• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32 
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
40 
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 
50 __initdata LIST_HEAD(huge_boot_pages);
51 
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57 
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63 
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70 
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73 
unlock_or_release_subpool(struct hugepage_subpool * spool)74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
77 
78 	spin_unlock(&spool->lock);
79 
80 	/* If no pages are used, and no other handles to the subpool
81 	 * remain, give up any reservations mased on minimum size and
82 	 * free the subpool */
83 	if (free) {
84 		if (spool->min_hpages != -1)
85 			hugetlb_acct_memory(spool->hstate,
86 						-spool->min_hpages);
87 		kfree(spool);
88 	}
89 }
90 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 						long min_hpages)
93 {
94 	struct hugepage_subpool *spool;
95 
96 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 	if (!spool)
98 		return NULL;
99 
100 	spin_lock_init(&spool->lock);
101 	spool->count = 1;
102 	spool->max_hpages = max_hpages;
103 	spool->hstate = h;
104 	spool->min_hpages = min_hpages;
105 
106 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 		kfree(spool);
108 		return NULL;
109 	}
110 	spool->rsv_hpages = min_hpages;
111 
112 	return spool;
113 }
114 
hugepage_put_subpool(struct hugepage_subpool * spool)115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 	spin_lock(&spool->lock);
118 	BUG_ON(!spool->count);
119 	spool->count--;
120 	unlock_or_release_subpool(spool);
121 }
122 
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 				      long delta)
133 {
134 	long ret = delta;
135 
136 	if (!spool)
137 		return ret;
138 
139 	spin_lock(&spool->lock);
140 
141 	if (spool->max_hpages != -1) {		/* maximum size accounting */
142 		if ((spool->used_hpages + delta) <= spool->max_hpages)
143 			spool->used_hpages += delta;
144 		else {
145 			ret = -ENOMEM;
146 			goto unlock_ret;
147 		}
148 	}
149 
150 	/* minimum size accounting */
151 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 		if (delta > spool->rsv_hpages) {
153 			/*
154 			 * Asking for more reserves than those already taken on
155 			 * behalf of subpool.  Return difference.
156 			 */
157 			ret = delta - spool->rsv_hpages;
158 			spool->rsv_hpages = 0;
159 		} else {
160 			ret = 0;	/* reserves already accounted for */
161 			spool->rsv_hpages -= delta;
162 		}
163 	}
164 
165 unlock_ret:
166 	spin_unlock(&spool->lock);
167 	return ret;
168 }
169 
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 				       long delta)
178 {
179 	long ret = delta;
180 
181 	if (!spool)
182 		return delta;
183 
184 	spin_lock(&spool->lock);
185 
186 	if (spool->max_hpages != -1)		/* maximum size accounting */
187 		spool->used_hpages -= delta;
188 
189 	 /* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 		if (spool->rsv_hpages + delta <= spool->min_hpages)
192 			ret = 0;
193 		else
194 			ret = spool->rsv_hpages + delta - spool->min_hpages;
195 
196 		spool->rsv_hpages += delta;
197 		if (spool->rsv_hpages > spool->min_hpages)
198 			spool->rsv_hpages = spool->min_hpages;
199 	}
200 
201 	/*
202 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 	 * quota reference, free it now.
204 	 */
205 	unlock_or_release_subpool(spool);
206 
207 	return ret;
208 }
209 
subpool_inode(struct inode * inode)210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 	return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214 
subpool_vma(struct vm_area_struct * vma)215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 	return subpool_inode(file_inode(vma->vm_file));
218 }
219 
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240 	struct list_head link;
241 	long from;
242 	long to;
243 };
244 
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
region_add(struct resv_map * resv,long f,long t)259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 	struct list_head *head = &resv->regions;
262 	struct file_region *rg, *nrg, *trg;
263 	long add = 0;
264 
265 	spin_lock(&resv->lock);
266 	/* Locate the region we are either in or before. */
267 	list_for_each_entry(rg, head, link)
268 		if (f <= rg->to)
269 			break;
270 
271 	/*
272 	 * If no region exists which can be expanded to include the
273 	 * specified range, the list must have been modified by an
274 	 * interleving call to region_del().  Pull a region descriptor
275 	 * from the cache and use it for this range.
276 	 */
277 	if (&rg->link == head || t < rg->from) {
278 		VM_BUG_ON(resv->region_cache_count <= 0);
279 
280 		resv->region_cache_count--;
281 		nrg = list_first_entry(&resv->region_cache, struct file_region,
282 					link);
283 		list_del(&nrg->link);
284 
285 		nrg->from = f;
286 		nrg->to = t;
287 		list_add(&nrg->link, rg->link.prev);
288 
289 		add += t - f;
290 		goto out_locked;
291 	}
292 
293 	/* Round our left edge to the current segment if it encloses us. */
294 	if (f > rg->from)
295 		f = rg->from;
296 
297 	/* Check for and consume any regions we now overlap with. */
298 	nrg = rg;
299 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 		if (&rg->link == head)
301 			break;
302 		if (rg->from > t)
303 			break;
304 
305 		/* If this area reaches higher then extend our area to
306 		 * include it completely.  If this is not the first area
307 		 * which we intend to reuse, free it. */
308 		if (rg->to > t)
309 			t = rg->to;
310 		if (rg != nrg) {
311 			/* Decrement return value by the deleted range.
312 			 * Another range will span this area so that by
313 			 * end of routine add will be >= zero
314 			 */
315 			add -= (rg->to - rg->from);
316 			list_del(&rg->link);
317 			kfree(rg);
318 		}
319 	}
320 
321 	add += (nrg->from - f);		/* Added to beginning of region */
322 	nrg->from = f;
323 	add += t - nrg->to;		/* Added to end of region */
324 	nrg->to = t;
325 
326 out_locked:
327 	resv->adds_in_progress--;
328 	spin_unlock(&resv->lock);
329 	VM_BUG_ON(add < 0);
330 	return add;
331 }
332 
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
region_chg(struct resv_map * resv,long f,long t)355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 	struct list_head *head = &resv->regions;
358 	struct file_region *rg, *nrg = NULL;
359 	long chg = 0;
360 
361 retry:
362 	spin_lock(&resv->lock);
363 retry_locked:
364 	resv->adds_in_progress++;
365 
366 	/*
367 	 * Check for sufficient descriptors in the cache to accommodate
368 	 * the number of in progress add operations.
369 	 */
370 	if (resv->adds_in_progress > resv->region_cache_count) {
371 		struct file_region *trg;
372 
373 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 		/* Must drop lock to allocate a new descriptor. */
375 		resv->adds_in_progress--;
376 		spin_unlock(&resv->lock);
377 
378 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 		if (!trg) {
380 			kfree(nrg);
381 			return -ENOMEM;
382 		}
383 
384 		spin_lock(&resv->lock);
385 		list_add(&trg->link, &resv->region_cache);
386 		resv->region_cache_count++;
387 		goto retry_locked;
388 	}
389 
390 	/* Locate the region we are before or in. */
391 	list_for_each_entry(rg, head, link)
392 		if (f <= rg->to)
393 			break;
394 
395 	/* If we are below the current region then a new region is required.
396 	 * Subtle, allocate a new region at the position but make it zero
397 	 * size such that we can guarantee to record the reservation. */
398 	if (&rg->link == head || t < rg->from) {
399 		if (!nrg) {
400 			resv->adds_in_progress--;
401 			spin_unlock(&resv->lock);
402 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 			if (!nrg)
404 				return -ENOMEM;
405 
406 			nrg->from = f;
407 			nrg->to   = f;
408 			INIT_LIST_HEAD(&nrg->link);
409 			goto retry;
410 		}
411 
412 		list_add(&nrg->link, rg->link.prev);
413 		chg = t - f;
414 		goto out_nrg;
415 	}
416 
417 	/* Round our left edge to the current segment if it encloses us. */
418 	if (f > rg->from)
419 		f = rg->from;
420 	chg = t - f;
421 
422 	/* Check for and consume any regions we now overlap with. */
423 	list_for_each_entry(rg, rg->link.prev, link) {
424 		if (&rg->link == head)
425 			break;
426 		if (rg->from > t)
427 			goto out;
428 
429 		/* We overlap with this area, if it extends further than
430 		 * us then we must extend ourselves.  Account for its
431 		 * existing reservation. */
432 		if (rg->to > t) {
433 			chg += rg->to - t;
434 			t = rg->to;
435 		}
436 		chg -= rg->to - rg->from;
437 	}
438 
439 out:
440 	spin_unlock(&resv->lock);
441 	/*  We already know we raced and no longer need the new region */
442 	kfree(nrg);
443 	return chg;
444 out_nrg:
445 	spin_unlock(&resv->lock);
446 	return chg;
447 }
448 
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
region_abort(struct resv_map * resv,long f,long t)460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 	spin_lock(&resv->lock);
463 	VM_BUG_ON(!resv->region_cache_count);
464 	resv->adds_in_progress--;
465 	spin_unlock(&resv->lock);
466 }
467 
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
region_del(struct resv_map * resv,long f,long t)482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 	struct list_head *head = &resv->regions;
485 	struct file_region *rg, *trg;
486 	struct file_region *nrg = NULL;
487 	long del = 0;
488 
489 retry:
490 	spin_lock(&resv->lock);
491 	list_for_each_entry_safe(rg, trg, head, link) {
492 		/*
493 		 * Skip regions before the range to be deleted.  file_region
494 		 * ranges are normally of the form [from, to).  However, there
495 		 * may be a "placeholder" entry in the map which is of the form
496 		 * (from, to) with from == to.  Check for placeholder entries
497 		 * at the beginning of the range to be deleted.
498 		 */
499 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 			continue;
501 
502 		if (rg->from >= t)
503 			break;
504 
505 		if (f > rg->from && t < rg->to) { /* Must split region */
506 			/*
507 			 * Check for an entry in the cache before dropping
508 			 * lock and attempting allocation.
509 			 */
510 			if (!nrg &&
511 			    resv->region_cache_count > resv->adds_in_progress) {
512 				nrg = list_first_entry(&resv->region_cache,
513 							struct file_region,
514 							link);
515 				list_del(&nrg->link);
516 				resv->region_cache_count--;
517 			}
518 
519 			if (!nrg) {
520 				spin_unlock(&resv->lock);
521 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 				if (!nrg)
523 					return -ENOMEM;
524 				goto retry;
525 			}
526 
527 			del += t - f;
528 
529 			/* New entry for end of split region */
530 			nrg->from = t;
531 			nrg->to = rg->to;
532 			INIT_LIST_HEAD(&nrg->link);
533 
534 			/* Original entry is trimmed */
535 			rg->to = f;
536 
537 			list_add(&nrg->link, &rg->link);
538 			nrg = NULL;
539 			break;
540 		}
541 
542 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 			del += rg->to - rg->from;
544 			list_del(&rg->link);
545 			kfree(rg);
546 			continue;
547 		}
548 
549 		if (f <= rg->from) {	/* Trim beginning of region */
550 			del += t - rg->from;
551 			rg->from = t;
552 		} else {		/* Trim end of region */
553 			del += rg->to - f;
554 			rg->to = f;
555 		}
556 	}
557 
558 	spin_unlock(&resv->lock);
559 	kfree(nrg);
560 	return del;
561 }
562 
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
hugetlb_fix_reserve_counts(struct inode * inode)572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 	struct hugepage_subpool *spool = subpool_inode(inode);
575 	long rsv_adjust;
576 
577 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 	if (rsv_adjust) {
579 		struct hstate *h = hstate_inode(inode);
580 
581 		hugetlb_acct_memory(h, 1);
582 	}
583 }
584 
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
region_count(struct resv_map * resv,long f,long t)589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 	struct list_head *head = &resv->regions;
592 	struct file_region *rg;
593 	long chg = 0;
594 
595 	spin_lock(&resv->lock);
596 	/* Locate each segment we overlap with, and count that overlap. */
597 	list_for_each_entry(rg, head, link) {
598 		long seg_from;
599 		long seg_to;
600 
601 		if (rg->to <= f)
602 			continue;
603 		if (rg->from >= t)
604 			break;
605 
606 		seg_from = max(rg->from, f);
607 		seg_to = min(rg->to, t);
608 
609 		chg += seg_to - seg_from;
610 	}
611 	spin_unlock(&resv->lock);
612 
613 	return chg;
614 }
615 
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 			struct vm_area_struct *vma, unsigned long address)
622 {
623 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 			(vma->vm_pgoff >> huge_page_order(h));
625 }
626 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 				     unsigned long address)
629 {
630 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
vma_kernel_pagesize(struct vm_area_struct * vma)638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 	if (vma->vm_ops && vma->vm_ops->pagesize)
641 		return vma->vm_ops->pagesize(vma);
642 	return PAGE_SIZE;
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645 
646 /*
647  * Return the page size being used by the MMU to back a VMA. In the majority
648  * of cases, the page size used by the kernel matches the MMU size. On
649  * architectures where it differs, an architecture-specific 'strong'
650  * version of this symbol is required.
651  */
vma_mmu_pagesize(struct vm_area_struct * vma)652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654 	return vma_kernel_pagesize(vma);
655 }
656 
657 /*
658  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
659  * bits of the reservation map pointer, which are always clear due to
660  * alignment.
661  */
662 #define HPAGE_RESV_OWNER    (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
665 
666 /*
667  * These helpers are used to track how many pages are reserved for
668  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669  * is guaranteed to have their future faults succeed.
670  *
671  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672  * the reserve counters are updated with the hugetlb_lock held. It is safe
673  * to reset the VMA at fork() time as it is not in use yet and there is no
674  * chance of the global counters getting corrupted as a result of the values.
675  *
676  * The private mapping reservation is represented in a subtly different
677  * manner to a shared mapping.  A shared mapping has a region map associated
678  * with the underlying file, this region map represents the backing file
679  * pages which have ever had a reservation assigned which this persists even
680  * after the page is instantiated.  A private mapping has a region map
681  * associated with the original mmap which is attached to all VMAs which
682  * reference it, this region map represents those offsets which have consumed
683  * reservation ie. where pages have been instantiated.
684  */
get_vma_private_data(struct vm_area_struct * vma)685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
686 {
687 	return (unsigned long)vma->vm_private_data;
688 }
689 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)690 static void set_vma_private_data(struct vm_area_struct *vma,
691 							unsigned long value)
692 {
693 	vma->vm_private_data = (void *)value;
694 }
695 
resv_map_alloc(void)696 struct resv_map *resv_map_alloc(void)
697 {
698 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
700 
701 	if (!resv_map || !rg) {
702 		kfree(resv_map);
703 		kfree(rg);
704 		return NULL;
705 	}
706 
707 	kref_init(&resv_map->refs);
708 	spin_lock_init(&resv_map->lock);
709 	INIT_LIST_HEAD(&resv_map->regions);
710 
711 	resv_map->adds_in_progress = 0;
712 
713 	INIT_LIST_HEAD(&resv_map->region_cache);
714 	list_add(&rg->link, &resv_map->region_cache);
715 	resv_map->region_cache_count = 1;
716 
717 	return resv_map;
718 }
719 
resv_map_release(struct kref * ref)720 void resv_map_release(struct kref *ref)
721 {
722 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 	struct list_head *head = &resv_map->region_cache;
724 	struct file_region *rg, *trg;
725 
726 	/* Clear out any active regions before we release the map. */
727 	region_del(resv_map, 0, LONG_MAX);
728 
729 	/* ... and any entries left in the cache */
730 	list_for_each_entry_safe(rg, trg, head, link) {
731 		list_del(&rg->link);
732 		kfree(rg);
733 	}
734 
735 	VM_BUG_ON(resv_map->adds_in_progress);
736 
737 	kfree(resv_map);
738 }
739 
inode_resv_map(struct inode * inode)740 static inline struct resv_map *inode_resv_map(struct inode *inode)
741 {
742 	return inode->i_mapping->private_data;
743 }
744 
vma_resv_map(struct vm_area_struct * vma)745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
746 {
747 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 	if (vma->vm_flags & VM_MAYSHARE) {
749 		struct address_space *mapping = vma->vm_file->f_mapping;
750 		struct inode *inode = mapping->host;
751 
752 		return inode_resv_map(inode);
753 
754 	} else {
755 		return (struct resv_map *)(get_vma_private_data(vma) &
756 							~HPAGE_RESV_MASK);
757 	}
758 }
759 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
761 {
762 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
764 
765 	set_vma_private_data(vma, (get_vma_private_data(vma) &
766 				HPAGE_RESV_MASK) | (unsigned long)map);
767 }
768 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
770 {
771 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773 
774 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
775 }
776 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
778 {
779 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 
781 	return (get_vma_private_data(vma) & flag) != 0;
782 }
783 
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
786 {
787 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 	if (!(vma->vm_flags & VM_MAYSHARE))
789 		vma->vm_private_data = (void *)0;
790 }
791 
792 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
794 {
795 	if (vma->vm_flags & VM_NORESERVE) {
796 		/*
797 		 * This address is already reserved by other process(chg == 0),
798 		 * so, we should decrement reserved count. Without decrementing,
799 		 * reserve count remains after releasing inode, because this
800 		 * allocated page will go into page cache and is regarded as
801 		 * coming from reserved pool in releasing step.  Currently, we
802 		 * don't have any other solution to deal with this situation
803 		 * properly, so add work-around here.
804 		 */
805 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806 			return true;
807 		else
808 			return false;
809 	}
810 
811 	/* Shared mappings always use reserves */
812 	if (vma->vm_flags & VM_MAYSHARE) {
813 		/*
814 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
815 		 * be a region map for all pages.  The only situation where
816 		 * there is no region map is if a hole was punched via
817 		 * fallocate.  In this case, there really are no reverves to
818 		 * use.  This situation is indicated if chg != 0.
819 		 */
820 		if (chg)
821 			return false;
822 		else
823 			return true;
824 	}
825 
826 	/*
827 	 * Only the process that called mmap() has reserves for
828 	 * private mappings.
829 	 */
830 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
831 		/*
832 		 * Like the shared case above, a hole punch or truncate
833 		 * could have been performed on the private mapping.
834 		 * Examine the value of chg to determine if reserves
835 		 * actually exist or were previously consumed.
836 		 * Very Subtle - The value of chg comes from a previous
837 		 * call to vma_needs_reserves().  The reserve map for
838 		 * private mappings has different (opposite) semantics
839 		 * than that of shared mappings.  vma_needs_reserves()
840 		 * has already taken this difference in semantics into
841 		 * account.  Therefore, the meaning of chg is the same
842 		 * as in the shared case above.  Code could easily be
843 		 * combined, but keeping it separate draws attention to
844 		 * subtle differences.
