• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/rwsem.h>
87 #include <linux/string.h>
88 #include <linux/mm.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/errno.h>
92 #include <linux/interrupt.h>
93 #include <linux/if_ether.h>
94 #include <linux/netdevice.h>
95 #include <linux/etherdevice.h>
96 #include <linux/ethtool.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 #define MAX_NEST_DEV 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
dev_base_seq_inc(struct net * net)201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
dev_name_hash(struct net * net,const char * name)207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
dev_index_hash(struct net * net,int ifindex)214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
rps_lock(struct softnet_data * sd)219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
rps_unlock(struct softnet_data * sd)226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
list_netdevice(struct net_device * dev)234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
unlist_netdevice(struct net_device * dev)253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
netdev_lock_pos(unsigned short dev_type)323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
netdev_set_addr_lockdep_class(struct net_device * dev)344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
netdev_set_addr_lockdep_class(struct net_device * dev)358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
ptype_head(const struct packet_type * pt)386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
dev_add_pack(struct packet_type * pt)408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
__dev_remove_pack(struct packet_type * pt)431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
dev_remove_pack(struct packet_type * pt)463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
dev_add_offload(struct packet_offload * po)484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
__dev_remove_offload(struct packet_offload * po)511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
dev_remove_offload(struct packet_offload * po)542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
netdev_boot_setup_add(char * name,struct ifmap * map)568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
netdev_boot_setup_check(struct net_device * dev)595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
netdev_boot_base(const char * prefix,int unit)625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
netdev_boot_setup(char * str)649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
dev_get_iflink(const struct net_device * dev)689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
__dev_get_by_name(struct net * net,const char * name)736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
dev_get_by_name_rcu(struct net * net,const char * name)761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
dev_get_by_name(struct net * net,const char * name)786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
__dev_get_by_index(struct net * net,int ifindex)811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
dev_get_by_index_rcu(struct net * net,int ifindex)835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
dev_get_by_index(struct net * net,int ifindex)860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
dev_get_by_napi_id(unsigned int napi_id)883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  */
netdev_get_name(struct net * net,char * name,int ifindex)904 int netdev_get_name(struct net *net, char *name, int ifindex)
905 {
906 	struct net_device *dev;
907 	int ret;
908 
909 	down_read(&devnet_rename_sem);
910 	rcu_read_lock();
911 
912 	dev = dev_get_by_index_rcu(net, ifindex);
913 	if (!dev) {
914 		ret = -ENODEV;
915 		goto out;
916 	}
917 
918 	strcpy(name, dev->name);
919 
920 	ret = 0;
921 out:
922 	rcu_read_unlock();
923 	up_read(&devnet_rename_sem);
924 	return ret;
925 }
926 
927 /**
928  *	dev_getbyhwaddr_rcu - find a device by its hardware address
929  *	@net: the applicable net namespace
930  *	@type: media type of device
931  *	@ha: hardware address
932  *
933  *	Search for an interface by MAC address. Returns NULL if the device
934  *	is not found or a pointer to the device.
935  *	The caller must hold RCU or RTNL.
936  *	The returned device has not had its ref count increased
937  *	and the caller must therefore be careful about locking
938  *
939  */
940 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)941 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
942 				       const char *ha)
943 {
944 	struct net_device *dev;
945 
946 	for_each_netdev_rcu(net, dev)
947 		if (dev->type == type &&
948 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
949 			return dev;
950 
951 	return NULL;
952 }
953 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
954 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)955 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
956 {
957 	struct net_device *dev;
958 
959 	ASSERT_RTNL();
960 	for_each_netdev(net, dev)
961 		if (dev->type == type)
962 			return dev;
963 
964 	return NULL;
965 }
966 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
967 
dev_getfirstbyhwtype(struct net * net,unsigned short type)968 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
969 {
970 	struct net_device *dev, *ret = NULL;
971 
972 	rcu_read_lock();
973 	for_each_netdev_rcu(net, dev)
974 		if (dev->type == type) {
975 			dev_hold(dev);
976 			ret = dev;
977 			break;
978 		}
979 	rcu_read_unlock();
980 	return ret;
981 }
982 EXPORT_SYMBOL(dev_getfirstbyhwtype);
983 
984 /**
985  *	__dev_get_by_flags - find any device with given flags
986  *	@net: the applicable net namespace
987  *	@if_flags: IFF_* values
988  *	@mask: bitmask of bits in if_flags to check
989  *
990  *	Search for any interface with the given flags. Returns NULL if a device
991  *	is not found or a pointer to the device. Must be called inside
992  *	rtnl_lock(), and result refcount is unchanged.
993  */
994 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)995 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
996 				      unsigned short mask)
997 {
998 	struct net_device *dev, *ret;
999 
1000 	ASSERT_RTNL();
1001 
1002 	ret = NULL;
1003 	for_each_netdev(net, dev) {
1004 		if (((dev->flags ^ if_flags) & mask) == 0) {
1005 			ret = dev;
1006 			break;
1007 		}
1008 	}
1009 	return ret;
1010 }
1011 EXPORT_SYMBOL(__dev_get_by_flags);
1012 
1013 /**
1014  *	dev_valid_name - check if name is okay for network device
1015  *	@name: name string
1016  *
1017  *	Network device names need to be valid file names to
1018  *	to allow sysfs to work.  We also disallow any kind of
1019  *	whitespace.
1020  */
dev_valid_name(const char * name)1021 bool dev_valid_name(const char *name)
1022 {
1023 	if (*name == '\0')
1024 		return false;
1025 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1026 		return false;
1027 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1028 		return false;
1029 
1030 	while (*name) {
1031 		if (*name == '/' || *name == ':' || isspace(*name))
1032 			return false;
1033 		name++;
1034 	}
1035 	return true;
1036 }
1037 EXPORT_SYMBOL(dev_valid_name);
1038 
1039 /**
1040  *	__dev_alloc_name - allocate a name for a device
1041  *	@net: network namespace to allocate the device name in
1042  *	@name: name format string
1043  *	@buf:  scratch buffer and result name string
1044  *
1045  *	Passed a format string - eg "lt%d" it will try and find a suitable
1046  *	id. It scans list of devices to build up a free map, then chooses
1047  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1048  *	while allocating the name and adding the device in order to avoid
1049  *	duplicates.
1050  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051  *	Returns the number of the unit assigned or a negative errno code.
1052  */
1053 
__dev_alloc_name(struct net * net,const char * name,char * buf)1054 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1055 {
1056 	int i = 0;
1057 	const char *p;
1058 	const int max_netdevices = 8*PAGE_SIZE;
1059 	unsigned long *inuse;
1060 	struct net_device *d;
1061 
1062 	if (!dev_valid_name(name))
1063 		return -EINVAL;
1064 
1065 	p = strchr(name, '%');
1066 	if (p) {
1067 		/*
1068 		 * Verify the string as this thing may have come from
1069 		 * the user.  There must be either one "%d" and no other "%"
1070 		 * characters.
1071 		 */
1072 		if (p[1] != 'd' || strchr(p + 2, '%'))
1073 			return -EINVAL;
1074 
1075 		/* Use one page as a bit array of possible slots */
1076 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077 		if (!inuse)
1078 			return -ENOMEM;
1079 
1080 		for_each_netdev(net, d) {
1081 			if (!sscanf(d->name, name, &i))
1082 				continue;
1083 			if (i < 0 || i >= max_netdevices)
1084 				continue;
1085 
1086 			/*  avoid cases where sscanf is not exact inverse of printf */
1087 			snprintf(buf, IFNAMSIZ, name, i);
1088 			if (!strncmp(buf, d->name, IFNAMSIZ))
1089 				set_bit(i, inuse);
1090 		}
1091 
1092 		i = find_first_zero_bit(inuse, max_netdevices);
1093 		free_page((unsigned long) inuse);
1094 	}
1095 
1096 	snprintf(buf, IFNAMSIZ, name, i);
1097 	if (!__dev_get_by_name(net, buf))
1098 		return i;
1099 
1100 	/* It is possible to run out of possible slots
1101 	 * when the name is long and there isn't enough space left
1102 	 * for the digits, or if all bits are used.
1103 	 */
1104 	return -ENFILE;
1105 }
1106 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1107 static int dev_alloc_name_ns(struct net *net,
1108 			     struct net_device *dev,
1109 			     const char *name)
1110 {
1111 	char buf[IFNAMSIZ];
1112 	int ret;
1113 
1114 	BUG_ON(!net);
1115 	ret = __dev_alloc_name(net, name, buf);
1116 	if (ret >= 0)
1117 		strlcpy(dev->name, buf, IFNAMSIZ);
1118 	return ret;
1119 }
1120 
1121 /**
1122  *	dev_alloc_name - allocate a name for a device
1123  *	@dev: device
1124  *	@name: name format string
1125  *
1126  *	Passed a format string - eg "lt%d" it will try and find a suitable
1127  *	id. It scans list of devices to build up a free map, then chooses
1128  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1129  *	while allocating the name and adding the device in order to avoid
1130  *	duplicates.
1131  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1132  *	Returns the number of the unit assigned or a negative errno code.
1133  */
1134 
dev_alloc_name(struct net_device * dev,const char * name)1135 int dev_alloc_name(struct net_device *dev, const char *name)
1136 {
1137 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1138 }
1139 EXPORT_SYMBOL(dev_alloc_name);
1140 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1141 int dev_get_valid_name(struct net *net, struct net_device *dev,
1142 		       const char *name)
1143 {
1144 	BUG_ON(!net);
1145 
1146 	if (!dev_valid_name(name))
1147 		return -EINVAL;
1148 
1149 	if (strchr(name, '%'))
1150 		return dev_alloc_name_ns(net, dev, name);
1151 	else if (__dev_get_by_name(net, name))
1152 		return -EEXIST;
1153 	else if (dev->name != name)
1154 		strlcpy(dev->name, name, IFNAMSIZ);
1155 
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL(dev_get_valid_name);
1159 
1160 /**
1161  *	dev_change_name - change name of a device
1162  *	@dev: device
1163  *	@newname: name (or format string) must be at least IFNAMSIZ
1164  *
1165  *	Change name of a device, can pass format strings "eth%d".
1166  *	for wildcarding.
1167  */
dev_change_name(struct net_device * dev,const char * newname)1168 int dev_change_name(struct net_device *dev, const char *newname)
1169 {
1170 	unsigned char old_assign_type;
1171 	char oldname[IFNAMSIZ];
1172 	int err = 0;
1173 	int ret;
1174 	struct net *net;
1175 
1176 	ASSERT_RTNL();
1177 	BUG_ON(!dev_net(dev));
1178 
1179 	net = dev_net(dev);
1180 
1181 	/* Some auto-enslaved devices e.g. failover slaves are
1182 	 * special, as userspace might rename the device after
1183 	 * the interface had been brought up and running since
1184 	 * the point kernel initiated auto-enslavement. Allow
1185 	 * live name change even when these slave devices are
1186 	 * up and running.
1187 	 *
1188 	 * Typically, users of these auto-enslaving devices
1189 	 * don't actually care about slave name change, as
1190 	 * they are supposed to operate on master interface
1191 	 * directly.
1192 	 */
1193 	if (dev->flags & IFF_UP &&
1194 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1195 		return -EBUSY;
1196 
1197 	down_write(&devnet_rename_sem);
1198 
1199 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1200 		up_write(&devnet_rename_sem);
1201 		return 0;
1202 	}
1203 
1204 	memcpy(oldname, dev->name, IFNAMSIZ);
1205 
1206 	err = dev_get_valid_name(net, dev, newname);
1207 	if (err < 0) {
1208 		up_write(&devnet_rename_sem);
1209 		return err;
1210 	}
1211 
1212 	if (oldname[0] && !strchr(oldname, '%'))
1213 		netdev_info(dev, "renamed from %s\n", oldname);
1214 
1215 	old_assign_type = dev->name_assign_type;
1216 	dev->name_assign_type = NET_NAME_RENAMED;
1217 
1218 rollback:
1219 	ret = device_rename(&dev->dev, dev->name);
1220 	if (ret) {
1221 		memcpy(dev->name, oldname, IFNAMSIZ);
1222 		dev->name_assign_type = old_assign_type;
1223 		up_write(&devnet_rename_sem);
1224 		return ret;
1225 	}
1226 
1227 	up_write(&devnet_rename_sem);
1228 
1229 	netdev_adjacent_rename_links(dev, oldname);
1230 
1231 	write_lock_bh(&dev_base_lock);
1232 	hlist_del_rcu(&dev->name_hlist);
1233 	write_unlock_bh(&dev_base_lock);
1234 
1235 	synchronize_rcu();
1236 
1237 	write_lock_bh(&dev_base_lock);
1238 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1239 	write_unlock_bh(&dev_base_lock);
1240 
1241 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242 	ret = notifier_to_errno(ret);
1243 
1244 	if (ret) {
1245 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1246 		if (err >= 0) {
1247 			err = ret;
1248 			down_write(&devnet_rename_sem);
1249 			memcpy(dev->name, oldname, IFNAMSIZ);
1250 			memcpy(oldname, newname, IFNAMSIZ);
1251 			dev->name_assign_type = old_assign_type;
1252 			old_assign_type = NET_NAME_RENAMED;
1253 			goto rollback;
1254 		} else {
1255 			pr_err("%s: name change rollback failed: %d\n",
1256 			       dev->name, ret);
1257 		}
1258 	}
1259 
1260 	return err;
1261 }
1262 
1263 /**
1264  *	dev_set_alias - change ifalias of a device
1265  *	@dev: device
1266  *	@alias: name up to IFALIASZ
1267  *	@len: limit of bytes to copy from info
1268  *
1269  *	Set ifalias for a device,
1270  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1272 {
1273 	struct dev_ifalias *new_alias = NULL;
1274 
1275 	if (len >= IFALIASZ)
1276 		return -EINVAL;
1277 
1278 	if (len) {
1279 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280 		if (!new_alias)
1281 			return -ENOMEM;
1282 
1283 		memcpy(new_alias->ifalias, alias, len);
1284 		new_alias->ifalias[len] = 0;
1285 	}
1286 
1287 	mutex_lock(&ifalias_mutex);
1288 	rcu_swap_protected(dev->ifalias, new_alias,
1289 			   mutex_is_locked(&ifalias_mutex));
1290 	mutex_unlock(&ifalias_mutex);
1291 
1292 	if (new_alias)
1293 		kfree_rcu(new_alias, rcuhead);
1294 
1295 	return len;
1296 }
1297 EXPORT_SYMBOL(dev_set_alias);
1298 
1299 /**
1300  *	dev_get_alias - get ifalias of a device
1301  *	@dev: device
1302  *	@name: buffer to store name of ifalias
1303  *	@len: size of buffer
1304  *
1305  *	get ifalias for a device.  Caller must make sure dev cannot go
1306  *	away,  e.g. rcu read lock or own a reference count to device.
1307  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1309 {
1310 	const struct dev_ifalias *alias;
1311 	int ret = 0;
1312 
1313 	rcu_read_lock();
1314 	alias = rcu_dereference(dev->ifalias);
1315 	if (alias)
1316 		ret = snprintf(name, len, "%s", alias->ifalias);
1317 	rcu_read_unlock();
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  *	netdev_features_change - device changes features
1324  *	@dev: device to cause notification
1325  *
1326  *	Called to indicate a device has changed features.
1327  */
netdev_features_change(struct net_device * dev)1328 void netdev_features_change(struct net_device *dev)
1329 {
1330 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1331 }
1332 EXPORT_SYMBOL(netdev_features_change);
1333 
1334 /**
1335  *	netdev_state_change - device changes state
1336  *	@dev: device to cause notification
1337  *
1338  *	Called to indicate a device has changed state. This function calls
1339  *	the notifier chains for netdev_chain and sends a NEWLINK message
1340  *	to the routing socket.
1341  */
netdev_state_change(struct net_device * dev)1342 void netdev_state_change(struct net_device *dev)
1343 {
1344 	if (dev->flags & IFF_UP) {
1345 		struct netdev_notifier_change_info change_info = {
1346 			.info.dev = dev,
1347 		};
1348 
1349 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1350 					      &change_info.info);
1351 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1352 	}
1353 }
1354 EXPORT_SYMBOL(netdev_state_change);
1355 
1356 /**
1357  * netdev_notify_peers - notify network peers about existence of @dev
1358  * @dev: network device
1359  *
1360  * Generate traffic such that interested network peers are aware of
1361  * @dev, such as by generating a gratuitous ARP. This may be used when
1362  * a device wants to inform the rest of the network about some sort of
1363  * reconfiguration such as a failover event or virtual machine
1364  * migration.
1365  */
netdev_notify_peers(struct net_device * dev)1366 void netdev_notify_peers(struct net_device *dev)
1367 {
1368 	rtnl_lock();
1369 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371 	rtnl_unlock();
1372 }
1373 EXPORT_SYMBOL(netdev_notify_peers);
1374 
__dev_open(struct net_device * dev)1375 static int __dev_open(struct net_device *dev)
1376 {
1377 	const struct net_device_ops *ops = dev->netdev_ops;
1378 	int ret;
1379 
1380 	ASSERT_RTNL();
1381 
1382 	if (!netif_device_present(dev))
1383 		return -ENODEV;
1384 
1385 	/* Block netpoll from trying to do any rx path servicing.
1386 	 * If we don't do this there is a chance ndo_poll_controller
1387 	 * or ndo_poll may be running while we open the device
1388 	 */
1389 	netpoll_poll_disable(dev);
1390 
1391 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1392 	ret = notifier_to_errno(ret);
1393 	if (ret)
1394 		return ret;
1395 
1396 	set_bit(__LINK_STATE_START, &dev->state);
1397 
1398 	if (ops->ndo_validate_addr)
1399 		ret = ops->ndo_validate_addr(dev);
1400 
1401 	if (!ret && ops->ndo_open)
1402 		ret = ops->ndo_open(dev);
1403 
1404 	netpoll_poll_enable(dev);
1405 
1406 	if (ret)
1407 		clear_bit(__LINK_STATE_START, &dev->state);
1408 	else {
1409 		dev->flags |= IFF_UP;
1410 		dev_set_rx_mode(dev);
1411 		dev_activate(dev);
1412 		add_device_randomness(dev->dev_addr, dev->addr_len);
1413 	}
1414 
1415 	return ret;
1416 }
1417 
1418 /**
1419  *	dev_open	- prepare an interface for use.
1420  *	@dev:	device to open
1421  *
1422  *	Takes a device from down to up state. The device's private open
1423  *	function is invoked and then the multicast lists are loaded. Finally
1424  *	the device is moved into the up state and a %NETDEV_UP message is
1425  *	sent to the netdev notifier chain.
1426  *
1427  *	Calling this function on an active interface is a nop. On a failure
1428  *	a negative errno code is returned.
1429  */
dev_open(struct net_device * dev)1430 int dev_open(struct net_device *dev)
1431 {
1432 	int ret;
1433 
1434 	if (dev->flags & IFF_UP)
1435 		return 0;
1436 
1437 	ret = __dev_open(dev);
1438 	if (ret < 0)
1439 		return ret;
1440 
1441 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1442 	call_netdevice_notifiers(NETDEV_UP, dev);
1443 
1444 	return ret;
1445 }
1446 EXPORT_SYMBOL(dev_open);
1447 
__dev_close_many(struct list_head * head)1448 static void __dev_close_many(struct list_head *head)
1449 {
1450 	struct net_device *dev;
1451 
1452 	ASSERT_RTNL();
1453 	might_sleep();
1454 
1455 	list_for_each_entry(dev, head, close_list) {
1456 		/* Temporarily disable netpoll until the interface is down */
1457 		netpoll_poll_disable(dev);
1458 
1459 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1460 
1461 		clear_bit(__LINK_STATE_START, &dev->state);
1462 
1463 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1464 		 * can be even on different cpu. So just clear netif_running().
1465 		 *
1466 		 * dev->stop() will invoke napi_disable() on all of it's
1467 		 * napi_struct instances on this device.
1468 		 */
1469 		smp_mb__after_atomic(); /* Commit netif_running(). */
1470 	}
1471 
1472 	dev_deactivate_many(head);
1473 
1474 	list_for_each_entry(dev, head, close_list) {
1475 		const struct net_device_ops *ops = dev->netdev_ops;
1476 
1477 		/*
1478 		 *	Call the device specific close. This cannot fail.
1479 		 *	Only if device is UP
1480 		 *
1481 		 *	We allow it to be called even after a DETACH hot-plug
1482 		 *	event.
1483 		 */
1484 		if (ops->ndo_stop)
1485 			ops->ndo_stop(dev);
1486 
1487 		dev->flags &= ~IFF_UP;
1488 		netpoll_poll_enable(dev);
1489 	}
1490 }
1491 
__dev_close(struct net_device * dev)1492 static void __dev_close(struct net_device *dev)
1493 {
1494 	LIST_HEAD(single);
1495 
1496 	list_add(&dev->close_list, &single);
1497 	__dev_close_many(&single);
1498 	list_del(&single);
1499 }
1500 
dev_close_many(struct list_head * head,bool unlink)1501 void dev_close_many(struct list_head *head, bool unlink)
1502 {
1503 	struct net_device *dev, *tmp;
1504 
1505 	/* Remove the devices that don't need to be closed */
1506 	list_for_each_entry_safe(dev, tmp, head, close_list)
1507 		if (!(dev->flags & IFF_UP))
1508 			list_del_init(&dev->close_list);
1509 
1510 	__dev_close_many(head);
1511 
1512 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1513 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1514 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1515 		if (unlink)
1516 			list_del_init(&dev->close_list);
1517 	}
1518 }
1519 EXPORT_SYMBOL(dev_close_many);
1520 
1521 /**
1522  *	dev_close - shutdown an interface.
1523  *	@dev: device to shutdown
1524  *
1525  *	This function moves an active device into down state. A
1526  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1527  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1528  *	chain.
1529  */
dev_close(struct net_device * dev)1530 void dev_close(struct net_device *dev)
1531 {
1532 	if (dev->flags & IFF_UP) {
1533 		LIST_HEAD(single);
1534 
1535 		list_add(&dev->close_list, &single);
1536 		dev_close_many(&single, true);
1537 		list_del(&single);
1538 	}
1539 }
1540 EXPORT_SYMBOL(dev_close);
1541 
1542 
1543 /**
1544  *	dev_disable_lro - disable Large Receive Offload on a device
1545  *	@dev: device
1546  *
1547  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1548  *	called under RTNL.  This is needed if received packets may be
1549  *	forwarded to another interface.
1550  */
dev_disable_lro(struct net_device * dev)1551 void dev_disable_lro(struct net_device *dev)
1552 {
1553 	struct net_device *lower_dev;
1554 	struct list_head *iter;
1555 
1556 	dev->wanted_features &= ~NETIF_F_LRO;
1557 	netdev_update_features(dev);
1558 
1559 	if (unlikely(dev->features & NETIF_F_LRO))
1560 		netdev_WARN(dev, "failed to disable LRO!\n");
1561 
1562 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1563 		dev_disable_lro(lower_dev);
1564 }
1565 EXPORT_SYMBOL(dev_disable_lro);
1566 
1567 /**
1568  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1569  *	@dev: device
1570  *
1571  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1572  *	called under RTNL.  This is needed if Generic XDP is installed on
1573  *	the device.
1574  */
dev_disable_gro_hw(struct net_device * dev)1575 static void dev_disable_gro_hw(struct net_device *dev)
1576 {
1577 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1578 	netdev_update_features(dev);
1579 
1580 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1581 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1582 }
1583 
netdev_cmd_to_name(enum netdev_cmd cmd)1584 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1585 {
1586 #define N(val) 						\
1587 	case NETDEV_##val:				\
1588 		return "NETDEV_" __stringify(val);
1589 	switch (cmd) {
1590 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1591 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1592 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1593 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1594 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1595 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1596 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1597 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1598 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1599 	}
1600 #undef N
1601 	return "UNKNOWN_NETDEV_EVENT";
1602 }
1603 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1604 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1605 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1606 				   struct net_device *dev)
1607 {
1608 	struct netdev_notifier_info info = {
1609 		.dev = dev,
1610 	};
1611 
1612 	return nb->notifier_call(nb, val, &info);
1613 }
1614 
1615 static int dev_boot_phase = 1;
1616 
1617 /**
1618  * register_netdevice_notifier - register a network notifier block
1619  * @nb: notifier
1620  *
1621  * Register a notifier to be called when network device events occur.
1622  * The notifier passed is linked into the kernel structures and must
1623  * not be reused until it has been unregistered. A negative errno code
1624  * is returned on a failure.
1625  *
1626  * When registered all registration and up events are replayed
1627  * to the new notifier to allow device to have a race free
1628  * view of the network device list.
1629  */
1630 
register_netdevice_notifier(struct notifier_block * nb)1631 int register_netdevice_notifier(struct notifier_block *nb)
1632 {
1633 	struct net_device *dev;
1634 	struct net_device *last;
1635 	struct net *net;
1636 	int err;
1637 
1638 	/* Close race with setup_net() and cleanup_net() */
1639 	down_write(&pernet_ops_rwsem);
1640 	rtnl_lock();
1641 	err = raw_notifier_chain_register(&netdev_chain, nb);
1642 	if (err)
1643 		goto unlock;
1644 	if (dev_boot_phase)
1645 		goto unlock;
1646 	for_each_net(net) {
1647 		for_each_netdev(net, dev) {
1648 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1649 			err = notifier_to_errno(err);
1650 			if (err)
1651 				goto rollback;
1652 
1653 			if (!(dev->flags & IFF_UP))
1654 				continue;
1655 
1656 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1657 		}
1658 	}
1659 
1660 unlock:
1661 	rtnl_unlock();
1662 	up_write(&pernet_ops_rwsem);
1663 	return err;
1664 
1665 rollback:
1666 	last = dev;
1667 	for_each_net(net) {
1668 		for_each_netdev(net, dev) {
1669 			if (dev == last)
1670 				goto outroll;
1671 
1672 			if (dev->flags & IFF_UP) {
1673 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1674 							dev);
1675 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1676 			}
1677 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1678 		}
1679 	}
1680 
1681 outroll:
1682 	raw_notifier_chain_unregister(&netdev_chain, nb);
1683 	goto unlock;
1684 }
1685 EXPORT_SYMBOL(register_netdevice_notifier);
1686 
1687 /**
1688  * unregister_netdevice_notifier - unregister a network notifier block
1689  * @nb: notifier
1690  *
1691  * Unregister a notifier previously registered by
1692  * register_netdevice_notifier(). The notifier is unlinked into the
1693  * kernel structures and may then be reused. A negative errno code
1694  * is returned on a failure.
1695  *
1696  * After unregistering unregister and down device events are synthesized
1697  * for all devices on the device list to the removed notifier to remove
1698  * the need for special case cleanup code.
1699  */
1700 
unregister_netdevice_notifier(struct notifier_block * nb)1701 int unregister_netdevice_notifier(struct notifier_block *nb)
1702 {
1703 	struct net_device *dev;
1704 	struct net *net;
1705 	int err;
1706 
1707 	/* Close race with setup_net() and cleanup_net() */
1708 	down_write(&pernet_ops_rwsem);
1709 	rtnl_lock();
1710 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1711 	if (err)
1712 		goto unlock;
1713 
1714 	for_each_net(net) {
1715 		for_each_netdev(net, dev) {
1716 			if (dev->flags & IFF_UP) {
1717 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1718 							dev);
1719 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1720 			}
1721 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1722 		}
1723 	}
1724 unlock:
1725 	rtnl_unlock();
1726 	up_write(&pernet_ops_rwsem);
1727 	return err;
1728 }
1729 EXPORT_SYMBOL(unregister_netdevice_notifier);
1730 
1731 /**
1732  *	call_netdevice_notifiers_info - call all network notifier blocks
1733  *	@val: value passed unmodified to notifier function
1734  *	@info: notifier information data
1735  *
1736  *	Call all network notifier blocks.  Parameters and return value
1737  *	are as for raw_notifier_call_chain().
1738  */
1739 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1740 static int call_netdevice_notifiers_info(unsigned long val,
1741 					 struct netdev_notifier_info *info)
1742 {
1743 	ASSERT_RTNL();
1744 	return raw_notifier_call_chain(&netdev_chain, val, info);
1745 }
1746 
1747 /**
1748  *	call_netdevice_notifiers - call all network notifier blocks
1749  *      @val: value passed unmodified to notifier function
1750  *      @dev: net_device pointer passed unmodified to notifier function
1751  *
1752  *	Call all network notifier blocks.  Parameters and return value
1753  *	are as for raw_notifier_call_chain().
1754  */
1755 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1756 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1757 {
1758 	struct netdev_notifier_info info = {
1759 		.dev = dev,
1760 	};
1761 
1762 	return call_netdevice_notifiers_info(val, &info);
1763 }
1764 EXPORT_SYMBOL(call_netdevice_notifiers);
1765 
1766 /**
1767  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1768  *	@val: value passed unmodified to notifier function
1769  *	@dev: net_device pointer passed unmodified to notifier function
1770  *	@arg: additional u32 argument passed to the notifier function
1771  *
1772  *	Call all network notifier blocks.  Parameters and return value
1773  *	are as for raw_notifier_call_chain().
1774  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)1775 static int call_netdevice_notifiers_mtu(unsigned long val,
1776 					struct net_device *dev, u32 arg)
1777 {
1778 	struct netdev_notifier_info_ext info = {
1779 		.info.dev = dev,
1780 		.ext.mtu = arg,
1781 	};
1782 
1783 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1784 
1785 	return call_netdevice_notifiers_info(val, &info.info);
1786 }
1787 
1788 #ifdef CONFIG_NET_INGRESS
1789 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1790 
net_inc_ingress_queue(void)1791 void net_inc_ingress_queue(void)
1792 {
1793 	static_branch_inc(&ingress_needed_key);
1794 }
1795 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1796 
net_dec_ingress_queue(void)1797 void net_dec_ingress_queue(void)
1798 {
1799 	static_branch_dec(&ingress_needed_key);
1800 }
1801 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1802 #endif
1803 
1804 #ifdef CONFIG_NET_EGRESS
1805 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1806 
net_inc_egress_queue(void)1807 void net_inc_egress_queue(void)
1808 {
1809 	static_branch_inc(&egress_needed_key);
1810 }
1811 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1812 
net_dec_egress_queue(void)1813 void net_dec_egress_queue(void)
1814 {
1815 	static_branch_dec(&egress_needed_key);
1816 }
1817 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1818 #endif
1819 
1820 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1821 #ifdef CONFIG_JUMP_LABEL
1822 static atomic_t netstamp_needed_deferred;
1823 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)1824 static void netstamp_clear(struct work_struct *work)
1825 {
1826 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1827 	int wanted;
1828 
1829 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1830 	if (wanted > 0)
1831 		static_branch_enable(&netstamp_needed_key);
1832 	else
1833 		static_branch_disable(&netstamp_needed_key);
1834 }
1835 static DECLARE_WORK(netstamp_work, netstamp_clear);
1836 #endif
1837 
net_enable_timestamp(void)1838 void net_enable_timestamp(void)
1839 {
1840 #ifdef CONFIG_JUMP_LABEL
1841 	int wanted;
1842 
1843 	while (1) {
1844 		wanted = atomic_read(&netstamp_wanted);
1845 		if (wanted <= 0)
1846 			break;
1847 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1848 			return;
1849 	}
1850 	atomic_inc(&netstamp_needed_deferred);
1851 	schedule_work(&netstamp_work);
1852 #else
1853 	static_branch_inc(&netstamp_needed_key);
1854 #endif
1855 }
1856 EXPORT_SYMBOL(net_enable_timestamp);
1857 
net_disable_timestamp(void)1858 void net_disable_timestamp(void)
1859 {
1860 #ifdef CONFIG_JUMP_LABEL
1861 	int wanted;
1862 
1863 	while (1) {
1864 		wanted = atomic_read(&netstamp_wanted);
1865 		if (wanted <= 1)
1866 			break;
1867 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1868 			return;
1869 	}
1870 	atomic_dec(&netstamp_needed_deferred);
1871 	schedule_work(&netstamp_work);
1872 #else
1873 	static_branch_dec(&netstamp_needed_key);
1874 #endif
1875 }
1876 EXPORT_SYMBOL(net_disable_timestamp);
1877 
net_timestamp_set(struct sk_buff * skb)1878 static inline void net_timestamp_set(struct sk_buff *skb)
1879 {
1880 	skb->tstamp = 0;
1881 	if (static_branch_unlikely(&netstamp_needed_key))
1882 		__net_timestamp(skb);
1883 }
1884 
1885 #define net_timestamp_check(COND, SKB)				\
1886 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1887 		if ((COND) && !(SKB)->tstamp)			\
1888 			__net_timestamp(SKB);			\
1889 	}							\
1890 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)1891 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1892 {
1893 	unsigned int len;
1894 
1895 	if (!(dev->flags & IFF_UP))
1896 		return false;
1897 
1898 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1899 	if (skb->len <= len)
1900 		return true;
1901 
1902 	/* if TSO is enabled, we don't care about the length as the packet
1903 	 * could be forwarded without being segmented before
1904 	 */
1905 	if (skb_is_gso(skb))
1906 		return true;
1907 
1908 	return false;
1909 }
1910 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1911 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1912 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914 	int ret = ____dev_forward_skb(dev, skb);
1915 
1916 	if (likely(!ret)) {
1917 		skb->protocol = eth_type_trans(skb, dev);
1918 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1919 	}
1920 
1921 	return ret;
1922 }
1923 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1924 
1925 /**
1926  * dev_forward_skb - loopback an skb to another netif
1927  *
1928  * @dev: destination network device
1929  * @skb: buffer to forward
1930  *
1931  * return values:
1932  *	NET_RX_SUCCESS	(no congestion)
1933  *	NET_RX_DROP     (packet was dropped, but freed)
1934  *
1935  * dev_forward_skb can be used for injecting an skb from the
1936  * start_xmit function of one device into the receive queue
1937  * of another device.
