
873 			struct bpf_offloaded_map *offmap;
874 		};
875 		/* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
876 		struct {
877 			struct xdp_umem *umem; /* out for query*/
878 			u16 queue_id; /* in for query */
879 		} xsk;
880 	};
881 };
882 
883 #ifdef CONFIG_XFRM_OFFLOAD
884 struct xfrmdev_ops {
885 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
886 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
887 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
888 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
889 				       struct xfrm_state *x);
890 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
891 };
892 #endif
893 
894 #if IS_ENABLED(CONFIG_TLS_DEVICE)
895 enum tls_offload_ctx_dir {
896 	TLS_OFFLOAD_CTX_DIR_RX,
897 	TLS_OFFLOAD_CTX_DIR_TX,
898 };
899 
900 struct tls_crypto_info;
901 struct tls_context;
902 
903 struct tlsdev_ops {
904 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
905 			   enum tls_offload_ctx_dir direction,
906 			   struct tls_crypto_info *crypto_info,
907 			   u32 start_offload_tcp_sn);
908 	void (*tls_dev_del)(struct net_device *netdev,
909 			    struct tls_context *ctx,
910 			    enum tls_offload_ctx_dir direction);
911 	void (*tls_dev_resync_rx)(struct net_device *netdev,
912 				  struct sock *sk, u32 seq, u64 rcd_sn);
913 };
914 #endif
915 
916 struct dev_ifalias {
917 	struct rcu_head rcuhead;
918 	char ifalias[];
919 };
920 
921 /*
922  * This structure defines the management hooks for network devices.
923  * The following hooks can be defined; unless noted otherwise, they are
924  * optional and can be filled with a null pointer.
925  *
926  * int (*ndo_init)(struct net_device *dev);
927  *     This function is called once when a network device is registered.
928  *     The network device can use this for any late stage initialization
929  *     or semantic validation. It can fail with an error code which will
930  *     be propagated back to register_netdev.
931  *
932  * void (*ndo_uninit)(struct net_device *dev);
933  *     This function is called when device is unregistered or when registration
934  *     fails. It is not called if init fails.
935  *
936  * int (*ndo_open)(struct net_device *dev);
937  *     This function is called when a network device transitions to the up
938  *     state.
939  *
940  * int (*ndo_stop)(struct net_device *dev);
941  *     This function is called when a network device transitions to the down
942  *     state.
943  *
944  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
945  *                               struct net_device *dev);
946  *	Called when a packet needs to be transmitted.
947  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
948  *	the queue before that can happen; it's for obsolete devices and weird
949  *	corner cases, but the stack really does a non-trivial amount
950  *	of useless work if you return NETDEV_TX_BUSY.
951  *	Required; cannot be NULL.
952  *
953  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
954  *					   struct net_device *dev
955  *					   netdev_features_t features);
956  *	Called by core transmit path to determine if device is capable of
957  *	performing offload operations on a given packet. This is to give
958  *	the device an opportunity to implement any restrictions that cannot
959  *	be otherwise expressed by feature flags. The check is called with
960  *	the set of features that the stack has calculated and it returns
961  *	those the driver believes to be appropriate.
962  *
963  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
964  *                         struct net_device *sb_dev,
965  *                         select_queue_fallback_t fallback);
966  *	Called to decide which queue to use when device supports multiple
967  *	transmit queues.
968  *
969  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
970  *	This function is called to allow device receiver to make
971  *	changes to configuration when multicast or promiscuous is enabled.
972  *
973  * void (*ndo_set_rx_mode)(struct net_device *dev);
974  *	This function is called device changes address list filtering.
975  *	If driver handles unicast address filtering, it should set
976  *	IFF_UNICAST_FLT in its priv_flags.
977  *
978  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
979  *	This function  is called when the Media Access Control address
980  *	needs to be changed. If this interface is not defined, the
981  *	MAC address can not be changed.
982  *
983  * int (*ndo_validate_addr)(struct net_device *dev);
984  *	Test if Media Access Control address is valid for the device.
985  *
986  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
987  *	Called when a user requests an ioctl which can't be handled by
988  *	the generic interface code. If not defined ioctls return
989  *	not supported error code.
990  *
991  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
992  *	Used to set network devices bus interface parameters. This interface
993  *	is retained for legacy reasons; new devices should use the bus
994  *	interface (PCI) for low level management.
995  *
996  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
997  *	Called when a user wants to change the Maximum Transfer Unit
998  *	of a device.
999  *
1000  * void (*ndo_tx_timeout)(struct net_device *dev);
1001  *	Callback used when the transmitter has not made any progress
1002  *	for dev->watchdog ticks.
1003  *
1004  * void (*ndo_get_stats64)(struct net_device *dev,
1005  *                         struct rtnl_link_stats64 *storage);
1006  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1007  *	Called when a user wants to get the network device usage
1008  *	statistics. Drivers must do one of the following:
1009  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1010  *	   rtnl_link_stats64 structure passed by the caller.
1011  *	2. Define @ndo_get_stats to update a net_device_stats structure
1012  *	   (which should normally be dev->stats) and return a pointer to
1013  *	   it. The structure may be changed asynchronously only if each
1014  *	   field is written atomically.
1015  *	3. Update dev->stats asynchronously and atomically, and define
1016  *	   neither operation.
1017  *
1018  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1019  *	Return true if this device supports offload stats of this attr_id.
1020  *
1021  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1022  *	void *attr_data)
1023  *	Get statistics for offload operations by attr_id. Write it into the
1024  *	attr_data pointer.
1025  *
1026  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1027  *	If device supports VLAN filtering this function is called when a
1028  *	VLAN id is registered.
1029  *
1030  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1031  *	If device supports VLAN filtering this function is called when a
1032  *	VLAN id is unregistered.
1033  *
1034  * void (*ndo_poll_controller)(struct net_device *dev);
1035  *
1036  *	SR-IOV management functions.
1037  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1038  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1039  *			  u8 qos, __be16 proto);
1040  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1041  *			  int max_tx_rate);
1042  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1043  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1044  * int (*ndo_get_vf_config)(struct net_device *dev,
1045  *			    int vf, struct ifla_vf_info *ivf);
1046  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1047  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1048  *			  struct nlattr *port[]);
1049  *
1050  *      Enable or disable the VF ability to query its RSS Redirection Table and
1051  *      Hash Key. This is needed since on some devices VF share this information
1052  *      with PF and querying it may introduce a theoretical security risk.
1053  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1054  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1055  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1056  *		       void *type_data);
1057  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1058  *	This is always called from the stack with the rtnl lock held and netif
1059  *	tx queues stopped. This allows the netdevice to perform queue
1060  *	management safely.
1061  *
1062  *	Fiber Channel over Ethernet (FCoE) offload functions.
1063  * int (*ndo_fcoe_enable)(struct net_device *dev);
1064  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1065  *	so the underlying device can perform whatever needed configuration or
1066  *	initialization to support acceleration of FCoE traffic.
1067  *
1068  * int (*ndo_fcoe_disable)(struct net_device *dev);
1069  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1070  *	so the underlying device can perform whatever needed clean-ups to
1071  *	stop supporting acceleration of FCoE traffic.
1072  *
1073  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1074  *			     struct scatterlist *sgl, unsigned int sgc);
1075  *	Called when the FCoE Initiator wants to initialize an I/O that
1076  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1077  *	perform necessary setup and returns 1 to indicate the device is set up
1078  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1079  *
1080  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1081  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1082  *	indicated by the FC exchange id 'xid', so the underlying device can
1083  *	clean up and reuse resources for later DDP requests.
1084  *
1085  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1086  *			      struct scatterlist *sgl, unsigned int sgc);
1087  *	Called when the FCoE Target wants to initialize an I/O that
1088  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1089  *	perform necessary setup and returns 1 to indicate the device is set up
1090  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1091  *
1092  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1093  *			       struct netdev_fcoe_hbainfo *hbainfo);
1094  *	Called when the FCoE Protocol stack wants information on the underlying
1095  *	device. This information is utilized by the FCoE protocol stack to
1096  *	register attributes with Fiber Channel management service as per the
1097  *	FC-GS Fabric Device Management Information(FDMI) specification.
1098  *
1099  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1100  *	Called when the underlying device wants to override default World Wide
1101  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1102  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1103  *	protocol stack to use.
1104  *
1105  *	RFS acceleration.
1106  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1107  *			    u16 rxq_index, u32 flow_id);
1108  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1109  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1110  *	Return the filter ID on success, or a negative error code.
1111  *
1112  *	Slave management functions (for bridge, bonding, etc).
1113  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1114  *	Called to make another netdev an underling.
1115  *
1116  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1117  *	Called to release previously enslaved netdev.
1118  *
1119  *      Feature/offload setting functions.
1120  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1121  *		netdev_features_t features);
1122  *	Adjusts the requested feature flags according to device-specific
1123  *	constraints, and returns the resulting flags. Must not modify
1124  *	the device state.
1125  *
1126  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1127  *	Called to update device configuration to new features. Passed
1128  *	feature set might be less than what was returned by ndo_fix_features()).
1129  *	Must return >0 or -errno if it changed dev->features itself.
1130  *
1131  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1132  *		      struct net_device *dev,
1133  *		      const unsigned char *addr, u16 vid, u16 flags)
1134  *	Adds an FDB entry to dev for addr.
1135  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1136  *		      struct net_device *dev,
1137  *		      const unsigned char *addr, u16 vid)
1138  *	Deletes the FDB entry from dev coresponding to addr.
1139  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1140  *		       struct net_device *dev, struct net_device *filter_dev,
1141  *		       int *idx)
1142  *	Used to add FDB entries to dump requests. Implementers should add
1143  *	entries to skb and update idx with the number of entries.
1144  *
1145  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1146  *			     u16 flags)
1147  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1148  *			     struct net_device *dev, u32 filter_mask,
1149  *			     int nlflags)
1150  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1151  *			     u16 flags);
1152  *
1153  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1154  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1155  *	which do not represent real hardware may define this to allow their
1156  *	userspace components to manage their virtual carrier state. Devices
1157  *	that determine carrier state from physical hardware properties (eg
1158  *	network cables) or protocol-dependent mechanisms (eg
1159  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1160  *
1161  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1162  *			       struct netdev_phys_item_id *ppid);
1163  *	Called to get ID of physical port of this device. If driver does
1164  *	not implement this, it is assumed that the hw is not able to have
1165  *	multiple net devices on single physical port.
1166  *
1167  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1168  *			      struct udp_tunnel_info *ti);
1169  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1170  *	address family that a UDP tunnel is listnening to. It is called only
1171  *	when a new port starts listening. The operation is protected by the
1172  *	RTNL.
1173  *
1174  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1175  *			      struct udp_tunnel_info *ti);
1176  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1177  *	address family that the UDP tunnel is not listening to anymore. The
1178  *	operation is protected by the RTNL.
1179  *
1180  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1181  *				 struct net_device *dev)
1182  *	Called by upper layer devices to accelerate switching or other
1183  *	station functionality into hardware. 'pdev is the lowerdev
1184  *	to use for the offload and 'dev' is the net device that will
1185  *	back the offload. Returns a pointer to the private structure
1186  *	the upper layer will maintain.
1187  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1188  *	Called by upper layer device to delete the station created
1189  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1190  *	the station and priv is the structure returned by the add
1191  *	operation.
1192  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1193  *			     int queue_index, u32 maxrate);
1194  *	Called when a user wants to set a max-rate limitation of specific
1195  *	TX queue.
1196  * int (*ndo_get_iflink)(const struct net_device *dev);
1197  *	Called to get the iflink value of this device.
1198  * void (*ndo_change_proto_down)(struct net_device *dev,
1199  *				 bool proto_down);
1200  *	This function is used to pass protocol port error state information
1201  *	to the switch driver. The switch driver can react to the proto_down
1202  *      by doing a phys down on the associated switch port.
1203  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1204  *	This function is used to get egress tunnel information for given skb.
1205  *	This is useful for retrieving outer tunnel header parameters while
1206  *	sampling packet.
1207  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1208  *	This function is used to specify the headroom that the skb must
1209  *	consider when allocation skb during packet reception. Setting
1210  *	appropriate rx headroom value allows avoiding skb head copy on
1211  *	forward. Setting a negative value resets the rx headroom to the
1212  *	default value.
1213  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1214  *	This function is used to set or query state related to XDP on the
1215  *	netdevice and manage BPF offload. See definition of
1216  *	enum bpf_netdev_command for details.
1217  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1218  *			u32 flags);
1219  *	This function is used to submit @n XDP packets for transmit on a
1220  *	netdevice. Returns number of frames successfully transmitted, frames
1221  *	that got dropped are freed/returned via xdp_return_frame().
1222  *	Returns negative number, means general error invoking ndo, meaning
1223  *	no frames were xmit'ed and core-caller will free all frames.
