1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 const struct ethtool_ops *ops);
76
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
79 #define NET_RX_DROP 1 /* packet dropped */
80
81 #define MAX_NEST_DEV 8
82
83 /*
84 * Transmit return codes: transmit return codes originate from three different
85 * namespaces:
86 *
87 * - qdisc return codes
88 * - driver transmit return codes
89 * - errno values
90 *
91 * Drivers are allowed to return any one of those in their hard_start_xmit()
92 * function. Real network devices commonly used with qdiscs should only return
93 * the driver transmit return codes though - when qdiscs are used, the actual
94 * transmission happens asynchronously, so the value is not propagated to
95 * higher layers. Virtual network devices transmit synchronously; in this case
96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97 * others are propagated to higher layers.
98 */
99
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS 0x00
102 #define NET_XMIT_DROP 0x01 /* skb dropped */
103 #define NET_XMIT_CN 0x02 /* congestion notification */
104 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
105
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107 * indicates that the device will soon be dropping packets, or already drops
108 * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK 0xf0
114
115 enum netdev_tx {
116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
117 NETDEV_TX_OK = 0x00, /* driver took care of packet */
118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121
122 /*
123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125 */
dev_xmit_complete(int rc)126 static inline bool dev_xmit_complete(int rc)
127 {
128 /*
129 * Positive cases with an skb consumed by a driver:
130 * - successful transmission (rc == NETDEV_TX_OK)
131 * - error while transmitting (rc < 0)
132 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 */
134 if (likely(rc < NET_XMIT_MASK))
135 return true;
136
137 return false;
138 }
139
140 /*
141 * Compute the worst-case header length according to the protocols
142 * used.
143 */
144
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163
164 /*
165 * Old network device statistics. Fields are native words
166 * (unsigned long) so they can be read and written atomically.
167 */
168
169 struct net_device_stats {
170 unsigned long rx_packets;
171 unsigned long tx_packets;
172 unsigned long rx_bytes;
173 unsigned long tx_bytes;
174 unsigned long rx_errors;
175 unsigned long tx_errors;
176 unsigned long rx_dropped;
177 unsigned long tx_dropped;
178 unsigned long multicast;
179 unsigned long collisions;
180 unsigned long rx_length_errors;
181 unsigned long rx_over_errors;
182 unsigned long rx_crc_errors;
183 unsigned long rx_frame_errors;
184 unsigned long rx_fifo_errors;
185 unsigned long rx_missed_errors;
186 unsigned long tx_aborted_errors;
187 unsigned long tx_carrier_errors;
188 unsigned long tx_fifo_errors;
189 unsigned long tx_heartbeat_errors;
190 unsigned long tx_window_errors;
191 unsigned long rx_compressed;
192 unsigned long tx_compressed;
193 };
194
195
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208
209 struct netdev_hw_addr {
210 struct list_head list;
211 unsigned char addr[MAX_ADDR_LEN];
212 unsigned char type;
213 #define NETDEV_HW_ADDR_T_LAN 1
214 #define NETDEV_HW_ADDR_T_SAN 2
215 #define NETDEV_HW_ADDR_T_UNICAST 3
216 #define NETDEV_HW_ADDR_T_MULTICAST 4
217 bool global_use;
218 int sync_cnt;
219 int refcount;
220 int synced;
221 struct rcu_head rcu_head;
222 };
223
224 struct netdev_hw_addr_list {
225 struct list_head list;
226 int count;
227 };
228
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 list_for_each_entry(ha, &(l)->list, list)
233
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243
244 struct hh_cache {
245 unsigned int hh_len;
246 seqlock_t hh_lock;
247
248 /* cached hardware header; allow for machine alignment needs. */
249 #define HH_DATA_MOD 16
250 #define HH_DATA_OFF(__len) \
251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258 * Alternative is:
259 * dev->hard_header_len ? (dev->hard_header_len +
260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261 *
262 * We could use other alignment values, but we must maintain the
263 * relationship HH alignment <= LL alignment.
264 */
265 #define LL_RESERVED_SPACE(dev) \
266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269
270 struct header_ops {
271 int (*create) (struct sk_buff *skb, struct net_device *dev,
272 unsigned short type, const void *daddr,
273 const void *saddr, unsigned int len);
274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 void (*cache_update)(struct hh_cache *hh,
277 const struct net_device *dev,
278 const unsigned char *haddr);
279 bool (*validate)(const char *ll_header, unsigned int len);
280 __be16 (*parse_protocol)(const struct sk_buff *skb);
281 };
282
283 /* These flag bits are private to the generic network queueing
284 * layer; they may not be explicitly referenced by any other
285 * code.
286 */
287
288 enum netdev_state_t {
289 __LINK_STATE_START,
290 __LINK_STATE_PRESENT,
291 __LINK_STATE_NOCARRIER,
292 __LINK_STATE_LINKWATCH_PENDING,
293 __LINK_STATE_DORMANT,
294 __LINK_STATE_TESTING,
295 };
296
297
298 /*
299 * This structure holds boot-time configured netdevice settings. They
300 * are then used in the device probing.
301 */
302 struct netdev_boot_setup {
303 char name[IFNAMSIZ];
304 struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307
308 int __init netdev_boot_setup(char *str);
309
310 struct gro_list {
311 struct list_head list;
312 int count;
313 };
314
315 /*
316 * size of gro hash buckets, must less than bit number of
317 * napi_struct::gro_bitmask
318 */
319 #define GRO_HASH_BUCKETS 8
320
321 /*
322 * Structure for NAPI scheduling similar to tasklet but with weighting
323 */
324 struct napi_struct {
325 /* The poll_list must only be managed by the entity which
326 * changes the state of the NAPI_STATE_SCHED bit. This means
327 * whoever atomically sets that bit can add this napi_struct
328 * to the per-CPU poll_list, and whoever clears that bit
329 * can remove from the list right before clearing the bit.
330 */
331 struct list_head poll_list;
332
333 unsigned long state;
334 int weight;
335 int defer_hard_irqs_count;
336 unsigned long gro_bitmask;
337 int (*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 int poll_owner;
340 #endif
341 struct net_device *dev;
342 struct gro_list gro_hash[GRO_HASH_BUCKETS];
343 struct sk_buff *skb;
344 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
345 int rx_count; /* length of rx_list */
346 struct hrtimer timer;
347 struct list_head dev_list;
348 struct hlist_node napi_hash_node;
349 unsigned int napi_id;
350 };
351
352 enum {
353 NAPI_STATE_SCHED, /* Poll is scheduled */
354 NAPI_STATE_MISSED, /* reschedule a napi */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 NAPI_STATE_LISTED, /* NAPI added to system lists */
358 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360 };
361
362 enum {
363 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
364 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
365 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
366 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
367 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
368 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370 };
371
372 enum gro_result {
373 GRO_MERGED,
374 GRO_MERGED_FREE,
375 GRO_HELD,
376 GRO_NORMAL,
377 GRO_DROP,
378 GRO_CONSUMED,
379 };
380 typedef enum gro_result gro_result_t;
381
382 /*
383 * enum rx_handler_result - Possible return values for rx_handlers.
384 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385 * further.
386 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387 * case skb->dev was changed by rx_handler.
388 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390 *
391 * rx_handlers are functions called from inside __netif_receive_skb(), to do
392 * special processing of the skb, prior to delivery to protocol handlers.
393 *
394 * Currently, a net_device can only have a single rx_handler registered. Trying
395 * to register a second rx_handler will return -EBUSY.
396 *
397 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398 * To unregister a rx_handler on a net_device, use
399 * netdev_rx_handler_unregister().
400 *
401 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402 * do with the skb.
403 *
404 * If the rx_handler consumed the skb in some way, it should return
405 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406 * the skb to be delivered in some other way.
407 *
408 * If the rx_handler changed skb->dev, to divert the skb to another
409 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410 * new device will be called if it exists.
411 *
412 * If the rx_handler decides the skb should be ignored, it should return
413 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414 * are registered on exact device (ptype->dev == skb->dev).
415 *
416 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417 * delivered, it should return RX_HANDLER_PASS.
418 *
419 * A device without a registered rx_handler will behave as if rx_handler
420 * returned RX_HANDLER_PASS.
421 */
422
423 enum rx_handler_result {
424 RX_HANDLER_CONSUMED,
425 RX_HANDLER_ANOTHER,
426 RX_HANDLER_EXACT,
427 RX_HANDLER_PASS,
428 };
429 typedef enum rx_handler_result rx_handler_result_t;
430 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431
432 void __napi_schedule(struct napi_struct *n);
433 void __napi_schedule_irqoff(struct napi_struct *n);
434
napi_disable_pending(struct napi_struct * n)435 static inline bool napi_disable_pending(struct napi_struct *n)
436 {
437 return test_bit(NAPI_STATE_DISABLE, &n->state);
438 }
439
440 bool napi_schedule_prep(struct napi_struct *n);
441
442 /**
443 * napi_schedule - schedule NAPI poll
444 * @n: NAPI context
445 *
446 * Schedule NAPI poll routine to be called if it is not already
447 * running.
448 */
napi_schedule(struct napi_struct * n)449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 if (napi_schedule_prep(n))
452 __napi_schedule(n);
453 }
454
455 /**
456 * napi_schedule_irqoff - schedule NAPI poll
457 * @n: NAPI context
458 *
459 * Variant of napi_schedule(), assuming hard irqs are masked.
460 */
napi_schedule_irqoff(struct napi_struct * n)461 static inline void napi_schedule_irqoff(struct napi_struct *n)
462 {
463 if (napi_schedule_prep(n))
464 __napi_schedule_irqoff(n);
465 }
466
467 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
napi_reschedule(struct napi_struct * napi)468 static inline bool napi_reschedule(struct napi_struct *napi)
469 {
470 if (napi_schedule_prep(napi)) {
471 __napi_schedule(napi);
472 return true;
473 }
474 return false;
475 }
476
477 bool napi_complete_done(struct napi_struct *n, int work_done);
478 /**
479 * napi_complete - NAPI processing complete
480 * @n: NAPI context
481 *
482 * Mark NAPI processing as complete.
483 * Consider using napi_complete_done() instead.
484 * Return false if device should avoid rearming interrupts.
485 */
napi_complete(struct napi_struct * n)486 static inline bool napi_complete(struct napi_struct *n)
487 {
488 return napi_complete_done(n, 0);
489 }
490
491 /**
492 * napi_disable - prevent NAPI from scheduling
493 * @n: NAPI context
494 *
495 * Stop NAPI from being scheduled on this context.
496 * Waits till any outstanding processing completes.
497 */
498 void napi_disable(struct napi_struct *n);
499
500 /**
501 * napi_enable - enable NAPI scheduling
502 * @n: NAPI context
503 *
504 * Resume NAPI from being scheduled on this context.
505 * Must be paired with napi_disable.
506 */
napi_enable(struct napi_struct * n)507 static inline void napi_enable(struct napi_struct *n)
508 {
509 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 smp_mb__before_atomic();
511 clear_bit(NAPI_STATE_SCHED, &n->state);
512 clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514
515 /**
516 * napi_synchronize - wait until NAPI is not running
517 * @n: NAPI context
518 *
519 * Wait until NAPI is done being scheduled on this context.
520 * Waits till any outstanding processing completes but
521 * does not disable future activations.
522 */
napi_synchronize(const struct napi_struct * n)523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 if (IS_ENABLED(CONFIG_SMP))
526 while (test_bit(NAPI_STATE_SCHED, &n->state))
527 msleep(1);
528 else
529 barrier();
530 }
531
532 /**
533 * napi_if_scheduled_mark_missed - if napi is running, set the
534 * NAPIF_STATE_MISSED
535 * @n: NAPI context
536 *
537 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
538 * NAPI is scheduled.
539 **/
napi_if_scheduled_mark_missed(struct napi_struct * n)540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
541 {
542 unsigned long val, new;
543
544 do {
545 val = READ_ONCE(n->state);
546 if (val & NAPIF_STATE_DISABLE)
547 return true;
548
549 if (!(val & NAPIF_STATE_SCHED))
550 return false;
551
552 new = val | NAPIF_STATE_MISSED;
553 } while (cmpxchg(&n->state, val, new) != val);
554
555 return true;
556 }
557
558 enum netdev_queue_state_t {
559 __QUEUE_STATE_DRV_XOFF,
560 __QUEUE_STATE_STACK_XOFF,
561 __QUEUE_STATE_FROZEN,
562 };
563
564 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
565 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
566 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
567
568 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
570 QUEUE_STATE_FROZEN)
571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
572 QUEUE_STATE_FROZEN)
573
574 /*
575 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
576 * netif_tx_* functions below are used to manipulate this flag. The
577 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
578 * queue independently. The netif_xmit_*stopped functions below are called
579 * to check if the queue has been stopped by the driver or stack (either
580 * of the XOFF bits are set in the state). Drivers should not need to call
581 * netif_xmit*stopped functions, they should only be using netif_tx_*.
582 */
583
584 struct netdev_queue {
585 /*
586 * read-mostly part
587 */
588 struct net_device *dev;
589 struct Qdisc __rcu *qdisc;
590 struct Qdisc *qdisc_sleeping;
591 #ifdef CONFIG_SYSFS
592 struct kobject kobj;
593 #endif
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 int numa_node;
596 #endif
597 unsigned long tx_maxrate;
598 /*
599 * Number of TX timeouts for this queue
600 * (/sys/class/net/DEV/Q/trans_timeout)
601 */
602 unsigned long trans_timeout;
603
604 /* Subordinate device that the queue has been assigned to */
605 struct net_device *sb_dev;
606 #ifdef CONFIG_XDP_SOCKETS
607 struct xsk_buff_pool *pool;
608 #endif
609 /*
610 * write-mostly part
611 */
612 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
613 int xmit_lock_owner;
614 /*
615 * Time (in jiffies) of last Tx
616 */
617 unsigned long trans_start;
618
619 unsigned long state;
620
621 #ifdef CONFIG_BQL
622 struct dql dql;
623 #endif
624 } ____cacheline_aligned_in_smp;
625
626 extern int sysctl_fb_tunnels_only_for_init_net;
627 extern int sysctl_devconf_inherit_init_net;
628
629 /*
630 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
631 * == 1 : For initns only
632 * == 2 : For none.
633 */
net_has_fallback_tunnels(const struct net * net)634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 return !IS_ENABLED(CONFIG_SYSCTL) ||
637 !sysctl_fb_tunnels_only_for_init_net ||
638 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
639 }
640
netdev_queue_numa_node_read(const struct netdev_queue * q)641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 return q->numa_node;
645 #else
646 return NUMA_NO_NODE;
647 #endif
648 }
649
netdev_queue_numa_node_write(struct netdev_queue * q,int node)650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 q->numa_node = node;
654 #endif
655 }
656
657 #ifdef CONFIG_RPS
658 /*
659 * This structure holds an RPS map which can be of variable length. The
660 * map is an array of CPUs.
661 */
662 struct rps_map {
663 unsigned int len;
664 struct rcu_head rcu;
665 u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668
669 /*
670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671 * tail pointer for that CPU's input queue at the time of last enqueue, and
672 * a hardware filter index.
673 */
674 struct rps_dev_flow {
675 u16 cpu;
676 u16 filter;
677 unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680
681 /*
682 * The rps_dev_flow_table structure contains a table of flow mappings.
683 */
684 struct rps_dev_flow_table {
685 unsigned int mask;
686 struct rcu_head rcu;
687 struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690 ((_num) * sizeof(struct rps_dev_flow)))
691
692 /*
693 * The rps_sock_flow_table contains mappings of flows to the last CPU
694 * on which they were processed by the application (set in recvmsg).
695 * Each entry is a 32bit value. Upper part is the high-order bits
696 * of flow hash, lower part is CPU number.
697 * rps_cpu_mask is used to partition the space, depending on number of
698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700 * meaning we use 32-6=26 bits for the hash.
701 */
702 struct rps_sock_flow_table {
703 u32 mask;
704
705 u32 ents[] ____cacheline_aligned_in_smp;
706 };
707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708
709 #define RPS_NO_CPU 0xffff
710
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 u32 hash)
716 {
717 if (table && hash) {
718 unsigned int index = hash & table->mask;
719 u32 val = hash & ~rps_cpu_mask;
720
721 /* We only give a hint, preemption can change CPU under us */
722 val |= raw_smp_processor_id();
723
724 if (table->ents[index] != val)
725 table->ents[index] = val;
726 }
727 }
728
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 struct rps_map __rcu *rps_map;
739 struct rps_dev_flow_table __rcu *rps_flow_table;
740 #endif
741 struct kobject kobj;
742 struct net_device *dev;
743 struct xdp_rxq_info xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 struct xsk_buff_pool *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748
749 /*
750 * RX queue sysfs structures and functions.
751 */
752 struct rx_queue_attribute {
753 struct attribute attr;
754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 ssize_t (*store)(struct netdev_rx_queue *queue,
756 const char *buf, size_t len);
757 };
758
759 #ifdef CONFIG_XPS
760 /*
761 * This structure holds an XPS map which can be of variable length. The
762 * map is an array of queues.
763 */
764 struct xps_map {
765 unsigned int len;
766 unsigned int alloc_len;
767 struct rcu_head rcu;
768 u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772 - sizeof(struct xps_map)) / sizeof(u16))
773
774 /*
775 * This structure holds all XPS maps for device. Maps are indexed by CPU.
776 */
777 struct xps_dev_maps {
778 struct rcu_head rcu;
779 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
780 };
781
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
787
788 #endif /* CONFIG_XPS */
789
790 #define TC_MAX_QUEUE 16
791 #define TC_BITMASK 15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 u16 count;
795 u16 offset;
796 };
797
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800 * This structure is to hold information about the device
801 * configured to run FCoE protocol stack.
802 */
803 struct netdev_fcoe_hbainfo {
804 char manufacturer[64];
805 char serial_number[64];
806 char hardware_version[64];
807 char driver_version[64];
808 char optionrom_version[64];
809 char firmware_version[64];
810 char model[256];
811 char model_description[256];
812 };
813 #endif
814
815 #define MAX_PHYS_ITEM_ID_LEN 32
816
817 /* This structure holds a unique identifier to identify some
818 * physical item (port for example) used by a netdevice.
819 */
820 struct netdev_phys_item_id {
821 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 unsigned char id_len;
823 };
824
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 struct netdev_phys_item_id *b)
827 {
828 return a->id_len == b->id_len &&
829 memcmp(a->id, b->id, a->id_len) == 0;
830 }
831
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 struct sk_buff *skb,
834 struct net_device *sb_dev);
835
836 enum tc_setup_type {
837 TC_SETUP_QDISC_MQPRIO,
838 TC_SETUP_CLSU32,
839 TC_SETUP_CLSFLOWER,
840 TC_SETUP_CLSMATCHALL,
841 TC_SETUP_CLSBPF,
842 TC_SETUP_BLOCK,
843 TC_SETUP_QDISC_CBS,
844 TC_SETUP_QDISC_RED,
845 TC_SETUP_QDISC_PRIO,
846 TC_SETUP_QDISC_MQ,
847 TC_SETUP_QDISC_ETF,
848 TC_SETUP_ROOT_QDISC,
849 TC_SETUP_QDISC_GRED,
850 TC_SETUP_QDISC_TAPRIO,
851 TC_SETUP_FT,
852 TC_SETUP_QDISC_ETS,
853 TC_SETUP_QDISC_TBF,
854 TC_SETUP_QDISC_FIFO,
855 };
856
857 /* These structures hold the attributes of bpf state that are being passed
858 * to the netdevice through the bpf op.
859 */
860 enum bpf_netdev_command {
861 /* Set or clear a bpf program used in the earliest stages of packet
862 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
863 * is responsible for calling bpf_prog_put on any old progs that are
864 * stored. In case of error, the callee need not release the new prog
865 * reference, but on success it takes ownership and must bpf_prog_put
866 * when it is no longer used.