1938  *
1939  * The receiving device may be in another namespace, so
1940  * we have to clear all information in the skb that could
1941  * impact namespace isolation.
1942  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1943 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1944 {
1945 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1946 }
1947 EXPORT_SYMBOL_GPL(dev_forward_skb);
1948 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1949 static inline int deliver_skb(struct sk_buff *skb,
1950 			      struct packet_type *pt_prev,
1951 			      struct net_device *orig_dev)
1952 {
1953 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1954 		return -ENOMEM;
1955 	refcount_inc(&skb->users);
1956 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1957 }
1958 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1959 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1960 					  struct packet_type **pt,
1961 					  struct net_device *orig_dev,
1962 					  __be16 type,
1963 					  struct list_head *ptype_list)
1964 {
1965 	struct packet_type *ptype, *pt_prev = *pt;
1966 
1967 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1968 		if (ptype->type != type)
1969 			continue;
1970 		if (pt_prev)
1971 			deliver_skb(skb, pt_prev, orig_dev);
1972 		pt_prev = ptype;
1973 	}
1974 	*pt = pt_prev;
1975 }
1976 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1977 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1978 {
1979 	if (!ptype->af_packet_priv || !skb->sk)
1980 		return false;
1981 
1982 	if (ptype->id_match)
1983 		return ptype->id_match(ptype, skb->sk);
1984 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1985 		return true;
1986 
1987 	return false;
1988 }
1989 
1990 /*
1991  *	Support routine. Sends outgoing frames to any network
1992  *	taps currently in use.
1993  */
1994 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996 {
1997 	struct packet_type *ptype;
1998 	struct sk_buff *skb2 = NULL;
1999 	struct packet_type *pt_prev = NULL;
2000 	struct list_head *ptype_list = &ptype_all;
2001 
2002 	rcu_read_lock();
2003 again:
2004 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2005 		/* Never send packets back to the socket
2006 		 * they originated from - MvS (miquels@drinkel.ow.org)
2007 		 */
2008 		if (skb_loop_sk(ptype, skb))
2009 			continue;
2010 
2011 		if (pt_prev) {
2012 			deliver_skb(skb2, pt_prev, skb->dev);
2013 			pt_prev = ptype;
2014 			continue;
2015 		}
2016 
2017 		/* need to clone skb, done only once */
2018 		skb2 = skb_clone(skb, GFP_ATOMIC);
2019 		if (!skb2)
2020 			goto out_unlock;
2021 
2022 		net_timestamp_set(skb2);
2023 
2024 		/* skb->nh should be correctly
2025 		 * set by sender, so that the second statement is
2026 		 * just protection against buggy protocols.
2027 		 */
2028 		skb_reset_mac_header(skb2);
2029 
2030 		if (skb_network_header(skb2) < skb2->data ||
2031 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2032 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2033 					     ntohs(skb2->protocol),
2034 					     dev->name);
2035 			skb_reset_network_header(skb2);
2036 		}
2037 
2038 		skb2->transport_header = skb2->network_header;
2039 		skb2->pkt_type = PACKET_OUTGOING;
2040 		pt_prev = ptype;
2041 	}
2042 
2043 	if (ptype_list == &ptype_all) {
2044 		ptype_list = &dev->ptype_all;
2045 		goto again;
2046 	}
2047 out_unlock:
2048 	if (pt_prev) {
2049 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2050 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2051 		else
2052 			kfree_skb(skb2);
2053 	}
2054 	rcu_read_unlock();
2055 }
2056 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2057 
2058 /**
2059  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2060  * @dev: Network device
2061  * @txq: number of queues available
2062  *
2063  * If real_num_tx_queues is changed the tc mappings may no longer be
2064  * valid. To resolve this verify the tc mapping remains valid and if
2065  * not NULL the mapping. With no priorities mapping to this
2066  * offset/count pair it will no longer be used. In the worst case TC0
2067  * is invalid nothing can be done so disable priority mappings. If is
2068  * expected that drivers will fix this mapping if they can before
2069  * calling netif_set_real_num_tx_queues.
2070  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2071 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2072 {
2073 	int i;
2074 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2075 
2076 	/* If TC0 is invalidated disable TC mapping */
2077 	if (tc->offset + tc->count > txq) {
2078 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2079 		dev->num_tc = 0;
2080 		return;
2081 	}
2082 
2083 	/* Invalidated prio to tc mappings set to TC0 */
2084 	for (i = 1; i < TC_BITMASK + 1; i++) {
2085 		int q = netdev_get_prio_tc_map(dev, i);
2086 
2087 		tc = &dev->tc_to_txq[q];
2088 		if (tc->offset + tc->count > txq) {
2089 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2090 				i, q);
2091 			netdev_set_prio_tc_map(dev, i, 0);
2092 		}
2093 	}
2094 }
2095 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2096 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2097 {
2098 	if (dev->num_tc) {
2099 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2100 		int i;
2101 
2102 		/* walk through the TCs and see if it falls into any of them */
2103 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2104 			if ((txq - tc->offset) < tc->count)
2105 				return i;
2106 		}
2107 
2108 		/* didn't find it, just return -1 to indicate no match */
2109 		return -1;
2110 	}
2111 
2112 	return 0;
2113 }
2114 EXPORT_SYMBOL(netdev_txq_to_tc);
2115 
2116 #ifdef CONFIG_XPS
2117 struct static_key xps_needed __read_mostly;
2118 EXPORT_SYMBOL(xps_needed);
2119 struct static_key xps_rxqs_needed __read_mostly;
2120 EXPORT_SYMBOL(xps_rxqs_needed);
2121 static DEFINE_MUTEX(xps_map_mutex);
2122 #define xmap_dereference(P)		\
2123 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2124 
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2125 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2126 			     int tci, u16 index)
2127 {
2128 	struct xps_map *map = NULL;
2129 	int pos;
2130 
2131 	if (dev_maps)
2132 		map = xmap_dereference(dev_maps->attr_map[tci]);
2133 	if (!map)
2134 		return false;
2135 
2136 	for (pos = map->len; pos--;) {
2137 		if (map->queues[pos] != index)
2138 			continue;
2139 
2140 		if (map->len > 1) {
2141 			map->queues[pos] = map->queues[--map->len];
2142 			break;
2143 		}
2144 
2145 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2146 		kfree_rcu(map, rcu);
2147 		return false;
2148 	}
2149 
2150 	return true;
2151 }
2152 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2153 static bool remove_xps_queue_cpu(struct net_device *dev,
2154 				 struct xps_dev_maps *dev_maps,
2155 				 int cpu, u16 offset, u16 count)
2156 {
2157 	int num_tc = dev->num_tc ? : 1;
2158 	bool active = false;
2159 	int tci;
2160 
2161 	for (tci = cpu * num_tc; num_tc--; tci++) {
2162 		int i, j;
2163 
2164 		for (i = count, j = offset; i--; j++) {
2165 			if (!remove_xps_queue(dev_maps, tci, j))
2166 				break;
2167 		}
2168 
2169 		active |= i < 0;
2170 	}
2171 
2172 	return active;
2173 }
2174 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2175 static void reset_xps_maps(struct net_device *dev,
2176 			   struct xps_dev_maps *dev_maps,
2177 			   bool is_rxqs_map)
2178 {
2179 	if (is_rxqs_map) {
2180 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2181 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2182 	} else {
2183 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2184 	}
2185 	static_key_slow_dec_cpuslocked(&xps_needed);
2186 	kfree_rcu(dev_maps, rcu);
2187 }
2188 
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2189 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2190 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2191 			   u16 offset, u16 count, bool is_rxqs_map)
2192 {
2193 	bool active = false;
2194 	int i, j;
2195 
2196 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2197 	     j < nr_ids;)
2198 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2199 					       count);
2200 	if (!active)
2201 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2202 
2203 	if (!is_rxqs_map) {
2204 		for (i = offset + (count - 1); count--; i--) {
2205 			netdev_queue_numa_node_write(
2206 				netdev_get_tx_queue(dev, i),
2207 				NUMA_NO_NODE);
2208 		}
2209 	}
2210 }
2211 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2212 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2213 				   u16 count)
2214 {
2215 	const unsigned long *possible_mask = NULL;
2216 	struct xps_dev_maps *dev_maps;
2217 	unsigned int nr_ids;
2218 
2219 	if (!static_key_false(&xps_needed))
2220 		return;
2221 
2222 	cpus_read_lock();
2223 	mutex_lock(&xps_map_mutex);
2224 
2225 	if (static_key_false(&xps_rxqs_needed)) {
2226 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2227 		if (dev_maps) {
2228 			nr_ids = dev->num_rx_queues;
2229 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2230 				       offset, count, true);
2231 		}
2232 	}
2233 
2234 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2235 	if (!dev_maps)
2236 		goto out_no_maps;
2237 
2238 	if (num_possible_cpus() > 1)
2239 		possible_mask = cpumask_bits(cpu_possible_mask);
2240 	nr_ids = nr_cpu_ids;
2241 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2242 		       false);
2243 
2244 out_no_maps:
2245 	mutex_unlock(&xps_map_mutex);
2246 	cpus_read_unlock();
2247 }
2248 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2249 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2250 {
2251 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2252 }
2253 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2254 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2255 				      u16 index, bool is_rxqs_map)
2256 {
2257 	struct xps_map *new_map;
2258 	int alloc_len = XPS_MIN_MAP_ALLOC;
2259 	int i, pos;
2260 
2261 	for (pos = 0; map && pos < map->len; pos++) {
2262 		if (map->queues[pos] != index)
2263 			continue;
2264 		return map;
2265 	}
2266 
2267 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2268 	if (map) {
2269 		if (pos < map->alloc_len)
2270 			return map;
2271 
2272 		alloc_len = map->alloc_len * 2;
2273 	}
2274 
2275 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2276 	 *  map
2277 	 */
2278 	if (is_rxqs_map)
2279 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2280 	else
2281 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2282 				       cpu_to_node(attr_index));
2283 	if (!new_map)
2284 		return NULL;
2285 
2286 	for (i = 0; i < pos; i++)
2287 		new_map->queues[i] = map->queues[i];
2288 	new_map->alloc_len = alloc_len;
2289 	new_map->len = pos;
2290 
2291 	return new_map;
2292 }
2293 
2294 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2295 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2296 			  u16 index, bool is_rxqs_map)
2297 {
2298 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2299 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2300 	int i, j, tci, numa_node_id = -2;
2301 	int maps_sz, num_tc = 1, tc = 0;
2302 	struct xps_map *map, *new_map;
2303 	bool active = false;
2304 	unsigned int nr_ids;
2305 
2306 	if (dev->num_tc) {
2307 		/* Do not allow XPS on subordinate device directly */
2308 		num_tc = dev->num_tc;
2309 		if (num_tc < 0)
2310 			return -EINVAL;
2311 
2312 		/* If queue belongs to subordinate dev use its map */
2313 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2314 
2315 		tc = netdev_txq_to_tc(dev, index);
2316 		if (tc < 0)
2317 			return -EINVAL;
2318 	}
2319 
2320 	mutex_lock(&xps_map_mutex);
2321 	if (is_rxqs_map) {
2322 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2323 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2324 		nr_ids = dev->num_rx_queues;
2325 	} else {
2326 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2327 		if (num_possible_cpus() > 1) {
2328 			online_mask = cpumask_bits(cpu_online_mask);
2329 			possible_mask = cpumask_bits(cpu_possible_mask);
2330 		}
2331 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2332 		nr_ids = nr_cpu_ids;
2333 	}
2334 
2335 	if (maps_sz < L1_CACHE_BYTES)
2336 		maps_sz = L1_CACHE_BYTES;
2337 
2338 	/* allocate memory for queue storage */
2339 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2340 	     j < nr_ids;) {
2341 		if (!new_dev_maps)
2342 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2343 		if (!new_dev_maps) {
2344 			mutex_unlock(&xps_map_mutex);
2345 			return -ENOMEM;
2346 		}
2347 
2348 		tci = j * num_tc + tc;
2349 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2350 				 NULL;
2351 
2352 		map = expand_xps_map(map, j, index, is_rxqs_map);
2353 		if (!map)
2354 			goto error;
2355 
2356 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2357 	}
2358 
2359 	if (!new_dev_maps)
2360 		goto out_no_new_maps;
2361 
2362 	if (!dev_maps) {
2363 		/* Increment static keys at most once per type */
2364 		static_key_slow_inc_cpuslocked(&xps_needed);
2365 		if (is_rxqs_map)
2366 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2367 	}
2368 
2369 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2370 	     j < nr_ids;) {
2371 		/* copy maps belonging to foreign traffic classes */
2372 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2373 			/* fill in the new device map from the old device map */
2374 			map = xmap_dereference(dev_maps->attr_map[tci]);
2375 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2376 		}
2377 
2378 		/* We need to explicitly update tci as prevous loop
2379 		 * could break out early if dev_maps is NULL.
2380 		 */
2381 		tci = j * num_tc + tc;
2382 
2383 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2384 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2385 			/* add tx-queue to CPU/rx-queue maps */
2386 			int pos = 0;
2387 
2388 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2389 			while ((pos < map->len) && (map->queues[pos] != index))
2390 				pos++;
2391 
2392 			if (pos == map->len)
2393 				map->queues[map->len++] = index;
2394 #ifdef CONFIG_NUMA
2395 			if (!is_rxqs_map) {
2396 				if (numa_node_id == -2)
2397 					numa_node_id = cpu_to_node(j);
2398 				else if (numa_node_id != cpu_to_node(j))
2399 					numa_node_id = -1;
2400 			}
2401 #endif
2402 		} else if (dev_maps) {
2403 			/* fill in the new device map from the old device map */
2404 			map = xmap_dereference(dev_maps->attr_map[tci]);
2405 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2406 		}
2407 
2408 		/* copy maps belonging to foreign traffic classes */
2409 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2410 			/* fill in the new device map from the old device map */
2411 			map = xmap_dereference(dev_maps->attr_map[tci]);
2412 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2413 		}
2414 	}
2415 
2416 	if (is_rxqs_map)
2417 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2418 	else
2419 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2420 
2421 	/* Cleanup old maps */
2422 	if (!dev_maps)
2423 		goto out_no_old_maps;
2424 
2425 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2426 	     j < nr_ids;) {
2427 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2428 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2429 			map = xmap_dereference(dev_maps->attr_map[tci]);
2430 			if (map && map != new_map)
2431 				kfree_rcu(map, rcu);
2432 		}
2433 	}
2434 
2435 	kfree_rcu(dev_maps, rcu);
2436 
2437 out_no_old_maps:
2438 	dev_maps = new_dev_maps;
2439 	active = true;
2440 
2441 out_no_new_maps:
2442 	if (!is_rxqs_map) {
2443 		/* update Tx queue numa node */
2444 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2445 					     (numa_node_id >= 0) ?
2446 					     numa_node_id : NUMA_NO_NODE);
2447 	}
2448 
2449 	if (!dev_maps)
2450 		goto out_no_maps;
2451 
2452 	/* removes tx-queue from unused CPUs/rx-queues */
2453 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2454 	     j < nr_ids;) {
2455 		for (i = tc, tci = j * num_tc; i--; tci++)
2456 			active |= remove_xps_queue(dev_maps, tci, index);
2457 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2458 		    !netif_attr_test_online(j, online_mask, nr_ids))
2459 			active |= remove_xps_queue(dev_maps, tci, index);
2460 		for (i = num_tc - tc, tci++; --i; tci++)
2461 			active |= remove_xps_queue(dev_maps, tci, index);
2462 	}
2463 
2464 	/* free map if not active */
2465 	if (!active)
2466 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2467 
2468 out_no_maps:
2469 	mutex_unlock(&xps_map_mutex);
2470 
2471 	return 0;
2472 error:
2473 	/* remove any maps that we added */
2474 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2475 	     j < nr_ids;) {
2476 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2477 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2478 			map = dev_maps ?
2479 			      xmap_dereference(dev_maps->attr_map[tci]) :
2480 			      NULL;
2481 			if (new_map && new_map != map)
2482 				kfree(new_map);
2483 		}
2484 	}
2485 
2486 	mutex_unlock(&xps_map_mutex);
2487 
2488 	kfree(new_dev_maps);
2489 	return -ENOMEM;
2490 }
2491 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2492 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2493 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2494 			u16 index)
2495 {
2496 	int ret;
2497 
2498 	cpus_read_lock();
2499 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2500 	cpus_read_unlock();
2501 
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL(netif_set_xps_queue);
2505 
2506 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2507 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2508 {
2509 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2510 
2511 	/* Unbind any subordinate channels */
2512 	while (txq-- != &dev->_tx[0]) {
2513 		if (txq->sb_dev)
2514 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2515 	}
2516 }
2517 
netdev_reset_tc(struct net_device * dev)2518 void netdev_reset_tc(struct net_device *dev)
2519 {
2520 #ifdef CONFIG_XPS
2521 	netif_reset_xps_queues_gt(dev, 0);
2522 #endif
2523 	netdev_unbind_all_sb_channels(dev);
2524 
2525 	/* Reset TC configuration of device */
2526 	dev->num_tc = 0;
2527 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2528 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2529 }
2530 EXPORT_SYMBOL(netdev_reset_tc);
2531 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2532 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2533 {
2534 	if (tc >= dev->num_tc)
2535 		return -EINVAL;
2536 
2537 #ifdef CONFIG_XPS
2538 	netif_reset_xps_queues(dev, offset, count);
2539 #endif
2540 	dev->tc_to_txq[tc].count = count;
2541 	dev->tc_to_txq[tc].offset = offset;
2542 	return 0;
2543 }
2544 EXPORT_SYMBOL(netdev_set_tc_queue);
2545 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2546 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2547 {
2548 	if (num_tc > TC_MAX_QUEUE)
2549 		return -EINVAL;
2550 
2551 #ifdef CONFIG_XPS
2552 	netif_reset_xps_queues_gt(dev, 0);
2553 #endif
2554 	netdev_unbind_all_sb_channels(dev);
2555 
2556 	dev->num_tc = num_tc;
2557 	return 0;
2558 }
2559 EXPORT_SYMBOL(netdev_set_num_tc);
2560 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2561 void netdev_unbind_sb_channel(struct net_device *dev,
2562 			      struct net_device *sb_dev)
2563 {
2564 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2565 
2566 #ifdef CONFIG_XPS
2567 	netif_reset_xps_queues_gt(sb_dev, 0);
2568 #endif
2569 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2570 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2571 
2572 	while (txq-- != &dev->_tx[0]) {
2573 		if (txq->sb_dev == sb_dev)
2574 			txq->sb_dev = NULL;
2575 	}
2576 }
2577 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2578 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2579 int netdev_bind_sb_channel_queue(struct net_device *dev,
2580 				 struct net_device *sb_dev,
2581 				 u8 tc, u16 count, u16 offset)
2582 {
2583 	/* Make certain the sb_dev and dev are already configured */
2584 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2585 		return -EINVAL;
2586 
2587 	/* We cannot hand out queues we don't have */
2588 	if ((offset + count) > dev->real_num_tx_queues)
2589 		return -EINVAL;
2590 
2591 	/* Record the mapping */
2592 	sb_dev->tc_to_txq[tc].count = count;
2593 	sb_dev->tc_to_txq[tc].offset = offset;
2594 
2595 	/* Provide a way for Tx queue to find the tc_to_txq map or
2596 	 * XPS map for itself.
2597 	 */
2598 	while (count--)
2599 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2600 
2601 	return 0;
2602 }
2603 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2604 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2605 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2606 {
2607 	/* Do not use a multiqueue device to represent a subordinate channel */
2608 	if (netif_is_multiqueue(dev))
2609 		return -ENODEV;
2610 
2611 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2612 	 * Channel 0 is meant to be "native" mode and used only to represent
2613 	 * the main root device. We allow writing 0 to reset the device back
2614 	 * to normal mode after being used as a subordinate channel.
2615 	 */
2616 	if (channel > S16_MAX)
2617 		return -EINVAL;
2618 
2619 	dev->num_tc = -channel;
2620 
2621 	return 0;
2622 }
2623 EXPORT_SYMBOL(netdev_set_sb_channel);
2624 
2625 /*
2626  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2627  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2628  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2629 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2630 {
2631 	bool disabling;
2632 	int rc;
2633 
2634 	disabling = txq < dev->real_num_tx_queues;
2635 
2636 	if (txq < 1 || txq > dev->num_tx_queues)
2637 		return -EINVAL;
2638 
2639 	if (dev->reg_state == NETREG_REGISTERED ||
2640 	    dev->reg_state == NETREG_UNREGISTERING) {
2641 		ASSERT_RTNL();
2642 
2643 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2644 						  txq);
2645 		if (rc)
2646 			return rc;
2647 
2648 		if (dev->num_tc)
2649 			netif_setup_tc(dev, txq);
2650 
2651 		dev->real_num_tx_queues = txq;
2652 
2653 		if (disabling) {
2654 			synchronize_net();
2655 			qdisc_reset_all_tx_gt(dev, txq);
2656 #ifdef CONFIG_XPS
2657 			netif_reset_xps_queues_gt(dev, txq);
2658 #endif
2659 		}
2660 	} else {
2661 		dev->real_num_tx_queues = txq;
2662 	}
2663 
2664 	return 0;
2665 }
2666 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2667 
2668 #ifdef CONFIG_SYSFS
2669 /**
2670  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2671  *	@dev: Network device
2672  *	@rxq: Actual number of RX queues
2673  *
2674  *	This must be called either with the rtnl_lock held or before
2675  *	registration of the net device.  Returns 0 on success, or a
2676  *	negative error code.  If called before registration, it always
2677  *	succeeds.
2678  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2679 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2680 {
2681 	int rc;
2682 
2683 	if (rxq < 1 || rxq > dev->num_rx_queues)
2684 		return -EINVAL;
2685 
2686 	if (dev->reg_state == NETREG_REGISTERED) {
2687 		ASSERT_RTNL();
2688 
2689 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2690 						  rxq);
2691 		if (rc)
2692 			return rc;
2693 	}
2694 
2695 	dev->real_num_rx_queues = rxq;
2696 	return 0;
2697 }
2698 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2699 #endif
2700 
2701 /**
2702  * netif_get_num_default_rss_queues - default number of RSS queues
2703  *
2704  * This routine should set an upper limit on the number of RSS queues
2705  * used by default by multiqueue devices.
2706  */
netif_get_num_default_rss_queues(void)2707 int netif_get_num_default_rss_queues(void)
2708 {
2709 	return is_kdump_kernel() ?
2710 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2711 }
2712 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2713 
__netif_reschedule(struct Qdisc * q)2714 static void __netif_reschedule(struct Qdisc *q)
2715 {
2716 	struct softnet_data *sd;
2717 	unsigned long flags;
2718 
2719 	local_irq_save(flags);
2720 	sd = this_cpu_ptr(&softnet_data);
2721 	q->next_sched = NULL;
2722 	*sd->output_queue_tailp = q;
2723 	sd->output_queue_tailp = &q->next_sched;
2724 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2725 	local_irq_restore(flags);
2726 }
2727 
__netif_schedule(struct Qdisc * q)2728 void __netif_schedule(struct Qdisc *q)
2729 {
2730 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2731 		__netif_reschedule(q);
2732 }
2733 EXPORT_SYMBOL(__netif_schedule);
2734 
2735 struct dev_kfree_skb_cb {
2736 	enum skb_free_reason reason;
2737 };
2738 
get_kfree_skb_cb(const struct sk_buff * skb)2739 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2740 {
2741 	return (struct dev_kfree_skb_cb *)skb->cb;
2742 }
2743 
netif_schedule_queue(struct netdev_queue * txq)2744 void netif_schedule_queue(struct netdev_queue *txq)
2745 {
2746 	rcu_read_lock();
2747 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2748 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2749 
2750 		__netif_schedule(q);
2751 	}
2752 	rcu_read_unlock();
2753 }
2754 EXPORT_SYMBOL(netif_schedule_queue);
2755 
netif_tx_wake_queue(struct netdev_queue * dev_queue)2756 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2757 {
2758 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2759 		struct Qdisc *q;
2760 
2761 		rcu_read_lock();
2762 		q = rcu_dereference(dev_queue->qdisc);
2763 		__netif_schedule(q);
2764 		rcu_read_unlock();
2765 	}
2766 }
2767 EXPORT_SYMBOL(netif_tx_wake_queue);
2768 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2769 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2770 {
2771 	unsigned long flags;
2772 
2773 	if (unlikely(!skb))
2774 		return;
2775 
2776 	if (likely(refcount_read(&skb->users) == 1)) {
2777 		smp_rmb();
2778 		refcount_set(&skb->users, 0);
2779 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2780 		return;
2781 	}
2782 	get_kfree_skb_cb(skb)->reason = reason;
2783 	local_irq_save(flags);
2784 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2785 	__this_cpu_write(softnet_data.completion_queue, skb);
2786 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2787 	local_irq_restore(flags);
2788 }
2789 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2790 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2791 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2792 {
2793 	if (in_irq() || irqs_disabled())
2794 		__dev_kfree_skb_irq(skb, reason);
2795 	else
2796 		dev_kfree_skb(skb);
2797 }
2798 EXPORT_SYMBOL(__dev_kfree_skb_any);
2799 
2800 
2801 /**
2802  * netif_device_detach - mark device as removed
2803  * @dev: network device
2804  *
2805  * Mark device as removed from system and therefore no longer available.
2806  */
netif_device_detach(struct net_device * dev)2807 void netif_device_detach(struct net_device *dev)
2808 {
2809 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2810 	    netif_running(dev)) {
2811 		netif_tx_stop_all_queues(dev);
2812 	}
2813 }
2814 EXPORT_SYMBOL(netif_device_detach);
2815 
2816 /**
2817  * netif_device_attach - mark device as attached
2818  * @dev: network device
2819  *
2820  * Mark device as attached from system and restart if needed.
2821  */
netif_device_attach(struct net_device * dev)2822 void netif_device_attach(struct net_device *dev)
2823 {
2824 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2825 	    netif_running(dev)) {
2826 		netif_tx_wake_all_queues(dev);
2827 		__netdev_watchdog_up(dev);
2828 	}
2829 }
2830 EXPORT_SYMBOL(netif_device_attach);
2831 
2832 /*
2833  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2834  * to be used as a distribution range.
2835  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)2836 static u16 skb_tx_hash(const struct net_device *dev,
2837 		       const struct net_device *sb_dev,
2838 		       struct sk_buff *skb)
2839 {
2840 	u32 hash;
2841 	u16 qoffset = 0;
2842 	u16 qcount = dev->real_num_tx_queues;
2843 
2844 	if (dev->num_tc) {
2845 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2846 
2847 		qoffset = sb_dev->tc_to_txq[tc].offset;
2848 		qcount = sb_dev->tc_to_txq[tc].count;
2849 	}
2850 
2851 	if (skb_rx_queue_recorded(skb)) {
2852 		hash = skb_get_rx_queue(skb);
2853 		if (hash >= qoffset)
2854 			hash -= qoffset;
2855 		while (unlikely(hash >= qcount))
2856 			hash -= qcount;
2857 		return hash + qoffset;
2858 	}
2859 
2860 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2861 }
2862 
skb_warn_bad_offload(const struct sk_buff * skb)2863 static void skb_warn_bad_offload(const struct sk_buff *skb)
2864 {
2865 	static const netdev_features_t null_features;
2866 	struct net_device *dev = skb->dev;
2867 	const char *name = "";
2868 
2869 	if (!net_ratelimit())
2870 		return;
2871 
2872 	if (dev) {
2873 		if (dev->dev.parent)
2874 			name = dev_driver_string(dev->dev.parent);
2875 		else
2876 			name = netdev_name(dev);
2877 	}
2878 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2879 	     "gso_type=%d ip_summed=%d\n",
2880 	     name, dev ? &dev->features : &null_features,
2881 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2882 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2883 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2884 }
2885 
2886 /*
2887  * Invalidate hardware checksum when packet is to be mangled, and
2888  * complete checksum manually on outgoing path.
2889  */
skb_checksum_help(struct sk_buff * skb)2890 int skb_checksum_help(struct sk_buff *skb)
2891 {
2892 	__wsum csum;
2893 	int ret = 0, offset;
2894 
2895 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2896 		goto out_set_summed;
2897 
2898 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2899 		skb_warn_bad_offload(skb);
2900 		return -EINVAL;
2901 	}
2902 
2903 	/* Before computing a checksum, we should make sure no frag could
2904 	 * be modified by an external entity : checksum could be wrong.
2905 	 */
2906 	if (skb_has_shared_frag(skb)) {
2907 		ret = __skb_linearize(skb);
2908 		if (ret)
2909 			goto out;
2910 	}
2911 
2912 	offset = skb_checksum_start_offset(skb);
2913 	BUG_ON(offset >= skb_headlen(skb));
2914 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2915 
2916 	offset += skb->csum_offset;
2917 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2918 
2919 	if (skb_cloned(skb) &&
2920 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2921 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2922 		if (ret)
2923 			goto out;
2924 	}
2925 
2926 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2927 out_set_summed:
2928 	skb->ip_summed = CHECKSUM_NONE;
2929 out:
2930 	return ret;
2931 }
2932 EXPORT_SYMBOL(skb_checksum_help);
2933 
skb_crc32c_csum_help(struct sk_buff * skb)2934 int skb_crc32c_csum_help(struct sk_buff *skb)
2935 {
2936 	__le32 crc32c_csum;
2937 	int ret = 0, offset, start;
2938 
2939 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2940 		goto out;
2941 
2942 	if (unlikely(skb_is_gso(skb)))
2943 		goto out;
2944 
2945 	/* Before computing a checksum, we should make sure no frag could
2946 	 * be modified by an external entity : checksum could be wrong.
2947 	 */
2948 	if (unlikely(skb_has_shared_frag(skb))) {
2949 		ret = __skb_linearize(skb);
2950 		if (ret)
2951 			goto out;
2952 	}
2953 	start = skb_checksum_start_offset(skb);
2954 	offset = start + offsetof(struct sctphdr, checksum);
2955 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2956 		ret = -EINVAL;
2957 		goto out;
2958 	}
2959 	if (skb_cloned(skb) &&
2960 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2961 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2962 		if (ret)
2963 			goto out;
2964 	}
2965 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2966 						  skb->len - start, ~(__u32)0,
2967 						  crc32c_csum_stub));
2968 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2969 	skb->ip_summed = CHECKSUM_NONE;
2970 	skb->csum_not_inet = 0;
2971 out:
2972 	return ret;
2973 }
2974 
skb_network_protocol(struct sk_buff * skb,int * depth)2975 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2976 {
2977 	__be16 type = skb->protocol;
2978 
2979 	/* Tunnel gso handlers can set protocol to ethernet. */
2980 	if (type == htons(ETH_P_TEB)) {
2981 		struct ethhdr *eth;
2982 
2983 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2984 			return 0;
2985 
2986 		eth = (struct ethhdr *)skb->data;
2987 		type = eth->h_proto;
2988 	}
2989 
2990 	return __vlan_get_protocol(skb, type, depth);
2991 }
2992 
2993 /**
2994  *	skb_mac_gso_segment - mac layer segmentation handler.
2995  *	@skb: buffer to segment
2996  *	@features: features for the output path (see dev->features)
2997  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2998 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2999 				    netdev_features_t features)
3000 {
3001 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3002 	struct packet_offload *ptype;
3003 	int vlan_depth = skb->mac_len;
3004 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3005 
3006 	if (unlikely(!type))
3007 		return ERR_PTR(-EINVAL);
3008 
3009 	__skb_pull(skb, vlan_depth);
3010 
3011 	rcu_read_lock();
3012 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3013 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3014 			segs = ptype->callbacks.gso_segment(skb, features);
3015 			break;
3016 		}
3017 	}
3018 	rcu_read_unlock();
3019 
3020 	__skb_push(skb, skb->data - skb_mac_header(skb));
3021 
3022 	return segs;
3023 }
3024 EXPORT_SYMBOL(skb_mac_gso_segment);
3025 
3026 
3027 /* openvswitch calls this on rx path, so we need a different check.