845 		 */
846 		if (chg)
847 			return false;
848 		else
849 			return true;
850 	}
851 
852 	return false;
853 }
854 
enqueue_huge_page(struct hstate * h,struct page * page)855 static void enqueue_huge_page(struct hstate *h, struct page *page)
856 {
857 	int nid = page_to_nid(page);
858 	list_move(&page->lru, &h->hugepage_freelists[nid]);
859 	h->free_huge_pages++;
860 	h->free_huge_pages_node[nid]++;
861 }
862 
dequeue_huge_page_node_exact(struct hstate * h,int nid)863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
864 {
865 	struct page *page;
866 
867 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868 		if (!PageHWPoison(page))
869 			break;
870 	/*
871 	 * if 'non-isolated free hugepage' not found on the list,
872 	 * the allocation fails.
873 	 */
874 	if (&h->hugepage_freelists[nid] == &page->lru)
875 		return NULL;
876 	list_move(&page->lru, &h->hugepage_activelist);
877 	set_page_refcounted(page);
878 	h->free_huge_pages--;
879 	h->free_huge_pages_node[nid]--;
880 	return page;
881 }
882 
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884 		nodemask_t *nmask)
885 {
886 	unsigned int cpuset_mems_cookie;
887 	struct zonelist *zonelist;
888 	struct zone *zone;
889 	struct zoneref *z;
890 	int node = -1;
891 
892 	zonelist = node_zonelist(nid, gfp_mask);
893 
894 retry_cpuset:
895 	cpuset_mems_cookie = read_mems_allowed_begin();
896 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897 		struct page *page;
898 
899 		if (!cpuset_zone_allowed(zone, gfp_mask))
900 			continue;
901 		/*
902 		 * no need to ask again on the same node. Pool is node rather than
903 		 * zone aware
904 		 */
905 		if (zone_to_nid(zone) == node)
906 			continue;
907 		node = zone_to_nid(zone);
908 
909 		page = dequeue_huge_page_node_exact(h, node);
910 		if (page)
911 			return page;
912 	}
913 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914 		goto retry_cpuset;
915 
916 	return NULL;
917 }
918 
919 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
921 {
922 	if (hugepage_migration_supported(h))
923 		return GFP_HIGHUSER_MOVABLE;
924 	else
925 		return GFP_HIGHUSER;
926 }
927 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929 				struct vm_area_struct *vma,
930 				unsigned long address, int avoid_reserve,
931 				long chg)
932 {
933 	struct page *page;
934 	struct mempolicy *mpol;
935 	gfp_t gfp_mask;
936 	nodemask_t *nodemask;
937 	int nid;
938 
939 	/*
940 	 * A child process with MAP_PRIVATE mappings created by their parent
941 	 * have no page reserves. This check ensures that reservations are
942 	 * not "stolen". The child may still get SIGKILLed
943 	 */
944 	if (!vma_has_reserves(vma, chg) &&
945 			h->free_huge_pages - h->resv_huge_pages == 0)
946 		goto err;
947 
948 	/* If reserves cannot be used, ensure enough pages are in the pool */
949 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950 		goto err;
951 
952 	gfp_mask = htlb_alloc_mask(h);
953 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 		SetPagePrivate(page);
957 		h->resv_huge_pages--;
958 	}
959 
960 	mpol_cond_put(mpol);
961 	return page;
962 
963 err:
964 	return NULL;
965 }
966 
967 /*
968  * common helper functions for hstate_next_node_to_{alloc|free}.
969  * We may have allocated or freed a huge page based on a different
970  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971  * be outside of *nodes_allowed.  Ensure that we use an allowed
972  * node for alloc or free.
973  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
975 {
976 	nid = next_node_in(nid, *nodes_allowed);
977 	VM_BUG_ON(nid >= MAX_NUMNODES);
978 
979 	return nid;
980 }
981 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984 	if (!node_isset(nid, *nodes_allowed))
985 		nid = next_node_allowed(nid, nodes_allowed);
986 	return nid;
987 }
988 
989 /*
990  * returns the previously saved node ["this node"] from which to
991  * allocate a persistent huge page for the pool and advance the
992  * next node from which to allocate, handling wrap at end of node
993  * mask.
994  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)995 static int hstate_next_node_to_alloc(struct hstate *h,
996 					nodemask_t *nodes_allowed)
997 {
998 	int nid;
999 
1000 	VM_BUG_ON(!nodes_allowed);
1001 
1002 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004 
1005 	return nid;
1006 }
1007 
1008 /*
1009  * helper for free_pool_huge_page() - return the previously saved
1010  * node ["this node"] from which to free a huge page.  Advance the
1011  * next node id whether or not we find a free huge page to free so
1012  * that the next attempt to free addresses the next node.
1013  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015 {
1016 	int nid;
1017 
1018 	VM_BUG_ON(!nodes_allowed);
1019 
1020 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022 
1023 	return nid;
1024 }
1025 
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1027 	for (nr_nodes = nodes_weight(*mask);				\
1028 		nr_nodes > 0 &&						\
1029 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1030 		nr_nodes--)
1031 
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1033 	for (nr_nodes = nodes_weight(*mask);				\
1034 		nr_nodes > 0 &&						\
1035 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1036 		nr_nodes--)
1037 
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1039 static void destroy_compound_gigantic_page(struct page *page,
1040 					unsigned int order)
1041 {
1042 	int i;
1043 	int nr_pages = 1 << order;
1044 	struct page *p = page + 1;
1045 
1046 	atomic_set(compound_mapcount_ptr(page), 0);
1047 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048 		clear_compound_head(p);
1049 		set_page_refcounted(p);
1050 	}
1051 
1052 	set_compound_order(page, 0);
1053 	__ClearPageHead(page);
1054 }
1055 
free_gigantic_page(struct page * page,unsigned int order)1056 static void free_gigantic_page(struct page *page, unsigned int order)
1057 {
1058 	free_contig_range(page_to_pfn(page), 1 << order);
1059 }
1060 
__alloc_gigantic_page(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062 				unsigned long nr_pages, gfp_t gfp_mask)
1063 {
1064 	unsigned long end_pfn = start_pfn + nr_pages;
1065 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066 				  gfp_mask);
1067 }
1068 
pfn_range_valid_gigantic(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070 			unsigned long start_pfn, unsigned long nr_pages)
1071 {
1072 	unsigned long i, end_pfn = start_pfn + nr_pages;
1073 	struct page *page;
1074 
1075 	for (i = start_pfn; i < end_pfn; i++) {
1076 		page = pfn_to_online_page(i);
1077 		if (!page)
1078 			return false;
1079 
1080 		if (page_zone(page) != z)
1081 			return false;
1082 
1083 		if (PageReserved(page))
1084 			return false;
1085 
1086 		if (page_count(page) > 0)
1087 			return false;
1088 
1089 		if (PageHuge(page))
1090 			return false;
1091 	}
1092 
1093 	return true;
1094 }
1095 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1096 static bool zone_spans_last_pfn(const struct zone *zone,
1097 			unsigned long start_pfn, unsigned long nr_pages)
1098 {
1099 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1100 	return zone_spans_pfn(zone, last_pfn);
1101 }
1102 
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1103 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1104 		int nid, nodemask_t *nodemask)
1105 {
1106 	unsigned int order = huge_page_order(h);
1107 	unsigned long nr_pages = 1 << order;
1108 	unsigned long ret, pfn, flags;
1109 	struct zonelist *zonelist;
1110 	struct zone *zone;
1111 	struct zoneref *z;
1112 
1113 	zonelist = node_zonelist(nid, gfp_mask);
1114 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1115 		spin_lock_irqsave(&zone->lock, flags);
1116 
1117 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1118 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1119 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1120 				/*
1121 				 * We release the zone lock here because
1122 				 * alloc_contig_range() will also lock the zone
1123 				 * at some point. If there's an allocation
1124 				 * spinning on this lock, it may win the race
1125 				 * and cause alloc_contig_range() to fail...
1126 				 */
1127 				spin_unlock_irqrestore(&zone->lock, flags);
1128 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1129 				if (!ret)
1130 					return pfn_to_page(pfn);
1131 				spin_lock_irqsave(&zone->lock, flags);
1132 			}
1133 			pfn += nr_pages;
1134 		}
1135 
1136 		spin_unlock_irqrestore(&zone->lock, flags);
1137 	}
1138 
1139 	return NULL;
1140 }
1141 
1142 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1143 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1144 
1145 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
gigantic_page_supported(void)1146 static inline bool gigantic_page_supported(void) { return false; }
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1147 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1148 		int nid, nodemask_t *nodemask) { return NULL; }
free_gigantic_page(struct page * page,unsigned int order)1149 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1150 static inline void destroy_compound_gigantic_page(struct page *page,
1151 						unsigned int order) { }
1152 #endif
1153 
update_and_free_page(struct hstate * h,struct page * page)1154 static void update_and_free_page(struct hstate *h, struct page *page)
1155 {
1156 	int i;
1157 
1158 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1159 		return;
1160 
1161 	h->nr_huge_pages--;
1162 	h->nr_huge_pages_node[page_to_nid(page)]--;
1163 	for (i = 0; i < pages_per_huge_page(h); i++) {
1164 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1165 				1 << PG_referenced | 1 << PG_dirty |
1166 				1 << PG_active | 1 << PG_private |
1167 				1 << PG_writeback);
1168 	}
1169 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1170 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1171 	set_page_refcounted(page);
1172 	if (hstate_is_gigantic(h)) {
1173 		destroy_compound_gigantic_page(page, huge_page_order(h));
1174 		free_gigantic_page(page, huge_page_order(h));
1175 	} else {
1176 		__free_pages(page, huge_page_order(h));
1177 	}
1178 }
1179 
size_to_hstate(unsigned long size)1180 struct hstate *size_to_hstate(unsigned long size)
1181 {
1182 	struct hstate *h;
1183 
1184 	for_each_hstate(h) {
1185 		if (huge_page_size(h) == size)
1186 			return h;
1187 	}
1188 	return NULL;
1189 }
1190 
1191 /*
1192  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1193  * to hstate->hugepage_activelist.)
1194  *
1195  * This function can be called for tail pages, but never returns true for them.
1196  */
page_huge_active(struct page * page)1197 bool page_huge_active(struct page *page)
1198 {
1199 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1200 	return PageHead(page) && PagePrivate(&page[1]);
1201 }
1202 
1203 /* never called for tail page */
set_page_huge_active(struct page * page)1204 static void set_page_huge_active(struct page *page)
1205 {
1206 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1207 	SetPagePrivate(&page[1]);
1208 }
1209 
clear_page_huge_active(struct page * page)1210 static void clear_page_huge_active(struct page *page)
1211 {
1212 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1213 	ClearPagePrivate(&page[1]);
1214 }
1215 
1216 /*
1217  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1218  * code
1219  */
PageHugeTemporary(struct page * page)1220 static inline bool PageHugeTemporary(struct page *page)
1221 {
1222 	if (!PageHuge(page))
1223 		return false;
1224 
1225 	return (unsigned long)page[2].mapping == -1U;
1226 }
1227 
SetPageHugeTemporary(struct page * page)1228 static inline void SetPageHugeTemporary(struct page *page)
1229 {
1230 	page[2].mapping = (void *)-1U;
1231 }
1232 
ClearPageHugeTemporary(struct page * page)1233 static inline void ClearPageHugeTemporary(struct page *page)
1234 {
1235 	page[2].mapping = NULL;
1236 }
1237 
free_huge_page(struct page * page)1238 void free_huge_page(struct page *page)
1239 {
1240 	/*
1241 	 * Can't pass hstate in here because it is called from the
1242 	 * compound page destructor.
1243 	 */
1244 	struct hstate *h = page_hstate(page);
1245 	int nid = page_to_nid(page);
1246 	struct hugepage_subpool *spool =
1247 		(struct hugepage_subpool *)page_private(page);
1248 	bool restore_reserve;
1249 
1250 	set_page_private(page, 0);
1251 	page->mapping = NULL;
1252 	VM_BUG_ON_PAGE(page_count(page), page);
1253 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1254 	restore_reserve = PagePrivate(page);
1255 	ClearPagePrivate(page);
1256 
1257 	/*
1258 	 * If PagePrivate() was set on page, page allocation consumed a
1259 	 * reservation.  If the page was associated with a subpool, there
1260 	 * would have been a page reserved in the subpool before allocation
1261 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1262 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1263 	 * remove the reserved page from the subpool.
1264 	 */
1265 	if (!restore_reserve) {
1266 		/*
1267 		 * A return code of zero implies that the subpool will be
1268 		 * under its minimum size if the reservation is not restored
1269 		 * after page is free.  Therefore, force restore_reserve
1270 		 * operation.
1271 		 */
1272 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1273 			restore_reserve = true;
1274 	}
1275 
1276 	spin_lock(&hugetlb_lock);
1277 	clear_page_huge_active(page);
1278 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1279 				     pages_per_huge_page(h), page);
1280 	if (restore_reserve)
1281 		h->resv_huge_pages++;
1282 
1283 	if (PageHugeTemporary(page)) {
1284 		list_del(&page->lru);
1285 		ClearPageHugeTemporary(page);
1286 		update_and_free_page(h, page);
1287 	} else if (h->surplus_huge_pages_node[nid]) {
1288 		/* remove the page from active list */
1289 		list_del(&page->lru);
1290 		update_and_free_page(h, page);
1291 		h->surplus_huge_pages--;
1292 		h->surplus_huge_pages_node[nid]--;
1293 	} else {
1294 		arch_clear_hugepage_flags(page);
1295 		enqueue_huge_page(h, page);
1296 	}
1297 	spin_unlock(&hugetlb_lock);
1298 }
1299 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1300 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1301 {
1302 	INIT_LIST_HEAD(&page->lru);
1303 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1304 	spin_lock(&hugetlb_lock);
1305 	set_hugetlb_cgroup(page, NULL);
1306 	h->nr_huge_pages++;
1307 	h->nr_huge_pages_node[nid]++;
1308 	spin_unlock(&hugetlb_lock);
1309 }
1310 
prep_compound_gigantic_page(struct page * page,unsigned int order)1311 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1312 {
1313 	int i;
1314 	int nr_pages = 1 << order;
1315 	struct page *p = page + 1;
1316 
1317 	/* we rely on prep_new_huge_page to set the destructor */
1318 	set_compound_order(page, order);
1319 	__ClearPageReserved(page);
1320 	__SetPageHead(page);
1321 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1322 		/*
1323 		 * For gigantic hugepages allocated through bootmem at
1324 		 * boot, it's safer to be consistent with the not-gigantic
1325 		 * hugepages and clear the PG_reserved bit from all tail pages
1326 		 * too.  Otherwse drivers using get_user_pages() to access tail
1327 		 * pages may get the reference counting wrong if they see
1328 		 * PG_reserved set on a tail page (despite the head page not
1329 		 * having PG_reserved set).  Enforcing this consistency between
1330 		 * head and tail pages allows drivers to optimize away a check
1331 		 * on the head page when they need know if put_page() is needed
1332 		 * after get_user_pages().
1333 		 */
1334 		__ClearPageReserved(p);
1335 		set_page_count(p, 0);
1336 		set_compound_head(p, page);
1337 	}
1338 	atomic_set(compound_mapcount_ptr(page), -1);
1339 }
1340 
1341 /*
1342  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1343  * transparent huge pages.  See the PageTransHuge() documentation for more
1344  * details.
1345  */
PageHuge(struct page * page)1346 int PageHuge(struct page *page)
1347 {
1348 	if (!PageCompound(page))
1349 		return 0;
1350 
1351 	page = compound_head(page);
1352 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1353 }
1354 EXPORT_SYMBOL_GPL(PageHuge);
1355 
1356 /*
1357  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1358  * normal or transparent huge pages.
1359  */
PageHeadHuge(struct page * page_head)1360 int PageHeadHuge(struct page *page_head)
1361 {
1362 	if (!PageHead(page_head))
1363 		return 0;
1364 
1365 	return get_compound_page_dtor(page_head) == free_huge_page;
1366 }
1367 
__basepage_index(struct page * page)1368 pgoff_t __basepage_index(struct page *page)
1369 {
1370 	struct page *page_head = compound_head(page);
1371 	pgoff_t index = page_index(page_head);
1372 	unsigned long compound_idx;
1373 
1374 	if (!PageHuge(page_head))
1375 		return page_index(page);
1376 
1377 	if (compound_order(page_head) >= MAX_ORDER)
1378 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1379 	else
1380 		compound_idx = page - page_head;
1381 
1382 	return (index << compound_order(page_head)) + compound_idx;
1383 }
1384 
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1385 static struct page *alloc_buddy_huge_page(struct hstate *h,
1386 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1387 {
1388 	int order = huge_page_order(h);
1389 	struct page *page;
1390 
1391 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1392 	if (nid == NUMA_NO_NODE)
1393 		nid = numa_mem_id();
1394 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1395 	if (page)
1396 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1397 	else
1398 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1399 
1400 	return page;
1401 }
1402 
1403 /*
1404  * Common helper to allocate a fresh hugetlb page. All specific allocators
1405  * should use this function to get new hugetlb pages
1406  */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1407 static struct page *alloc_fresh_huge_page(struct hstate *h,
1408 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1409 {
1410 	struct page *page;
1411 
1412 	if (hstate_is_gigantic(h))
1413 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1414 	else
1415 		page = alloc_buddy_huge_page(h, gfp_mask,
1416 				nid, nmask);
1417 	if (!page)
1418 		return NULL;
1419 
1420 	if (hstate_is_gigantic(h))
1421 		prep_compound_gigantic_page(page, huge_page_order(h));
1422 	prep_new_huge_page(h, page, page_to_nid(page));
1423 
1424 	return page;
1425 }
1426 
1427 /*
1428  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1429  * manner.
1430  */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed)1431 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1432 {
1433 	struct page *page;
1434 	int nr_nodes, node;
1435 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1436 
1437 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1438 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1439 		if (page)
1440 			break;
1441 	}
1442 
1443 	if (!page)
1444 		return 0;
1445 
1446 	put_page(page); /* free it into the hugepage allocator */
1447 
1448 	return 1;
1449 }
1450 
1451 /*
1452  * Free huge page from pool from next node to free.
1453  * Attempt to keep persistent huge pages more or less
1454  * balanced over allowed nodes.
1455  * Called with hugetlb_lock locked.
1456  */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1457 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1458 							 bool acct_surplus)
1459 {
1460 	int nr_nodes, node;
1461 	int ret = 0;
1462 
1463 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1464 		/*
1465 		 * If we're returning unused surplus pages, only examine
1466 		 * nodes with surplus pages.
1467 		 */
1468 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1469 		    !list_empty(&h->hugepage_freelists[node])) {
1470 			struct page *page =
1471 				list_entry(h->hugepage_freelists[node].next,
1472 					  struct page, lru);
1473 			list_del(&page->lru);
1474 			h->free_huge_pages--;
1475 			h->free_huge_pages_node[node]--;
1476 			if (acct_surplus) {
1477 				h->surplus_huge_pages--;
1478 				h->surplus_huge_pages_node[node]--;
1479 			}
1480 			update_and_free_page(h, page);
1481 			ret = 1;
1482 			break;
1483 		}
1484 	}
1485 
1486 	return ret;
1487 }
1488 
1489 /*
1490  * Dissolve a given free hugepage into free buddy pages. This function does
1491  * nothing for in-use hugepages and non-hugepages.