1224  */
1225 struct net_device_ops {
1226 	int			(*ndo_init)(struct net_device *dev);
1227 	void			(*ndo_uninit)(struct net_device *dev);
1228 	int			(*ndo_open)(struct net_device *dev);
1229 	int			(*ndo_stop)(struct net_device *dev);
1230 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1231 						  struct net_device *dev);
1232 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1233 						      struct net_device *dev,
1234 						      netdev_features_t features);
1235 	u16			(*ndo_select_queue)(struct net_device *dev,
1236 						    struct sk_buff *skb,
1237 						    struct net_device *sb_dev,
1238 						    select_queue_fallback_t fallback);
1239 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1240 						       int flags);
1241 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1242 	int			(*ndo_set_mac_address)(struct net_device *dev,
1243 						       void *addr);
1244 	int			(*ndo_validate_addr)(struct net_device *dev);
1245 	int			(*ndo_do_ioctl)(struct net_device *dev,
1246 					        struct ifreq *ifr, int cmd);
1247 	int			(*ndo_set_config)(struct net_device *dev,
1248 					          struct ifmap *map);
1249 	int			(*ndo_change_mtu)(struct net_device *dev,
1250 						  int new_mtu);
1251 	int			(*ndo_neigh_setup)(struct net_device *dev,
1252 						   struct neigh_parms *);
1253 	void			(*ndo_tx_timeout) (struct net_device *dev);
1254 
1255 	void			(*ndo_get_stats64)(struct net_device *dev,
1256 						   struct rtnl_link_stats64 *storage);
1257 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1258 	int			(*ndo_get_offload_stats)(int attr_id,
1259 							 const struct net_device *dev,
1260 							 void *attr_data);
1261 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1262 
1263 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1264 						       __be16 proto, u16 vid);
1265 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1266 						        __be16 proto, u16 vid);
1267 #ifdef CONFIG_NET_POLL_CONTROLLER
1268 	void                    (*ndo_poll_controller)(struct net_device *dev);
1269 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1270 						     struct netpoll_info *info);
1271 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1272 #endif
1273 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1274 						  int queue, u8 *mac);
1275 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1276 						   int queue, u16 vlan,
1277 						   u8 qos, __be16 proto);
1278 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1279 						   int vf, int min_tx_rate,
1280 						   int max_tx_rate);
1281 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1282 						       int vf, bool setting);
1283 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1284 						    int vf, bool setting);
1285 	int			(*ndo_get_vf_config)(struct net_device *dev,
1286 						     int vf,
1287 						     struct ifla_vf_info *ivf);
1288 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1289 							 int vf, int link_state);
1290 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1291 						    int vf,
1292 						    struct ifla_vf_stats
1293 						    *vf_stats);
1294 	int			(*ndo_set_vf_port)(struct net_device *dev,
1295 						   int vf,
1296 						   struct nlattr *port[]);
1297 	int			(*ndo_get_vf_port)(struct net_device *dev,
1298 						   int vf, struct sk_buff *skb);
1299 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1300 						   int vf, u64 guid,
1301 						   int guid_type);
1302 	int			(*ndo_set_vf_rss_query_en)(
1303 						   struct net_device *dev,
1304 						   int vf, bool setting);
1305 	int			(*ndo_setup_tc)(struct net_device *dev,
1306 						enum tc_setup_type type,
1307 						void *type_data);
1308 #if IS_ENABLED(CONFIG_FCOE)
1309 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1310 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1311 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1312 						      u16 xid,
1313 						      struct scatterlist *sgl,
1314 						      unsigned int sgc);
1315 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1316 						     u16 xid);
1317 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1318 						       u16 xid,
1319 						       struct scatterlist *sgl,
1320 						       unsigned int sgc);
1321 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1322 							struct netdev_fcoe_hbainfo *hbainfo);
1323 #endif
1324 
1325 #if IS_ENABLED(CONFIG_LIBFCOE)
1326 #define NETDEV_FCOE_WWNN 0
1327 #define NETDEV_FCOE_WWPN 1
1328 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1329 						    u64 *wwn, int type);
1330 #endif
1331 
1332 #ifdef CONFIG_RFS_ACCEL
1333 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1334 						     const struct sk_buff *skb,
1335 						     u16 rxq_index,
1336 						     u32 flow_id);
1337 #endif
1338 	int			(*ndo_add_slave)(struct net_device *dev,
1339 						 struct net_device *slave_dev,
1340 						 struct netlink_ext_ack *extack);
1341 	int			(*ndo_del_slave)(struct net_device *dev,
1342 						 struct net_device *slave_dev);
1343 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1344 						    netdev_features_t features);
1345 	int			(*ndo_set_features)(struct net_device *dev,
1346 						    netdev_features_t features);
1347 	int			(*ndo_neigh_construct)(struct net_device *dev,
1348 						       struct neighbour *n);
1349 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1350 						     struct neighbour *n);
1351 
1352 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1353 					       struct nlattr *tb[],
1354 					       struct net_device *dev,
1355 					       const unsigned char *addr,
1356 					       u16 vid,
1357 					       u16 flags);
1358 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1359 					       struct nlattr *tb[],
1360 					       struct net_device *dev,
1361 					       const unsigned char *addr,
1362 					       u16 vid);
1363 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1364 						struct netlink_callback *cb,
1365 						struct net_device *dev,
1366 						struct net_device *filter_dev,
1367 						int *idx);
1368 
1369 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1370 						      struct nlmsghdr *nlh,
1371 						      u16 flags);
1372 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1373 						      u32 pid, u32 seq,
1374 						      struct net_device *dev,
1375 						      u32 filter_mask,
1376 						      int nlflags);
1377 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1378 						      struct nlmsghdr *nlh,
1379 						      u16 flags);
1380 	int			(*ndo_change_carrier)(struct net_device *dev,
1381 						      bool new_carrier);
1382 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1383 							struct netdev_phys_item_id *ppid);
1384 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1385 							  char *name, size_t len);
1386 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1387 						      struct udp_tunnel_info *ti);
1388 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1389 						      struct udp_tunnel_info *ti);
1390 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1391 							struct net_device *dev);
1392 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1393 							void *priv);
1394 
1395 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1396 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1397 						      int queue_index,
1398 						      u32 maxrate);
1399 	int			(*ndo_get_iflink)(const struct net_device *dev);
1400 	int			(*ndo_change_proto_down)(struct net_device *dev,
1401 							 bool proto_down);
1402 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1403 						       struct sk_buff *skb);
1404 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1405 						       int needed_headroom);
1406 	int			(*ndo_bpf)(struct net_device *dev,
1407 					   struct netdev_bpf *bpf);
1408 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1409 						struct xdp_frame **xdp,
1410 						u32 flags);
1411 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1412 						      u32 queue_id);
1413 };
1414 
1415 /**
1416  * enum net_device_priv_flags - &struct net_device priv_flags
1417  *
1418  * These are the &struct net_device, they are only set internally
1419  * by drivers and used in the kernel. These flags are invisible to
1420  * userspace; this means that the order of these flags can change
1421  * during any kernel release.
1422  *
1423  * You should have a pretty good reason to be extending these flags.
1424  *
1425  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1426  * @IFF_EBRIDGE: Ethernet bridging device
1427  * @IFF_BONDING: bonding master or slave
1428  * @IFF_ISATAP: ISATAP interface (RFC4214)
1429  * @IFF_WAN_HDLC: WAN HDLC device
1430  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1431  *	release skb->dst
1432  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1433  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1434  * @IFF_MACVLAN_PORT: device used as macvlan port
1435  * @IFF_BRIDGE_PORT: device used as bridge port
1436  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1437  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1438  * @IFF_UNICAST_FLT: Supports unicast filtering
1439  * @IFF_TEAM_PORT: device used as team port
1440  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1441  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1442  *	change when it's running
1443  * @IFF_MACVLAN: Macvlan device
1444  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1445  *	underlying stacked devices
1446  * @IFF_L3MDEV_MASTER: device is an L3 master device
1447  * @IFF_NO_QUEUE: device can run without qdisc attached
1448  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1449  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1450  * @IFF_TEAM: device is a team device
1451  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1452  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1453  *	entity (i.e. the master device for bridged veth)
1454  * @IFF_MACSEC: device is a MACsec device
1455  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1456  * @IFF_FAILOVER: device is a failover master device
1457  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1458  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1459  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1460  */
1461 enum netdev_priv_flags {
1462 	IFF_802_1Q_VLAN			= 1<<0,
1463 	IFF_EBRIDGE			= 1<<1,
1464 	IFF_BONDING			= 1<<2,
1465 	IFF_ISATAP			= 1<<3,
1466 	IFF_WAN_HDLC			= 1<<4,
1467 	IFF_XMIT_DST_RELEASE		= 1<<5,
1468 	IFF_DONT_BRIDGE			= 1<<6,
1469 	IFF_DISABLE_NETPOLL		= 1<<7,
1470 	IFF_MACVLAN_PORT		= 1<<8,
1471 	IFF_BRIDGE_PORT			= 1<<9,
1472 	IFF_OVS_DATAPATH		= 1<<10,
1473 	IFF_TX_SKB_SHARING		= 1<<11,
1474 	IFF_UNICAST_FLT			= 1<<12,
1475 	IFF_TEAM_PORT			= 1<<13,
1476 	IFF_SUPP_NOFCS			= 1<<14,
1477 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1478 	IFF_MACVLAN			= 1<<16,
1479 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1480 	IFF_L3MDEV_MASTER		= 1<<18,
1481 	IFF_NO_QUEUE			= 1<<19,
1482 	IFF_OPENVSWITCH			= 1<<20,
1483 	IFF_L3MDEV_SLAVE		= 1<<21,
1484 	IFF_TEAM			= 1<<22,
1485 	IFF_RXFH_CONFIGURED		= 1<<23,
1486 	IFF_PHONY_HEADROOM		= 1<<24,
1487 	IFF_MACSEC			= 1<<25,
1488 	IFF_NO_RX_HANDLER		= 1<<26,
1489 	IFF_FAILOVER			= 1<<27,
1490 	IFF_FAILOVER_SLAVE		= 1<<28,
1491 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1492 	IFF_LIVE_RENAME_OK		= 1<<30,
1493 };
1494 
1495 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1496 #define IFF_EBRIDGE			IFF_EBRIDGE
1497 #define IFF_BONDING			IFF_BONDING
1498 #define IFF_ISATAP			IFF_ISATAP
1499 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1500 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1501 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1502 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1503 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1504 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1505 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1506 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1507 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1508 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1509 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1510 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1511 #define IFF_MACVLAN			IFF_MACVLAN
1512 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1513 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1514 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1515 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1516 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1517 #define IFF_TEAM			IFF_TEAM
1518 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1519 #define IFF_MACSEC			IFF_MACSEC
1520 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1521 #define IFF_FAILOVER			IFF_FAILOVER
1522 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1523 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1524 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1525 
1526 /**
1527  *	struct net_device - The DEVICE structure.
1528  *
1529  *	Actually, this whole structure is a big mistake.  It mixes I/O
1530  *	data with strictly "high-level" data, and it has to know about
1531  *	almost every data structure used in the INET module.
1532  *
1533  *	@name:	This is the first field of the "visible" part of this structure
1534  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1535  *		of the interface.
1536  *
1537  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1538  *	@ifalias:	SNMP alias
1539  *	@mem_end:	Shared memory end
1540  *	@mem_start:	Shared memory start
1541  *	@base_addr:	Device I/O address
1542  *	@irq:		Device IRQ number
1543  *
1544  *	@state:		Generic network queuing layer state, see netdev_state_t
1545  *	@dev_list:	The global list of network devices
1546  *	@napi_list:	List entry used for polling NAPI devices
1547  *	@unreg_list:	List entry  when we are unregistering the
1548  *			device; see the function unregister_netdev
1549  *	@close_list:	List entry used when we are closing the device
1550  *	@ptype_all:     Device-specific packet handlers for all protocols
1551  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1552  *
1553  *	@adj_list:	Directly linked devices, like slaves for bonding
1554  *	@features:	Currently active device features
1555  *	@hw_features:	User-changeable features
1556  *
1557  *	@wanted_features:	User-requested features
1558  *	@vlan_features:		Mask of features inheritable by VLAN devices
1559  *
1560  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1561  *				This field indicates what encapsulation
1562  *				offloads the hardware is capable of doing,
1563  *				and drivers will need to set them appropriately.
1564  *
1565  *	@mpls_features:	Mask of features inheritable by MPLS
1566  *
1567  *	@ifindex:	interface index
1568  *	@group:		The group the device belongs to
1569  *
1570  *	@stats:		Statistics struct, which was left as a legacy, use
1571  *			rtnl_link_stats64 instead
1572  *
1573  *	@rx_dropped:	Dropped packets by core network,
1574  *			do not use this in drivers
1575  *	@tx_dropped:	Dropped packets by core network,
1576  *			do not use this in drivers
1577  *	@rx_nohandler:	nohandler dropped packets by core network on
1578  *			inactive devices, do not use this in drivers
1579  *	@carrier_up_count:	Number of times the carrier has been up
1580  *	@carrier_down_count:	Number of times the carrier has been down
1581  *
1582  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1583  *				instead of ioctl,
1584  *				see <net/iw_handler.h> for details.
1585  *	@wireless_data:	Instance data managed by the core of wireless extensions
1586  *
1587  *	@netdev_ops:	Includes several pointers to callbacks,
1588  *			if one wants to override the ndo_*() functions
1589  *	@ethtool_ops:	Management operations
1590  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1591  *			discovery handling. Necessary for e.g. 6LoWPAN.
1592  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1593  *			of Layer 2 headers.
1594  *
1595  *	@flags:		Interface flags (a la BSD)
1596  *	@priv_flags:	Like 'flags' but invisible to userspace,
1597  *			see if.h for the definitions
1598  *	@gflags:	Global flags ( kept as legacy )
1599  *	@padded:	How much padding added by alloc_netdev()
1600  *	@operstate:	RFC2863 operstate
1601  *	@link_mode:	Mapping policy to operstate
1602  *	@if_port:	Selectable AUI, TP, ...
1603  *	@dma:		DMA channel
1604  *	@mtu:		Interface MTU value
1605  *	@min_mtu:	Interface Minimum MTU value
1606  *	@max_mtu:	Interface Maximum MTU value
1607  *	@type:		Interface hardware type
1608  *	@hard_header_len: Maximum hardware header length.
1609  *	@min_header_len:  Minimum hardware header length
1610  *
1611  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1612  *			  cases can this be guaranteed
1613  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1614  *			  cases can this be guaranteed. Some cases also use
1615  *			  LL_MAX_HEADER instead to allocate the skb
1616  *
1617  *	interface address info:
1618  *
1619  * 	@perm_addr:		Permanent hw address
1620  * 	@addr_assign_type:	Hw address assignment type
1621  * 	@addr_len:		Hardware address length
1622  *	@upper_level:		Maximum depth level of upper devices.
1623  *	@lower_level:		Maximum depth level of lower devices.
1624  *	@neigh_priv_len:	Used in neigh_alloc()
1625  * 	@dev_id:		Used to differentiate devices that share
1626  * 				the same link layer address
1627  * 	@dev_port:		Used to differentiate devices that share
1628  * 				the same function
1629  *	@addr_list_lock:	XXX: need comments on this one
1630  *	@uc_promisc:		Counter that indicates promiscuous mode
1631  *				has been enabled due to the need to listen to
1632  *				additional unicast addresses in a device that
1633  *				does not implement ndo_set_rx_mode()
1634  *	@uc:			unicast mac addresses
1635  *	@mc:			multicast mac addresses
1636  *	@dev_addrs:		list of device hw addresses
1637  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1638  *	@promiscuity:		Number of times the NIC is told to work in
1639  *				promiscuous mode; if it becomes 0 the NIC will
1640  *				exit promiscuous mode
1641  *	@allmulti:		Counter, enables or disables allmulticast mode
1642  *
1643  *	@vlan_info:	VLAN info
1644  *	@dsa_ptr:	dsa specific data
1645  *	@tipc_ptr:	TIPC specific data
1646  *	@atalk_ptr:	AppleTalk link
1647  *	@ip_ptr:	IPv4 specific data
1648  *	@dn_ptr:	DECnet specific data
1649  *	@ip6_ptr:	IPv6 specific data
1650  *	@ax25_ptr:	AX.25 specific data
1651  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1652  *
1653  *	@dev_addr:	Hw address (before bcast,
1654  *			because most packets are unicast)
1655  *
1656  *	@_rx:			Array of RX queues
1657  *	@num_rx_queues:		Number of RX queues
1658  *				allocated at register_netdev() time
1659  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1660  *
1661  *	@rx_handler:		handler for received packets
1662  *	@rx_handler_data: 	XXX: need comments on this one
1663  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1664  *				ingress processing
1665  *	@ingress_queue:		XXX: need comments on this one
1666  *	@broadcast:		hw bcast address
1667  *
1668  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1669  *			indexed by RX queue number. Assigned by driver.
1670  *			This must only be set if the ndo_rx_flow_steer
1671  *			operation is defined
1672  *	@index_hlist:		Device index hash chain
1673  *
1674  *	@_tx:			Array of TX queues
1675  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1676  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1677  *	@qdisc:			Root qdisc from userspace point of view
1678  *	@tx_queue_len:		Max frames per queue allowed
1679  *	@tx_global_lock: 	XXX: need comments on this one
1680  *
1681  *	@xps_maps:	XXX: need comments on this one
1682  *	@miniq_egress:		clsact qdisc specific data for
1683  *				egress processing
1684  *	@watchdog_timeo:	Represents the timeout that is used by
1685  *				the watchdog (see dev_watchdog())
1686  *	@watchdog_timer:	List of timers
1687  *
1688  *	@pcpu_refcnt:		Number of references to this device
1689  *	@todo_list:		Delayed register/unregister
1690  *	@link_watch_list:	XXX: need comments on this one
1691  *
1692  *	@reg_state:		Register/unregister state machine
1693  *	@dismantle:		Device is going to be freed
1694  *	@rtnl_link_state:	This enum represents the phases of creating
1695  *				a new link
1696  *
1697  *	@needs_free_netdev:	Should unregister perform free_netdev?
1698  *	@priv_destructor:	Called from unregister
1699  *	@npinfo:		XXX: need comments on this one
1700  * 	@nd_net:		Network namespace this network device is inside
1701  *
1702  * 	@ml_priv:	Mid-layer private
1703  * 	@lstats:	Loopback statistics
1704  * 	@tstats:	Tunnel statistics
1705  * 	@dstats:	Dummy statistics
1706  * 	@vstats:	Virtual ethernet statistics
1707  *
1708  *	@garp_port:	GARP
1709  *	@mrp_port:	MRP
1710  *
1711  *	@dev:		Class/net/name entry
1712  *	@sysfs_groups:	Space for optional device, statistics and wireless
1713  *			sysfs groups
1714  *
1715  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1716  *	@rtnl_link_ops:	Rtnl_link_ops
1717  *
1718  *	@gso_max_size:	Maximum size of generic segmentation offload
1719  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1720  *			NIC for GSO
1721  *
1722  *	@dcbnl_ops:	Data Center Bridging netlink ops
1723  *	@num_tc:	Number of traffic classes in the net device
1724  *	@tc_to_txq:	XXX: need comments on this one
1725  *	@prio_tc_map:	XXX: need comments on this one
1726  *
1727  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1728  *
1729  *	@priomap:	XXX: need comments on this one
1730  *	@phydev:	Physical device may attach itself
1731  *			for hardware timestamping
1732  *	@sfp_bus:	attached &struct sfp_bus structure.