3028  */
skb_needs_check(struct sk_buff * skb,bool tx_path)3029 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3030 {
3031 	if (tx_path)
3032 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3033 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3034 
3035 	return skb->ip_summed == CHECKSUM_NONE;
3036 }
3037 
3038 /**
3039  *	__skb_gso_segment - Perform segmentation on skb.
3040  *	@skb: buffer to segment
3041  *	@features: features for the output path (see dev->features)
3042  *	@tx_path: whether it is called in TX path
3043  *
3044  *	This function segments the given skb and returns a list of segments.
3045  *
3046  *	It may return NULL if the skb requires no segmentation.  This is
3047  *	only possible when GSO is used for verifying header integrity.
3048  *
3049  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3050  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3051 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3052 				  netdev_features_t features, bool tx_path)
3053 {
3054 	struct sk_buff *segs;
3055 
3056 	if (unlikely(skb_needs_check(skb, tx_path))) {
3057 		int err;
3058 
3059 		/* We're going to init ->check field in TCP or UDP header */
3060 		err = skb_cow_head(skb, 0);
3061 		if (err < 0)
3062 			return ERR_PTR(err);
3063 	}
3064 
3065 	/* Only report GSO partial support if it will enable us to
3066 	 * support segmentation on this frame without needing additional
3067 	 * work.
3068 	 */
3069 	if (features & NETIF_F_GSO_PARTIAL) {
3070 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3071 		struct net_device *dev = skb->dev;
3072 
3073 		partial_features |= dev->features & dev->gso_partial_features;
3074 		if (!skb_gso_ok(skb, features | partial_features))
3075 			features &= ~NETIF_F_GSO_PARTIAL;
3076 	}
3077 
3078 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3079 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3080 
3081 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3082 	SKB_GSO_CB(skb)->encap_level = 0;
3083 
3084 	skb_reset_mac_header(skb);
3085 	skb_reset_mac_len(skb);
3086 
3087 	segs = skb_mac_gso_segment(skb, features);
3088 
3089 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3090 		skb_warn_bad_offload(skb);
3091 
3092 	return segs;
3093 }
3094 EXPORT_SYMBOL(__skb_gso_segment);
3095 
3096 /* Take action when hardware reception checksum errors are detected. */
3097 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)3098 void netdev_rx_csum_fault(struct net_device *dev)
3099 {
3100 	if (net_ratelimit()) {
3101 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3102 		dump_stack();
3103 	}
3104 }
3105 EXPORT_SYMBOL(netdev_rx_csum_fault);
3106 #endif
3107 
3108 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3109 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3110 {
3111 #ifdef CONFIG_HIGHMEM
3112 	int i;
3113 
3114 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3115 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3116 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3117 
3118 			if (PageHighMem(skb_frag_page(frag)))
3119 				return 1;
3120 		}
3121 	}
3122 #endif
3123 	return 0;
3124 }
3125 
3126 /* If MPLS offload request, verify we are testing hardware MPLS features
3127  * instead of standard features for the netdev.
3128  */
3129 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3130 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3131 					   netdev_features_t features,
3132 					   __be16 type)
3133 {
3134 	if (eth_p_mpls(type))
3135 		features &= skb->dev->mpls_features;
3136 
3137 	return features;
3138 }
3139 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3140 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3141 					   netdev_features_t features,
3142 					   __be16 type)
3143 {
3144 	return features;
3145 }
3146 #endif
3147 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3148 static netdev_features_t harmonize_features(struct sk_buff *skb,
3149 	netdev_features_t features)
3150 {
3151 	int tmp;
3152 	__be16 type;
3153 
3154 	type = skb_network_protocol(skb, &tmp);
3155 	features = net_mpls_features(skb, features, type);
3156 
3157 	if (skb->ip_summed != CHECKSUM_NONE &&
3158 	    !can_checksum_protocol(features, type)) {
3159 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3160 	}
3161 	if (illegal_highdma(skb->dev, skb))
3162 		features &= ~NETIF_F_SG;
3163 
3164 	return features;
3165 }
3166 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3167 netdev_features_t passthru_features_check(struct sk_buff *skb,
3168 					  struct net_device *dev,
3169 					  netdev_features_t features)
3170 {
3171 	return features;
3172 }
3173 EXPORT_SYMBOL(passthru_features_check);
3174 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3175 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3176 					     struct net_device *dev,
3177 					     netdev_features_t features)
3178 {
3179 	return vlan_features_check(skb, features);
3180 }
3181 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3182 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3183 					    struct net_device *dev,
3184 					    netdev_features_t features)
3185 {
3186 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3187 
3188 	if (gso_segs > dev->gso_max_segs)
3189 		return features & ~NETIF_F_GSO_MASK;
3190 
3191 	/* Support for GSO partial features requires software
3192 	 * intervention before we can actually process the packets
3193 	 * so we need to strip support for any partial features now
3194 	 * and we can pull them back in after we have partially
3195 	 * segmented the frame.
3196 	 */
3197 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3198 		features &= ~dev->gso_partial_features;
3199 
3200 	/* Make sure to clear the IPv4 ID mangling feature if the
3201 	 * IPv4 header has the potential to be fragmented.
3202 	 */
3203 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3204 		struct iphdr *iph = skb->encapsulation ?
3205 				    inner_ip_hdr(skb) : ip_hdr(skb);
3206 
3207 		if (!(iph->frag_off & htons(IP_DF)))
3208 			features &= ~NETIF_F_TSO_MANGLEID;
3209 	}
3210 
3211 	return features;
3212 }
3213 
netif_skb_features(struct sk_buff * skb)3214 netdev_features_t netif_skb_features(struct sk_buff *skb)
3215 {
3216 	struct net_device *dev = skb->dev;
3217 	netdev_features_t features = dev->features;
3218 
3219 	if (skb_is_gso(skb))
3220 		features = gso_features_check(skb, dev, features);
3221 
3222 	/* If encapsulation offload request, verify we are testing
3223 	 * hardware encapsulation features instead of standard
3224 	 * features for the netdev
3225 	 */
3226 	if (skb->encapsulation)
3227 		features &= dev->hw_enc_features;
3228 
3229 	if (skb_vlan_tagged(skb))
3230 		features = netdev_intersect_features(features,
3231 						     dev->vlan_features |
3232 						     NETIF_F_HW_VLAN_CTAG_TX |
3233 						     NETIF_F_HW_VLAN_STAG_TX);
3234 
3235 	if (dev->netdev_ops->ndo_features_check)
3236 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3237 								features);
3238 	else
3239 		features &= dflt_features_check(skb, dev, features);
3240 
3241 	return harmonize_features(skb, features);
3242 }
3243 EXPORT_SYMBOL(netif_skb_features);
3244 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3245 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3246 		    struct netdev_queue *txq, bool more)
3247 {
3248 	unsigned int len;
3249 	int rc;
3250 
3251 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3252 		dev_queue_xmit_nit(skb, dev);
3253 
3254 	len = skb->len;
3255 	trace_net_dev_start_xmit(skb, dev);
3256 	rc = netdev_start_xmit(skb, dev, txq, more);
3257 	trace_net_dev_xmit(skb, rc, dev, len);
3258 
3259 	return rc;
3260 }
3261 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3262 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3263 				    struct netdev_queue *txq, int *ret)
3264 {
3265 	struct sk_buff *skb = first;
3266 	int rc = NETDEV_TX_OK;
3267 
3268 	while (skb) {
3269 		struct sk_buff *next = skb->next;
3270 
3271 		skb->next = NULL;
3272 		rc = xmit_one(skb, dev, txq, next != NULL);
3273 		if (unlikely(!dev_xmit_complete(rc))) {
3274 			skb->next = next;
3275 			goto out;
3276 		}
3277 
3278 		skb = next;
3279 		if (netif_tx_queue_stopped(txq) && skb) {
3280 			rc = NETDEV_TX_BUSY;
3281 			break;
3282 		}
3283 	}
3284 
3285 out:
3286 	*ret = rc;
3287 	return skb;
3288 }
3289 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3290 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3291 					  netdev_features_t features)
3292 {
3293 	if (skb_vlan_tag_present(skb) &&
3294 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3295 		skb = __vlan_hwaccel_push_inside(skb);
3296 	return skb;
3297 }
3298 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3299 int skb_csum_hwoffload_help(struct sk_buff *skb,
3300 			    const netdev_features_t features)
3301 {
3302 	if (unlikely(skb->csum_not_inet))
3303 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3304 			skb_crc32c_csum_help(skb);
3305 
3306 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3307 }
3308 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3309 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3310 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3311 {
3312 	netdev_features_t features;
3313 
3314 	features = netif_skb_features(skb);
3315 	skb = validate_xmit_vlan(skb, features);
3316 	if (unlikely(!skb))
3317 		goto out_null;
3318 
3319 	skb = sk_validate_xmit_skb(skb, dev);
3320 	if (unlikely(!skb))
3321 		goto out_null;
3322 
3323 	if (netif_needs_gso(skb, features)) {
3324 		struct sk_buff *segs;
3325 
3326 		segs = skb_gso_segment(skb, features);
3327 		if (IS_ERR(segs)) {
3328 			goto out_kfree_skb;
3329 		} else if (segs) {
3330 			consume_skb(skb);
3331 			skb = segs;
3332 		}
3333 	} else {
3334 		if (skb_needs_linearize(skb, features) &&
3335 		    __skb_linearize(skb))
3336 			goto out_kfree_skb;
3337 
3338 		/* If packet is not checksummed and device does not
3339 		 * support checksumming for this protocol, complete
3340 		 * checksumming here.
3341 		 */
3342 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3343 			if (skb->encapsulation)
3344 				skb_set_inner_transport_header(skb,
3345 							       skb_checksum_start_offset(skb));
3346 			else
3347 				skb_set_transport_header(skb,
3348 							 skb_checksum_start_offset(skb));
3349 			if (skb_csum_hwoffload_help(skb, features))
3350 				goto out_kfree_skb;
3351 		}
3352 	}
3353 
3354 	skb = validate_xmit_xfrm(skb, features, again);
3355 
3356 	return skb;
3357 
3358 out_kfree_skb:
3359 	kfree_skb(skb);
3360 out_null:
3361 	atomic_long_inc(&dev->tx_dropped);
3362 	return NULL;
3363 }
3364 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3365 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3366 {
3367 	struct sk_buff *next, *head = NULL, *tail;
3368 
3369 	for (; skb != NULL; skb = next) {
3370 		next = skb->next;
3371 		skb->next = NULL;
3372 
3373 		/* in case skb wont be segmented, point to itself */
3374 		skb->prev = skb;
3375 
3376 		skb = validate_xmit_skb(skb, dev, again);
3377 		if (!skb)
3378 			continue;
3379 
3380 		if (!head)
3381 			head = skb;
3382 		else
3383 			tail->next = skb;
3384 		/* If skb was segmented, skb->prev points to
3385 		 * the last segment. If not, it still contains skb.
3386 		 */
3387 		tail = skb->prev;
3388 	}
3389 	return head;
3390 }
3391 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3392 
qdisc_pkt_len_init(struct sk_buff * skb)3393 static void qdisc_pkt_len_init(struct sk_buff *skb)
3394 {
3395 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3396 
3397 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3398 
3399 	/* To get more precise estimation of bytes sent on wire,
3400 	 * we add to pkt_len the headers size of all segments
3401 	 */
3402 	if (shinfo->gso_size)  {
3403 		unsigned int hdr_len;
3404 		u16 gso_segs = shinfo->gso_segs;
3405 
3406 		/* mac layer + network layer */
3407 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3408 
3409 		/* + transport layer */
3410 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3411 			const struct tcphdr *th;
3412 			struct tcphdr _tcphdr;
3413 
3414 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3415 						sizeof(_tcphdr), &_tcphdr);
3416 			if (likely(th))
3417 				hdr_len += __tcp_hdrlen(th);
3418 		} else {
3419 			struct udphdr _udphdr;
3420 
3421 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3422 					       sizeof(_udphdr), &_udphdr))
3423 				hdr_len += sizeof(struct udphdr);
3424 		}
3425 
3426 		if (shinfo->gso_type & SKB_GSO_DODGY)
3427 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3428 						shinfo->gso_size);
3429 
3430 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3431 	}
3432 }
3433 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3434 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3435 				 struct net_device *dev,
3436 				 struct netdev_queue *txq)
3437 {
3438 	spinlock_t *root_lock = qdisc_lock(q);
3439 	struct sk_buff *to_free = NULL;
3440 	bool contended;
3441 	int rc;
3442 
3443 	qdisc_calculate_pkt_len(skb, q);
3444 
3445 	if (q->flags & TCQ_F_NOLOCK) {
3446 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3447 			__qdisc_drop(skb, &to_free);
3448 			rc = NET_XMIT_DROP;
3449 		} else {
3450 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3451 			qdisc_run(q);
3452 		}
3453 
3454 		if (unlikely(to_free))
3455 			kfree_skb_list(to_free);
3456 		return rc;
3457 	}
3458 
3459 	/*
3460 	 * Heuristic to force contended enqueues to serialize on a
3461 	 * separate lock before trying to get qdisc main lock.
3462 	 * This permits qdisc->running owner to get the lock more
3463 	 * often and dequeue packets faster.
3464 	 */
3465 	contended = qdisc_is_running(q);
3466 	if (unlikely(contended))
3467 		spin_lock(&q->busylock);
3468 
3469 	spin_lock(root_lock);
3470 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3471 		__qdisc_drop(skb, &to_free);
3472 		rc = NET_XMIT_DROP;
3473 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3474 		   qdisc_run_begin(q)) {
3475 		/*
3476 		 * This is a work-conserving queue; there are no old skbs
3477 		 * waiting to be sent out; and the qdisc is not running -
3478 		 * xmit the skb directly.
3479 		 */
3480 
3481 		qdisc_bstats_update(q, skb);
3482 
3483 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3484 			if (unlikely(contended)) {
3485 				spin_unlock(&q->busylock);
3486 				contended = false;
3487 			}
3488 			__qdisc_run(q);
3489 		}
3490 
3491 		qdisc_run_end(q);
3492 		rc = NET_XMIT_SUCCESS;
3493 	} else {
3494 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3495 		if (qdisc_run_begin(q)) {
3496 			if (unlikely(contended)) {
3497 				spin_unlock(&q->busylock);
3498 				contended = false;
3499 			}
3500 			__qdisc_run(q);
3501 			qdisc_run_end(q);
3502 		}
3503 	}
3504 	spin_unlock(root_lock);
3505 	if (unlikely(to_free))
3506 		kfree_skb_list(to_free);
3507 	if (unlikely(contended))
3508 		spin_unlock(&q->busylock);
3509 	return rc;
3510 }
3511 
3512 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3513 static void skb_update_prio(struct sk_buff *skb)
3514 {
3515 	const struct netprio_map *map;
3516 	const struct sock *sk;
3517 	unsigned int prioidx;
3518 
3519 	if (skb->priority)
3520 		return;
3521 	map = rcu_dereference_bh(skb->dev->priomap);
3522 	if (!map)
3523 		return;
3524 	sk = skb_to_full_sk(skb);
3525 	if (!sk)
3526 		return;
3527 
3528 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3529 
3530 	if (prioidx < map->priomap_len)
3531 		skb->priority = map->priomap[prioidx];
3532 }
3533 #else
3534 #define skb_update_prio(skb)
3535 #endif
3536 
3537 /**
3538  *	dev_loopback_xmit - loop back @skb
3539  *	@net: network namespace this loopback is happening in
3540  *	@sk:  sk needed to be a netfilter okfn
3541  *	@skb: buffer to transmit
3542  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3543 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3544 {
3545 	skb_reset_mac_header(skb);
3546 	__skb_pull(skb, skb_network_offset(skb));
3547 	skb->pkt_type = PACKET_LOOPBACK;
3548 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3549 	WARN_ON(!skb_dst(skb));
3550 	skb_dst_force(skb);
3551 	netif_rx_ni(skb);
3552 	return 0;
3553 }
3554 EXPORT_SYMBOL(dev_loopback_xmit);
3555 
3556 #ifdef CONFIG_NET_EGRESS
3557 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3558 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3559 {
3560 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3561 	struct tcf_result cl_res;
3562 
3563 	if (!miniq)
3564 		return skb;
3565 
3566 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3567 	mini_qdisc_bstats_cpu_update(miniq, skb);
3568 
3569 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3570 	case TC_ACT_OK:
3571 	case TC_ACT_RECLASSIFY:
3572 		skb->tc_index = TC_H_MIN(cl_res.classid);
3573 		break;
3574 	case TC_ACT_SHOT:
3575 		mini_qdisc_qstats_cpu_drop(miniq);
3576 		*ret = NET_XMIT_DROP;
3577 		kfree_skb(skb);
3578 		return NULL;
3579 	case TC_ACT_STOLEN:
3580 	case TC_ACT_QUEUED:
3581 	case TC_ACT_TRAP:
3582 		*ret = NET_XMIT_SUCCESS;
3583 		consume_skb(skb);
3584 		return NULL;
3585 	case TC_ACT_REDIRECT:
3586 		/* No need to push/pop skb's mac_header here on egress! */
3587 		skb_do_redirect(skb);
3588 		*ret = NET_XMIT_SUCCESS;
3589 		return NULL;
3590 	default:
3591 		break;
3592 	}
3593 
3594 	return skb;
3595 }
3596 #endif /* CONFIG_NET_EGRESS */
3597 
3598 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3599 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3600 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3601 {
3602 	struct xps_map *map;
3603 	int queue_index = -1;
3604 
3605 	if (dev->num_tc) {
3606 		tci *= dev->num_tc;
3607 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3608 	}
3609 
3610 	map = rcu_dereference(dev_maps->attr_map[tci]);
3611 	if (map) {
3612 		if (map->len == 1)
3613 			queue_index = map->queues[0];
3614 		else
3615 			queue_index = map->queues[reciprocal_scale(
3616 						skb_get_hash(skb), map->len)];
3617 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3618 			queue_index = -1;
3619 	}
3620 	return queue_index;
3621 }
3622 #endif
3623 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3624 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3625 			 struct sk_buff *skb)
3626 {
3627 #ifdef CONFIG_XPS
3628 	struct xps_dev_maps *dev_maps;
3629 	struct sock *sk = skb->sk;
3630 	int queue_index = -1;
3631 
3632 	if (!static_key_false(&xps_needed))
3633 		return -1;
3634 
3635 	rcu_read_lock();
3636 	if (!static_key_false(&xps_rxqs_needed))
3637 		goto get_cpus_map;
3638 
3639 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3640 	if (dev_maps) {
3641 		int tci = sk_rx_queue_get(sk);
3642 
3643 		if (tci >= 0 && tci < dev->num_rx_queues)
3644 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3645 							  tci);
3646 	}
3647 
3648 get_cpus_map:
3649 	if (queue_index < 0) {
3650 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3651 		if (dev_maps) {
3652 			unsigned int tci = skb->sender_cpu - 1;
3653 
3654 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3655 							  tci);
3656 		}
3657 	}
3658 	rcu_read_unlock();
3659 
3660 	return queue_index;
3661 #else
3662 	return -1;
3663 #endif
3664 }
3665 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)3666 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3667 		     struct net_device *sb_dev,
3668 		     select_queue_fallback_t fallback)
3669 {
3670 	return 0;
3671 }
3672 EXPORT_SYMBOL(dev_pick_tx_zero);
3673 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)3674 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3675 		       struct net_device *sb_dev,
3676 		       select_queue_fallback_t fallback)
3677 {
3678 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3679 }
3680 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3681 
__netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3682 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3683 			    struct net_device *sb_dev)
3684 {
3685 	struct sock *sk = skb->sk;
3686 	int queue_index = sk_tx_queue_get(sk);
3687 
3688 	sb_dev = sb_dev ? : dev;
3689 
3690 	if (queue_index < 0 || skb->ooo_okay ||
3691 	    queue_index >= dev->real_num_tx_queues) {
3692 		int new_index = get_xps_queue(dev, sb_dev, skb);
3693 
3694 		if (new_index < 0)
3695 			new_index = skb_tx_hash(dev, sb_dev, skb);
3696 
3697 		if (queue_index != new_index && sk &&
3698 		    sk_fullsock(sk) &&
3699 		    rcu_access_pointer(sk->sk_dst_cache))
3700 			sk_tx_queue_set(sk, new_index);
3701 
3702 		queue_index = new_index;
3703 	}
3704 
3705 	return queue_index;
3706 }
3707 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3708 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3709 				    struct sk_buff *skb,
3710 				    struct net_device *sb_dev)
3711 {
3712 	int queue_index = 0;
3713 
3714 #ifdef CONFIG_XPS
3715 	u32 sender_cpu = skb->sender_cpu - 1;
3716 
3717 	if (sender_cpu >= (u32)NR_CPUS)
3718 		skb->sender_cpu = raw_smp_processor_id() + 1;
3719 #endif
3720 
3721 	if (dev->real_num_tx_queues != 1) {
3722 		const struct net_device_ops *ops = dev->netdev_ops;
3723 
3724 		if (ops->ndo_select_queue)
3725 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3726 							    __netdev_pick_tx);
3727 		else
3728 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3729 
3730 		queue_index = netdev_cap_txqueue(dev, queue_index);
3731 	}
3732 
3733 	skb_set_queue_mapping(skb, queue_index);
3734 	return netdev_get_tx_queue(dev, queue_index);
3735 }
3736 
3737 /**
3738  *	__dev_queue_xmit - transmit a buffer
3739  *	@skb: buffer to transmit
3740  *	@sb_dev: suboordinate device used for L2 forwarding offload
3741  *
3742  *	Queue a buffer for transmission to a network device. The caller must
3743  *	have set the device and priority and built the buffer before calling
3744  *	this function. The function can be called from an interrupt.
3745  *
3746  *	A negative errno code is returned on a failure. A success does not
3747  *	guarantee the frame will be transmitted as it may be dropped due
3748  *	to congestion or traffic shaping.
3749  *
3750  * -----------------------------------------------------------------------------------
3751  *      I notice this method can also return errors from the queue disciplines,
3752  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3753  *      be positive.
3754  *
3755  *      Regardless of the return value, the skb is consumed, so it is currently
3756  *      difficult to retry a send to this method.  (You can bump the ref count
3757  *      before sending to hold a reference for retry if you are careful.)
3758  *
3759  *      When calling this method, interrupts MUST be enabled.  This is because
3760  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3761  *          --BLG
3762  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)3763 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3764 {
3765 	struct net_device *dev = skb->dev;
3766 	struct netdev_queue *txq;
3767 	struct Qdisc *q;
3768 	int rc = -ENOMEM;
3769 	bool again = false;
3770 
3771 	skb_reset_mac_header(skb);
3772 
3773 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3774 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3775 
3776 	/* Disable soft irqs for various locks below. Also
3777 	 * stops preemption for RCU.
3778 	 */
3779 	rcu_read_lock_bh();
3780 
3781 	skb_update_prio(skb);
3782 
3783 	qdisc_pkt_len_init(skb);
3784 #ifdef CONFIG_NET_CLS_ACT
3785 	skb->tc_at_ingress = 0;
3786 # ifdef CONFIG_NET_EGRESS
3787 	if (static_branch_unlikely(&egress_needed_key)) {
3788 		skb = sch_handle_egress(skb, &rc, dev);
3789 		if (!skb)
3790 			goto out;
3791 	}
3792 # endif
3793 #endif
3794 	/* If device/qdisc don't need skb->dst, release it right now while
3795 	 * its hot in this cpu cache.
3796 	 */
3797 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3798 		skb_dst_drop(skb);
3799 	else
3800 		skb_dst_force(skb);
3801 
3802 	txq = netdev_pick_tx(dev, skb, sb_dev);
3803 	q = rcu_dereference_bh(txq->qdisc);
3804 
3805 	trace_net_dev_queue(skb);
3806 	if (q->enqueue) {
3807 		rc = __dev_xmit_skb(skb, q, dev, txq);
3808 		goto out;
3809 	}
3810 
3811 	/* The device has no queue. Common case for software devices:
3812 	 * loopback, all the sorts of tunnels...
3813 
3814 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3815 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3816 	 * counters.)
3817 	 * However, it is possible, that they rely on protection
3818 	 * made by us here.
3819 
3820 	 * Check this and shot the lock. It is not prone from deadlocks.
3821 	 *Either shot noqueue qdisc, it is even simpler 8)
3822 	 */
3823 	if (dev->flags & IFF_UP) {
3824 		int cpu = smp_processor_id(); /* ok because BHs are off */
3825 
3826 		if (txq->xmit_lock_owner != cpu) {
3827 			if (dev_xmit_recursion())
3828 				goto recursion_alert;
3829 
3830 			skb = validate_xmit_skb(skb, dev, &again);
3831 			if (!skb)
3832 				goto out;
3833 
3834 			HARD_TX_LOCK(dev, txq, cpu);
3835 
3836 			if (!netif_xmit_stopped(txq)) {
3837 				dev_xmit_recursion_inc();
3838 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3839 				dev_xmit_recursion_dec();
3840 				if (dev_xmit_complete(rc)) {
3841 					HARD_TX_UNLOCK(dev, txq);
3842 					goto out;
3843 				}
3844 			}
3845 			HARD_TX_UNLOCK(dev, txq);
3846 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3847 					     dev->name);
3848 		} else {
3849 			/* Recursion is detected! It is possible,
3850 			 * unfortunately
3851 			 */
3852 recursion_alert:
3853 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3854 					     dev->name);
3855 		}
3856 	}
3857 
3858 	rc = -ENETDOWN;
3859 	rcu_read_unlock_bh();
3860 
3861 	atomic_long_inc(&dev->tx_dropped);
3862 	kfree_skb_list(skb);
3863 	return rc;
3864 out:
3865 	rcu_read_unlock_bh();
3866 	return rc;
3867 }
3868 
dev_queue_xmit(struct sk_buff * skb)3869 int dev_queue_xmit(struct sk_buff *skb)
3870 {
3871 	return __dev_queue_xmit(skb, NULL);
3872 }
3873 EXPORT_SYMBOL(dev_queue_xmit);
3874 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3875 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3876 {
3877 	return __dev_queue_xmit(skb, sb_dev);
3878 }
3879 EXPORT_SYMBOL(dev_queue_xmit_accel);
3880 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3881 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3882 {
3883 	struct net_device *dev = skb->dev;
3884 	struct sk_buff *orig_skb = skb;
3885 	struct netdev_queue *txq;
3886 	int ret = NETDEV_TX_BUSY;
3887 	bool again = false;
3888 
3889 	if (unlikely(!netif_running(dev) ||
3890 		     !netif_carrier_ok(dev)))
3891 		goto drop;
3892 
3893 	skb = validate_xmit_skb_list(skb, dev, &again);
3894 	if (skb != orig_skb)
3895 		goto drop;
3896 
3897 	skb_set_queue_mapping(skb, queue_id);
3898 	txq = skb_get_tx_queue(dev, skb);
3899 
3900 	local_bh_disable();
3901 
3902 	dev_xmit_recursion_inc();
3903 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3904 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3905 		ret = netdev_start_xmit(skb, dev, txq, false);
3906 	HARD_TX_UNLOCK(dev, txq);
3907 	dev_xmit_recursion_dec();
3908 
3909 	local_bh_enable();
3910 
3911 	if (!dev_xmit_complete(ret))
3912 		kfree_skb(skb);
3913 
3914 	return ret;
3915 drop:
3916 	atomic_long_inc(&dev->tx_dropped);
3917 	kfree_skb_list(skb);
3918 	return NET_XMIT_DROP;
3919 }
3920 EXPORT_SYMBOL(dev_direct_xmit);
3921 
3922 /*************************************************************************
3923  *			Receiver routines
3924  *************************************************************************/
3925 
3926 int netdev_max_backlog __read_mostly = 1000;
3927 EXPORT_SYMBOL(netdev_max_backlog);
3928 
3929 int netdev_tstamp_prequeue __read_mostly = 1;
3930 int netdev_budget __read_mostly = 300;
3931 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3932 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3933 int weight_p __read_mostly = 64;           /* old backlog weight */
3934 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3935 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3936 int dev_rx_weight __read_mostly = 64;
3937 int dev_tx_weight __read_mostly = 64;
3938 
3939 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3940 static inline void ____napi_schedule(struct softnet_data *sd,
3941 				     struct napi_struct *napi)
3942 {
3943 	list_add_tail(&napi->poll_list, &sd->poll_list);
3944 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3945 }
3946 
3947 #ifdef CONFIG_RPS
3948 
3949 /* One global table that all flow-based protocols share. */
3950 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3951 EXPORT_SYMBOL(rps_sock_flow_table);
3952 u32 rps_cpu_mask __read_mostly;
3953 EXPORT_SYMBOL(rps_cpu_mask);
3954 
3955 struct static_key rps_needed __read_mostly;
3956 EXPORT_SYMBOL(rps_needed);
3957 struct static_key rfs_needed __read_mostly;
3958 EXPORT_SYMBOL(rfs_needed);
3959 
3960 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3961 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3962 	    struct rps_dev_flow *rflow, u16 next_cpu)
3963 {
3964 	if (next_cpu < nr_cpu_ids) {
3965 #ifdef CONFIG_RFS_ACCEL
3966 		struct netdev_rx_queue *rxqueue;
3967 		struct rps_dev_flow_table *flow_table;
3968 		struct rps_dev_flow *old_rflow;
3969 		u32 flow_id;
3970 		u16 rxq_index;
3971 		int rc;
3972 
3973 		/* Should we steer this flow to a different hardware queue? */
3974 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3975 		    !(dev->features & NETIF_F_NTUPLE))
3976 			goto out;
3977 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3978 		if (rxq_index == skb_get_rx_queue(skb))
3979 			goto out;
3980 
3981 		rxqueue = dev->_rx + rxq_index;
3982 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3983 		if (!flow_table)
3984 			goto out;
3985 		flow_id = skb_get_hash(skb) & flow_table->mask;
3986 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3987 							rxq_index, flow_id);
3988 		if (rc < 0)
3989 			goto out;
3990 		old_rflow = rflow;
3991 		rflow = &flow_table->flows[flow_id];
3992 		rflow->filter = rc;
3993 		if (old_rflow->filter == rflow->filter)
3994 			old_rflow->filter = RPS_NO_FILTER;
3995 	out:
3996 #endif
3997 		rflow->last_qtail =
3998 			per_cpu(softnet_data, next_cpu).input_queue_head;
3999 	}
4000 
4001 	rflow->cpu = next_cpu;
4002 	return rflow;
4003 }
4004 
4005 /*
4006  * get_rps_cpu is called from netif_receive_skb and returns the target
4007  * CPU from the RPS map of the receiving queue for a given skb.
4008  * rcu_read_lock must be held on entry.
4009  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4010 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4011 		       struct rps_dev_flow **rflowp)
4012 {
4013 	const struct rps_sock_flow_table *sock_flow_table;
4014 	struct netdev_rx_queue *rxqueue = dev->_rx;
4015 	struct rps_dev_flow_table *flow_table;
4016 	struct rps_map *map;
4017 	int cpu = -1;
4018 	u32 tcpu;
4019 	u32 hash;
4020 
4021 	if (skb_rx_queue_recorded(skb)) {
4022 		u16 index = skb_get_rx_queue(skb);
4023 
4024 		if (unlikely(index >= dev->real_num_rx_queues)) {
4025 			WARN_ONCE(dev->real_num_rx_queues > 1,
4026 				  "%s received packet on queue %u, but number "
4027 				  "of RX queues is %u\n",
4028 				  dev->name, index, dev->real_num_rx_queues);
4029 			goto done;
4030 		}
4031 		rxqueue += index;
4032 	}
4033 
4034 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4035 
4036 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4037 	map = rcu_dereference(rxqueue->rps_map);
4038 	if (!flow_table && !map)
4039 		goto done;
4040 
4041 	skb_reset_network_header(skb);
4042 	hash = skb_get_hash(skb);
4043 	if (!hash)
4044 		goto done;
4045 
4046 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4047 	if (flow_table && sock_flow_table) {
4048 		struct rps_dev_flow *rflow;
4049 		u32 next_cpu;
4050 		u32 ident;
4051 
4052 		/* First check into global flow table if there is a match */
4053 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4054 		if ((ident ^ hash) & ~rps_cpu_mask)
4055 			goto try_rps;
4056 
4057 		next_cpu = ident & rps_cpu_mask;
4058 
4059 		/* OK, now we know there is a match,
4060 		 * we can look at the local (per receive queue) flow table
4061 		 */
4062 		rflow = &flow_table->flows[hash & flow_table->mask];
4063 		tcpu = rflow->cpu;
4064 
4065 		/*
4066 		 * If the desired CPU (where last recvmsg was done) is
4067 		 * different from current CPU (one in the rx-queue flow
4068 		 * table entry), switch if one of the following holds:
4069 		 *   - Current CPU is unset (>= nr_cpu_ids).