1492  * This function returns values like below:
1493  *
1494  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1495  *          (allocated or reserved.)
1496  *       0: successfully dissolved free hugepages or the page is not a
1497  *          hugepage (considered as already dissolved)
1498  */
dissolve_free_huge_page(struct page * page)1499 int dissolve_free_huge_page(struct page *page)
1500 {
1501 	int rc = -EBUSY;
1502 
1503 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1504 	if (!PageHuge(page))
1505 		return 0;
1506 
1507 	spin_lock(&hugetlb_lock);
1508 	if (!PageHuge(page)) {
1509 		rc = 0;
1510 		goto out;
1511 	}
1512 
1513 	if (!page_count(page)) {
1514 		struct page *head = compound_head(page);
1515 		struct hstate *h = page_hstate(head);
1516 		int nid = page_to_nid(head);
1517 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1518 			goto out;
1519 		/*
1520 		 * Move PageHWPoison flag from head page to the raw error page,
1521 		 * which makes any subpages rather than the error page reusable.
1522 		 */
1523 		if (PageHWPoison(head) && page != head) {
1524 			SetPageHWPoison(page);
1525 			ClearPageHWPoison(head);
1526 		}
1527 		list_del(&head->lru);
1528 		h->free_huge_pages--;
1529 		h->free_huge_pages_node[nid]--;
1530 		h->max_huge_pages--;
1531 		update_and_free_page(h, head);
1532 		rc = 0;
1533 	}
1534 out:
1535 	spin_unlock(&hugetlb_lock);
1536 	return rc;
1537 }
1538 
1539 /*
1540  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1541  * make specified memory blocks removable from the system.
1542  * Note that this will dissolve a free gigantic hugepage completely, if any
1543  * part of it lies within the given range.
1544  * Also note that if dissolve_free_huge_page() returns with an error, all
1545  * free hugepages that were dissolved before that error are lost.
1546  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1547 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1548 {
1549 	unsigned long pfn;
1550 	struct page *page;
1551 	int rc = 0;
1552 
1553 	if (!hugepages_supported())
1554 		return rc;
1555 
1556 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1557 		page = pfn_to_page(pfn);
1558 		rc = dissolve_free_huge_page(page);
1559 		if (rc)
1560 			break;
1561 	}
1562 
1563 	return rc;
1564 }
1565 
1566 /*
1567  * Allocates a fresh surplus page from the page allocator.
1568  */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1569 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1570 		int nid, nodemask_t *nmask)
1571 {
1572 	struct page *page = NULL;
1573 
1574 	if (hstate_is_gigantic(h))
1575 		return NULL;
1576 
1577 	spin_lock(&hugetlb_lock);
1578 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1579 		goto out_unlock;
1580 	spin_unlock(&hugetlb_lock);
1581 
1582 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1583 	if (!page)
1584 		return NULL;
1585 
1586 	spin_lock(&hugetlb_lock);
1587 	/*
1588 	 * We could have raced with the pool size change.
1589 	 * Double check that and simply deallocate the new page
1590 	 * if we would end up overcommiting the surpluses. Abuse
1591 	 * temporary page to workaround the nasty free_huge_page
1592 	 * codeflow
1593 	 */
1594 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1595 		SetPageHugeTemporary(page);
1596 		spin_unlock(&hugetlb_lock);
1597 		put_page(page);
1598 		return NULL;
1599 	} else {
1600 		h->surplus_huge_pages++;
1601 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1602 	}
1603 
1604 out_unlock:
1605 	spin_unlock(&hugetlb_lock);
1606 
1607 	return page;
1608 }
1609 
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1610 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1611 		int nid, nodemask_t *nmask)
1612 {
1613 	struct page *page;
1614 
1615 	if (hstate_is_gigantic(h))
1616 		return NULL;
1617 
1618 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1619 	if (!page)
1620 		return NULL;
1621 
1622 	/*
1623 	 * We do not account these pages as surplus because they are only
1624 	 * temporary and will be released properly on the last reference
1625 	 */
1626 	SetPageHugeTemporary(page);
1627 
1628 	return page;
1629 }
1630 
1631 /*
1632  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1633  */
1634 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1635 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1636 		struct vm_area_struct *vma, unsigned long addr)
1637 {
1638 	struct page *page;
1639 	struct mempolicy *mpol;
1640 	gfp_t gfp_mask = htlb_alloc_mask(h);
1641 	int nid;
1642 	nodemask_t *nodemask;
1643 
1644 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1645 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1646 	mpol_cond_put(mpol);
1647 
1648 	return page;
1649 }
1650 
1651 /* page migration callback function */
alloc_huge_page_node(struct hstate * h,int nid)1652 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1653 {
1654 	gfp_t gfp_mask = htlb_alloc_mask(h);
1655 	struct page *page = NULL;
1656 
1657 	if (nid != NUMA_NO_NODE)
1658 		gfp_mask |= __GFP_THISNODE;
1659 
1660 	spin_lock(&hugetlb_lock);
1661 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1662 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1663 	spin_unlock(&hugetlb_lock);
1664 
1665 	if (!page)
1666 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1667 
1668 	return page;
1669 }
1670 
1671 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask)1672 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1673 		nodemask_t *nmask)
1674 {
1675 	gfp_t gfp_mask = htlb_alloc_mask(h);
1676 
1677 	spin_lock(&hugetlb_lock);
1678 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1679 		struct page *page;
1680 
1681 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1682 		if (page) {
1683 			spin_unlock(&hugetlb_lock);
1684 			return page;
1685 		}
1686 	}
1687 	spin_unlock(&hugetlb_lock);
1688 
1689 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1690 }
1691 
1692 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1693 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1694 		unsigned long address)
1695 {
1696 	struct mempolicy *mpol;
1697 	nodemask_t *nodemask;
1698 	struct page *page;
1699 	gfp_t gfp_mask;
1700 	int node;
1701 
1702 	gfp_mask = htlb_alloc_mask(h);
1703 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1704 	page = alloc_huge_page_nodemask(h, node, nodemask);
1705 	mpol_cond_put(mpol);
1706 
1707 	return page;
1708 }
1709 
1710 /*
1711  * Increase the hugetlb pool such that it can accommodate a reservation
1712  * of size 'delta'.
1713  */
gather_surplus_pages(struct hstate * h,int delta)1714 static int gather_surplus_pages(struct hstate *h, int delta)
1715 {
1716 	struct list_head surplus_list;
1717 	struct page *page, *tmp;
1718 	int ret, i;
1719 	int needed, allocated;
1720 	bool alloc_ok = true;
1721 
1722 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1723 	if (needed <= 0) {
1724 		h->resv_huge_pages += delta;
1725 		return 0;
1726 	}
1727 
1728 	allocated = 0;
1729 	INIT_LIST_HEAD(&surplus_list);
1730 
1731 	ret = -ENOMEM;
1732 retry:
1733 	spin_unlock(&hugetlb_lock);
1734 	for (i = 0; i < needed; i++) {
1735 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1736 				NUMA_NO_NODE, NULL);
1737 		if (!page) {
1738 			alloc_ok = false;
1739 			break;
1740 		}
1741 		list_add(&page->lru, &surplus_list);
1742 		cond_resched();
1743 	}
1744 	allocated += i;
1745 
1746 	/*
1747 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1748 	 * because either resv_huge_pages or free_huge_pages may have changed.
1749 	 */
1750 	spin_lock(&hugetlb_lock);
1751 	needed = (h->resv_huge_pages + delta) -
1752 			(h->free_huge_pages + allocated);
1753 	if (needed > 0) {
1754 		if (alloc_ok)
1755 			goto retry;
1756 		/*
1757 		 * We were not able to allocate enough pages to
1758 		 * satisfy the entire reservation so we free what
1759 		 * we've allocated so far.
1760 		 */
1761 		goto free;
1762 	}
1763 	/*
1764 	 * The surplus_list now contains _at_least_ the number of extra pages
1765 	 * needed to accommodate the reservation.  Add the appropriate number
1766 	 * of pages to the hugetlb pool and free the extras back to the buddy
1767 	 * allocator.  Commit the entire reservation here to prevent another
1768 	 * process from stealing the pages as they are added to the pool but
1769 	 * before they are reserved.
1770 	 */
1771 	needed += allocated;
1772 	h->resv_huge_pages += delta;
1773 	ret = 0;
1774 
1775 	/* Free the needed pages to the hugetlb pool */
1776 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1777 		if ((--needed) < 0)
1778 			break;
1779 		/*
1780 		 * This page is now managed by the hugetlb allocator and has
1781 		 * no users -- drop the buddy allocator's reference.
1782 		 */
1783 		put_page_testzero(page);
1784 		VM_BUG_ON_PAGE(page_count(page), page);
1785 		enqueue_huge_page(h, page);
1786 	}
1787 free:
1788 	spin_unlock(&hugetlb_lock);
1789 
1790 	/* Free unnecessary surplus pages to the buddy allocator */
1791 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1792 		put_page(page);
1793 	spin_lock(&hugetlb_lock);
1794 
1795 	return ret;
1796 }
1797 
1798 /*
1799  * This routine has two main purposes:
1800  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1801  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1802  *    to the associated reservation map.
1803  * 2) Free any unused surplus pages that may have been allocated to satisfy
1804  *    the reservation.  As many as unused_resv_pages may be freed.
1805  *
1806  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1807  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1808  * we must make sure nobody else can claim pages we are in the process of
1809  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1810  * number of huge pages we plan to free when dropping the lock.
1811  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)1812 static void return_unused_surplus_pages(struct hstate *h,
1813 					unsigned long unused_resv_pages)
1814 {
1815 	unsigned long nr_pages;
1816 
1817 	/* Cannot return gigantic pages currently */
1818 	if (hstate_is_gigantic(h))
1819 		goto out;
1820 
1821 	/*
1822 	 * Part (or even all) of the reservation could have been backed
1823 	 * by pre-allocated pages. Only free surplus pages.
1824 	 */
1825 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1826 
1827 	/*
1828 	 * We want to release as many surplus pages as possible, spread
1829 	 * evenly across all nodes with memory. Iterate across these nodes
1830 	 * until we can no longer free unreserved surplus pages. This occurs
1831 	 * when the nodes with surplus pages have no free pages.
1832 	 * free_pool_huge_page() will balance the the freed pages across the
1833 	 * on-line nodes with memory and will handle the hstate accounting.
1834 	 *
1835 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1836 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1837 	 * to cover subsequent pages we may free.
1838 	 */
1839 	while (nr_pages--) {
1840 		h->resv_huge_pages--;
1841 		unused_resv_pages--;
1842 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1843 			goto out;
1844 		cond_resched_lock(&hugetlb_lock);
1845 	}
1846 
1847 out:
1848 	/* Fully uncommit the reservation */
1849 	h->resv_huge_pages -= unused_resv_pages;
1850 }
1851 
1852 
1853 /*
1854  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1855  * are used by the huge page allocation routines to manage reservations.
1856  *
1857  * vma_needs_reservation is called to determine if the huge page at addr
1858  * within the vma has an associated reservation.  If a reservation is
1859  * needed, the value 1 is returned.  The caller is then responsible for
1860  * managing the global reservation and subpool usage counts.  After
1861  * the huge page has been allocated, vma_commit_reservation is called
1862  * to add the page to the reservation map.  If the page allocation fails,
1863  * the reservation must be ended instead of committed.  vma_end_reservation
1864  * is called in such cases.
1865  *
1866  * In the normal case, vma_commit_reservation returns the same value
1867  * as the preceding vma_needs_reservation call.  The only time this
1868  * is not the case is if a reserve map was changed between calls.  It
1869  * is the responsibility of the caller to notice the difference and
1870  * take appropriate action.
1871  *
1872  * vma_add_reservation is used in error paths where a reservation must
1873  * be restored when a newly allocated huge page must be freed.  It is
1874  * to be called after calling vma_needs_reservation to determine if a
1875  * reservation exists.
1876  */
1877 enum vma_resv_mode {
1878 	VMA_NEEDS_RESV,
1879 	VMA_COMMIT_RESV,
1880 	VMA_END_RESV,
1881 	VMA_ADD_RESV,
1882 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)1883 static long __vma_reservation_common(struct hstate *h,
1884 				struct vm_area_struct *vma, unsigned long addr,
1885 				enum vma_resv_mode mode)
1886 {
1887 	struct resv_map *resv;
1888 	pgoff_t idx;
1889 	long ret;
1890 
1891 	resv = vma_resv_map(vma);
1892 	if (!resv)
1893 		return 1;
1894 
1895 	idx = vma_hugecache_offset(h, vma, addr);
1896 	switch (mode) {
1897 	case VMA_NEEDS_RESV:
1898 		ret = region_chg(resv, idx, idx + 1);
1899 		break;
1900 	case VMA_COMMIT_RESV:
1901 		ret = region_add(resv, idx, idx + 1);
1902 		break;
1903 	case VMA_END_RESV:
1904 		region_abort(resv, idx, idx + 1);
1905 		ret = 0;
1906 		break;
1907 	case VMA_ADD_RESV:
1908 		if (vma->vm_flags & VM_MAYSHARE)
1909 			ret = region_add(resv, idx, idx + 1);
1910 		else {
1911 			region_abort(resv, idx, idx + 1);
1912 			ret = region_del(resv, idx, idx + 1);
1913 		}
1914 		break;
1915 	default:
1916 		BUG();
1917 	}
1918 
1919 	if (vma->vm_flags & VM_MAYSHARE)
1920 		return ret;
1921 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1922 		/*
1923 		 * In most cases, reserves always exist for private mappings.
1924 		 * However, a file associated with mapping could have been
1925 		 * hole punched or truncated after reserves were consumed.
1926 		 * As subsequent fault on such a range will not use reserves.
1927 		 * Subtle - The reserve map for private mappings has the
1928 		 * opposite meaning than that of shared mappings.  If NO
1929 		 * entry is in the reserve map, it means a reservation exists.
1930 		 * If an entry exists in the reserve map, it means the
1931 		 * reservation has already been consumed.  As a result, the
1932 		 * return value of this routine is the opposite of the
1933 		 * value returned from reserve map manipulation routines above.
1934 		 */
1935 		if (ret)
1936 			return 0;
1937 		else
1938 			return 1;
1939 	}
1940 	else
1941 		return ret < 0 ? ret : 0;
1942 }
1943 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1944 static long vma_needs_reservation(struct hstate *h,
1945 			struct vm_area_struct *vma, unsigned long addr)
1946 {
1947 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1948 }
1949 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1950 static long vma_commit_reservation(struct hstate *h,
1951 			struct vm_area_struct *vma, unsigned long addr)
1952 {
1953 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1954 }
1955 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1956 static void vma_end_reservation(struct hstate *h,
1957 			struct vm_area_struct *vma, unsigned long addr)
1958 {
1959 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1960 }
1961 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1962 static long vma_add_reservation(struct hstate *h,
1963 			struct vm_area_struct *vma, unsigned long addr)
1964 {
1965 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1966 }
1967 
1968 /*
1969  * This routine is called to restore a reservation on error paths.  In the
1970  * specific error paths, a huge page was allocated (via alloc_huge_page)
1971  * and is about to be freed.  If a reservation for the page existed,
1972  * alloc_huge_page would have consumed the reservation and set PagePrivate
1973  * in the newly allocated page.  When the page is freed via free_huge_page,
1974  * the global reservation count will be incremented if PagePrivate is set.
1975  * However, free_huge_page can not adjust the reserve map.  Adjust the
1976  * reserve map here to be consistent with global reserve count adjustments
1977  * to be made by free_huge_page.
1978  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)1979 static void restore_reserve_on_error(struct hstate *h,
1980 			struct vm_area_struct *vma, unsigned long address,
1981 			struct page *page)
1982 {
1983 	if (unlikely(PagePrivate(page))) {
1984 		long rc = vma_needs_reservation(h, vma, address);
1985 
1986 		if (unlikely(rc < 0)) {
1987 			/*
1988 			 * Rare out of memory condition in reserve map
1989 			 * manipulation.  Clear PagePrivate so that
1990 			 * global reserve count will not be incremented
1991 			 * by free_huge_page.  This will make it appear
1992 			 * as though the reservation for this page was
1993 			 * consumed.  This may prevent the task from
1994 			 * faulting in the page at a later time.  This
1995 			 * is better than inconsistent global huge page
1996 			 * accounting of reserve counts.
1997 			 */
1998 			ClearPagePrivate(page);
1999 		} else if (rc) {
2000 			rc = vma_add_reservation(h, vma, address);
2001 			if (unlikely(rc < 0))
2002 				/*
2003 				 * See above comment about rare out of
2004 				 * memory condition.
2005 				 */
2006 				ClearPagePrivate(page);
2007 		} else
2008 			vma_end_reservation(h, vma, address);
2009 	}
2010 }
2011 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2012 struct page *alloc_huge_page(struct vm_area_struct *vma,
2013 				    unsigned long addr, int avoid_reserve)
2014 {
2015 	struct hugepage_subpool *spool = subpool_vma(vma);
2016 	struct hstate *h = hstate_vma(vma);
2017 	struct page *page;
2018 	long map_chg, map_commit;
2019 	long gbl_chg;
2020 	int ret, idx;
2021 	struct hugetlb_cgroup *h_cg;
2022 
2023 	idx = hstate_index(h);
2024 	/*
2025 	 * Examine the region/reserve map to determine if the process
2026 	 * has a reservation for the page to be allocated.  A return
2027 	 * code of zero indicates a reservation exists (no change).
2028 	 */
2029 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2030 	if (map_chg < 0)
2031 		return ERR_PTR(-ENOMEM);
2032 
2033 	/*
2034 	 * Processes that did not create the mapping will have no
2035 	 * reserves as indicated by the region/reserve map. Check
2036 	 * that the allocation will not exceed the subpool limit.
2037 	 * Allocations for MAP_NORESERVE mappings also need to be
2038 	 * checked against any subpool limit.
2039 	 */
2040 	if (map_chg || avoid_reserve) {
2041 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2042 		if (gbl_chg < 0) {
2043 			vma_end_reservation(h, vma, addr);
2044 			return ERR_PTR(-ENOSPC);
2045 		}
2046 
2047 		/*
2048 		 * Even though there was no reservation in the region/reserve
2049 		 * map, there could be reservations associated with the
2050 		 * subpool that can be used.  This would be indicated if the
2051 		 * return value of hugepage_subpool_get_pages() is zero.
2052 		 * However, if avoid_reserve is specified we still avoid even
2053 		 * the subpool reservations.
2054 		 */
2055 		if (avoid_reserve)
2056 			gbl_chg = 1;
2057 	}
2058 
2059 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2060 	if (ret)
2061 		goto out_subpool_put;
2062 
2063 	spin_lock(&hugetlb_lock);
2064 	/*
2065 	 * glb_chg is passed to indicate whether or not a page must be taken
2066 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2067 	 * a reservation exists for the allocation.