867 */
868 XDP_SETUP_PROG,
869 XDP_SETUP_PROG_HW,
870 /* BPF program for offload callbacks, invoked at program load time. */
871 BPF_OFFLOAD_MAP_ALLOC,
872 BPF_OFFLOAD_MAP_FREE,
873 XDP_SETUP_XSK_POOL,
874 };
875
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 struct xdp_dev_bulk_queue;
880 struct bpf_xdp_link;
881
882 enum bpf_xdp_mode {
883 XDP_MODE_SKB = 0,
884 XDP_MODE_DRV = 1,
885 XDP_MODE_HW = 2,
886 __MAX_XDP_MODE
887 };
888
889 struct bpf_xdp_entity {
890 struct bpf_prog *prog;
891 struct bpf_xdp_link *link;
892 };
893
894 struct netdev_bpf {
895 enum bpf_netdev_command command;
896 union {
897 /* XDP_SETUP_PROG */
898 struct {
899 u32 flags;
900 struct bpf_prog *prog;
901 struct netlink_ext_ack *extack;
902 };
903 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
904 struct {
905 struct bpf_offloaded_map *offmap;
906 };
907 /* XDP_SETUP_XSK_POOL */
908 struct {
909 struct xsk_buff_pool *pool;
910 u16 queue_id;
911 } xsk;
912 };
913 };
914
915 /* Flags for ndo_xsk_wakeup. */
916 #define XDP_WAKEUP_RX (1 << 0)
917 #define XDP_WAKEUP_TX (1 << 1)
918
919 #ifdef CONFIG_XFRM_OFFLOAD
920 struct xfrmdev_ops {
921 int (*xdo_dev_state_add) (struct xfrm_state *x);
922 void (*xdo_dev_state_delete) (struct xfrm_state *x);
923 void (*xdo_dev_state_free) (struct xfrm_state *x);
924 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
925 struct xfrm_state *x);
926 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
927 };
928 #endif
929
930 struct dev_ifalias {
931 struct rcu_head rcuhead;
932 char ifalias[];
933 };
934
935 struct devlink;
936 struct tlsdev_ops;
937
938 struct netdev_name_node {
939 struct hlist_node hlist;
940 struct list_head list;
941 struct net_device *dev;
942 const char *name;
943 };
944
945 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
946 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
947
948 struct netdev_net_notifier {
949 struct list_head list;
950 struct notifier_block *nb;
951 };
952
953 /*
954 * This structure defines the management hooks for network devices.
955 * The following hooks can be defined; unless noted otherwise, they are
956 * optional and can be filled with a null pointer.
957 *
958 * int (*ndo_init)(struct net_device *dev);
959 * This function is called once when a network device is registered.
960 * The network device can use this for any late stage initialization
961 * or semantic validation. It can fail with an error code which will
962 * be propagated back to register_netdev.
963 *
964 * void (*ndo_uninit)(struct net_device *dev);
965 * This function is called when device is unregistered or when registration
966 * fails. It is not called if init fails.
967 *
968 * int (*ndo_open)(struct net_device *dev);
969 * This function is called when a network device transitions to the up
970 * state.
971 *
972 * int (*ndo_stop)(struct net_device *dev);
973 * This function is called when a network device transitions to the down
974 * state.
975 *
976 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
977 * struct net_device *dev);
978 * Called when a packet needs to be transmitted.
979 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
980 * the queue before that can happen; it's for obsolete devices and weird
981 * corner cases, but the stack really does a non-trivial amount
982 * of useless work if you return NETDEV_TX_BUSY.
983 * Required; cannot be NULL.
984 *
985 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
986 * struct net_device *dev
987 * netdev_features_t features);
988 * Called by core transmit path to determine if device is capable of
989 * performing offload operations on a given packet. This is to give
990 * the device an opportunity to implement any restrictions that cannot
991 * be otherwise expressed by feature flags. The check is called with
992 * the set of features that the stack has calculated and it returns
993 * those the driver believes to be appropriate.
994 *
995 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
996 * struct net_device *sb_dev);
997 * Called to decide which queue to use when device supports multiple
998 * transmit queues.
999 *
1000 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1001 * This function is called to allow device receiver to make
1002 * changes to configuration when multicast or promiscuous is enabled.
1003 *
1004 * void (*ndo_set_rx_mode)(struct net_device *dev);
1005 * This function is called device changes address list filtering.
1006 * If driver handles unicast address filtering, it should set
1007 * IFF_UNICAST_FLT in its priv_flags.
1008 *
1009 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1010 * This function is called when the Media Access Control address
1011 * needs to be changed. If this interface is not defined, the
1012 * MAC address can not be changed.
1013 *
1014 * int (*ndo_validate_addr)(struct net_device *dev);
1015 * Test if Media Access Control address is valid for the device.
1016 *
1017 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1018 * Called when a user requests an ioctl which can't be handled by
1019 * the generic interface code. If not defined ioctls return
1020 * not supported error code.
1021 *
1022 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1023 * Used to set network devices bus interface parameters. This interface
1024 * is retained for legacy reasons; new devices should use the bus
1025 * interface (PCI) for low level management.
1026 *
1027 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1028 * Called when a user wants to change the Maximum Transfer Unit
1029 * of a device.
1030 *
1031 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1032 * Callback used when the transmitter has not made any progress
1033 * for dev->watchdog ticks.
1034 *
1035 * void (*ndo_get_stats64)(struct net_device *dev,
1036 * struct rtnl_link_stats64 *storage);
1037 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038 * Called when a user wants to get the network device usage
1039 * statistics. Drivers must do one of the following:
1040 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1041 * rtnl_link_stats64 structure passed by the caller.
1042 * 2. Define @ndo_get_stats to update a net_device_stats structure
1043 * (which should normally be dev->stats) and return a pointer to
1044 * it. The structure may be changed asynchronously only if each
1045 * field is written atomically.
1046 * 3. Update dev->stats asynchronously and atomically, and define
1047 * neither operation.
1048 *
1049 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1050 * Return true if this device supports offload stats of this attr_id.
1051 *
1052 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1053 * void *attr_data)
1054 * Get statistics for offload operations by attr_id. Write it into the
1055 * attr_data pointer.
1056 *
1057 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1058 * If device supports VLAN filtering this function is called when a
1059 * VLAN id is registered.
1060 *
1061 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1062 * If device supports VLAN filtering this function is called when a
1063 * VLAN id is unregistered.
1064 *
1065 * void (*ndo_poll_controller)(struct net_device *dev);
1066 *
1067 * SR-IOV management functions.
1068 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1069 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1070 * u8 qos, __be16 proto);
1071 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1072 * int max_tx_rate);
1073 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1074 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1075 * int (*ndo_get_vf_config)(struct net_device *dev,
1076 * int vf, struct ifla_vf_info *ivf);
1077 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1078 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1079 * struct nlattr *port[]);
1080 *
1081 * Enable or disable the VF ability to query its RSS Redirection Table and
1082 * Hash Key. This is needed since on some devices VF share this information
1083 * with PF and querying it may introduce a theoretical security risk.
1084 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1085 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1086 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1087 * void *type_data);
1088 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1089 * This is always called from the stack with the rtnl lock held and netif
1090 * tx queues stopped. This allows the netdevice to perform queue
1091 * management safely.
1092 *
1093 * Fiber Channel over Ethernet (FCoE) offload functions.
1094 * int (*ndo_fcoe_enable)(struct net_device *dev);
1095 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1096 * so the underlying device can perform whatever needed configuration or
1097 * initialization to support acceleration of FCoE traffic.
1098 *
1099 * int (*ndo_fcoe_disable)(struct net_device *dev);
1100 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1101 * so the underlying device can perform whatever needed clean-ups to
1102 * stop supporting acceleration of FCoE traffic.
1103 *
1104 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1105 * struct scatterlist *sgl, unsigned int sgc);
1106 * Called when the FCoE Initiator wants to initialize an I/O that
1107 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1108 * perform necessary setup and returns 1 to indicate the device is set up
1109 * successfully to perform DDP on this I/O, otherwise this returns 0.
1110 *
1111 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1112 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1113 * indicated by the FC exchange id 'xid', so the underlying device can
1114 * clean up and reuse resources for later DDP requests.
1115 *
1116 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1117 * struct scatterlist *sgl, unsigned int sgc);
1118 * Called when the FCoE Target wants to initialize an I/O that
1119 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1120 * perform necessary setup and returns 1 to indicate the device is set up
1121 * successfully to perform DDP on this I/O, otherwise this returns 0.
1122 *
1123 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1124 * struct netdev_fcoe_hbainfo *hbainfo);
1125 * Called when the FCoE Protocol stack wants information on the underlying
1126 * device. This information is utilized by the FCoE protocol stack to
1127 * register attributes with Fiber Channel management service as per the
1128 * FC-GS Fabric Device Management Information(FDMI) specification.
1129 *
1130 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1131 * Called when the underlying device wants to override default World Wide
1132 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1133 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1134 * protocol stack to use.
1135 *
1136 * RFS acceleration.
1137 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1138 * u16 rxq_index, u32 flow_id);
1139 * Set hardware filter for RFS. rxq_index is the target queue index;
1140 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1141 * Return the filter ID on success, or a negative error code.
1142 *
1143 * Slave management functions (for bridge, bonding, etc).
1144 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1145 * Called to make another netdev an underling.
1146 *
1147 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1148 * Called to release previously enslaved netdev.
1149 *
1150 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1151 * struct sk_buff *skb,
1152 * bool all_slaves);
1153 * Get the xmit slave of master device. If all_slaves is true, function
1154 * assume all the slaves can transmit.
1155 *
1156 * Feature/offload setting functions.
1157 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1158 * netdev_features_t features);
1159 * Adjusts the requested feature flags according to device-specific
1160 * constraints, and returns the resulting flags. Must not modify
1161 * the device state.
1162 *
1163 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1164 * Called to update device configuration to new features. Passed
1165 * feature set might be less than what was returned by ndo_fix_features()).
1166 * Must return >0 or -errno if it changed dev->features itself.
1167 *
1168 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1169 * struct net_device *dev,
1170 * const unsigned char *addr, u16 vid, u16 flags,
1171 * struct netlink_ext_ack *extack);
1172 * Adds an FDB entry to dev for addr.
1173 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1174 * struct net_device *dev,
1175 * const unsigned char *addr, u16 vid)
1176 * Deletes the FDB entry from dev coresponding to addr.
1177 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1178 * struct net_device *dev, struct net_device *filter_dev,
1179 * int *idx)
1180 * Used to add FDB entries to dump requests. Implementers should add
1181 * entries to skb and update idx with the number of entries.
1182 *
1183 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1184 * u16 flags, struct netlink_ext_ack *extack)
1185 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1186 * struct net_device *dev, u32 filter_mask,
1187 * int nlflags)
1188 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1189 * u16 flags);
1190 *
1191 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1192 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1193 * which do not represent real hardware may define this to allow their
1194 * userspace components to manage their virtual carrier state. Devices
1195 * that determine carrier state from physical hardware properties (eg
1196 * network cables) or protocol-dependent mechanisms (eg
1197 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1198 *
1199 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1200 * struct netdev_phys_item_id *ppid);
1201 * Called to get ID of physical port of this device. If driver does
1202 * not implement this, it is assumed that the hw is not able to have
1203 * multiple net devices on single physical port.
1204 *
1205 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1206 * struct netdev_phys_item_id *ppid)
1207 * Called to get the parent ID of the physical port of this device.
1208 *
1209 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1210 * struct udp_tunnel_info *ti);
1211 * Called by UDP tunnel to notify a driver about the UDP port and socket
1212 * address family that a UDP tunnel is listnening to. It is called only
1213 * when a new port starts listening. The operation is protected by the
1214 * RTNL.
1215 *
1216 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1217 * struct udp_tunnel_info *ti);
1218 * Called by UDP tunnel to notify the driver about a UDP port and socket
1219 * address family that the UDP tunnel is not listening to anymore. The
1220 * operation is protected by the RTNL.
1221 *
1222 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1223 * struct net_device *dev)
1224 * Called by upper layer devices to accelerate switching or other
1225 * station functionality into hardware. 'pdev is the lowerdev
1226 * to use for the offload and 'dev' is the net device that will
1227 * back the offload. Returns a pointer to the private structure
1228 * the upper layer will maintain.
1229 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1230 * Called by upper layer device to delete the station created
1231 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1232 * the station and priv is the structure returned by the add
1233 * operation.
1234 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1235 * int queue_index, u32 maxrate);
1236 * Called when a user wants to set a max-rate limitation of specific
1237 * TX queue.
1238 * int (*ndo_get_iflink)(const struct net_device *dev);
1239 * Called to get the iflink value of this device.
1240 * void (*ndo_change_proto_down)(struct net_device *dev,
1241 * bool proto_down);
1242 * This function is used to pass protocol port error state information
1243 * to the switch driver. The switch driver can react to the proto_down
1244 * by doing a phys down on the associated switch port.
1245 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1246 * This function is used to get egress tunnel information for given skb.
1247 * This is useful for retrieving outer tunnel header parameters while
1248 * sampling packet.
1249 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1250 * This function is used to specify the headroom that the skb must
1251 * consider when allocation skb during packet reception. Setting
1252 * appropriate rx headroom value allows avoiding skb head copy on
1253 * forward. Setting a negative value resets the rx headroom to the
1254 * default value.
1255 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1256 * This function is used to set or query state related to XDP on the
1257 * netdevice and manage BPF offload. See definition of
1258 * enum bpf_netdev_command for details.
1259 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1260 * u32 flags);
1261 * This function is used to submit @n XDP packets for transmit on a
1262 * netdevice. Returns number of frames successfully transmitted, frames
1263 * that got dropped are freed/returned via xdp_return_frame().
1264 * Returns negative number, means general error invoking ndo, meaning
1265 * no frames were xmit'ed and core-caller will free all frames.
1266 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1267 * This function is used to wake up the softirq, ksoftirqd or kthread
1268 * responsible for sending and/or receiving packets on a specific
1269 * queue id bound to an AF_XDP socket. The flags field specifies if
1270 * only RX, only Tx, or both should be woken up using the flags
1271 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1272 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1273 * Get devlink port instance associated with a given netdev.
1274 * Called with a reference on the netdevice and devlink locks only,
1275 * rtnl_lock is not held.
1276 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1277 * int cmd);
1278 * Add, change, delete or get information on an IPv4 tunnel.
1279 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1280 * If a device is paired with a peer device, return the peer instance.
1281 * The caller must be under RCU read context.
1282 */
1283 struct net_device_ops {
1284 int (*ndo_init)(struct net_device *dev);
1285 void (*ndo_uninit)(struct net_device *dev);
1286 int (*ndo_open)(struct net_device *dev);
1287 int (*ndo_stop)(struct net_device *dev);
1288 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1289 struct net_device *dev);
1290 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1291 struct net_device *dev,
1292 netdev_features_t features);
1293 u16 (*ndo_select_queue)(struct net_device *dev,
1294 struct sk_buff *skb,
1295 struct net_device *sb_dev);
1296 void (*ndo_change_rx_flags)(struct net_device *dev,
1297 int flags);
1298 void (*ndo_set_rx_mode)(struct net_device *dev);
1299 int (*ndo_set_mac_address)(struct net_device *dev,
1300 void *addr);
1301 int (*ndo_validate_addr)(struct net_device *dev);
1302 int (*ndo_do_ioctl)(struct net_device *dev,
1303 struct ifreq *ifr, int cmd);
1304 int (*ndo_set_config)(struct net_device *dev,
1305 struct ifmap *map);
1306 int (*ndo_change_mtu)(struct net_device *dev,
1307 int new_mtu);
1308 int (*ndo_neigh_setup)(struct net_device *dev,
1309 struct neigh_parms *);
1310 void (*ndo_tx_timeout) (struct net_device *dev,
1311 unsigned int txqueue);
1312
1313 void (*ndo_get_stats64)(struct net_device *dev,
1314 struct rtnl_link_stats64 *storage);
1315 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1316 int (*ndo_get_offload_stats)(int attr_id,
1317 const struct net_device *dev,
1318 void *attr_data);
1319 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1320
1321 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1322 __be16 proto, u16 vid);
1323 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1324 __be16 proto, u16 vid);
1325 #ifdef CONFIG_NET_POLL_CONTROLLER
1326 void (*ndo_poll_controller)(struct net_device *dev);
1327 int (*ndo_netpoll_setup)(struct net_device *dev,
1328 struct netpoll_info *info);
1329 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1330 #endif
1331 int (*ndo_set_vf_mac)(struct net_device *dev,
1332 int queue, u8 *mac);
1333 int (*ndo_set_vf_vlan)(struct net_device *dev,
1334 int queue, u16 vlan,
1335 u8 qos, __be16 proto);
1336 int (*ndo_set_vf_rate)(struct net_device *dev,
1337 int vf, int min_tx_rate,
1338 int max_tx_rate);
1339 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1340 int vf, bool setting);
1341 int (*ndo_set_vf_trust)(struct net_device *dev,
1342 int vf, bool setting);
1343 int (*ndo_get_vf_config)(struct net_device *dev,
1344 int vf,
1345 struct ifla_vf_info *ivf);
1346 int (*ndo_set_vf_link_state)(struct net_device *dev,
1347 int vf, int link_state);
1348 int (*ndo_get_vf_stats)(struct net_device *dev,
1349 int vf,
1350 struct ifla_vf_stats
1351 *vf_stats);
1352 int (*ndo_set_vf_port)(struct net_device *dev,
1353 int vf,
1354 struct nlattr *port[]);
1355 int (*ndo_get_vf_port)(struct net_device *dev,
1356 int vf, struct sk_buff *skb);
1357 int (*ndo_get_vf_guid)(struct net_device *dev,
1358 int vf,
1359 struct ifla_vf_guid *node_guid,
1360 struct ifla_vf_guid *port_guid);
1361 int (*ndo_set_vf_guid)(struct net_device *dev,
1362 int vf, u64 guid,
1363 int guid_type);
1364 int (*ndo_set_vf_rss_query_en)(
1365 struct net_device *dev,
1366 int vf, bool setting);
1367 int (*ndo_setup_tc)(struct net_device *dev,
1368 enum tc_setup_type type,
1369 void *type_data);
1370 #if IS_ENABLED(CONFIG_FCOE)
1371 int (*ndo_fcoe_enable)(struct net_device *dev);
1372 int (*ndo_fcoe_disable)(struct net_device *dev);
1373 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1374 u16 xid,
1375 struct scatterlist *sgl,
1376 unsigned int sgc);
1377 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1378 u16 xid);
1379 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1380 u16 xid,
1381 struct scatterlist *sgl,
1382 unsigned int sgc);
1383 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1384 struct netdev_fcoe_hbainfo *hbainfo);
1385 #endif
1386
1387 #if IS_ENABLED(CONFIG_LIBFCOE)
1388 #define NETDEV_FCOE_WWNN 0
1389 #define NETDEV_FCOE_WWPN 1
1390 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1391 u64 *wwn, int type);
1392 #endif
1393
1394 #ifdef CONFIG_RFS_ACCEL
1395 int (*ndo_rx_flow_steer)(struct net_device *dev,
1396 const struct sk_buff *skb,
1397 u16 rxq_index,
1398 u32 flow_id);
1399 #endif
1400 int (*ndo_add_slave)(struct net_device *dev,
1401 struct net_device *slave_dev,
1402 struct netlink_ext_ack *extack);
1403 int (*ndo_del_slave)(struct net_device *dev,
1404 struct net_device *slave_dev);
1405 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1406 struct sk_buff *skb,
1407 bool all_slaves);
1408 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1409 netdev_features_t features);
1410 int (*ndo_set_features)(struct net_device *dev,
1411 netdev_features_t features);
1412 int (*ndo_neigh_construct)(struct net_device *dev,
1413 struct neighbour *n);
1414 void (*ndo_neigh_destroy)(struct net_device *dev,
1415 struct neighbour *n);
1416
1417 int (*ndo_fdb_add)(struct ndmsg *ndm,
1418 struct nlattr *tb[],
1419 struct net_device *dev,
1420 const unsigned char *addr,
1421 u16 vid,
1422 u16 flags,
1423 struct netlink_ext_ack *extack);
1424 int (*ndo_fdb_del)(struct ndmsg *ndm,
1425 struct nlattr *tb[],
1426 struct net_device *dev,
1427 const unsigned char *addr,
1428 u16 vid);
1429 int (*ndo_fdb_dump)(struct sk_buff *skb,
1430 struct netlink_callback *cb,
1431 struct net_device *dev,
1432 struct net_device *filter_dev,
1433 int *idx);
1434 int (*ndo_fdb_get)(struct sk_buff *skb,
1435 struct nlattr *tb[],
1436 struct net_device *dev,
1437 const unsigned char *addr,
1438 u16 vid, u32 portid, u32 seq,
1439 struct netlink_ext_ack *extack);
1440 int (*ndo_bridge_setlink)(struct net_device *dev,
1441 struct nlmsghdr *nlh,
1442 u16 flags,
1443 struct netlink_ext_ack *extack);
1444 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1445 u32 pid, u32 seq,
1446 struct net_device *dev,
1447 u32 filter_mask,
1448 int nlflags);
1449 int (*ndo_bridge_dellink)(struct net_device *dev,
1450 struct nlmsghdr *nlh,
1451 u16 flags);
1452 int (*ndo_change_carrier)(struct net_device *dev,
1453 bool new_carrier);
1454 int (*ndo_get_phys_port_id)(struct net_device *dev,
1455 struct netdev_phys_item_id *ppid);
1456 int (*ndo_get_port_parent_id)(struct net_device *dev,
1457 struct netdev_phys_item_id *ppid);
1458 int (*ndo_get_phys_port_name)(struct net_device *dev,
1459 char *name, size_t len);
1460 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1461 struct udp_tunnel_info *ti);
1462 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1463 struct udp_tunnel_info *ti);
1464 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1465 struct net_device *dev);
1466 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1467 void *priv);
1468
1469 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1470 int queue_index,
1471 u32 maxrate);
1472 int (*ndo_get_iflink)(const struct net_device *dev);
1473 int (*ndo_change_proto_down)(struct net_device *dev,
1474 bool proto_down);
1475 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1476 struct sk_buff *skb);
1477 void (*ndo_set_rx_headroom)(struct net_device *dev,
1478 int needed_headroom);
1479 int (*ndo_bpf)(struct net_device *dev,
1480 struct netdev_bpf *bpf);
1481 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1482 struct xdp_frame **xdp,
1483 u32 flags);
1484 int (*ndo_xsk_wakeup)(struct net_device *dev,
1485 u32 queue_id, u32 flags);
1486 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1487 int (*ndo_tunnel_ctl)(struct net_device *dev,
1488 struct ip_tunnel_parm *p, int cmd);
1489 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1490 };
1491
1492 /**
1493 * enum net_device_priv_flags - &struct net_device priv_flags
1494 *
1495 * These are the &struct net_device, they are only set internally
1496 * by drivers and used in the kernel. These flags are invisible to
1497 * userspace; this means that the order of these flags can change
1498 * during any kernel release.