4070 		 *   - Current CPU is offline.
4071 		 *   - The current CPU's queue tail has advanced beyond the
4072 		 *     last packet that was enqueued using this table entry.
4073 		 *     This guarantees that all previous packets for the flow
4074 		 *     have been dequeued, thus preserving in order delivery.
4075 		 */
4076 		if (unlikely(tcpu != next_cpu) &&
4077 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4078 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4079 		      rflow->last_qtail)) >= 0)) {
4080 			tcpu = next_cpu;
4081 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4082 		}
4083 
4084 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4085 			*rflowp = rflow;
4086 			cpu = tcpu;
4087 			goto done;
4088 		}
4089 	}
4090 
4091 try_rps:
4092 
4093 	if (map) {
4094 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4095 		if (cpu_online(tcpu)) {
4096 			cpu = tcpu;
4097 			goto done;
4098 		}
4099 	}
4100 
4101 done:
4102 	return cpu;
4103 }
4104 
4105 #ifdef CONFIG_RFS_ACCEL
4106 
4107 /**
4108  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4109  * @dev: Device on which the filter was set
4110  * @rxq_index: RX queue index
4111  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4112  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4113  *
4114  * Drivers that implement ndo_rx_flow_steer() should periodically call
4115  * this function for each installed filter and remove the filters for
4116  * which it returns %true.
4117  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4118 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4119 			 u32 flow_id, u16 filter_id)
4120 {
4121 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4122 	struct rps_dev_flow_table *flow_table;
4123 	struct rps_dev_flow *rflow;
4124 	bool expire = true;
4125 	unsigned int cpu;
4126 
4127 	rcu_read_lock();
4128 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4129 	if (flow_table && flow_id <= flow_table->mask) {
4130 		rflow = &flow_table->flows[flow_id];
4131 		cpu = READ_ONCE(rflow->cpu);
4132 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4133 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4134 			   rflow->last_qtail) <
4135 		     (int)(10 * flow_table->mask)))
4136 			expire = false;
4137 	}
4138 	rcu_read_unlock();
4139 	return expire;
4140 }
4141 EXPORT_SYMBOL(rps_may_expire_flow);
4142 
4143 #endif /* CONFIG_RFS_ACCEL */
4144 
4145 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4146 static void rps_trigger_softirq(void *data)
4147 {
4148 	struct softnet_data *sd = data;
4149 
4150 	____napi_schedule(sd, &sd->backlog);
4151 	sd->received_rps++;
4152 }
4153 
4154 #endif /* CONFIG_RPS */
4155 
4156 /*
4157  * Check if this softnet_data structure is another cpu one
4158  * If yes, queue it to our IPI list and return 1
4159  * If no, return 0
4160  */
rps_ipi_queued(struct softnet_data * sd)4161 static int rps_ipi_queued(struct softnet_data *sd)
4162 {
4163 #ifdef CONFIG_RPS
4164 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4165 
4166 	if (sd != mysd) {
4167 		sd->rps_ipi_next = mysd->rps_ipi_list;
4168 		mysd->rps_ipi_list = sd;
4169 
4170 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4171 		return 1;
4172 	}
4173 #endif /* CONFIG_RPS */
4174 	return 0;
4175 }
4176 
4177 #ifdef CONFIG_NET_FLOW_LIMIT
4178 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4179 #endif
4180 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4181 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4182 {
4183 #ifdef CONFIG_NET_FLOW_LIMIT
4184 	struct sd_flow_limit *fl;
4185 	struct softnet_data *sd;
4186 	unsigned int old_flow, new_flow;
4187 
4188 	if (qlen < (netdev_max_backlog >> 1))
4189 		return false;
4190 
4191 	sd = this_cpu_ptr(&softnet_data);
4192 
4193 	rcu_read_lock();
4194 	fl = rcu_dereference(sd->flow_limit);
4195 	if (fl) {
4196 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4197 		old_flow = fl->history[fl->history_head];
4198 		fl->history[fl->history_head] = new_flow;
4199 
4200 		fl->history_head++;
4201 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4202 
4203 		if (likely(fl->buckets[old_flow]))
4204 			fl->buckets[old_flow]--;
4205 
4206 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4207 			fl->count++;
4208 			rcu_read_unlock();
4209 			return true;
4210 		}
4211 	}
4212 	rcu_read_unlock();
4213 #endif
4214 	return false;
4215 }
4216 
4217 /*
4218  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4219  * queue (may be a remote CPU queue).
4220  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4221 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4222 			      unsigned int *qtail)
4223 {
4224 	struct softnet_data *sd;
4225 	unsigned long flags;
4226 	unsigned int qlen;
4227 
4228 	sd = &per_cpu(softnet_data, cpu);
4229 
4230 	local_irq_save(flags);
4231 
4232 	rps_lock(sd);
4233 	if (!netif_running(skb->dev))
4234 		goto drop;
4235 	qlen = skb_queue_len(&sd->input_pkt_queue);
4236 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4237 		if (qlen) {
4238 enqueue:
4239 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4240 			input_queue_tail_incr_save(sd, qtail);
4241 			rps_unlock(sd);
4242 			local_irq_restore(flags);
4243 			return NET_RX_SUCCESS;
4244 		}
4245 
4246 		/* Schedule NAPI for backlog device
4247 		 * We can use non atomic operation since we own the queue lock
4248 		 */
4249 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4250 			if (!rps_ipi_queued(sd))
4251 				____napi_schedule(sd, &sd->backlog);
4252 		}
4253 		goto enqueue;
4254 	}
4255 
4256 drop:
4257 	sd->dropped++;
4258 	rps_unlock(sd);
4259 
4260 	local_irq_restore(flags);
4261 
4262 	atomic_long_inc(&skb->dev->rx_dropped);
4263 	kfree_skb(skb);
4264 	return NET_RX_DROP;
4265 }
4266 
netif_get_rxqueue(struct sk_buff * skb)4267 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4268 {
4269 	struct net_device *dev = skb->dev;
4270 	struct netdev_rx_queue *rxqueue;
4271 
4272 	rxqueue = dev->_rx;
4273 
4274 	if (skb_rx_queue_recorded(skb)) {
4275 		u16 index = skb_get_rx_queue(skb);
4276 
4277 		if (unlikely(index >= dev->real_num_rx_queues)) {
4278 			WARN_ONCE(dev->real_num_rx_queues > 1,
4279 				  "%s received packet on queue %u, but number "
4280 				  "of RX queues is %u\n",
4281 				  dev->name, index, dev->real_num_rx_queues);
4282 
4283 			return rxqueue; /* Return first rxqueue */
4284 		}
4285 		rxqueue += index;
4286 	}
4287 	return rxqueue;
4288 }
4289 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4290 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4291 				     struct xdp_buff *xdp,
4292 				     struct bpf_prog *xdp_prog)
4293 {
4294 	struct netdev_rx_queue *rxqueue;
4295 	void *orig_data, *orig_data_end;
4296 	u32 metalen, act = XDP_DROP;
4297 	__be16 orig_eth_type;
4298 	struct ethhdr *eth;
4299 	bool orig_bcast;
4300 	int hlen, off;
4301 	u32 mac_len;
4302 
4303 	/* Reinjected packets coming from act_mirred or similar should
4304 	 * not get XDP generic processing.
4305 	 */
4306 	if (skb_is_tc_redirected(skb))
4307 		return XDP_PASS;
4308 
4309 	/* XDP packets must be linear and must have sufficient headroom
4310 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4311 	 * native XDP provides, thus we need to do it here as well.
4312 	 */
4313 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4314 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4315 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4316 		int troom = skb->tail + skb->data_len - skb->end;
4317 
4318 		/* In case we have to go down the path and also linearize,
4319 		 * then lets do the pskb_expand_head() work just once here.
4320 		 */
4321 		if (pskb_expand_head(skb,
4322 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4323 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4324 			goto do_drop;
4325 		if (skb_linearize(skb))
4326 			goto do_drop;
4327 	}
4328 
4329 	/* The XDP program wants to see the packet starting at the MAC
4330 	 * header.
4331 	 */
4332 	mac_len = skb->data - skb_mac_header(skb);
4333 	hlen = skb_headlen(skb) + mac_len;
4334 	xdp->data = skb->data - mac_len;
4335 	xdp->data_meta = xdp->data;
4336 	xdp->data_end = xdp->data + hlen;
4337 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4338 	orig_data_end = xdp->data_end;
4339 	orig_data = xdp->data;
4340 	eth = (struct ethhdr *)xdp->data;
4341 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4342 	orig_eth_type = eth->h_proto;
4343 
4344 	rxqueue = netif_get_rxqueue(skb);
4345 	xdp->rxq = &rxqueue->xdp_rxq;
4346 
4347 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4348 
4349 	/* check if bpf_xdp_adjust_head was used */
4350 	off = xdp->data - orig_data;
4351 	if (off) {
4352 		if (off > 0)
4353 			__skb_pull(skb, off);
4354 		else if (off < 0)
4355 			__skb_push(skb, -off);
4356 
4357 		skb->mac_header += off;
4358 		skb_reset_network_header(skb);
4359 	}
4360 
4361 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4362 	 * pckt.
4363 	 */
4364 	off = orig_data_end - xdp->data_end;
4365 	if (off != 0) {
4366 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4367 		skb->len -= off;
4368 
4369 	}
4370 
4371 	/* check if XDP changed eth hdr such SKB needs update */
4372 	eth = (struct ethhdr *)xdp->data;
4373 	if ((orig_eth_type != eth->h_proto) ||
4374 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4375 		__skb_push(skb, ETH_HLEN);
4376 		skb->protocol = eth_type_trans(skb, skb->dev);
4377 	}
4378 
4379 	switch (act) {
4380 	case XDP_REDIRECT:
4381 	case XDP_TX:
4382 		__skb_push(skb, mac_len);
4383 		break;
4384 	case XDP_PASS:
4385 		metalen = xdp->data - xdp->data_meta;
4386 		if (metalen)
4387 			skb_metadata_set(skb, metalen);
4388 		break;
4389 	default:
4390 		bpf_warn_invalid_xdp_action(act);
4391 		/* fall through */
4392 	case XDP_ABORTED:
4393 		trace_xdp_exception(skb->dev, xdp_prog, act);
4394 		/* fall through */
4395 	case XDP_DROP:
4396 	do_drop:
4397 		kfree_skb(skb);
4398 		break;
4399 	}
4400 
4401 	return act;
4402 }
4403 
4404 /* When doing generic XDP we have to bypass the qdisc layer and the
4405  * network taps in order to match in-driver-XDP behavior.
4406  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4407 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4408 {
4409 	struct net_device *dev = skb->dev;
4410 	struct netdev_queue *txq;
4411 	bool free_skb = true;
4412 	int cpu, rc;
4413 
4414 	txq = netdev_pick_tx(dev, skb, NULL);
4415 	cpu = smp_processor_id();
4416 	HARD_TX_LOCK(dev, txq, cpu);
4417 	if (!netif_xmit_stopped(txq)) {
4418 		rc = netdev_start_xmit(skb, dev, txq, 0);
4419 		if (dev_xmit_complete(rc))
4420 			free_skb = false;
4421 	}
4422 	HARD_TX_UNLOCK(dev, txq);
4423 	if (free_skb) {
4424 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4425 		kfree_skb(skb);
4426 	}
4427 }
4428 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4429 
4430 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4431 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4432 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4433 {
4434 	if (xdp_prog) {
4435 		struct xdp_buff xdp;
4436 		u32 act;
4437 		int err;
4438 
4439 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4440 		if (act != XDP_PASS) {
4441 			switch (act) {
4442 			case XDP_REDIRECT:
4443 				err = xdp_do_generic_redirect(skb->dev, skb,
4444 							      &xdp, xdp_prog);
4445 				if (err)
4446 					goto out_redir;
4447 				break;
4448 			case XDP_TX:
4449 				generic_xdp_tx(skb, xdp_prog);
4450 				break;
4451 			}
4452 			return XDP_DROP;
4453 		}
4454 	}
4455 	return XDP_PASS;
4456 out_redir:
4457 	kfree_skb(skb);
4458 	return XDP_DROP;
4459 }
4460 EXPORT_SYMBOL_GPL(do_xdp_generic);
4461 
netif_rx_internal(struct sk_buff * skb)4462 static int netif_rx_internal(struct sk_buff *skb)
4463 {
4464 	int ret;
4465 
4466 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4467 
4468 	trace_netif_rx(skb);
4469 
4470 #ifdef CONFIG_RPS
4471 	if (static_key_false(&rps_needed)) {
4472 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4473 		int cpu;
4474 
4475 		preempt_disable();
4476 		rcu_read_lock();
4477 
4478 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4479 		if (cpu < 0)
4480 			cpu = smp_processor_id();
4481 
4482 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4483 
4484 		rcu_read_unlock();
4485 		preempt_enable();
4486 	} else
4487 #endif
4488 	{
4489 		unsigned int qtail;
4490 
4491 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4492 		put_cpu();
4493 	}
4494 	return ret;
4495 }
4496 
4497 /**
4498  *	netif_rx	-	post buffer to the network code
4499  *	@skb: buffer to post
4500  *
4501  *	This function receives a packet from a device driver and queues it for
4502  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4503  *	may be dropped during processing for congestion control or by the
4504  *	protocol layers.
4505  *
4506  *	return values:
4507  *	NET_RX_SUCCESS	(no congestion)
4508  *	NET_RX_DROP     (packet was dropped)
4509  *
4510  */
4511 
netif_rx(struct sk_buff * skb)4512 int netif_rx(struct sk_buff *skb)
4513 {
4514 	trace_netif_rx_entry(skb);
4515 
4516 	return netif_rx_internal(skb);
4517 }
4518 EXPORT_SYMBOL(netif_rx);
4519 
netif_rx_ni(struct sk_buff * skb)4520 int netif_rx_ni(struct sk_buff *skb)
4521 {
4522 	int err;
4523 
4524 	trace_netif_rx_ni_entry(skb);
4525 
4526 	preempt_disable();
4527 	err = netif_rx_internal(skb);
4528 	if (local_softirq_pending())
4529 		do_softirq();
4530 	preempt_enable();
4531 
4532 	return err;
4533 }
4534 EXPORT_SYMBOL(netif_rx_ni);
4535 
net_tx_action(struct softirq_action * h)4536 static __latent_entropy void net_tx_action(struct softirq_action *h)
4537 {
4538 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4539 
4540 	if (sd->completion_queue) {
4541 		struct sk_buff *clist;
4542 
4543 		local_irq_disable();
4544 		clist = sd->completion_queue;
4545 		sd->completion_queue = NULL;
4546 		local_irq_enable();
4547 
4548 		while (clist) {
4549 			struct sk_buff *skb = clist;
4550 
4551 			clist = clist->next;
4552 
4553 			WARN_ON(refcount_read(&skb->users));
4554 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4555 				trace_consume_skb(skb);
4556 			else
4557 				trace_kfree_skb(skb, net_tx_action);
4558 
4559 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4560 				__kfree_skb(skb);
4561 			else
4562 				__kfree_skb_defer(skb);
4563 		}
4564 
4565 		__kfree_skb_flush();
4566 	}
4567 
4568 	if (sd->output_queue) {
4569 		struct Qdisc *head;
4570 
4571 		local_irq_disable();
4572 		head = sd->output_queue;
4573 		sd->output_queue = NULL;
4574 		sd->output_queue_tailp = &sd->output_queue;
4575 		local_irq_enable();
4576 
4577 		while (head) {
4578 			struct Qdisc *q = head;
4579 			spinlock_t *root_lock = NULL;
4580 
4581 			head = head->next_sched;
4582 
4583 			if (!(q->flags & TCQ_F_NOLOCK)) {
4584 				root_lock = qdisc_lock(q);
4585 				spin_lock(root_lock);
4586 			}
4587 			/* We need to make sure head->next_sched is read
4588 			 * before clearing __QDISC_STATE_SCHED
4589 			 */
4590 			smp_mb__before_atomic();
4591 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4592 			qdisc_run(q);
4593 			if (root_lock)
4594 				spin_unlock(root_lock);
4595 		}
4596 	}
4597 
4598 	xfrm_dev_backlog(sd);
4599 }
4600 
4601 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4602 /* This hook is defined here for ATM LANE */
4603 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4604 			     unsigned char *addr) __read_mostly;
4605 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4606 #endif
4607 
4608 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4609 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4610 		   struct net_device *orig_dev)
4611 {
4612 #ifdef CONFIG_NET_CLS_ACT
4613 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4614 	struct tcf_result cl_res;
4615 
4616 	/* If there's at least one ingress present somewhere (so
4617 	 * we get here via enabled static key), remaining devices
4618 	 * that are not configured with an ingress qdisc will bail
4619 	 * out here.
4620 	 */
4621 	if (!miniq)
4622 		return skb;
4623 
4624 	if (*pt_prev) {
4625 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4626 		*pt_prev = NULL;
4627 	}
4628 
4629 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4630 	skb->tc_at_ingress = 1;
4631 	mini_qdisc_bstats_cpu_update(miniq, skb);
4632 
4633 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4634 	case TC_ACT_OK:
4635 	case TC_ACT_RECLASSIFY:
4636 		skb->tc_index = TC_H_MIN(cl_res.classid);
4637 		break;
4638 	case TC_ACT_SHOT:
4639 		mini_qdisc_qstats_cpu_drop(miniq);
4640 		kfree_skb(skb);
4641 		return NULL;
4642 	case TC_ACT_STOLEN:
4643 	case TC_ACT_QUEUED:
4644 	case TC_ACT_TRAP:
4645 		consume_skb(skb);
4646 		return NULL;
4647 	case TC_ACT_REDIRECT:
4648 		/* skb_mac_header check was done by cls/act_bpf, so
4649 		 * we can safely push the L2 header back before
4650 		 * redirecting to another netdev
4651 		 */
4652 		__skb_push(skb, skb->mac_len);
4653 		skb_do_redirect(skb);
4654 		return NULL;
4655 	case TC_ACT_REINSERT:
4656 		/* this does not scrub the packet, and updates stats on error */
4657 		skb_tc_reinsert(skb, &cl_res);
4658 		return NULL;
4659 	default:
4660 		break;
4661 	}
4662 #endif /* CONFIG_NET_CLS_ACT */
4663 	return skb;
4664 }
4665 
4666 /**
4667  *	netdev_is_rx_handler_busy - check if receive handler is registered
4668  *	@dev: device to check
4669  *
4670  *	Check if a receive handler is already registered for a given device.
4671  *	Return true if there one.
4672  *
4673  *	The caller must hold the rtnl_mutex.
4674  */
netdev_is_rx_handler_busy(struct net_device * dev)4675 bool netdev_is_rx_handler_busy(struct net_device *dev)
4676 {
4677 	ASSERT_RTNL();
4678 	return dev && rtnl_dereference(dev->rx_handler);
4679 }
4680 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4681 
4682 /**
4683  *	netdev_rx_handler_register - register receive handler
4684  *	@dev: device to register a handler for
4685  *	@rx_handler: receive handler to register
4686  *	@rx_handler_data: data pointer that is used by rx handler
4687  *
4688  *	Register a receive handler for a device. This handler will then be
4689  *	called from __netif_receive_skb. A negative errno code is returned
4690  *	on a failure.
4691  *
4692  *	The caller must hold the rtnl_mutex.
4693  *
4694  *	For a general description of rx_handler, see enum rx_handler_result.
4695  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)4696 int netdev_rx_handler_register(struct net_device *dev,
4697 			       rx_handler_func_t *rx_handler,
4698 			       void *rx_handler_data)
4699 {
4700 	if (netdev_is_rx_handler_busy(dev))
4701 		return -EBUSY;
4702 
4703 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4704 		return -EINVAL;
4705 
4706 	/* Note: rx_handler_data must be set before rx_handler */
4707 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4708 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4709 
4710 	return 0;
4711 }
4712 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4713 
4714 /**
4715  *	netdev_rx_handler_unregister - unregister receive handler
4716  *	@dev: device to unregister a handler from
4717  *
4718  *	Unregister a receive handler from a device.
4719  *
4720  *	The caller must hold the rtnl_mutex.
4721  */
netdev_rx_handler_unregister(struct net_device * dev)4722 void netdev_rx_handler_unregister(struct net_device *dev)
4723 {
4724 
4725 	ASSERT_RTNL();
4726 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4727 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4728 	 * section has a guarantee to see a non NULL rx_handler_data
4729 	 * as well.
4730 	 */
4731 	synchronize_net();
4732 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4733 }
4734 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4735 
4736 /*
4737  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4738  * the special handling of PFMEMALLOC skbs.
4739  */
skb_pfmemalloc_protocol(struct sk_buff * skb)4740 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4741 {
4742 	switch (skb->protocol) {
4743 	case htons(ETH_P_ARP):
4744 	case htons(ETH_P_IP):
4745 	case htons(ETH_P_IPV6):
4746 	case htons(ETH_P_8021Q):
4747 	case htons(ETH_P_8021AD):
4748 		return true;
4749 	default:
4750 		return false;
4751 	}
4752 }
4753 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4754 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4755 			     int *ret, struct net_device *orig_dev)
4756 {
4757 #ifdef CONFIG_NETFILTER_INGRESS
4758 	if (nf_hook_ingress_active(skb)) {
4759 		int ingress_retval;
4760 
4761 		if (*pt_prev) {
4762 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4763 			*pt_prev = NULL;
4764 		}
4765 
4766 		rcu_read_lock();
4767 		ingress_retval = nf_hook_ingress(skb);
4768 		rcu_read_unlock();
4769 		return ingress_retval;
4770 	}
4771 #endif /* CONFIG_NETFILTER_INGRESS */
4772 	return 0;
4773 }
4774 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)4775 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4776 				    struct packet_type **ppt_prev)
4777 {
4778 	struct packet_type *ptype, *pt_prev;
4779 	rx_handler_func_t *rx_handler;
4780 	struct sk_buff *skb = *pskb;
4781 	struct net_device *orig_dev;
4782 	bool deliver_exact = false;
4783 	int ret = NET_RX_DROP;
4784 	__be16 type;
4785 
4786 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4787 
4788 	trace_netif_receive_skb(skb);
4789 
4790 	orig_dev = skb->dev;
4791 
4792 	skb_reset_network_header(skb);
4793 	if (!skb_transport_header_was_set(skb))
4794 		skb_reset_transport_header(skb);
4795 	skb_reset_mac_len(skb);
4796 
4797 	pt_prev = NULL;
4798 
4799 another_round:
4800 	skb->skb_iif = skb->dev->ifindex;
4801 
4802 	__this_cpu_inc(softnet_data.processed);
4803 
4804 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4805 		int ret2;
4806 
4807 		preempt_disable();
4808 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4809 		preempt_enable();
4810 
4811 		if (ret2 != XDP_PASS) {
4812 			ret = NET_RX_DROP;
4813 			goto out;
4814 		}
4815 		skb_reset_mac_len(skb);
4816 	}
4817 
4818 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4819 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4820 		skb = skb_vlan_untag(skb);
4821 		if (unlikely(!skb))
4822 			goto out;
4823 	}
4824 
4825 	if (skb_skip_tc_classify(skb))
4826 		goto skip_classify;
4827 
4828 	if (pfmemalloc)
4829 		goto skip_taps;
4830 
4831 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4832 		if (pt_prev)
4833 			ret = deliver_skb(skb, pt_prev, orig_dev);
4834 		pt_prev = ptype;
4835 	}
4836 
4837 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4838 		if (pt_prev)
4839 			ret = deliver_skb(skb, pt_prev, orig_dev);
4840 		pt_prev = ptype;
4841 	}
4842 
4843 skip_taps:
4844 #ifdef CONFIG_NET_INGRESS
4845 	if (static_branch_unlikely(&ingress_needed_key)) {
4846 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4847 		if (!skb)
4848 			goto out;
4849 
4850 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4851 			goto out;
4852 	}
4853 #endif
4854 	skb_reset_tc(skb);
4855 skip_classify:
4856 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4857 		goto drop;
4858 
4859 	if (skb_vlan_tag_present(skb)) {
4860 		if (pt_prev) {
4861 			ret = deliver_skb(skb, pt_prev, orig_dev);
4862 			pt_prev = NULL;
4863 		}
4864 		if (vlan_do_receive(&skb))
4865 			goto another_round;
4866 		else if (unlikely(!skb))
4867 			goto out;
4868 	}
4869 
4870 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4871 	if (rx_handler) {
4872 		if (pt_prev) {
4873 			ret = deliver_skb(skb, pt_prev, orig_dev);
4874 			pt_prev = NULL;
4875 		}
4876 		switch (rx_handler(&skb)) {
4877 		case RX_HANDLER_CONSUMED:
4878 			ret = NET_RX_SUCCESS;
4879 			goto out;
4880 		case RX_HANDLER_ANOTHER:
4881 			goto another_round;
4882 		case RX_HANDLER_EXACT:
4883 			deliver_exact = true;
4884 		case RX_HANDLER_PASS:
4885 			break;
4886 		default:
4887 			BUG();
4888 		}
4889 	}
4890 
4891 	if (unlikely(skb_vlan_tag_present(skb))) {
4892 		if (skb_vlan_tag_get_id(skb))
4893 			skb->pkt_type = PACKET_OTHERHOST;
4894 		/* Note: we might in the future use prio bits
4895 		 * and set skb->priority like in vlan_do_receive()
4896 		 * For the time being, just ignore Priority Code Point
4897 		 */
4898 		skb->vlan_tci = 0;
4899 	}
4900 
4901 	type = skb->protocol;
4902 
4903 	/* deliver only exact match when indicated */
4904 	if (likely(!deliver_exact)) {
4905 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4906 				       &ptype_base[ntohs(type) &
4907 						   PTYPE_HASH_MASK]);
4908 	}
4909 
4910 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4911 			       &orig_dev->ptype_specific);
4912 
4913 	if (unlikely(skb->dev != orig_dev)) {
4914 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4915 				       &skb->dev->ptype_specific);
4916 	}
4917 
4918 	if (pt_prev) {
4919 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4920 			goto drop;
4921 		*ppt_prev = pt_prev;
4922 	} else {
4923 drop:
4924 		if (!deliver_exact)
4925 			atomic_long_inc(&skb->dev->rx_dropped);
4926 		else
4927 			atomic_long_inc(&skb->dev->rx_nohandler);
4928 		kfree_skb(skb);
4929 		/* Jamal, now you will not able to escape explaining
4930 		 * me how you were going to use this. :-)
4931 		 */
4932 		ret = NET_RX_DROP;
4933 	}
4934 
4935 out:
4936 	/* The invariant here is that if *ppt_prev is not NULL
4937 	 * then skb should also be non-NULL.
4938 	 *
4939 	 * Apparently *ppt_prev assignment above holds this invariant due to
4940 	 * skb dereferencing near it.
4941 	 */
4942 	*pskb = skb;
4943 	return ret;
4944 }
4945 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)4946 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4947 {
4948 	struct net_device *orig_dev = skb->dev;
4949 	struct packet_type *pt_prev = NULL;
4950 	int ret;
4951 
4952 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
4953 	if (pt_prev)
4954 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4955 	return ret;
4956 }
4957 
4958 /**
4959  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4960  *	@skb: buffer to process
4961  *
4962  *	More direct receive version of netif_receive_skb().  It should
4963  *	only be used by callers that have a need to skip RPS and Generic XDP.
4964  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4965  *
4966  *	This function may only be called from softirq context and interrupts
4967  *	should be enabled.
4968  *
4969  *	Return values (usually ignored):
4970  *	NET_RX_SUCCESS: no congestion
4971  *	NET_RX_DROP: packet was dropped
4972  */
netif_receive_skb_core(struct sk_buff * skb)4973 int netif_receive_skb_core(struct sk_buff *skb)
4974 {
4975 	int ret;
4976 
4977 	rcu_read_lock();
4978 	ret = __netif_receive_skb_one_core(skb, false);
4979 	rcu_read_unlock();
4980 
4981 	return ret;
4982 }
4983 EXPORT_SYMBOL(netif_receive_skb_core);
4984 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)4985 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4986 						  struct packet_type *pt_prev,
4987 						  struct net_device *orig_dev)
4988 {
4989 	struct sk_buff *skb, *next;
4990 
4991 	if (!pt_prev)
4992 		return;
4993 	if (list_empty(head))
4994 		return;
4995 	if (pt_prev->list_func != NULL)
4996 		pt_prev->list_func(head, pt_prev, orig_dev);
4997 	else
4998 		list_for_each_entry_safe(skb, next, head, list) {
4999 			skb_list_del_init(skb);
5000 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5001 		}
5002 }
5003 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5004 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5005 {
5006 	/* Fast-path assumptions:
5007 	 * - There is no RX handler.
5008 	 * - Only one packet_type matches.
5009 	 * If either of these fails, we will end up doing some per-packet
5010 	 * processing in-line, then handling the 'last ptype' for the whole
5011 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5012 	 * because the 'last ptype' must be constant across the sublist, and all
5013 	 * other ptypes are handled per-packet.
5014 	 */
5015 	/* Current (common) ptype of sublist */
5016 	struct packet_type *pt_curr = NULL;
5017 	/* Current (common) orig_dev of sublist */
5018 	struct net_device *od_curr = NULL;
5019 	struct list_head sublist;
5020 	struct sk_buff *skb, *next;
5021 
5022 	INIT_LIST_HEAD(&sublist);
5023 	list_for_each_entry_safe(skb, next, head, list) {
5024 		struct net_device *orig_dev = skb->dev;
5025 		struct packet_type *pt_prev = NULL;
5026 
5027 		skb_list_del_init(skb);
5028 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5029 		if (!pt_prev)
5030 			continue;
5031 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5032 			/* dispatch old sublist */
5033 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034 			/* start new sublist */
5035 			INIT_LIST_HEAD(&sublist);
5036 			pt_curr = pt_prev;
5037 			od_curr = orig_dev;
5038 		}
5039 		list_add_tail(&skb->list, &sublist);
5040 	}
5041 
5042 	/* dispatch final sublist */
5043 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5044 }
5045 
__netif_receive_skb(struct sk_buff * skb)5046 static int __netif_receive_skb(struct sk_buff *skb)
5047 {
5048 	int ret;
5049 
5050 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5051 		unsigned int noreclaim_flag;
5052 
5053 		/*
5054 		 * PFMEMALLOC skbs are special, they should
5055 		 * - be delivered to SOCK_MEMALLOC sockets only
5056 		 * - stay away from userspace
5057 		 * - have bounded memory usage
5058 		 *
5059 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5060 		 * context down to all allocation sites.