2068 	 */
2069 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2070 	if (!page) {
2071 		spin_unlock(&hugetlb_lock);
2072 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2073 		if (!page)
2074 			goto out_uncharge_cgroup;
2075 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2076 			SetPagePrivate(page);
2077 			h->resv_huge_pages--;
2078 		}
2079 		spin_lock(&hugetlb_lock);
2080 		list_move(&page->lru, &h->hugepage_activelist);
2081 		/* Fall through */
2082 	}
2083 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2084 	spin_unlock(&hugetlb_lock);
2085 
2086 	set_page_private(page, (unsigned long)spool);
2087 
2088 	map_commit = vma_commit_reservation(h, vma, addr);
2089 	if (unlikely(map_chg > map_commit)) {
2090 		/*
2091 		 * The page was added to the reservation map between
2092 		 * vma_needs_reservation and vma_commit_reservation.
2093 		 * This indicates a race with hugetlb_reserve_pages.
2094 		 * Adjust for the subpool count incremented above AND
2095 		 * in hugetlb_reserve_pages for the same page.  Also,
2096 		 * the reservation count added in hugetlb_reserve_pages
2097 		 * no longer applies.
2098 		 */
2099 		long rsv_adjust;
2100 
2101 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2102 		hugetlb_acct_memory(h, -rsv_adjust);
2103 	}
2104 	return page;
2105 
2106 out_uncharge_cgroup:
2107 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2108 out_subpool_put:
2109 	if (map_chg || avoid_reserve)
2110 		hugepage_subpool_put_pages(spool, 1);
2111 	vma_end_reservation(h, vma, addr);
2112 	return ERR_PTR(-ENOSPC);
2113 }
2114 
2115 int alloc_bootmem_huge_page(struct hstate *h)
2116 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h)2117 int __alloc_bootmem_huge_page(struct hstate *h)
2118 {
2119 	struct huge_bootmem_page *m;
2120 	int nr_nodes, node;
2121 
2122 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2123 		void *addr;
2124 
2125 		addr = memblock_virt_alloc_try_nid_raw(
2126 				huge_page_size(h), huge_page_size(h),
2127 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2128 		if (addr) {
2129 			/*
2130 			 * Use the beginning of the huge page to store the
2131 			 * huge_bootmem_page struct (until gather_bootmem
2132 			 * puts them into the mem_map).
2133 			 */
2134 			m = addr;
2135 			goto found;
2136 		}
2137 	}
2138 	return 0;
2139 
2140 found:
2141 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2142 	/* Put them into a private list first because mem_map is not up yet */
2143 	INIT_LIST_HEAD(&m->list);
2144 	list_add(&m->list, &huge_boot_pages);
2145 	m->hstate = h;
2146 	return 1;
2147 }
2148 
prep_compound_huge_page(struct page * page,unsigned int order)2149 static void __init prep_compound_huge_page(struct page *page,
2150 		unsigned int order)
2151 {
2152 	if (unlikely(order > (MAX_ORDER - 1)))
2153 		prep_compound_gigantic_page(page, order);
2154 	else
2155 		prep_compound_page(page, order);
2156 }
2157 
2158 /* Put bootmem huge pages into the standard lists after mem_map is up */
gather_bootmem_prealloc(void)2159 static void __init gather_bootmem_prealloc(void)
2160 {
2161 	struct huge_bootmem_page *m;
2162 
2163 	list_for_each_entry(m, &huge_boot_pages, list) {
2164 		struct page *page = virt_to_page(m);
2165 		struct hstate *h = m->hstate;
2166 
2167 		WARN_ON(page_count(page) != 1);
2168 		prep_compound_huge_page(page, h->order);
2169 		WARN_ON(PageReserved(page));
2170 		prep_new_huge_page(h, page, page_to_nid(page));
2171 		put_page(page); /* free it into the hugepage allocator */
2172 
2173 		/*
2174 		 * If we had gigantic hugepages allocated at boot time, we need
2175 		 * to restore the 'stolen' pages to totalram_pages in order to
2176 		 * fix confusing memory reports from free(1) and another
2177 		 * side-effects, like CommitLimit going negative.
2178 		 */
2179 		if (hstate_is_gigantic(h))
2180 			adjust_managed_page_count(page, 1 << h->order);
2181 		cond_resched();
2182 	}
2183 }
2184 
hugetlb_hstate_alloc_pages(struct hstate * h)2185 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2186 {
2187 	unsigned long i;
2188 
2189 	for (i = 0; i < h->max_huge_pages; ++i) {
2190 		if (hstate_is_gigantic(h)) {
2191 			if (!alloc_bootmem_huge_page(h))
2192 				break;
2193 		} else if (!alloc_pool_huge_page(h,
2194 					 &node_states[N_MEMORY]))
2195 			break;
2196 		cond_resched();
2197 	}
2198 	if (i < h->max_huge_pages) {
2199 		char buf[32];
2200 
2201 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2202 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2203 			h->max_huge_pages, buf, i);
2204 		h->max_huge_pages = i;
2205 	}
2206 }
2207 
hugetlb_init_hstates(void)2208 static void __init hugetlb_init_hstates(void)
2209 {
2210 	struct hstate *h;
2211 
2212 	for_each_hstate(h) {
2213 		if (minimum_order > huge_page_order(h))
2214 			minimum_order = huge_page_order(h);
2215 
2216 		/* oversize hugepages were init'ed in early boot */
2217 		if (!hstate_is_gigantic(h))
2218 			hugetlb_hstate_alloc_pages(h);
2219 	}
2220 	VM_BUG_ON(minimum_order == UINT_MAX);
2221 }
2222 
report_hugepages(void)2223 static void __init report_hugepages(void)
2224 {
2225 	struct hstate *h;
2226 
2227 	for_each_hstate(h) {
2228 		char buf[32];
2229 
2230 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2231 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2232 			buf, h->free_huge_pages);
2233 	}
2234 }
2235 
2236 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2237 static void try_to_free_low(struct hstate *h, unsigned long count,
2238 						nodemask_t *nodes_allowed)
2239 {
2240 	int i;
2241 
2242 	if (hstate_is_gigantic(h))
2243 		return;
2244 
2245 	for_each_node_mask(i, *nodes_allowed) {
2246 		struct page *page, *next;
2247 		struct list_head *freel = &h->hugepage_freelists[i];
2248 		list_for_each_entry_safe(page, next, freel, lru) {
2249 			if (count >= h->nr_huge_pages)
2250 				return;
2251 			if (PageHighMem(page))
2252 				continue;
2253 			list_del(&page->lru);
2254 			update_and_free_page(h, page);
2255 			h->free_huge_pages--;
2256 			h->free_huge_pages_node[page_to_nid(page)]--;
2257 		}
2258 	}
2259 }
2260 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2261 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2262 						nodemask_t *nodes_allowed)
2263 {
2264 }
2265 #endif
2266 
2267 /*
2268  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2269  * balanced by operating on them in a round-robin fashion.
2270  * Returns 1 if an adjustment was made.
2271  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)2272 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2273 				int delta)
2274 {
2275 	int nr_nodes, node;
2276 
2277 	VM_BUG_ON(delta != -1 && delta != 1);
2278 
2279 	if (delta < 0) {
2280 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2281 			if (h->surplus_huge_pages_node[node])
2282 				goto found;
2283 		}
2284 	} else {
2285 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2286 			if (h->surplus_huge_pages_node[node] <
2287 					h->nr_huge_pages_node[node])
2288 				goto found;
2289 		}
2290 	}
2291 	return 0;
2292 
2293 found:
2294 	h->surplus_huge_pages += delta;
2295 	h->surplus_huge_pages_node[node] += delta;
2296 	return 1;
2297 }
2298 
2299 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2300 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2301 						nodemask_t *nodes_allowed)
2302 {
2303 	unsigned long min_count, ret;
2304 
2305 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2306 		return h->max_huge_pages;
2307 
2308 	/*
2309 	 * Increase the pool size
2310 	 * First take pages out of surplus state.  Then make up the
2311 	 * remaining difference by allocating fresh huge pages.
2312 	 *
2313 	 * We might race with alloc_surplus_huge_page() here and be unable
2314 	 * to convert a surplus huge page to a normal huge page. That is
2315 	 * not critical, though, it just means the overall size of the
2316 	 * pool might be one hugepage larger than it needs to be, but
2317 	 * within all the constraints specified by the sysctls.
2318 	 */
2319 	spin_lock(&hugetlb_lock);
2320 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2321 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2322 			break;
2323 	}
2324 
2325 	while (count > persistent_huge_pages(h)) {
2326 		/*
2327 		 * If this allocation races such that we no longer need the
2328 		 * page, free_huge_page will handle it by freeing the page
2329 		 * and reducing the surplus.
2330 		 */
2331 		spin_unlock(&hugetlb_lock);
2332 
2333 		/* yield cpu to avoid soft lockup */
2334 		cond_resched();
2335 
2336 		ret = alloc_pool_huge_page(h, nodes_allowed);
2337 		spin_lock(&hugetlb_lock);
2338 		if (!ret)
2339 			goto out;
2340 
2341 		/* Bail for signals. Probably ctrl-c from user */
2342 		if (signal_pending(current))
2343 			goto out;
2344 	}
2345 
2346 	/*
2347 	 * Decrease the pool size
2348 	 * First return free pages to the buddy allocator (being careful
2349 	 * to keep enough around to satisfy reservations).  Then place
2350 	 * pages into surplus state as needed so the pool will shrink
2351 	 * to the desired size as pages become free.
2352 	 *
2353 	 * By placing pages into the surplus state independent of the
2354 	 * overcommit value, we are allowing the surplus pool size to
2355 	 * exceed overcommit. There are few sane options here. Since
2356 	 * alloc_surplus_huge_page() is checking the global counter,
2357 	 * though, we'll note that we're not allowed to exceed surplus
2358 	 * and won't grow the pool anywhere else. Not until one of the
2359 	 * sysctls are changed, or the surplus pages go out of use.
2360 	 */
2361 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2362 	min_count = max(count, min_count);
2363 	try_to_free_low(h, min_count, nodes_allowed);
2364 	while (min_count < persistent_huge_pages(h)) {
2365 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2366 			break;
2367 		cond_resched_lock(&hugetlb_lock);
2368 	}
2369 	while (count < persistent_huge_pages(h)) {
2370 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2371 			break;
2372 	}
2373 out:
2374 	ret = persistent_huge_pages(h);
2375 	spin_unlock(&hugetlb_lock);
2376 	return ret;
2377 }
2378 
2379 #define HSTATE_ATTR_RO(_name) \
2380 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2381 
2382 #define HSTATE_ATTR(_name) \
2383 	static struct kobj_attribute _name##_attr = \
2384 		__ATTR(_name, 0644, _name##_show, _name##_store)
2385 
2386 static struct kobject *hugepages_kobj;
2387 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2388 
2389 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2390 
kobj_to_hstate(struct kobject * kobj,int * nidp)2391 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2392 {
2393 	int i;
2394 
2395 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2396 		if (hstate_kobjs[i] == kobj) {
2397 			if (nidp)
2398 				*nidp = NUMA_NO_NODE;
2399 			return &hstates[i];
2400 		}
2401 
2402 	return kobj_to_node_hstate(kobj, nidp);
2403 }
2404 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2405 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2406 					struct kobj_attribute *attr, char *buf)
2407 {
2408 	struct hstate *h;
2409 	unsigned long nr_huge_pages;
2410 	int nid;
2411 
2412 	h = kobj_to_hstate(kobj, &nid);
2413 	if (nid == NUMA_NO_NODE)
2414 		nr_huge_pages = h->nr_huge_pages;
2415 	else
2416 		nr_huge_pages = h->nr_huge_pages_node[nid];
2417 
2418 	return sprintf(buf, "%lu\n", nr_huge_pages);
2419 }
2420 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)2421 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2422 					   struct hstate *h, int nid,
2423 					   unsigned long count, size_t len)
2424 {
2425 	int err;
2426 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2427 
2428 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2429 		err = -EINVAL;
2430 		goto out;
2431 	}
2432 
2433 	if (nid == NUMA_NO_NODE) {
2434 		/*
2435 		 * global hstate attribute
2436 		 */
2437 		if (!(obey_mempolicy &&
2438 				init_nodemask_of_mempolicy(nodes_allowed))) {
2439 			NODEMASK_FREE(nodes_allowed);
2440 			nodes_allowed = &node_states[N_MEMORY];
2441 		}
2442 	} else if (nodes_allowed) {
2443 		/*
2444 		 * per node hstate attribute: adjust count to global,
2445 		 * but restrict alloc/free to the specified node.
2446 		 */
2447 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2448 		init_nodemask_of_node(nodes_allowed, nid);
2449 	} else
2450 		nodes_allowed = &node_states[N_MEMORY];
2451 
2452 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2453 
2454 	if (nodes_allowed != &node_states[N_MEMORY])
2455 		NODEMASK_FREE(nodes_allowed);
2456 
2457 	return len;
2458 out:
2459 	NODEMASK_FREE(nodes_allowed);
2460 	return err;
2461 }
2462 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)2463 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2464 					 struct kobject *kobj, const char *buf,
2465 					 size_t len)
2466 {
2467 	struct hstate *h;
2468 	unsigned long count;
2469 	int nid;
2470 	int err;
2471 
2472 	err = kstrtoul(buf, 10, &count);
2473 	if (err)
2474 		return err;
2475 
2476 	h = kobj_to_hstate(kobj, &nid);
2477 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2478 }
2479 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2480 static ssize_t nr_hugepages_show(struct kobject *kobj,
2481 				       struct kobj_attribute *attr, char *buf)
2482 {
2483 	return nr_hugepages_show_common(kobj, attr, buf);
2484 }
2485 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2486 static ssize_t nr_hugepages_store(struct kobject *kobj,
2487 	       struct kobj_attribute *attr, const char *buf, size_t len)
2488 {
2489 	return nr_hugepages_store_common(false, kobj, buf, len);
2490 }
2491 HSTATE_ATTR(nr_hugepages);
2492 
2493 #ifdef CONFIG_NUMA
2494 
2495 /*
2496  * hstate attribute for optionally mempolicy-based constraint on persistent
2497  * huge page alloc/free.
2498  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2499 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2500 				       struct kobj_attribute *attr, char *buf)
2501 {
2502 	return nr_hugepages_show_common(kobj, attr, buf);
2503 }
2504 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2505 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2506 	       struct kobj_attribute *attr, const char *buf, size_t len)
2507 {
2508 	return nr_hugepages_store_common(true, kobj, buf, len);
2509 }
2510 HSTATE_ATTR(nr_hugepages_mempolicy);
2511 #endif
2512 
2513 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2514 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2515 					struct kobj_attribute *attr, char *buf)
2516 {
2517 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2518 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2519 }
2520 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2521 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2522 		struct kobj_attribute *attr, const char *buf, size_t count)
2523 {
2524 	int err;
2525 	unsigned long input;
2526 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2527 
2528 	if (hstate_is_gigantic(h))
2529 		return -EINVAL;
2530 
2531 	err = kstrtoul(buf, 10, &input);
2532 	if (err)
2533 		return err;
2534 
2535 	spin_lock(&hugetlb_lock);
2536 	h->nr_overcommit_huge_pages = input;
2537 	spin_unlock(&hugetlb_lock);
2538 
2539 	return count;
2540 }
2541 HSTATE_ATTR(nr_overcommit_hugepages);
2542 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2543 static ssize_t free_hugepages_show(struct kobject *kobj,
2544 					struct kobj_attribute *attr, char *buf)
2545 {
2546 	struct hstate *h;
2547 	unsigned long free_huge_pages;
2548 	int nid;
2549 
2550 	h = kobj_to_hstate(kobj, &nid);
2551 	if (nid == NUMA_NO_NODE)
2552 		free_huge_pages = h->free_huge_pages;
2553 	else
2554 		free_huge_pages = h->free_huge_pages_node[nid];
2555 
2556 	return sprintf(buf, "%lu\n", free_huge_pages);
2557 }
2558 HSTATE_ATTR_RO(free_hugepages);
2559 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2560 static ssize_t resv_hugepages_show(struct kobject *kobj,
2561 					struct kobj_attribute *attr, char *buf)
2562 {
2563 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2564 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2565 }
2566 HSTATE_ATTR_RO(resv_hugepages);
2567 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2568 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2569 					struct kobj_attribute *attr, char *buf)
2570 {
2571 	struct hstate *h;
2572 	unsigned long surplus_huge_pages;
2573 	int nid;
2574 
2575 	h = kobj_to_hstate(kobj, &nid);
2576 	if (nid == NUMA_NO_NODE)
2577 		surplus_huge_pages = h->surplus_huge_pages;
2578 	else
2579 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2580 
2581 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2582 }
2583 HSTATE_ATTR_RO(surplus_hugepages);
2584 
2585 static struct attribute *hstate_attrs[] = {
2586 	&nr_hugepages_attr.attr,
2587 	&nr_overcommit_hugepages_attr.attr,
2588 	&free_hugepages_attr.attr,
2589 	&resv_hugepages_attr.attr,
2590 	&surplus_hugepages_attr.attr,
2591 #ifdef CONFIG_NUMA
2592 	&nr_hugepages_mempolicy_attr.attr,
2593 #endif
2594 	NULL,
2595 };
2596 
2597 static const struct attribute_group hstate_attr_group = {
2598 	.attrs = hstate_attrs,
2599 };
2600 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)2601 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2602 				    struct kobject **hstate_kobjs,
2603 				    const struct attribute_group *hstate_attr_group)
2604 {
2605 	int retval;
2606 	int hi = hstate_index(h);
2607 
2608 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2609 	if (!hstate_kobjs[hi])
2610 		return -ENOMEM;
2611 
2612 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2613 	if (retval)
2614 		kobject_put(hstate_kobjs[hi]);
2615 
2616 	return retval;
2617 }
2618 
hugetlb_sysfs_init(void)2619 static void __init hugetlb_sysfs_init(void)
2620 {
2621 	struct hstate *h;
2622 	int err;
2623 
2624 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2625 	if (!hugepages_kobj)
2626 		return;
2627 
2628 	for_each_hstate(h) {
2629 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2630 					 hstate_kobjs, &hstate_attr_group);
2631 		if (err)
2632 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2633 	}
2634 }
2635 
2636 #ifdef CONFIG_NUMA
2637 
2638 /*
2639  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2640  * with node devices in node_devices[] using a parallel array.  The array
2641  * index of a node device or _hstate == node id.
2642  * This is here to avoid any static dependency of the node device driver, in
2643  * the base kernel, on the hugetlb module.
2644  */
2645 struct node_hstate {
2646 	struct kobject		*hugepages_kobj;
2647 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2648 };
2649 static struct node_hstate node_hstates[MAX_NUMNODES];
2650 
2651 /*
2652  * A subset of global hstate attributes for node devices
2653  */
2654 static struct attribute *per_node_hstate_attrs[] = {
2655 	&nr_hugepages_attr.attr,
2656 	&free_hugepages_attr.attr,
2657 	&surplus_hugepages_attr.attr,
2658 	NULL,
2659 };
2660 
2661 static const struct attribute_group per_node_hstate_attr_group = {
2662 	.attrs = per_node_hstate_attrs,
2663 };
2664 
2665 /*
2666  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2667  * Returns node id via non-NULL nidp.