1733  *
1734  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1735  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1736  *
1737  *	@proto_down:	protocol port state information can be sent to the
1738  *			switch driver and used to set the phys state of the
1739  *			switch port.
1740  *
1741  *	@wol_enabled:	Wake-on-LAN is enabled
1742  *
1743  *	FIXME: cleanup struct net_device such that network protocol info
1744  *	moves out.
1745  */
1746 
1747 struct net_device {
1748 	char			name[IFNAMSIZ];
1749 	struct hlist_node	name_hlist;
1750 	struct dev_ifalias	__rcu *ifalias;
1751 	/*
1752 	 *	I/O specific fields
1753 	 *	FIXME: Merge these and struct ifmap into one
1754 	 */
1755 	unsigned long		mem_end;
1756 	unsigned long		mem_start;
1757 	unsigned long		base_addr;
1758 	int			irq;
1759 
1760 	/*
1761 	 *	Some hardware also needs these fields (state,dev_list,
1762 	 *	napi_list,unreg_list,close_list) but they are not
1763 	 *	part of the usual set specified in Space.c.
1764 	 */
1765 
1766 	unsigned long		state;
1767 
1768 	struct list_head	dev_list;
1769 	struct list_head	napi_list;
1770 	struct list_head	unreg_list;
1771 	struct list_head	close_list;
1772 	struct list_head	ptype_all;
1773 	struct list_head	ptype_specific;
1774 
1775 	struct {
1776 		struct list_head upper;
1777 		struct list_head lower;
1778 	} adj_list;
1779 
1780 	netdev_features_t	features;
1781 	netdev_features_t	hw_features;
1782 	netdev_features_t	wanted_features;
1783 	netdev_features_t	vlan_features;
1784 	netdev_features_t	hw_enc_features;
1785 	netdev_features_t	mpls_features;
1786 	netdev_features_t	gso_partial_features;
1787 
1788 	int			ifindex;
1789 	int			group;
1790 
1791 	struct net_device_stats	stats;
1792 
1793 	atomic_long_t		rx_dropped;
1794 	atomic_long_t		tx_dropped;
1795 	atomic_long_t		rx_nohandler;
1796 
1797 	/* Stats to monitor link on/off, flapping */
1798 	atomic_t		carrier_up_count;
1799 	atomic_t		carrier_down_count;
1800 
1801 #ifdef CONFIG_WIRELESS_EXT
1802 	const struct iw_handler_def *wireless_handlers;
1803 	struct iw_public_data	*wireless_data;
1804 #endif
1805 	const struct net_device_ops *netdev_ops;
1806 	const struct ethtool_ops *ethtool_ops;
1807 #ifdef CONFIG_NET_SWITCHDEV
1808 	const struct switchdev_ops *switchdev_ops;
1809 #endif
1810 #ifdef CONFIG_NET_L3_MASTER_DEV
1811 	const struct l3mdev_ops	*l3mdev_ops;
1812 #endif
1813 #if IS_ENABLED(CONFIG_IPV6)
1814 	const struct ndisc_ops *ndisc_ops;
1815 #endif
1816 
1817 #ifdef CONFIG_XFRM_OFFLOAD
1818 	const struct xfrmdev_ops *xfrmdev_ops;
1819 #endif
1820 
1821 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1822 	const struct tlsdev_ops *tlsdev_ops;
1823 #endif
1824 
1825 	const struct header_ops *header_ops;
1826 
1827 	unsigned int		flags;
1828 	unsigned int		priv_flags;
1829 
1830 	unsigned short		gflags;
1831 	unsigned short		padded;
1832 
1833 	unsigned char		operstate;
1834 	unsigned char		link_mode;
1835 
1836 	unsigned char		if_port;
1837 	unsigned char		dma;
1838 
1839 	/* Note : dev->mtu is often read without holding a lock.
1840 	 * Writers usually hold RTNL.
1841 	 * It is recommended to use READ_ONCE() to annotate the reads,
1842 	 * and to use WRITE_ONCE() to annotate the writes.
1843 	 */
1844 	unsigned int		mtu;
1845 	unsigned int		min_mtu;
1846 	unsigned int		max_mtu;
1847 	unsigned short		type;
1848 	unsigned short		hard_header_len;
1849 	unsigned char		min_header_len;
1850 
1851 	unsigned short		needed_headroom;
1852 	unsigned short		needed_tailroom;
1853 
1854 	/* Interface address info. */
1855 	unsigned char		perm_addr[MAX_ADDR_LEN];
1856 	unsigned char		addr_assign_type;
1857 	unsigned char		addr_len;
1858 	unsigned char		upper_level;
1859 	unsigned char		lower_level;
1860 	unsigned short		neigh_priv_len;
1861 	unsigned short          dev_id;
1862 	unsigned short          dev_port;
1863 	spinlock_t		addr_list_lock;
1864 	unsigned char		name_assign_type;
1865 	bool			uc_promisc;
1866 	struct netdev_hw_addr_list	uc;
1867 	struct netdev_hw_addr_list	mc;
1868 	struct netdev_hw_addr_list	dev_addrs;
1869 
1870 #ifdef CONFIG_SYSFS
1871 	struct kset		*queues_kset;
1872 #endif
1873 	unsigned int		promiscuity;
1874 	unsigned int		allmulti;
1875 
1876 
1877 	/* Protocol-specific pointers */
1878 
1879 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1880 	struct vlan_info __rcu	*vlan_info;
1881 #endif
1882 #if IS_ENABLED(CONFIG_NET_DSA)
1883 	struct dsa_port		*dsa_ptr;
1884 #endif
1885 #if IS_ENABLED(CONFIG_TIPC)
1886 	struct tipc_bearer __rcu *tipc_ptr;
1887 #endif
1888 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1889 	void 			*atalk_ptr;
1890 #endif
1891 	struct in_device __rcu	*ip_ptr;
1892 #if IS_ENABLED(CONFIG_DECNET)
1893 	struct dn_dev __rcu     *dn_ptr;
1894 #endif
1895 	struct inet6_dev __rcu	*ip6_ptr;
1896 #if IS_ENABLED(CONFIG_AX25)
1897 	void			*ax25_ptr;
1898 #endif
1899 	struct wireless_dev	*ieee80211_ptr;
1900 	struct wpan_dev		*ieee802154_ptr;
1901 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1902 	struct mpls_dev __rcu	*mpls_ptr;
1903 #endif
1904 
1905 /*
1906  * Cache lines mostly used on receive path (including eth_type_trans())
1907  */
1908 	/* Interface address info used in eth_type_trans() */
1909 	unsigned char		*dev_addr;
1910 
1911 	struct netdev_rx_queue	*_rx;
1912 	unsigned int		num_rx_queues;
1913 	unsigned int		real_num_rx_queues;
1914 
1915 	struct bpf_prog __rcu	*xdp_prog;
1916 	unsigned long		gro_flush_timeout;
1917 	rx_handler_func_t __rcu	*rx_handler;
1918 	void __rcu		*rx_handler_data;
1919 
1920 #ifdef CONFIG_NET_CLS_ACT
1921 	struct mini_Qdisc __rcu	*miniq_ingress;
1922 #endif
1923 	struct netdev_queue __rcu *ingress_queue;
1924 #ifdef CONFIG_NETFILTER_INGRESS
1925 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1926 #endif
1927 
1928 	unsigned char		broadcast[MAX_ADDR_LEN];
1929 #ifdef CONFIG_RFS_ACCEL
1930 	struct cpu_rmap		*rx_cpu_rmap;
1931 #endif
1932 	struct hlist_node	index_hlist;
1933 
1934 /*
1935  * Cache lines mostly used on transmit path
1936  */
1937 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1938 	unsigned int		num_tx_queues;
1939 	unsigned int		real_num_tx_queues;
1940 	struct Qdisc		*qdisc;
1941 #ifdef CONFIG_NET_SCHED
1942 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1943 #endif
1944 	unsigned int		tx_queue_len;
1945 	spinlock_t		tx_global_lock;
1946 	int			watchdog_timeo;
1947 
1948 #ifdef CONFIG_XPS
1949 	struct xps_dev_maps __rcu *xps_cpus_map;
1950 	struct xps_dev_maps __rcu *xps_rxqs_map;
1951 #endif
1952 #ifdef CONFIG_NET_CLS_ACT
1953 	struct mini_Qdisc __rcu	*miniq_egress;
1954 #endif
1955 
1956 	/* These may be needed for future network-power-down code. */
1957 	struct timer_list	watchdog_timer;
1958 
1959 	int __percpu		*pcpu_refcnt;
1960 	struct list_head	todo_list;
1961 
1962 	struct list_head	link_watch_list;
1963 
1964 	enum { NETREG_UNINITIALIZED=0,
1965 	       NETREG_REGISTERED,	/* completed register_netdevice */
1966 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1967 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1968 	       NETREG_RELEASED,		/* called free_netdev */
1969 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1970 	} reg_state:8;
1971 
1972 	bool dismantle;
1973 
1974 	enum {
1975 		RTNL_LINK_INITIALIZED,
1976 		RTNL_LINK_INITIALIZING,
1977 	} rtnl_link_state:16;
1978 
1979 	bool needs_free_netdev;
1980 	void (*priv_destructor)(struct net_device *dev);
1981 
1982 #ifdef CONFIG_NETPOLL
1983 	struct netpoll_info __rcu	*npinfo;
1984 #endif
1985 
1986 	possible_net_t			nd_net;
1987 
1988 	/* mid-layer private */
1989 	union {
1990 		void					*ml_priv;
1991 		struct pcpu_lstats __percpu		*lstats;
1992 		struct pcpu_sw_netstats __percpu	*tstats;
1993 		struct pcpu_dstats __percpu		*dstats;
1994 		struct pcpu_vstats __percpu		*vstats;
1995 	};
1996 
1997 #if IS_ENABLED(CONFIG_GARP)
1998 	struct garp_port __rcu	*garp_port;
1999 #endif
2000 #if IS_ENABLED(CONFIG_MRP)
2001 	struct mrp_port __rcu	*mrp_port;
2002 #endif
2003 
2004 	struct device		dev;
2005 	const struct attribute_group *sysfs_groups[4];
2006 	const struct attribute_group *sysfs_rx_queue_group;
2007 
2008 	const struct rtnl_link_ops *rtnl_link_ops;
2009 
2010 	/* for setting kernel sock attribute on TCP connection setup */
2011 #define GSO_MAX_SIZE		65536
2012 	unsigned int		gso_max_size;
2013 #define GSO_MAX_SEGS		65535
2014 	u16			gso_max_segs;
2015 
2016 #ifdef CONFIG_DCB
2017 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2018 #endif
2019 	s16			num_tc;
2020 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2021 	u8			prio_tc_map[TC_BITMASK + 1];
2022 
2023 #if IS_ENABLED(CONFIG_FCOE)
2024 	unsigned int		fcoe_ddp_xid;
2025 #endif
2026 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2027 	struct netprio_map __rcu *priomap;
2028 #endif
2029 	struct phy_device	*phydev;
2030 	struct sfp_bus		*sfp_bus;
2031 	struct lock_class_key	*qdisc_tx_busylock;
2032 	struct lock_class_key	*qdisc_running_key;
2033 	bool			proto_down;
2034 	unsigned		wol_enabled:1;
2035 };
2036 #define to_net_dev(d) container_of(d, struct net_device, dev)
2037 
netif_elide_gro(const struct net_device * dev)2038 static inline bool netif_elide_gro(const struct net_device *dev)
2039 {
2040 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2041 		return true;
2042 	return false;
2043 }
2044 
2045 #define	NETDEV_ALIGN		32
2046 
2047 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2048 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2049 {
2050 	return dev->prio_tc_map[prio & TC_BITMASK];
2051 }
2052 
2053 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2054 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2055 {
2056 	if (tc >= dev->num_tc)
2057 		return -EINVAL;
2058 
2059 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2060 	return 0;
2061 }
2062 
2063 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2064 void netdev_reset_tc(struct net_device *dev);
2065 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2066 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2067 
2068 static inline
netdev_get_num_tc(struct net_device * dev)2069 int netdev_get_num_tc(struct net_device *dev)
2070 {
2071 	return dev->num_tc;
2072 }
2073 
2074 void netdev_unbind_sb_channel(struct net_device *dev,
2075 			      struct net_device *sb_dev);
2076 int netdev_bind_sb_channel_queue(struct net_device *dev,
2077 				 struct net_device *sb_dev,
2078 				 u8 tc, u16 count, u16 offset);
2079 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2080 static inline int netdev_get_sb_channel(struct net_device *dev)
2081 {
2082 	return max_t(int, -dev->num_tc, 0);
2083 }
2084 
2085 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2086 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2087 					 unsigned int index)
2088 {
2089 	return &dev->_tx[index];
2090 }
2091 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2092 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2093 						    const struct sk_buff *skb)
2094 {
2095 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2096 }
2097 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2098 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2099 					    void (*f)(struct net_device *,
2100 						      struct netdev_queue *,
2101 						      void *),
2102 					    void *arg)
2103 {
2104 	unsigned int i;
2105 
2106 	for (i = 0; i < dev->num_tx_queues; i++)
2107 		f(dev, &dev->_tx[i], arg);
2108 }
2109 
2110 #define netdev_lockdep_set_classes(dev)				\
2111 {								\
2112 	static struct lock_class_key qdisc_tx_busylock_key;	\
2113 	static struct lock_class_key qdisc_running_key;		\
2114 	static struct lock_class_key qdisc_xmit_lock_key;	\
2115 	static struct lock_class_key dev_addr_list_lock_key;	\
2116 	unsigned int i;						\
2117 								\
2118 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2119 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2120 	lockdep_set_class(&(dev)->addr_list_lock,		\
2121 			  &dev_addr_list_lock_key); 		\
2122 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2123 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2124 				  &qdisc_xmit_lock_key);	\
2125 }
2126 
2127 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2128 				    struct sk_buff *skb,
2129 				    struct net_device *sb_dev);
2130 
2131 /* returns the headroom that the master device needs to take in account
2132  * when forwarding to this dev
2133  */
netdev_get_fwd_headroom(struct net_device * dev)2134 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2135 {
2136 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2137 }
2138 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2139 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2140 {
2141 	if (dev->netdev_ops->ndo_set_rx_headroom)
2142 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2143 }
2144 
2145 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2146 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2147 {
2148 	netdev_set_rx_headroom(dev, -1);
2149 }
2150 
2151 /*
2152  * Net namespace inlines
2153  */
2154 static inline
dev_net(const struct net_device * dev)2155 struct net *dev_net(const struct net_device *dev)
2156 {
2157 	return read_pnet(&dev->nd_net);
2158 }
2159 
2160 static inline
dev_net_set(struct net_device * dev,struct net * net)2161 void dev_net_set(struct net_device *dev, struct net *net)
2162 {
2163 	write_pnet(&dev->nd_net, net);
2164 }
2165 
2166 /**
2167  *	netdev_priv - access network device private data
2168  *	@dev: network device
2169  *
2170  * Get network device private data
2171  */
netdev_priv(const struct net_device * dev)2172 static inline void *netdev_priv(const struct net_device *dev)
2173 {
2174 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2175 }
2176 
2177 /* Set the sysfs physical device reference for the network logical device
2178  * if set prior to registration will cause a symlink during initialization.
2179  */
2180 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2181 
2182 /* Set the sysfs device type for the network logical device to allow
2183  * fine-grained identification of different network device types. For
2184  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2185  */
2186 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2187 
2188 /* Default NAPI poll() weight
2189  * Device drivers are strongly advised to not use bigger value
2190  */
2191 #define NAPI_POLL_WEIGHT 64
2192 
2193 /**
2194  *	netif_napi_add - initialize a NAPI context
2195  *	@dev:  network device
2196  *	@napi: NAPI context
2197  *	@poll: polling function
2198  *	@weight: default weight
2199  *
2200  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2201  * *any* of the other NAPI-related functions.
2202  */
2203 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2204 		    int (*poll)(struct napi_struct *, int), int weight);
2205 
2206 /**
2207  *	netif_tx_napi_add - initialize a NAPI context
2208  *	@dev:  network device
2209  *	@napi: NAPI context
2210  *	@poll: polling function
2211  *	@weight: default weight
2212  *
2213  * This variant of netif_napi_add() should be used from drivers using NAPI
2214  * to exclusively poll a TX queue.