5061 		 */
5062 		noreclaim_flag = memalloc_noreclaim_save();
5063 		ret = __netif_receive_skb_one_core(skb, true);
5064 		memalloc_noreclaim_restore(noreclaim_flag);
5065 	} else
5066 		ret = __netif_receive_skb_one_core(skb, false);
5067 
5068 	return ret;
5069 }
5070 
__netif_receive_skb_list(struct list_head * head)5071 static void __netif_receive_skb_list(struct list_head *head)
5072 {
5073 	unsigned long noreclaim_flag = 0;
5074 	struct sk_buff *skb, *next;
5075 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5076 
5077 	list_for_each_entry_safe(skb, next, head, list) {
5078 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5079 			struct list_head sublist;
5080 
5081 			/* Handle the previous sublist */
5082 			list_cut_before(&sublist, head, &skb->list);
5083 			if (!list_empty(&sublist))
5084 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5085 			pfmemalloc = !pfmemalloc;
5086 			/* See comments in __netif_receive_skb */
5087 			if (pfmemalloc)
5088 				noreclaim_flag = memalloc_noreclaim_save();
5089 			else
5090 				memalloc_noreclaim_restore(noreclaim_flag);
5091 		}
5092 	}
5093 	/* Handle the remaining sublist */
5094 	if (!list_empty(head))
5095 		__netif_receive_skb_list_core(head, pfmemalloc);
5096 	/* Restore pflags */
5097 	if (pfmemalloc)
5098 		memalloc_noreclaim_restore(noreclaim_flag);
5099 }
5100 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5101 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5102 {
5103 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5104 	struct bpf_prog *new = xdp->prog;
5105 	int ret = 0;
5106 
5107 	switch (xdp->command) {
5108 	case XDP_SETUP_PROG:
5109 		rcu_assign_pointer(dev->xdp_prog, new);
5110 		if (old)
5111 			bpf_prog_put(old);
5112 
5113 		if (old && !new) {
5114 			static_branch_dec(&generic_xdp_needed_key);
5115 		} else if (new && !old) {
5116 			static_branch_inc(&generic_xdp_needed_key);
5117 			dev_disable_lro(dev);
5118 			dev_disable_gro_hw(dev);
5119 		}
5120 		break;
5121 
5122 	case XDP_QUERY_PROG:
5123 		xdp->prog_id = old ? old->aux->id : 0;
5124 		break;
5125 
5126 	default:
5127 		ret = -EINVAL;
5128 		break;
5129 	}
5130 
5131 	return ret;
5132 }
5133 
netif_receive_skb_internal(struct sk_buff * skb)5134 static int netif_receive_skb_internal(struct sk_buff *skb)
5135 {
5136 	int ret;
5137 
5138 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5139 
5140 	if (skb_defer_rx_timestamp(skb))
5141 		return NET_RX_SUCCESS;
5142 
5143 	rcu_read_lock();
5144 #ifdef CONFIG_RPS
5145 	if (static_key_false(&rps_needed)) {
5146 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5147 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5148 
5149 		if (cpu >= 0) {
5150 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5151 			rcu_read_unlock();
5152 			return ret;
5153 		}
5154 	}
5155 #endif
5156 	ret = __netif_receive_skb(skb);
5157 	rcu_read_unlock();
5158 	return ret;
5159 }
5160 
netif_receive_skb_list_internal(struct list_head * head)5161 static void netif_receive_skb_list_internal(struct list_head *head)
5162 {
5163 	struct sk_buff *skb, *next;
5164 	struct list_head sublist;
5165 
5166 	INIT_LIST_HEAD(&sublist);
5167 	list_for_each_entry_safe(skb, next, head, list) {
5168 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5169 		skb_list_del_init(skb);
5170 		if (!skb_defer_rx_timestamp(skb))
5171 			list_add_tail(&skb->list, &sublist);
5172 	}
5173 	list_splice_init(&sublist, head);
5174 
5175 	rcu_read_lock();
5176 #ifdef CONFIG_RPS
5177 	if (static_key_false(&rps_needed)) {
5178 		list_for_each_entry_safe(skb, next, head, list) {
5179 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5180 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5181 
5182 			if (cpu >= 0) {
5183 				/* Will be handled, remove from list */
5184 				skb_list_del_init(skb);
5185 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5186 			}
5187 		}
5188 	}
5189 #endif
5190 	__netif_receive_skb_list(head);
5191 	rcu_read_unlock();
5192 }
5193 
5194 /**
5195  *	netif_receive_skb - process receive buffer from network
5196  *	@skb: buffer to process
5197  *
5198  *	netif_receive_skb() is the main receive data processing function.
5199  *	It always succeeds. The buffer may be dropped during processing
5200  *	for congestion control or by the protocol layers.
5201  *
5202  *	This function may only be called from softirq context and interrupts
5203  *	should be enabled.
5204  *
5205  *	Return values (usually ignored):
5206  *	NET_RX_SUCCESS: no congestion
5207  *	NET_RX_DROP: packet was dropped
5208  */
netif_receive_skb(struct sk_buff * skb)5209 int netif_receive_skb(struct sk_buff *skb)
5210 {
5211 	trace_netif_receive_skb_entry(skb);
5212 
5213 	return netif_receive_skb_internal(skb);
5214 }
5215 EXPORT_SYMBOL(netif_receive_skb);
5216 
5217 /**
5218  *	netif_receive_skb_list - process many receive buffers from network
5219  *	@head: list of skbs to process.
5220  *
5221  *	Since return value of netif_receive_skb() is normally ignored, and
5222  *	wouldn't be meaningful for a list, this function returns void.
5223  *
5224  *	This function may only be called from softirq context and interrupts
5225  *	should be enabled.
5226  */
netif_receive_skb_list(struct list_head * head)5227 void netif_receive_skb_list(struct list_head *head)
5228 {
5229 	struct sk_buff *skb;
5230 
5231 	if (list_empty(head))
5232 		return;
5233 	list_for_each_entry(skb, head, list)
5234 		trace_netif_receive_skb_list_entry(skb);
5235 	netif_receive_skb_list_internal(head);
5236 }
5237 EXPORT_SYMBOL(netif_receive_skb_list);
5238 
5239 DEFINE_PER_CPU(struct work_struct, flush_works);
5240 
5241 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5242 static void flush_backlog(struct work_struct *work)
5243 {
5244 	struct sk_buff *skb, *tmp;
5245 	struct softnet_data *sd;
5246 
5247 	local_bh_disable();
5248 	sd = this_cpu_ptr(&softnet_data);
5249 
5250 	local_irq_disable();
5251 	rps_lock(sd);
5252 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5253 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5254 			__skb_unlink(skb, &sd->input_pkt_queue);
5255 			dev_kfree_skb_irq(skb);
5256 			input_queue_head_incr(sd);
5257 		}
5258 	}
5259 	rps_unlock(sd);
5260 	local_irq_enable();
5261 
5262 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5263 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5264 			__skb_unlink(skb, &sd->process_queue);
5265 			kfree_skb(skb);
5266 			input_queue_head_incr(sd);
5267 		}
5268 	}
5269 	local_bh_enable();
5270 }
5271 
flush_all_backlogs(void)5272 static void flush_all_backlogs(void)
5273 {
5274 	unsigned int cpu;
5275 
5276 	get_online_cpus();
5277 
5278 	for_each_online_cpu(cpu)
5279 		queue_work_on(cpu, system_highpri_wq,
5280 			      per_cpu_ptr(&flush_works, cpu));
5281 
5282 	for_each_online_cpu(cpu)
5283 		flush_work(per_cpu_ptr(&flush_works, cpu));
5284 
5285 	put_online_cpus();
5286 }
5287 
napi_gro_complete(struct sk_buff * skb)5288 static int napi_gro_complete(struct sk_buff *skb)
5289 {
5290 	struct packet_offload *ptype;
5291 	__be16 type = skb->protocol;
5292 	struct list_head *head = &offload_base;
5293 	int err = -ENOENT;
5294 
5295 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5296 
5297 	if (NAPI_GRO_CB(skb)->count == 1) {
5298 		skb_shinfo(skb)->gso_size = 0;
5299 		goto out;
5300 	}
5301 
5302 	rcu_read_lock();
5303 	list_for_each_entry_rcu(ptype, head, list) {
5304 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5305 			continue;
5306 
5307 		err = ptype->callbacks.gro_complete(skb, 0);
5308 		break;
5309 	}
5310 	rcu_read_unlock();
5311 
5312 	if (err) {
5313 		WARN_ON(&ptype->list == head);
5314 		kfree_skb(skb);
5315 		return NET_RX_SUCCESS;
5316 	}
5317 
5318 out:
5319 	return netif_receive_skb_internal(skb);
5320 }
5321 
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5322 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5323 				   bool flush_old)
5324 {
5325 	struct list_head *head = &napi->gro_hash[index].list;
5326 	struct sk_buff *skb, *p;
5327 
5328 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5329 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5330 			return;
5331 		list_del(&skb->list);
5332 		skb->next = NULL;
5333 		napi_gro_complete(skb);
5334 		napi->gro_hash[index].count--;
5335 	}
5336 
5337 	if (!napi->gro_hash[index].count)
5338 		__clear_bit(index, &napi->gro_bitmask);
5339 }
5340 
5341 /* napi->gro_hash[].list contains packets ordered by age.
5342  * youngest packets at the head of it.
5343  * Complete skbs in reverse order to reduce latencies.
5344  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5345 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5346 {
5347 	u32 i;
5348 
5349 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5350 		if (test_bit(i, &napi->gro_bitmask))
5351 			__napi_gro_flush_chain(napi, i, flush_old);
5352 	}
5353 }
5354 EXPORT_SYMBOL(napi_gro_flush);
5355 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5356 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5357 					  struct sk_buff *skb)
5358 {
5359 	unsigned int maclen = skb->dev->hard_header_len;
5360 	u32 hash = skb_get_hash_raw(skb);
5361 	struct list_head *head;
5362 	struct sk_buff *p;
5363 
5364 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5365 	list_for_each_entry(p, head, list) {
5366 		unsigned long diffs;
5367 
5368 		NAPI_GRO_CB(p)->flush = 0;
5369 
5370 		if (hash != skb_get_hash_raw(p)) {
5371 			NAPI_GRO_CB(p)->same_flow = 0;
5372 			continue;
5373 		}
5374 
5375 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5376 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5377 		diffs |= skb_metadata_dst_cmp(p, skb);
5378 		diffs |= skb_metadata_differs(p, skb);
5379 		if (maclen == ETH_HLEN)
5380 			diffs |= compare_ether_header(skb_mac_header(p),
5381 						      skb_mac_header(skb));
5382 		else if (!diffs)
5383 			diffs = memcmp(skb_mac_header(p),
5384 				       skb_mac_header(skb),
5385 				       maclen);
5386 		NAPI_GRO_CB(p)->same_flow = !diffs;
5387 	}
5388 
5389 	return head;
5390 }
5391 
skb_gro_reset_offset(struct sk_buff * skb)5392 static void skb_gro_reset_offset(struct sk_buff *skb)
5393 {
5394 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5395 	const skb_frag_t *frag0 = &pinfo->frags[0];
5396 
5397 	NAPI_GRO_CB(skb)->data_offset = 0;
5398 	NAPI_GRO_CB(skb)->frag0 = NULL;
5399 	NAPI_GRO_CB(skb)->frag0_len = 0;
5400 
5401 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5402 	    pinfo->nr_frags &&
5403 	    !PageHighMem(skb_frag_page(frag0))) {
5404 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5405 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5406 						    skb_frag_size(frag0),
5407 						    skb->end - skb->tail);
5408 	}
5409 }
5410 
gro_pull_from_frag0(struct sk_buff * skb,int grow)5411 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5412 {
5413 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5414 
5415 	BUG_ON(skb->end - skb->tail < grow);
5416 
5417 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5418 
5419 	skb->data_len -= grow;
5420 	skb->tail += grow;
5421 
5422 	pinfo->frags[0].page_offset += grow;
5423 	skb_frag_size_sub(&pinfo->frags[0], grow);
5424 
5425 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5426 		skb_frag_unref(skb, 0);
5427 		memmove(pinfo->frags, pinfo->frags + 1,
5428 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5429 	}
5430 }
5431 
gro_flush_oldest(struct list_head * head)5432 static void gro_flush_oldest(struct list_head *head)
5433 {
5434 	struct sk_buff *oldest;
5435 
5436 	oldest = list_last_entry(head, struct sk_buff, list);
5437 
5438 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5439 	 * impossible.
5440 	 */
5441 	if (WARN_ON_ONCE(!oldest))
5442 		return;
5443 
5444 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5445 	 * SKB to the chain.
5446 	 */
5447 	list_del(&oldest->list);
5448 	oldest->next = NULL;
5449 	napi_gro_complete(oldest);
5450 }
5451 
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5452 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5453 {
5454 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5455 	struct list_head *head = &offload_base;
5456 	struct packet_offload *ptype;
5457 	__be16 type = skb->protocol;
5458 	struct list_head *gro_head;
5459 	struct sk_buff *pp = NULL;
5460 	enum gro_result ret;
5461 	int same_flow;
5462 	int grow;
5463 
5464 	if (netif_elide_gro(skb->dev))
5465 		goto normal;
5466 
5467 	gro_head = gro_list_prepare(napi, skb);
5468 
5469 	rcu_read_lock();
5470 	list_for_each_entry_rcu(ptype, head, list) {
5471 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5472 			continue;
5473 
5474 		skb_set_network_header(skb, skb_gro_offset(skb));
5475 		skb_reset_mac_len(skb);
5476 		NAPI_GRO_CB(skb)->same_flow = 0;
5477 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5478 		NAPI_GRO_CB(skb)->free = 0;
5479 		NAPI_GRO_CB(skb)->encap_mark = 0;
5480 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5481 		NAPI_GRO_CB(skb)->is_fou = 0;
5482 		NAPI_GRO_CB(skb)->is_atomic = 1;
5483 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5484 
5485 		/* Setup for GRO checksum validation */
5486 		switch (skb->ip_summed) {
5487 		case CHECKSUM_COMPLETE:
5488 			NAPI_GRO_CB(skb)->csum = skb->csum;
5489 			NAPI_GRO_CB(skb)->csum_valid = 1;
5490 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5491 			break;
5492 		case CHECKSUM_UNNECESSARY:
5493 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5494 			NAPI_GRO_CB(skb)->csum_valid = 0;
5495 			break;
5496 		default:
5497 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5498 			NAPI_GRO_CB(skb)->csum_valid = 0;
5499 		}
5500 
5501 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5502 		break;
5503 	}
5504 	rcu_read_unlock();
5505 
5506 	if (&ptype->list == head)
5507 		goto normal;
5508 
5509 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5510 		ret = GRO_CONSUMED;
5511 		goto ok;
5512 	}
5513 
5514 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5515 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5516 
5517 	if (pp) {
5518 		list_del(&pp->list);
5519 		pp->next = NULL;
5520 		napi_gro_complete(pp);
5521 		napi->gro_hash[hash].count--;
5522 	}
5523 
5524 	if (same_flow)
5525 		goto ok;
5526 
5527 	if (NAPI_GRO_CB(skb)->flush)
5528 		goto normal;
5529 
5530 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5531 		gro_flush_oldest(gro_head);
5532 	} else {
5533 		napi->gro_hash[hash].count++;
5534 	}
5535 	NAPI_GRO_CB(skb)->count = 1;
5536 	NAPI_GRO_CB(skb)->age = jiffies;
5537 	NAPI_GRO_CB(skb)->last = skb;
5538 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5539 	list_add(&skb->list, gro_head);
5540 	ret = GRO_HELD;
5541 
5542 pull:
5543 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5544 	if (grow > 0)
5545 		gro_pull_from_frag0(skb, grow);
5546 ok:
5547 	if (napi->gro_hash[hash].count) {
5548 		if (!test_bit(hash, &napi->gro_bitmask))
5549 			__set_bit(hash, &napi->gro_bitmask);
5550 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5551 		__clear_bit(hash, &napi->gro_bitmask);
5552 	}
5553 
5554 	return ret;
5555 
5556 normal:
5557 	ret = GRO_NORMAL;
5558 	goto pull;
5559 }
5560 
gro_find_receive_by_type(__be16 type)5561 struct packet_offload *gro_find_receive_by_type(__be16 type)
5562 {
5563 	struct list_head *offload_head = &offload_base;
5564 	struct packet_offload *ptype;
5565 
5566 	list_for_each_entry_rcu(ptype, offload_head, list) {
5567 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5568 			continue;
5569 		return ptype;
5570 	}
5571 	return NULL;
5572 }
5573 EXPORT_SYMBOL(gro_find_receive_by_type);
5574 
gro_find_complete_by_type(__be16 type)5575 struct packet_offload *gro_find_complete_by_type(__be16 type)
5576 {
5577 	struct list_head *offload_head = &offload_base;
5578 	struct packet_offload *ptype;
5579 
5580 	list_for_each_entry_rcu(ptype, offload_head, list) {
5581 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5582 			continue;
5583 		return ptype;
5584 	}
5585 	return NULL;
5586 }
5587 EXPORT_SYMBOL(gro_find_complete_by_type);
5588 
napi_skb_free_stolen_head(struct sk_buff * skb)5589 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5590 {
5591 	skb_dst_drop(skb);
5592 	secpath_reset(skb);
5593 	kmem_cache_free(skbuff_head_cache, skb);
5594 }
5595 
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)5596 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5597 {
5598 	switch (ret) {
5599 	case GRO_NORMAL:
5600 		if (netif_receive_skb_internal(skb))
5601 			ret = GRO_DROP;
5602 		break;
5603 
5604 	case GRO_DROP:
5605 		kfree_skb(skb);
5606 		break;
5607 
5608 	case GRO_MERGED_FREE:
5609 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5610 			napi_skb_free_stolen_head(skb);
5611 		else
5612 			__kfree_skb(skb);
5613 		break;
5614 
5615 	case GRO_HELD:
5616 	case GRO_MERGED:
5617 	case GRO_CONSUMED:
5618 		break;
5619 	}
5620 
5621 	return ret;
5622 }
5623 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5624 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5625 {
5626 	skb_mark_napi_id(skb, napi);
5627 	trace_napi_gro_receive_entry(skb);
5628 
5629 	skb_gro_reset_offset(skb);
5630 
5631 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5632 }
5633 EXPORT_SYMBOL(napi_gro_receive);
5634 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)5635 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5636 {
5637 	if (unlikely(skb->pfmemalloc)) {
5638 		consume_skb(skb);
5639 		return;
5640 	}
5641 	__skb_pull(skb, skb_headlen(skb));
5642 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5643 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5644 	skb->vlan_tci = 0;
5645 	skb->dev = napi->dev;
5646 	skb->skb_iif = 0;
5647 
5648 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5649 	skb->pkt_type = PACKET_HOST;
5650 
5651 	skb->encapsulation = 0;
5652 	skb_shinfo(skb)->gso_type = 0;
5653 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5654 	secpath_reset(skb);
5655 
5656 	napi->skb = skb;
5657 }
5658 
napi_get_frags(struct napi_struct * napi)5659 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5660 {
5661 	struct sk_buff *skb = napi->skb;
5662 
5663 	if (!skb) {
5664 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5665 		if (skb) {
5666 			napi->skb = skb;
5667 			skb_mark_napi_id(skb, napi);
5668 		}
5669 	}
5670 	return skb;
5671 }
5672 EXPORT_SYMBOL(napi_get_frags);
5673 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)5674 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5675 				      struct sk_buff *skb,
5676 				      gro_result_t ret)
5677 {
5678 	switch (ret) {
5679 	case GRO_NORMAL:
5680 	case GRO_HELD:
5681 		__skb_push(skb, ETH_HLEN);
5682 		skb->protocol = eth_type_trans(skb, skb->dev);
5683 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5684 			ret = GRO_DROP;
5685 		break;
5686 
5687 	case GRO_DROP:
5688 		napi_reuse_skb(napi, skb);
5689 		break;
5690 
5691 	case GRO_MERGED_FREE:
5692 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5693 			napi_skb_free_stolen_head(skb);
5694 		else
5695 			napi_reuse_skb(napi, skb);
5696 		break;
5697 
5698 	case GRO_MERGED:
5699 	case GRO_CONSUMED:
5700 		break;
5701 	}
5702 
5703 	return ret;
5704 }
5705 
5706 /* Upper GRO stack assumes network header starts at gro_offset=0
5707  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5708  * We copy ethernet header into skb->data to have a common layout.
5709  */
napi_frags_skb(struct napi_struct * napi)5710 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5711 {
5712 	struct sk_buff *skb = napi->skb;
5713 	const struct ethhdr *eth;
5714 	unsigned int hlen = sizeof(*eth);
5715 
5716 	napi->skb = NULL;
5717 
5718 	skb_reset_mac_header(skb);
5719 	skb_gro_reset_offset(skb);
5720 
5721 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5722 		eth = skb_gro_header_slow(skb, hlen, 0);
5723 		if (unlikely(!eth)) {
5724 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5725 					     __func__, napi->dev->name);
5726 			napi_reuse_skb(napi, skb);
5727 			return NULL;
5728 		}
5729 	} else {
5730 		eth = (const struct ethhdr *)skb->data;
5731 		gro_pull_from_frag0(skb, hlen);
5732 		NAPI_GRO_CB(skb)->frag0 += hlen;
5733 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5734 	}
5735 	__skb_pull(skb, hlen);
5736 
5737 	/*
5738 	 * This works because the only protocols we care about don't require
5739 	 * special handling.
5740 	 * We'll fix it up properly in napi_frags_finish()
5741 	 */
5742 	skb->protocol = eth->h_proto;
5743 
5744 	return skb;
5745 }
5746 
napi_gro_frags(struct napi_struct * napi)5747 gro_result_t napi_gro_frags(struct napi_struct *napi)
5748 {
5749 	struct sk_buff *skb = napi_frags_skb(napi);
5750 
5751 	if (!skb)
5752 		return GRO_DROP;
5753 
5754 	trace_napi_gro_frags_entry(skb);
5755 
5756 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5757 }
5758 EXPORT_SYMBOL(napi_gro_frags);
5759 
5760 /* Compute the checksum from gro_offset and return the folded value
5761  * after adding in any pseudo checksum.
5762  */
__skb_gro_checksum_complete(struct sk_buff * skb)5763 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5764 {
5765 	__wsum wsum;
5766 	__sum16 sum;
5767 
5768 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5769 
5770 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5771 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5772 	if (likely(!sum)) {
5773 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5774 		    !skb->csum_complete_sw)
5775 			netdev_rx_csum_fault(skb->dev);
5776 	}
5777 
5778 	NAPI_GRO_CB(skb)->csum = wsum;
5779 	NAPI_GRO_CB(skb)->csum_valid = 1;
5780 
5781 	return sum;
5782 }
5783 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5784 
net_rps_send_ipi(struct softnet_data * remsd)5785 static void net_rps_send_ipi(struct softnet_data *remsd)
5786 {
5787 #ifdef CONFIG_RPS
5788 	while (remsd) {
5789 		struct softnet_data *next = remsd->rps_ipi_next;
5790 
5791 		if (cpu_online(remsd->cpu))
5792 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5793 		remsd = next;
5794 	}
5795 #endif
5796 }
5797 
5798 /*
5799  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5800  * Note: called with local irq disabled, but exits with local irq enabled.
5801  */
net_rps_action_and_irq_enable(struct softnet_data * sd)5802 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5803 {
5804 #ifdef CONFIG_RPS
5805 	struct softnet_data *remsd = sd->rps_ipi_list;
5806 
5807 	if (remsd) {
5808 		sd->rps_ipi_list = NULL;
5809 
5810 		local_irq_enable();
5811 
5812 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5813 		net_rps_send_ipi(remsd);
5814 	} else
5815 #endif
5816 		local_irq_enable();
5817 }
5818 
sd_has_rps_ipi_waiting(struct softnet_data * sd)5819 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5820 {
5821 #ifdef CONFIG_RPS
5822 	return sd->rps_ipi_list != NULL;
5823 #else
5824 	return false;
5825 #endif
5826 }
5827 
process_backlog(struct napi_struct * napi,int quota)5828 static int process_backlog(struct napi_struct *napi, int quota)
5829 {
5830 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5831 	bool again = true;
5832 	int work = 0;
5833 
5834 	/* Check if we have pending ipi, its better to send them now,
5835 	 * not waiting net_rx_action() end.
5836 	 */
5837 	if (sd_has_rps_ipi_waiting(sd)) {
5838 		local_irq_disable();
5839 		net_rps_action_and_irq_enable(sd);
5840 	}
5841 
5842 	napi->weight = dev_rx_weight;
5843 	while (again) {
5844 		struct sk_buff *skb;
5845 
5846 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5847 			rcu_read_lock();
5848 			__netif_receive_skb(skb);
5849 			rcu_read_unlock();
5850 			input_queue_head_incr(sd);
5851 			if (++work >= quota)
5852 				return work;
5853 
5854 		}
5855 
5856 		local_irq_disable();
5857 		rps_lock(sd);
5858 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5859 			/*
5860 			 * Inline a custom version of __napi_complete().
5861 			 * only current cpu owns and manipulates this napi,
5862 			 * and NAPI_STATE_SCHED is the only possible flag set
5863 			 * on backlog.
5864 			 * We can use a plain write instead of clear_bit(),
5865 			 * and we dont need an smp_mb() memory barrier.
5866 			 */
5867 			napi->state = 0;
5868 			again = false;
5869 		} else {
5870 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5871 						   &sd->process_queue);
5872 		}
5873 		rps_unlock(sd);
5874 		local_irq_enable();
5875 	}
5876 
5877 	return work;
5878 }
5879 
5880 /**
5881  * __napi_schedule - schedule for receive
5882  * @n: entry to schedule
5883  *
5884  * The entry's receive function will be scheduled to run.
5885  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5886  */
__napi_schedule(struct napi_struct * n)5887 void __napi_schedule(struct napi_struct *n)
5888 {
5889 	unsigned long flags;
5890 
5891 	local_irq_save(flags);
5892 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5893 	local_irq_restore(flags);
5894 }
5895 EXPORT_SYMBOL(__napi_schedule);
5896 
5897 /**
5898  *	napi_schedule_prep - check if napi can be scheduled
5899  *	@n: napi context
5900  *
5901  * Test if NAPI routine is already running, and if not mark
5902  * it as running.  This is used as a condition variable
5903  * insure only one NAPI poll instance runs.  We also make
5904  * sure there is no pending NAPI disable.
5905  */
napi_schedule_prep(struct napi_struct * n)5906 bool napi_schedule_prep(struct napi_struct *n)
5907 {
5908 	unsigned long val, new;
5909 
5910 	do {
5911 		val = READ_ONCE(n->state);
5912 		if (unlikely(val & NAPIF_STATE_DISABLE))
5913 			return false;
5914 		new = val | NAPIF_STATE_SCHED;
5915 
5916 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5917 		 * This was suggested by Alexander Duyck, as compiler
5918 		 * emits better code than :
5919 		 * if (val & NAPIF_STATE_SCHED)
5920 		 *     new |= NAPIF_STATE_MISSED;
5921 		 */
5922 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5923 						   NAPIF_STATE_MISSED;
5924 	} while (cmpxchg(&n->state, val, new) != val);
5925 
5926 	return !(val & NAPIF_STATE_SCHED);
5927 }
5928 EXPORT_SYMBOL(napi_schedule_prep);
5929 
5930 /**
5931  * __napi_schedule_irqoff - schedule for receive
5932  * @n: entry to schedule
5933  *
5934  * Variant of __napi_schedule() assuming hard irqs are masked
5935  */
__napi_schedule_irqoff(struct napi_struct * n)5936 void __napi_schedule_irqoff(struct napi_struct *n)
5937 {
5938 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5939 }
5940 EXPORT_SYMBOL(__napi_schedule_irqoff);
5941 
napi_complete_done(struct napi_struct * n,int work_done)5942 bool napi_complete_done(struct napi_struct *n, int work_done)
5943 {
5944 	unsigned long flags, val, new;
5945 
5946 	/*
5947 	 * 1) Don't let napi dequeue from the cpu poll list
5948 	 *    just in case its running on a different cpu.
5949 	 * 2) If we are busy polling, do nothing here, we have
5950 	 *    the guarantee we will be called later.
5951 	 */
5952 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5953 				 NAPIF_STATE_IN_BUSY_POLL)))
5954 		return false;
5955 
5956 	if (n->gro_bitmask) {
5957 		unsigned long timeout = 0;
5958 
5959 		if (work_done)
5960 			timeout = n->dev->gro_flush_timeout;
5961 
5962 		/* When the NAPI instance uses a timeout and keeps postponing
5963 		 * it, we need to bound somehow the time packets are kept in
5964 		 * the GRO layer
5965 		 */
5966 		napi_gro_flush(n, !!timeout);
5967 		if (timeout)
5968 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5969 				      HRTIMER_MODE_REL_PINNED);
5970 	}
5971 	if (unlikely(!list_empty(&n->poll_list))) {
5972 		/* If n->poll_list is not empty, we need to mask irqs */
5973 		local_irq_save(flags);
5974 		list_del_init(&n->poll_list);
5975 		local_irq_restore(flags);
5976 	}
5977 
5978 	do {
5979 		val = READ_ONCE(n->state);
5980 
5981 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5982 
5983 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5984 
5985 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5986 		 * because we will call napi->poll() one more time.
5987 		 * This C code was suggested by Alexander Duyck to help gcc.
5988 		 */
5989 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5990 						    NAPIF_STATE_SCHED;
5991 	} while (cmpxchg(&n->state, val, new) != val);
5992 
5993 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5994 		__napi_schedule(n);
5995 		return false;
5996 	}
5997 
5998 	return true;
5999 }
6000 EXPORT_SYMBOL(napi_complete_done);
6001 
6002 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6003 static struct napi_struct *napi_by_id(unsigned int napi_id)
6004 {
6005 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6006 	struct napi_struct *napi;
6007 
6008 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6009 		if (napi->napi_id == napi_id)
6010 			return napi;
6011 
6012 	return NULL;
6013 }
6014 
6015 #if defined(CONFIG_NET_RX_BUSY_POLL)
6016 
6017 #define BUSY_POLL_BUDGET 8
6018 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6019 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6020 {
6021 	int rc;
6022 
6023 	/* Busy polling means there is a high chance device driver hard irq
6024 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6025 	 * set in napi_schedule_prep().
6026 	 * Since we are about to call napi->poll() once more, we can safely
6027 	 * clear NAPI_STATE_MISSED.
6028 	 *
6029 	 * Note: x86 could use a single "lock and ..." instruction
6030 	 * to perform these two clear_bit()
6031 	 */
6032 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6033 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6034 
6035 	local_bh_disable();
6036 
6037 	/* All we really want here is to re-enable device interrupts.
6038 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6039 	 */
6040 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6041 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6042 	netpoll_poll_unlock(have_poll_lock);
6043 	if (rc == BUSY_POLL_BUDGET)
6044 		__napi_schedule(napi);
6045 	local_bh_enable();
6046 }
6047 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6048 void napi_busy_loop(unsigned int napi_id,
6049 		    bool (*loop_end)(void *, unsigned long),
6050 		    void *loop_end_arg)
6051 {
6052 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6053 	int (*napi_poll)(struct napi_struct *napi, int budget);
6054 	void *have_poll_lock = NULL;
6055 	struct napi_struct *napi;
6056 
6057 restart:
6058 	napi_poll = NULL;
6059 
6060 	rcu_read_lock();
6061 
6062 	napi = napi_by_id(napi_id);
6063 	if (!napi)
6064 		goto out;
6065 
6066 	preempt_disable();
6067 	for (;;) {
6068 		int work = 0;
6069 
6070 		local_bh_disable();
6071 		if (!napi_poll) {
6072 			unsigned long val = READ_ONCE(napi->state);
6073 
6074 			/* If multiple threads are competing for this napi,
6075 			 * we avoid dirtying napi->state as much as we can.
6076 			 */
6077 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6078 				   NAPIF_STATE_IN_BUSY_POLL))
6079 				goto count;
6080 			if (cmpxchg(&napi->state, val,
6081 				    val | NAPIF_STATE_IN_BUSY_POLL |
6082 					  NAPIF_STATE_SCHED) != val)
6083 				goto count;
6084 			have_poll_lock = netpoll_poll_lock(napi);
6085 			napi_poll = napi->poll;
6086 		}
6087 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6088 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6089 count:
6090 		if (work > 0)
6091 			__NET_ADD_STATS(dev_net(napi->dev),
6092 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6093 		local_bh_enable();
6094 
6095 		if (!loop_end || loop_end(loop_end_arg, start_time))
6096 			break;
6097 
6098 		if (unlikely(need_resched())) {
6099 			if (napi_poll)
6100 				busy_poll_stop(napi, have_poll_lock);
6101 			preempt_enable();
6102 			rcu_read_unlock();
6103 			cond_resched();
6104 			if (loop_end(loop_end_arg, start_time))
6105 				return;
6106 			goto restart;
6107 		}
6108 		cpu_relax();
6109 	}
6110 	if (napi_poll)
6111 		busy_poll_stop(napi, have_poll_lock);
6112 	preempt_enable();
6113 out:
6114 	rcu_read_unlock();
6115 }
6116 EXPORT_SYMBOL(napi_busy_loop);
6117 
6118 #endif /* CONFIG_NET_RX_BUSY_POLL */
6119 
napi_hash_add(struct napi_struct * napi)6120 static void napi_hash_add(struct napi_struct *napi)
6121 {
6122 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6123 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6124 		return;
6125 
6126 	spin_lock(&napi_hash_lock);
6127 
6128 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6129 	do {
6130 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6131 			napi_gen_id = MIN_NAPI_ID;
6132 	} while (napi_by_id(napi_gen_id));
6133 	napi->napi_id = napi_gen_id;
6134 
6135 	hlist_add_head_rcu(&napi->napi_hash_node,
6136 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6137 
6138 	spin_unlock(&napi_hash_lock);
6139 }
6140 
6141 /* Warning : caller is responsible to make sure rcu grace period
6142  * is respected before freeing memory containing @napi
6143  */
napi_hash_del(struct napi_struct * napi)6144 bool napi_hash_del(struct napi_struct *napi)
6145 {
6146 	bool rcu_sync_needed = false;
6147 
6148 	spin_lock(&napi_hash_lock);
6149 
6150 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6151 		rcu_sync_needed = true;
6152 		hlist_del_rcu(&napi->napi_hash_node);
6153 	}
6154 	spin_unlock(&napi_hash_lock);
6155 	return rcu_sync_needed;
6156 }
6157 EXPORT_SYMBOL_GPL(napi_hash_del);
6158 
napi_watchdog(struct hrtimer * timer)6159 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6160 {
6161 	struct napi_struct *napi;
6162 
6163 	napi = container_of(timer, struct napi_struct, timer);
6164 
6165 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6166 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6167 	 */
6168 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6169 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6170 		__napi_schedule_irqoff(napi);
6171 
6172 	return HRTIMER_NORESTART;
6173 }
6174 
init_gro_hash(struct napi_struct * napi)6175 static void init_gro_hash(struct napi_struct *napi)
6176 {
6177 	int i;
6178 
6179 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6180 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6181 		napi->gro_hash[i].count = 0;
6182 	}
6183 	napi->gro_bitmask = 0;
6184 }
6185 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6186 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6187 		    int (*poll)(struct napi_struct *, int), int weight)
6188 {
6189 	INIT_LIST_HEAD(&napi->poll_list);
6190 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6191 	napi->timer.function = napi_watchdog;
6192 	init_gro_hash(napi);
6193 	napi->skb = NULL;
6194 	napi->poll = poll;
6195 	if (weight > NAPI_POLL_WEIGHT)
6196 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6197 			    weight, dev->name);
6198 	napi->weight = weight;
6199 	napi->dev = dev;
6200 #ifdef CONFIG_NETPOLL
6201 	napi->poll_owner = -1;
6202 #endif
6203 	set_bit(NAPI_STATE_SCHED, &napi->state);
6204 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6205 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6206 	napi_hash_add(napi);
6207 }
6208 EXPORT_SYMBOL(netif_napi_add);
6209 
napi_disable(struct napi_struct * n)6210 void napi_disable(struct napi_struct *n)
6211 {
6212 	might_sleep();
6213 	set_bit(NAPI_STATE_DISABLE, &n->state);
6214 
6215 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6216 		msleep(1);
6217 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6218 		msleep(1);
6219 
6220 	hrtimer_cancel(&n->timer);
6221 
6222 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6223 }
6224 EXPORT_SYMBOL(napi_disable);
6225 
flush_gro_hash(struct napi_struct * napi)6226 static void flush_gro_hash(struct napi_struct *napi)
6227 {
6228 	int i;
6229 
6230 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6231 		struct sk_buff *skb, *n;
6232 
6233 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6234 			kfree_skb(skb);
6235 		napi->gro_hash[i].count = 0;
6236 	}
6237 }
6238 
6239 /* Must be called in process context */
netif_napi_del(struct napi_struct * napi)6240 void netif_napi_del(struct napi_struct *napi)
6241 {
6242 	might_sleep();
6243 	if (napi_hash_del(napi))
6244 		synchronize_net();
6245 	list_del_init(&napi->dev_list);
6246 	napi_free_frags(napi);
6247 
6248 	flush_gro_hash(napi);
6249 	napi->gro_bitmask = 0;
6250 }
6251 EXPORT_SYMBOL(netif_napi_del);
6252 
napi_poll(struct napi_struct * n,struct list_head * repoll)6253 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6254 {
6255 	void *have;
6256 	int work, weight;
6257 
6258 	list_del_init(&n->poll_list);
6259 
6260 	have = netpoll_poll_lock(n);
6261 
6262 	weight = n->weight;
6263 
6264 	/* This NAPI_STATE_SCHED test is for avoiding a race
6265 	 * with netpoll's poll_napi().  Only the entity which
6266 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6267 	 * actually make the ->poll() call.  Therefore we avoid
6268 	 * accidentally calling ->poll() when NAPI is not scheduled.