1499 *
1500 * You should have a pretty good reason to be extending these flags.
1501 *
1502 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1503 * @IFF_EBRIDGE: Ethernet bridging device
1504 * @IFF_BONDING: bonding master or slave
1505 * @IFF_ISATAP: ISATAP interface (RFC4214)
1506 * @IFF_WAN_HDLC: WAN HDLC device
1507 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1508 * release skb->dst
1509 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1510 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1511 * @IFF_MACVLAN_PORT: device used as macvlan port
1512 * @IFF_BRIDGE_PORT: device used as bridge port
1513 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1514 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1515 * @IFF_UNICAST_FLT: Supports unicast filtering
1516 * @IFF_TEAM_PORT: device used as team port
1517 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1518 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1519 * change when it's running
1520 * @IFF_MACVLAN: Macvlan device
1521 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1522 * underlying stacked devices
1523 * @IFF_L3MDEV_MASTER: device is an L3 master device
1524 * @IFF_NO_QUEUE: device can run without qdisc attached
1525 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1526 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1527 * @IFF_TEAM: device is a team device
1528 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1529 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1530 * entity (i.e. the master device for bridged veth)
1531 * @IFF_MACSEC: device is a MACsec device
1532 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1533 * @IFF_FAILOVER: device is a failover master device
1534 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1535 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1536 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1537 */
1538 enum netdev_priv_flags {
1539 IFF_802_1Q_VLAN = 1<<0,
1540 IFF_EBRIDGE = 1<<1,
1541 IFF_BONDING = 1<<2,
1542 IFF_ISATAP = 1<<3,
1543 IFF_WAN_HDLC = 1<<4,
1544 IFF_XMIT_DST_RELEASE = 1<<5,
1545 IFF_DONT_BRIDGE = 1<<6,
1546 IFF_DISABLE_NETPOLL = 1<<7,
1547 IFF_MACVLAN_PORT = 1<<8,
1548 IFF_BRIDGE_PORT = 1<<9,
1549 IFF_OVS_DATAPATH = 1<<10,
1550 IFF_TX_SKB_SHARING = 1<<11,
1551 IFF_UNICAST_FLT = 1<<12,
1552 IFF_TEAM_PORT = 1<<13,
1553 IFF_SUPP_NOFCS = 1<<14,
1554 IFF_LIVE_ADDR_CHANGE = 1<<15,
1555 IFF_MACVLAN = 1<<16,
1556 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1557 IFF_L3MDEV_MASTER = 1<<18,
1558 IFF_NO_QUEUE = 1<<19,
1559 IFF_OPENVSWITCH = 1<<20,
1560 IFF_L3MDEV_SLAVE = 1<<21,
1561 IFF_TEAM = 1<<22,
1562 IFF_RXFH_CONFIGURED = 1<<23,
1563 IFF_PHONY_HEADROOM = 1<<24,
1564 IFF_MACSEC = 1<<25,
1565 IFF_NO_RX_HANDLER = 1<<26,
1566 IFF_FAILOVER = 1<<27,
1567 IFF_FAILOVER_SLAVE = 1<<28,
1568 IFF_L3MDEV_RX_HANDLER = 1<<29,
1569 IFF_LIVE_RENAME_OK = 1<<30,
1570 };
1571
1572 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1573 #define IFF_EBRIDGE IFF_EBRIDGE
1574 #define IFF_BONDING IFF_BONDING
1575 #define IFF_ISATAP IFF_ISATAP
1576 #define IFF_WAN_HDLC IFF_WAN_HDLC
1577 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1578 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1579 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1580 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1581 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1582 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1583 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1584 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1585 #define IFF_TEAM_PORT IFF_TEAM_PORT
1586 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1587 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1588 #define IFF_MACVLAN IFF_MACVLAN
1589 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1590 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1591 #define IFF_NO_QUEUE IFF_NO_QUEUE
1592 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1593 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1594 #define IFF_TEAM IFF_TEAM
1595 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1596 #define IFF_MACSEC IFF_MACSEC
1597 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1598 #define IFF_FAILOVER IFF_FAILOVER
1599 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1600 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1601 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1602
1603 /* Specifies the type of the struct net_device::ml_priv pointer */
1604 enum netdev_ml_priv_type {
1605 ML_PRIV_NONE,
1606 ML_PRIV_CAN,
1607 };
1608
1609 /**
1610 * struct net_device - The DEVICE structure.
1611 *
1612 * Actually, this whole structure is a big mistake. It mixes I/O
1613 * data with strictly "high-level" data, and it has to know about
1614 * almost every data structure used in the INET module.
1615 *
1616 * @name: This is the first field of the "visible" part of this structure
1617 * (i.e. as seen by users in the "Space.c" file). It is the name
1618 * of the interface.
1619 *
1620 * @name_node: Name hashlist node
1621 * @ifalias: SNMP alias
1622 * @mem_end: Shared memory end
1623 * @mem_start: Shared memory start
1624 * @base_addr: Device I/O address
1625 * @irq: Device IRQ number
1626 *
1627 * @state: Generic network queuing layer state, see netdev_state_t
1628 * @dev_list: The global list of network devices
1629 * @napi_list: List entry used for polling NAPI devices
1630 * @unreg_list: List entry when we are unregistering the
1631 * device; see the function unregister_netdev
1632 * @close_list: List entry used when we are closing the device
1633 * @ptype_all: Device-specific packet handlers for all protocols
1634 * @ptype_specific: Device-specific, protocol-specific packet handlers
1635 *
1636 * @adj_list: Directly linked devices, like slaves for bonding
1637 * @features: Currently active device features
1638 * @hw_features: User-changeable features
1639 *
1640 * @wanted_features: User-requested features
1641 * @vlan_features: Mask of features inheritable by VLAN devices
1642 *
1643 * @hw_enc_features: Mask of features inherited by encapsulating devices
1644 * This field indicates what encapsulation
1645 * offloads the hardware is capable of doing,
1646 * and drivers will need to set them appropriately.
1647 *
1648 * @mpls_features: Mask of features inheritable by MPLS
1649 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1650 *
1651 * @ifindex: interface index
1652 * @group: The group the device belongs to
1653 *
1654 * @stats: Statistics struct, which was left as a legacy, use
1655 * rtnl_link_stats64 instead
1656 *
1657 * @rx_dropped: Dropped packets by core network,
1658 * do not use this in drivers
1659 * @tx_dropped: Dropped packets by core network,
1660 * do not use this in drivers
1661 * @rx_nohandler: nohandler dropped packets by core network on
1662 * inactive devices, do not use this in drivers
1663 * @carrier_up_count: Number of times the carrier has been up
1664 * @carrier_down_count: Number of times the carrier has been down
1665 *
1666 * @wireless_handlers: List of functions to handle Wireless Extensions,
1667 * instead of ioctl,
1668 * see <net/iw_handler.h> for details.
1669 * @wireless_data: Instance data managed by the core of wireless extensions
1670 *
1671 * @netdev_ops: Includes several pointers to callbacks,
1672 * if one wants to override the ndo_*() functions
1673 * @ethtool_ops: Management operations
1674 * @l3mdev_ops: Layer 3 master device operations
1675 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1676 * discovery handling. Necessary for e.g. 6LoWPAN.
1677 * @xfrmdev_ops: Transformation offload operations
1678 * @tlsdev_ops: Transport Layer Security offload operations
1679 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1680 * of Layer 2 headers.
1681 *
1682 * @flags: Interface flags (a la BSD)
1683 * @priv_flags: Like 'flags' but invisible to userspace,
1684 * see if.h for the definitions
1685 * @gflags: Global flags ( kept as legacy )
1686 * @padded: How much padding added by alloc_netdev()
1687 * @operstate: RFC2863 operstate
1688 * @link_mode: Mapping policy to operstate
1689 * @if_port: Selectable AUI, TP, ...
1690 * @dma: DMA channel
1691 * @mtu: Interface MTU value
1692 * @min_mtu: Interface Minimum MTU value
1693 * @max_mtu: Interface Maximum MTU value
1694 * @type: Interface hardware type
1695 * @hard_header_len: Maximum hardware header length.
1696 * @min_header_len: Minimum hardware header length
1697 *
1698 * @needed_headroom: Extra headroom the hardware may need, but not in all
1699 * cases can this be guaranteed
1700 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1701 * cases can this be guaranteed. Some cases also use
1702 * LL_MAX_HEADER instead to allocate the skb
1703 *
1704 * interface address info:
1705 *
1706 * @perm_addr: Permanent hw address
1707 * @addr_assign_type: Hw address assignment type
1708 * @addr_len: Hardware address length
1709 * @upper_level: Maximum depth level of upper devices.
1710 * @lower_level: Maximum depth level of lower devices.
1711 * @neigh_priv_len: Used in neigh_alloc()
1712 * @dev_id: Used to differentiate devices that share
1713 * the same link layer address
1714 * @dev_port: Used to differentiate devices that share
1715 * the same function
1716 * @addr_list_lock: XXX: need comments on this one
1717 * @name_assign_type: network interface name assignment type
1718 * @uc_promisc: Counter that indicates promiscuous mode
1719 * has been enabled due to the need to listen to
1720 * additional unicast addresses in a device that
1721 * does not implement ndo_set_rx_mode()
1722 * @uc: unicast mac addresses
1723 * @mc: multicast mac addresses
1724 * @dev_addrs: list of device hw addresses
1725 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1726 * @promiscuity: Number of times the NIC is told to work in
1727 * promiscuous mode; if it becomes 0 the NIC will
1728 * exit promiscuous mode
1729 * @allmulti: Counter, enables or disables allmulticast mode
1730 *
1731 * @vlan_info: VLAN info
1732 * @dsa_ptr: dsa specific data
1733 * @tipc_ptr: TIPC specific data
1734 * @atalk_ptr: AppleTalk link
1735 * @ip_ptr: IPv4 specific data
1736 * @dn_ptr: DECnet specific data
1737 * @ip6_ptr: IPv6 specific data
1738 * @ax25_ptr: AX.25 specific data
1739 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1740 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1741 * device struct
1742 * @mpls_ptr: mpls_dev struct pointer
1743 *
1744 * @dev_addr: Hw address (before bcast,
1745 * because most packets are unicast)
1746 *
1747 * @_rx: Array of RX queues
1748 * @num_rx_queues: Number of RX queues
1749 * allocated at register_netdev() time
1750 * @real_num_rx_queues: Number of RX queues currently active in device
1751 * @xdp_prog: XDP sockets filter program pointer
1752 * @gro_flush_timeout: timeout for GRO layer in NAPI
1753 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1754 * allow to avoid NIC hard IRQ, on busy queues.
1755 *
1756 * @rx_handler: handler for received packets
1757 * @rx_handler_data: XXX: need comments on this one
1758 * @miniq_ingress: ingress/clsact qdisc specific data for
1759 * ingress processing
1760 * @ingress_queue: XXX: need comments on this one
1761 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1762 * @broadcast: hw bcast address
1763 *
1764 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1765 * indexed by RX queue number. Assigned by driver.
1766 * This must only be set if the ndo_rx_flow_steer
1767 * operation is defined
1768 * @index_hlist: Device index hash chain
1769 *
1770 * @_tx: Array of TX queues
1771 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1772 * @real_num_tx_queues: Number of TX queues currently active in device
1773 * @qdisc: Root qdisc from userspace point of view
1774 * @tx_queue_len: Max frames per queue allowed
1775 * @tx_global_lock: XXX: need comments on this one
1776 * @xdp_bulkq: XDP device bulk queue
1777 * @xps_cpus_map: all CPUs map for XPS device
1778 * @xps_rxqs_map: all RXQs map for XPS device
1779 *
1780 * @xps_maps: XXX: need comments on this one
1781 * @miniq_egress: clsact qdisc specific data for
1782 * egress processing
1783 * @qdisc_hash: qdisc hash table
1784 * @watchdog_timeo: Represents the timeout that is used by
1785 * the watchdog (see dev_watchdog())
1786 * @watchdog_timer: List of timers
1787 *
1788 * @proto_down_reason: reason a netdev interface is held down
1789 * @pcpu_refcnt: Number of references to this device
1790 * @todo_list: Delayed register/unregister
1791 * @link_watch_list: XXX: need comments on this one
1792 *
1793 * @reg_state: Register/unregister state machine
1794 * @dismantle: Device is going to be freed
1795 * @rtnl_link_state: This enum represents the phases of creating
1796 * a new link
1797 *
1798 * @needs_free_netdev: Should unregister perform free_netdev?
1799 * @priv_destructor: Called from unregister
1800 * @npinfo: XXX: need comments on this one
1801 * @nd_net: Network namespace this network device is inside
1802 *
1803 * @ml_priv: Mid-layer private
1804 * @ml_priv_type: Mid-layer private type
1805 * @lstats: Loopback statistics
1806 * @tstats: Tunnel statistics
1807 * @dstats: Dummy statistics
1808 * @vstats: Virtual ethernet statistics
1809 *
1810 * @garp_port: GARP
1811 * @mrp_port: MRP
1812 *
1813 * @dev: Class/net/name entry
1814 * @sysfs_groups: Space for optional device, statistics and wireless
1815 * sysfs groups
1816 *
1817 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1818 * @rtnl_link_ops: Rtnl_link_ops
1819 *
1820 * @gso_max_size: Maximum size of generic segmentation offload
1821 * @gso_max_segs: Maximum number of segments that can be passed to the
1822 * NIC for GSO
1823 *
1824 * @dcbnl_ops: Data Center Bridging netlink ops
1825 * @num_tc: Number of traffic classes in the net device
1826 * @tc_to_txq: XXX: need comments on this one
1827 * @prio_tc_map: XXX: need comments on this one
1828 *
1829 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1830 *
1831 * @priomap: XXX: need comments on this one
1832 * @phydev: Physical device may attach itself
1833 * for hardware timestamping
1834 * @sfp_bus: attached &struct sfp_bus structure.
1835 *
1836 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1837 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1838 *
1839 * @proto_down: protocol port state information can be sent to the
1840 * switch driver and used to set the phys state of the
1841 * switch port.
1842 *
1843 * @wol_enabled: Wake-on-LAN is enabled
1844 *
1845 * @net_notifier_list: List of per-net netdev notifier block
1846 * that follow this device when it is moved
1847 * to another network namespace.
1848 *
1849 * @macsec_ops: MACsec offloading ops
1850 *
1851 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1852 * offload capabilities of the device
1853 * @udp_tunnel_nic: UDP tunnel offload state
1854 * @xdp_state: stores info on attached XDP BPF programs
1855 *
1856 * @nested_level: Used as as a parameter of spin_lock_nested() of
1857 * dev->addr_list_lock.
1858 * @unlink_list: As netif_addr_lock() can be called recursively,
1859 * keep a list of interfaces to be deleted.
1860 *
1861 * FIXME: cleanup struct net_device such that network protocol info
1862 * moves out.
1863 */
1864
1865 struct net_device {
1866 char name[IFNAMSIZ];
1867 struct netdev_name_node *name_node;
1868 struct dev_ifalias __rcu *ifalias;
1869 /*
1870 * I/O specific fields
1871 * FIXME: Merge these and struct ifmap into one
1872 */
1873 unsigned long mem_end;
1874 unsigned long mem_start;
1875 unsigned long base_addr;
1876 int irq;
1877
1878 /*
1879 * Some hardware also needs these fields (state,dev_list,
1880 * napi_list,unreg_list,close_list) but they are not
1881 * part of the usual set specified in Space.c.
1882 */
1883
1884 unsigned long state;
1885
1886 struct list_head dev_list;
1887 struct list_head napi_list;
1888 struct list_head unreg_list;
1889 struct list_head close_list;
1890 struct list_head ptype_all;
1891 struct list_head ptype_specific;
1892
1893 struct {
1894 struct list_head upper;
1895 struct list_head lower;
1896 } adj_list;
1897
1898 netdev_features_t features;
1899 netdev_features_t hw_features;
1900 netdev_features_t wanted_features;
1901 netdev_features_t vlan_features;
1902 netdev_features_t hw_enc_features;
1903 netdev_features_t mpls_features;
1904 netdev_features_t gso_partial_features;
1905
1906 int ifindex;
1907 int group;
1908
1909 struct net_device_stats stats;
1910
1911 atomic_long_t rx_dropped;
1912 atomic_long_t tx_dropped;
1913 atomic_long_t rx_nohandler;
1914
1915 /* Stats to monitor link on/off, flapping */
1916 atomic_t carrier_up_count;
1917 atomic_t carrier_down_count;
1918
1919 #ifdef CONFIG_WIRELESS_EXT
1920 const struct iw_handler_def *wireless_handlers;
1921 struct iw_public_data *wireless_data;
1922 #endif
1923 const struct net_device_ops *netdev_ops;
1924 const struct ethtool_ops *ethtool_ops;
1925 #ifdef CONFIG_NET_L3_MASTER_DEV
1926 const struct l3mdev_ops *l3mdev_ops;
1927 #endif
1928 #if IS_ENABLED(CONFIG_IPV6)
1929 const struct ndisc_ops *ndisc_ops;
1930 #endif
1931
1932 #ifdef CONFIG_XFRM_OFFLOAD
1933 const struct xfrmdev_ops *xfrmdev_ops;
1934 #endif
1935
1936 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1937 const struct tlsdev_ops *tlsdev_ops;
1938 #endif
1939
1940 const struct header_ops *header_ops;
1941
1942 unsigned int flags;
1943 unsigned int priv_flags;
1944
1945 unsigned short gflags;
1946 unsigned short padded;
1947
1948 unsigned char operstate;
1949 unsigned char link_mode;
1950
1951 unsigned char if_port;
1952 unsigned char dma;
1953
1954 /* Note : dev->mtu is often read without holding a lock.