2668  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2669 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2670 {
2671 	int nid;
2672 
2673 	for (nid = 0; nid < nr_node_ids; nid++) {
2674 		struct node_hstate *nhs = &node_hstates[nid];
2675 		int i;
2676 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2677 			if (nhs->hstate_kobjs[i] == kobj) {
2678 				if (nidp)
2679 					*nidp = nid;
2680 				return &hstates[i];
2681 			}
2682 	}
2683 
2684 	BUG();
2685 	return NULL;
2686 }
2687 
2688 /*
2689  * Unregister hstate attributes from a single node device.
2690  * No-op if no hstate attributes attached.
2691  */
hugetlb_unregister_node(struct node * node)2692 static void hugetlb_unregister_node(struct node *node)
2693 {
2694 	struct hstate *h;
2695 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2696 
2697 	if (!nhs->hugepages_kobj)
2698 		return;		/* no hstate attributes */
2699 
2700 	for_each_hstate(h) {
2701 		int idx = hstate_index(h);
2702 		if (nhs->hstate_kobjs[idx]) {
2703 			kobject_put(nhs->hstate_kobjs[idx]);
2704 			nhs->hstate_kobjs[idx] = NULL;
2705 		}
2706 	}
2707 
2708 	kobject_put(nhs->hugepages_kobj);
2709 	nhs->hugepages_kobj = NULL;
2710 }
2711 
2712 
2713 /*
2714  * Register hstate attributes for a single node device.
2715  * No-op if attributes already registered.
2716  */
hugetlb_register_node(struct node * node)2717 static void hugetlb_register_node(struct node *node)
2718 {
2719 	struct hstate *h;
2720 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2721 	int err;
2722 
2723 	if (nhs->hugepages_kobj)
2724 		return;		/* already allocated */
2725 
2726 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2727 							&node->dev.kobj);
2728 	if (!nhs->hugepages_kobj)
2729 		return;
2730 
2731 	for_each_hstate(h) {
2732 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2733 						nhs->hstate_kobjs,
2734 						&per_node_hstate_attr_group);
2735 		if (err) {
2736 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2737 				h->name, node->dev.id);
2738 			hugetlb_unregister_node(node);
2739 			break;
2740 		}
2741 	}
2742 }
2743 
2744 /*
2745  * hugetlb init time:  register hstate attributes for all registered node
2746  * devices of nodes that have memory.  All on-line nodes should have
2747  * registered their associated device by this time.
2748  */
hugetlb_register_all_nodes(void)2749 static void __init hugetlb_register_all_nodes(void)
2750 {
2751 	int nid;
2752 
2753 	for_each_node_state(nid, N_MEMORY) {
2754 		struct node *node = node_devices[nid];
2755 		if (node->dev.id == nid)
2756 			hugetlb_register_node(node);
2757 	}
2758 
2759 	/*
2760 	 * Let the node device driver know we're here so it can
2761 	 * [un]register hstate attributes on node hotplug.
2762 	 */
2763 	register_hugetlbfs_with_node(hugetlb_register_node,
2764 				     hugetlb_unregister_node);
2765 }
2766 #else	/* !CONFIG_NUMA */
2767 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2768 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2769 {
2770 	BUG();
2771 	if (nidp)
2772 		*nidp = -1;
2773 	return NULL;
2774 }
2775 
hugetlb_register_all_nodes(void)2776 static void hugetlb_register_all_nodes(void) { }
2777 
2778 #endif
2779 
hugetlb_init(void)2780 static int __init hugetlb_init(void)
2781 {
2782 	int i;
2783 
2784 	if (!hugepages_supported())
2785 		return 0;
2786 
2787 	if (!size_to_hstate(default_hstate_size)) {
2788 		if (default_hstate_size != 0) {
2789 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2790 			       default_hstate_size, HPAGE_SIZE);
2791 		}
2792 
2793 		default_hstate_size = HPAGE_SIZE;
2794 		if (!size_to_hstate(default_hstate_size))
2795 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2796 	}
2797 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2798 	if (default_hstate_max_huge_pages) {
2799 		if (!default_hstate.max_huge_pages)
2800 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2801 	}
2802 
2803 	hugetlb_init_hstates();
2804 	gather_bootmem_prealloc();
2805 	report_hugepages();
2806 
2807 	hugetlb_sysfs_init();
2808 	hugetlb_register_all_nodes();
2809 	hugetlb_cgroup_file_init();
2810 
2811 #ifdef CONFIG_SMP
2812 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2813 #else
2814 	num_fault_mutexes = 1;
2815 #endif
2816 	hugetlb_fault_mutex_table =
2817 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2818 			      GFP_KERNEL);
2819 	BUG_ON(!hugetlb_fault_mutex_table);
2820 
2821 	for (i = 0; i < num_fault_mutexes; i++)
2822 		mutex_init(&hugetlb_fault_mutex_table[i]);
2823 	return 0;
2824 }
2825 subsys_initcall(hugetlb_init);
2826 
2827 /* Should be called on processing a hugepagesz=... option */
hugetlb_bad_size(void)2828 void __init hugetlb_bad_size(void)
2829 {
2830 	parsed_valid_hugepagesz = false;
2831 }
2832 
hugetlb_add_hstate(unsigned int order)2833 void __init hugetlb_add_hstate(unsigned int order)
2834 {
2835 	struct hstate *h;
2836 	unsigned long i;
2837 
2838 	if (size_to_hstate(PAGE_SIZE << order)) {
2839 		pr_warn("hugepagesz= specified twice, ignoring\n");
2840 		return;
2841 	}
2842 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2843 	BUG_ON(order == 0);
2844 	h = &hstates[hugetlb_max_hstate++];
2845 	h->order = order;
2846 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2847 	h->nr_huge_pages = 0;
2848 	h->free_huge_pages = 0;
2849 	for (i = 0; i < MAX_NUMNODES; ++i)
2850 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2851 	INIT_LIST_HEAD(&h->hugepage_activelist);
2852 	h->next_nid_to_alloc = first_memory_node;
2853 	h->next_nid_to_free = first_memory_node;
2854 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2855 					huge_page_size(h)/1024);
2856 
2857 	parsed_hstate = h;
2858 }
2859 
hugetlb_nrpages_setup(char * s)2860 static int __init hugetlb_nrpages_setup(char *s)
2861 {
2862 	unsigned long *mhp;
2863 	static unsigned long *last_mhp;
2864 
2865 	if (!parsed_valid_hugepagesz) {
2866 		pr_warn("hugepages = %s preceded by "
2867 			"an unsupported hugepagesz, ignoring\n", s);
2868 		parsed_valid_hugepagesz = true;
2869 		return 1;
2870 	}
2871 	/*
2872 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2873 	 * so this hugepages= parameter goes to the "default hstate".
2874 	 */
2875 	else if (!hugetlb_max_hstate)
2876 		mhp = &default_hstate_max_huge_pages;
2877 	else
2878 		mhp = &parsed_hstate->max_huge_pages;
2879 
2880 	if (mhp == last_mhp) {
2881 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2882 		return 1;
2883 	}
2884 
2885 	if (sscanf(s, "%lu", mhp) <= 0)
2886 		*mhp = 0;
2887 
2888 	/*
2889 	 * Global state is always initialized later in hugetlb_init.
2890 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2891 	 * use the bootmem allocator.
2892 	 */
2893 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2894 		hugetlb_hstate_alloc_pages(parsed_hstate);
2895 
2896 	last_mhp = mhp;
2897 
2898 	return 1;
2899 }
2900 __setup("hugepages=", hugetlb_nrpages_setup);
2901 
hugetlb_default_setup(char * s)2902 static int __init hugetlb_default_setup(char *s)
2903 {
2904 	default_hstate_size = memparse(s, &s);
2905 	return 1;
2906 }
2907 __setup("default_hugepagesz=", hugetlb_default_setup);
2908 
cpuset_mems_nr(unsigned int * array)2909 static unsigned int cpuset_mems_nr(unsigned int *array)
2910 {
2911 	int node;
2912 	unsigned int nr = 0;
2913 
2914 	for_each_node_mask(node, cpuset_current_mems_allowed)
2915 		nr += array[node];
2916 
2917 	return nr;
2918 }
2919 
2920 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)2921 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
2922 					  void *buffer, size_t *length,
2923 					  loff_t *ppos, unsigned long *out)
2924 {
2925 	struct ctl_table dup_table;
2926 
2927 	/*
2928 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
2929 	 * can duplicate the @table and alter the duplicate of it.
2930 	 */
2931 	dup_table = *table;
2932 	dup_table.data = out;
2933 
2934 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
2935 }
2936 
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2937 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2938 			 struct ctl_table *table, int write,
2939 			 void __user *buffer, size_t *length, loff_t *ppos)
2940 {
2941 	struct hstate *h = &default_hstate;
2942 	unsigned long tmp = h->max_huge_pages;
2943 	int ret;
2944 
2945 	if (!hugepages_supported())
2946 		return -EOPNOTSUPP;
2947 
2948 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
2949 					     &tmp);
2950 	if (ret)
2951 		goto out;
2952 
2953 	if (write)
2954 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2955 						  NUMA_NO_NODE, tmp, *length);
2956 out:
2957 	return ret;
2958 }
2959 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2960 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2961 			  void __user *buffer, size_t *length, loff_t *ppos)
2962 {
2963 
2964 	return hugetlb_sysctl_handler_common(false, table, write,
2965 							buffer, length, ppos);
2966 }
2967 
2968 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2969 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2970 			  void __user *buffer, size_t *length, loff_t *ppos)
2971 {
2972 	return hugetlb_sysctl_handler_common(true, table, write,
2973 							buffer, length, ppos);
2974 }
2975 #endif /* CONFIG_NUMA */
2976 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2977 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2978 			void __user *buffer,
2979 			size_t *length, loff_t *ppos)
2980 {
2981 	struct hstate *h = &default_hstate;
2982 	unsigned long tmp;
2983 	int ret;
2984 
2985 	if (!hugepages_supported())
2986 		return -EOPNOTSUPP;
2987 
2988 	tmp = h->nr_overcommit_huge_pages;
2989 
2990 	if (write && hstate_is_gigantic(h))
2991 		return -EINVAL;
2992 
2993 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
2994 					     &tmp);
2995 	if (ret)
2996 		goto out;
2997 
2998 	if (write) {
2999 		spin_lock(&hugetlb_lock);
3000 		h->nr_overcommit_huge_pages = tmp;
3001 		spin_unlock(&hugetlb_lock);
3002 	}
3003 out:
3004 	return ret;
3005 }
3006 
3007 #endif /* CONFIG_SYSCTL */
3008 
hugetlb_report_meminfo(struct seq_file * m)3009 void hugetlb_report_meminfo(struct seq_file *m)
3010 {
3011 	struct hstate *h;
3012 	unsigned long total = 0;
3013 
3014 	if (!hugepages_supported())
3015 		return;
3016 
3017 	for_each_hstate(h) {
3018 		unsigned long count = h->nr_huge_pages;
3019 
3020 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3021 
3022 		if (h == &default_hstate)
3023 			seq_printf(m,
3024 				   "HugePages_Total:   %5lu\n"
3025 				   "HugePages_Free:    %5lu\n"
3026 				   "HugePages_Rsvd:    %5lu\n"
3027 				   "HugePages_Surp:    %5lu\n"
3028 				   "Hugepagesize:   %8lu kB\n",
3029 				   count,
3030 				   h->free_huge_pages,
3031 				   h->resv_huge_pages,
3032 				   h->surplus_huge_pages,
3033 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3034 	}
3035 
3036 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3037 }
3038 
hugetlb_report_node_meminfo(int nid,char * buf)3039 int hugetlb_report_node_meminfo(int nid, char *buf)
3040 {
3041 	struct hstate *h = &default_hstate;
3042 	if (!hugepages_supported())
3043 		return 0;
3044 	return sprintf(buf,
3045 		"Node %d HugePages_Total: %5u\n"
3046 		"Node %d HugePages_Free:  %5u\n"
3047 		"Node %d HugePages_Surp:  %5u\n",
3048 		nid, h->nr_huge_pages_node[nid],
3049 		nid, h->free_huge_pages_node[nid],
3050 		nid, h->surplus_huge_pages_node[nid]);
3051 }
3052 
hugetlb_show_meminfo(void)3053 void hugetlb_show_meminfo(void)
3054 {
3055 	struct hstate *h;
3056 	int nid;
3057 
3058 	if (!hugepages_supported())
3059 		return;
3060 
3061 	for_each_node_state(nid, N_MEMORY)
3062 		for_each_hstate(h)
3063 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3064 				nid,
3065 				h->nr_huge_pages_node[nid],
3066 				h->free_huge_pages_node[nid],
3067 				h->surplus_huge_pages_node[nid],
3068 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3069 }
3070 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)3071 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3072 {
3073 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3074 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3075 }
3076 
3077 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)3078 unsigned long hugetlb_total_pages(void)
3079 {
3080 	struct hstate *h;
3081 	unsigned long nr_total_pages = 0;
3082 
3083 	for_each_hstate(h)
3084 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3085 	return nr_total_pages;
3086 }
3087 
hugetlb_acct_memory(struct hstate * h,long delta)3088 static int hugetlb_acct_memory(struct hstate *h, long delta)
3089 {
3090 	int ret = -ENOMEM;
3091 
3092 	spin_lock(&hugetlb_lock);
3093 	/*
3094 	 * When cpuset is configured, it breaks the strict hugetlb page
3095 	 * reservation as the accounting is done on a global variable. Such
3096 	 * reservation is completely rubbish in the presence of cpuset because
3097 	 * the reservation is not checked against page availability for the
3098 	 * current cpuset. Application can still potentially OOM'ed by kernel
3099 	 * with lack of free htlb page in cpuset that the task is in.
3100 	 * Attempt to enforce strict accounting with cpuset is almost
3101 	 * impossible (or too ugly) because cpuset is too fluid that
3102 	 * task or memory node can be dynamically moved between cpusets.
3103 	 *
3104 	 * The change of semantics for shared hugetlb mapping with cpuset is
3105 	 * undesirable. However, in order to preserve some of the semantics,
3106 	 * we fall back to check against current free page availability as
3107 	 * a best attempt and hopefully to minimize the impact of changing
3108 	 * semantics that cpuset has.
3109 	 */
3110 	if (delta > 0) {
3111 		if (gather_surplus_pages(h, delta) < 0)
3112 			goto out;
3113 
3114 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3115 			return_unused_surplus_pages(h, delta);
3116 			goto out;
3117 		}
3118 	}
3119 
3120 	ret = 0;
3121 	if (delta < 0)
3122 		return_unused_surplus_pages(h, (unsigned long) -delta);
3123 
3124 out:
3125 	spin_unlock(&hugetlb_lock);
3126 	return ret;
3127 }
3128 
hugetlb_vm_op_open(struct vm_area_struct * vma)3129 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3130 {
3131 	struct resv_map *resv = vma_resv_map(vma);
3132 
3133 	/*
3134 	 * This new VMA should share its siblings reservation map if present.
3135 	 * The VMA will only ever have a valid reservation map pointer where
3136 	 * it is being copied for another still existing VMA.  As that VMA
3137 	 * has a reference to the reservation map it cannot disappear until
3138 	 * after this open call completes.  It is therefore safe to take a
3139 	 * new reference here without additional locking.
3140 	 */
3141 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3142 		kref_get(&resv->refs);
3143 }
3144 
hugetlb_vm_op_close(struct vm_area_struct * vma)3145 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3146 {
3147 	struct hstate *h = hstate_vma(vma);
3148 	struct resv_map *resv = vma_resv_map(vma);
3149 	struct hugepage_subpool *spool = subpool_vma(vma);
3150 	unsigned long reserve, start, end;
3151 	long gbl_reserve;
3152 
3153 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3154 		return;
3155 
3156 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3157 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3158 
3159 	reserve = (end - start) - region_count(resv, start, end);
3160 
3161 	kref_put(&resv->refs, resv_map_release);
3162 
3163 	if (reserve) {
3164 		/*
3165 		 * Decrement reserve counts.  The global reserve count may be
3166 		 * adjusted if the subpool has a minimum size.
3167 		 */
3168 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3169 		hugetlb_acct_memory(h, -gbl_reserve);
3170 	}
3171 }
3172 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)3173 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3174 {
3175 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3176 		return -EINVAL;
3177 	return 0;
3178 }
3179 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)3180 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3181 {
3182 	struct hstate *hstate = hstate_vma(vma);
3183 
3184 	return 1UL << huge_page_shift(hstate);
3185 }
3186 
3187 /*
3188  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3189  * handle_mm_fault() to try to instantiate regular-sized pages in the
3190  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3191  * this far.
3192  */
hugetlb_vm_op_fault(struct vm_fault * vmf)3193 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3194 {
3195 	BUG();
3196 	return 0;
3197 }
3198 
3199 /*
3200  * When a new function is introduced to vm_operations_struct and added
3201  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3202  * This is because under System V memory model, mappings created via
3203  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3204  * their original vm_ops are overwritten with shm_vm_ops.
3205  */
3206 const struct vm_operations_struct hugetlb_vm_ops = {
3207 	.fault = hugetlb_vm_op_fault,
3208 	.open = hugetlb_vm_op_open,
3209 	.close = hugetlb_vm_op_close,
3210 	.split = hugetlb_vm_op_split,
3211 	.pagesize = hugetlb_vm_op_pagesize,
3212 };
3213 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)3214 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3215 				int writable)
3216 {
3217 	pte_t entry;
3218 
3219 	if (writable) {
3220 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3221 					 vma->vm_page_prot)));
3222 	} else {
3223 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3224 					   vma->vm_page_prot));
3225 	}
3226 	entry = pte_mkyoung(entry);
3227 	entry = pte_mkhuge(entry);
3228 	entry = arch_make_huge_pte(entry, vma, page, writable);
3229 
3230 	return entry;
3231 }
3232 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)3233 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3234 				   unsigned long address, pte_t *ptep)
3235 {
3236 	pte_t entry;
3237 
3238 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3239 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3240 		update_mmu_cache(vma, address, ptep);
3241 }
3242 
is_hugetlb_entry_migration(pte_t pte)3243 bool is_hugetlb_entry_migration(pte_t pte)
3244 {
3245 	swp_entry_t swp;
3246 
3247 	if (huge_pte_none(pte) || pte_present(pte))
3248 		return false;
3249 	swp = pte_to_swp_entry(pte);
3250 	if (non_swap_entry(swp) && is_migration_entry(swp))
3251 		return true;
3252 	else
3253 		return false;
3254 }
3255 
is_hugetlb_entry_hwpoisoned(pte_t pte)3256 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3257 {
3258 	swp_entry_t swp;
3259 
3260 	if (huge_pte_none(pte) || pte_present(pte))
3261 		return 0;
3262 	swp = pte_to_swp_entry(pte);
3263 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3264 		return 1;
3265 	else
3266 		return 0;
3267 }
3268 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)3269 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3270 			    struct vm_area_struct *vma)
3271 {
3272 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3273 	struct page *ptepage;
3274 	unsigned long addr;
3275 	int cow;
3276 	struct hstate *h = hstate_vma(vma);
3277 	unsigned long sz = huge_page_size(h);
3278 	unsigned long mmun_start;	/* For mmu_notifiers */
3279 	unsigned long mmun_end;		/* For mmu_notifiers */
3280 	int ret = 0;
3281 
3282 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3283 
3284 	mmun_start = vma->vm_start;
3285 	mmun_end = vma->vm_end;
3286 	if (cow)
3287 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3288 
3289 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3290 		spinlock_t *src_ptl, *dst_ptl;
3291 		src_pte = huge_pte_offset(src, addr, sz);
3292 		if (!src_pte)
3293 			continue;
3294 		dst_pte = huge_pte_alloc(dst, addr, sz);
3295 		if (!dst_pte) {
3296 			ret = -ENOMEM;
3297 			break;
3298 		}
3299 
3300 		/*
3301 		 * If the pagetables are shared don't copy or take references.