6269 	 */
6270 	work = 0;
6271 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6272 		work = n->poll(n, weight);
6273 		trace_napi_poll(n, work, weight);
6274 	}
6275 
6276 	WARN_ON_ONCE(work > weight);
6277 
6278 	if (likely(work < weight))
6279 		goto out_unlock;
6280 
6281 	/* Drivers must not modify the NAPI state if they
6282 	 * consume the entire weight.  In such cases this code
6283 	 * still "owns" the NAPI instance and therefore can
6284 	 * move the instance around on the list at-will.
6285 	 */
6286 	if (unlikely(napi_disable_pending(n))) {
6287 		napi_complete(n);
6288 		goto out_unlock;
6289 	}
6290 
6291 	if (n->gro_bitmask) {
6292 		/* flush too old packets
6293 		 * If HZ < 1000, flush all packets.
6294 		 */
6295 		napi_gro_flush(n, HZ >= 1000);
6296 	}
6297 
6298 	/* Some drivers may have called napi_schedule
6299 	 * prior to exhausting their budget.
6300 	 */
6301 	if (unlikely(!list_empty(&n->poll_list))) {
6302 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6303 			     n->dev ? n->dev->name : "backlog");
6304 		goto out_unlock;
6305 	}
6306 
6307 	list_add_tail(&n->poll_list, repoll);
6308 
6309 out_unlock:
6310 	netpoll_poll_unlock(have);
6311 
6312 	return work;
6313 }
6314 
net_rx_action(struct softirq_action * h)6315 static __latent_entropy void net_rx_action(struct softirq_action *h)
6316 {
6317 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6318 	unsigned long time_limit = jiffies +
6319 		usecs_to_jiffies(netdev_budget_usecs);
6320 	int budget = netdev_budget;
6321 	LIST_HEAD(list);
6322 	LIST_HEAD(repoll);
6323 
6324 	local_irq_disable();
6325 	list_splice_init(&sd->poll_list, &list);
6326 	local_irq_enable();
6327 
6328 	for (;;) {
6329 		struct napi_struct *n;
6330 
6331 		if (list_empty(&list)) {
6332 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6333 				goto out;
6334 			break;
6335 		}
6336 
6337 		n = list_first_entry(&list, struct napi_struct, poll_list);
6338 		budget -= napi_poll(n, &repoll);
6339 
6340 		/* If softirq window is exhausted then punt.
6341 		 * Allow this to run for 2 jiffies since which will allow
6342 		 * an average latency of 1.5/HZ.
6343 		 */
6344 		if (unlikely(budget <= 0 ||
6345 			     time_after_eq(jiffies, time_limit))) {
6346 			sd->time_squeeze++;
6347 			break;
6348 		}
6349 	}
6350 
6351 	local_irq_disable();
6352 
6353 	list_splice_tail_init(&sd->poll_list, &list);
6354 	list_splice_tail(&repoll, &list);
6355 	list_splice(&list, &sd->poll_list);
6356 	if (!list_empty(&sd->poll_list))
6357 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6358 
6359 	net_rps_action_and_irq_enable(sd);
6360 out:
6361 	__kfree_skb_flush();
6362 }
6363 
6364 struct netdev_adjacent {
6365 	struct net_device *dev;
6366 
6367 	/* upper master flag, there can only be one master device per list */
6368 	bool master;
6369 
6370 	/* counter for the number of times this device was added to us */
6371 	u16 ref_nr;
6372 
6373 	/* private field for the users */
6374 	void *private;
6375 
6376 	struct list_head list;
6377 	struct rcu_head rcu;
6378 };
6379 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6380 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6381 						 struct list_head *adj_list)
6382 {
6383 	struct netdev_adjacent *adj;
6384 
6385 	list_for_each_entry(adj, adj_list, list) {
6386 		if (adj->dev == adj_dev)
6387 			return adj;
6388 	}
6389 	return NULL;
6390 }
6391 
__netdev_has_upper_dev(struct net_device * upper_dev,void * data)6392 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6393 {
6394 	struct net_device *dev = data;
6395 
6396 	return upper_dev == dev;
6397 }
6398 
6399 /**
6400  * netdev_has_upper_dev - Check if device is linked to an upper device
6401  * @dev: device
6402  * @upper_dev: upper device to check
6403  *
6404  * Find out if a device is linked to specified upper device and return true
6405  * in case it is. Note that this checks only immediate upper device,
6406  * not through a complete stack of devices. The caller must hold the RTNL lock.
6407  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6408 bool netdev_has_upper_dev(struct net_device *dev,
6409 			  struct net_device *upper_dev)
6410 {
6411 	ASSERT_RTNL();
6412 
6413 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6414 					     upper_dev);
6415 }
6416 EXPORT_SYMBOL(netdev_has_upper_dev);
6417 
6418 /**
6419  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6420  * @dev: device
6421  * @upper_dev: upper device to check
6422  *
6423  * Find out if a device is linked to specified upper device and return true
6424  * in case it is. Note that this checks the entire upper device chain.
6425  * The caller must hold rcu lock.
6426  */
6427 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6428 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6429 				  struct net_device *upper_dev)
6430 {
6431 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6432 					       upper_dev);
6433 }
6434 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6435 
6436 /**
6437  * netdev_has_any_upper_dev - Check if device is linked to some device
6438  * @dev: device
6439  *
6440  * Find out if a device is linked to an upper device and return true in case
6441  * it is. The caller must hold the RTNL lock.
6442  */
netdev_has_any_upper_dev(struct net_device * dev)6443 bool netdev_has_any_upper_dev(struct net_device *dev)
6444 {
6445 	ASSERT_RTNL();
6446 
6447 	return !list_empty(&dev->adj_list.upper);
6448 }
6449 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6450 
6451 /**
6452  * netdev_master_upper_dev_get - Get master upper device
6453  * @dev: device
6454  *
6455  * Find a master upper device and return pointer to it or NULL in case
6456  * it's not there. The caller must hold the RTNL lock.
6457  */
netdev_master_upper_dev_get(struct net_device * dev)6458 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6459 {
6460 	struct netdev_adjacent *upper;
6461 
6462 	ASSERT_RTNL();
6463 
6464 	if (list_empty(&dev->adj_list.upper))
6465 		return NULL;
6466 
6467 	upper = list_first_entry(&dev->adj_list.upper,
6468 				 struct netdev_adjacent, list);
6469 	if (likely(upper->master))
6470 		return upper->dev;
6471 	return NULL;
6472 }
6473 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6474 
6475 /**
6476  * netdev_has_any_lower_dev - Check if device is linked to some device
6477  * @dev: device
6478  *
6479  * Find out if a device is linked to a lower device and return true in case
6480  * it is. The caller must hold the RTNL lock.
6481  */
netdev_has_any_lower_dev(struct net_device * dev)6482 static bool netdev_has_any_lower_dev(struct net_device *dev)
6483 {
6484 	ASSERT_RTNL();
6485 
6486 	return !list_empty(&dev->adj_list.lower);
6487 }
6488 
netdev_adjacent_get_private(struct list_head * adj_list)6489 void *netdev_adjacent_get_private(struct list_head *adj_list)
6490 {
6491 	struct netdev_adjacent *adj;
6492 
6493 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6494 
6495 	return adj->private;
6496 }
6497 EXPORT_SYMBOL(netdev_adjacent_get_private);
6498 
6499 /**
6500  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6501  * @dev: device
6502  * @iter: list_head ** of the current position
6503  *
6504  * Gets the next device from the dev's upper list, starting from iter
6505  * position. The caller must hold RCU read lock.
6506  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6507 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6508 						 struct list_head **iter)
6509 {
6510 	struct netdev_adjacent *upper;
6511 
6512 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6513 
6514 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6515 
6516 	if (&upper->list == &dev->adj_list.upper)
6517 		return NULL;
6518 
6519 	*iter = &upper->list;
6520 
6521 	return upper->dev;
6522 }
6523 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6524 
netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter)6525 static struct net_device *netdev_next_upper_dev(struct net_device *dev,
6526 						struct list_head **iter)
6527 {
6528 	struct netdev_adjacent *upper;
6529 
6530 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6531 
6532 	if (&upper->list == &dev->adj_list.upper)
6533 		return NULL;
6534 
6535 	*iter = &upper->list;
6536 
6537 	return upper->dev;
6538 }
6539 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)6540 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6541 						    struct list_head **iter)
6542 {
6543 	struct netdev_adjacent *upper;
6544 
6545 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6546 
6547 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6548 
6549 	if (&upper->list == &dev->adj_list.upper)
6550 		return NULL;
6551 
6552 	*iter = &upper->list;
6553 
6554 	return upper->dev;
6555 }
6556 
netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6557 static int netdev_walk_all_upper_dev(struct net_device *dev,
6558 				     int (*fn)(struct net_device *dev,
6559 					       void *data),
6560 				     void *data)
6561 {
6562 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6563 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6564 	int ret, cur = 0;
6565 
6566 	now = dev;
6567 	iter = &dev->adj_list.upper;
6568 
6569 	while (1) {
6570 		if (now != dev) {
6571 			ret = fn(now, data);
6572 			if (ret)
6573 				return ret;
6574 		}
6575 
6576 		next = NULL;
6577 		while (1) {
6578 			udev = netdev_next_upper_dev(now, &iter);
6579 			if (!udev)
6580 				break;
6581 
6582 			next = udev;
6583 			niter = &udev->adj_list.upper;
6584 			dev_stack[cur] = now;
6585 			iter_stack[cur++] = iter;
6586 			break;
6587 		}
6588 
6589 		if (!next) {
6590 			if (!cur)
6591 				return 0;
6592 			next = dev_stack[--cur];
6593 			niter = iter_stack[cur];
6594 		}
6595 
6596 		now = next;
6597 		iter = niter;
6598 	}
6599 
6600 	return 0;
6601 }
6602 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6603 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6604 				  int (*fn)(struct net_device *dev,
6605 					    void *data),
6606 				  void *data)
6607 {
6608 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6609 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6610 	int ret, cur = 0;
6611 
6612 	now = dev;
6613 	iter = &dev->adj_list.upper;
6614 
6615 	while (1) {
6616 		if (now != dev) {
6617 			ret = fn(now, data);
6618 			if (ret)
6619 				return ret;
6620 		}
6621 
6622 		next = NULL;
6623 		while (1) {
6624 			udev = netdev_next_upper_dev_rcu(now, &iter);
6625 			if (!udev)
6626 				break;
6627 
6628 			next = udev;
6629 			niter = &udev->adj_list.upper;
6630 			dev_stack[cur] = now;
6631 			iter_stack[cur++] = iter;
6632 			break;
6633 		}
6634 
6635 		if (!next) {
6636 			if (!cur)
6637 				return 0;
6638 			next = dev_stack[--cur];
6639 			niter = iter_stack[cur];
6640 		}
6641 
6642 		now = next;
6643 		iter = niter;
6644 	}
6645 
6646 	return 0;
6647 }
6648 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6649 
6650 /**
6651  * netdev_lower_get_next_private - Get the next ->private from the
6652  *				   lower neighbour list
6653  * @dev: device
6654  * @iter: list_head ** of the current position
6655  *
6656  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6657  * list, starting from iter position. The caller must hold either hold the
6658  * RTNL lock or its own locking that guarantees that the neighbour lower
6659  * list will remain unchanged.
6660  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)6661 void *netdev_lower_get_next_private(struct net_device *dev,
6662 				    struct list_head **iter)
6663 {
6664 	struct netdev_adjacent *lower;
6665 
6666 	lower = list_entry(*iter, struct netdev_adjacent, list);
6667 
6668 	if (&lower->list == &dev->adj_list.lower)
6669 		return NULL;
6670 
6671 	*iter = lower->list.next;
6672 
6673 	return lower->private;
6674 }
6675 EXPORT_SYMBOL(netdev_lower_get_next_private);
6676 
6677 /**
6678  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6679  *				       lower neighbour list, RCU
6680  *				       variant
6681  * @dev: device
6682  * @iter: list_head ** of the current position
6683  *
6684  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6685  * list, starting from iter position. The caller must hold RCU read lock.
6686  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)6687 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6688 					struct list_head **iter)
6689 {
6690 	struct netdev_adjacent *lower;
6691 
6692 	WARN_ON_ONCE(!rcu_read_lock_held());
6693 
6694 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6695 
6696 	if (&lower->list == &dev->adj_list.lower)
6697 		return NULL;
6698 
6699 	*iter = &lower->list;
6700 
6701 	return lower->private;
6702 }
6703 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6704 
6705 /**
6706  * netdev_lower_get_next - Get the next device from the lower neighbour
6707  *                         list
6708  * @dev: device
6709  * @iter: list_head ** of the current position
6710  *
6711  * Gets the next netdev_adjacent from the dev's lower neighbour
6712  * list, starting from iter position. The caller must hold RTNL lock or
6713  * its own locking that guarantees that the neighbour lower
6714  * list will remain unchanged.
6715  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)6716 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6717 {
6718 	struct netdev_adjacent *lower;
6719 
6720 	lower = list_entry(*iter, struct netdev_adjacent, list);
6721 
6722 	if (&lower->list == &dev->adj_list.lower)
6723 		return NULL;
6724 
6725 	*iter = lower->list.next;
6726 
6727 	return lower->dev;
6728 }
6729 EXPORT_SYMBOL(netdev_lower_get_next);
6730 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)6731 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6732 						struct list_head **iter)
6733 {
6734 	struct netdev_adjacent *lower;
6735 
6736 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6737 
6738 	if (&lower->list == &dev->adj_list.lower)
6739 		return NULL;
6740 
6741 	*iter = &lower->list;
6742 
6743 	return lower->dev;
6744 }
6745 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6746 int netdev_walk_all_lower_dev(struct net_device *dev,
6747 			      int (*fn)(struct net_device *dev,
6748 					void *data),
6749 			      void *data)
6750 {
6751 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6752 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6753 	int ret, cur = 0;
6754 
6755 	now = dev;
6756 	iter = &dev->adj_list.lower;
6757 
6758 	while (1) {
6759 		if (now != dev) {
6760 			ret = fn(now, data);
6761 			if (ret)
6762 				return ret;
6763 		}
6764 
6765 		next = NULL;
6766 		while (1) {
6767 			ldev = netdev_next_lower_dev(now, &iter);
6768 			if (!ldev)
6769 				break;
6770 
6771 			next = ldev;
6772 			niter = &ldev->adj_list.lower;
6773 			dev_stack[cur] = now;
6774 			iter_stack[cur++] = iter;
6775 			break;
6776 		}
6777 
6778 		if (!next) {
6779 			if (!cur)
6780 				return 0;
6781 			next = dev_stack[--cur];
6782 			niter = iter_stack[cur];
6783 		}
6784 
6785 		now = next;
6786 		iter = niter;
6787 	}
6788 
6789 	return 0;
6790 }
6791 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6792 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)6793 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6794 						    struct list_head **iter)
6795 {
6796 	struct netdev_adjacent *lower;
6797 
6798 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6799 	if (&lower->list == &dev->adj_list.lower)
6800 		return NULL;
6801 
6802 	*iter = &lower->list;
6803 
6804 	return lower->dev;
6805 }
6806 
__netdev_upper_depth(struct net_device * dev)6807 static u8 __netdev_upper_depth(struct net_device *dev)
6808 {
6809 	struct net_device *udev;
6810 	struct list_head *iter;
6811 	u8 max_depth = 0;
6812 
6813 	for (iter = &dev->adj_list.upper,
6814 	     udev = netdev_next_upper_dev(dev, &iter);
6815 	     udev;
6816 	     udev = netdev_next_upper_dev(dev, &iter)) {
6817 		if (max_depth < udev->upper_level)
6818 			max_depth = udev->upper_level;
6819 	}
6820 
6821 	return max_depth;
6822 }
6823 
__netdev_lower_depth(struct net_device * dev)6824 static u8 __netdev_lower_depth(struct net_device *dev)
6825 {
6826 	struct net_device *ldev;
6827 	struct list_head *iter;
6828 	u8 max_depth = 0;
6829 
6830 	for (iter = &dev->adj_list.lower,
6831 	     ldev = netdev_next_lower_dev(dev, &iter);
6832 	     ldev;
6833 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6834 		if (max_depth < ldev->lower_level)
6835 			max_depth = ldev->lower_level;
6836 	}
6837 
6838 	return max_depth;
6839 }
6840 
__netdev_update_upper_level(struct net_device * dev,void * data)6841 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6842 {
6843 	dev->upper_level = __netdev_upper_depth(dev) + 1;
6844 	return 0;
6845 }
6846 
__netdev_update_lower_level(struct net_device * dev,void * data)6847 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6848 {
6849 	dev->lower_level = __netdev_lower_depth(dev) + 1;
6850 	return 0;
6851 }
6852 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6853 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6854 				  int (*fn)(struct net_device *dev,
6855 					    void *data),
6856 				  void *data)
6857 {
6858 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6859 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6860 	int ret, cur = 0;
6861 
6862 	now = dev;
6863 	iter = &dev->adj_list.lower;
6864 
6865 	while (1) {
6866 		if (now != dev) {
6867 			ret = fn(now, data);
6868 			if (ret)
6869 				return ret;
6870 		}
6871 
6872 		next = NULL;
6873 		while (1) {
6874 			ldev = netdev_next_lower_dev_rcu(now, &iter);
6875 			if (!ldev)
6876 				break;
6877 
6878 			next = ldev;
6879 			niter = &ldev->adj_list.lower;
6880 			dev_stack[cur] = now;
6881 			iter_stack[cur++] = iter;
6882 			break;
6883 		}
6884 
6885 		if (!next) {
6886 			if (!cur)
6887 				return 0;
6888 			next = dev_stack[--cur];
6889 			niter = iter_stack[cur];
6890 		}
6891 
6892 		now = next;
6893 		iter = niter;
6894 	}
6895 
6896 	return 0;
6897 }
6898 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6899 
6900 /**
6901  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6902  *				       lower neighbour list, RCU
6903  *				       variant
6904  * @dev: device
6905  *
6906  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6907  * list. The caller must hold RCU read lock.
6908  */
netdev_lower_get_first_private_rcu(struct net_device * dev)6909 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6910 {
6911 	struct netdev_adjacent *lower;
6912 
6913 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6914 			struct netdev_adjacent, list);
6915 	if (lower)
6916 		return lower->private;
6917 	return NULL;
6918 }
6919 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6920 
6921 /**
6922  * netdev_master_upper_dev_get_rcu - Get master upper device
6923  * @dev: device
6924  *
6925  * Find a master upper device and return pointer to it or NULL in case
6926  * it's not there. The caller must hold the RCU read lock.
6927  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)6928 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6929 {
6930 	struct netdev_adjacent *upper;
6931 
6932 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6933 				       struct netdev_adjacent, list);
6934 	if (upper && likely(upper->master))
6935 		return upper->dev;
6936 	return NULL;
6937 }
6938 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6939 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6940 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6941 			      struct net_device *adj_dev,
6942 			      struct list_head *dev_list)
6943 {
6944 	char linkname[IFNAMSIZ+7];
6945 
6946 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6947 		"upper_%s" : "lower_%s", adj_dev->name);
6948 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6949 				 linkname);
6950 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)6951 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6952 			       char *name,
6953 			       struct list_head *dev_list)
6954 {
6955 	char linkname[IFNAMSIZ+7];
6956 
6957 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6958 		"upper_%s" : "lower_%s", name);
6959 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6960 }
6961 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6962 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6963 						 struct net_device *adj_dev,
6964 						 struct list_head *dev_list)
6965 {
6966 	return (dev_list == &dev->adj_list.upper ||
6967 		dev_list == &dev->adj_list.lower) &&
6968 		net_eq(dev_net(dev), dev_net(adj_dev));
6969 }
6970 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)6971 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6972 					struct net_device *adj_dev,
6973 					struct list_head *dev_list,
6974 					void *private, bool master)
6975 {
6976 	struct netdev_adjacent *adj;
6977 	int ret;
6978 
6979 	adj = __netdev_find_adj(adj_dev, dev_list);
6980 
6981 	if (adj) {
6982 		adj->ref_nr += 1;
6983 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6984 			 dev->name, adj_dev->name, adj->ref_nr);
6985 
6986 		return 0;
6987 	}
6988 
6989 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6990 	if (!adj)
6991 		return -ENOMEM;
6992 
6993 	adj->dev = adj_dev;
6994 	adj->master = master;
6995 	adj->ref_nr = 1;
6996 	adj->private = private;
6997 	dev_hold(adj_dev);
6998 
6999 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7000 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7001 
7002 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7003 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7004 		if (ret)
7005 			goto free_adj;
7006 	}
7007 
7008 	/* Ensure that master link is always the first item in list. */
7009 	if (master) {
7010 		ret = sysfs_create_link(&(dev->dev.kobj),
7011 					&(adj_dev->dev.kobj), "master");
7012 		if (ret)
7013 			goto remove_symlinks;
7014 
7015 		list_add_rcu(&adj->list, dev_list);
7016 	} else {
7017 		list_add_tail_rcu(&adj->list, dev_list);
7018 	}
7019 
7020 	return 0;
7021 
7022 remove_symlinks:
7023 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7024 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7025 free_adj:
7026 	kfree(adj);
7027 	dev_put(adj_dev);
7028 
7029 	return ret;
7030 }
7031 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7032 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7033 					 struct net_device *adj_dev,
7034 					 u16 ref_nr,
7035 					 struct list_head *dev_list)
7036 {
7037 	struct netdev_adjacent *adj;
7038 
7039 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7040 		 dev->name, adj_dev->name, ref_nr);
7041 
7042 	adj = __netdev_find_adj(adj_dev, dev_list);
7043 
7044 	if (!adj) {
7045 		pr_err("Adjacency does not exist for device %s from %s\n",
7046 		       dev->name, adj_dev->name);
7047 		WARN_ON(1);
7048 		return;
7049 	}
7050 
7051 	if (adj->ref_nr > ref_nr) {
7052 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7053 			 dev->name, adj_dev->name, ref_nr,
7054 			 adj->ref_nr - ref_nr);
7055 		adj->ref_nr -= ref_nr;
7056 		return;
7057 	}
7058 
7059 	if (adj->master)
7060 		sysfs_remove_link(&(dev->dev.kobj), "master");
7061 
7062 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7063 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7064 
7065 	list_del_rcu(&adj->list);
7066 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7067 		 adj_dev->name, dev->name, adj_dev->name);
7068 	dev_put(adj_dev);
7069 	kfree_rcu(adj, rcu);
7070 }
7071 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7072 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7073 					    struct net_device *upper_dev,
7074 					    struct list_head *up_list,
7075 					    struct list_head *down_list,
7076 					    void *private, bool master)
7077 {
7078 	int ret;
7079 
7080 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7081 					   private, master);
7082 	if (ret)
7083 		return ret;
7084 
7085 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7086 					   private, false);
7087 	if (ret) {
7088 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7089 		return ret;
7090 	}
7091 
7092 	return 0;
7093 }
7094 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7095 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7096 					       struct net_device *upper_dev,
7097 					       u16 ref_nr,
7098 					       struct list_head *up_list,
7099 					       struct list_head *down_list)
7100 {
7101 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7102 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7103 }
7104 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7105 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7106 						struct net_device *upper_dev,
7107 						void *private, bool master)
7108 {
7109 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7110 						&dev->adj_list.upper,
7111 						&upper_dev->adj_list.lower,
7112 						private, master);
7113 }
7114 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7115 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7116 						   struct net_device *upper_dev)
7117 {
7118 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7119 					   &dev->adj_list.upper,
7120 					   &upper_dev->adj_list.lower);
7121 }
7122 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7123 static int __netdev_upper_dev_link(struct net_device *dev,
7124 				   struct net_device *upper_dev, bool master,
7125 				   void *upper_priv, void *upper_info,
7126 				   struct netlink_ext_ack *extack)
7127 {
7128 	struct netdev_notifier_changeupper_info changeupper_info = {
7129 		.info = {
7130 			.dev = dev,
7131 			.extack = extack,
7132 		},
7133 		.upper_dev = upper_dev,
7134 		.master = master,
7135 		.linking = true,
7136 		.upper_info = upper_info,
7137 	};
7138 	struct net_device *master_dev;
7139 	int ret = 0;
7140 
7141 	ASSERT_RTNL();
7142 
7143 	if (dev == upper_dev)
7144 		return -EBUSY;
7145 
7146 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7147 	if (netdev_has_upper_dev(upper_dev, dev))
7148 		return -EBUSY;
7149 
7150 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7151 		return -EMLINK;
7152 
7153 	if (!master) {
7154 		if (netdev_has_upper_dev(dev, upper_dev))
7155 			return -EEXIST;
7156 	} else {
7157 		master_dev = netdev_master_upper_dev_get(dev);
7158 		if (master_dev)
7159 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7160 	}
7161 
7162 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7163 					    &changeupper_info.info);
7164 	ret = notifier_to_errno(ret);
7165 	if (ret)
7166 		return ret;
7167 
7168 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7169 						   master);
7170 	if (ret)
7171 		return ret;
7172 
7173 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7174 					    &changeupper_info.info);
7175 	ret = notifier_to_errno(ret);
7176 	if (ret)
7177 		goto rollback;
7178 
7179 	__netdev_update_upper_level(dev, NULL);
7180 	netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7181 
7182 	__netdev_update_lower_level(upper_dev, NULL);
7183 	netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7184 
7185 	return 0;
7186 
7187 rollback:
7188 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7189 
7190 	return ret;
7191 }
7192 
7193 /**
7194  * netdev_upper_dev_link - Add a link to the upper device
7195  * @dev: device
7196  * @upper_dev: new upper device
7197  * @extack: netlink extended ack
7198  *
7199  * Adds a link to device which is upper to this one. The caller must hold
7200  * the RTNL lock. On a failure a negative errno code is returned.
7201  * On success the reference counts are adjusted and the function
7202  * returns zero.
7203  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7204 int netdev_upper_dev_link(struct net_device *dev,
7205 			  struct net_device *upper_dev,
7206 			  struct netlink_ext_ack *extack)
7207 {
7208 	return __netdev_upper_dev_link(dev, upper_dev, false,
7209 				       NULL, NULL, extack);
7210 }
7211 EXPORT_SYMBOL(netdev_upper_dev_link);
7212 
7213 /**
7214  * netdev_master_upper_dev_link - Add a master link to the upper device
7215  * @dev: device
7216  * @upper_dev: new upper device
7217  * @upper_priv: upper device private
7218  * @upper_info: upper info to be passed down via notifier
7219  * @extack: netlink extended ack
7220  *
7221  * Adds a link to device which is upper to this one. In this case, only
7222  * one master upper device can be linked, although other non-master devices
7223  * might be linked as well. The caller must hold the RTNL lock.
7224  * On a failure a negative errno code is returned. On success the reference
7225  * counts are adjusted and the function returns zero.
7226  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7227 int netdev_master_upper_dev_link(struct net_device *dev,
7228 				 struct net_device *upper_dev,
7229 				 void *upper_priv, void *upper_info,
7230 				 struct netlink_ext_ack *extack)
7231 {
7232 	return __netdev_upper_dev_link(dev, upper_dev, true,
7233 				       upper_priv, upper_info, extack);
7234 }
7235 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7236 
7237 /**
7238  * netdev_upper_dev_unlink - Removes a link to upper device
7239  * @dev: device
7240  * @upper_dev: new upper device
7241  *
7242  * Removes a link to device which is upper to this one. The caller must hold
7243  * the RTNL lock.
7244  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7245 void netdev_upper_dev_unlink(struct net_device *dev,
7246 			     struct net_device *upper_dev)
7247 {
7248 	struct netdev_notifier_changeupper_info changeupper_info = {
7249 		.info = {
7250 			.dev = dev,
7251 		},
7252 		.upper_dev = upper_dev,
7253 		.linking = false,
7254 	};
7255 
7256 	ASSERT_RTNL();
7257 
7258 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7259 
7260 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7261 				      &changeupper_info.info);
7262 
7263 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7264 
7265 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7266 				      &changeupper_info.info);
7267 
7268 	__netdev_update_upper_level(dev, NULL);
7269 	netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7270 
7271 	__netdev_update_lower_level(upper_dev, NULL);
7272 	netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7273 }
7274 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7275 
7276 /**
7277  * netdev_bonding_info_change - Dispatch event about slave change
7278  * @dev: device
7279  * @bonding_info: info to dispatch
7280  *
7281  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7282  * The caller must hold the RTNL lock.