1955 * Writers usually hold RTNL.
1956 * It is recommended to use READ_ONCE() to annotate the reads,
1957 * and to use WRITE_ONCE() to annotate the writes.
1958 */
1959 unsigned int mtu;
1960 unsigned int min_mtu;
1961 unsigned int max_mtu;
1962 unsigned short type;
1963 unsigned short hard_header_len;
1964 unsigned char min_header_len;
1965 unsigned char name_assign_type;
1966
1967 unsigned short needed_headroom;
1968 unsigned short needed_tailroom;
1969
1970 /* Interface address info. */
1971 unsigned char perm_addr[MAX_ADDR_LEN];
1972 unsigned char addr_assign_type;
1973 unsigned char addr_len;
1974 unsigned char upper_level;
1975 unsigned char lower_level;
1976
1977 unsigned short neigh_priv_len;
1978 unsigned short dev_id;
1979 unsigned short dev_port;
1980 spinlock_t addr_list_lock;
1981
1982 struct netdev_hw_addr_list uc;
1983 struct netdev_hw_addr_list mc;
1984 struct netdev_hw_addr_list dev_addrs;
1985
1986 #ifdef CONFIG_SYSFS
1987 struct kset *queues_kset;
1988 #endif
1989 #ifdef CONFIG_LOCKDEP
1990 struct list_head unlink_list;
1991 #endif
1992 unsigned int promiscuity;
1993 unsigned int allmulti;
1994 bool uc_promisc;
1995 #ifdef CONFIG_LOCKDEP
1996 unsigned char nested_level;
1997 #endif
1998
1999
2000 /* Protocol-specific pointers */
2001
2002 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2003 struct vlan_info __rcu *vlan_info;
2004 #endif
2005 #if IS_ENABLED(CONFIG_NET_DSA)
2006 struct dsa_port *dsa_ptr;
2007 #endif
2008 #if IS_ENABLED(CONFIG_TIPC)
2009 struct tipc_bearer __rcu *tipc_ptr;
2010 #endif
2011 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2012 void *atalk_ptr;
2013 #endif
2014 struct in_device __rcu *ip_ptr;
2015 #if IS_ENABLED(CONFIG_DECNET)
2016 struct dn_dev __rcu *dn_ptr;
2017 #endif
2018 struct inet6_dev __rcu *ip6_ptr;
2019 #if IS_ENABLED(CONFIG_AX25)
2020 void *ax25_ptr;
2021 #endif
2022 struct wireless_dev *ieee80211_ptr;
2023 struct wpan_dev *ieee802154_ptr;
2024 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2025 struct mpls_dev __rcu *mpls_ptr;
2026 #endif
2027
2028 /*
2029 * Cache lines mostly used on receive path (including eth_type_trans())
2030 */
2031 /* Interface address info used in eth_type_trans() */
2032 unsigned char *dev_addr;
2033
2034 struct netdev_rx_queue *_rx;
2035 unsigned int num_rx_queues;
2036 unsigned int real_num_rx_queues;
2037
2038 struct bpf_prog __rcu *xdp_prog;
2039 unsigned long gro_flush_timeout;
2040 int napi_defer_hard_irqs;
2041 rx_handler_func_t __rcu *rx_handler;
2042 void __rcu *rx_handler_data;
2043
2044 #ifdef CONFIG_NET_CLS_ACT
2045 struct mini_Qdisc __rcu *miniq_ingress;
2046 #endif
2047 struct netdev_queue __rcu *ingress_queue;
2048 #ifdef CONFIG_NETFILTER_INGRESS
2049 struct nf_hook_entries __rcu *nf_hooks_ingress;
2050 #endif
2051
2052 unsigned char broadcast[MAX_ADDR_LEN];
2053 #ifdef CONFIG_RFS_ACCEL
2054 struct cpu_rmap *rx_cpu_rmap;
2055 #endif
2056 struct hlist_node index_hlist;
2057
2058 /*
2059 * Cache lines mostly used on transmit path
2060 */
2061 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2062 unsigned int num_tx_queues;
2063 unsigned int real_num_tx_queues;
2064 struct Qdisc *qdisc;
2065 unsigned int tx_queue_len;
2066 spinlock_t tx_global_lock;
2067
2068 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2069
2070 #ifdef CONFIG_XPS
2071 struct xps_dev_maps __rcu *xps_cpus_map;
2072 struct xps_dev_maps __rcu *xps_rxqs_map;
2073 #endif
2074 #ifdef CONFIG_NET_CLS_ACT
2075 struct mini_Qdisc __rcu *miniq_egress;
2076 #endif
2077
2078 #ifdef CONFIG_NET_SCHED
2079 DECLARE_HASHTABLE (qdisc_hash, 4);
2080 #endif
2081 /* These may be needed for future network-power-down code. */
2082 struct timer_list watchdog_timer;
2083 int watchdog_timeo;
2084
2085 u32 proto_down_reason;
2086
2087 struct list_head todo_list;
2088 int __percpu *pcpu_refcnt;
2089
2090 struct list_head link_watch_list;
2091
2092 enum { NETREG_UNINITIALIZED=0,
2093 NETREG_REGISTERED, /* completed register_netdevice */
2094 NETREG_UNREGISTERING, /* called unregister_netdevice */
2095 NETREG_UNREGISTERED, /* completed unregister todo */
2096 NETREG_RELEASED, /* called free_netdev */
2097 NETREG_DUMMY, /* dummy device for NAPI poll */
2098 } reg_state:8;
2099
2100 bool dismantle;
2101
2102 enum {
2103 RTNL_LINK_INITIALIZED,
2104 RTNL_LINK_INITIALIZING,
2105 } rtnl_link_state:16;
2106
2107 bool needs_free_netdev;
2108 void (*priv_destructor)(struct net_device *dev);
2109
2110 #ifdef CONFIG_NETPOLL
2111 struct netpoll_info __rcu *npinfo;
2112 #endif
2113
2114 possible_net_t nd_net;
2115
2116 /* mid-layer private */
2117 void *ml_priv;
2118 enum netdev_ml_priv_type ml_priv_type;
2119
2120 union {
2121 struct pcpu_lstats __percpu *lstats;
2122 struct pcpu_sw_netstats __percpu *tstats;
2123 struct pcpu_dstats __percpu *dstats;
2124 };
2125
2126 #if IS_ENABLED(CONFIG_GARP)
2127 struct garp_port __rcu *garp_port;
2128 #endif
2129 #if IS_ENABLED(CONFIG_MRP)
2130 struct mrp_port __rcu *mrp_port;
2131 #endif
2132
2133 struct device dev;
2134 const struct attribute_group *sysfs_groups[4];
2135 const struct attribute_group *sysfs_rx_queue_group;
2136
2137 const struct rtnl_link_ops *rtnl_link_ops;
2138
2139 /* for setting kernel sock attribute on TCP connection setup */
2140 #define GSO_MAX_SIZE 65536
2141 unsigned int gso_max_size;
2142 #define GSO_MAX_SEGS 65535
2143 u16 gso_max_segs;
2144
2145 #ifdef CONFIG_DCB
2146 const struct dcbnl_rtnl_ops *dcbnl_ops;
2147 #endif
2148 s16 num_tc;
2149 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2150 u8 prio_tc_map[TC_BITMASK + 1];
2151
2152 #if IS_ENABLED(CONFIG_FCOE)
2153 unsigned int fcoe_ddp_xid;
2154 #endif
2155 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2156 struct netprio_map __rcu *priomap;
2157 #endif
2158 struct phy_device *phydev;
2159 struct sfp_bus *sfp_bus;
2160 struct lock_class_key *qdisc_tx_busylock;
2161 struct lock_class_key *qdisc_running_key;
2162 bool proto_down;
2163 unsigned wol_enabled:1;
2164
2165 struct list_head net_notifier_list;
2166
2167 #if IS_ENABLED(CONFIG_MACSEC)
2168 /* MACsec management functions */
2169 const struct macsec_ops *macsec_ops;
2170 #endif
2171 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2172 struct udp_tunnel_nic *udp_tunnel_nic;
2173
2174 /* protected by rtnl_lock */
2175 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2176 };
2177 #define to_net_dev(d) container_of(d, struct net_device, dev)
2178
netif_elide_gro(const struct net_device * dev)2179 static inline bool netif_elide_gro(const struct net_device *dev)
2180 {
2181 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2182 return true;
2183 return false;
2184 }
2185
2186 #define NETDEV_ALIGN 32
2187
2188 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2189 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2190 {
2191 return dev->prio_tc_map[prio & TC_BITMASK];
2192 }
2193
2194 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2195 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2196 {
2197 if (tc >= dev->num_tc)
2198 return -EINVAL;
2199
2200 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2201 return 0;
2202 }
2203
2204 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2205 void netdev_reset_tc(struct net_device *dev);
2206 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2207 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2208
2209 static inline
netdev_get_num_tc(struct net_device * dev)2210 int netdev_get_num_tc(struct net_device *dev)
2211 {
2212 return dev->num_tc;
2213 }
2214
net_prefetch(void * p)2215 static inline void net_prefetch(void *p)
2216 {
2217 prefetch(p);
2218 #if L1_CACHE_BYTES < 128
2219 prefetch((u8 *)p + L1_CACHE_BYTES);
2220 #endif
2221 }
2222
net_prefetchw(void * p)2223 static inline void net_prefetchw(void *p)
2224 {
2225 prefetchw(p);
2226 #if L1_CACHE_BYTES < 128
2227 prefetchw((u8 *)p + L1_CACHE_BYTES);
2228 #endif
2229 }
2230
2231 void netdev_unbind_sb_channel(struct net_device *dev,
2232 struct net_device *sb_dev);
2233 int netdev_bind_sb_channel_queue(struct net_device *dev,
2234 struct net_device *sb_dev,
2235 u8 tc, u16 count, u16 offset);
2236 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2237 static inline int netdev_get_sb_channel(struct net_device *dev)
2238 {
2239 return max_t(int, -dev->num_tc, 0);
2240 }
2241
2242 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2243 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2244 unsigned int index)
2245 {
2246 return &dev->_tx[index];
2247 }
2248
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2249 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2250 const struct sk_buff *skb)
2251 {
2252 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2253 }
2254
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2255 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2256 void (*f)(struct net_device *,
2257 struct netdev_queue *,
2258 void *),
2259 void *arg)
2260 {
2261 unsigned int i;
2262
2263 for (i = 0; i < dev->num_tx_queues; i++)
2264 f(dev, &dev->_tx[i], arg);
2265 }
2266
2267 #define netdev_lockdep_set_classes(dev) \
2268 { \
2269 static struct lock_class_key qdisc_tx_busylock_key; \
2270 static struct lock_class_key qdisc_running_key; \
2271 static struct lock_class_key qdisc_xmit_lock_key; \
2272 static struct lock_class_key dev_addr_list_lock_key; \
2273 unsigned int i; \
2274 \
2275 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2276 (dev)->qdisc_running_key = &qdisc_running_key; \
2277 lockdep_set_class(&(dev)->addr_list_lock, \
2278 &dev_addr_list_lock_key); \
2279 for (i = 0; i < (dev)->num_tx_queues; i++) \
2280 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2281 &qdisc_xmit_lock_key); \
2282 }
2283
2284 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2285 struct net_device *sb_dev);
2286 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2287 struct sk_buff *skb,
2288 struct net_device *sb_dev);
2289
2290 /* returns the headroom that the master device needs to take in account
2291 * when forwarding to this dev
2292 */
netdev_get_fwd_headroom(struct net_device * dev)2293 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2294 {
2295 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2296 }
2297
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2298 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2299 {
2300 if (dev->netdev_ops->ndo_set_rx_headroom)
2301 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2302 }
2303
2304 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2305 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2306 {
2307 netdev_set_rx_headroom(dev, -1);
2308 }
2309
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2310 static inline void *netdev_get_ml_priv(struct net_device *dev,
2311 enum netdev_ml_priv_type type)
2312 {
2313 if (dev->ml_priv_type != type)
2314 return NULL;
2315
2316 return dev->ml_priv;
2317 }
2318
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2319 static inline void netdev_set_ml_priv(struct net_device *dev,
2320 void *ml_priv,
2321 enum netdev_ml_priv_type type)
2322 {
2323 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2324 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2325 dev->ml_priv_type, type);
2326 WARN(!dev->ml_priv_type && dev->ml_priv,
2327 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2328
2329 dev->ml_priv = ml_priv;
2330 dev->ml_priv_type = type;
2331 }
2332
2333 /*
2334 * Net namespace inlines
2335 */
2336 static inline
dev_net(const struct net_device * dev)2337 struct net *dev_net(const struct net_device *dev)
2338 {
2339 return read_pnet(&dev->nd_net);
2340 }
2341
2342 static inline
dev_net_set(struct net_device * dev,struct net * net)2343 void dev_net_set(struct net_device *dev, struct net *net)
2344 {
2345 write_pnet(&dev->nd_net, net);
2346 }
2347
2348 /**
2349 * netdev_priv - access network device private data
2350 * @dev: network device
2351 *
2352 * Get network device private data
2353 */
netdev_priv(const struct net_device * dev)2354 static inline void *netdev_priv(const struct net_device *dev)
2355 {
2356 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2357 }
2358
2359 /* Set the sysfs physical device reference for the network logical device
2360 * if set prior to registration will cause a symlink during initialization.
2361 */
2362 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2363
2364 /* Set the sysfs device type for the network logical device to allow
2365 * fine-grained identification of different network device types. For
2366 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2367 */
2368 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2369
2370 /* Default NAPI poll() weight
2371 * Device drivers are strongly advised to not use bigger value
2372 */
2373 #define NAPI_POLL_WEIGHT 64
2374
2375 /**
2376 * netif_napi_add - initialize a NAPI context
2377 * @dev: network device
2378 * @napi: NAPI context
2379 * @poll: polling function
2380 * @weight: default weight
2381 *
2382 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2383 * *any* of the other NAPI-related functions.
2384 */
2385 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2386 int (*poll)(struct napi_struct *, int), int weight);
2387
2388 /**
2389 * netif_tx_napi_add - initialize a NAPI context
2390 * @dev: network device
2391 * @napi: NAPI context
2392 * @poll: polling function
2393 * @weight: default weight
2394 *
2395 * This variant of netif_napi_add() should be used from drivers using NAPI
2396 * to exclusively poll a TX queue.
2397 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2398 */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2399 static inline void netif_tx_napi_add(struct net_device *dev,
2400 struct napi_struct *napi,
2401 int (*poll)(struct napi_struct *, int),
2402 int weight)
2403 {
2404 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2405 netif_napi_add(dev, napi, poll, weight);
2406 }
2407
2408 /**
2409 * __netif_napi_del - remove a NAPI context
2410 * @napi: NAPI context
2411 *
2412 * Warning: caller must observe RCU grace period before freeing memory
2413 * containing @napi. Drivers might want to call this helper to combine
2414 * all the needed RCU grace periods into a single one.
2415 */
2416 void __netif_napi_del(struct napi_struct *napi);
2417
2418 /**
2419 * netif_napi_del - remove a NAPI context
2420 * @napi: NAPI context
2421 *
2422 * netif_napi_del() removes a NAPI context from the network device NAPI list
2423 */
netif_napi_del(struct napi_struct * napi)2424 static inline void netif_napi_del(struct napi_struct *napi)
2425 {
2426 __netif_napi_del(napi);
2427 synchronize_net();
2428 }
2429
2430 struct napi_gro_cb {
2431 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2432 void *frag0;
2433
2434 /* Length of frag0. */
2435 unsigned int frag0_len;
2436
2437 /* This indicates where we are processing relative to skb->data. */
2438 int data_offset;
2439
2440 /* This is non-zero if the packet cannot be merged with the new skb. */
2441 u16 flush;
2442
2443 /* Save the IP ID here and check when we get to the transport layer */
2444 u16 flush_id;
2445
2446 /* Number of segments aggregated. */
2447 u16 count;
2448
2449 /* Start offset for remote checksum offload */
2450 u16 gro_remcsum_start;
2451
2452 /* jiffies when first packet was created/queued */
2453 unsigned long age;
2454
2455 /* Used in ipv6_gro_receive() and foo-over-udp */
2456 u16 proto;
2457
2458 /* This is non-zero if the packet may be of the same flow. */
2459 u8 same_flow:1;
2460
2461 /* Used in tunnel GRO receive */
2462 u8 encap_mark:1;
2463
2464 /* GRO checksum is valid */
2465 u8 csum_valid:1;
2466
2467 /* Number of checksums via CHECKSUM_UNNECESSARY */
2468 u8 csum_cnt:3;
2469
2470 /* Free the skb? */
2471 u8 free:2;
2472 #define NAPI_GRO_FREE 1
2473 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2474
2475 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2476 u8 is_ipv6:1;
2477
2478 /* Used in GRE, set in fou/gue_gro_receive */
2479 u8 is_fou:1;
2480
2481 /* Used to determine if flush_id can be ignored */
2482 u8 is_atomic:1;
2483
2484 /* Number of gro_receive callbacks this packet already went through */
2485 u8 recursion_counter:4;
2486
2487 /* GRO is done by frag_list pointer chaining. */
2488 u8 is_flist:1;
2489
2490 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2491 __wsum csum;
2492
2493 /* used in skb_gro_receive() slow path */
2494 struct sk_buff *last;
2495 };
2496
2497 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2498
2499 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2500 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2501 {
2502 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2503 }
2504
2505 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2506 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2507 struct list_head *head,
2508 struct sk_buff *skb)
2509 {
2510 if (unlikely(gro_recursion_inc_test(skb))) {
2511 NAPI_GRO_CB(skb)->flush |= 1;
2512 return NULL;
2513 }
2514
2515 return cb(head, skb);
2516 }
2517
2518 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2519 struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2520 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2521 struct sock *sk,
2522 struct list_head *head,
2523 struct sk_buff *skb)
2524 {
2525 if (unlikely(gro_recursion_inc_test(skb))) {
2526 NAPI_GRO_CB(skb)->flush |= 1;
2527 return NULL;
2528 }
2529
2530 return cb(sk, head, skb);
2531 }
2532
2533 struct packet_type {
2534 __be16 type; /* This is really htons(ether_type). */
2535 bool ignore_outgoing;
2536 struct net_device *dev; /* NULL is wildcarded here */
2537 int (*func) (struct sk_buff *,
2538 struct net_device *,
2539 struct packet_type *,
2540 struct net_device *);
2541 void (*list_func) (struct list_head *,
2542 struct packet_type *,
2543 struct net_device *);
2544 bool (*id_match)(struct packet_type *ptype,
2545 struct sock *sk);
2546 void *af_packet_priv;
2547 struct list_head list;
2548 };
2549
2550 struct offload_callbacks {
2551 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2552 netdev_features_t features);
2553 struct sk_buff *(*gro_receive)(struct list_head *head,
2554 struct sk_buff *skb);
2555 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2556 };
2557
2558 struct packet_offload {
2559 __be16 type; /* This is really htons(ether_type). */
2560 u16 priority;
2561 struct offload_callbacks callbacks;
2562 struct list_head list;
2563 };
2564
2565 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2566 struct pcpu_sw_netstats {
2567 u64 rx_packets;
2568 u64 rx_bytes;
2569 u64 tx_packets;
2570 u64 tx_bytes;
2571 struct u64_stats_sync syncp;
2572 } __aligned(4 * sizeof(u64));
2573
2574 struct pcpu_lstats {
2575 u64_stats_t packets;
2576 u64_stats_t bytes;
2577 struct u64_stats_sync syncp;
2578 } __aligned(2 * sizeof(u64));
2579
2580 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2581
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2582 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2583 {
2584 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2585
2586 u64_stats_update_begin(&tstats->syncp);
2587 tstats->rx_bytes += len;
2588 tstats->rx_packets++;
2589 u64_stats_update_end(&tstats->syncp);
2590 }
2591
dev_lstats_add(struct net_device * dev,unsigned int len)2592 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2593 {
2594 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2595
2596 u64_stats_update_begin(&lstats->syncp);
2597 u64_stats_add(&lstats->bytes, len);
2598 u64_stats_inc(&lstats->packets);
2599 u64_stats_update_end(&lstats->syncp);
2600 }
2601
2602 #define __netdev_alloc_pcpu_stats(type, gfp) \
2603 ({ \
2604 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2605 if (pcpu_stats) { \
2606 int __cpu; \
2607 for_each_possible_cpu(__cpu) { \
2608 typeof(type) *stat; \
2609 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2610 u64_stats_init(&stat->syncp); \
2611 } \
2612 } \
2613 pcpu_stats; \
2614 })
2615
2616 #define netdev_alloc_pcpu_stats(type) \
2617 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2618
2619 enum netdev_lag_tx_type {
2620 NETDEV_LAG_TX_TYPE_UNKNOWN,
2621 NETDEV_LAG_TX_TYPE_RANDOM,
2622 NETDEV_LAG_TX_TYPE_BROADCAST,
2623 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2624 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2625 NETDEV_LAG_TX_TYPE_HASH,
2626 };
2627
2628 enum netdev_lag_hash {
2629 NETDEV_LAG_HASH_NONE,
2630 NETDEV_LAG_HASH_L2,
2631 NETDEV_LAG_HASH_L34,
2632 NETDEV_LAG_HASH_L23,
2633 NETDEV_LAG_HASH_E23,
2634 NETDEV_LAG_HASH_E34,
2635 NETDEV_LAG_HASH_UNKNOWN,
2636 };
2637
2638 struct netdev_lag_upper_info {
2639 enum netdev_lag_tx_type tx_type;
2640 enum netdev_lag_hash hash_type;
2641 };
2642
2643 struct netdev_lag_lower_state_info {
2644 u8 link_up : 1,
2645 tx_enabled : 1;
2646 };
2647
2648 #include <linux/notifier.h>
2649
2650 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2651 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2652 * adding new types.