3302 		 * dst_pte == src_pte is the common case of src/dest sharing.
3303 		 *
3304 		 * However, src could have 'unshared' and dst shares with
3305 		 * another vma.  If dst_pte !none, this implies sharing.
3306 		 * Check here before taking page table lock, and once again
3307 		 * after taking the lock below.
3308 		 */
3309 		dst_entry = huge_ptep_get(dst_pte);
3310 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3311 			continue;
3312 
3313 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3314 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3315 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3316 		entry = huge_ptep_get(src_pte);
3317 		dst_entry = huge_ptep_get(dst_pte);
3318 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3319 			/*
3320 			 * Skip if src entry none.  Also, skip in the
3321 			 * unlikely case dst entry !none as this implies
3322 			 * sharing with another vma.
3323 			 */
3324 			;
3325 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3326 				    is_hugetlb_entry_hwpoisoned(entry))) {
3327 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3328 
3329 			if (is_write_migration_entry(swp_entry) && cow) {
3330 				/*
3331 				 * COW mappings require pages in both
3332 				 * parent and child to be set to read.
3333 				 */
3334 				make_migration_entry_read(&swp_entry);
3335 				entry = swp_entry_to_pte(swp_entry);
3336 				set_huge_swap_pte_at(src, addr, src_pte,
3337 						     entry, sz);
3338 			}
3339 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3340 		} else {
3341 			if (cow) {
3342 				/*
3343 				 * No need to notify as we are downgrading page
3344 				 * table protection not changing it to point
3345 				 * to a new page.
3346 				 *
3347 				 * See Documentation/vm/mmu_notifier.rst
3348 				 */
3349 				huge_ptep_set_wrprotect(src, addr, src_pte);
3350 			}
3351 			entry = huge_ptep_get(src_pte);
3352 			ptepage = pte_page(entry);
3353 			get_page(ptepage);
3354 			page_dup_rmap(ptepage, true);
3355 			set_huge_pte_at(dst, addr, dst_pte, entry);
3356 			hugetlb_count_add(pages_per_huge_page(h), dst);
3357 		}
3358 		spin_unlock(src_ptl);
3359 		spin_unlock(dst_ptl);
3360 	}
3361 
3362 	if (cow)
3363 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3364 
3365 	return ret;
3366 }
3367 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3368 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3369 			    unsigned long start, unsigned long end,
3370 			    struct page *ref_page)
3371 {
3372 	struct mm_struct *mm = vma->vm_mm;
3373 	unsigned long address;
3374 	pte_t *ptep;
3375 	pte_t pte;
3376 	spinlock_t *ptl;
3377 	struct page *page;
3378 	struct hstate *h = hstate_vma(vma);
3379 	unsigned long sz = huge_page_size(h);
3380 	unsigned long mmun_start = start;	/* For mmu_notifiers */
3381 	unsigned long mmun_end   = end;		/* For mmu_notifiers */
3382 
3383 	WARN_ON(!is_vm_hugetlb_page(vma));
3384 	BUG_ON(start & ~huge_page_mask(h));
3385 	BUG_ON(end & ~huge_page_mask(h));
3386 
3387 	/*
3388 	 * This is a hugetlb vma, all the pte entries should point
3389 	 * to huge page.
3390 	 */
3391 	tlb_remove_check_page_size_change(tlb, sz);
3392 	tlb_start_vma(tlb, vma);
3393 
3394 	/*
3395 	 * If sharing possible, alert mmu notifiers of worst case.
3396 	 */
3397 	adjust_range_if_pmd_sharing_possible(vma, &mmun_start, &mmun_end);
3398 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3399 	address = start;
3400 	for (; address < end; address += sz) {
3401 		ptep = huge_pte_offset(mm, address, sz);
3402 		if (!ptep)
3403 			continue;
3404 
3405 		ptl = huge_pte_lock(h, mm, ptep);
3406 		if (huge_pmd_unshare(mm, &address, ptep)) {
3407 			spin_unlock(ptl);
3408 			/*
3409 			 * We just unmapped a page of PMDs by clearing a PUD.
3410 			 * The caller's TLB flush range should cover this area.
3411 			 */
3412 			continue;
3413 		}
3414 
3415 		pte = huge_ptep_get(ptep);
3416 		if (huge_pte_none(pte)) {
3417 			spin_unlock(ptl);
3418 			continue;
3419 		}
3420 
3421 		/*
3422 		 * Migrating hugepage or HWPoisoned hugepage is already
3423 		 * unmapped and its refcount is dropped, so just clear pte here.
3424 		 */
3425 		if (unlikely(!pte_present(pte))) {
3426 			huge_pte_clear(mm, address, ptep, sz);
3427 			spin_unlock(ptl);
3428 			continue;
3429 		}
3430 
3431 		page = pte_page(pte);
3432 		/*
3433 		 * If a reference page is supplied, it is because a specific
3434 		 * page is being unmapped, not a range. Ensure the page we
3435 		 * are about to unmap is the actual page of interest.
3436 		 */
3437 		if (ref_page) {
3438 			if (page != ref_page) {
3439 				spin_unlock(ptl);
3440 				continue;
3441 			}
3442 			/*
3443 			 * Mark the VMA as having unmapped its page so that
3444 			 * future faults in this VMA will fail rather than
3445 			 * looking like data was lost
3446 			 */
3447 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3448 		}
3449 
3450 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3451 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3452 		if (huge_pte_dirty(pte))
3453 			set_page_dirty(page);
3454 
3455 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3456 		page_remove_rmap(page, true);
3457 
3458 		spin_unlock(ptl);
3459 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3460 		/*
3461 		 * Bail out after unmapping reference page if supplied
3462 		 */
3463 		if (ref_page)
3464 			break;
3465 	}
3466 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3467 	tlb_end_vma(tlb, vma);
3468 }
3469 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3470 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3471 			  struct vm_area_struct *vma, unsigned long start,
3472 			  unsigned long end, struct page *ref_page)
3473 {
3474 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3475 
3476 	/*
3477 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3478 	 * test will fail on a vma being torn down, and not grab a page table
3479 	 * on its way out.  We're lucky that the flag has such an appropriate
3480 	 * name, and can in fact be safely cleared here. We could clear it
3481 	 * before the __unmap_hugepage_range above, but all that's necessary
3482 	 * is to clear it before releasing the i_mmap_rwsem. This works
3483 	 * because in the context this is called, the VMA is about to be
3484 	 * destroyed and the i_mmap_rwsem is held.
3485 	 */
3486 	vma->vm_flags &= ~VM_MAYSHARE;
3487 }
3488 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3489 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3490 			  unsigned long end, struct page *ref_page)
3491 {
3492 	struct mm_struct *mm;
3493 	struct mmu_gather tlb;
3494 	unsigned long tlb_start = start;
3495 	unsigned long tlb_end = end;
3496 
3497 	/*
3498 	 * If shared PMDs were possibly used within this vma range, adjust
3499 	 * start/end for worst case tlb flushing.
3500 	 * Note that we can not be sure if PMDs are shared until we try to
3501 	 * unmap pages.  However, we want to make sure TLB flushing covers
3502 	 * the largest possible range.
3503 	 */
3504 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3505 
3506 	mm = vma->vm_mm;
3507 
3508 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3509 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3510 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3511 }
3512 
3513 /*
3514  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3515  * mappping it owns the reserve page for. The intention is to unmap the page
3516  * from other VMAs and let the children be SIGKILLed if they are faulting the
3517  * same region.
3518  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)3519 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3520 			      struct page *page, unsigned long address)
3521 {
3522 	struct hstate *h = hstate_vma(vma);
3523 	struct vm_area_struct *iter_vma;
3524 	struct address_space *mapping;
3525 	pgoff_t pgoff;
3526 
3527 	/*
3528 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3529 	 * from page cache lookup which is in HPAGE_SIZE units.
3530 	 */
3531 	address = address & huge_page_mask(h);
3532 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3533 			vma->vm_pgoff;
3534 	mapping = vma->vm_file->f_mapping;
3535 
3536 	/*
3537 	 * Take the mapping lock for the duration of the table walk. As
3538 	 * this mapping should be shared between all the VMAs,
3539 	 * __unmap_hugepage_range() is called as the lock is already held
3540 	 */
3541 	i_mmap_lock_write(mapping);
3542 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3543 		/* Do not unmap the current VMA */
3544 		if (iter_vma == vma)
3545 			continue;
3546 
3547 		/*
3548 		 * Shared VMAs have their own reserves and do not affect
3549 		 * MAP_PRIVATE accounting but it is possible that a shared
3550 		 * VMA is using the same page so check and skip such VMAs.
3551 		 */
3552 		if (iter_vma->vm_flags & VM_MAYSHARE)
3553 			continue;
3554 
3555 		/*
3556 		 * Unmap the page from other VMAs without their own reserves.
3557 		 * They get marked to be SIGKILLed if they fault in these
3558 		 * areas. This is because a future no-page fault on this VMA
3559 		 * could insert a zeroed page instead of the data existing
3560 		 * from the time of fork. This would look like data corruption
3561 		 */
3562 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3563 			unmap_hugepage_range(iter_vma, address,
3564 					     address + huge_page_size(h), page);
3565 	}
3566 	i_mmap_unlock_write(mapping);
3567 }
3568 
3569 /*
3570  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3571  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3572  * cannot race with other handlers or page migration.
3573  * Keep the pte_same checks anyway to make transition from the mutex easier.
3574  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,struct page * pagecache_page,spinlock_t * ptl)3575 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3576 		       unsigned long address, pte_t *ptep,
3577 		       struct page *pagecache_page, spinlock_t *ptl)
3578 {
3579 	pte_t pte;
3580 	struct hstate *h = hstate_vma(vma);
3581 	struct page *old_page, *new_page;
3582 	int outside_reserve = 0;
3583 	vm_fault_t ret = 0;
3584 	unsigned long mmun_start;	/* For mmu_notifiers */
3585 	unsigned long mmun_end;		/* For mmu_notifiers */
3586 	unsigned long haddr = address & huge_page_mask(h);
3587 
3588 	pte = huge_ptep_get(ptep);
3589 	old_page = pte_page(pte);
3590 
3591 retry_avoidcopy:
3592 	/* If no-one else is actually using this page, avoid the copy
3593 	 * and just make the page writable */
3594 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3595 		page_move_anon_rmap(old_page, vma);
3596 		set_huge_ptep_writable(vma, haddr, ptep);
3597 		return 0;
3598 	}
3599 
3600 	/*
3601 	 * If the process that created a MAP_PRIVATE mapping is about to
3602 	 * perform a COW due to a shared page count, attempt to satisfy
3603 	 * the allocation without using the existing reserves. The pagecache
3604 	 * page is used to determine if the reserve at this address was
3605 	 * consumed or not. If reserves were used, a partial faulted mapping
3606 	 * at the time of fork() could consume its reserves on COW instead
3607 	 * of the full address range.
3608 	 */
3609 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3610 			old_page != pagecache_page)
3611 		outside_reserve = 1;
3612 
3613 	get_page(old_page);
3614 
3615 	/*
3616 	 * Drop page table lock as buddy allocator may be called. It will
3617 	 * be acquired again before returning to the caller, as expected.
3618 	 */
3619 	spin_unlock(ptl);
3620 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3621 
3622 	if (IS_ERR(new_page)) {
3623 		/*
3624 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3625 		 * it is due to references held by a child and an insufficient
3626 		 * huge page pool. To guarantee the original mappers
3627 		 * reliability, unmap the page from child processes. The child
3628 		 * may get SIGKILLed if it later faults.
3629 		 */
3630 		if (outside_reserve) {
3631 			put_page(old_page);
3632 			BUG_ON(huge_pte_none(pte));
3633 			unmap_ref_private(mm, vma, old_page, haddr);
3634 			BUG_ON(huge_pte_none(pte));
3635 			spin_lock(ptl);
3636 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3637 			if (likely(ptep &&
3638 				   pte_same(huge_ptep_get(ptep), pte)))
3639 				goto retry_avoidcopy;
3640 			/*
3641 			 * race occurs while re-acquiring page table
3642 			 * lock, and our job is done.
3643 			 */
3644 			return 0;
3645 		}
3646 
3647 		ret = vmf_error(PTR_ERR(new_page));
3648 		goto out_release_old;
3649 	}
3650 
3651 	/*
3652 	 * When the original hugepage is shared one, it does not have
3653 	 * anon_vma prepared.
3654 	 */
3655 	if (unlikely(anon_vma_prepare(vma))) {
3656 		ret = VM_FAULT_OOM;
3657 		goto out_release_all;
3658 	}
3659 
3660 	copy_user_huge_page(new_page, old_page, address, vma,
3661 			    pages_per_huge_page(h));
3662 	__SetPageUptodate(new_page);
3663 
3664 	mmun_start = haddr;
3665 	mmun_end = mmun_start + huge_page_size(h);
3666 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3667 
3668 	/*
3669 	 * Retake the page table lock to check for racing updates
3670 	 * before the page tables are altered
3671 	 */
3672 	spin_lock(ptl);
3673 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3674 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3675 		ClearPagePrivate(new_page);
3676 
3677 		/* Break COW */
3678 		huge_ptep_clear_flush(vma, haddr, ptep);
3679 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3680 		set_huge_pte_at(mm, haddr, ptep,
3681 				make_huge_pte(vma, new_page, 1));
3682 		page_remove_rmap(old_page, true);
3683 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3684 		set_page_huge_active(new_page);
3685 		/* Make the old page be freed below */
3686 		new_page = old_page;
3687 	}
3688 	spin_unlock(ptl);
3689 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3690 out_release_all:
3691 	restore_reserve_on_error(h, vma, haddr, new_page);
3692 	put_page(new_page);
3693 out_release_old:
3694 	put_page(old_page);
3695 
3696 	spin_lock(ptl); /* Caller expects lock to be held */
3697 	return ret;
3698 }
3699 
3700 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3701 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3702 			struct vm_area_struct *vma, unsigned long address)
3703 {
3704 	struct address_space *mapping;
3705 	pgoff_t idx;
3706 
3707 	mapping = vma->vm_file->f_mapping;
3708 	idx = vma_hugecache_offset(h, vma, address);
3709 
3710 	return find_lock_page(mapping, idx);
3711 }
3712 
3713 /*
3714  * Return whether there is a pagecache page to back given address within VMA.
3715  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3716  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3717 static bool hugetlbfs_pagecache_present(struct hstate *h,
3718 			struct vm_area_struct *vma, unsigned long address)
3719 {
3720 	struct address_space *mapping;
3721 	pgoff_t idx;
3722 	struct page *page;
3723 
3724 	mapping = vma->vm_file->f_mapping;
3725 	idx = vma_hugecache_offset(h, vma, address);
3726 
3727 	page = find_get_page(mapping, idx);
3728 	if (page)
3729 		put_page(page);
3730 	return page != NULL;
3731 }
3732 
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)3733 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3734 			   pgoff_t idx)
3735 {
3736 	struct inode *inode = mapping->host;
3737 	struct hstate *h = hstate_inode(inode);
3738 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3739 
3740 	if (err)
3741 		return err;
3742 	ClearPagePrivate(page);
3743 
3744 	/*
3745 	 * set page dirty so that it will not be removed from cache/file
3746 	 * by non-hugetlbfs specific code paths.
3747 	 */
3748 	set_page_dirty(page);
3749 
3750 	spin_lock(&inode->i_lock);
3751 	inode->i_blocks += blocks_per_huge_page(h);
3752 	spin_unlock(&inode->i_lock);
3753 	return 0;
3754 }
3755 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)3756 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3757 			struct vm_area_struct *vma,
3758 			struct address_space *mapping, pgoff_t idx,
3759 			unsigned long address, pte_t *ptep, unsigned int flags)
3760 {
3761 	struct hstate *h = hstate_vma(vma);
3762 	vm_fault_t ret = VM_FAULT_SIGBUS;
3763 	int anon_rmap = 0;
3764 	unsigned long size;
3765 	struct page *page;
3766 	pte_t new_pte;
3767 	spinlock_t *ptl;
3768 	unsigned long haddr = address & huge_page_mask(h);
3769 	bool new_page = false;
3770 
3771 	/*
3772 	 * Currently, we are forced to kill the process in the event the
3773 	 * original mapper has unmapped pages from the child due to a failed
3774 	 * COW. Warn that such a situation has occurred as it may not be obvious
3775 	 */
3776 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3777 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3778 			   current->pid);
3779 		return ret;
3780 	}
3781 
3782 	/*
3783 	 * Use page lock to guard against racing truncation
3784 	 * before we get page_table_lock.
3785 	 */
3786 retry:
3787 	page = find_lock_page(mapping, idx);
3788 	if (!page) {
3789 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3790 		if (idx >= size)
3791 			goto out;
3792 
3793 		/*
3794 		 * Check for page in userfault range
3795 		 */
3796 		if (userfaultfd_missing(vma)) {
3797 			u32 hash;
3798 			struct vm_fault vmf = {
3799 				.vma = vma,
3800 				.address = haddr,
3801 				.flags = flags,
3802 				/*
3803 				 * Hard to debug if it ends up being
3804 				 * used by a callee that assumes
3805 				 * something about the other
3806 				 * uninitialized fields... same as in
3807 				 * memory.c
3808 				 */
3809 			};
3810 
3811 			/*
3812 			 * hugetlb_fault_mutex must be dropped before
3813 			 * handling userfault.  Reacquire after handling
3814 			 * fault to make calling code simpler.