2215  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2216  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2217 static inline void netif_tx_napi_add(struct net_device *dev,
2218 				     struct napi_struct *napi,
2219 				     int (*poll)(struct napi_struct *, int),
2220 				     int weight)
2221 {
2222 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2223 	netif_napi_add(dev, napi, poll, weight);
2224 }
2225 
2226 /**
2227  *  netif_napi_del - remove a NAPI context
2228  *  @napi: NAPI context
2229  *
2230  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2231  */
2232 void netif_napi_del(struct napi_struct *napi);
2233 
2234 struct napi_gro_cb {
2235 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2236 	void	*frag0;
2237 
2238 	/* Length of frag0. */
2239 	unsigned int frag0_len;
2240 
2241 	/* This indicates where we are processing relative to skb->data. */
2242 	int	data_offset;
2243 
2244 	/* This is non-zero if the packet cannot be merged with the new skb. */
2245 	u16	flush;
2246 
2247 	/* Save the IP ID here and check when we get to the transport layer */
2248 	u16	flush_id;
2249 
2250 	/* Number of segments aggregated. */
2251 	u16	count;
2252 
2253 	/* Start offset for remote checksum offload */
2254 	u16	gro_remcsum_start;
2255 
2256 	/* jiffies when first packet was created/queued */
2257 	unsigned long age;
2258 
2259 	/* Used in ipv6_gro_receive() and foo-over-udp */
2260 	u16	proto;
2261 
2262 	/* This is non-zero if the packet may be of the same flow. */
2263 	u8	same_flow:1;
2264 
2265 	/* Used in tunnel GRO receive */
2266 	u8	encap_mark:1;
2267 
2268 	/* GRO checksum is valid */
2269 	u8	csum_valid:1;
2270 
2271 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2272 	u8	csum_cnt:3;
2273 
2274 	/* Free the skb? */
2275 	u8	free:2;
2276 #define NAPI_GRO_FREE		  1
2277 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2278 
2279 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2280 	u8	is_ipv6:1;
2281 
2282 	/* Used in GRE, set in fou/gue_gro_receive */
2283 	u8	is_fou:1;
2284 
2285 	/* Used to determine if flush_id can be ignored */
2286 	u8	is_atomic:1;
2287 
2288 	/* Number of gro_receive callbacks this packet already went through */
2289 	u8 recursion_counter:4;
2290 
2291 	/* 1 bit hole */
2292 
2293 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2294 	__wsum	csum;
2295 
2296 	/* used in skb_gro_receive() slow path */
2297 	struct sk_buff *last;
2298 };
2299 
2300 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2301 
2302 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2303 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2304 {
2305 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2306 }
2307 
2308 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2309 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2310 					       struct list_head *head,
2311 					       struct sk_buff *skb)
2312 {
2313 	if (unlikely(gro_recursion_inc_test(skb))) {
2314 		NAPI_GRO_CB(skb)->flush |= 1;
2315 		return NULL;
2316 	}
2317 
2318 	return cb(head, skb);
2319 }
2320 
2321 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2322 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2323 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2324 						  struct sock *sk,
2325 						  struct list_head *head,
2326 						  struct sk_buff *skb)
2327 {
2328 	if (unlikely(gro_recursion_inc_test(skb))) {
2329 		NAPI_GRO_CB(skb)->flush |= 1;
2330 		return NULL;
2331 	}
2332 
2333 	return cb(sk, head, skb);
2334 }
2335 
2336 struct packet_type {
2337 	__be16			type;	/* This is really htons(ether_type). */
2338 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2339 	int			(*func) (struct sk_buff *,
2340 					 struct net_device *,
2341 					 struct packet_type *,
2342 					 struct net_device *);
2343 	void			(*list_func) (struct list_head *,
2344 					      struct packet_type *,
2345 					      struct net_device *);
2346 	bool			(*id_match)(struct packet_type *ptype,
2347 					    struct sock *sk);
2348 	void			*af_packet_priv;
2349 	struct list_head	list;
2350 };
2351 
2352 struct offload_callbacks {
2353 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2354 						netdev_features_t features);
2355 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2356 						struct sk_buff *skb);
2357 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2358 };
2359 
2360 struct packet_offload {
2361 	__be16			 type;	/* This is really htons(ether_type). */
2362 	u16			 priority;
2363 	struct offload_callbacks callbacks;
2364 	struct list_head	 list;
2365 };
2366 
2367 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2368 struct pcpu_sw_netstats {
2369 	u64     rx_packets;
2370 	u64     rx_bytes;
2371 	u64     tx_packets;
2372 	u64     tx_bytes;
2373 	struct u64_stats_sync   syncp;
2374 };
2375 
2376 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2377 ({									\
2378 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2379 	if (pcpu_stats)	{						\
2380 		int __cpu;						\
2381 		for_each_possible_cpu(__cpu) {				\
2382 			typeof(type) *stat;				\
2383 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2384 			u64_stats_init(&stat->syncp);			\
2385 		}							\
2386 	}								\
2387 	pcpu_stats;							\
2388 })
2389 
2390 #define netdev_alloc_pcpu_stats(type)					\
2391 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2392 
2393 enum netdev_lag_tx_type {
2394 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2395 	NETDEV_LAG_TX_TYPE_RANDOM,
2396 	NETDEV_LAG_TX_TYPE_BROADCAST,
2397 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2398 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2399 	NETDEV_LAG_TX_TYPE_HASH,
2400 };
2401 
2402 enum netdev_lag_hash {
2403 	NETDEV_LAG_HASH_NONE,
2404 	NETDEV_LAG_HASH_L2,
2405 	NETDEV_LAG_HASH_L34,
2406 	NETDEV_LAG_HASH_L23,
2407 	NETDEV_LAG_HASH_E23,
2408 	NETDEV_LAG_HASH_E34,
2409 	NETDEV_LAG_HASH_UNKNOWN,
2410 };
2411 
2412 struct netdev_lag_upper_info {
2413 	enum netdev_lag_tx_type tx_type;
2414 	enum netdev_lag_hash hash_type;
2415 };
2416 
2417 struct netdev_lag_lower_state_info {
2418 	u8 link_up : 1,
2419 	   tx_enabled : 1;
2420 };
2421 
2422 #include <linux/notifier.h>
2423 
2424 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2425  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2426  * adding new types.
2427  */
2428 enum netdev_cmd {
2429 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2430 	NETDEV_DOWN,
2431 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2432 				   detected a hardware crash and restarted
2433 				   - we can use this eg to kick tcp sessions
2434 				   once done */
2435 	NETDEV_CHANGE,		/* Notify device state change */
2436 	NETDEV_REGISTER,
2437 	NETDEV_UNREGISTER,
2438 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2439 	NETDEV_CHANGEADDR,
2440 	NETDEV_GOING_DOWN,
2441 	NETDEV_CHANGENAME,
2442 	NETDEV_FEAT_CHANGE,
2443 	NETDEV_BONDING_FAILOVER,
2444 	NETDEV_PRE_UP,
2445 	NETDEV_PRE_TYPE_CHANGE,
2446 	NETDEV_POST_TYPE_CHANGE,
2447 	NETDEV_POST_INIT,
2448 	NETDEV_RELEASE,
2449 	NETDEV_NOTIFY_PEERS,
2450 	NETDEV_JOIN,
2451 	NETDEV_CHANGEUPPER,
2452 	NETDEV_RESEND_IGMP,
2453 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2454 	NETDEV_CHANGEINFODATA,
2455 	NETDEV_BONDING_INFO,
2456 	NETDEV_PRECHANGEUPPER,
2457 	NETDEV_CHANGELOWERSTATE,
2458 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2459 	NETDEV_UDP_TUNNEL_DROP_INFO,
2460 	NETDEV_CHANGE_TX_QUEUE_LEN,
2461 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2462 	NETDEV_CVLAN_FILTER_DROP_INFO,
2463 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2464 	NETDEV_SVLAN_FILTER_DROP_INFO,
2465 };
2466 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2467 
2468 int register_netdevice_notifier(struct notifier_block *nb);
2469 int unregister_netdevice_notifier(struct notifier_block *nb);
2470 
2471 struct netdev_notifier_info {
2472 	struct net_device	*dev;
2473 	struct netlink_ext_ack	*extack;
2474 };
2475 
2476 struct netdev_notifier_info_ext {
2477 	struct netdev_notifier_info info; /* must be first */
2478 	union {
2479 		u32 mtu;
2480 	} ext;
2481 };
2482 
2483 struct netdev_notifier_change_info {
2484 	struct netdev_notifier_info info; /* must be first */
2485 	unsigned int flags_changed;
2486 };
2487 
2488 struct netdev_notifier_changeupper_info {
2489 	struct netdev_notifier_info info; /* must be first */
2490 	struct net_device *upper_dev; /* new upper dev */
2491 	bool master; /* is upper dev master */
2492 	bool linking; /* is the notification for link or unlink */
2493 	void *upper_info; /* upper dev info */
2494 };
2495 
2496 struct netdev_notifier_changelowerstate_info {
2497 	struct netdev_notifier_info info; /* must be first */
2498 	void *lower_state_info; /* is lower dev state */
2499 };
2500 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2501 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2502 					     struct net_device *dev)
2503 {
2504 	info->dev = dev;
2505 	info->extack = NULL;
2506 }
2507 
2508 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2509 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2510 {
2511 	return info->dev;
2512 }
2513 
2514 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2515 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2516 {
2517 	return info->extack;
2518 }
2519 
2520 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2521 
2522 
2523 extern rwlock_t				dev_base_lock;		/* Device list lock */
2524 
2525 #define for_each_netdev(net, d)		\
2526 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2527 #define for_each_netdev_reverse(net, d)	\
2528 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2529 #define for_each_netdev_rcu(net, d)		\
2530 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2531 #define for_each_netdev_safe(net, d, n)	\
2532 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2533 #define for_each_netdev_continue(net, d)		\
2534 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2535 #define for_each_netdev_continue_rcu(net, d)		\
2536 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2537 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2538 		for_each_netdev_rcu(&init_net, slave)	\
2539 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2540 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2541 
next_net_device(struct net_device * dev)2542 static inline struct net_device *next_net_device(struct net_device *dev)
2543 {
2544 	struct list_head *lh;
2545 	struct net *net;
2546 
2547 	net = dev_net(dev);
2548 	lh = dev->dev_list.next;
2549 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2550 }
2551 
next_net_device_rcu(struct net_device * dev)2552 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2553 {
2554 	struct list_head *lh;
2555 	struct net *net;
2556 
2557 	net = dev_net(dev);
2558 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2559 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2560 }
2561 
first_net_device(struct net * net)2562 static inline struct net_device *first_net_device(struct net *net)
2563 {
2564 	return list_empty(&net->dev_base_head) ? NULL :
2565 		net_device_entry(net->dev_base_head.next);
2566 }
2567 
first_net_device_rcu(struct net * net)2568 static inline struct net_device *first_net_device_rcu(struct net *net)
2569 {
2570 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2571 
2572 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2573 }
2574 
2575 int netdev_boot_setup_check(struct net_device *dev);
2576 unsigned long netdev_boot_base(const char *prefix, int unit);
2577 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2578 				       const char *hwaddr);
2579 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2580 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2581 void dev_add_pack(struct packet_type *pt);
2582 void dev_remove_pack(struct packet_type *pt);
2583 void __dev_remove_pack(struct packet_type *pt);
2584 void dev_add_offload(struct packet_offload *po);
2585 void dev_remove_offload(struct packet_offload *po);
2586 
2587 int dev_get_iflink(const struct net_device *dev);
2588 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2589 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2590 				      unsigned short mask);
2591 struct net_device *dev_get_by_name(struct net *net, const char *name);
2592 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2593 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2594 int dev_alloc_name(struct net_device *dev, const char *name);
2595 int dev_open(struct net_device *dev);
2596 void dev_close(struct net_device *dev);
2597 void dev_close_many(struct list_head *head, bool unlink);
2598 void dev_disable_lro(struct net_device *dev);
2599 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2600 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2601 		     struct net_device *sb_dev,
2602 		     select_queue_fallback_t fallback);
2603 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2604 		       struct net_device *sb_dev,
2605 		       select_queue_fallback_t fallback);
2606 int dev_queue_xmit(struct sk_buff *skb);
2607 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2608 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2609 int register_netdevice(struct net_device *dev);
2610 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2611 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2612 static inline void unregister_netdevice(struct net_device *dev)
2613 {
2614 	unregister_netdevice_queue(dev, NULL);
2615 }
2616 
2617 int netdev_refcnt_read(const struct net_device *dev);
2618 void free_netdev(struct net_device *dev);
2619 void netdev_freemem(struct net_device *dev);
2620 void synchronize_net(void);
2621 int init_dummy_netdev(struct net_device *dev);
2622 
2623 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2624 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2625 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2626 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2627 int netdev_get_name(struct net *net, char *name, int ifindex);
2628 int dev_restart(struct net_device *dev);
2629 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2630 
skb_gro_offset(const struct sk_buff * skb)2631 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2632 {
2633 	return NAPI_GRO_CB(skb)->data_offset;
2634 }
2635 
skb_gro_len(const struct sk_buff * skb)2636 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2637 {
2638 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2639 }
2640 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2641 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2642 {
2643 	NAPI_GRO_CB(skb)->data_offset += len;
2644 }
2645 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2646 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2647 					unsigned int offset)
2648 {
2649 	return NAPI_GRO_CB(skb)->frag0 + offset;
2650 }
2651 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2652 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2653 {
2654 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2655 }
2656 
skb_gro_frag0_invalidate(struct sk_buff * skb)2657 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2658 {
2659 	NAPI_GRO_CB(skb)->frag0 = NULL;
2660 	NAPI_GRO_CB(skb)->frag0_len = 0;
2661 }
2662 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2663 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2664 					unsigned int offset)
2665 {
2666 	if (!pskb_may_pull(skb, hlen))
2667 		return NULL;
2668 
2669 	skb_gro_frag0_invalidate(skb);
2670 	return skb->data + offset;
2671 }
2672 
skb_gro_network_header(struct sk_buff * skb)2673 static inline void *skb_gro_network_header(struct sk_buff *skb)
2674 {
2675 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2676 	       skb_network_offset(skb);
2677 }
2678 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2679 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2680 					const void *start, unsigned int len)
2681 {
2682 	if (NAPI_GRO_CB(skb)->csum_valid)
2683 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2684 						  csum_partial(start, len, 0));
2685 }
2686 
2687 /* GRO checksum functions. These are logical equivalents of the normal
2688  * checksum functions (in skbuff.h) except that they operate on the GRO
2689  * offsets and fields in sk_buff.
2690  */
2691 
2692 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2693 
skb_at_gro_remcsum_start(struct sk_buff * skb)2694 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2695 {
2696 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2697 }
2698 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2699 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2700 						      bool zero_okay,
2701 						      __sum16 check)
2702 {
2703 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2704 		skb_checksum_start_offset(skb) <
2705 		 skb_gro_offset(skb)) &&
2706 		!skb_at_gro_remcsum_start(skb) &&
2707 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2708 		(!zero_okay || check));
2709 }
2710 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2711 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2712 							   __wsum psum)
2713 {
2714 	if (NAPI_GRO_CB(skb)->csum_valid &&
2715 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2716 		return 0;
2717 
2718 	NAPI_GRO_CB(skb)->csum = psum;
2719 
2720 	return __skb_gro_checksum_complete(skb);
2721 }
2722 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2723 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2724 {
2725 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2726 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2727 		NAPI_GRO_CB(skb)->csum_cnt--;
2728 	} else {
2729 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2730 		 * verified a new top level checksum or an encapsulated one
2731 		 * during GRO. This saves work if we fallback to normal path.