2653 */
2654 enum netdev_cmd {
2655 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2656 NETDEV_DOWN,
2657 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2658 detected a hardware crash and restarted
2659 - we can use this eg to kick tcp sessions
2660 once done */
2661 NETDEV_CHANGE, /* Notify device state change */
2662 NETDEV_REGISTER,
2663 NETDEV_UNREGISTER,
2664 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2665 NETDEV_CHANGEADDR, /* notify after the address change */
2666 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2667 NETDEV_GOING_DOWN,
2668 NETDEV_CHANGENAME,
2669 NETDEV_FEAT_CHANGE,
2670 NETDEV_BONDING_FAILOVER,
2671 NETDEV_PRE_UP,
2672 NETDEV_PRE_TYPE_CHANGE,
2673 NETDEV_POST_TYPE_CHANGE,
2674 NETDEV_POST_INIT,
2675 NETDEV_RELEASE,
2676 NETDEV_NOTIFY_PEERS,
2677 NETDEV_JOIN,
2678 NETDEV_CHANGEUPPER,
2679 NETDEV_RESEND_IGMP,
2680 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2681 NETDEV_CHANGEINFODATA,
2682 NETDEV_BONDING_INFO,
2683 NETDEV_PRECHANGEUPPER,
2684 NETDEV_CHANGELOWERSTATE,
2685 NETDEV_UDP_TUNNEL_PUSH_INFO,
2686 NETDEV_UDP_TUNNEL_DROP_INFO,
2687 NETDEV_CHANGE_TX_QUEUE_LEN,
2688 NETDEV_CVLAN_FILTER_PUSH_INFO,
2689 NETDEV_CVLAN_FILTER_DROP_INFO,
2690 NETDEV_SVLAN_FILTER_PUSH_INFO,
2691 NETDEV_SVLAN_FILTER_DROP_INFO,
2692 };
2693 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2694
2695 int register_netdevice_notifier(struct notifier_block *nb);
2696 int unregister_netdevice_notifier(struct notifier_block *nb);
2697 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2698 int unregister_netdevice_notifier_net(struct net *net,
2699 struct notifier_block *nb);
2700 int register_netdevice_notifier_dev_net(struct net_device *dev,
2701 struct notifier_block *nb,
2702 struct netdev_net_notifier *nn);
2703 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2704 struct notifier_block *nb,
2705 struct netdev_net_notifier *nn);
2706
2707 struct netdev_notifier_info {
2708 struct net_device *dev;
2709 struct netlink_ext_ack *extack;
2710 };
2711
2712 struct netdev_notifier_info_ext {
2713 struct netdev_notifier_info info; /* must be first */
2714 union {
2715 u32 mtu;
2716 } ext;
2717 };
2718
2719 struct netdev_notifier_change_info {
2720 struct netdev_notifier_info info; /* must be first */
2721 unsigned int flags_changed;
2722 };
2723
2724 struct netdev_notifier_changeupper_info {
2725 struct netdev_notifier_info info; /* must be first */
2726 struct net_device *upper_dev; /* new upper dev */
2727 bool master; /* is upper dev master */
2728 bool linking; /* is the notification for link or unlink */
2729 void *upper_info; /* upper dev info */
2730 };
2731
2732 struct netdev_notifier_changelowerstate_info {
2733 struct netdev_notifier_info info; /* must be first */
2734 void *lower_state_info; /* is lower dev state */
2735 };
2736
2737 struct netdev_notifier_pre_changeaddr_info {
2738 struct netdev_notifier_info info; /* must be first */
2739 const unsigned char *dev_addr;
2740 };
2741
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2742 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2743 struct net_device *dev)
2744 {
2745 info->dev = dev;
2746 info->extack = NULL;
2747 }
2748
2749 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2750 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2751 {
2752 return info->dev;
2753 }
2754
2755 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2756 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2757 {
2758 return info->extack;
2759 }
2760
2761 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2762
2763
2764 extern rwlock_t dev_base_lock; /* Device list lock */
2765
2766 #define for_each_netdev(net, d) \
2767 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2768 #define for_each_netdev_reverse(net, d) \
2769 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2770 #define for_each_netdev_rcu(net, d) \
2771 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2772 #define for_each_netdev_safe(net, d, n) \
2773 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2774 #define for_each_netdev_continue(net, d) \
2775 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2776 #define for_each_netdev_continue_reverse(net, d) \
2777 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2778 dev_list)
2779 #define for_each_netdev_continue_rcu(net, d) \
2780 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2781 #define for_each_netdev_in_bond_rcu(bond, slave) \
2782 for_each_netdev_rcu(&init_net, slave) \
2783 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2784 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2785
next_net_device(struct net_device * dev)2786 static inline struct net_device *next_net_device(struct net_device *dev)
2787 {
2788 struct list_head *lh;
2789 struct net *net;
2790
2791 net = dev_net(dev);
2792 lh = dev->dev_list.next;
2793 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2794 }
2795
next_net_device_rcu(struct net_device * dev)2796 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2797 {
2798 struct list_head *lh;
2799 struct net *net;
2800
2801 net = dev_net(dev);
2802 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2803 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2804 }
2805
first_net_device(struct net * net)2806 static inline struct net_device *first_net_device(struct net *net)
2807 {
2808 return list_empty(&net->dev_base_head) ? NULL :
2809 net_device_entry(net->dev_base_head.next);
2810 }
2811
first_net_device_rcu(struct net * net)2812 static inline struct net_device *first_net_device_rcu(struct net *net)
2813 {
2814 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2815
2816 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2817 }
2818
2819 int netdev_boot_setup_check(struct net_device *dev);
2820 unsigned long netdev_boot_base(const char *prefix, int unit);
2821 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2822 const char *hwaddr);
2823 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2825 void dev_add_pack(struct packet_type *pt);
2826 void dev_remove_pack(struct packet_type *pt);
2827 void __dev_remove_pack(struct packet_type *pt);
2828 void dev_add_offload(struct packet_offload *po);
2829 void dev_remove_offload(struct packet_offload *po);
2830
2831 int dev_get_iflink(const struct net_device *dev);
2832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2833 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2834 unsigned short mask);
2835 struct net_device *dev_get_by_name(struct net *net, const char *name);
2836 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2837 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2838 int dev_alloc_name(struct net_device *dev, const char *name);
2839 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2840 void dev_close(struct net_device *dev);
2841 void dev_close_many(struct list_head *head, bool unlink);
2842 void dev_disable_lro(struct net_device *dev);
2843 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2844 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2845 struct net_device *sb_dev);
2846 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2847 struct net_device *sb_dev);
2848
2849 int dev_queue_xmit(struct sk_buff *skb);
2850 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2851 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2852
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)2853 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2854 {
2855 int ret;
2856
2857 ret = __dev_direct_xmit(skb, queue_id);
2858 if (!dev_xmit_complete(ret))
2859 kfree_skb(skb);
2860 return ret;
2861 }
2862
2863 int register_netdevice(struct net_device *dev);
2864 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2865 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2866 static inline void unregister_netdevice(struct net_device *dev)
2867 {
2868 unregister_netdevice_queue(dev, NULL);
2869 }
2870
2871 int netdev_refcnt_read(const struct net_device *dev);
2872 void free_netdev(struct net_device *dev);
2873 void netdev_freemem(struct net_device *dev);
2874 int init_dummy_netdev(struct net_device *dev);
2875
2876 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2877 struct sk_buff *skb,
2878 bool all_slaves);
2879 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2880 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2881 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2882 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2883 int netdev_get_name(struct net *net, char *name, int ifindex);
2884 int dev_restart(struct net_device *dev);
2885 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2886 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2887
skb_gro_offset(const struct sk_buff * skb)2888 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2889 {
2890 return NAPI_GRO_CB(skb)->data_offset;
2891 }
2892
skb_gro_len(const struct sk_buff * skb)2893 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2894 {
2895 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2896 }
2897
skb_gro_pull(struct sk_buff * skb,unsigned int len)2898 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2899 {
2900 NAPI_GRO_CB(skb)->data_offset += len;
2901 }
2902
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2903 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2904 unsigned int offset)
2905 {
2906 return NAPI_GRO_CB(skb)->frag0 + offset;
2907 }
2908
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2909 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2910 {
2911 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2912 }
2913
skb_gro_frag0_invalidate(struct sk_buff * skb)2914 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2915 {
2916 NAPI_GRO_CB(skb)->frag0 = NULL;
2917 NAPI_GRO_CB(skb)->frag0_len = 0;
2918 }
2919
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2920 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2921 unsigned int offset)
2922 {
2923 if (!pskb_may_pull(skb, hlen))
2924 return NULL;
2925
2926 skb_gro_frag0_invalidate(skb);
2927 return skb->data + offset;
2928 }
2929
skb_gro_network_header(struct sk_buff * skb)2930 static inline void *skb_gro_network_header(struct sk_buff *skb)
2931 {
2932 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2933 skb_network_offset(skb);
2934 }
2935
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2936 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2937 const void *start, unsigned int len)
2938 {
2939 if (NAPI_GRO_CB(skb)->csum_valid)
2940 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2941 csum_partial(start, len, 0));
2942 }
2943
2944 /* GRO checksum functions. These are logical equivalents of the normal
2945 * checksum functions (in skbuff.h) except that they operate on the GRO
2946 * offsets and fields in sk_buff.
2947 */
2948
2949 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2950
skb_at_gro_remcsum_start(struct sk_buff * skb)2951 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2952 {
2953 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2954 }
2955
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2956 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2957 bool zero_okay,
2958 __sum16 check)
2959 {
2960 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2961 skb_checksum_start_offset(skb) <
2962 skb_gro_offset(skb)) &&
2963 !skb_at_gro_remcsum_start(skb) &&
2964 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2965 (!zero_okay || check));
2966 }
2967
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2968 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2969 __wsum psum)
2970 {
2971 if (NAPI_GRO_CB(skb)->csum_valid &&
2972 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2973 return 0;
2974
2975 NAPI_GRO_CB(skb)->csum = psum;
2976
2977 return __skb_gro_checksum_complete(skb);
2978 }
2979
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2980 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2981 {
2982 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2983 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2984 NAPI_GRO_CB(skb)->csum_cnt--;
2985 } else {
2986 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2987 * verified a new top level checksum or an encapsulated one
2988 * during GRO. This saves work if we fallback to normal path.
2989 */
2990 __skb_incr_checksum_unnecessary(skb);
2991 }
2992 }
2993
2994 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2995 compute_pseudo) \
2996 ({ \
2997 __sum16 __ret = 0; \
2998 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2999 __ret = __skb_gro_checksum_validate_complete(skb, \
3000 compute_pseudo(skb, proto)); \
3001 if (!__ret) \
3002 skb_gro_incr_csum_unnecessary(skb); \
3003 __ret; \
3004 })
3005
3006 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
3007 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3008
3009 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
3010 compute_pseudo) \
3011 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3012
3013 #define skb_gro_checksum_simple_validate(skb) \
3014 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3015
__skb_gro_checksum_convert_check(struct sk_buff * skb)3016 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3017 {
3018 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3019 !NAPI_GRO_CB(skb)->csum_valid);
3020 }
3021
__skb_gro_checksum_convert(struct sk_buff * skb,__wsum pseudo)3022 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3023 __wsum pseudo)
3024 {
3025 NAPI_GRO_CB(skb)->csum = ~pseudo;
3026 NAPI_GRO_CB(skb)->csum_valid = 1;
3027 }
3028
3029 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
3030 do { \
3031 if (__skb_gro_checksum_convert_check(skb)) \
3032 __skb_gro_checksum_convert(skb, \
3033 compute_pseudo(skb, proto)); \
3034 } while (0)
3035
3036 struct gro_remcsum {
3037 int offset;
3038 __wsum delta;
3039 };
3040
skb_gro_remcsum_init(struct gro_remcsum * grc)3041 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3042 {
3043 grc->offset = 0;
3044 grc->delta = 0;
3045 }
3046
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)3047 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3048 unsigned int off, size_t hdrlen,
3049 int start, int offset,
3050 struct gro_remcsum *grc,
3051 bool nopartial)
3052 {
3053 __wsum delta;
3054 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3055
3056 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3057
3058 if (!nopartial) {
3059 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3060 return ptr;
3061 }
3062
3063 ptr = skb_gro_header_fast(skb, off);
3064 if (skb_gro_header_hard(skb, off + plen)) {
3065 ptr = skb_gro_header_slow(skb, off + plen, off);
3066 if (!ptr)
3067 return NULL;
3068 }
3069
3070 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3071 start, offset);
3072
3073 /* Adjust skb->csum since we changed the packet */
3074 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3075
3076 grc->offset = off + hdrlen + offset;
3077 grc->delta = delta;
3078
3079 return ptr;
3080 }
3081
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)3082 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3083 struct gro_remcsum *grc)
3084 {
3085 void *ptr;
3086 size_t plen = grc->offset + sizeof(u16);
3087
3088 if (!grc->delta)
3089 return;
3090
3091 ptr = skb_gro_header_fast(skb, grc->offset);
3092 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3093 ptr = skb_gro_header_slow(skb, plen, grc->offset);
3094 if (!ptr)
3095 return;
3096 }
3097
3098 remcsum_unadjust((__sum16 *)ptr, grc->delta);
3099 }
3100
3101 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3102 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3103 {
3104 if (PTR_ERR(pp) != -EINPROGRESS)
3105 NAPI_GRO_CB(skb)->flush |= flush;
3106 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3107 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3108 struct sk_buff *pp,
3109 int flush,
3110 struct gro_remcsum *grc)
3111 {
3112 if (PTR_ERR(pp) != -EINPROGRESS) {
3113 NAPI_GRO_CB(skb)->flush |= flush;
3114 skb_gro_remcsum_cleanup(skb, grc);
3115 skb->remcsum_offload = 0;
3116 }
3117 }
3118 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3119 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3120 {
3121 NAPI_GRO_CB(skb)->flush |= flush;
3122 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3123 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3124 struct sk_buff *pp,
3125 int flush,
3126 struct gro_remcsum *grc)
3127 {
3128 NAPI_GRO_CB(skb)->flush |= flush;
3129 skb_gro_remcsum_cleanup(skb, grc);
3130 skb->remcsum_offload = 0;
3131 }
3132 #endif
3133
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3134 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3135 unsigned short type,
3136 const void *daddr, const void *saddr,
3137 unsigned int len)
3138 {
3139 if (!dev->header_ops || !dev->header_ops->create)
3140 return 0;
3141
3142 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3143 }
3144
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3145 static inline int dev_parse_header(const struct sk_buff *skb,
3146 unsigned char *haddr)
3147 {
3148 const struct net_device *dev = skb->dev;
3149
3150 if (!dev->header_ops || !dev->header_ops->parse)
3151 return 0;
3152 return dev->header_ops->parse(skb, haddr);
3153 }
3154
dev_parse_header_protocol(const struct sk_buff * skb)3155 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3156 {
3157 const struct net_device *dev = skb->dev;
3158
3159 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3160 return 0;
3161 return dev->header_ops->parse_protocol(skb);
3162 }
3163
3164 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3165 static inline bool dev_validate_header(const struct net_device *dev,
3166 char *ll_header, int len)
3167 {
3168 if (likely(len >= dev->hard_header_len))
3169 return true;
3170 if (len < dev->min_header_len)
3171 return false;
3172
3173 if (capable(CAP_SYS_RAWIO)) {
3174 memset(ll_header + len, 0, dev->hard_header_len - len);
3175 return true;
3176 }
3177
3178 if (dev->header_ops && dev->header_ops->validate)
3179 return dev->header_ops->validate(ll_header, len);
3180
3181 return false;
3182 }
3183
dev_has_header(const struct net_device * dev)3184 static inline bool dev_has_header(const struct net_device *dev)
3185 {
3186 return dev->header_ops && dev->header_ops->create;
3187 }
3188
3189 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3190 int len, int size);
3191 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)3192 static inline int unregister_gifconf(unsigned int family)
3193 {
3194 return register_gifconf(family, NULL);
3195 }
3196
3197 #ifdef CONFIG_NET_FLOW_LIMIT
3198 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3199 struct sd_flow_limit {
3200 u64 count;
3201 unsigned int num_buckets;
3202 unsigned int history_head;
3203 u16 history[FLOW_LIMIT_HISTORY];
3204 u8 buckets[];
3205 };
3206
3207 extern int netdev_flow_limit_table_len;
3208 #endif /* CONFIG_NET_FLOW_LIMIT */
3209
3210 /*
3211 * Incoming packets are placed on per-CPU queues
3212 */
3213 struct softnet_data {
3214 struct list_head poll_list;
3215 struct sk_buff_head process_queue;
3216
3217 /* stats */
3218 unsigned int processed;
3219 unsigned int time_squeeze;
3220 unsigned int received_rps;
3221 #ifdef CONFIG_RPS
3222 struct softnet_data *rps_ipi_list;
3223 #endif
3224 #ifdef CONFIG_NET_FLOW_LIMIT
3225 struct sd_flow_limit __rcu *flow_limit;
3226 #endif
3227 struct Qdisc *output_queue;
3228 struct Qdisc **output_queue_tailp;
3229 struct sk_buff *completion_queue;
3230 #ifdef CONFIG_XFRM_OFFLOAD
3231 struct sk_buff_head xfrm_backlog;
3232 #endif
3233 /* written and read only by owning cpu: */
3234 struct {
3235 u16 recursion;
3236 u8 more;
3237 } xmit;
3238 #ifdef CONFIG_RPS
3239 /* input_queue_head should be written by cpu owning this struct,
3240 * and only read by other cpus. Worth using a cache line.