3815 			 */
3816 			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3817 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3818 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3819 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3820 			goto out;
3821 		}
3822 
3823 		page = alloc_huge_page(vma, haddr, 0);
3824 		if (IS_ERR(page)) {
3825 			ret = vmf_error(PTR_ERR(page));
3826 			goto out;
3827 		}
3828 		clear_huge_page(page, address, pages_per_huge_page(h));
3829 		__SetPageUptodate(page);
3830 		new_page = true;
3831 
3832 		if (vma->vm_flags & VM_MAYSHARE) {
3833 			int err = huge_add_to_page_cache(page, mapping, idx);
3834 			if (err) {
3835 				put_page(page);
3836 				if (err == -EEXIST)
3837 					goto retry;
3838 				goto out;
3839 			}
3840 		} else {
3841 			lock_page(page);
3842 			if (unlikely(anon_vma_prepare(vma))) {
3843 				ret = VM_FAULT_OOM;
3844 				goto backout_unlocked;
3845 			}
3846 			anon_rmap = 1;
3847 		}
3848 	} else {
3849 		/*
3850 		 * If memory error occurs between mmap() and fault, some process
3851 		 * don't have hwpoisoned swap entry for errored virtual address.
3852 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3853 		 */
3854 		if (unlikely(PageHWPoison(page))) {
3855 			ret = VM_FAULT_HWPOISON |
3856 				VM_FAULT_SET_HINDEX(hstate_index(h));
3857 			goto backout_unlocked;
3858 		}
3859 	}
3860 
3861 	/*
3862 	 * If we are going to COW a private mapping later, we examine the
3863 	 * pending reservations for this page now. This will ensure that
3864 	 * any allocations necessary to record that reservation occur outside
3865 	 * the spinlock.
3866 	 */
3867 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3868 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3869 			ret = VM_FAULT_OOM;
3870 			goto backout_unlocked;
3871 		}
3872 		/* Just decrements count, does not deallocate */
3873 		vma_end_reservation(h, vma, haddr);
3874 	}
3875 
3876 	ptl = huge_pte_lock(h, mm, ptep);
3877 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3878 	if (idx >= size)
3879 		goto backout;
3880 
3881 	ret = 0;
3882 	if (!huge_pte_none(huge_ptep_get(ptep)))
3883 		goto backout;
3884 
3885 	if (anon_rmap) {
3886 		ClearPagePrivate(page);
3887 		hugepage_add_new_anon_rmap(page, vma, haddr);
3888 	} else
3889 		page_dup_rmap(page, true);
3890 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3891 				&& (vma->vm_flags & VM_SHARED)));
3892 	set_huge_pte_at(mm, haddr, ptep, new_pte);
3893 
3894 	hugetlb_count_add(pages_per_huge_page(h), mm);
3895 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3896 		/* Optimization, do the COW without a second fault */
3897 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3898 	}
3899 
3900 	spin_unlock(ptl);
3901 
3902 	/*
3903 	 * Only make newly allocated pages active.  Existing pages found
3904 	 * in the pagecache could be !page_huge_active() if they have been
3905 	 * isolated for migration.
3906 	 */
3907 	if (new_page)
3908 		set_page_huge_active(page);
3909 
3910 	unlock_page(page);
3911 out:
3912 	return ret;
3913 
3914 backout:
3915 	spin_unlock(ptl);
3916 backout_unlocked:
3917 	unlock_page(page);
3918 	restore_reserve_on_error(h, vma, haddr, page);
3919 	put_page(page);
3920 	goto out;
3921 }
3922 
3923 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct hstate * h,struct address_space * mapping,pgoff_t idx,unsigned long address)3924 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3925 			    pgoff_t idx, unsigned long address)
3926 {
3927 	unsigned long key[2];
3928 	u32 hash;
3929 
3930 	key[0] = (unsigned long) mapping;
3931 	key[1] = idx;
3932 
3933 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3934 
3935 	return hash & (num_fault_mutexes - 1);
3936 }
3937 #else
3938 /*
3939  * For uniprocesor systems we always use a single mutex, so just
3940  * return 0 and avoid the hashing overhead.
3941  */
hugetlb_fault_mutex_hash(struct hstate * h,struct address_space * mapping,pgoff_t idx,unsigned long address)3942 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3943 			    pgoff_t idx, unsigned long address)
3944 {
3945 	return 0;
3946 }
3947 #endif
3948 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3949 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3950 			unsigned long address, unsigned int flags)
3951 {
3952 	pte_t *ptep, entry;
3953 	spinlock_t *ptl;
3954 	vm_fault_t ret;
3955 	u32 hash;
3956 	pgoff_t idx;
3957 	struct page *page = NULL;
3958 	struct page *pagecache_page = NULL;
3959 	struct hstate *h = hstate_vma(vma);
3960 	struct address_space *mapping;
3961 	int need_wait_lock = 0;
3962 	unsigned long haddr = address & huge_page_mask(h);
3963 
3964 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3965 	if (ptep) {
3966 		entry = huge_ptep_get(ptep);
3967 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3968 			migration_entry_wait_huge(vma, mm, ptep);
3969 			return 0;
3970 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3971 			return VM_FAULT_HWPOISON_LARGE |
3972 				VM_FAULT_SET_HINDEX(hstate_index(h));
3973 	} else {
3974 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3975 		if (!ptep)
3976 			return VM_FAULT_OOM;
3977 	}
3978 
3979 	mapping = vma->vm_file->f_mapping;
3980 	idx = vma_hugecache_offset(h, vma, haddr);
3981 
3982 	/*
3983 	 * Serialize hugepage allocation and instantiation, so that we don't
3984 	 * get spurious allocation failures if two CPUs race to instantiate
3985 	 * the same page in the page cache.
3986 	 */
3987 	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3988 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3989 
3990 	entry = huge_ptep_get(ptep);
3991 	if (huge_pte_none(entry)) {
3992 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3993 		goto out_mutex;
3994 	}
3995 
3996 	ret = 0;
3997 
3998 	/*
3999 	 * entry could be a migration/hwpoison entry at this point, so this
4000 	 * check prevents the kernel from going below assuming that we have
4001 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4002 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4003 	 * handle it.
4004 	 */
4005 	if (!pte_present(entry))
4006 		goto out_mutex;
4007 
4008 	/*
4009 	 * If we are going to COW the mapping later, we examine the pending
4010 	 * reservations for this page now. This will ensure that any
4011 	 * allocations necessary to record that reservation occur outside the
4012 	 * spinlock. For private mappings, we also lookup the pagecache
4013 	 * page now as it is used to determine if a reservation has been
4014 	 * consumed.
4015 	 */
4016 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4017 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4018 			ret = VM_FAULT_OOM;
4019 			goto out_mutex;
4020 		}
4021 		/* Just decrements count, does not deallocate */
4022 		vma_end_reservation(h, vma, haddr);
4023 
4024 		if (!(vma->vm_flags & VM_MAYSHARE))
4025 			pagecache_page = hugetlbfs_pagecache_page(h,
4026 								vma, haddr);
4027 	}
4028 
4029 	ptl = huge_pte_lock(h, mm, ptep);
4030 
4031 	/* Check for a racing update before calling hugetlb_cow */
4032 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4033 		goto out_ptl;
4034 
4035 	/*
4036 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4037 	 * pagecache_page, so here we need take the former one
4038 	 * when page != pagecache_page or !pagecache_page.
4039 	 */
4040 	page = pte_page(entry);
4041 	if (page != pagecache_page)
4042 		if (!trylock_page(page)) {
4043 			need_wait_lock = 1;
4044 			goto out_ptl;
4045 		}
4046 
4047 	get_page(page);
4048 
4049 	if (flags & FAULT_FLAG_WRITE) {
4050 		if (!huge_pte_write(entry)) {
4051 			ret = hugetlb_cow(mm, vma, address, ptep,
4052 					  pagecache_page, ptl);
4053 			goto out_put_page;
4054 		}
4055 		entry = huge_pte_mkdirty(entry);
4056 	}
4057 	entry = pte_mkyoung(entry);
4058 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4059 						flags & FAULT_FLAG_WRITE))
4060 		update_mmu_cache(vma, haddr, ptep);
4061 out_put_page:
4062 	if (page != pagecache_page)
4063 		unlock_page(page);
4064 	put_page(page);
4065 out_ptl:
4066 	spin_unlock(ptl);
4067 
4068 	if (pagecache_page) {
4069 		unlock_page(pagecache_page);
4070 		put_page(pagecache_page);
4071 	}
4072 out_mutex:
4073 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4074 	/*
4075 	 * Generally it's safe to hold refcount during waiting page lock. But
4076 	 * here we just wait to defer the next page fault to avoid busy loop and
4077 	 * the page is not used after unlocked before returning from the current
4078 	 * page fault. So we are safe from accessing freed page, even if we wait
4079 	 * here without taking refcount.
4080 	 */
4081 	if (need_wait_lock)
4082 		wait_on_page_locked(page);
4083 	return ret;
4084 }
4085 
4086 /*
4087  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4088  * modifications for huge pages.
4089  */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)4090 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4091 			    pte_t *dst_pte,
4092 			    struct vm_area_struct *dst_vma,
4093 			    unsigned long dst_addr,
4094 			    unsigned long src_addr,
4095 			    struct page **pagep)
4096 {
4097 	struct address_space *mapping;
4098 	pgoff_t idx;
4099 	unsigned long size;
4100 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4101 	struct hstate *h = hstate_vma(dst_vma);
4102 	pte_t _dst_pte;
4103 	spinlock_t *ptl;
4104 	int ret;
4105 	struct page *page;
4106 
4107 	if (!*pagep) {
4108 		ret = -ENOMEM;
4109 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4110 		if (IS_ERR(page))
4111 			goto out;
4112 
4113 		ret = copy_huge_page_from_user(page,
4114 						(const void __user *) src_addr,
4115 						pages_per_huge_page(h), false);
4116 
4117 		/* fallback to copy_from_user outside mmap_sem */
4118 		if (unlikely(ret)) {
4119 			ret = -ENOENT;
4120 			*pagep = page;
4121 			/* don't free the page */
4122 			goto out;
4123 		}
4124 	} else {
4125 		page = *pagep;
4126 		*pagep = NULL;
4127 	}
4128 
4129 	/*
4130 	 * The memory barrier inside __SetPageUptodate makes sure that
4131 	 * preceding stores to the page contents become visible before
4132 	 * the set_pte_at() write.
4133 	 */
4134 	__SetPageUptodate(page);
4135 
4136 	mapping = dst_vma->vm_file->f_mapping;
4137 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4138 
4139 	/*
4140 	 * If shared, add to page cache
4141 	 */
4142 	if (vm_shared) {
4143 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4144 		ret = -EFAULT;
4145 		if (idx >= size)
4146 			goto out_release_nounlock;
4147 
4148 		/*
4149 		 * Serialization between remove_inode_hugepages() and
4150 		 * huge_add_to_page_cache() below happens through the
4151 		 * hugetlb_fault_mutex_table that here must be hold by
4152 		 * the caller.
4153 		 */
4154 		ret = huge_add_to_page_cache(page, mapping, idx);
4155 		if (ret)
4156 			goto out_release_nounlock;
4157 	}
4158 
4159 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4160 	spin_lock(ptl);
4161 
4162 	/*
4163 	 * Recheck the i_size after holding PT lock to make sure not
4164 	 * to leave any page mapped (as page_mapped()) beyond the end
4165 	 * of the i_size (remove_inode_hugepages() is strict about
4166 	 * enforcing that). If we bail out here, we'll also leave a
4167 	 * page in the radix tree in the vm_shared case beyond the end
4168 	 * of the i_size, but remove_inode_hugepages() will take care
4169 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4170 	 */
4171 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4172 	ret = -EFAULT;
4173 	if (idx >= size)
4174 		goto out_release_unlock;
4175 
4176 	ret = -EEXIST;
4177 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4178 		goto out_release_unlock;
4179 
4180 	if (vm_shared) {
4181 		page_dup_rmap(page, true);
4182 	} else {
4183 		ClearPagePrivate(page);
4184 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4185 	}
4186 
4187 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4188 	if (dst_vma->vm_flags & VM_WRITE)
4189 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4190 	_dst_pte = pte_mkyoung(_dst_pte);
4191 
4192 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4193 
4194 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4195 					dst_vma->vm_flags & VM_WRITE);
4196 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4197 
4198 	/* No need to invalidate - it was non-present before */
4199 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4200 
4201 	spin_unlock(ptl);
4202 	set_page_huge_active(page);
4203 	if (vm_shared)
4204 		unlock_page(page);
4205 	ret = 0;
4206 out:
4207 	return ret;
4208 out_release_unlock:
4209 	spin_unlock(ptl);
4210 	if (vm_shared)
4211 		unlock_page(page);
4212 out_release_nounlock:
4213 	put_page(page);
4214 	goto out;
4215 }
4216 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * nonblocking)4217 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4218 			 struct page **pages, struct vm_area_struct **vmas,
4219 			 unsigned long *position, unsigned long *nr_pages,
4220 			 long i, unsigned int flags, int *nonblocking)
4221 {
4222 	unsigned long pfn_offset;
4223 	unsigned long vaddr = *position;
4224 	unsigned long remainder = *nr_pages;
4225 	struct hstate *h = hstate_vma(vma);
4226 	int err = -EFAULT;
4227 
4228 	while (vaddr < vma->vm_end && remainder) {
4229 		pte_t *pte;
4230 		spinlock_t *ptl = NULL;
4231 		int absent;
4232 		struct page *page;
4233 
4234 		/*
4235 		 * If we have a pending SIGKILL, don't keep faulting pages and
4236 		 * potentially allocating memory.
4237 		 */
4238 		if (unlikely(fatal_signal_pending(current))) {
4239 			remainder = 0;
4240 			break;
4241 		}
4242 
4243 		/*
4244 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4245 		 * each hugepage.  We have to make sure we get the
4246 		 * first, for the page indexing below to work.
4247 		 *
4248 		 * Note that page table lock is not held when pte is null.
4249 		 */
4250 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4251 				      huge_page_size(h));
4252 		if (pte)
4253 			ptl = huge_pte_lock(h, mm, pte);
4254 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4255 
4256 		/*
4257 		 * When coredumping, it suits get_dump_page if we just return
4258 		 * an error where there's an empty slot with no huge pagecache
4259 		 * to back it.  This way, we avoid allocating a hugepage, and
4260 		 * the sparse dumpfile avoids allocating disk blocks, but its
4261 		 * huge holes still show up with zeroes where they need to be.
4262 		 */
4263 		if (absent && (flags & FOLL_DUMP) &&
4264 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4265 			if (pte)
4266 				spin_unlock(ptl);
4267 			remainder = 0;
4268 			break;
4269 		}
4270 
4271 		/*
4272 		 * We need call hugetlb_fault for both hugepages under migration
4273 		 * (in which case hugetlb_fault waits for the migration,) and
4274 		 * hwpoisoned hugepages (in which case we need to prevent the
4275 		 * caller from accessing to them.) In order to do this, we use
4276 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4277 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4278 		 * both cases, and because we can't follow correct pages
4279 		 * directly from any kind of swap entries.
4280 		 */
4281 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4282 		    ((flags & FOLL_WRITE) &&
4283 		      !huge_pte_write(huge_ptep_get(pte)))) {
4284 			vm_fault_t ret;
4285 			unsigned int fault_flags = 0;
4286 
4287 			if (pte)
4288 				spin_unlock(ptl);
4289 			if (flags & FOLL_WRITE)
4290 				fault_flags |= FAULT_FLAG_WRITE;
4291 			if (nonblocking)
4292 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4293 			if (flags & FOLL_NOWAIT)
4294 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4295 					FAULT_FLAG_RETRY_NOWAIT;
4296 			if (flags & FOLL_TRIED) {
4297 				VM_WARN_ON_ONCE(fault_flags &
4298 						FAULT_FLAG_ALLOW_RETRY);
4299 				fault_flags |= FAULT_FLAG_TRIED;
4300 			}
4301 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4302 			if (ret & VM_FAULT_ERROR) {
4303 				err = vm_fault_to_errno(ret, flags);
4304 				remainder = 0;
4305 				break;
4306 			}
4307 			if (ret & VM_FAULT_RETRY) {
4308 				if (nonblocking &&
4309 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4310 					*nonblocking = 0;
4311 				*nr_pages = 0;
4312 				/*
4313 				 * VM_FAULT_RETRY must not return an
4314 				 * error, it will return zero
4315 				 * instead.
4316 				 *
4317 				 * No need to update "position" as the
4318 				 * caller will not check it after
4319 				 * *nr_pages is set to 0.
4320 				 */
4321 				return i;
4322 			}
4323 			continue;
4324 		}
4325 
4326 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4327 		page = pte_page(huge_ptep_get(pte));
4328 
4329 		/*
4330 		 * Instead of doing 'try_get_page()' below in the same_page
4331 		 * loop, just check the count once here.
4332 		 */
4333 		if (unlikely(page_count(page) <= 0)) {
4334 			if (pages) {
4335 				spin_unlock(ptl);
4336 				remainder = 0;
4337 				err = -ENOMEM;
4338 				break;
4339 			}
4340 		}
4341 same_page:
4342 		if (pages) {
4343 			pages[i] = mem_map_offset(page, pfn_offset);
4344 			get_page(pages[i]);
4345 		}
4346 
4347 		if (vmas)
4348 			vmas[i] = vma;
4349 
4350 		vaddr += PAGE_SIZE;
4351 		++pfn_offset;
4352 		--remainder;
4353 		++i;
4354 		if (vaddr < vma->vm_end && remainder &&
4355 				pfn_offset < pages_per_huge_page(h)) {
4356 			/*
4357 			 * We use pfn_offset to avoid touching the pageframes
4358 			 * of this compound page.
4359 			 */
4360 			goto same_page;
4361 		}
4362 		spin_unlock(ptl);
4363 	}
4364 	*nr_pages = remainder;
4365 	/*
4366 	 * setting position is actually required only if remainder is
4367 	 * not zero but it's faster not to add a "if (remainder)"
4368 	 * branch.
4369 	 */
4370 	*position = vaddr;
4371 
4372 	return i ? i : err;
4373 }
4374 
4375 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4376 /*
4377  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4378  * implement this.
4379  */
4380 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4381 #endif
4382 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)4383 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4384 		unsigned long address, unsigned long end, pgprot_t newprot)
4385 {
4386 	struct mm_struct *mm = vma->vm_mm;
4387 	unsigned long start = address;
4388 	pte_t *ptep;
4389 	pte_t pte;
4390 	struct hstate *h = hstate_vma(vma);
4391 	unsigned long pages = 0;
4392 	unsigned long f_start = start;
4393 	unsigned long f_end = end;
4394 	bool shared_pmd = false;
4395 
4396 	/*
4397 	 * In the case of shared PMDs, the area to flush could be beyond
4398 	 * start/end.  Set f_start/f_end to cover the maximum possible
4399 	 * range if PMD sharing is possible.