2732 		 */
2733 		__skb_incr_checksum_unnecessary(skb);
2734 	}
2735 }
2736 
2737 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2738 				    compute_pseudo)			\
2739 ({									\
2740 	__sum16 __ret = 0;						\
2741 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2742 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2743 				compute_pseudo(skb, proto));		\
2744 	if (!__ret)							\
2745 		skb_gro_incr_csum_unnecessary(skb);			\
2746 	__ret;								\
2747 })
2748 
2749 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2750 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2751 
2752 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2753 					     compute_pseudo)		\
2754 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2755 
2756 #define skb_gro_checksum_simple_validate(skb)				\
2757 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2758 
__skb_gro_checksum_convert_check(struct sk_buff * skb)2759 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2760 {
2761 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2762 		!NAPI_GRO_CB(skb)->csum_valid);
2763 }
2764 
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2765 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2766 					      __sum16 check, __wsum pseudo)
2767 {
2768 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2769 	NAPI_GRO_CB(skb)->csum_valid = 1;
2770 }
2771 
2772 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2773 do {									\
2774 	if (__skb_gro_checksum_convert_check(skb))			\
2775 		__skb_gro_checksum_convert(skb, check,			\
2776 					   compute_pseudo(skb, proto));	\
2777 } while (0)
2778 
2779 struct gro_remcsum {
2780 	int offset;
2781 	__wsum delta;
2782 };
2783 
skb_gro_remcsum_init(struct gro_remcsum * grc)2784 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2785 {
2786 	grc->offset = 0;
2787 	grc->delta = 0;
2788 }
2789 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)2790 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2791 					    unsigned int off, size_t hdrlen,
2792 					    int start, int offset,
2793 					    struct gro_remcsum *grc,
2794 					    bool nopartial)
2795 {
2796 	__wsum delta;
2797 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2798 
2799 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2800 
2801 	if (!nopartial) {
2802 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2803 		return ptr;
2804 	}
2805 
2806 	ptr = skb_gro_header_fast(skb, off);
2807 	if (skb_gro_header_hard(skb, off + plen)) {
2808 		ptr = skb_gro_header_slow(skb, off + plen, off);
2809 		if (!ptr)
2810 			return NULL;
2811 	}
2812 
2813 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2814 			       start, offset);
2815 
2816 	/* Adjust skb->csum since we changed the packet */
2817 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2818 
2819 	grc->offset = off + hdrlen + offset;
2820 	grc->delta = delta;
2821 
2822 	return ptr;
2823 }
2824 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2825 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2826 					   struct gro_remcsum *grc)
2827 {
2828 	void *ptr;
2829 	size_t plen = grc->offset + sizeof(u16);
2830 
2831 	if (!grc->delta)
2832 		return;
2833 
2834 	ptr = skb_gro_header_fast(skb, grc->offset);
2835 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2836 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2837 		if (!ptr)
2838 			return;
2839 	}
2840 
2841 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2842 }
2843 
2844 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2845 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2846 {
2847 	if (PTR_ERR(pp) != -EINPROGRESS)
2848 		NAPI_GRO_CB(skb)->flush |= flush;
2849 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2850 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2851 					       struct sk_buff *pp,
2852 					       int flush,
2853 					       struct gro_remcsum *grc)
2854 {
2855 	if (PTR_ERR(pp) != -EINPROGRESS) {
2856 		NAPI_GRO_CB(skb)->flush |= flush;
2857 		skb_gro_remcsum_cleanup(skb, grc);
2858 		skb->remcsum_offload = 0;
2859 	}
2860 }
2861 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2862 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2863 {
2864 	NAPI_GRO_CB(skb)->flush |= flush;
2865 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2866 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2867 					       struct sk_buff *pp,
2868 					       int flush,
2869 					       struct gro_remcsum *grc)
2870 {
2871 	NAPI_GRO_CB(skb)->flush |= flush;
2872 	skb_gro_remcsum_cleanup(skb, grc);
2873 	skb->remcsum_offload = 0;
2874 }
2875 #endif
2876 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2877 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2878 				  unsigned short type,
2879 				  const void *daddr, const void *saddr,
2880 				  unsigned int len)
2881 {
2882 	if (!dev->header_ops || !dev->header_ops->create)
2883 		return 0;
2884 
2885 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2886 }
2887 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2888 static inline int dev_parse_header(const struct sk_buff *skb,
2889 				   unsigned char *haddr)
2890 {
2891 	const struct net_device *dev = skb->dev;
2892 
2893 	if (!dev->header_ops || !dev->header_ops->parse)
2894 		return 0;
2895 	return dev->header_ops->parse(skb, haddr);
2896 }
2897 
2898 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)2899 static inline bool dev_validate_header(const struct net_device *dev,
2900 				       char *ll_header, int len)
2901 {
2902 	if (likely(len >= dev->hard_header_len))
2903 		return true;
2904 	if (len < dev->min_header_len)
2905 		return false;
2906 
2907 	if (capable(CAP_SYS_RAWIO)) {
2908 		memset(ll_header + len, 0, dev->hard_header_len - len);
2909 		return true;
2910 	}
2911 
2912 	if (dev->header_ops && dev->header_ops->validate)
2913 		return dev->header_ops->validate(ll_header, len);
2914 
2915 	return false;
2916 }
2917 
2918 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2919 			   int len, int size);
2920 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2921 static inline int unregister_gifconf(unsigned int family)
2922 {
2923 	return register_gifconf(family, NULL);
2924 }
2925 
2926 #ifdef CONFIG_NET_FLOW_LIMIT
2927 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2928 struct sd_flow_limit {
2929 	u64			count;
2930 	unsigned int		num_buckets;
2931 	unsigned int		history_head;
2932 	u16			history[FLOW_LIMIT_HISTORY];
2933 	u8			buckets[];
2934 };
2935 
2936 extern int netdev_flow_limit_table_len;
2937 #endif /* CONFIG_NET_FLOW_LIMIT */
2938 
2939 /*
2940  * Incoming packets are placed on per-CPU queues
2941  */
2942 struct softnet_data {
2943 	struct list_head	poll_list;
2944 	struct sk_buff_head	process_queue;
2945 
2946 	/* stats */
2947 	unsigned int		processed;
2948 	unsigned int		time_squeeze;
2949 	unsigned int		received_rps;
2950 #ifdef CONFIG_RPS
2951 	struct softnet_data	*rps_ipi_list;
2952 #endif
2953 #ifdef CONFIG_NET_FLOW_LIMIT
2954 	struct sd_flow_limit __rcu *flow_limit;
2955 #endif
2956 	struct Qdisc		*output_queue;
2957 	struct Qdisc		**output_queue_tailp;
2958 	struct sk_buff		*completion_queue;
2959 #ifdef CONFIG_XFRM_OFFLOAD
2960 	struct sk_buff_head	xfrm_backlog;
2961 #endif
2962 	/* written and read only by owning cpu: */
2963 	struct {
2964 		u16 recursion;
2965 		u8  more;
2966 	} xmit;
2967 #ifdef CONFIG_RPS
2968 	/* input_queue_head should be written by cpu owning this struct,
2969 	 * and only read by other cpus. Worth using a cache line.
2970 	 */
2971 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2972 
2973 	/* Elements below can be accessed between CPUs for RPS/RFS */
2974 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2975 	struct softnet_data	*rps_ipi_next;
2976 	unsigned int		cpu;
2977 	unsigned int		input_queue_tail;
2978 #endif
2979 	unsigned int		dropped;
2980 	struct sk_buff_head	input_pkt_queue;
2981 	struct napi_struct	backlog;
2982 
2983 };
2984 
input_queue_head_incr(struct softnet_data * sd)2985 static inline void input_queue_head_incr(struct softnet_data *sd)
2986 {
2987 #ifdef CONFIG_RPS
2988 	sd->input_queue_head++;
2989 #endif
2990 }
2991 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)2992 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2993 					      unsigned int *qtail)
2994 {
2995 #ifdef CONFIG_RPS
2996 	*qtail = ++sd->input_queue_tail;
2997 #endif
2998 }
2999 
3000 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3001 
dev_recursion_level(void)3002 static inline int dev_recursion_level(void)
3003 {
3004 	return this_cpu_read(softnet_data.xmit.recursion);
3005 }
3006 
3007 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3008 static inline bool dev_xmit_recursion(void)
3009 {
3010 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3011 			XMIT_RECURSION_LIMIT);
3012 }
3013 
dev_xmit_recursion_inc(void)3014 static inline void dev_xmit_recursion_inc(void)
3015 {
3016 	__this_cpu_inc(softnet_data.xmit.recursion);
3017 }
3018 
dev_xmit_recursion_dec(void)3019 static inline void dev_xmit_recursion_dec(void)
3020 {
3021 	__this_cpu_dec(softnet_data.xmit.recursion);
3022 }
3023 
3024 void __netif_schedule(struct Qdisc *q);
3025 void netif_schedule_queue(struct netdev_queue *txq);
3026 
netif_tx_schedule_all(struct net_device * dev)3027 static inline void netif_tx_schedule_all(struct net_device *dev)
3028 {
3029 	unsigned int i;
3030 
3031 	for (i = 0; i < dev->num_tx_queues; i++)
3032 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3033 }
3034 
netif_tx_start_queue(struct netdev_queue * dev_queue)3035 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3036 {
3037 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3038 }
3039 
3040 /**
3041  *	netif_start_queue - allow transmit
3042  *	@dev: network device
3043  *
3044  *	Allow upper layers to call the device hard_start_xmit routine.
3045  */
netif_start_queue(struct net_device * dev)3046 static inline void netif_start_queue(struct net_device *dev)
3047 {
3048 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3049 }
3050 
netif_tx_start_all_queues(struct net_device * dev)3051 static inline void netif_tx_start_all_queues(struct net_device *dev)
3052 {
3053 	unsigned int i;
3054 
3055 	for (i = 0; i < dev->num_tx_queues; i++) {
3056 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3057 		netif_tx_start_queue(txq);
3058 	}
3059 }
3060 
3061 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3062 
3063 /**
3064  *	netif_wake_queue - restart transmit
3065  *	@dev: network device
3066  *
3067  *	Allow upper layers to call the device hard_start_xmit routine.
3068  *	Used for flow control when transmit resources are available.
3069  */
netif_wake_queue(struct net_device * dev)3070 static inline void netif_wake_queue(struct net_device *dev)
3071 {
3072 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3073 }
3074 
netif_tx_wake_all_queues(struct net_device * dev)3075 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3076 {
3077 	unsigned int i;
3078 
3079 	for (i = 0; i < dev->num_tx_queues; i++) {
3080 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3081 		netif_tx_wake_queue(txq);
3082 	}
3083 }
3084 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3085 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3086 {
3087 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3088 }
3089 
3090 /**
3091  *	netif_stop_queue - stop transmitted packets
3092  *	@dev: network device
3093  *
3094  *	Stop upper layers calling the device hard_start_xmit routine.
3095  *	Used for flow control when transmit resources are unavailable.
3096  */
netif_stop_queue(struct net_device * dev)3097 static inline void netif_stop_queue(struct net_device *dev)
3098 {
3099 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3100 }
3101 
3102 void netif_tx_stop_all_queues(struct net_device *dev);
3103 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3104 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3105 {
3106 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3107 }
3108 
3109 /**
3110  *	netif_queue_stopped - test if transmit queue is flowblocked
3111  *	@dev: network device
3112  *
3113  *	Test if transmit queue on device is currently unable to send.
3114  */
netif_queue_stopped(const struct net_device * dev)3115 static inline bool netif_queue_stopped(const struct net_device *dev)
3116 {
3117 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3118 }
3119 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3120 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3121 {
3122 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3123 }
3124 
3125 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3126 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3127 {
3128 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3129 }
3130 
3131 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3132 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3133 {
3134 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3135 }
3136 
3137 /**
3138  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3139  *	@dev_queue: pointer to transmit queue
3140  *
3141  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3142  * to give appropriate hint to the CPU.
3143  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3144 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3145 {
3146 #ifdef CONFIG_BQL
3147 	prefetchw(&dev_queue->dql.num_queued);
3148 #endif
3149 }
3150 
3151 /**
3152  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3153  *	@dev_queue: pointer to transmit queue
3154  *
3155  * BQL enabled drivers might use this helper in their TX completion path,
3156  * to give appropriate hint to the CPU.
3157  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3158 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3159 {
3160 #ifdef CONFIG_BQL
3161 	prefetchw(&dev_queue->dql.limit);
3162 #endif
3163 }
3164 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3165 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3166 					unsigned int bytes)
3167 {
3168 #ifdef CONFIG_BQL
3169 	dql_queued(&dev_queue->dql, bytes);
3170 
3171 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3172 		return;
3173 
3174 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3175 
3176 	/*
3177 	 * The XOFF flag must be set before checking the dql_avail below,
3178 	 * because in netdev_tx_completed_queue we update the dql_completed
3179 	 * before checking the XOFF flag.
3180 	 */
3181 	smp_mb();
3182 
3183 	/* check again in case another CPU has just made room avail */
3184 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3185 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3186 #endif
3187 }
3188 
3189 /**
3190  * 	netdev_sent_queue - report the number of bytes queued to hardware
3191  * 	@dev: network device
3192  * 	@bytes: number of bytes queued to the hardware device queue
3193  *
3194  * 	Report the number of bytes queued for sending/completion to the network
3195  * 	device hardware queue. @bytes should be a good approximation and should
3196  * 	exactly match netdev_completed_queue() @bytes
3197  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3198 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3199 {
3200 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3201 }
3202 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3203 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3204 					     unsigned int pkts, unsigned int bytes)
3205 {
3206 #ifdef CONFIG_BQL
3207 	if (unlikely(!bytes))
3208 		return;
3209 
3210 	dql_completed(&dev_queue->dql, bytes);
3211 
3212 	/*
3213 	 * Without the memory barrier there is a small possiblity that
3214 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3215 	 * be stopped forever
3216 	 */
3217 	smp_mb();
3218 
3219 	if (dql_avail(&dev_queue->dql) < 0)
3220 		return;
3221 
3222 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3223 		netif_schedule_queue(dev_queue);
3224 #endif
3225 }
3226 
3227 /**
3228  * 	netdev_completed_queue - report bytes and packets completed by device
3229  * 	@dev: network device
3230  * 	@pkts: actual number of packets sent over the medium
3231  * 	@bytes: actual number of bytes sent over the medium
3232  *
3233  * 	Report the number of bytes and packets transmitted by the network device
3234  * 	hardware queue over the physical medium, @bytes must exactly match the
3235  * 	@bytes amount passed to netdev_sent_queue()
3236  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3237 static inline void netdev_completed_queue(struct net_device *dev,
3238 					  unsigned int pkts, unsigned int bytes)
3239 {
3240 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3241 }
3242 
netdev_tx_reset_queue(struct netdev_queue * q)3243 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3244 {
3245 #ifdef CONFIG_BQL
3246 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3247 	dql_reset(&q->dql);
3248 #endif
3249 }
3250 
3251 /**
3252  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3253  * 	@dev_queue: network device
3254  *
3255  * 	Reset the bytes and packet count of a network device and clear the
3256  * 	software flow control OFF bit for this network device
3257  */
netdev_reset_queue(struct net_device * dev_queue)3258 static inline void netdev_reset_queue(struct net_device *dev_queue)
3259 {
3260 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3261 }
3262 
3263 /**
3264  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3265  * 	@dev: network device
3266  * 	@queue_index: given tx queue index
3267  *
3268  * 	Returns 0 if given tx queue index >= number of device tx queues,
3269  * 	otherwise returns the originally passed tx queue index.
3270  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3271 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3272 {
3273 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3274 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3275 				     dev->name, queue_index,
3276 				     dev->real_num_tx_queues);
3277 		return 0;
3278 	}
3279 
3280 	return queue_index;
3281 }
3282 
3283 /**
3284  *	netif_running - test if up
3285  *	@dev: network device
3286  *
3287  *	Test if the device has been brought up.
3288  */
netif_running(const struct net_device * dev)3289 static inline bool netif_running(const struct net_device *dev)
3290 {
3291 	return test_bit(__LINK_STATE_START, &dev->state);
3292 }
3293 
3294 /*
3295  * Routines to manage the subqueues on a device.  We only need start,
3296  * stop, and a check if it's stopped.  All other device management is
3297  * done at the overall netdevice level.
3298  * Also test the device if we're multiqueue.
3299  */
3300 
3301 /**
3302  *	netif_start_subqueue - allow sending packets on subqueue
3303  *	@dev: network device
3304  *	@queue_index: sub queue index
3305  *
3306  * Start individual transmit queue of a device with multiple transmit queues.