3241 */
3242 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3243
3244 /* Elements below can be accessed between CPUs for RPS/RFS */
3245 call_single_data_t csd ____cacheline_aligned_in_smp;
3246 struct softnet_data *rps_ipi_next;
3247 unsigned int cpu;
3248 unsigned int input_queue_tail;
3249 #endif
3250 unsigned int dropped;
3251 struct sk_buff_head input_pkt_queue;
3252 struct napi_struct backlog;
3253
3254 };
3255
input_queue_head_incr(struct softnet_data * sd)3256 static inline void input_queue_head_incr(struct softnet_data *sd)
3257 {
3258 #ifdef CONFIG_RPS
3259 sd->input_queue_head++;
3260 #endif
3261 }
3262
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3263 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3264 unsigned int *qtail)
3265 {
3266 #ifdef CONFIG_RPS
3267 *qtail = ++sd->input_queue_tail;
3268 #endif
3269 }
3270
3271 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3272
dev_recursion_level(void)3273 static inline int dev_recursion_level(void)
3274 {
3275 return this_cpu_read(softnet_data.xmit.recursion);
3276 }
3277
3278 #define XMIT_RECURSION_LIMIT 8
dev_xmit_recursion(void)3279 static inline bool dev_xmit_recursion(void)
3280 {
3281 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3282 XMIT_RECURSION_LIMIT);
3283 }
3284
dev_xmit_recursion_inc(void)3285 static inline void dev_xmit_recursion_inc(void)
3286 {
3287 __this_cpu_inc(softnet_data.xmit.recursion);
3288 }
3289
dev_xmit_recursion_dec(void)3290 static inline void dev_xmit_recursion_dec(void)
3291 {
3292 __this_cpu_dec(softnet_data.xmit.recursion);
3293 }
3294
3295 void __netif_schedule(struct Qdisc *q);
3296 void netif_schedule_queue(struct netdev_queue *txq);
3297
netif_tx_schedule_all(struct net_device * dev)3298 static inline void netif_tx_schedule_all(struct net_device *dev)
3299 {
3300 unsigned int i;
3301
3302 for (i = 0; i < dev->num_tx_queues; i++)
3303 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3304 }
3305
netif_tx_start_queue(struct netdev_queue * dev_queue)3306 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3307 {
3308 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3309 }
3310
3311 /**
3312 * netif_start_queue - allow transmit
3313 * @dev: network device
3314 *
3315 * Allow upper layers to call the device hard_start_xmit routine.
3316 */
netif_start_queue(struct net_device * dev)3317 static inline void netif_start_queue(struct net_device *dev)
3318 {
3319 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3320 }
3321
netif_tx_start_all_queues(struct net_device * dev)3322 static inline void netif_tx_start_all_queues(struct net_device *dev)
3323 {
3324 unsigned int i;
3325
3326 for (i = 0; i < dev->num_tx_queues; i++) {
3327 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3328 netif_tx_start_queue(txq);
3329 }
3330 }
3331
3332 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3333
3334 /**
3335 * netif_wake_queue - restart transmit
3336 * @dev: network device
3337 *
3338 * Allow upper layers to call the device hard_start_xmit routine.
3339 * Used for flow control when transmit resources are available.
3340 */
netif_wake_queue(struct net_device * dev)3341 static inline void netif_wake_queue(struct net_device *dev)
3342 {
3343 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3344 }
3345
netif_tx_wake_all_queues(struct net_device * dev)3346 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3347 {
3348 unsigned int i;
3349
3350 for (i = 0; i < dev->num_tx_queues; i++) {
3351 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3352 netif_tx_wake_queue(txq);
3353 }
3354 }
3355
netif_tx_stop_queue(struct netdev_queue * dev_queue)3356 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3357 {
3358 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3359 }
3360
3361 /**
3362 * netif_stop_queue - stop transmitted packets
3363 * @dev: network device
3364 *
3365 * Stop upper layers calling the device hard_start_xmit routine.
3366 * Used for flow control when transmit resources are unavailable.
3367 */
netif_stop_queue(struct net_device * dev)3368 static inline void netif_stop_queue(struct net_device *dev)
3369 {
3370 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3371 }
3372
3373 void netif_tx_stop_all_queues(struct net_device *dev);
3374
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3375 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3376 {
3377 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3378 }
3379
3380 /**
3381 * netif_queue_stopped - test if transmit queue is flowblocked
3382 * @dev: network device
3383 *
3384 * Test if transmit queue on device is currently unable to send.
3385 */
netif_queue_stopped(const struct net_device * dev)3386 static inline bool netif_queue_stopped(const struct net_device *dev)
3387 {
3388 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3389 }
3390
netif_xmit_stopped(const struct netdev_queue * dev_queue)3391 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3392 {
3393 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3394 }
3395
3396 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3397 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3398 {
3399 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3400 }
3401
3402 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3403 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3404 {
3405 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3406 }
3407
3408 /**
3409 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3410 * @dev_queue: pointer to transmit queue
3411 *
3412 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3413 * to give appropriate hint to the CPU.
3414 */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3415 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3416 {
3417 #ifdef CONFIG_BQL
3418 prefetchw(&dev_queue->dql.num_queued);
3419 #endif
3420 }
3421
3422 /**
3423 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3424 * @dev_queue: pointer to transmit queue
3425 *
3426 * BQL enabled drivers might use this helper in their TX completion path,
3427 * to give appropriate hint to the CPU.
3428 */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3429 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3430 {
3431 #ifdef CONFIG_BQL
3432 prefetchw(&dev_queue->dql.limit);
3433 #endif
3434 }
3435
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3436 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3437 unsigned int bytes)
3438 {
3439 #ifdef CONFIG_BQL
3440 dql_queued(&dev_queue->dql, bytes);
3441
3442 if (likely(dql_avail(&dev_queue->dql) >= 0))
3443 return;
3444
3445 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3446
3447 /*
3448 * The XOFF flag must be set before checking the dql_avail below,
3449 * because in netdev_tx_completed_queue we update the dql_completed
3450 * before checking the XOFF flag.
3451 */
3452 smp_mb();
3453
3454 /* check again in case another CPU has just made room avail */
3455 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3456 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3457 #endif
3458 }
3459
3460 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3461 * that they should not test BQL status themselves.
3462 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3463 * skb of a batch.
3464 * Returns true if the doorbell must be used to kick the NIC.
3465 */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3466 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3467 unsigned int bytes,
3468 bool xmit_more)
3469 {
3470 if (xmit_more) {
3471 #ifdef CONFIG_BQL
3472 dql_queued(&dev_queue->dql, bytes);
3473 #endif
3474 return netif_tx_queue_stopped(dev_queue);
3475 }
3476 netdev_tx_sent_queue(dev_queue, bytes);
3477 return true;
3478 }
3479
3480 /**
3481 * netdev_sent_queue - report the number of bytes queued to hardware
3482 * @dev: network device
3483 * @bytes: number of bytes queued to the hardware device queue
3484 *
3485 * Report the number of bytes queued for sending/completion to the network
3486 * device hardware queue. @bytes should be a good approximation and should
3487 * exactly match netdev_completed_queue() @bytes
3488 */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3489 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3490 {
3491 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3492 }
3493
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3494 static inline bool __netdev_sent_queue(struct net_device *dev,
3495 unsigned int bytes,
3496 bool xmit_more)
3497 {
3498 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3499 xmit_more);
3500 }
3501
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3502 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3503 unsigned int pkts, unsigned int bytes)
3504 {
3505 #ifdef CONFIG_BQL
3506 if (unlikely(!bytes))
3507 return;
3508
3509 dql_completed(&dev_queue->dql, bytes);
3510
3511 /*
3512 * Without the memory barrier there is a small possiblity that
3513 * netdev_tx_sent_queue will miss the update and cause the queue to
3514 * be stopped forever
3515 */
3516 smp_mb();
3517
3518 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3519 return;
3520
3521 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3522 netif_schedule_queue(dev_queue);
3523 #endif
3524 }
3525
3526 /**
3527 * netdev_completed_queue - report bytes and packets completed by device
3528 * @dev: network device
3529 * @pkts: actual number of packets sent over the medium
3530 * @bytes: actual number of bytes sent over the medium
3531 *
3532 * Report the number of bytes and packets transmitted by the network device
3533 * hardware queue over the physical medium, @bytes must exactly match the
3534 * @bytes amount passed to netdev_sent_queue()
3535 */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3536 static inline void netdev_completed_queue(struct net_device *dev,
3537 unsigned int pkts, unsigned int bytes)
3538 {
3539 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3540 }
3541
netdev_tx_reset_queue(struct netdev_queue * q)3542 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3543 {
3544 #ifdef CONFIG_BQL
3545 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3546 dql_reset(&q->dql);
3547 #endif
3548 }
3549
3550 /**
3551 * netdev_reset_queue - reset the packets and bytes count of a network device
3552 * @dev_queue: network device
3553 *
3554 * Reset the bytes and packet count of a network device and clear the
3555 * software flow control OFF bit for this network device
3556 */
netdev_reset_queue(struct net_device * dev_queue)3557 static inline void netdev_reset_queue(struct net_device *dev_queue)
3558 {
3559 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3560 }
3561
3562 /**
3563 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3564 * @dev: network device
3565 * @queue_index: given tx queue index
3566 *
3567 * Returns 0 if given tx queue index >= number of device tx queues,
3568 * otherwise returns the originally passed tx queue index.
3569 */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3570 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3571 {
3572 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3573 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3574 dev->name, queue_index,
3575 dev->real_num_tx_queues);
3576 return 0;
3577 }
3578
3579 return queue_index;
3580 }
3581
3582 /**
3583 * netif_running - test if up
3584 * @dev: network device
3585 *
3586 * Test if the device has been brought up.
3587 */
netif_running(const struct net_device * dev)3588 static inline bool netif_running(const struct net_device *dev)
3589 {
3590 return test_bit(__LINK_STATE_START, &dev->state);
3591 }
3592
3593 /*
3594 * Routines to manage the subqueues on a device. We only need start,
3595 * stop, and a check if it's stopped. All other device management is
3596 * done at the overall netdevice level.
3597 * Also test the device if we're multiqueue.
3598 */
3599
3600 /**
3601 * netif_start_subqueue - allow sending packets on subqueue
3602 * @dev: network device
3603 * @queue_index: sub queue index
3604 *
3605 * Start individual transmit queue of a device with multiple transmit queues.
3606 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3607 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3608 {
3609 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3610
3611 netif_tx_start_queue(txq);
3612 }
3613
3614 /**
3615 * netif_stop_subqueue - stop sending packets on subqueue
3616 * @dev: network device
3617 * @queue_index: sub queue index
3618 *
3619 * Stop individual transmit queue of a device with multiple transmit queues.
3620 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3621 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3622 {
3623 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3624 netif_tx_stop_queue(txq);
3625 }
3626
3627 /**
3628 * netif_subqueue_stopped - test status of subqueue
3629 * @dev: network device
3630 * @queue_index: sub queue index
3631 *
3632 * Check individual transmit queue of a device with multiple transmit queues.
3633 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3634 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3635 u16 queue_index)
3636 {
3637 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3638
3639 return netif_tx_queue_stopped(txq);
3640 }
3641
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3642 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3643 struct sk_buff *skb)
3644 {
3645 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3646 }
3647
3648 /**
3649 * netif_wake_subqueue - allow sending packets on subqueue
3650 * @dev: network device
3651 * @queue_index: sub queue index
3652 *
3653 * Resume individual transmit queue of a device with multiple transmit queues.
3654 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3655 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3656 {
3657 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3658
3659 netif_tx_wake_queue(txq);
3660 }
3661
3662 #ifdef CONFIG_XPS
3663 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3664 u16 index);
3665 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3666 u16 index, bool is_rxqs_map);
3667
3668 /**
3669 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3670 * @j: CPU/Rx queue index
3671 * @mask: bitmask of all cpus/rx queues
3672 * @nr_bits: number of bits in the bitmask
3673 *
3674 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3675 */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3676 static inline bool netif_attr_test_mask(unsigned long j,
3677 const unsigned long *mask,
3678 unsigned int nr_bits)
3679 {
3680 cpu_max_bits_warn(j, nr_bits);
3681 return test_bit(j, mask);
3682 }
3683
3684 /**
3685 * netif_attr_test_online - Test for online CPU/Rx queue
3686 * @j: CPU/Rx queue index
3687 * @online_mask: bitmask for CPUs/Rx queues that are online
3688 * @nr_bits: number of bits in the bitmask
3689 *
3690 * Returns true if a CPU/Rx queue is online.
3691 */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3692 static inline bool netif_attr_test_online(unsigned long j,
3693 const unsigned long *online_mask,
3694 unsigned int nr_bits)
3695 {
3696 cpu_max_bits_warn(j, nr_bits);
3697
3698 if (online_mask)
3699 return test_bit(j, online_mask);
3700
3701 return (j < nr_bits);
3702 }
3703
3704 /**
3705 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3706 * @n: CPU/Rx queue index
3707 * @srcp: the cpumask/Rx queue mask pointer
3708 * @nr_bits: number of bits in the bitmask
3709 *
3710 * Returns >= nr_bits if no further CPUs/Rx queues set.
3711 */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3712 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3713 unsigned int nr_bits)
3714 {
3715 /* -1 is a legal arg here. */
3716 if (n != -1)
3717 cpu_max_bits_warn(n, nr_bits);
3718
3719 if (srcp)
3720 return find_next_bit(srcp, nr_bits, n + 1);
3721
3722 return n + 1;
3723 }
3724
3725 /**
3726 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3727 * @n: CPU/Rx queue index
3728 * @src1p: the first CPUs/Rx queues mask pointer
3729 * @src2p: the second CPUs/Rx queues mask pointer
3730 * @nr_bits: number of bits in the bitmask
3731 *
3732 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3733 */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3734 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3735 const unsigned long *src2p,
3736 unsigned int nr_bits)
3737 {
3738 /* -1 is a legal arg here. */
3739 if (n != -1)
3740 cpu_max_bits_warn(n, nr_bits);
3741
3742 if (src1p && src2p)
3743 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3744 else if (src1p)
3745 return find_next_bit(src1p, nr_bits, n + 1);
3746 else if (src2p)
3747 return find_next_bit(src2p, nr_bits, n + 1);
3748
3749 return n + 1;
3750 }
3751 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3752 static inline int netif_set_xps_queue(struct net_device *dev,
3753 const struct cpumask *mask,
3754 u16 index)
3755 {
3756 return 0;
3757 }
3758
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3759 static inline int __netif_set_xps_queue(struct net_device *dev,
3760 const unsigned long *mask,
3761 u16 index, bool is_rxqs_map)
3762 {
3763 return 0;
3764 }
3765 #endif
3766
3767 /**
3768 * netif_is_multiqueue - test if device has multiple transmit queues
3769 * @dev: network device
3770 *
3771 * Check if device has multiple transmit queues
3772 */
netif_is_multiqueue(const struct net_device * dev)3773 static inline bool netif_is_multiqueue(const struct net_device *dev)
3774 {
3775 return dev->num_tx_queues > 1;
3776 }
3777
3778 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3779
3780 #ifdef CONFIG_SYSFS
3781 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3782 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3783 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3784 unsigned int rxqs)
3785 {
3786 dev->real_num_rx_queues = rxqs;
3787 return 0;
3788 }
3789 #endif
3790
3791 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3792 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3793 {
3794 return dev->_rx + rxq;
3795 }
3796
3797 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3798 static inline unsigned int get_netdev_rx_queue_index(
3799 struct netdev_rx_queue *queue)
3800 {
3801 struct net_device *dev = queue->dev;
3802 int index = queue - dev->_rx;
3803
3804 BUG_ON(index >= dev->num_rx_queues);
3805 return index;
3806 }
3807 #endif
3808
3809 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3810 int netif_get_num_default_rss_queues(void);
3811
3812 enum skb_free_reason {
3813 SKB_REASON_CONSUMED,
3814 SKB_REASON_DROPPED,
3815 };
3816
3817 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3819
3820 /*
3821 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3822 * interrupt context or with hardware interrupts being disabled.
3823 * (in_irq() || irqs_disabled())
3824 *
3825 * We provide four helpers that can be used in following contexts :
3826 *
3827 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3828 * replacing kfree_skb(skb)
3829 *
3830 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3831 * Typically used in place of consume_skb(skb) in TX completion path
3832 *
3833 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3834 * replacing kfree_skb(skb)
3835 *
3836 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3837 * and consumed a packet. Used in place of consume_skb(skb)
3838 */
dev_kfree_skb_irq(struct sk_buff * skb)3839 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3840 {
3841 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3842 }
3843
dev_consume_skb_irq(struct sk_buff * skb)3844 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3845 {
3846 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3847 }
3848
dev_kfree_skb_any(struct sk_buff * skb)3849 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3850 {
3851 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3852 }
3853
dev_consume_skb_any(struct sk_buff * skb)3854 static inline void dev_consume_skb_any(struct sk_buff *skb)
3855 {
3856 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3857 }
3858
3859 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3860 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3861 int netif_rx(struct sk_buff *skb);
3862 int netif_rx_ni(struct sk_buff *skb);
3863 int netif_rx_any_context(struct sk_buff *skb);
3864 int netif_receive_skb(struct sk_buff *skb);
3865 int netif_receive_skb_core(struct sk_buff *skb);
3866 void netif_receive_skb_list(struct list_head *head);
3867 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3868 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3869 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3870 gro_result_t napi_gro_frags(struct napi_struct *napi);
3871 struct packet_offload *gro_find_receive_by_type(__be16 type);
3872 struct packet_offload *gro_find_complete_by_type(__be16 type);
3873
napi_free_frags(struct napi_struct * napi)3874 static inline void napi_free_frags(struct napi_struct *napi)
3875 {
3876 kfree_skb(napi->skb);
3877 napi->skb = NULL;
3878 }
3879
3880 bool netdev_is_rx_handler_busy(struct net_device *dev);
3881 int netdev_rx_handler_register(struct net_device *dev,
3882 rx_handler_func_t *rx_handler,
3883 void *rx_handler_data);
3884 void netdev_rx_handler_unregister(struct net_device *dev);
3885
3886 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3887 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3888 {
3889 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3890 }
3891 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3892 bool *need_copyout);
3893 int dev_ifconf(struct net *net, struct ifconf *, int);
3894 int dev_ethtool(struct net *net, struct ifreq *);
3895 unsigned int dev_get_flags(const struct net_device *);
3896 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3897 struct netlink_ext_ack *extack);
3898 int dev_change_flags(struct net_device *dev, unsigned int flags,
3899 struct netlink_ext_ack *extack);
3900 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3901 unsigned int gchanges);
3902 int dev_change_name(struct net_device *, const char *);
3903 int dev_set_alias(struct net_device *, const char *, size_t);
3904 int dev_get_alias(const struct net_device *, char *, size_t);
3905 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3906 int __dev_set_mtu(struct net_device *, int);
3907 int dev_validate_mtu(struct net_device *dev, int mtu,
3908 struct netlink_ext_ack *extack);
3909 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3910 struct netlink_ext_ack *extack);
3911 int dev_set_mtu(struct net_device *, int);
3912 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3913 void dev_set_group(struct net_device *, int);
3914 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3915 struct netlink_ext_ack *extack);
3916 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3917 struct netlink_ext_ack *extack);
3918 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3919 struct netlink_ext_ack *extack);
3920 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3921 int dev_change_carrier(struct net_device *, bool new_carrier);
3922 int dev_get_phys_port_id(struct net_device *dev,
3923 struct netdev_phys_item_id *ppid);
3924 int dev_get_phys_port_name(struct net_device *dev,
3925 char *name, size_t len);
3926 int dev_get_port_parent_id(struct net_device *dev,
3927 struct netdev_phys_item_id *ppid, bool recurse);
3928 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3929 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3930 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3931 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3932 u32 value);
3933 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3934 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3935 struct netdev_queue *txq, int *ret);
3936
3937 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3938 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3939 int fd, int expected_fd, u32 flags);
3940 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3941 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3942
3943 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3944
3945 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3946 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3947 bool is_skb_forwardable(const struct net_device *dev,
3948 const struct sk_buff *skb);
3949
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3950 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3951 struct sk_buff *skb)
3952 {
3953 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3954 unlikely(!is_skb_forwardable(dev, skb))) {
3955 atomic_long_inc(&dev->rx_dropped);
3956 kfree_skb(skb);
3957 return NET_RX_DROP;
3958 }
3959
3960 skb_scrub_packet(skb, true);
3961 skb->priority = 0;
3962 return 0;
3963 }
3964
3965 bool dev_nit_active(struct net_device *dev);
3966 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3967
3968 extern int netdev_budget;
3969 extern unsigned int netdev_budget_usecs;
3970
3971 /* Called by rtnetlink.c:rtnl_unlock() */
3972 void netdev_run_todo(void);
3973
3974 /**
3975 * dev_put - release reference to device
3976 * @dev: network device
3977 *
3978 * Release reference to device to allow it to be freed.