7283  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7284 void netdev_bonding_info_change(struct net_device *dev,
7285 				struct netdev_bonding_info *bonding_info)
7286 {
7287 	struct netdev_notifier_bonding_info info = {
7288 		.info.dev = dev,
7289 	};
7290 
7291 	memcpy(&info.bonding_info, bonding_info,
7292 	       sizeof(struct netdev_bonding_info));
7293 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7294 				      &info.info);
7295 }
7296 EXPORT_SYMBOL(netdev_bonding_info_change);
7297 
netdev_adjacent_add_links(struct net_device * dev)7298 static void netdev_adjacent_add_links(struct net_device *dev)
7299 {
7300 	struct netdev_adjacent *iter;
7301 
7302 	struct net *net = dev_net(dev);
7303 
7304 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7305 		if (!net_eq(net, dev_net(iter->dev)))
7306 			continue;
7307 		netdev_adjacent_sysfs_add(iter->dev, dev,
7308 					  &iter->dev->adj_list.lower);
7309 		netdev_adjacent_sysfs_add(dev, iter->dev,
7310 					  &dev->adj_list.upper);
7311 	}
7312 
7313 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7314 		if (!net_eq(net, dev_net(iter->dev)))
7315 			continue;
7316 		netdev_adjacent_sysfs_add(iter->dev, dev,
7317 					  &iter->dev->adj_list.upper);
7318 		netdev_adjacent_sysfs_add(dev, iter->dev,
7319 					  &dev->adj_list.lower);
7320 	}
7321 }
7322 
netdev_adjacent_del_links(struct net_device * dev)7323 static void netdev_adjacent_del_links(struct net_device *dev)
7324 {
7325 	struct netdev_adjacent *iter;
7326 
7327 	struct net *net = dev_net(dev);
7328 
7329 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7330 		if (!net_eq(net, dev_net(iter->dev)))
7331 			continue;
7332 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7333 					  &iter->dev->adj_list.lower);
7334 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7335 					  &dev->adj_list.upper);
7336 	}
7337 
7338 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7339 		if (!net_eq(net, dev_net(iter->dev)))
7340 			continue;
7341 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7342 					  &iter->dev->adj_list.upper);
7343 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7344 					  &dev->adj_list.lower);
7345 	}
7346 }
7347 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)7348 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7349 {
7350 	struct netdev_adjacent *iter;
7351 
7352 	struct net *net = dev_net(dev);
7353 
7354 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7355 		if (!net_eq(net, dev_net(iter->dev)))
7356 			continue;
7357 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7358 					  &iter->dev->adj_list.lower);
7359 		netdev_adjacent_sysfs_add(iter->dev, dev,
7360 					  &iter->dev->adj_list.lower);
7361 	}
7362 
7363 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7364 		if (!net_eq(net, dev_net(iter->dev)))
7365 			continue;
7366 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7367 					  &iter->dev->adj_list.upper);
7368 		netdev_adjacent_sysfs_add(iter->dev, dev,
7369 					  &iter->dev->adj_list.upper);
7370 	}
7371 }
7372 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)7373 void *netdev_lower_dev_get_private(struct net_device *dev,
7374 				   struct net_device *lower_dev)
7375 {
7376 	struct netdev_adjacent *lower;
7377 
7378 	if (!lower_dev)
7379 		return NULL;
7380 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7381 	if (!lower)
7382 		return NULL;
7383 
7384 	return lower->private;
7385 }
7386 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7387 
7388 
dev_get_nest_level(struct net_device * dev)7389 int dev_get_nest_level(struct net_device *dev)
7390 {
7391 	struct net_device *lower = NULL;
7392 	struct list_head *iter;
7393 	int max_nest = -1;
7394 	int nest;
7395 
7396 	ASSERT_RTNL();
7397 
7398 	netdev_for_each_lower_dev(dev, lower, iter) {
7399 		nest = dev_get_nest_level(lower);
7400 		if (max_nest < nest)
7401 			max_nest = nest;
7402 	}
7403 
7404 	return max_nest + 1;
7405 }
7406 EXPORT_SYMBOL(dev_get_nest_level);
7407 
7408 /**
7409  * netdev_lower_change - Dispatch event about lower device state change
7410  * @lower_dev: device
7411  * @lower_state_info: state to dispatch
7412  *
7413  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7414  * The caller must hold the RTNL lock.
7415  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)7416 void netdev_lower_state_changed(struct net_device *lower_dev,
7417 				void *lower_state_info)
7418 {
7419 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7420 		.info.dev = lower_dev,
7421 	};
7422 
7423 	ASSERT_RTNL();
7424 	changelowerstate_info.lower_state_info = lower_state_info;
7425 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7426 				      &changelowerstate_info.info);
7427 }
7428 EXPORT_SYMBOL(netdev_lower_state_changed);
7429 
dev_change_rx_flags(struct net_device * dev,int flags)7430 static void dev_change_rx_flags(struct net_device *dev, int flags)
7431 {
7432 	const struct net_device_ops *ops = dev->netdev_ops;
7433 
7434 	if (ops->ndo_change_rx_flags)
7435 		ops->ndo_change_rx_flags(dev, flags);
7436 }
7437 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)7438 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7439 {
7440 	unsigned int old_flags = dev->flags;
7441 	kuid_t uid;
7442 	kgid_t gid;
7443 
7444 	ASSERT_RTNL();
7445 
7446 	dev->flags |= IFF_PROMISC;
7447 	dev->promiscuity += inc;
7448 	if (dev->promiscuity == 0) {
7449 		/*
7450 		 * Avoid overflow.
7451 		 * If inc causes overflow, untouch promisc and return error.
7452 		 */
7453 		if (inc < 0)
7454 			dev->flags &= ~IFF_PROMISC;
7455 		else {
7456 			dev->promiscuity -= inc;
7457 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7458 				dev->name);
7459 			return -EOVERFLOW;
7460 		}
7461 	}
7462 	if (dev->flags != old_flags) {
7463 		pr_info("device %s %s promiscuous mode\n",
7464 			dev->name,
7465 			dev->flags & IFF_PROMISC ? "entered" : "left");
7466 		if (audit_enabled) {
7467 			current_uid_gid(&uid, &gid);
7468 			audit_log(audit_context(), GFP_ATOMIC,
7469 				  AUDIT_ANOM_PROMISCUOUS,
7470 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7471 				  dev->name, (dev->flags & IFF_PROMISC),
7472 				  (old_flags & IFF_PROMISC),
7473 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7474 				  from_kuid(&init_user_ns, uid),
7475 				  from_kgid(&init_user_ns, gid),
7476 				  audit_get_sessionid(current));
7477 		}
7478 
7479 		dev_change_rx_flags(dev, IFF_PROMISC);
7480 	}
7481 	if (notify)
7482 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7483 	return 0;
7484 }
7485 
7486 /**
7487  *	dev_set_promiscuity	- update promiscuity count on a device
7488  *	@dev: device
7489  *	@inc: modifier
7490  *
7491  *	Add or remove promiscuity from a device. While the count in the device
7492  *	remains above zero the interface remains promiscuous. Once it hits zero
7493  *	the device reverts back to normal filtering operation. A negative inc
7494  *	value is used to drop promiscuity on the device.
7495  *	Return 0 if successful or a negative errno code on error.
7496  */
dev_set_promiscuity(struct net_device * dev,int inc)7497 int dev_set_promiscuity(struct net_device *dev, int inc)
7498 {
7499 	unsigned int old_flags = dev->flags;
7500 	int err;
7501 
7502 	err = __dev_set_promiscuity(dev, inc, true);
7503 	if (err < 0)
7504 		return err;
7505 	if (dev->flags != old_flags)
7506 		dev_set_rx_mode(dev);
7507 	return err;
7508 }
7509 EXPORT_SYMBOL(dev_set_promiscuity);
7510 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)7511 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7512 {
7513 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7514 
7515 	ASSERT_RTNL();
7516 
7517 	dev->flags |= IFF_ALLMULTI;
7518 	dev->allmulti += inc;
7519 	if (dev->allmulti == 0) {
7520 		/*
7521 		 * Avoid overflow.
7522 		 * If inc causes overflow, untouch allmulti and return error.
7523 		 */
7524 		if (inc < 0)
7525 			dev->flags &= ~IFF_ALLMULTI;
7526 		else {
7527 			dev->allmulti -= inc;
7528 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7529 				dev->name);
7530 			return -EOVERFLOW;
7531 		}
7532 	}
7533 	if (dev->flags ^ old_flags) {
7534 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7535 		dev_set_rx_mode(dev);
7536 		if (notify)
7537 			__dev_notify_flags(dev, old_flags,
7538 					   dev->gflags ^ old_gflags);
7539 	}
7540 	return 0;
7541 }
7542 
7543 /**
7544  *	dev_set_allmulti	- update allmulti count on a device
7545  *	@dev: device
7546  *	@inc: modifier
7547  *
7548  *	Add or remove reception of all multicast frames to a device. While the
7549  *	count in the device remains above zero the interface remains listening
7550  *	to all interfaces. Once it hits zero the device reverts back to normal
7551  *	filtering operation. A negative @inc value is used to drop the counter
7552  *	when releasing a resource needing all multicasts.
7553  *	Return 0 if successful or a negative errno code on error.
7554  */
7555 
dev_set_allmulti(struct net_device * dev,int inc)7556 int dev_set_allmulti(struct net_device *dev, int inc)
7557 {
7558 	return __dev_set_allmulti(dev, inc, true);
7559 }
7560 EXPORT_SYMBOL(dev_set_allmulti);
7561 
7562 /*
7563  *	Upload unicast and multicast address lists to device and
7564  *	configure RX filtering. When the device doesn't support unicast
7565  *	filtering it is put in promiscuous mode while unicast addresses
7566  *	are present.
7567  */
__dev_set_rx_mode(struct net_device * dev)7568 void __dev_set_rx_mode(struct net_device *dev)
7569 {
7570 	const struct net_device_ops *ops = dev->netdev_ops;
7571 
7572 	/* dev_open will call this function so the list will stay sane. */
7573 	if (!(dev->flags&IFF_UP))
7574 		return;
7575 
7576 	if (!netif_device_present(dev))
7577 		return;
7578 
7579 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7580 		/* Unicast addresses changes may only happen under the rtnl,
7581 		 * therefore calling __dev_set_promiscuity here is safe.
7582 		 */
7583 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7584 			__dev_set_promiscuity(dev, 1, false);
7585 			dev->uc_promisc = true;
7586 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7587 			__dev_set_promiscuity(dev, -1, false);
7588 			dev->uc_promisc = false;
7589 		}
7590 	}
7591 
7592 	if (ops->ndo_set_rx_mode)
7593 		ops->ndo_set_rx_mode(dev);
7594 }
7595 
dev_set_rx_mode(struct net_device * dev)7596 void dev_set_rx_mode(struct net_device *dev)
7597 {
7598 	netif_addr_lock_bh(dev);
7599 	__dev_set_rx_mode(dev);
7600 	netif_addr_unlock_bh(dev);
7601 }
7602 
7603 /**
7604  *	dev_get_flags - get flags reported to userspace
7605  *	@dev: device
7606  *
7607  *	Get the combination of flag bits exported through APIs to userspace.
7608  */
dev_get_flags(const struct net_device * dev)7609 unsigned int dev_get_flags(const struct net_device *dev)
7610 {
7611 	unsigned int flags;
7612 
7613 	flags = (dev->flags & ~(IFF_PROMISC |
7614 				IFF_ALLMULTI |
7615 				IFF_RUNNING |
7616 				IFF_LOWER_UP |
7617 				IFF_DORMANT)) |
7618 		(dev->gflags & (IFF_PROMISC |
7619 				IFF_ALLMULTI));
7620 
7621 	if (netif_running(dev)) {
7622 		if (netif_oper_up(dev))
7623 			flags |= IFF_RUNNING;
7624 		if (netif_carrier_ok(dev))
7625 			flags |= IFF_LOWER_UP;
7626 		if (netif_dormant(dev))
7627 			flags |= IFF_DORMANT;
7628 	}
7629 
7630 	return flags;
7631 }
7632 EXPORT_SYMBOL(dev_get_flags);
7633 
__dev_change_flags(struct net_device * dev,unsigned int flags)7634 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7635 {
7636 	unsigned int old_flags = dev->flags;
7637 	int ret;
7638 
7639 	ASSERT_RTNL();
7640 
7641 	/*
7642 	 *	Set the flags on our device.
7643 	 */
7644 
7645 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7646 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7647 			       IFF_AUTOMEDIA)) |
7648 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7649 				    IFF_ALLMULTI));
7650 
7651 	/*
7652 	 *	Load in the correct multicast list now the flags have changed.
7653 	 */
7654 
7655 	if ((old_flags ^ flags) & IFF_MULTICAST)
7656 		dev_change_rx_flags(dev, IFF_MULTICAST);
7657 
7658 	dev_set_rx_mode(dev);
7659 
7660 	/*
7661 	 *	Have we downed the interface. We handle IFF_UP ourselves
7662 	 *	according to user attempts to set it, rather than blindly
7663 	 *	setting it.
7664 	 */
7665 
7666 	ret = 0;
7667 	if ((old_flags ^ flags) & IFF_UP) {
7668 		if (old_flags & IFF_UP)
7669 			__dev_close(dev);
7670 		else
7671 			ret = __dev_open(dev);
7672 	}
7673 
7674 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7675 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7676 		unsigned int old_flags = dev->flags;
7677 
7678 		dev->gflags ^= IFF_PROMISC;
7679 
7680 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7681 			if (dev->flags != old_flags)
7682 				dev_set_rx_mode(dev);
7683 	}
7684 
7685 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7686 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7687 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7688 	 */
7689 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7690 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7691 
7692 		dev->gflags ^= IFF_ALLMULTI;
7693 		__dev_set_allmulti(dev, inc, false);
7694 	}
7695 
7696 	return ret;
7697 }
7698 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)7699 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7700 			unsigned int gchanges)
7701 {
7702 	unsigned int changes = dev->flags ^ old_flags;
7703 
7704 	if (gchanges)
7705 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7706 
7707 	if (changes & IFF_UP) {
7708 		if (dev->flags & IFF_UP)
7709 			call_netdevice_notifiers(NETDEV_UP, dev);
7710 		else
7711 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7712 	}
7713 
7714 	if (dev->flags & IFF_UP &&
7715 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7716 		struct netdev_notifier_change_info change_info = {
7717 			.info = {
7718 				.dev = dev,
7719 			},
7720 			.flags_changed = changes,
7721 		};
7722 
7723 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7724 	}
7725 }
7726 
7727 /**
7728  *	dev_change_flags - change device settings
7729  *	@dev: device
7730  *	@flags: device state flags
7731  *
7732  *	Change settings on device based state flags. The flags are
7733  *	in the userspace exported format.
7734  */
dev_change_flags(struct net_device * dev,unsigned int flags)7735 int dev_change_flags(struct net_device *dev, unsigned int flags)
7736 {
7737 	int ret;
7738 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7739 
7740 	ret = __dev_change_flags(dev, flags);
7741 	if (ret < 0)
7742 		return ret;
7743 
7744 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7745 	__dev_notify_flags(dev, old_flags, changes);
7746 	return ret;
7747 }
7748 EXPORT_SYMBOL(dev_change_flags);
7749 
__dev_set_mtu(struct net_device * dev,int new_mtu)7750 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7751 {
7752 	const struct net_device_ops *ops = dev->netdev_ops;
7753 
7754 	if (ops->ndo_change_mtu)
7755 		return ops->ndo_change_mtu(dev, new_mtu);
7756 
7757 	/* Pairs with all the lockless reads of dev->mtu in the stack */
7758 	WRITE_ONCE(dev->mtu, new_mtu);
7759 	return 0;
7760 }
7761 EXPORT_SYMBOL(__dev_set_mtu);
7762 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)7763 int dev_validate_mtu(struct net_device *dev, int new_mtu,
7764 		     struct netlink_ext_ack *extack)
7765 {
7766 	/* MTU must be positive, and in range */
7767 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7768 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7769 		return -EINVAL;
7770 	}
7771 
7772 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7773 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7774 		return -EINVAL;
7775 	}
7776 	return 0;
7777 }
7778 
7779 /**
7780  *	dev_set_mtu_ext - Change maximum transfer unit
7781  *	@dev: device
7782  *	@new_mtu: new transfer unit
7783  *	@extack: netlink extended ack
7784  *
7785  *	Change the maximum transfer size of the network device.
7786  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)7787 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7788 		    struct netlink_ext_ack *extack)
7789 {
7790 	int err, orig_mtu;
7791 
7792 	if (new_mtu == dev->mtu)
7793 		return 0;
7794 
7795 	err = dev_validate_mtu(dev, new_mtu, extack);
7796 	if (err)
7797 		return err;
7798 
7799 	if (!netif_device_present(dev))
7800 		return -ENODEV;
7801 
7802 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7803 	err = notifier_to_errno(err);
7804 	if (err)
7805 		return err;
7806 
7807 	orig_mtu = dev->mtu;
7808 	err = __dev_set_mtu(dev, new_mtu);
7809 
7810 	if (!err) {
7811 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7812 						   orig_mtu);
7813 		err = notifier_to_errno(err);
7814 		if (err) {
7815 			/* setting mtu back and notifying everyone again,
7816 			 * so that they have a chance to revert changes.
7817 			 */
7818 			__dev_set_mtu(dev, orig_mtu);
7819 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7820 						     new_mtu);
7821 		}
7822 	}
7823 	return err;
7824 }
7825 
dev_set_mtu(struct net_device * dev,int new_mtu)7826 int dev_set_mtu(struct net_device *dev, int new_mtu)
7827 {
7828 	struct netlink_ext_ack extack;
7829 	int err;
7830 
7831 	memset(&extack, 0, sizeof(extack));
7832 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7833 	if (err && extack._msg)
7834 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7835 	return err;
7836 }
7837 EXPORT_SYMBOL(dev_set_mtu);
7838 
7839 /**
7840  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7841  *	@dev: device
7842  *	@new_len: new tx queue length
7843  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)7844 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7845 {
7846 	unsigned int orig_len = dev->tx_queue_len;
7847 	int res;
7848 
7849 	if (new_len != (unsigned int)new_len)
7850 		return -ERANGE;
7851 
7852 	if (new_len != orig_len) {
7853 		dev->tx_queue_len = new_len;
7854 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7855 		res = notifier_to_errno(res);
7856 		if (res)
7857 			goto err_rollback;
7858 		res = dev_qdisc_change_tx_queue_len(dev);
7859 		if (res)
7860 			goto err_rollback;
7861 	}
7862 
7863 	return 0;
7864 
7865 err_rollback:
7866 	netdev_err(dev, "refused to change device tx_queue_len\n");
7867 	dev->tx_queue_len = orig_len;
7868 	return res;
7869 }
7870 
7871 /**
7872  *	dev_set_group - Change group this device belongs to
7873  *	@dev: device
7874  *	@new_group: group this device should belong to
7875  */
dev_set_group(struct net_device * dev,int new_group)7876 void dev_set_group(struct net_device *dev, int new_group)
7877 {
7878 	dev->group = new_group;
7879 }
7880 EXPORT_SYMBOL(dev_set_group);
7881 
7882 /**
7883  *	dev_set_mac_address - Change Media Access Control Address
7884  *	@dev: device
7885  *	@sa: new address
7886  *
7887  *	Change the hardware (MAC) address of the device
7888  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)7889 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7890 {
7891 	const struct net_device_ops *ops = dev->netdev_ops;
7892 	int err;
7893 
7894 	if (!ops->ndo_set_mac_address)
7895 		return -EOPNOTSUPP;
7896 	if (sa->sa_family != dev->type)
7897 		return -EINVAL;
7898 	if (!netif_device_present(dev))
7899 		return -ENODEV;
7900 	err = ops->ndo_set_mac_address(dev, sa);
7901 	if (err)
7902 		return err;
7903 	dev->addr_assign_type = NET_ADDR_SET;
7904 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7905 	add_device_randomness(dev->dev_addr, dev->addr_len);
7906 	return 0;
7907 }
7908 EXPORT_SYMBOL(dev_set_mac_address);
7909 
7910 /**
7911  *	dev_change_carrier - Change device carrier
7912  *	@dev: device
7913  *	@new_carrier: new value
7914  *
7915  *	Change device carrier
7916  */
dev_change_carrier(struct net_device * dev,bool new_carrier)7917 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7918 {
7919 	const struct net_device_ops *ops = dev->netdev_ops;
7920 
7921 	if (!ops->ndo_change_carrier)
7922 		return -EOPNOTSUPP;
7923 	if (!netif_device_present(dev))
7924 		return -ENODEV;
7925 	return ops->ndo_change_carrier(dev, new_carrier);
7926 }
7927 EXPORT_SYMBOL(dev_change_carrier);
7928 
7929 /**
7930  *	dev_get_phys_port_id - Get device physical port ID
7931  *	@dev: device
7932  *	@ppid: port ID
7933  *
7934  *	Get device physical port ID
7935  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)7936 int dev_get_phys_port_id(struct net_device *dev,
7937 			 struct netdev_phys_item_id *ppid)
7938 {
7939 	const struct net_device_ops *ops = dev->netdev_ops;
7940 
7941 	if (!ops->ndo_get_phys_port_id)
7942 		return -EOPNOTSUPP;
7943 	return ops->ndo_get_phys_port_id(dev, ppid);
7944 }
7945 EXPORT_SYMBOL(dev_get_phys_port_id);
7946 
7947 /**
7948  *	dev_get_phys_port_name - Get device physical port name
7949  *	@dev: device
7950  *	@name: port name
7951  *	@len: limit of bytes to copy to name
7952  *
7953  *	Get device physical port name
7954  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)7955 int dev_get_phys_port_name(struct net_device *dev,
7956 			   char *name, size_t len)
7957 {
7958 	const struct net_device_ops *ops = dev->netdev_ops;
7959 
7960 	if (!ops->ndo_get_phys_port_name)
7961 		return -EOPNOTSUPP;
7962 	return ops->ndo_get_phys_port_name(dev, name, len);
7963 }
7964 EXPORT_SYMBOL(dev_get_phys_port_name);
7965 
7966 /**
7967  *	dev_change_proto_down - update protocol port state information
7968  *	@dev: device
7969  *	@proto_down: new value
7970  *
7971  *	This info can be used by switch drivers to set the phys state of the
7972  *	port.
7973  */
dev_change_proto_down(struct net_device * dev,bool proto_down)7974 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7975 {
7976 	const struct net_device_ops *ops = dev->netdev_ops;
7977 
7978 	if (!ops->ndo_change_proto_down)
7979 		return -EOPNOTSUPP;
7980 	if (!netif_device_present(dev))
7981 		return -ENODEV;
7982 	return ops->ndo_change_proto_down(dev, proto_down);
7983 }
7984 EXPORT_SYMBOL(dev_change_proto_down);
7985 
__dev_xdp_query(struct net_device * dev,bpf_op_t bpf_op,enum bpf_netdev_command cmd)7986 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7987 		    enum bpf_netdev_command cmd)
7988 {
7989 	struct netdev_bpf xdp;
7990 
7991 	if (!bpf_op)
7992 		return 0;
7993 
7994 	memset(&xdp, 0, sizeof(xdp));
7995 	xdp.command = cmd;
7996 
7997 	/* Query must always succeed. */
7998 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7999 
8000 	return xdp.prog_id;
8001 }
8002 
dev_xdp_install(struct net_device * dev,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)8003 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8004 			   struct netlink_ext_ack *extack, u32 flags,
8005 			   struct bpf_prog *prog)
8006 {
8007 	struct netdev_bpf xdp;
8008 
8009 	memset(&xdp, 0, sizeof(xdp));
8010 	if (flags & XDP_FLAGS_HW_MODE)
8011 		xdp.command = XDP_SETUP_PROG_HW;
8012 	else
8013 		xdp.command = XDP_SETUP_PROG;
8014 	xdp.extack = extack;
8015 	xdp.flags = flags;
8016 	xdp.prog = prog;
8017 
8018 	return bpf_op(dev, &xdp);
8019 }
8020 
dev_xdp_uninstall(struct net_device * dev)8021 static void dev_xdp_uninstall(struct net_device *dev)
8022 {
8023 	struct netdev_bpf xdp;
8024 	bpf_op_t ndo_bpf;
8025 
8026 	/* Remove generic XDP */
8027 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8028 
8029 	/* Remove from the driver */
8030 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8031 	if (!ndo_bpf)
8032 		return;
8033 
8034 	memset(&xdp, 0, sizeof(xdp));
8035 	xdp.command = XDP_QUERY_PROG;
8036 	WARN_ON(ndo_bpf(dev, &xdp));
8037 	if (xdp.prog_id)
8038 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8039 					NULL));
8040 
8041 	/* Remove HW offload */
8042 	memset(&xdp, 0, sizeof(xdp));
8043 	xdp.command = XDP_QUERY_PROG_HW;
8044 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8045 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8046 					NULL));
8047 }
8048 
8049 /**
8050  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8051  *	@dev: device
8052  *	@extack: netlink extended ack
8053  *	@fd: new program fd or negative value to clear
8054  *	@flags: xdp-related flags
8055  *
8056  *	Set or clear a bpf program for a device
8057  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,u32 flags)8058 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8059 		      int fd, u32 flags)
8060 {
8061 	const struct net_device_ops *ops = dev->netdev_ops;
8062 	enum bpf_netdev_command query;
8063 	struct bpf_prog *prog = NULL;
8064 	bpf_op_t bpf_op, bpf_chk;
8065 	int err;
8066 
8067 	ASSERT_RTNL();
8068 
8069 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8070 
8071 	bpf_op = bpf_chk = ops->ndo_bpf;
8072 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
8073 		return -EOPNOTSUPP;
8074 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8075 		bpf_op = generic_xdp_install;
8076 	if (bpf_op == bpf_chk)
8077 		bpf_chk = generic_xdp_install;
8078 
8079 	if (fd >= 0) {
8080 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
8081 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
8082 			return -EEXIST;
8083 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8084 		    __dev_xdp_query(dev, bpf_op, query))
8085 			return -EBUSY;
8086 
8087 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8088 					     bpf_op == ops->ndo_bpf);
8089 		if (IS_ERR(prog))
8090 			return PTR_ERR(prog);
8091 
8092 		if (!(flags & XDP_FLAGS_HW_MODE) &&
8093 		    bpf_prog_is_dev_bound(prog->aux)) {
8094 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8095 			bpf_prog_put(prog);
8096 			return -EINVAL;
8097 		}
8098 	}
8099 
8100 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8101 	if (err < 0 && prog)
8102 		bpf_prog_put(prog);
8103 
8104 	return err;
8105 }
8106 
8107 /**
8108  *	dev_new_index	-	allocate an ifindex
8109  *	@net: the applicable net namespace
8110  *
8111  *	Returns a suitable unique value for a new device interface
8112  *	number.  The caller must hold the rtnl semaphore or the
8113  *	dev_base_lock to be sure it remains unique.
8114  */
dev_new_index(struct net * net)8115 static int dev_new_index(struct net *net)
8116 {
8117 	int ifindex = net->ifindex;
8118 
8119 	for (;;) {
8120 		if (++ifindex <= 0)
8121 			ifindex = 1;
8122 		if (!__dev_get_by_index(net, ifindex))
8123 			return net->ifindex = ifindex;
8124 	}
8125 }
8126 
8127 /* Delayed registration/unregisteration */
8128 static LIST_HEAD(net_todo_list);
8129 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8130 
net_set_todo(struct net_device * dev)8131 static void net_set_todo(struct net_device *dev)
8132 {
8133 	list_add_tail(&dev->todo_list, &net_todo_list);
8134 	dev_net(dev)->dev_unreg_count++;
8135 }
8136 
rollback_registered_many(struct list_head * head)8137 static void rollback_registered_many(struct list_head *head)
8138 {
8139 	struct net_device *dev, *tmp;
8140 	LIST_HEAD(close_head);
8141 
8142 	BUG_ON(dev_boot_phase);
8143 	ASSERT_RTNL();
8144 
8145 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8146 		/* Some devices call without registering
8147 		 * for initialization unwind. Remove those
8148 		 * devices and proceed with the remaining.
8149 		 */
8150 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8151 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8152 				 dev->name, dev);
8153 
8154 			WARN_ON(1);
8155 			list_del(&dev->unreg_list);
8156 			continue;
8157 		}
8158 		dev->dismantle = true;
8159 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8160 	}
8161 
8162 	/* If device is running, close it first. */
8163 	list_for_each_entry(dev, head, unreg_list)
8164 		list_add_tail(&dev->close_list, &close_head);
8165 	dev_close_many(&close_head, true);
8166 
8167 	list_for_each_entry(dev, head, unreg_list) {
8168 		/* And unlink it from device chain. */
8169 		unlist_netdevice(dev);
8170 
8171 		dev->reg_state = NETREG_UNREGISTERING;
8172 	}
8173 	flush_all_backlogs();
8174 
8175 	synchronize_net();
8176 
8177 	list_for_each_entry(dev, head, unreg_list) {
8178 		struct sk_buff *skb = NULL;
8179 
8180 		/* Shutdown queueing discipline. */
8181 		dev_shutdown(dev);
8182 
8183 		dev_xdp_uninstall(dev);
8184 
8185 		/* Notify protocols, that we are about to destroy
8186 		 * this device. They should clean all the things.
8187 		 */
8188 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8189 
8190 		if (!dev->rtnl_link_ops ||
8191 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8192 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8193 						     GFP_KERNEL, NULL, 0);
8194 
8195 		/*
8196 		 *	Flush the unicast and multicast chains
8197 		 */
8198 		dev_uc_flush(dev);
8199 		dev_mc_flush(dev);
8200 
8201 		if (dev->netdev_ops->ndo_uninit)
8202 			dev->netdev_ops->ndo_uninit(dev);
8203 
8204 		if (skb)
8205 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8206 
8207 		/* Notifier chain MUST detach us all upper devices. */
8208 		WARN_ON(netdev_has_any_upper_dev(dev));
8209 		WARN_ON(netdev_has_any_lower_dev(dev));
8210 
8211 		/* Remove entries from kobject tree */
8212 		netdev_unregister_kobject(dev);
8213 #ifdef CONFIG_XPS
8214 		/* Remove XPS queueing entries */
8215 		netif_reset_xps_queues_gt(dev, 0);
8216 #endif
8217 	}
8218 
8219 	synchronize_net();
8220 
8221 	list_for_each_entry(dev, head, unreg_list)
8222 		dev_put(dev);
8223 }
8224 
rollback_registered(struct net_device * dev)8225 static void rollback_registered(struct net_device *dev)
8226 {
8227 	LIST_HEAD(single);
8228 
8229 	list_add(&dev->unreg_list, &single);
8230 	rollback_registered_many(&single);
8231 	list_del(&single);
8232 }
8233 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)8234 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8235 	struct net_device *upper, netdev_features_t features)
8236 {
8237 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8238 	netdev_features_t feature;
8239 	int feature_bit;
8240 
8241 	for_each_netdev_feature(upper_disables, feature_bit) {
8242 		feature = __NETIF_F_BIT(feature_bit);
8243 		if (!(upper->wanted_features & feature)
8244 		    && (features & feature)) {
8245 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8246 				   &feature, upper->name);
8247 			features &= ~feature;
8248 		}
8249 	}
8250 
8251 	return features;
8252 }
8253 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)8254 static void netdev_sync_lower_features(struct net_device *upper,
8255 	struct net_device *lower, netdev_features_t features)
8256 {
8257 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8258 	netdev_features_t feature;
8259 	int feature_bit;
8260 
8261 	for_each_netdev_feature(upper_disables, feature_bit) {
8262 		feature = __NETIF_F_BIT(feature_bit);
8263 		if (!(features & feature) && (lower->features & feature)) {
8264 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8265 				   &feature, lower->name);
8266 			lower->wanted_features &= ~feature;
8267 			__netdev_update_features(lower);
8268 
8269 			if (unlikely(lower->features & feature))
8270 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8271 					    &feature, lower->name);
8272 			else
8273 				netdev_features_change(lower);
8274 		}
8275 	}
8276 }
8277 
netdev_fix_features(struct net_device * dev,netdev_features_t features)8278 static netdev_features_t netdev_fix_features(struct net_device *dev,
8279 	netdev_features_t features)
8280 {
8281 	/* Fix illegal checksum combinations */
8282 	if ((features & NETIF_F_HW_CSUM) &&
8283 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8284 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8285 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8286 	}
8287 
8288 	/* TSO requires that SG is present as well. */
8289 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8290 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8291 		features &= ~NETIF_F_ALL_TSO;
8292 	}
8293 
8294 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8295 					!(features & NETIF_F_IP_CSUM)) {
8296 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8297 		features &= ~NETIF_F_TSO;
8298 		features &= ~NETIF_F_TSO_ECN;
8299 	}
8300 
8301 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8302 					 !(features & NETIF_F_IPV6_CSUM)) {
8303 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8304 		features &= ~NETIF_F_TSO6;
8305 	}
8306 
8307 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8308 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8309 		features &= ~NETIF_F_TSO_MANGLEID;
8310 
8311 	/* TSO ECN requires that TSO is present as well. */
8312 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8313 		features &= ~NETIF_F_TSO_ECN;
8314 
8315 	/* Software GSO depends on SG. */
8316 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8317 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8318 		features &= ~NETIF_F_GSO;
8319 	}
8320 
8321 	/* GSO partial features require GSO partial be set */
8322 	if ((features & dev->gso_partial_features) &&
8323 	    !(features & NETIF_F_GSO_PARTIAL)) {
8324 		netdev_dbg(dev,
8325 			   "Dropping partially supported GSO features since no GSO partial.\n");
8326 		features &= ~dev->gso_partial_features;
8327 	}
8328 
8329 	if (!(features & NETIF_F_RXCSUM)) {
8330 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8331 		 * successfully merged by hardware must also have the
8332 		 * checksum verified by hardware.  If the user does not
8333 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8334 		 */
8335 		if (features & NETIF_F_GRO_HW) {
8336 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8337 			features &= ~NETIF_F_GRO_HW;
8338 		}
8339 	}
8340 
8341 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8342 	if (features & NETIF_F_RXFCS) {
8343 		if (features & NETIF_F_LRO) {
8344 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8345 			features &= ~NETIF_F_LRO;
8346 		}
8347 
8348 		if (features & NETIF_F_GRO_HW) {
8349 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8350 			features &= ~NETIF_F_GRO_HW;
8351 		}
8352 	}
8353 
8354 	return features;
8355 }
8356 
__netdev_update_features(struct net_device * dev)8357 int __netdev_update_features(struct net_device *dev)
8358 {
8359 	struct net_device *upper, *lower;
8360 	netdev_features_t features;
8361 	struct list_head *iter;
8362 	int err = -1;
8363 
8364 	ASSERT_RTNL();
8365 
8366 	features = netdev_get_wanted_features(dev);
8367 
8368 	if (dev->netdev_ops->ndo_fix_features)
8369 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8370 
8371 	/* driver might be less strict about feature dependencies */
8372 	features = netdev_fix_features(dev, features);
8373 
8374 	/* some features can't be enabled if they're off an an upper device */
8375 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8376 		features = netdev_sync_upper_features(dev, upper, features);
8377 
8378 	if (dev->features == features)
8379 		goto sync_lower;
8380 
8381 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8382 		&dev->features, &features);
8383 
8384 	if (dev->netdev_ops->ndo_set_features)
8385 		err = dev->netdev_ops->ndo_set_features(dev, features);
8386 	else
8387 		err = 0;
8388 
8389 	if (unlikely(err < 0)) {
8390 		netdev_err(dev,
8391 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8392 			err, &features, &dev->features);
8393 		/* return non-0 since some features might have changed and
8394 		 * it's better to fire a spurious notification than miss it
8395 		 */
8396 		return -1;
8397 	}
8398 
8399 sync_lower:
8400 	/* some features must be disabled on lower devices when disabled
8401 	 * on an upper device (think: bonding master or bridge)
8402 	 */
8403 	netdev_for_each_lower_dev(dev, lower, iter)
8404 		netdev_sync_lower_features(dev, lower, features);
8405 
8406 	if (!err) {
8407 		netdev_features_t diff = features ^ dev->features;
8408 
8409 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8410 			/* udp_tunnel_{get,drop}_rx_info both need
8411 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8412 			 * device, or they won't do anything.