3307  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3308 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3309 {
3310 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3311 
3312 	netif_tx_start_queue(txq);
3313 }
3314 
3315 /**
3316  *	netif_stop_subqueue - stop sending packets on subqueue
3317  *	@dev: network device
3318  *	@queue_index: sub queue index
3319  *
3320  * Stop individual transmit queue of a device with multiple transmit queues.
3321  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3322 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3323 {
3324 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3325 	netif_tx_stop_queue(txq);
3326 }
3327 
3328 /**
3329  *	netif_subqueue_stopped - test status of subqueue
3330  *	@dev: network device
3331  *	@queue_index: sub queue index
3332  *
3333  * Check individual transmit queue of a device with multiple transmit queues.
3334  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3335 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3336 					    u16 queue_index)
3337 {
3338 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3339 
3340 	return netif_tx_queue_stopped(txq);
3341 }
3342 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3343 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3344 					  struct sk_buff *skb)
3345 {
3346 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3347 }
3348 
3349 /**
3350  *	netif_wake_subqueue - allow sending packets on subqueue
3351  *	@dev: network device
3352  *	@queue_index: sub queue index
3353  *
3354  * Resume individual transmit queue of a device with multiple transmit queues.
3355  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3356 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3357 {
3358 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3359 
3360 	netif_tx_wake_queue(txq);
3361 }
3362 
3363 #ifdef CONFIG_XPS
3364 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3365 			u16 index);
3366 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3367 			  u16 index, bool is_rxqs_map);
3368 
3369 /**
3370  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3371  *	@j: CPU/Rx queue index
3372  *	@mask: bitmask of all cpus/rx queues
3373  *	@nr_bits: number of bits in the bitmask
3374  *
3375  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3376  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3377 static inline bool netif_attr_test_mask(unsigned long j,
3378 					const unsigned long *mask,
3379 					unsigned int nr_bits)
3380 {
3381 	cpu_max_bits_warn(j, nr_bits);
3382 	return test_bit(j, mask);
3383 }
3384 
3385 /**
3386  *	netif_attr_test_online - Test for online CPU/Rx queue
3387  *	@j: CPU/Rx queue index
3388  *	@online_mask: bitmask for CPUs/Rx queues that are online
3389  *	@nr_bits: number of bits in the bitmask
3390  *
3391  * Returns true if a CPU/Rx queue is online.
3392  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3393 static inline bool netif_attr_test_online(unsigned long j,
3394 					  const unsigned long *online_mask,
3395 					  unsigned int nr_bits)
3396 {
3397 	cpu_max_bits_warn(j, nr_bits);
3398 
3399 	if (online_mask)
3400 		return test_bit(j, online_mask);
3401 
3402 	return (j < nr_bits);
3403 }
3404 
3405 /**
3406  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3407  *	@n: CPU/Rx queue index
3408  *	@srcp: the cpumask/Rx queue mask pointer
3409  *	@nr_bits: number of bits in the bitmask
3410  *
3411  * Returns >= nr_bits if no further CPUs/Rx queues set.
3412  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3413 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3414 					       unsigned int nr_bits)
3415 {
3416 	/* -1 is a legal arg here. */
3417 	if (n != -1)
3418 		cpu_max_bits_warn(n, nr_bits);
3419 
3420 	if (srcp)
3421 		return find_next_bit(srcp, nr_bits, n + 1);
3422 
3423 	return n + 1;
3424 }
3425 
3426 /**
3427  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3428  *	@n: CPU/Rx queue index
3429  *	@src1p: the first CPUs/Rx queues mask pointer
3430  *	@src2p: the second CPUs/Rx queues mask pointer
3431  *	@nr_bits: number of bits in the bitmask
3432  *
3433  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3434  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3435 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3436 					  const unsigned long *src2p,
3437 					  unsigned int nr_bits)
3438 {
3439 	/* -1 is a legal arg here. */
3440 	if (n != -1)
3441 		cpu_max_bits_warn(n, nr_bits);
3442 
3443 	if (src1p && src2p)
3444 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3445 	else if (src1p)
3446 		return find_next_bit(src1p, nr_bits, n + 1);
3447 	else if (src2p)
3448 		return find_next_bit(src2p, nr_bits, n + 1);
3449 
3450 	return n + 1;
3451 }
3452 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3453 static inline int netif_set_xps_queue(struct net_device *dev,
3454 				      const struct cpumask *mask,
3455 				      u16 index)
3456 {
3457 	return 0;
3458 }
3459 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3460 static inline int __netif_set_xps_queue(struct net_device *dev,
3461 					const unsigned long *mask,
3462 					u16 index, bool is_rxqs_map)
3463 {
3464 	return 0;
3465 }
3466 #endif
3467 
3468 /**
3469  *	netif_is_multiqueue - test if device has multiple transmit queues
3470  *	@dev: network device
3471  *
3472  * Check if device has multiple transmit queues
3473  */
netif_is_multiqueue(const struct net_device * dev)3474 static inline bool netif_is_multiqueue(const struct net_device *dev)
3475 {
3476 	return dev->num_tx_queues > 1;
3477 }
3478 
3479 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3480 
3481 #ifdef CONFIG_SYSFS
3482 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3483 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3484 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3485 						unsigned int rxqs)
3486 {
3487 	dev->real_num_rx_queues = rxqs;
3488 	return 0;
3489 }
3490 #endif
3491 
3492 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3493 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3494 {
3495 	return dev->_rx + rxq;
3496 }
3497 
3498 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3499 static inline unsigned int get_netdev_rx_queue_index(
3500 		struct netdev_rx_queue *queue)
3501 {
3502 	struct net_device *dev = queue->dev;
3503 	int index = queue - dev->_rx;
3504 
3505 	BUG_ON(index >= dev->num_rx_queues);
3506 	return index;
3507 }
3508 #endif
3509 
3510 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3511 int netif_get_num_default_rss_queues(void);
3512 
3513 enum skb_free_reason {
3514 	SKB_REASON_CONSUMED,
3515 	SKB_REASON_DROPPED,
3516 };
3517 
3518 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3519 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3520 
3521 /*
3522  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3523  * interrupt context or with hardware interrupts being disabled.
3524  * (in_irq() || irqs_disabled())
3525  *
3526  * We provide four helpers that can be used in following contexts :
3527  *
3528  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3529  *  replacing kfree_skb(skb)
3530  *
3531  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3532  *  Typically used in place of consume_skb(skb) in TX completion path
3533  *
3534  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3535  *  replacing kfree_skb(skb)
3536  *
3537  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3538  *  and consumed a packet. Used in place of consume_skb(skb)
3539  */
dev_kfree_skb_irq(struct sk_buff * skb)3540 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3541 {
3542 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3543 }
3544 
dev_consume_skb_irq(struct sk_buff * skb)3545 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3546 {
3547 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3548 }
3549 
dev_kfree_skb_any(struct sk_buff * skb)3550 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3551 {
3552 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3553 }
3554 
dev_consume_skb_any(struct sk_buff * skb)3555 static inline void dev_consume_skb_any(struct sk_buff *skb)
3556 {
3557 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3558 }
3559 
3560 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3561 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3562 int netif_rx(struct sk_buff *skb);
3563 int netif_rx_ni(struct sk_buff *skb);
3564 int netif_receive_skb(struct sk_buff *skb);
3565 int netif_receive_skb_core(struct sk_buff *skb);
3566 void netif_receive_skb_list(struct list_head *head);
3567 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3568 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3569 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3570 gro_result_t napi_gro_frags(struct napi_struct *napi);
3571 struct packet_offload *gro_find_receive_by_type(__be16 type);
3572 struct packet_offload *gro_find_complete_by_type(__be16 type);
3573 
napi_free_frags(struct napi_struct * napi)3574 static inline void napi_free_frags(struct napi_struct *napi)
3575 {
3576 	kfree_skb(napi->skb);
3577 	napi->skb = NULL;
3578 }
3579 
3580 bool netdev_is_rx_handler_busy(struct net_device *dev);
3581 int netdev_rx_handler_register(struct net_device *dev,
3582 			       rx_handler_func_t *rx_handler,
3583 			       void *rx_handler_data);
3584 void netdev_rx_handler_unregister(struct net_device *dev);
3585 
3586 bool dev_valid_name(const char *name);
3587 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3588 		bool *need_copyout);
3589 int dev_ifconf(struct net *net, struct ifconf *, int);
3590 int dev_ethtool(struct net *net, struct ifreq *);
3591 unsigned int dev_get_flags(const struct net_device *);
3592 int __dev_change_flags(struct net_device *, unsigned int flags);
3593 int dev_change_flags(struct net_device *, unsigned int);
3594 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3595 			unsigned int gchanges);
3596 int dev_change_name(struct net_device *, const char *);
3597 int dev_set_alias(struct net_device *, const char *, size_t);
3598 int dev_get_alias(const struct net_device *, char *, size_t);
3599 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3600 int __dev_set_mtu(struct net_device *, int);
3601 int dev_validate_mtu(struct net_device *dev, int mtu,
3602 		     struct netlink_ext_ack *extack);
3603 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3604 		    struct netlink_ext_ack *extack);
3605 int dev_set_mtu(struct net_device *, int);
3606 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3607 void dev_set_group(struct net_device *, int);
3608 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3609 int dev_change_carrier(struct net_device *, bool new_carrier);
3610 int dev_get_phys_port_id(struct net_device *dev,
3611 			 struct netdev_phys_item_id *ppid);
3612 int dev_get_phys_port_name(struct net_device *dev,
3613 			   char *name, size_t len);
3614 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3615 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3616 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3617 				    struct netdev_queue *txq, int *ret);
3618 
3619 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3620 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3621 		      int fd, u32 flags);
3622 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3623 		    enum bpf_netdev_command cmd);
3624 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3625 
3626 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3627 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3628 bool is_skb_forwardable(const struct net_device *dev,
3629 			const struct sk_buff *skb);
3630 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3631 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3632 					       struct sk_buff *skb)
3633 {
3634 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3635 	    unlikely(!is_skb_forwardable(dev, skb))) {
3636 		atomic_long_inc(&dev->rx_dropped);
3637 		kfree_skb(skb);
3638 		return NET_RX_DROP;
3639 	}
3640 
3641 	skb_scrub_packet(skb, true);
3642 	skb->priority = 0;
3643 	return 0;
3644 }
3645 
3646 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3647 
3648 extern int		netdev_budget;
3649 extern unsigned int	netdev_budget_usecs;
3650 
3651 /* Called by rtnetlink.c:rtnl_unlock() */
3652 void netdev_run_todo(void);
3653 
3654 /**
3655  *	dev_put - release reference to device
3656  *	@dev: network device
3657  *
3658  * Release reference to device to allow it to be freed.
3659  */
dev_put(struct net_device * dev)3660 static inline void dev_put(struct net_device *dev)
3661 {
3662 	if (dev)
3663 		this_cpu_dec(*dev->pcpu_refcnt);
3664 }
3665 
3666 /**
3667  *	dev_hold - get reference to device
3668  *	@dev: network device
3669  *
3670  * Hold reference to device to keep it from being freed.
3671  */
dev_hold(struct net_device * dev)3672 static inline void dev_hold(struct net_device *dev)
3673 {
3674 	if (dev)
3675 		this_cpu_inc(*dev->pcpu_refcnt);
3676 }
3677 
3678 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3679  * and _off may be called from IRQ context, but it is caller
3680  * who is responsible for serialization of these calls.
3681  *
3682  * The name carrier is inappropriate, these functions should really be
3683  * called netif_lowerlayer_*() because they represent the state of any
3684  * kind of lower layer not just hardware media.
3685  */
3686 
3687 void linkwatch_init_dev(struct net_device *dev);
3688 void linkwatch_fire_event(struct net_device *dev);
3689 void linkwatch_forget_dev(struct net_device *dev);
3690 
3691 /**
3692  *	netif_carrier_ok - test if carrier present
3693  *	@dev: network device
3694  *
3695  * Check if carrier is present on device
3696  */
netif_carrier_ok(const struct net_device * dev)3697 static inline bool netif_carrier_ok(const struct net_device *dev)
3698 {
3699 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3700 }
3701 
3702 unsigned long dev_trans_start(struct net_device *dev);
3703 
3704 void __netdev_watchdog_up(struct net_device *dev);
3705 
3706 void netif_carrier_on(struct net_device *dev);
3707 
3708 void netif_carrier_off(struct net_device *dev);
3709 
3710 /**
3711  *	netif_dormant_on - mark device as dormant.
3712  *	@dev: network device
3713  *
3714  * Mark device as dormant (as per RFC2863).
3715  *
3716  * The dormant state indicates that the relevant interface is not
3717  * actually in a condition to pass packets (i.e., it is not 'up') but is
3718  * in a "pending" state, waiting for some external event.  For "on-
3719  * demand" interfaces, this new state identifies the situation where the
3720  * interface is waiting for events to place it in the up state.
3721  */
netif_dormant_on(struct net_device * dev)3722 static inline void netif_dormant_on(struct net_device *dev)
3723 {
3724 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3725 		linkwatch_fire_event(dev);
3726 }
3727 
3728 /**
3729  *	netif_dormant_off - set device as not dormant.
3730  *	@dev: network device
3731  *
3732  * Device is not in dormant state.
3733  */
netif_dormant_off(struct net_device * dev)3734 static inline void netif_dormant_off(struct net_device *dev)
3735 {
3736 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3737 		linkwatch_fire_event(dev);
3738 }
3739 
3740 /**
3741  *	netif_dormant - test if device is dormant
3742  *	@dev: network device
3743  *
3744  * Check if device is dormant.
3745  */
netif_dormant(const struct net_device * dev)3746 static inline bool netif_dormant(const struct net_device *dev)
3747 {
3748 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3749 }
3750 
3751 
3752 /**
3753  *	netif_oper_up - test if device is operational
3754  *	@dev: network device
3755  *
3756  * Check if carrier is operational
3757  */
netif_oper_up(const struct net_device * dev)3758 static inline bool netif_oper_up(const struct net_device *dev)
3759 {
3760 	return (dev->operstate == IF_OPER_UP ||
3761 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3762 }
3763 
3764 /**
3765  *	netif_device_present - is device available or removed
3766  *	@dev: network device
3767  *
3768  * Check if device has not been removed from system.