3979 */
dev_put(struct net_device * dev)3980 static inline void dev_put(struct net_device *dev)
3981 {
3982 this_cpu_dec(*dev->pcpu_refcnt);
3983 }
3984
3985 /**
3986 * dev_hold - get reference to device
3987 * @dev: network device
3988 *
3989 * Hold reference to device to keep it from being freed.
3990 */
dev_hold(struct net_device * dev)3991 static inline void dev_hold(struct net_device *dev)
3992 {
3993 this_cpu_inc(*dev->pcpu_refcnt);
3994 }
3995
3996 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3997 * and _off may be called from IRQ context, but it is caller
3998 * who is responsible for serialization of these calls.
3999 *
4000 * The name carrier is inappropriate, these functions should really be
4001 * called netif_lowerlayer_*() because they represent the state of any
4002 * kind of lower layer not just hardware media.
4003 */
4004
4005 void linkwatch_init_dev(struct net_device *dev);
4006 void linkwatch_fire_event(struct net_device *dev);
4007 void linkwatch_forget_dev(struct net_device *dev);
4008
4009 /**
4010 * netif_carrier_ok - test if carrier present
4011 * @dev: network device
4012 *
4013 * Check if carrier is present on device
4014 */
netif_carrier_ok(const struct net_device * dev)4015 static inline bool netif_carrier_ok(const struct net_device *dev)
4016 {
4017 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4018 }
4019
4020 unsigned long dev_trans_start(struct net_device *dev);
4021
4022 void __netdev_watchdog_up(struct net_device *dev);
4023
4024 void netif_carrier_on(struct net_device *dev);
4025
4026 void netif_carrier_off(struct net_device *dev);
4027
4028 /**
4029 * netif_dormant_on - mark device as dormant.
4030 * @dev: network device
4031 *
4032 * Mark device as dormant (as per RFC2863).
4033 *
4034 * The dormant state indicates that the relevant interface is not
4035 * actually in a condition to pass packets (i.e., it is not 'up') but is
4036 * in a "pending" state, waiting for some external event. For "on-
4037 * demand" interfaces, this new state identifies the situation where the
4038 * interface is waiting for events to place it in the up state.
4039 */
netif_dormant_on(struct net_device * dev)4040 static inline void netif_dormant_on(struct net_device *dev)
4041 {
4042 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4043 linkwatch_fire_event(dev);
4044 }
4045
4046 /**
4047 * netif_dormant_off - set device as not dormant.
4048 * @dev: network device
4049 *
4050 * Device is not in dormant state.
4051 */
netif_dormant_off(struct net_device * dev)4052 static inline void netif_dormant_off(struct net_device *dev)
4053 {
4054 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4055 linkwatch_fire_event(dev);
4056 }
4057
4058 /**
4059 * netif_dormant - test if device is dormant
4060 * @dev: network device
4061 *
4062 * Check if device is dormant.
4063 */
netif_dormant(const struct net_device * dev)4064 static inline bool netif_dormant(const struct net_device *dev)
4065 {
4066 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4067 }
4068
4069
4070 /**
4071 * netif_testing_on - mark device as under test.
4072 * @dev: network device
4073 *
4074 * Mark device as under test (as per RFC2863).
4075 *
4076 * The testing state indicates that some test(s) must be performed on
4077 * the interface. After completion, of the test, the interface state
4078 * will change to up, dormant, or down, as appropriate.
4079 */
netif_testing_on(struct net_device * dev)4080 static inline void netif_testing_on(struct net_device *dev)
4081 {
4082 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4083 linkwatch_fire_event(dev);
4084 }
4085
4086 /**
4087 * netif_testing_off - set device as not under test.
4088 * @dev: network device
4089 *
4090 * Device is not in testing state.
4091 */
netif_testing_off(struct net_device * dev)4092 static inline void netif_testing_off(struct net_device *dev)
4093 {
4094 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4095 linkwatch_fire_event(dev);
4096 }
4097
4098 /**
4099 * netif_testing - test if device is under test
4100 * @dev: network device
4101 *
4102 * Check if device is under test
4103 */
netif_testing(const struct net_device * dev)4104 static inline bool netif_testing(const struct net_device *dev)
4105 {
4106 return test_bit(__LINK_STATE_TESTING, &dev->state);
4107 }
4108
4109
4110 /**
4111 * netif_oper_up - test if device is operational
4112 * @dev: network device
4113 *
4114 * Check if carrier is operational
4115 */
netif_oper_up(const struct net_device * dev)4116 static inline bool netif_oper_up(const struct net_device *dev)
4117 {
4118 return (dev->operstate == IF_OPER_UP ||
4119 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4120 }
4121
4122 /**
4123 * netif_device_present - is device available or removed
4124 * @dev: network device
4125 *
4126 * Check if device has not been removed from system.
4127 */
netif_device_present(struct net_device * dev)4128 static inline bool netif_device_present(struct net_device *dev)
4129 {
4130 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4131 }
4132
4133 void netif_device_detach(struct net_device *dev);
4134
4135 void netif_device_attach(struct net_device *dev);
4136
4137 /*
4138 * Network interface message level settings
4139 */
4140
4141 enum {
4142 NETIF_MSG_DRV_BIT,
4143 NETIF_MSG_PROBE_BIT,
4144 NETIF_MSG_LINK_BIT,
4145 NETIF_MSG_TIMER_BIT,
4146 NETIF_MSG_IFDOWN_BIT,
4147 NETIF_MSG_IFUP_BIT,
4148 NETIF_MSG_RX_ERR_BIT,
4149 NETIF_MSG_TX_ERR_BIT,
4150 NETIF_MSG_TX_QUEUED_BIT,
4151 NETIF_MSG_INTR_BIT,
4152 NETIF_MSG_TX_DONE_BIT,
4153 NETIF_MSG_RX_STATUS_BIT,
4154 NETIF_MSG_PKTDATA_BIT,
4155 NETIF_MSG_HW_BIT,
4156 NETIF_MSG_WOL_BIT,
4157
4158 /* When you add a new bit above, update netif_msg_class_names array
4159 * in net/ethtool/common.c
4160 */
4161 NETIF_MSG_CLASS_COUNT,
4162 };
4163 /* Both ethtool_ops interface and internal driver implementation use u32 */
4164 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4165
4166 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4167 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4168
4169 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
4170 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4171 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
4172 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4173 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4174 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4175 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4176 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4177 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4178 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
4179 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4180 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4181 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4182 #define NETIF_MSG_HW __NETIF_MSG(HW)
4183 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
4184
4185 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4186 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4187 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4188 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4189 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4190 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4191 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4192 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4193 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4194 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4195 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4196 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4197 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4198 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4199 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4200
netif_msg_init(int debug_value,int default_msg_enable_bits)4201 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4202 {
4203 /* use default */
4204 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4205 return default_msg_enable_bits;
4206 if (debug_value == 0) /* no output */
4207 return 0;
4208 /* set low N bits */
4209 return (1U << debug_value) - 1;
4210 }
4211
__netif_tx_lock(struct netdev_queue * txq,int cpu)4212 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4213 {
4214 spin_lock(&txq->_xmit_lock);
4215 txq->xmit_lock_owner = cpu;
4216 }
4217
__netif_tx_acquire(struct netdev_queue * txq)4218 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4219 {
4220 __acquire(&txq->_xmit_lock);
4221 return true;
4222 }
4223
__netif_tx_release(struct netdev_queue * txq)4224 static inline void __netif_tx_release(struct netdev_queue *txq)
4225 {
4226 __release(&txq->_xmit_lock);
4227 }
4228
__netif_tx_lock_bh(struct netdev_queue * txq)4229 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4230 {
4231 spin_lock_bh(&txq->_xmit_lock);
4232 txq->xmit_lock_owner = smp_processor_id();
4233 }
4234
__netif_tx_trylock(struct netdev_queue * txq)4235 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4236 {
4237 bool ok = spin_trylock(&txq->_xmit_lock);
4238 if (likely(ok))
4239 txq->xmit_lock_owner = smp_processor_id();
4240 return ok;
4241 }
4242
__netif_tx_unlock(struct netdev_queue * txq)4243 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4244 {
4245 txq->xmit_lock_owner = -1;
4246 spin_unlock(&txq->_xmit_lock);
4247 }
4248
__netif_tx_unlock_bh(struct netdev_queue * txq)4249 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4250 {
4251 txq->xmit_lock_owner = -1;
4252 spin_unlock_bh(&txq->_xmit_lock);
4253 }
4254
txq_trans_update(struct netdev_queue * txq)4255 static inline void txq_trans_update(struct netdev_queue *txq)
4256 {
4257 if (txq->xmit_lock_owner != -1)
4258 txq->trans_start = jiffies;
4259 }
4260
4261 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4262 static inline void netif_trans_update(struct net_device *dev)
4263 {
4264 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4265
4266 if (txq->trans_start != jiffies)
4267 txq->trans_start = jiffies;
4268 }
4269
4270 /**
4271 * netif_tx_lock - grab network device transmit lock
4272 * @dev: network device
4273 *
4274 * Get network device transmit lock
4275 */
netif_tx_lock(struct net_device * dev)4276 static inline void netif_tx_lock(struct net_device *dev)
4277 {
4278 unsigned int i;
4279 int cpu;
4280
4281 spin_lock(&dev->tx_global_lock);
4282 cpu = smp_processor_id();
4283 for (i = 0; i < dev->num_tx_queues; i++) {
4284 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4285
4286 /* We are the only thread of execution doing a
4287 * freeze, but we have to grab the _xmit_lock in
4288 * order to synchronize with threads which are in
4289 * the ->hard_start_xmit() handler and already
4290 * checked the frozen bit.
4291 */
4292 __netif_tx_lock(txq, cpu);
4293 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4294 __netif_tx_unlock(txq);
4295 }
4296 }
4297
netif_tx_lock_bh(struct net_device * dev)4298 static inline void netif_tx_lock_bh(struct net_device *dev)
4299 {
4300 local_bh_disable();
4301 netif_tx_lock(dev);
4302 }
4303
netif_tx_unlock(struct net_device * dev)4304 static inline void netif_tx_unlock(struct net_device *dev)
4305 {
4306 unsigned int i;
4307
4308 for (i = 0; i < dev->num_tx_queues; i++) {
4309 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4310
4311 /* No need to grab the _xmit_lock here. If the
4312 * queue is not stopped for another reason, we
4313 * force a schedule.
4314 */
4315 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4316 netif_schedule_queue(txq);
4317 }
4318 spin_unlock(&dev->tx_global_lock);
4319 }
4320
netif_tx_unlock_bh(struct net_device * dev)4321 static inline void netif_tx_unlock_bh(struct net_device *dev)
4322 {
4323 netif_tx_unlock(dev);
4324 local_bh_enable();
4325 }
4326
4327 #define HARD_TX_LOCK(dev, txq, cpu) { \
4328 if ((dev->features & NETIF_F_LLTX) == 0) { \
4329 __netif_tx_lock(txq, cpu); \
4330 } else { \
4331 __netif_tx_acquire(txq); \
4332 } \
4333 }
4334
4335 #define HARD_TX_TRYLOCK(dev, txq) \
4336 (((dev->features & NETIF_F_LLTX) == 0) ? \
4337 __netif_tx_trylock(txq) : \
4338 __netif_tx_acquire(txq))
4339
4340 #define HARD_TX_UNLOCK(dev, txq) { \
4341 if ((dev->features & NETIF_F_LLTX) == 0) { \
4342 __netif_tx_unlock(txq); \
4343 } else { \
4344 __netif_tx_release(txq); \
4345 } \
4346 }
4347
netif_tx_disable(struct net_device * dev)4348 static inline void netif_tx_disable(struct net_device *dev)
4349 {
4350 unsigned int i;
4351 int cpu;
4352
4353 local_bh_disable();
4354 cpu = smp_processor_id();
4355 spin_lock(&dev->tx_global_lock);
4356 for (i = 0; i < dev->num_tx_queues; i++) {
4357 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4358
4359 __netif_tx_lock(txq, cpu);
4360 netif_tx_stop_queue(txq);
4361 __netif_tx_unlock(txq);
4362 }
4363 spin_unlock(&dev->tx_global_lock);
4364 local_bh_enable();
4365 }
4366
netif_addr_lock(struct net_device * dev)4367 static inline void netif_addr_lock(struct net_device *dev)
4368 {
4369 unsigned char nest_level = 0;
4370
4371 #ifdef CONFIG_LOCKDEP
4372 nest_level = dev->nested_level;
4373 #endif
4374 spin_lock_nested(&dev->addr_list_lock, nest_level);
4375 }
4376
netif_addr_lock_bh(struct net_device * dev)4377 static inline void netif_addr_lock_bh(struct net_device *dev)
4378 {
4379 unsigned char nest_level = 0;
4380
4381 #ifdef CONFIG_LOCKDEP
4382 nest_level = dev->nested_level;
4383 #endif
4384 local_bh_disable();
4385 spin_lock_nested(&dev->addr_list_lock, nest_level);
4386 }
4387
netif_addr_unlock(struct net_device * dev)4388 static inline void netif_addr_unlock(struct net_device *dev)
4389 {
4390 spin_unlock(&dev->addr_list_lock);
4391 }
4392
netif_addr_unlock_bh(struct net_device * dev)4393 static inline void netif_addr_unlock_bh(struct net_device *dev)
4394 {
4395 spin_unlock_bh(&dev->addr_list_lock);
4396 }
4397
4398 /*
4399 * dev_addrs walker. Should be used only for read access. Call with
4400 * rcu_read_lock held.
4401 */
4402 #define for_each_dev_addr(dev, ha) \
4403 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4404
4405 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4406
4407 void ether_setup(struct net_device *dev);
4408
4409 /* Support for loadable net-drivers */
4410 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4411 unsigned char name_assign_type,
4412 void (*setup)(struct net_device *),
4413 unsigned int txqs, unsigned int rxqs);
4414 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4415 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4416
4417 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4418 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4419 count)
4420
4421 int register_netdev(struct net_device *dev);
4422 void unregister_netdev(struct net_device *dev);
4423
4424 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4425
4426 /* General hardware address lists handling functions */
4427 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4428 struct netdev_hw_addr_list *from_list, int addr_len);
4429 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4430 struct netdev_hw_addr_list *from_list, int addr_len);
4431 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4432 struct net_device *dev,
4433 int (*sync)(struct net_device *, const unsigned char *),
4434 int (*unsync)(struct net_device *,
4435 const unsigned char *));
4436 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4437 struct net_device *dev,
4438 int (*sync)(struct net_device *,
4439 const unsigned char *, int),
4440 int (*unsync)(struct net_device *,
4441 const unsigned char *, int));
4442 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4443 struct net_device *dev,
4444 int (*unsync)(struct net_device *,
4445 const unsigned char *, int));
4446 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4447 struct net_device *dev,
4448 int (*unsync)(struct net_device *,
4449 const unsigned char *));
4450 void __hw_addr_init(struct netdev_hw_addr_list *list);
4451
4452 /* Functions used for device addresses handling */
4453 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4454 unsigned char addr_type);
4455 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4456 unsigned char addr_type);
4457 void dev_addr_flush(struct net_device *dev);
4458 int dev_addr_init(struct net_device *dev);
4459
4460 /* Functions used for unicast addresses handling */
4461 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4462 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4463 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4464 int dev_uc_sync(struct net_device *to, struct net_device *from);
4465 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4466 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4467 void dev_uc_flush(struct net_device *dev);
4468 void dev_uc_init(struct net_device *dev);
4469
4470 /**
4471 * __dev_uc_sync - Synchonize device's unicast list
4472 * @dev: device to sync
4473 * @sync: function to call if address should be added
4474 * @unsync: function to call if address should be removed
4475 *
4476 * Add newly added addresses to the interface, and release
4477 * addresses that have been deleted.
4478 */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4479 static inline int __dev_uc_sync(struct net_device *dev,
4480 int (*sync)(struct net_device *,
4481 const unsigned char *),
4482 int (*unsync)(struct net_device *,
4483 const unsigned char *))
4484 {
4485 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4486 }
4487
4488 /**
4489 * __dev_uc_unsync - Remove synchronized addresses from device
4490 * @dev: device to sync
4491 * @unsync: function to call if address should be removed
4492 *
4493 * Remove all addresses that were added to the device by dev_uc_sync().
4494 */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4495 static inline void __dev_uc_unsync(struct net_device *dev,
4496 int (*unsync)(struct net_device *,
4497 const unsigned char *))
4498 {
4499 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4500 }
4501
4502 /* Functions used for multicast addresses handling */
4503 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4504 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4505 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4506 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4507 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4508 int dev_mc_sync(struct net_device *to, struct net_device *from);
4509 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4510 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4511 void dev_mc_flush(struct net_device *dev);
4512 void dev_mc_init(struct net_device *dev);
4513
4514 /**
4515 * __dev_mc_sync - Synchonize device's multicast list
4516 * @dev: device to sync
4517 * @sync: function to call if address should be added
4518 * @unsync: function to call if address should be removed
4519 *
4520 * Add newly added addresses to the interface, and release
4521 * addresses that have been deleted.
4522 */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4523 static inline int __dev_mc_sync(struct net_device *dev,
4524 int (*sync)(struct net_device *,
4525 const unsigned char *),
4526 int (*unsync)(struct net_device *,
4527 const unsigned char *))
4528 {
4529 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4530 }
4531
4532 /**
4533 * __dev_mc_unsync - Remove synchronized addresses from device
4534 * @dev: device to sync
4535 * @unsync: function to call if address should be removed
4536 *
4537 * Remove all addresses that were added to the device by dev_mc_sync().