4400 	 */
4401 	adjust_range_if_pmd_sharing_possible(vma, &f_start, &f_end);
4402 
4403 	BUG_ON(address >= end);
4404 	flush_cache_range(vma, f_start, f_end);
4405 
4406 	mmu_notifier_invalidate_range_start(mm, f_start, f_end);
4407 	i_mmap_lock_write(vma->vm_file->f_mapping);
4408 	for (; address < end; address += huge_page_size(h)) {
4409 		spinlock_t *ptl;
4410 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4411 		if (!ptep)
4412 			continue;
4413 		ptl = huge_pte_lock(h, mm, ptep);
4414 		if (huge_pmd_unshare(mm, &address, ptep)) {
4415 			pages++;
4416 			spin_unlock(ptl);
4417 			shared_pmd = true;
4418 			continue;
4419 		}
4420 		pte = huge_ptep_get(ptep);
4421 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4422 			spin_unlock(ptl);
4423 			continue;
4424 		}
4425 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4426 			swp_entry_t entry = pte_to_swp_entry(pte);
4427 
4428 			if (is_write_migration_entry(entry)) {
4429 				pte_t newpte;
4430 
4431 				make_migration_entry_read(&entry);
4432 				newpte = swp_entry_to_pte(entry);
4433 				set_huge_swap_pte_at(mm, address, ptep,
4434 						     newpte, huge_page_size(h));
4435 				pages++;
4436 			}
4437 			spin_unlock(ptl);
4438 			continue;
4439 		}
4440 		if (!huge_pte_none(pte)) {
4441 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4442 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4443 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4444 			set_huge_pte_at(mm, address, ptep, pte);
4445 			pages++;
4446 		}
4447 		spin_unlock(ptl);
4448 	}
4449 	/*
4450 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4451 	 * may have cleared our pud entry and done put_page on the page table:
4452 	 * once we release i_mmap_rwsem, another task can do the final put_page
4453 	 * and that page table be reused and filled with junk.  If we actually
4454 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4455 	 */
4456 	if (shared_pmd)
4457 		flush_hugetlb_tlb_range(vma, f_start, f_end);
4458 	else
4459 		flush_hugetlb_tlb_range(vma, start, end);
4460 	/*
4461 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4462 	 * page table protection not changing it to point to a new page.
4463 	 *
4464 	 * See Documentation/vm/mmu_notifier.rst
4465 	 */
4466 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4467 	mmu_notifier_invalidate_range_end(mm, f_start, f_end);
4468 
4469 	return pages << h->order;
4470 }
4471 
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)4472 int hugetlb_reserve_pages(struct inode *inode,
4473 					long from, long to,
4474 					struct vm_area_struct *vma,
4475 					vm_flags_t vm_flags)
4476 {
4477 	long ret, chg;
4478 	struct hstate *h = hstate_inode(inode);
4479 	struct hugepage_subpool *spool = subpool_inode(inode);
4480 	struct resv_map *resv_map;
4481 	long gbl_reserve;
4482 
4483 	/* This should never happen */
4484 	if (from > to) {
4485 		VM_WARN(1, "%s called with a negative range\n", __func__);
4486 		return -EINVAL;
4487 	}
4488 
4489 	/*
4490 	 * Only apply hugepage reservation if asked. At fault time, an
4491 	 * attempt will be made for VM_NORESERVE to allocate a page
4492 	 * without using reserves
4493 	 */
4494 	if (vm_flags & VM_NORESERVE)
4495 		return 0;
4496 
4497 	/*
4498 	 * Shared mappings base their reservation on the number of pages that
4499 	 * are already allocated on behalf of the file. Private mappings need
4500 	 * to reserve the full area even if read-only as mprotect() may be
4501 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4502 	 */
4503 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4504 		resv_map = inode_resv_map(inode);
4505 
4506 		chg = region_chg(resv_map, from, to);
4507 
4508 	} else {
4509 		resv_map = resv_map_alloc();
4510 		if (!resv_map)
4511 			return -ENOMEM;
4512 
4513 		chg = to - from;
4514 
4515 		set_vma_resv_map(vma, resv_map);
4516 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4517 	}
4518 
4519 	if (chg < 0) {
4520 		ret = chg;
4521 		goto out_err;
4522 	}
4523 
4524 	/*
4525 	 * There must be enough pages in the subpool for the mapping. If
4526 	 * the subpool has a minimum size, there may be some global
4527 	 * reservations already in place (gbl_reserve).
4528 	 */
4529 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4530 	if (gbl_reserve < 0) {
4531 		ret = -ENOSPC;
4532 		goto out_err;
4533 	}
4534 
4535 	/*
4536 	 * Check enough hugepages are available for the reservation.
4537 	 * Hand the pages back to the subpool if there are not
4538 	 */
4539 	ret = hugetlb_acct_memory(h, gbl_reserve);
4540 	if (ret < 0) {
4541 		/* put back original number of pages, chg */
4542 		(void)hugepage_subpool_put_pages(spool, chg);
4543 		goto out_err;
4544 	}
4545 
4546 	/*
4547 	 * Account for the reservations made. Shared mappings record regions
4548 	 * that have reservations as they are shared by multiple VMAs.
4549 	 * When the last VMA disappears, the region map says how much
4550 	 * the reservation was and the page cache tells how much of
4551 	 * the reservation was consumed. Private mappings are per-VMA and
4552 	 * only the consumed reservations are tracked. When the VMA
4553 	 * disappears, the original reservation is the VMA size and the
4554 	 * consumed reservations are stored in the map. Hence, nothing
4555 	 * else has to be done for private mappings here
4556 	 */
4557 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4558 		long add = region_add(resv_map, from, to);
4559 
4560 		if (unlikely(chg > add)) {
4561 			/*
4562 			 * pages in this range were added to the reserve
4563 			 * map between region_chg and region_add.  This
4564 			 * indicates a race with alloc_huge_page.  Adjust
4565 			 * the subpool and reserve counts modified above
4566 			 * based on the difference.
4567 			 */
4568 			long rsv_adjust;
4569 
4570 			rsv_adjust = hugepage_subpool_put_pages(spool,
4571 								chg - add);
4572 			hugetlb_acct_memory(h, -rsv_adjust);
4573 		}
4574 	}
4575 	return 0;
4576 out_err:
4577 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4578 		/* Don't call region_abort if region_chg failed */
4579 		if (chg >= 0)
4580 			region_abort(resv_map, from, to);
4581 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4582 		kref_put(&resv_map->refs, resv_map_release);
4583 	return ret;
4584 }
4585 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)4586 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4587 								long freed)
4588 {
4589 	struct hstate *h = hstate_inode(inode);
4590 	struct resv_map *resv_map = inode_resv_map(inode);
4591 	long chg = 0;
4592 	struct hugepage_subpool *spool = subpool_inode(inode);
4593 	long gbl_reserve;
4594 
4595 	if (resv_map) {
4596 		chg = region_del(resv_map, start, end);
4597 		/*
4598 		 * region_del() can fail in the rare case where a region
4599 		 * must be split and another region descriptor can not be
4600 		 * allocated.  If end == LONG_MAX, it will not fail.
4601 		 */
4602 		if (chg < 0)
4603 			return chg;
4604 	}
4605 
4606 	spin_lock(&inode->i_lock);
4607 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4608 	spin_unlock(&inode->i_lock);
4609 
4610 	/*
4611 	 * If the subpool has a minimum size, the number of global
4612 	 * reservations to be released may be adjusted.
4613 	 */
4614 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4615 	hugetlb_acct_memory(h, -gbl_reserve);
4616 
4617 	return 0;
4618 }
4619 
4620 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)4621 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4622 				struct vm_area_struct *vma,
4623 				unsigned long addr, pgoff_t idx)
4624 {
4625 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4626 				svma->vm_start;
4627 	unsigned long sbase = saddr & PUD_MASK;
4628 	unsigned long s_end = sbase + PUD_SIZE;
4629 
4630 	/* Allow segments to share if only one is marked locked */
4631 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4632 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4633 
4634 	/*
4635 	 * match the virtual addresses, permission and the alignment of the
4636 	 * page table page.
4637 	 */
4638 	if (pmd_index(addr) != pmd_index(saddr) ||
4639 	    vm_flags != svm_flags ||
4640 	    sbase < svma->vm_start || svma->vm_end < s_end)
4641 		return 0;
4642 
4643 	return saddr;
4644 }
4645 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)4646 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4647 {
4648 	unsigned long base = addr & PUD_MASK;
4649 	unsigned long end = base + PUD_SIZE;
4650 
4651 	/*
4652 	 * check on proper vm_flags and page table alignment
4653 	 */
4654 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4655 		return true;
4656 	return false;
4657 }
4658 
4659 /*
4660  * Determine if start,end range within vma could be mapped by shared pmd.
4661  * If yes, adjust start and end to cover range associated with possible
4662  * shared pmd mappings.
4663  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)4664 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4665 				unsigned long *start, unsigned long *end)
4666 {
4667 	unsigned long a_start, a_end;
4668 
4669 	if (!(vma->vm_flags & VM_MAYSHARE))
4670 		return;
4671 
4672 	/* Extend the range to be PUD aligned for a worst case scenario */
4673 	a_start = ALIGN_DOWN(*start, PUD_SIZE);
4674 	a_end = ALIGN(*end, PUD_SIZE);
4675 
4676 	/*
4677 	 * Intersect the range with the vma range, since pmd sharing won't be
4678 	 * across vma after all
4679 	 */
4680 	*start = max(vma->vm_start, a_start);
4681 	*end = min(vma->vm_end, a_end);
4682 }
4683 
4684 /*
4685  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4686  * and returns the corresponding pte. While this is not necessary for the
4687  * !shared pmd case because we can allocate the pmd later as well, it makes the
4688  * code much cleaner. pmd allocation is essential for the shared case because
4689  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4690  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4691  * bad pmd for sharing.
4692  */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)4693 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4694 {
4695 	struct vm_area_struct *vma = find_vma(mm, addr);
4696 	struct address_space *mapping = vma->vm_file->f_mapping;
4697 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4698 			vma->vm_pgoff;
4699 	struct vm_area_struct *svma;
4700 	unsigned long saddr;
4701 	pte_t *spte = NULL;
4702 	pte_t *pte;
4703 	spinlock_t *ptl;
4704 
4705 	if (!vma_shareable(vma, addr))
4706 		return (pte_t *)pmd_alloc(mm, pud, addr);
4707 
4708 	i_mmap_lock_write(mapping);
4709 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4710 		if (svma == vma)
4711 			continue;
4712 
4713 		saddr = page_table_shareable(svma, vma, addr, idx);
4714 		if (saddr) {
4715 			spte = huge_pte_offset(svma->vm_mm, saddr,
4716 					       vma_mmu_pagesize(svma));
4717 			if (spte) {
4718 				get_page(virt_to_page(spte));
4719 				break;
4720 			}
4721 		}
4722 	}
4723 
4724 	if (!spte)
4725 		goto out;
4726 
4727 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4728 	if (pud_none(*pud)) {
4729 		pud_populate(mm, pud,
4730 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4731 		mm_inc_nr_pmds(mm);
4732 	} else {
4733 		put_page(virt_to_page(spte));
4734 	}
4735 	spin_unlock(ptl);
4736 out:
4737 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4738 	i_mmap_unlock_write(mapping);
4739 	return pte;
4740 }
4741 
4742 /*
4743  * unmap huge page backed by shared pte.
4744  *
4745  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4746  * indicated by page_count > 1, unmap is achieved by clearing pud and
4747  * decrementing the ref count. If count == 1, the pte page is not shared.
4748  *
4749  * called with page table lock held.
4750  *
4751  * returns: 1 successfully unmapped a shared pte page
4752  *	    0 the underlying pte page is not shared, or it is the last user
4753  */
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)4754 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4755 {
4756 	pgd_t *pgd = pgd_offset(mm, *addr);
4757 	p4d_t *p4d = p4d_offset(pgd, *addr);
4758 	pud_t *pud = pud_offset(p4d, *addr);
4759 
4760 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4761 	if (page_count(virt_to_page(ptep)) == 1)
4762 		return 0;
4763 
4764 	pud_clear(pud);
4765 	put_page(virt_to_page(ptep));
4766 	mm_dec_nr_pmds(mm);
4767 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4768 	return 1;
4769 }
4770 #define want_pmd_share()	(1)
4771 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)4772 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4773 {
4774 	return NULL;
4775 }
4776 
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)4777 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4778 {
4779 	return 0;
4780 }
4781 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)4782 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4783 				unsigned long *start, unsigned long *end)
4784 {
4785 }
4786 #define want_pmd_share()	(0)
4787 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4788 
4789 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)4790 pte_t *huge_pte_alloc(struct mm_struct *mm,
4791 			unsigned long addr, unsigned long sz)
4792 {
4793 	pgd_t *pgd;
4794 	p4d_t *p4d;
4795 	pud_t *pud;
4796 	pte_t *pte = NULL;
4797 
4798 	pgd = pgd_offset(mm, addr);
4799 	p4d = p4d_alloc(mm, pgd, addr);
4800 	if (!p4d)
4801 		return NULL;
4802 	pud = pud_alloc(mm, p4d, addr);
4803 	if (pud) {
4804 		if (sz == PUD_SIZE) {
4805 			pte = (pte_t *)pud;
4806 		} else {
4807 			BUG_ON(sz != PMD_SIZE);
4808 			if (want_pmd_share() && pud_none(*pud))
4809 				pte = huge_pmd_share(mm, addr, pud);
4810 			else
4811 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4812 		}
4813 	}
4814 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4815 
4816 	return pte;
4817 }
4818 
4819 /*
4820  * huge_pte_offset() - Walk the page table to resolve the hugepage
4821  * entry at address @addr
4822  *
4823  * Return: Pointer to page table or swap entry (PUD or PMD) for
4824  * address @addr, or NULL if a p*d_none() entry is encountered and the
4825  * size @sz doesn't match the hugepage size at this level of the page
4826  * table.
4827  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)4828 pte_t *huge_pte_offset(struct mm_struct *mm,
4829 		       unsigned long addr, unsigned long sz)
4830 {
4831 	pgd_t *pgd;
4832 	p4d_t *p4d;
4833 	pud_t *pud, pud_entry;
4834 	pmd_t *pmd, pmd_entry;
4835 
4836 	pgd = pgd_offset(mm, addr);
4837 	if (!pgd_present(*pgd))
4838 		return NULL;
4839 	p4d = p4d_offset(pgd, addr);
4840 	if (!p4d_present(*p4d))
4841 		return NULL;
4842 
4843 	pud = pud_offset(p4d, addr);
4844 	pud_entry = READ_ONCE(*pud);
4845 	if (sz != PUD_SIZE && pud_none(pud_entry))
4846 		return NULL;
4847 	/* hugepage or swap? */
4848 	if (pud_huge(pud_entry) || !pud_present(pud_entry))
4849 		return (pte_t *)pud;
4850 
4851 	pmd = pmd_offset(pud, addr);
4852 	pmd_entry = READ_ONCE(*pmd);
4853 	if (sz != PMD_SIZE && pmd_none(pmd_entry))
4854 		return NULL;
4855 	/* hugepage or swap? */
4856 	if (pmd_huge(pmd_entry) || !pmd_present(pmd_entry))
4857 		return (pte_t *)pmd;
4858 
4859 	return NULL;
4860 }
4861 
4862 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4863 
4864 /*
4865  * These functions are overwritable if your architecture needs its own
4866  * behavior.
4867  */
4868 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)4869 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4870 			      int write)
4871 {
4872 	return ERR_PTR(-EINVAL);
4873 }
4874 
4875 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)4876 follow_huge_pd(struct vm_area_struct *vma,
4877 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4878 {
4879 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4880 	return NULL;
4881 }
4882 
4883 struct page * __weak
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int flags)4884 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4885 		pmd_t *pmd, int flags)
4886 {
4887 	struct page *page = NULL;
4888 	spinlock_t *ptl;
4889 	pte_t pte;
4890 retry:
4891 	ptl = pmd_lockptr(mm, pmd);
4892 	spin_lock(ptl);
4893 	/*
4894 	 * make sure that the address range covered by this pmd is not
4895 	 * unmapped from other threads.
4896 	 */
4897 	if (!pmd_huge(*pmd))
4898 		goto out;
4899 	pte = huge_ptep_get((pte_t *)pmd);
4900 	if (pte_present(pte)) {
4901 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4902 		if (flags & FOLL_GET)
4903 			get_page(page);
4904 	} else {
4905 		if (is_hugetlb_entry_migration(pte)) {
4906 			spin_unlock(ptl);
4907 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4908 			goto retry;
4909 		}
4910 		/*
4911 		 * hwpoisoned entry is treated as no_page_table in
4912 		 * follow_page_mask().
4913 		 */
4914 	}
4915 out:
4916 	spin_unlock(ptl);
4917 	return page;
4918 }
4919 
4920 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)4921 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4922 		pud_t *pud, int flags)
4923 {
4924 	if (flags & FOLL_GET)
4925 		return NULL;
4926 
4927 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4928 }
4929 
4930 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)4931 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4932 {
4933 	if (flags & FOLL_GET)
4934 		return NULL;
4935 
4936 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4937 }
4938 
isolate_huge_page(struct page * page,struct list_head * list)4939 bool isolate_huge_page(struct page *page, struct list_head *list)
4940 {
4941 	bool ret = true;
4942 
4943 	VM_BUG_ON_PAGE(!PageHead(page), page);
4944 	spin_lock(&hugetlb_lock);
4945 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4946 		ret = false;
4947 		goto unlock;
4948 	}
4949 	clear_page_huge_active(page);
4950 	list_move_tail(&page->lru, list);
4951 unlock:
4952 	spin_unlock(&hugetlb_lock);
4953 	return ret;
4954 }
4955 
putback_active_hugepage(struct page * page)4956 void putback_active_hugepage(struct page *page)
4957 {
4958 	VM_BUG_ON_PAGE(!PageHead(page), page);
4959 	spin_lock(&hugetlb_lock);
4960 	set_page_huge_active(page);
4961 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4962 	spin_unlock(&hugetlb_lock);
4963 	put_page(page);
4964 }
4965 
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)4966 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4967 {
4968 	struct hstate *h = page_hstate(oldpage);
4969 
4970 	hugetlb_cgroup_migrate(oldpage, newpage);
4971 	set_page_owner_migrate_reason(newpage, reason);
4972 
4973 	/*
4974 	 * transfer temporary state of the new huge page. This is
4975 	 * reverse to other transitions because the newpage is going to
4976 	 * be final while the old one will be freed so it takes over
4977 	 * the temporary status.
4978 	 *
4979 	 * Also note that we have to transfer the per-node surplus state
4980 	 * here as well otherwise the global surplus count will not match
4981 	 * the per-node's.
4982 	 */
4983 	if (PageHugeTemporary(newpage)) {
4984 		int old_nid = page_to_nid(oldpage);
4985 		int new_nid = page_to_nid(newpage);
4986 
4987 		SetPageHugeTemporary(oldpage);
4988 		ClearPageHugeTemporary(newpage);
4989 
4990 		spin_lock(&hugetlb_lock);
4991 		if (h->surplus_huge_pages_node[old_nid]) {
4992 			h->surplus_huge_pages_node[old_nid]--;
4993 			h->surplus_huge_pages_node[new_nid]++;
4994 		}
4995 		spin_unlock(&hugetlb_lock);
4996 	}
4997 }
4998