3769  */
netif_device_present(struct net_device * dev)3770 static inline bool netif_device_present(struct net_device *dev)
3771 {
3772 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3773 }
3774 
3775 void netif_device_detach(struct net_device *dev);
3776 
3777 void netif_device_attach(struct net_device *dev);
3778 
3779 /*
3780  * Network interface message level settings
3781  */
3782 
3783 enum {
3784 	NETIF_MSG_DRV		= 0x0001,
3785 	NETIF_MSG_PROBE		= 0x0002,
3786 	NETIF_MSG_LINK		= 0x0004,
3787 	NETIF_MSG_TIMER		= 0x0008,
3788 	NETIF_MSG_IFDOWN	= 0x0010,
3789 	NETIF_MSG_IFUP		= 0x0020,
3790 	NETIF_MSG_RX_ERR	= 0x0040,
3791 	NETIF_MSG_TX_ERR	= 0x0080,
3792 	NETIF_MSG_TX_QUEUED	= 0x0100,
3793 	NETIF_MSG_INTR		= 0x0200,
3794 	NETIF_MSG_TX_DONE	= 0x0400,
3795 	NETIF_MSG_RX_STATUS	= 0x0800,
3796 	NETIF_MSG_PKTDATA	= 0x1000,
3797 	NETIF_MSG_HW		= 0x2000,
3798 	NETIF_MSG_WOL		= 0x4000,
3799 };
3800 
3801 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3802 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3803 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3804 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3805 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3806 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3807 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3808 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3809 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3810 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3811 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3812 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3813 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3814 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3815 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3816 
netif_msg_init(int debug_value,int default_msg_enable_bits)3817 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3818 {
3819 	/* use default */
3820 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3821 		return default_msg_enable_bits;
3822 	if (debug_value == 0)	/* no output */
3823 		return 0;
3824 	/* set low N bits */
3825 	return (1U << debug_value) - 1;
3826 }
3827 
__netif_tx_lock(struct netdev_queue * txq,int cpu)3828 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3829 {
3830 	spin_lock(&txq->_xmit_lock);
3831 	txq->xmit_lock_owner = cpu;
3832 }
3833 
__netif_tx_acquire(struct netdev_queue * txq)3834 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3835 {
3836 	__acquire(&txq->_xmit_lock);
3837 	return true;
3838 }
3839 
__netif_tx_release(struct netdev_queue * txq)3840 static inline void __netif_tx_release(struct netdev_queue *txq)
3841 {
3842 	__release(&txq->_xmit_lock);
3843 }
3844 
__netif_tx_lock_bh(struct netdev_queue * txq)3845 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3846 {
3847 	spin_lock_bh(&txq->_xmit_lock);
3848 	txq->xmit_lock_owner = smp_processor_id();
3849 }
3850 
__netif_tx_trylock(struct netdev_queue * txq)3851 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3852 {
3853 	bool ok = spin_trylock(&txq->_xmit_lock);
3854 	if (likely(ok))
3855 		txq->xmit_lock_owner = smp_processor_id();
3856 	return ok;
3857 }
3858 
__netif_tx_unlock(struct netdev_queue * txq)3859 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3860 {
3861 	txq->xmit_lock_owner = -1;
3862 	spin_unlock(&txq->_xmit_lock);
3863 }
3864 
__netif_tx_unlock_bh(struct netdev_queue * txq)3865 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3866 {
3867 	txq->xmit_lock_owner = -1;
3868 	spin_unlock_bh(&txq->_xmit_lock);
3869 }
3870 
txq_trans_update(struct netdev_queue * txq)3871 static inline void txq_trans_update(struct netdev_queue *txq)
3872 {
3873 	if (txq->xmit_lock_owner != -1)
3874 		txq->trans_start = jiffies;
3875 }
3876 
3877 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)3878 static inline void netif_trans_update(struct net_device *dev)
3879 {
3880 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3881 
3882 	if (txq->trans_start != jiffies)
3883 		txq->trans_start = jiffies;
3884 }
3885 
3886 /**
3887  *	netif_tx_lock - grab network device transmit lock
3888  *	@dev: network device
3889  *
3890  * Get network device transmit lock
3891  */
netif_tx_lock(struct net_device * dev)3892 static inline void netif_tx_lock(struct net_device *dev)
3893 {
3894 	unsigned int i;
3895 	int cpu;
3896 
3897 	spin_lock(&dev->tx_global_lock);
3898 	cpu = smp_processor_id();
3899 	for (i = 0; i < dev->num_tx_queues; i++) {
3900 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3901 
3902 		/* We are the only thread of execution doing a
3903 		 * freeze, but we have to grab the _xmit_lock in
3904 		 * order to synchronize with threads which are in
3905 		 * the ->hard_start_xmit() handler and already
3906 		 * checked the frozen bit.
3907 		 */
3908 		__netif_tx_lock(txq, cpu);
3909 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3910 		__netif_tx_unlock(txq);
3911 	}
3912 }
3913 
netif_tx_lock_bh(struct net_device * dev)3914 static inline void netif_tx_lock_bh(struct net_device *dev)
3915 {
3916 	local_bh_disable();
3917 	netif_tx_lock(dev);
3918 }
3919 
netif_tx_unlock(struct net_device * dev)3920 static inline void netif_tx_unlock(struct net_device *dev)
3921 {
3922 	unsigned int i;
3923 
3924 	for (i = 0; i < dev->num_tx_queues; i++) {
3925 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3926 
3927 		/* No need to grab the _xmit_lock here.  If the
3928 		 * queue is not stopped for another reason, we
3929 		 * force a schedule.
3930 		 */
3931 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3932 		netif_schedule_queue(txq);
3933 	}
3934 	spin_unlock(&dev->tx_global_lock);
3935 }
3936 
netif_tx_unlock_bh(struct net_device * dev)3937 static inline void netif_tx_unlock_bh(struct net_device *dev)
3938 {
3939 	netif_tx_unlock(dev);
3940 	local_bh_enable();
3941 }
3942 
3943 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3944 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3945 		__netif_tx_lock(txq, cpu);		\
3946 	} else {					\
3947 		__netif_tx_acquire(txq);		\
3948 	}						\
3949 }
3950 
3951 #define HARD_TX_TRYLOCK(dev, txq)			\
3952 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3953 		__netif_tx_trylock(txq) :		\
3954 		__netif_tx_acquire(txq))
3955 
3956 #define HARD_TX_UNLOCK(dev, txq) {			\
3957 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3958 		__netif_tx_unlock(txq);			\
3959 	} else {					\
3960 		__netif_tx_release(txq);		\
3961 	}						\
3962 }
3963 
netif_tx_disable(struct net_device * dev)3964 static inline void netif_tx_disable(struct net_device *dev)
3965 {
3966 	unsigned int i;
3967 	int cpu;
3968 
3969 	local_bh_disable();
3970 	cpu = smp_processor_id();
3971 	for (i = 0; i < dev->num_tx_queues; i++) {
3972 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3973 
3974 		__netif_tx_lock(txq, cpu);
3975 		netif_tx_stop_queue(txq);
3976 		__netif_tx_unlock(txq);
3977 	}
3978 	local_bh_enable();
3979 }
3980 
netif_addr_lock(struct net_device * dev)3981 static inline void netif_addr_lock(struct net_device *dev)
3982 {
3983 	spin_lock(&dev->addr_list_lock);
3984 }
3985 
netif_addr_lock_nested(struct net_device * dev)3986 static inline void netif_addr_lock_nested(struct net_device *dev)
3987 {
3988 	int subclass = SINGLE_DEPTH_NESTING;
3989 
3990 	if (dev->netdev_ops->ndo_get_lock_subclass)
3991 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3992 
3993 	spin_lock_nested(&dev->addr_list_lock, subclass);
3994 }
3995 
netif_addr_lock_bh(struct net_device * dev)3996 static inline void netif_addr_lock_bh(struct net_device *dev)
3997 {
3998 	spin_lock_bh(&dev->addr_list_lock);
3999 }
4000 
netif_addr_unlock(struct net_device * dev)4001 static inline void netif_addr_unlock(struct net_device *dev)
4002 {
4003 	spin_unlock(&dev->addr_list_lock);
4004 }
4005 
netif_addr_unlock_bh(struct net_device * dev)4006 static inline void netif_addr_unlock_bh(struct net_device *dev)
4007 {
4008 	spin_unlock_bh(&dev->addr_list_lock);
4009 }
4010 
4011 /*
4012  * dev_addrs walker. Should be used only for read access. Call with
4013  * rcu_read_lock held.
4014  */
4015 #define for_each_dev_addr(dev, ha) \
4016 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4017 
4018 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4019 
4020 void ether_setup(struct net_device *dev);
4021 
4022 /* Support for loadable net-drivers */
4023 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4024 				    unsigned char name_assign_type,
4025 				    void (*setup)(struct net_device *),
4026 				    unsigned int txqs, unsigned int rxqs);
4027 int dev_get_valid_name(struct net *net, struct net_device *dev,
4028 		       const char *name);
4029 
4030 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4031 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4032 
4033 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4034 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4035 			 count)
4036 
4037 int register_netdev(struct net_device *dev);
4038 void unregister_netdev(struct net_device *dev);
4039 
4040 /* General hardware address lists handling functions */
4041 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4042 		   struct netdev_hw_addr_list *from_list, int addr_len);
4043 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4044 		      struct netdev_hw_addr_list *from_list, int addr_len);
4045 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4046 		       struct net_device *dev,
4047 		       int (*sync)(struct net_device *, const unsigned char *),
4048 		       int (*unsync)(struct net_device *,
4049 				     const unsigned char *));
4050 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4051 			  struct net_device *dev,
4052 			  int (*unsync)(struct net_device *,
4053 					const unsigned char *));
4054 void __hw_addr_init(struct netdev_hw_addr_list *list);
4055 
4056 /* Functions used for device addresses handling */
4057 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4058 		 unsigned char addr_type);
4059 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4060 		 unsigned char addr_type);
4061 void dev_addr_flush(struct net_device *dev);
4062 int dev_addr_init(struct net_device *dev);
4063 
4064 /* Functions used for unicast addresses handling */
4065 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4066 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4067 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4068 int dev_uc_sync(struct net_device *to, struct net_device *from);
4069 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4070 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4071 void dev_uc_flush(struct net_device *dev);
4072 void dev_uc_init(struct net_device *dev);
4073 
4074 /**
4075  *  __dev_uc_sync - Synchonize device's unicast list
4076  *  @dev:  device to sync
4077  *  @sync: function to call if address should be added
4078  *  @unsync: function to call if address should be removed
4079  *
4080  *  Add newly added addresses to the interface, and release
4081  *  addresses that have been deleted.
4082  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4083 static inline int __dev_uc_sync(struct net_device *dev,
4084 				int (*sync)(struct net_device *,
4085 					    const unsigned char *),
4086 				int (*unsync)(struct net_device *,
4087 					      const unsigned char *))
4088 {
4089 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4090 }
4091 
4092 /**
4093  *  __dev_uc_unsync - Remove synchronized addresses from device
4094  *  @dev:  device to sync
4095  *  @unsync: function to call if address should be removed
4096  *
4097  *  Remove all addresses that were added to the device by dev_uc_sync().
4098  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4099 static inline void __dev_uc_unsync(struct net_device *dev,
4100 				   int (*unsync)(struct net_device *,
4101 						 const unsigned char *))
4102 {
4103 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4104 }
4105 
4106 /* Functions used for multicast addresses handling */
4107 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4108 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4109 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4110 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4111 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4112 int dev_mc_sync(struct net_device *to, struct net_device *from);
4113 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4114 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4115 void dev_mc_flush(struct net_device *dev);
4116 void dev_mc_init(struct net_device *dev);
4117 
4118 /**
4119  *  __dev_mc_sync - Synchonize device's multicast list
4120  *  @dev:  device to sync
4121  *  @sync: function to call if address should be added
4122  *  @unsync: function to call if address should be removed
4123  *
4124  *  Add newly added addresses to the interface, and release
4125  *  addresses that have been deleted.
4126  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4127 static inline int __dev_mc_sync(struct net_device *dev,
4128 				int (*sync)(struct net_device *,
4129 					    const unsigned char *),
4130 				int (*unsync)(struct net_device *,
4131 					      const unsigned char *))
4132 {
4133 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4134 }
4135 
4136 /**
4137  *  __dev_mc_unsync - Remove synchronized addresses from device
4138  *  @dev:  device to sync
4139  *  @unsync: function to call if address should be removed
4140  *
4141  *  Remove all addresses that were added to the device by dev_mc_sync().
4142  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4143 static inline void __dev_mc_unsync(struct net_device *dev,
4144 				   int (*unsync)(struct net_device *,
4145 						 const unsigned char *))
4146 {
4147 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4148 }
4149 
4150 /* Functions used for secondary unicast and multicast support */
4151 void dev_set_rx_mode(struct net_device *dev);
4152 void __dev_set_rx_mode(struct net_device *dev);
4153 int dev_set_promiscuity(struct net_device *dev, int inc);
4154 int dev_set_allmulti(struct net_device *dev, int inc);
4155 void netdev_state_change(struct net_device *dev);
4156 void netdev_notify_peers(struct net_device *dev);
4157 void netdev_features_change(struct net_device *dev);
4158 /* Load a device via the kmod */
4159 void dev_load(struct net *net, const char *name);
4160 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4161 					struct rtnl_link_stats64 *storage);
4162 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4163 			     const struct net_device_stats *netdev_stats);
4164 
4165 extern int		netdev_max_backlog;
4166 extern int		netdev_tstamp_prequeue;
4167 extern int		weight_p;
4168 extern int		dev_weight_rx_bias;
4169 extern int		dev_weight_tx_bias;
4170 extern int		dev_rx_weight;
4171 extern int		dev_tx_weight;
4172 
4173 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4174 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4175 						     struct list_head **iter);
4176 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4177 						     struct list_head **iter);
4178 
4179 /* iterate through upper list, must be called under RCU read lock */
4180 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4181 	for (iter = &(dev)->adj_list.upper, \
4182 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4183 	     updev; \
4184 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4185 
4186 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4187 				  int (*fn)(struct net_device *upper_dev,
4188 					    void *data),
4189 				  void *data);
4190 
4191 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4192 				  struct net_device *upper_dev);
4193 
4194 bool netdev_has_any_upper_dev(struct net_device *dev);
4195 
4196 void *netdev_lower_get_next_private(struct net_device *dev,
4197 				    struct list_head **iter);
4198 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4199 					struct list_head **iter);
4200 
4201 #define netdev_for_each_lower_private(dev, priv, iter) \
4202 	for (iter = (dev)->adj_list.lower.next, \
4203 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4204 	     priv; \
4205 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4206 
4207 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4208 	for (iter = &(dev)->adj_list.lower, \
4209 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4210 	     priv; \
4211 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4212 
4213 void *netdev_lower_get_next(struct net_device *dev,
4214 				struct list_head **iter);
4215 
4216 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4217 	for (iter = (dev)->adj_list.lower.next, \
4218 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4219 	     ldev; \
4220 	     ldev = netdev_lower_get_next(dev, &(iter)))
4221 
4222 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4223 					     struct list_head **iter);
4224 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4225 						 struct list_head **iter);
4226 
4227 int netdev_walk_all_lower_dev(struct net_device *dev,
4228 			      int (*fn)(struct net_device *lower_dev,
4229 					void *data),
4230 			      void *data);
4231 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4232 				  int (*fn)(struct net_device *lower_dev,
4233 					    void *data),
4234 				  void *data);
4235 
4236 void *netdev_adjacent_get_private(struct list_head *adj_list);
4237 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4238 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4239 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4240 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4241 			  struct netlink_ext_ack *extack);
4242 int netdev_master_upper_dev_link(struct net_device *dev,
4243 				 struct net_device *upper_dev,
4244 				 void *upper_priv, void *upper_info,
4245 				 struct netlink_ext_ack *extack);
4246 void netdev_upper_dev_unlink(struct net_device *dev,
4247 			     struct net_device *upper_dev);
4248 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4249 void *netdev_lower_dev_get_private(struct net_device *dev,
4250 				   struct net_device *lower_dev);
4251 void netdev_lower_state_changed(struct net_device *lower_dev,
4252 				void *lower_state_info);
4253 
4254 /* RSS keys are 40 or 52 bytes long */
4255 #define NETDEV_RSS_KEY_LEN 52
4256 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4257 void netdev_rss_key_fill(void *buffer, size_t len);
4258 
4259 int dev_get_nest_level(struct net_device *dev);
4260 int skb_checksum_help(struct sk_buff *skb);
4261 int skb_crc32c_csum_help(struct sk_buff *skb);
4262 int skb_csum_hwoffload_help(struct sk_buff *skb,
4263 			    const netdev_features_t features);
4264 
4265 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4266 				  netdev_features_t features, bool tx_path);
4267 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4268 				    netdev_features_t features);
4269 
4270 struct netdev_bonding_info {
4271 	ifslave	slave;
4272 	ifbond	master;
4273 };
4274 
4275 struct netdev_notifier_bonding_info {
4276 	struct netdev_notifier_info info; /* must be first */
4277 	struct netdev_bonding_info  bonding_info;
4278 };
4279 
4280 void netdev_bonding_info_change(struct net_device *dev,
4281 				struct netdev_bonding_info *bonding_info);
4282 
4283 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4284 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4285 {
4286 	return __skb_gso_segment(skb, features, true);
4287 }
4288 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4289 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4290 static inline bool can_checksum_protocol(netdev_features_t features,
4291 					 __be16 protocol)
4292 {
4293 	if (protocol == htons(ETH_P_FCOE))
4294 		return !!(features & NETIF_F_FCOE_CRC);
4295 
4296 	/* Assume this is an IP checksum (not SCTP CRC) */
4297 
4298 	if (features & NETIF_F_HW_CSUM) {
4299 		/* Can checksum everything */
4300 		return true;
4301 	}
4302 
4303 	switch (protocol) {
4304 	case htons(ETH_P_IP):
4305 		return !!(features & NETIF_F_IP_CSUM);
4306 	case htons(ETH_P_IPV6):
4307 		return !!(features & NETIF_F_IPV6_CSUM);
4308 	default:
4309 		return false;
4310 	}
4311 }
4312 
4313 #ifdef CONFIG_BUG
4314 void netdev_rx_csum_fault(struct net_device *dev);
4315 #else
netdev_rx_csum_fault(struct net_device * dev)4316 static inline void netdev_rx_csum_fault(struct net_device *dev)
4317 {
4318 }
4319 #endif
4320 /* rx skb timestamps */
4321 void net_enable_timestamp(void);
4322 void net_disable_timestamp(void);
4323 
4324 #ifdef CONFIG_PROC_FS
4325 int __init dev_proc_init(void);
4326 #else
4327 #define dev_proc_init() 0
4328 #endif
4329 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4330 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4331 					      struct sk_buff *skb, struct net_device *dev,
4332 					      bool more)
4333 {
4334 	skb->xmit_more = more ? 1 : 0;
4335 	return ops->ndo_start_xmit(skb, dev);
4336 }
4337 
netdev_xmit_more(void)4338 static inline bool netdev_xmit_more(void)
4339 {
4340 	return __this_cpu_read(softnet_data.xmit.more);
4341 }
4342 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4343 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4344 					    struct netdev_queue *txq, bool more)
4345 {
4346 	const struct net_device_ops *ops = dev->netdev_ops;
4347 	int rc;
4348 
4349 	rc = __netdev_start_xmit(ops, skb, dev, more);
4350 	if (rc == NETDEV_TX_OK)
4351 		txq_trans_update(txq);
4352 
4353 	return rc;
4354 }
4355 
4356 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4357 				const void *ns);
4358 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4359 				 const void *ns);
4360 
netdev_class_create_file(const struct class_attribute * class_attr)4361 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4362 {
4363 	return netdev_class_create_file_ns(class_attr, NULL);
4364 }
4365 
netdev_class_remove_file(const struct class_attribute * class_attr)4366 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4367 {
4368 	netdev_class_remove_file_ns(class_attr, NULL);
4369 }
4370 
4371 extern const struct kobj_ns_type_operations net_ns_type_operations;
4372 
4373 const char *netdev_drivername(const struct net_device *dev);
4374 
4375 void linkwatch_run_queue(void);
4376 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4377 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4378 							  netdev_features_t f2)
4379 {
4380 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4381 		if (f1 & NETIF_F_HW_CSUM)
4382 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4383 		else
4384 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4385 	}
4386 
4387 	return f1 & f2;
4388 }
4389 
netdev_get_wanted_features(struct net_device * dev)4390 static inline netdev_features_t netdev_get_wanted_features(
4391 	struct net_device *dev)
4392 {
4393 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4394 }
4395 netdev_features_t netdev_increment_features(netdev_features_t all,
4396 	netdev_features_t one, netdev_features_t mask);
4397 
4398 /* Allow TSO being used on stacked device :
4399  * Performing the GSO segmentation before last device
4400  * is a performance improvement.