4538 */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4539 static inline void __dev_mc_unsync(struct net_device *dev,
4540 int (*unsync)(struct net_device *,
4541 const unsigned char *))
4542 {
4543 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4544 }
4545
4546 /* Functions used for secondary unicast and multicast support */
4547 void dev_set_rx_mode(struct net_device *dev);
4548 void __dev_set_rx_mode(struct net_device *dev);
4549 int dev_set_promiscuity(struct net_device *dev, int inc);
4550 int dev_set_allmulti(struct net_device *dev, int inc);
4551 void netdev_state_change(struct net_device *dev);
4552 void netdev_notify_peers(struct net_device *dev);
4553 void netdev_features_change(struct net_device *dev);
4554 /* Load a device via the kmod */
4555 void dev_load(struct net *net, const char *name);
4556 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4557 struct rtnl_link_stats64 *storage);
4558 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4559 const struct net_device_stats *netdev_stats);
4560 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4561 const struct pcpu_sw_netstats __percpu *netstats);
4562
4563 extern int netdev_max_backlog;
4564 extern int netdev_tstamp_prequeue;
4565 extern int weight_p;
4566 extern int dev_weight_rx_bias;
4567 extern int dev_weight_tx_bias;
4568 extern int dev_rx_weight;
4569 extern int dev_tx_weight;
4570 extern int gro_normal_batch;
4571
4572 enum {
4573 NESTED_SYNC_IMM_BIT,
4574 NESTED_SYNC_TODO_BIT,
4575 };
4576
4577 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4578 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4579
4580 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4581 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4582
4583 struct netdev_nested_priv {
4584 unsigned char flags;
4585 void *data;
4586 };
4587
4588 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4589 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4590 struct list_head **iter);
4591 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4592 struct list_head **iter);
4593
4594 #ifdef CONFIG_LOCKDEP
4595 static LIST_HEAD(net_unlink_list);
4596
net_unlink_todo(struct net_device * dev)4597 static inline void net_unlink_todo(struct net_device *dev)
4598 {
4599 if (list_empty(&dev->unlink_list))
4600 list_add_tail(&dev->unlink_list, &net_unlink_list);
4601 }
4602 #endif
4603
4604 /* iterate through upper list, must be called under RCU read lock */
4605 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4606 for (iter = &(dev)->adj_list.upper, \
4607 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4608 updev; \
4609 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4610
4611 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4612 int (*fn)(struct net_device *upper_dev,
4613 struct netdev_nested_priv *priv),
4614 struct netdev_nested_priv *priv);
4615
4616 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4617 struct net_device *upper_dev);
4618
4619 bool netdev_has_any_upper_dev(struct net_device *dev);
4620
4621 void *netdev_lower_get_next_private(struct net_device *dev,
4622 struct list_head **iter);
4623 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4624 struct list_head **iter);
4625
4626 #define netdev_for_each_lower_private(dev, priv, iter) \
4627 for (iter = (dev)->adj_list.lower.next, \
4628 priv = netdev_lower_get_next_private(dev, &(iter)); \
4629 priv; \
4630 priv = netdev_lower_get_next_private(dev, &(iter)))
4631
4632 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4633 for (iter = &(dev)->adj_list.lower, \
4634 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4635 priv; \
4636 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4637
4638 void *netdev_lower_get_next(struct net_device *dev,
4639 struct list_head **iter);
4640
4641 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4642 for (iter = (dev)->adj_list.lower.next, \
4643 ldev = netdev_lower_get_next(dev, &(iter)); \
4644 ldev; \
4645 ldev = netdev_lower_get_next(dev, &(iter)))
4646
4647 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4648 struct list_head **iter);
4649 int netdev_walk_all_lower_dev(struct net_device *dev,
4650 int (*fn)(struct net_device *lower_dev,
4651 struct netdev_nested_priv *priv),
4652 struct netdev_nested_priv *priv);
4653 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4654 int (*fn)(struct net_device *lower_dev,
4655 struct netdev_nested_priv *priv),
4656 struct netdev_nested_priv *priv);
4657
4658 void *netdev_adjacent_get_private(struct list_head *adj_list);
4659 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4660 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4661 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4662 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4663 struct netlink_ext_ack *extack);
4664 int netdev_master_upper_dev_link(struct net_device *dev,
4665 struct net_device *upper_dev,
4666 void *upper_priv, void *upper_info,
4667 struct netlink_ext_ack *extack);
4668 void netdev_upper_dev_unlink(struct net_device *dev,
4669 struct net_device *upper_dev);
4670 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4671 struct net_device *new_dev,
4672 struct net_device *dev,
4673 struct netlink_ext_ack *extack);
4674 void netdev_adjacent_change_commit(struct net_device *old_dev,
4675 struct net_device *new_dev,
4676 struct net_device *dev);
4677 void netdev_adjacent_change_abort(struct net_device *old_dev,
4678 struct net_device *new_dev,
4679 struct net_device *dev);
4680 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4681 void *netdev_lower_dev_get_private(struct net_device *dev,
4682 struct net_device *lower_dev);
4683 void netdev_lower_state_changed(struct net_device *lower_dev,
4684 void *lower_state_info);
4685
4686 /* RSS keys are 40 or 52 bytes long */
4687 #define NETDEV_RSS_KEY_LEN 52
4688 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4689 void netdev_rss_key_fill(void *buffer, size_t len);
4690
4691 int skb_checksum_help(struct sk_buff *skb);
4692 int skb_crc32c_csum_help(struct sk_buff *skb);
4693 int skb_csum_hwoffload_help(struct sk_buff *skb,
4694 const netdev_features_t features);
4695
4696 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4697 netdev_features_t features, bool tx_path);
4698 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4699 netdev_features_t features);
4700
4701 struct netdev_bonding_info {
4702 ifslave slave;
4703 ifbond master;
4704 };
4705
4706 struct netdev_notifier_bonding_info {
4707 struct netdev_notifier_info info; /* must be first */
4708 struct netdev_bonding_info bonding_info;
4709 };
4710
4711 void netdev_bonding_info_change(struct net_device *dev,
4712 struct netdev_bonding_info *bonding_info);
4713
4714 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4715 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4716 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4717 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4718 const void *data)
4719 {
4720 }
4721 #endif
4722
4723 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4724 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4725 {
4726 return __skb_gso_segment(skb, features, true);
4727 }
4728 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4729
can_checksum_protocol(netdev_features_t features,__be16 protocol)4730 static inline bool can_checksum_protocol(netdev_features_t features,
4731 __be16 protocol)
4732 {
4733 if (protocol == htons(ETH_P_FCOE))
4734 return !!(features & NETIF_F_FCOE_CRC);
4735
4736 /* Assume this is an IP checksum (not SCTP CRC) */
4737
4738 if (features & NETIF_F_HW_CSUM) {
4739 /* Can checksum everything */
4740 return true;
4741 }
4742
4743 switch (protocol) {
4744 case htons(ETH_P_IP):
4745 return !!(features & NETIF_F_IP_CSUM);
4746 case htons(ETH_P_IPV6):
4747 return !!(features & NETIF_F_IPV6_CSUM);
4748 default:
4749 return false;
4750 }
4751 }
4752
4753 #ifdef CONFIG_BUG
4754 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4755 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4756 static inline void netdev_rx_csum_fault(struct net_device *dev,
4757 struct sk_buff *skb)
4758 {
4759 }
4760 #endif
4761 /* rx skb timestamps */
4762 void net_enable_timestamp(void);
4763 void net_disable_timestamp(void);
4764
4765 #ifdef CONFIG_PROC_FS
4766 int __init dev_proc_init(void);
4767 #else
4768 #define dev_proc_init() 0
4769 #endif
4770
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4771 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4772 struct sk_buff *skb, struct net_device *dev,
4773 bool more)
4774 {
4775 __this_cpu_write(softnet_data.xmit.more, more);
4776 return ops->ndo_start_xmit(skb, dev);
4777 }
4778
netdev_xmit_more(void)4779 static inline bool netdev_xmit_more(void)
4780 {
4781 return __this_cpu_read(softnet_data.xmit.more);
4782 }
4783
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4784 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4785 struct netdev_queue *txq, bool more)
4786 {
4787 const struct net_device_ops *ops = dev->netdev_ops;
4788 netdev_tx_t rc;
4789
4790 rc = __netdev_start_xmit(ops, skb, dev, more);
4791 if (rc == NETDEV_TX_OK)
4792 txq_trans_update(txq);
4793
4794 return rc;
4795 }
4796
4797 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4798 const void *ns);
4799 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4800 const void *ns);
4801
4802 extern const struct kobj_ns_type_operations net_ns_type_operations;
4803
4804 const char *netdev_drivername(const struct net_device *dev);
4805
4806 void linkwatch_run_queue(void);
4807
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4808 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4809 netdev_features_t f2)
4810 {
4811 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4812 if (f1 & NETIF_F_HW_CSUM)
4813 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4814 else
4815 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4816 }
4817
4818 return f1 & f2;
4819 }
4820
netdev_get_wanted_features(struct net_device * dev)4821 static inline netdev_features_t netdev_get_wanted_features(
4822 struct net_device *dev)
4823 {
4824 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4825 }
4826 netdev_features_t netdev_increment_features(netdev_features_t all,
4827 netdev_features_t one, netdev_features_t mask);
4828
4829 /* Allow TSO being used on stacked device :
4830 * Performing the GSO segmentation before last device
4831 * is a performance improvement.
4832 */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4833 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4834 netdev_features_t mask)
4835 {
4836 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4837 }
4838
4839 int __netdev_update_features(struct net_device *dev);
4840 void netdev_update_features(struct net_device *dev);
4841 void netdev_change_features(struct net_device *dev);
4842
4843 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4844 struct net_device *dev);
4845
4846 netdev_features_t passthru_features_check(struct sk_buff *skb,
4847 struct net_device *dev,
4848 netdev_features_t features);
4849 netdev_features_t netif_skb_features(struct sk_buff *skb);
4850
net_gso_ok(netdev_features_t features,int gso_type)4851 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4852 {
4853 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4854
4855 /* check flags correspondence */
4856 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4857 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4858 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4859 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4860 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4861 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4862 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4863 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4864 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4865 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4866 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4867 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4868 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4869 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4870 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4871 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4872 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4873 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4874 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4875
4876 return (features & feature) == feature;
4877 }
4878
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4879 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4880 {
4881 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4882 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4883 }
4884
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4885 static inline bool netif_needs_gso(struct sk_buff *skb,
4886 netdev_features_t features)
4887 {
4888 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4889 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4890 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4891 }
4892
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4893 static inline void netif_set_gso_max_size(struct net_device *dev,
4894 unsigned int size)
4895 {
4896 dev->gso_max_size = size;
4897 }
4898
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4899 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4900 int pulled_hlen, u16 mac_offset,
4901 int mac_len)
4902 {
4903 skb->protocol = protocol;
4904 skb->encapsulation = 1;
4905 skb_push(skb, pulled_hlen);
4906 skb_reset_transport_header(skb);
4907 skb->mac_header = mac_offset;
4908 skb->network_header = skb->mac_header + mac_len;
4909 skb->mac_len = mac_len;
4910 }
4911
netif_is_macsec(const struct net_device * dev)4912 static inline bool netif_is_macsec(const struct net_device *dev)
4913 {
4914 return dev->priv_flags & IFF_MACSEC;
4915 }
4916
netif_is_macvlan(const struct net_device * dev)4917 static inline bool netif_is_macvlan(const struct net_device *dev)
4918 {
4919 return dev->priv_flags & IFF_MACVLAN;
4920 }
4921
netif_is_macvlan_port(const struct net_device * dev)4922 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4923 {
4924 return dev->priv_flags & IFF_MACVLAN_PORT;
4925 }
4926
netif_is_bond_master(const struct net_device * dev)4927 static inline bool netif_is_bond_master(const struct net_device *dev)
4928 {
4929 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4930 }
4931
netif_is_bond_slave(const struct net_device * dev)4932 static inline bool netif_is_bond_slave(const struct net_device *dev)
4933 {
4934 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4935 }
4936
netif_supports_nofcs(struct net_device * dev)4937 static inline bool netif_supports_nofcs(struct net_device *dev)
4938 {
4939 return dev->priv_flags & IFF_SUPP_NOFCS;
4940 }
4941
netif_has_l3_rx_handler(const struct net_device * dev)4942 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4943 {
4944 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4945 }
4946
netif_is_l3_master(const struct net_device * dev)4947 static inline bool netif_is_l3_master(const struct net_device *dev)
4948 {
4949 return dev->priv_flags & IFF_L3MDEV_MASTER;
4950 }
4951
netif_is_l3_slave(const struct net_device * dev)4952 static inline bool netif_is_l3_slave(const struct net_device *dev)
4953 {
4954 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4955 }
4956
netif_is_bridge_master(const struct net_device * dev)4957 static inline bool netif_is_bridge_master(const struct net_device *dev)
4958 {
4959 return dev->priv_flags & IFF_EBRIDGE;
4960 }
4961
netif_is_bridge_port(const struct net_device * dev)4962 static inline bool netif_is_bridge_port(const struct net_device *dev)
4963 {
4964 return dev->priv_flags & IFF_BRIDGE_PORT;
4965 }
4966
netif_is_ovs_master(const struct net_device * dev)4967 static inline bool netif_is_ovs_master(const struct net_device *dev)
4968 {
4969 return dev->priv_flags & IFF_OPENVSWITCH;
4970 }
4971
netif_is_ovs_port(const struct net_device * dev)4972 static inline bool netif_is_ovs_port(const struct net_device *dev)
4973 {
4974 return dev->priv_flags & IFF_OVS_DATAPATH;
4975 }
4976
netif_is_any_bridge_port(const struct net_device * dev)4977 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4978 {
4979 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4980 }
4981
netif_is_team_master(const struct net_device * dev)4982 static inline bool netif_is_team_master(const struct net_device *dev)
4983 {
4984 return dev->priv_flags & IFF_TEAM;
4985 }
4986
netif_is_team_port(const struct net_device * dev)4987 static inline bool netif_is_team_port(const struct net_device *dev)
4988 {
4989 return dev->priv_flags & IFF_TEAM_PORT;
4990 }
4991
netif_is_lag_master(const struct net_device * dev)4992 static inline bool netif_is_lag_master(const struct net_device *dev)
4993 {
4994 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4995 }
4996
netif_is_lag_port(const struct net_device * dev)4997 static inline bool netif_is_lag_port(const struct net_device *dev)
4998 {
4999 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5000 }
5001
netif_is_rxfh_configured(const struct net_device * dev)5002 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5003 {
5004 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5005 }
5006
netif_is_failover(const struct net_device * dev)5007 static inline bool netif_is_failover(const struct net_device *dev)
5008 {
5009 return dev->priv_flags & IFF_FAILOVER;
5010 }
5011
netif_is_failover_slave(const struct net_device * dev)5012 static inline bool netif_is_failover_slave(const struct net_device *dev)
5013 {
5014 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5015 }
5016
5017 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5018 static inline void netif_keep_dst(struct net_device *dev)
5019 {
5020 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5021 }
5022
5023 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5024 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5025 {
5026 /* TODO: reserve and use an additional IFF bit, if we get more users */
5027 return dev->priv_flags & IFF_MACSEC;
5028 }
5029
5030 extern struct pernet_operations __net_initdata loopback_net_ops;
5031
5032 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5033
5034 /* netdev_printk helpers, similar to dev_printk */
5035
netdev_name(const struct net_device * dev)5036 static inline const char *netdev_name(const struct net_device *dev)
5037 {
5038 if (!dev->name[0] || strchr(dev->name, '%'))
5039 return "(unnamed net_device)";
5040 return dev->name;
5041 }
5042
netdev_unregistering(const struct net_device * dev)5043 static inline bool netdev_unregistering(const struct net_device *dev)
5044 {
5045 return dev->reg_state == NETREG_UNREGISTERING;
5046 }
5047
netdev_reg_state(const struct net_device * dev)5048 static inline const char *netdev_reg_state(const struct net_device *dev)
5049 {
5050 switch (dev->reg_state) {
5051 case NETREG_UNINITIALIZED: return " (uninitialized)";
5052 case NETREG_REGISTERED: return "";
5053 case NETREG_UNREGISTERING: return " (unregistering)";
5054 case NETREG_UNREGISTERED: return " (unregistered)";
5055 case NETREG_RELEASED: return " (released)";
5056 case NETREG_DUMMY: return " (dummy)";
5057 }
5058
5059 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5060 return " (unknown)";
5061 }
5062
5063 __printf(3, 4) __cold
5064 void netdev_printk(const char *level, const struct net_device *dev,
5065 const char *format, ...);
5066 __printf(2, 3) __cold
5067 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5068 __printf(2, 3) __cold
5069 void netdev_alert(const struct net_device *dev, const char *format, ...);
5070 __printf(2, 3) __cold
5071 void netdev_crit(const struct net_device *dev, const char *format, ...);
5072 __printf(2, 3) __cold
5073 void netdev_err(const struct net_device *dev, const char *format, ...);
5074 __printf(2, 3) __cold
5075 void netdev_warn(const struct net_device *dev, const char *format, ...);
5076 __printf(2, 3) __cold
5077 void netdev_notice(const struct net_device *dev, const char *format, ...);
5078 __printf(2, 3) __cold
5079 void netdev_info(const struct net_device *dev, const char *format, ...);
5080
5081 #define netdev_level_once(level, dev, fmt, ...) \
5082 do { \
5083 static bool __print_once __read_mostly; \
5084 \
5085 if (!__print_once) { \
5086 __print_once = true; \
5087 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
5088 } \
5089 } while (0)
5090
5091 #define netdev_emerg_once(dev, fmt, ...) \
5092 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5093 #define netdev_alert_once(dev, fmt, ...) \
5094 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5095 #define netdev_crit_once(dev, fmt, ...) \
5096 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5097 #define netdev_err_once(dev, fmt, ...) \
5098 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5099 #define netdev_warn_once(dev, fmt, ...) \
5100 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5101 #define netdev_notice_once(dev, fmt, ...) \
5102 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5103 #define netdev_info_once(dev, fmt, ...) \
5104 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5105
5106 #define MODULE_ALIAS_NETDEV(device) \
5107 MODULE_ALIAS("netdev-" device)
5108
5109 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5110 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5111 #define netdev_dbg(__dev, format, args...) \
5112 do { \
5113 dynamic_netdev_dbg(__dev, format, ##args); \
5114 } while (0)
5115 #elif defined(DEBUG)
5116 #define netdev_dbg(__dev, format, args...) \
5117 netdev_printk(KERN_DEBUG, __dev, format, ##args)
5118 #else
5119 #define netdev_dbg(__dev, format, args...) \
5120 ({ \
5121 if (0) \
5122 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5123 })
5124 #endif
5125
5126 #if defined(VERBOSE_DEBUG)
5127 #define netdev_vdbg netdev_dbg
5128 #else
5129
5130 #define netdev_vdbg(dev, format, args...) \
5131 ({ \
5132 if (0) \
5133 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5134 0; \
5135 })
5136 #endif
5137
5138 /*
5139 * netdev_WARN() acts like dev_printk(), but with the key difference
5140 * of using a WARN/WARN_ON to get the message out, including the
5141 * file/line information and a backtrace.
5142 */
5143 #define netdev_WARN(dev, format, args...) \
5144 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5145 netdev_reg_state(dev), ##args)
5146
5147 #define netdev_WARN_ONCE(dev, format, args...) \
5148 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5149 netdev_reg_state(dev), ##args)
5150
5151 /* netif printk helpers, similar to netdev_printk */
5152
5153 #define netif_printk(priv, type, level, dev, fmt, args...) \
5154 do { \
5155 if (netif_msg_##type(priv)) \
5156 netdev_printk(level, (dev), fmt, ##args); \
5157 } while (0)
5158
5159 #define netif_level(level, priv, type, dev, fmt, args...) \
5160 do { \
5161 if (netif_msg_##type(priv)) \
5162 netdev_##level(dev, fmt, ##args); \
5163 } while (0)
5164
5165 #define netif_emerg(priv, type, dev, fmt, args...) \
5166 netif_level(emerg, priv, type, dev, fmt, ##args)
5167 #define netif_alert(priv, type, dev, fmt, args...) \
5168 netif_level(alert, priv, type, dev, fmt, ##args)
5169 #define netif_crit(priv, type, dev, fmt, args...) \
5170 netif_level(crit, priv, type, dev, fmt, ##args)
5171 #define netif_err(priv, type, dev, fmt, args...) \
5172 netif_level(err, priv, type, dev, fmt, ##args)
5173 #define netif_warn(priv, type, dev, fmt, args...) \
5174 netif_level(warn, priv, type, dev, fmt, ##args)
5175 #define netif_notice(priv, type, dev, fmt, args...) \
5176 netif_level(notice, priv, type, dev, fmt, ##args)
5177 #define netif_info(priv, type, dev, fmt, args...) \
5178 netif_level(info, priv, type, dev, fmt, ##args)
5179
5180 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5181 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5182 #define netif_dbg(priv, type, netdev, format, args...) \
5183 do { \
5184 if (netif_msg_##type(priv)) \
5185 dynamic_netdev_dbg(netdev, format, ##args); \
5186 } while (0)
5187 #elif defined(DEBUG)
5188 #define netif_dbg(priv, type, dev, format, args...) \
5189 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5190 #else
5191 #define netif_dbg(priv, type, dev, format, args...) \
5192 ({ \
5193 if (0) \
5194 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5195 0; \
5196 })
5197 #endif
5198
5199 /* if @cond then downgrade to debug, else print at @level */
5200 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5201 do { \
5202 if (cond) \
5203 netif_dbg(priv, type, netdev, fmt, ##args); \
5204 else \
5205 netif_ ## level(priv, type, netdev, fmt, ##args); \
5206 } while (0)
5207
5208 #if defined(VERBOSE_DEBUG)
5209 #define netif_vdbg netif_dbg
5210 #else
5211 #define netif_vdbg(priv, type, dev, format, args...) \
5212 ({ \
5213 if (0) \
5214 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5215 0; \
5216 })
5217 #endif
5218
5219 /*
5220 * The list of packet types we will receive (as opposed to discard)
5221 * and the routines to invoke.
5222 *
5223 * Why 16. Because with 16 the only overlap we get on a hash of the
5224 * low nibble of the protocol value is RARP/SNAP/X.25.
5225 *
5226 * 0800 IP
5227 * 0001 802.3
5228 * 0002 AX.25
5229 * 0004 802.2
5230 * 8035 RARP
5231 * 0005 SNAP
5232 * 0805 X.25
5233 * 0806 ARP
5234 * 8137 IPX
5235 * 0009 Localtalk
5236 * 86DD IPv6
5237 */
5238 #define PTYPE_HASH_SIZE (16)
5239 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5240
5241 extern struct net_device *blackhole_netdev;
5242
5243 #endif /* _LINUX_NETDEVICE_H */
5244