4401  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4402 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4403 							netdev_features_t mask)
4404 {
4405 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4406 }
4407 
4408 int __netdev_update_features(struct net_device *dev);
4409 void netdev_update_features(struct net_device *dev);
4410 void netdev_change_features(struct net_device *dev);
4411 
4412 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4413 					struct net_device *dev);
4414 
4415 netdev_features_t passthru_features_check(struct sk_buff *skb,
4416 					  struct net_device *dev,
4417 					  netdev_features_t features);
4418 netdev_features_t netif_skb_features(struct sk_buff *skb);
4419 
net_gso_ok(netdev_features_t features,int gso_type)4420 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4421 {
4422 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4423 
4424 	/* check flags correspondence */
4425 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4426 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4427 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4428 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4429 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4430 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4431 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4432 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4433 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4434 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4435 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4436 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4437 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4438 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4439 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4440 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4441 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4442 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4443 
4444 	return (features & feature) == feature;
4445 }
4446 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4447 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4448 {
4449 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4450 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4451 }
4452 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4453 static inline bool netif_needs_gso(struct sk_buff *skb,
4454 				   netdev_features_t features)
4455 {
4456 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4457 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4458 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4459 }
4460 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4461 static inline void netif_set_gso_max_size(struct net_device *dev,
4462 					  unsigned int size)
4463 {
4464 	dev->gso_max_size = size;
4465 }
4466 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4467 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4468 					int pulled_hlen, u16 mac_offset,
4469 					int mac_len)
4470 {
4471 	skb->protocol = protocol;
4472 	skb->encapsulation = 1;
4473 	skb_push(skb, pulled_hlen);
4474 	skb_reset_transport_header(skb);
4475 	skb->mac_header = mac_offset;
4476 	skb->network_header = skb->mac_header + mac_len;
4477 	skb->mac_len = mac_len;
4478 }
4479 
netif_is_macsec(const struct net_device * dev)4480 static inline bool netif_is_macsec(const struct net_device *dev)
4481 {
4482 	return dev->priv_flags & IFF_MACSEC;
4483 }
4484 
netif_is_macvlan(const struct net_device * dev)4485 static inline bool netif_is_macvlan(const struct net_device *dev)
4486 {
4487 	return dev->priv_flags & IFF_MACVLAN;
4488 }
4489 
netif_is_macvlan_port(const struct net_device * dev)4490 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4491 {
4492 	return dev->priv_flags & IFF_MACVLAN_PORT;
4493 }
4494 
netif_is_bond_master(const struct net_device * dev)4495 static inline bool netif_is_bond_master(const struct net_device *dev)
4496 {
4497 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4498 }
4499 
netif_is_bond_slave(const struct net_device * dev)4500 static inline bool netif_is_bond_slave(const struct net_device *dev)
4501 {
4502 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4503 }
4504 
netif_supports_nofcs(struct net_device * dev)4505 static inline bool netif_supports_nofcs(struct net_device *dev)
4506 {
4507 	return dev->priv_flags & IFF_SUPP_NOFCS;
4508 }
4509 
netif_has_l3_rx_handler(const struct net_device * dev)4510 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4511 {
4512 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4513 }
4514 
netif_is_l3_master(const struct net_device * dev)4515 static inline bool netif_is_l3_master(const struct net_device *dev)
4516 {
4517 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4518 }
4519 
netif_is_l3_slave(const struct net_device * dev)4520 static inline bool netif_is_l3_slave(const struct net_device *dev)
4521 {
4522 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4523 }
4524 
netif_is_bridge_master(const struct net_device * dev)4525 static inline bool netif_is_bridge_master(const struct net_device *dev)
4526 {
4527 	return dev->priv_flags & IFF_EBRIDGE;
4528 }
4529 
netif_is_bridge_port(const struct net_device * dev)4530 static inline bool netif_is_bridge_port(const struct net_device *dev)
4531 {
4532 	return dev->priv_flags & IFF_BRIDGE_PORT;
4533 }
4534 
netif_is_ovs_master(const struct net_device * dev)4535 static inline bool netif_is_ovs_master(const struct net_device *dev)
4536 {
4537 	return dev->priv_flags & IFF_OPENVSWITCH;
4538 }
4539 
netif_is_ovs_port(const struct net_device * dev)4540 static inline bool netif_is_ovs_port(const struct net_device *dev)
4541 {
4542 	return dev->priv_flags & IFF_OVS_DATAPATH;
4543 }
4544 
netif_is_team_master(const struct net_device * dev)4545 static inline bool netif_is_team_master(const struct net_device *dev)
4546 {
4547 	return dev->priv_flags & IFF_TEAM;
4548 }
4549 
netif_is_team_port(const struct net_device * dev)4550 static inline bool netif_is_team_port(const struct net_device *dev)
4551 {
4552 	return dev->priv_flags & IFF_TEAM_PORT;
4553 }
4554 
netif_is_lag_master(const struct net_device * dev)4555 static inline bool netif_is_lag_master(const struct net_device *dev)
4556 {
4557 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4558 }
4559 
netif_is_lag_port(const struct net_device * dev)4560 static inline bool netif_is_lag_port(const struct net_device *dev)
4561 {
4562 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4563 }
4564 
netif_is_rxfh_configured(const struct net_device * dev)4565 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4566 {
4567 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4568 }
4569 
netif_is_failover(const struct net_device * dev)4570 static inline bool netif_is_failover(const struct net_device *dev)
4571 {
4572 	return dev->priv_flags & IFF_FAILOVER;
4573 }
4574 
netif_is_failover_slave(const struct net_device * dev)4575 static inline bool netif_is_failover_slave(const struct net_device *dev)
4576 {
4577 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4578 }
4579 
4580 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)4581 static inline void netif_keep_dst(struct net_device *dev)
4582 {
4583 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4584 }
4585 
4586 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)4587 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4588 {
4589 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4590 	return dev->priv_flags & IFF_MACSEC;
4591 }
4592 
4593 extern struct pernet_operations __net_initdata loopback_net_ops;
4594 
4595 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4596 
4597 /* netdev_printk helpers, similar to dev_printk */
4598 
netdev_name(const struct net_device * dev)4599 static inline const char *netdev_name(const struct net_device *dev)
4600 {
4601 	if (!dev->name[0] || strchr(dev->name, '%'))
4602 		return "(unnamed net_device)";
4603 	return dev->name;
4604 }
4605 
netdev_unregistering(const struct net_device * dev)4606 static inline bool netdev_unregistering(const struct net_device *dev)
4607 {
4608 	return dev->reg_state == NETREG_UNREGISTERING;
4609 }
4610 
netdev_reg_state(const struct net_device * dev)4611 static inline const char *netdev_reg_state(const struct net_device *dev)
4612 {
4613 	switch (dev->reg_state) {
4614 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4615 	case NETREG_REGISTERED: return "";
4616 	case NETREG_UNREGISTERING: return " (unregistering)";
4617 	case NETREG_UNREGISTERED: return " (unregistered)";
4618 	case NETREG_RELEASED: return " (released)";
4619 	case NETREG_DUMMY: return " (dummy)";
4620 	}
4621 
4622 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4623 	return " (unknown)";
4624 }
4625 
4626 __printf(3, 4)
4627 void netdev_printk(const char *level, const struct net_device *dev,
4628 		   const char *format, ...);
4629 __printf(2, 3)
4630 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4631 __printf(2, 3)
4632 void netdev_alert(const struct net_device *dev, const char *format, ...);
4633 __printf(2, 3)
4634 void netdev_crit(const struct net_device *dev, const char *format, ...);
4635 __printf(2, 3)
4636 void netdev_err(const struct net_device *dev, const char *format, ...);
4637 __printf(2, 3)
4638 void netdev_warn(const struct net_device *dev, const char *format, ...);
4639 __printf(2, 3)
4640 void netdev_notice(const struct net_device *dev, const char *format, ...);
4641 __printf(2, 3)
4642 void netdev_info(const struct net_device *dev, const char *format, ...);
4643 
4644 #define netdev_level_once(level, dev, fmt, ...)			\
4645 do {								\
4646 	static bool __print_once __read_mostly;			\
4647 								\
4648 	if (!__print_once) {					\
4649 		__print_once = true;				\
4650 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4651 	}							\
4652 } while (0)
4653 
4654 #define netdev_emerg_once(dev, fmt, ...) \
4655 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4656 #define netdev_alert_once(dev, fmt, ...) \
4657 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4658 #define netdev_crit_once(dev, fmt, ...) \
4659 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4660 #define netdev_err_once(dev, fmt, ...) \
4661 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4662 #define netdev_warn_once(dev, fmt, ...) \
4663 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4664 #define netdev_notice_once(dev, fmt, ...) \
4665 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4666 #define netdev_info_once(dev, fmt, ...) \
4667 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4668 
4669 #define MODULE_ALIAS_NETDEV(device) \
4670 	MODULE_ALIAS("netdev-" device)
4671 
4672 #if defined(CONFIG_DYNAMIC_DEBUG)
4673 #define netdev_dbg(__dev, format, args...)			\
4674 do {								\
4675 	dynamic_netdev_dbg(__dev, format, ##args);		\
4676 } while (0)
4677 #elif defined(DEBUG)
4678 #define netdev_dbg(__dev, format, args...)			\
4679 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4680 #else
4681 #define netdev_dbg(__dev, format, args...)			\
4682 ({								\
4683 	if (0)							\
4684 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4685 })
4686 #endif
4687 
4688 #if defined(VERBOSE_DEBUG)
4689 #define netdev_vdbg	netdev_dbg
4690 #else
4691 
4692 #define netdev_vdbg(dev, format, args...)			\
4693 ({								\
4694 	if (0)							\
4695 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4696 	0;							\
4697 })
4698 #endif
4699 
4700 /*
4701  * netdev_WARN() acts like dev_printk(), but with the key difference
4702  * of using a WARN/WARN_ON to get the message out, including the
4703  * file/line information and a backtrace.
4704  */
4705 #define netdev_WARN(dev, format, args...)			\
4706 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4707 	     netdev_reg_state(dev), ##args)
4708 
4709 #define netdev_WARN_ONCE(dev, format, args...)				\
4710 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4711 		  netdev_reg_state(dev), ##args)
4712 
4713 /* netif printk helpers, similar to netdev_printk */
4714 
4715 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4716 do {					  			\
4717 	if (netif_msg_##type(priv))				\
4718 		netdev_printk(level, (dev), fmt, ##args);	\
4719 } while (0)
4720 
4721 #define netif_level(level, priv, type, dev, fmt, args...)	\
4722 do {								\
4723 	if (netif_msg_##type(priv))				\
4724 		netdev_##level(dev, fmt, ##args);		\
4725 } while (0)
4726 
4727 #define netif_emerg(priv, type, dev, fmt, args...)		\
4728 	netif_level(emerg, priv, type, dev, fmt, ##args)
4729 #define netif_alert(priv, type, dev, fmt, args...)		\
4730 	netif_level(alert, priv, type, dev, fmt, ##args)
4731 #define netif_crit(priv, type, dev, fmt, args...)		\
4732 	netif_level(crit, priv, type, dev, fmt, ##args)
4733 #define netif_err(priv, type, dev, fmt, args...)		\
4734 	netif_level(err, priv, type, dev, fmt, ##args)
4735 #define netif_warn(priv, type, dev, fmt, args...)		\
4736 	netif_level(warn, priv, type, dev, fmt, ##args)
4737 #define netif_notice(priv, type, dev, fmt, args...)		\
4738 	netif_level(notice, priv, type, dev, fmt, ##args)
4739 #define netif_info(priv, type, dev, fmt, args...)		\
4740 	netif_level(info, priv, type, dev, fmt, ##args)
4741 
4742 #if defined(CONFIG_DYNAMIC_DEBUG)
4743 #define netif_dbg(priv, type, netdev, format, args...)		\
4744 do {								\
4745 	if (netif_msg_##type(priv))				\
4746 		dynamic_netdev_dbg(netdev, format, ##args);	\
4747 } while (0)
4748 #elif defined(DEBUG)
4749 #define netif_dbg(priv, type, dev, format, args...)		\
4750 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4751 #else
4752 #define netif_dbg(priv, type, dev, format, args...)			\
4753 ({									\
4754 	if (0)								\
4755 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4756 	0;								\
4757 })
4758 #endif
4759 
4760 /* if @cond then downgrade to debug, else print at @level */
4761 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4762 	do {                                                              \
4763 		if (cond)                                                 \
4764 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4765 		else                                                      \
4766 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4767 	} while (0)
4768 
4769 #if defined(VERBOSE_DEBUG)
4770 #define netif_vdbg	netif_dbg
4771 #else
4772 #define netif_vdbg(priv, type, dev, format, args...)		\
4773 ({								\
4774 	if (0)							\
4775 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4776 	0;							\
4777 })
4778 #endif
4779 
4780 /*
4781  *	The list of packet types we will receive (as opposed to discard)
4782  *	and the routines to invoke.
4783  *
4784  *	Why 16. Because with 16 the only overlap we get on a hash of the
4785  *	low nibble of the protocol value is RARP/SNAP/X.25.
4786  *
4787  *		0800	IP
4788  *		0001	802.3
4789  *		0002	AX.25
4790  *		0004	802.2
4791  *		8035	RARP
4792  *		0005	SNAP
4793  *		0805	X.25
4794  *		0806	ARP
4795  *		8137	IPX
4796  *		0009	Localtalk
4797  *		86DD	IPv6
4798  */
4799 #define PTYPE_HASH_SIZE	(16)
4800 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4801 
4802 #endif	/* _LINUX_NETDEVICE_H */
4803