8413 			 * Thus we need to update dev->features
8414 			 * *before* calling udp_tunnel_get_rx_info,
8415 			 * but *after* calling udp_tunnel_drop_rx_info.
8416 			 */
8417 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8418 				dev->features = features;
8419 				udp_tunnel_get_rx_info(dev);
8420 			} else {
8421 				udp_tunnel_drop_rx_info(dev);
8422 			}
8423 		}
8424 
8425 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8426 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8427 				dev->features = features;
8428 				err |= vlan_get_rx_ctag_filter_info(dev);
8429 			} else {
8430 				vlan_drop_rx_ctag_filter_info(dev);
8431 			}
8432 		}
8433 
8434 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8435 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8436 				dev->features = features;
8437 				err |= vlan_get_rx_stag_filter_info(dev);
8438 			} else {
8439 				vlan_drop_rx_stag_filter_info(dev);
8440 			}
8441 		}
8442 
8443 		dev->features = features;
8444 	}
8445 
8446 	return err < 0 ? 0 : 1;
8447 }
8448 
8449 /**
8450  *	netdev_update_features - recalculate device features
8451  *	@dev: the device to check
8452  *
8453  *	Recalculate dev->features set and send notifications if it
8454  *	has changed. Should be called after driver or hardware dependent
8455  *	conditions might have changed that influence the features.
8456  */
netdev_update_features(struct net_device * dev)8457 void netdev_update_features(struct net_device *dev)
8458 {
8459 	if (__netdev_update_features(dev))
8460 		netdev_features_change(dev);
8461 }
8462 EXPORT_SYMBOL(netdev_update_features);
8463 
8464 /**
8465  *	netdev_change_features - recalculate device features
8466  *	@dev: the device to check
8467  *
8468  *	Recalculate dev->features set and send notifications even
8469  *	if they have not changed. Should be called instead of
8470  *	netdev_update_features() if also dev->vlan_features might
8471  *	have changed to allow the changes to be propagated to stacked
8472  *	VLAN devices.
8473  */
netdev_change_features(struct net_device * dev)8474 void netdev_change_features(struct net_device *dev)
8475 {
8476 	__netdev_update_features(dev);
8477 	netdev_features_change(dev);
8478 }
8479 EXPORT_SYMBOL(netdev_change_features);
8480 
8481 /**
8482  *	netif_stacked_transfer_operstate -	transfer operstate
8483  *	@rootdev: the root or lower level device to transfer state from
8484  *	@dev: the device to transfer operstate to
8485  *
8486  *	Transfer operational state from root to device. This is normally
8487  *	called when a stacking relationship exists between the root
8488  *	device and the device(a leaf device).
8489  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)8490 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8491 					struct net_device *dev)
8492 {
8493 	if (rootdev->operstate == IF_OPER_DORMANT)
8494 		netif_dormant_on(dev);
8495 	else
8496 		netif_dormant_off(dev);
8497 
8498 	if (netif_carrier_ok(rootdev))
8499 		netif_carrier_on(dev);
8500 	else
8501 		netif_carrier_off(dev);
8502 }
8503 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8504 
netif_alloc_rx_queues(struct net_device * dev)8505 static int netif_alloc_rx_queues(struct net_device *dev)
8506 {
8507 	unsigned int i, count = dev->num_rx_queues;
8508 	struct netdev_rx_queue *rx;
8509 	size_t sz = count * sizeof(*rx);
8510 	int err = 0;
8511 
8512 	BUG_ON(count < 1);
8513 
8514 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8515 	if (!rx)
8516 		return -ENOMEM;
8517 
8518 	dev->_rx = rx;
8519 
8520 	for (i = 0; i < count; i++) {
8521 		rx[i].dev = dev;
8522 
8523 		/* XDP RX-queue setup */
8524 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8525 		if (err < 0)
8526 			goto err_rxq_info;
8527 	}
8528 	return 0;
8529 
8530 err_rxq_info:
8531 	/* Rollback successful reg's and free other resources */
8532 	while (i--)
8533 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8534 	kvfree(dev->_rx);
8535 	dev->_rx = NULL;
8536 	return err;
8537 }
8538 
netif_free_rx_queues(struct net_device * dev)8539 static void netif_free_rx_queues(struct net_device *dev)
8540 {
8541 	unsigned int i, count = dev->num_rx_queues;
8542 
8543 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8544 	if (!dev->_rx)
8545 		return;
8546 
8547 	for (i = 0; i < count; i++)
8548 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8549 
8550 	kvfree(dev->_rx);
8551 }
8552 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)8553 static void netdev_init_one_queue(struct net_device *dev,
8554 				  struct netdev_queue *queue, void *_unused)
8555 {
8556 	/* Initialize queue lock */
8557 	spin_lock_init(&queue->_xmit_lock);
8558 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8559 	queue->xmit_lock_owner = -1;
8560 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8561 	queue->dev = dev;
8562 #ifdef CONFIG_BQL
8563 	dql_init(&queue->dql, HZ);
8564 #endif
8565 }
8566 
netif_free_tx_queues(struct net_device * dev)8567 static void netif_free_tx_queues(struct net_device *dev)
8568 {
8569 	kvfree(dev->_tx);
8570 }
8571 
netif_alloc_netdev_queues(struct net_device * dev)8572 static int netif_alloc_netdev_queues(struct net_device *dev)
8573 {
8574 	unsigned int count = dev->num_tx_queues;
8575 	struct netdev_queue *tx;
8576 	size_t sz = count * sizeof(*tx);
8577 
8578 	if (count < 1 || count > 0xffff)
8579 		return -EINVAL;
8580 
8581 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8582 	if (!tx)
8583 		return -ENOMEM;
8584 
8585 	dev->_tx = tx;
8586 
8587 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8588 	spin_lock_init(&dev->tx_global_lock);
8589 
8590 	return 0;
8591 }
8592 
netif_tx_stop_all_queues(struct net_device * dev)8593 void netif_tx_stop_all_queues(struct net_device *dev)
8594 {
8595 	unsigned int i;
8596 
8597 	for (i = 0; i < dev->num_tx_queues; i++) {
8598 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8599 
8600 		netif_tx_stop_queue(txq);
8601 	}
8602 }
8603 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8604 
8605 /**
8606  *	register_netdevice	- register a network device
8607  *	@dev: device to register
8608  *
8609  *	Take a completed network device structure and add it to the kernel
8610  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8611  *	chain. 0 is returned on success. A negative errno code is returned
8612  *	on a failure to set up the device, or if the name is a duplicate.
8613  *
8614  *	Callers must hold the rtnl semaphore. You may want
8615  *	register_netdev() instead of this.
8616  *
8617  *	BUGS:
8618  *	The locking appears insufficient to guarantee two parallel registers
8619  *	will not get the same name.
8620  */
8621 
register_netdevice(struct net_device * dev)8622 int register_netdevice(struct net_device *dev)
8623 {
8624 	int ret;
8625 	struct net *net = dev_net(dev);
8626 
8627 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8628 		     NETDEV_FEATURE_COUNT);
8629 	BUG_ON(dev_boot_phase);
8630 	ASSERT_RTNL();
8631 
8632 	might_sleep();
8633 
8634 	/* When net_device's are persistent, this will be fatal. */
8635 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8636 	BUG_ON(!net);
8637 
8638 	spin_lock_init(&dev->addr_list_lock);
8639 	netdev_set_addr_lockdep_class(dev);
8640 
8641 	ret = dev_get_valid_name(net, dev, dev->name);
8642 	if (ret < 0)
8643 		goto out;
8644 
8645 	/* Init, if this function is available */
8646 	if (dev->netdev_ops->ndo_init) {
8647 		ret = dev->netdev_ops->ndo_init(dev);
8648 		if (ret) {
8649 			if (ret > 0)
8650 				ret = -EIO;
8651 			goto out;
8652 		}
8653 	}
8654 
8655 	if (((dev->hw_features | dev->features) &
8656 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8657 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8658 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8659 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8660 		ret = -EINVAL;
8661 		goto err_uninit;
8662 	}
8663 
8664 	ret = -EBUSY;
8665 	if (!dev->ifindex)
8666 		dev->ifindex = dev_new_index(net);
8667 	else if (__dev_get_by_index(net, dev->ifindex))
8668 		goto err_uninit;
8669 
8670 	/* Transfer changeable features to wanted_features and enable
8671 	 * software offloads (GSO and GRO).
8672 	 */
8673 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8674 	dev->features |= NETIF_F_SOFT_FEATURES;
8675 
8676 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8677 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8678 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8679 	}
8680 
8681 	dev->wanted_features = dev->features & dev->hw_features;
8682 
8683 	if (!(dev->flags & IFF_LOOPBACK))
8684 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8685 
8686 	/* If IPv4 TCP segmentation offload is supported we should also
8687 	 * allow the device to enable segmenting the frame with the option
8688 	 * of ignoring a static IP ID value.  This doesn't enable the
8689 	 * feature itself but allows the user to enable it later.
8690 	 */
8691 	if (dev->hw_features & NETIF_F_TSO)
8692 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8693 	if (dev->vlan_features & NETIF_F_TSO)
8694 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8695 	if (dev->mpls_features & NETIF_F_TSO)
8696 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8697 	if (dev->hw_enc_features & NETIF_F_TSO)
8698 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8699 
8700 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8701 	 */
8702 	dev->vlan_features |= NETIF_F_HIGHDMA;
8703 
8704 	/* Make NETIF_F_SG inheritable to tunnel devices.
8705 	 */
8706 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8707 
8708 	/* Make NETIF_F_SG inheritable to MPLS.
8709 	 */
8710 	dev->mpls_features |= NETIF_F_SG;
8711 
8712 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8713 	ret = notifier_to_errno(ret);
8714 	if (ret)
8715 		goto err_uninit;
8716 
8717 	ret = netdev_register_kobject(dev);
8718 	if (ret) {
8719 		dev->reg_state = NETREG_UNREGISTERED;
8720 		goto err_uninit;
8721 	}
8722 	dev->reg_state = NETREG_REGISTERED;
8723 
8724 	__netdev_update_features(dev);
8725 
8726 	/*
8727 	 *	Default initial state at registry is that the
8728 	 *	device is present.
8729 	 */
8730 
8731 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8732 
8733 	linkwatch_init_dev(dev);
8734 
8735 	dev_init_scheduler(dev);
8736 	dev_hold(dev);
8737 	list_netdevice(dev);
8738 	add_device_randomness(dev->dev_addr, dev->addr_len);
8739 
8740 	/* If the device has permanent device address, driver should
8741 	 * set dev_addr and also addr_assign_type should be set to
8742 	 * NET_ADDR_PERM (default value).
8743 	 */
8744 	if (dev->addr_assign_type == NET_ADDR_PERM)
8745 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8746 
8747 	/* Notify protocols, that a new device appeared. */
8748 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8749 	ret = notifier_to_errno(ret);
8750 	if (ret) {
8751 		rollback_registered(dev);
8752 		rcu_barrier();
8753 
8754 		dev->reg_state = NETREG_UNREGISTERED;
8755 		/* We should put the kobject that hold in
8756 		 * netdev_unregister_kobject(), otherwise
8757 		 * the net device cannot be freed when
8758 		 * driver calls free_netdev(), because the
8759 		 * kobject is being hold.
8760 		 */
8761 		kobject_put(&dev->dev.kobj);
8762 	}
8763 	/*
8764 	 *	Prevent userspace races by waiting until the network
8765 	 *	device is fully setup before sending notifications.
8766 	 */
8767 	if (!dev->rtnl_link_ops ||
8768 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8769 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8770 
8771 out:
8772 	return ret;
8773 
8774 err_uninit:
8775 	if (dev->netdev_ops->ndo_uninit)
8776 		dev->netdev_ops->ndo_uninit(dev);
8777 	if (dev->priv_destructor)
8778 		dev->priv_destructor(dev);
8779 	goto out;
8780 }
8781 EXPORT_SYMBOL(register_netdevice);
8782 
8783 /**
8784  *	init_dummy_netdev	- init a dummy network device for NAPI
8785  *	@dev: device to init
8786  *
8787  *	This takes a network device structure and initialize the minimum
8788  *	amount of fields so it can be used to schedule NAPI polls without
8789  *	registering a full blown interface. This is to be used by drivers
8790  *	that need to tie several hardware interfaces to a single NAPI
8791  *	poll scheduler due to HW limitations.
8792  */
init_dummy_netdev(struct net_device * dev)8793 int init_dummy_netdev(struct net_device *dev)
8794 {
8795 	/* Clear everything. Note we don't initialize spinlocks
8796 	 * are they aren't supposed to be taken by any of the
8797 	 * NAPI code and this dummy netdev is supposed to be
8798 	 * only ever used for NAPI polls
8799 	 */
8800 	memset(dev, 0, sizeof(struct net_device));
8801 
8802 	/* make sure we BUG if trying to hit standard
8803 	 * register/unregister code path
8804 	 */
8805 	dev->reg_state = NETREG_DUMMY;
8806 
8807 	/* NAPI wants this */
8808 	INIT_LIST_HEAD(&dev->napi_list);
8809 
8810 	/* a dummy interface is started by default */
8811 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8812 	set_bit(__LINK_STATE_START, &dev->state);
8813 
8814 	/* napi_busy_loop stats accounting wants this */
8815 	dev_net_set(dev, &init_net);
8816 
8817 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8818 	 * because users of this 'device' dont need to change
8819 	 * its refcount.
8820 	 */
8821 
8822 	return 0;
8823 }
8824 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8825 
8826 
8827 /**
8828  *	register_netdev	- register a network device
8829  *	@dev: device to register
8830  *
8831  *	Take a completed network device structure and add it to the kernel
8832  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8833  *	chain. 0 is returned on success. A negative errno code is returned
8834  *	on a failure to set up the device, or if the name is a duplicate.
8835  *
8836  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8837  *	and expands the device name if you passed a format string to
8838  *	alloc_netdev.
8839  */
register_netdev(struct net_device * dev)8840 int register_netdev(struct net_device *dev)
8841 {
8842 	int err;
8843 
8844 	if (rtnl_lock_killable())
8845 		return -EINTR;
8846 	err = register_netdevice(dev);
8847 	rtnl_unlock();
8848 	return err;
8849 }
8850 EXPORT_SYMBOL(register_netdev);
8851 
netdev_refcnt_read(const struct net_device * dev)8852 int netdev_refcnt_read(const struct net_device *dev)
8853 {
8854 	int i, refcnt = 0;
8855 
8856 	for_each_possible_cpu(i)
8857 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8858 	return refcnt;
8859 }
8860 EXPORT_SYMBOL(netdev_refcnt_read);
8861 
8862 /**
8863  * netdev_wait_allrefs - wait until all references are gone.
8864  * @dev: target net_device
8865  *
8866  * This is called when unregistering network devices.
8867  *
8868  * Any protocol or device that holds a reference should register
8869  * for netdevice notification, and cleanup and put back the
8870  * reference if they receive an UNREGISTER event.
8871  * We can get stuck here if buggy protocols don't correctly
8872  * call dev_put.
8873  */
netdev_wait_allrefs(struct net_device * dev)8874 static void netdev_wait_allrefs(struct net_device *dev)
8875 {
8876 	unsigned long rebroadcast_time, warning_time;
8877 	int refcnt;
8878 
8879 	linkwatch_forget_dev(dev);
8880 
8881 	rebroadcast_time = warning_time = jiffies;
8882 	refcnt = netdev_refcnt_read(dev);
8883 
8884 	while (refcnt != 0) {
8885 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8886 			rtnl_lock();
8887 
8888 			/* Rebroadcast unregister notification */
8889 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8890 
8891 			__rtnl_unlock();
8892 			rcu_barrier();
8893 			rtnl_lock();
8894 
8895 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8896 				     &dev->state)) {
8897 				/* We must not have linkwatch events
8898 				 * pending on unregister. If this
8899 				 * happens, we simply run the queue
8900 				 * unscheduled, resulting in a noop
8901 				 * for this device.
8902 				 */
8903 				linkwatch_run_queue();
8904 			}
8905 
8906 			__rtnl_unlock();
8907 
8908 			rebroadcast_time = jiffies;
8909 		}
8910 
8911 		msleep(250);
8912 
8913 		refcnt = netdev_refcnt_read(dev);
8914 
8915 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8916 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8917 				 dev->name, refcnt);
8918 			warning_time = jiffies;
8919 		}
8920 	}
8921 }
8922 
8923 /* The sequence is:
8924  *
8925  *	rtnl_lock();
8926  *	...
8927  *	register_netdevice(x1);
8928  *	register_netdevice(x2);
8929  *	...
8930  *	unregister_netdevice(y1);
8931  *	unregister_netdevice(y2);
8932  *      ...
8933  *	rtnl_unlock();
8934  *	free_netdev(y1);
8935  *	free_netdev(y2);
8936  *
8937  * We are invoked by rtnl_unlock().
8938  * This allows us to deal with problems:
8939  * 1) We can delete sysfs objects which invoke hotplug
8940  *    without deadlocking with linkwatch via keventd.
8941  * 2) Since we run with the RTNL semaphore not held, we can sleep
8942  *    safely in order to wait for the netdev refcnt to drop to zero.
8943  *
8944  * We must not return until all unregister events added during
8945  * the interval the lock was held have been completed.
8946  */
netdev_run_todo(void)8947 void netdev_run_todo(void)
8948 {
8949 	struct list_head list;
8950 
8951 	/* Snapshot list, allow later requests */
8952 	list_replace_init(&net_todo_list, &list);
8953 
8954 	__rtnl_unlock();
8955 
8956 
8957 	/* Wait for rcu callbacks to finish before next phase */
8958 	if (!list_empty(&list))
8959 		rcu_barrier();
8960 
8961 	while (!list_empty(&list)) {
8962 		struct net_device *dev
8963 			= list_first_entry(&list, struct net_device, todo_list);
8964 		list_del(&dev->todo_list);
8965 
8966 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8967 			pr_err("network todo '%s' but state %d\n",
8968 			       dev->name, dev->reg_state);
8969 			dump_stack();
8970 			continue;
8971 		}
8972 
8973 		dev->reg_state = NETREG_UNREGISTERED;
8974 
8975 		netdev_wait_allrefs(dev);
8976 
8977 		/* paranoia */
8978 		BUG_ON(netdev_refcnt_read(dev));
8979 		BUG_ON(!list_empty(&dev->ptype_all));
8980 		BUG_ON(!list_empty(&dev->ptype_specific));
8981 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8982 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8983 #if IS_ENABLED(CONFIG_DECNET)
8984 		WARN_ON(dev->dn_ptr);
8985 #endif
8986 		if (dev->priv_destructor)
8987 			dev->priv_destructor(dev);
8988 		if (dev->needs_free_netdev)
8989 			free_netdev(dev);
8990 
8991 		/* Report a network device has been unregistered */
8992 		rtnl_lock();
8993 		dev_net(dev)->dev_unreg_count--;
8994 		__rtnl_unlock();
8995 		wake_up(&netdev_unregistering_wq);
8996 
8997 		/* Free network device */
8998 		kobject_put(&dev->dev.kobj);
8999 	}
9000 }
9001 
9002 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9003  * all the same fields in the same order as net_device_stats, with only
9004  * the type differing, but rtnl_link_stats64 may have additional fields
9005  * at the end for newer counters.
9006  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)9007 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9008 			     const struct net_device_stats *netdev_stats)
9009 {
9010 #if BITS_PER_LONG == 64
9011 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9012 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9013 	/* zero out counters that only exist in rtnl_link_stats64 */
9014 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9015 	       sizeof(*stats64) - sizeof(*netdev_stats));
9016 #else
9017 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9018 	const unsigned long *src = (const unsigned long *)netdev_stats;
9019 	u64 *dst = (u64 *)stats64;
9020 
9021 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9022 	for (i = 0; i < n; i++)
9023 		dst[i] = src[i];
9024 	/* zero out counters that only exist in rtnl_link_stats64 */
9025 	memset((char *)stats64 + n * sizeof(u64), 0,
9026 	       sizeof(*stats64) - n * sizeof(u64));
9027 #endif
9028 }
9029 EXPORT_SYMBOL(netdev_stats_to_stats64);
9030 
9031 /**
9032  *	dev_get_stats	- get network device statistics
9033  *	@dev: device to get statistics from
9034  *	@storage: place to store stats
9035  *
9036  *	Get network statistics from device. Return @storage.
9037  *	The device driver may provide its own method by setting
9038  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9039  *	otherwise the internal statistics structure is used.
9040  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)9041 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9042 					struct rtnl_link_stats64 *storage)
9043 {
9044 	const struct net_device_ops *ops = dev->netdev_ops;
9045 
9046 	if (ops->ndo_get_stats64) {
9047 		memset(storage, 0, sizeof(*storage));
9048 		ops->ndo_get_stats64(dev, storage);
9049 	} else if (ops->ndo_get_stats) {
9050 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9051 	} else {
9052 		netdev_stats_to_stats64(storage, &dev->stats);
9053 	}
9054 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9055 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9056 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9057 	return storage;
9058 }
9059 EXPORT_SYMBOL(dev_get_stats);
9060 
dev_ingress_queue_create(struct net_device * dev)9061 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9062 {
9063 	struct netdev_queue *queue = dev_ingress_queue(dev);
9064 
9065 #ifdef CONFIG_NET_CLS_ACT
9066 	if (queue)
9067 		return queue;
9068 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9069 	if (!queue)
9070 		return NULL;
9071 	netdev_init_one_queue(dev, queue, NULL);
9072 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9073 	queue->qdisc_sleeping = &noop_qdisc;
9074 	rcu_assign_pointer(dev->ingress_queue, queue);
9075 #endif
9076 	return queue;
9077 }
9078 
9079 static const struct ethtool_ops default_ethtool_ops;
9080 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)9081 void netdev_set_default_ethtool_ops(struct net_device *dev,
9082 				    const struct ethtool_ops *ops)
9083 {
9084 	if (dev->ethtool_ops == &default_ethtool_ops)
9085 		dev->ethtool_ops = ops;
9086 }
9087 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9088 
netdev_freemem(struct net_device * dev)9089 void netdev_freemem(struct net_device *dev)
9090 {
9091 	char *addr = (char *)dev - dev->padded;
9092 
9093 	kvfree(addr);
9094 }
9095 
9096 /**
9097  * alloc_netdev_mqs - allocate network device
9098  * @sizeof_priv: size of private data to allocate space for
9099  * @name: device name format string
9100  * @name_assign_type: origin of device name
9101  * @setup: callback to initialize device
9102  * @txqs: the number of TX subqueues to allocate
9103  * @rxqs: the number of RX subqueues to allocate
9104  *
9105  * Allocates a struct net_device with private data area for driver use
9106  * and performs basic initialization.  Also allocates subqueue structs
9107  * for each queue on the device.
9108  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)9109 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9110 		unsigned char name_assign_type,
9111 		void (*setup)(struct net_device *),
9112 		unsigned int txqs, unsigned int rxqs)
9113 {
9114 	struct net_device *dev;
9115 	unsigned int alloc_size;
9116 	struct net_device *p;
9117 
9118 	BUG_ON(strlen(name) >= sizeof(dev->name));
9119 
9120 	if (txqs < 1) {
9121 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9122 		return NULL;
9123 	}
9124 
9125 	if (rxqs < 1) {
9126 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9127 		return NULL;
9128 	}
9129 
9130 	alloc_size = sizeof(struct net_device);
9131 	if (sizeof_priv) {
9132 		/* ensure 32-byte alignment of private area */
9133 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9134 		alloc_size += sizeof_priv;
9135 	}
9136 	/* ensure 32-byte alignment of whole construct */
9137 	alloc_size += NETDEV_ALIGN - 1;
9138 
9139 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9140 	if (!p)
9141 		return NULL;
9142 
9143 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9144 	dev->padded = (char *)dev - (char *)p;
9145 
9146 	dev->pcpu_refcnt = alloc_percpu(int);
9147 	if (!dev->pcpu_refcnt)
9148 		goto free_dev;
9149 
9150 	if (dev_addr_init(dev))
9151 		goto free_pcpu;
9152 
9153 	dev_mc_init(dev);
9154 	dev_uc_init(dev);
9155 
9156 	dev_net_set(dev, &init_net);
9157 
9158 	dev->gso_max_size = GSO_MAX_SIZE;
9159 	dev->gso_max_segs = GSO_MAX_SEGS;
9160 	dev->upper_level = 1;
9161 	dev->lower_level = 1;
9162 
9163 	INIT_LIST_HEAD(&dev->napi_list);
9164 	INIT_LIST_HEAD(&dev->unreg_list);
9165 	INIT_LIST_HEAD(&dev->close_list);
9166 	INIT_LIST_HEAD(&dev->link_watch_list);
9167 	INIT_LIST_HEAD(&dev->adj_list.upper);
9168 	INIT_LIST_HEAD(&dev->adj_list.lower);
9169 	INIT_LIST_HEAD(&dev->ptype_all);
9170 	INIT_LIST_HEAD(&dev->ptype_specific);
9171 #ifdef CONFIG_NET_SCHED
9172 	hash_init(dev->qdisc_hash);
9173 #endif
9174 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9175 	setup(dev);
9176 
9177 	if (!dev->tx_queue_len) {
9178 		dev->priv_flags |= IFF_NO_QUEUE;
9179 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9180 	}
9181 
9182 	dev->num_tx_queues = txqs;
9183 	dev->real_num_tx_queues = txqs;
9184 	if (netif_alloc_netdev_queues(dev))
9185 		goto free_all;
9186 
9187 	dev->num_rx_queues = rxqs;
9188 	dev->real_num_rx_queues = rxqs;
9189 	if (netif_alloc_rx_queues(dev))
9190 		goto free_all;
9191 
9192 	strcpy(dev->name, name);
9193 	dev->name_assign_type = name_assign_type;
9194 	dev->group = INIT_NETDEV_GROUP;
9195 	if (!dev->ethtool_ops)
9196 		dev->ethtool_ops = &default_ethtool_ops;
9197 
9198 	nf_hook_ingress_init(dev);
9199 
9200 	return dev;
9201 
9202 free_all:
9203 	free_netdev(dev);
9204 	return NULL;
9205 
9206 free_pcpu:
9207 	free_percpu(dev->pcpu_refcnt);
9208 free_dev:
9209 	netdev_freemem(dev);
9210 	return NULL;
9211 }
9212 EXPORT_SYMBOL(alloc_netdev_mqs);
9213 
9214 /**
9215  * free_netdev - free network device
9216  * @dev: device
9217  *
9218  * This function does the last stage of destroying an allocated device
9219  * interface. The reference to the device object is released. If this
9220  * is the last reference then it will be freed.Must be called in process
9221  * context.
9222  */
free_netdev(struct net_device * dev)9223 void free_netdev(struct net_device *dev)
9224 {
9225 	struct napi_struct *p, *n;
9226 
9227 	might_sleep();
9228 	netif_free_tx_queues(dev);
9229 	netif_free_rx_queues(dev);
9230 
9231 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9232 
9233 	/* Flush device addresses */
9234 	dev_addr_flush(dev);
9235 
9236 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9237 		netif_napi_del(p);
9238 
9239 	free_percpu(dev->pcpu_refcnt);
9240 	dev->pcpu_refcnt = NULL;
9241 
9242 	/*  Compatibility with error handling in drivers */
9243 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9244 		netdev_freemem(dev);
9245 		return;
9246 	}
9247 
9248 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9249 	dev->reg_state = NETREG_RELEASED;
9250 
9251 	/* will free via device release */
9252 	put_device(&dev->dev);
9253 }
9254 EXPORT_SYMBOL(free_netdev);
9255 
9256 /**
9257  *	synchronize_net -  Synchronize with packet receive processing
9258  *
9259  *	Wait for packets currently being received to be done.
9260  *	Does not block later packets from starting.
9261  */
synchronize_net(void)9262 void synchronize_net(void)
9263 {
9264 	might_sleep();
9265 	if (rtnl_is_locked())
9266 		synchronize_rcu_expedited();
9267 	else
9268 		synchronize_rcu();
9269 }
9270 EXPORT_SYMBOL(synchronize_net);
9271 
9272 /**
9273  *	unregister_netdevice_queue - remove device from the kernel
9274  *	@dev: device
9275  *	@head: list
9276  *
9277  *	This function shuts down a device interface and removes it
9278  *	from the kernel tables.
9279  *	If head not NULL, device is queued to be unregistered later.
9280  *
9281  *	Callers must hold the rtnl semaphore.  You may want
9282  *	unregister_netdev() instead of this.
9283  */
9284 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)9285 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9286 {
9287 	ASSERT_RTNL();
9288 
9289 	if (head) {
9290 		list_move_tail(&dev->unreg_list, head);
9291 	} else {
9292 		rollback_registered(dev);
9293 		/* Finish processing unregister after unlock */
9294 		net_set_todo(dev);
9295 	}
9296 }
9297 EXPORT_SYMBOL(unregister_netdevice_queue);
9298 
9299 /**
9300  *	unregister_netdevice_many - unregister many devices
9301  *	@head: list of devices
9302  *
9303  *  Note: As most callers use a stack allocated list_head,
9304  *  we force a list_del() to make sure stack wont be corrupted later.
9305  */
unregister_netdevice_many(struct list_head * head)9306 void unregister_netdevice_many(struct list_head *head)
9307 {
9308 	struct net_device *dev;
9309 
9310 	if (!list_empty(head)) {
9311 		rollback_registered_many(head);
9312 		list_for_each_entry(dev, head, unreg_list)
9313 			net_set_todo(dev);
9314 		list_del(head);
9315 	}
9316 }
9317 EXPORT_SYMBOL(unregister_netdevice_many);
9318 
9319 /**
9320  *	unregister_netdev - remove device from the kernel
9321  *	@dev: device
9322  *
9323  *	This function shuts down a device interface and removes it
9324  *	from the kernel tables.
9325  *
9326  *	This is just a wrapper for unregister_netdevice that takes
9327  *	the rtnl semaphore.  In general you want to use this and not
9328  *	unregister_netdevice.
9329  */
unregister_netdev(struct net_device * dev)9330 void unregister_netdev(struct net_device *dev)
9331 {
9332 	rtnl_lock();
9333 	unregister_netdevice(dev);
9334 	rtnl_unlock();
9335 }
9336 EXPORT_SYMBOL(unregister_netdev);
9337 
9338 /**
9339  *	dev_change_net_namespace - move device to different nethost namespace
9340  *	@dev: device
9341  *	@net: network namespace
9342  *	@pat: If not NULL name pattern to try if the current device name
9343  *	      is already taken in the destination network namespace.
9344  *
9345  *	This function shuts down a device interface and moves it
9346  *	to a new network namespace. On success 0 is returned, on
9347  *	a failure a netagive errno code is returned.
9348  *
9349  *	Callers must hold the rtnl semaphore.
9350  */
9351 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)9352 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9353 {
9354 	int err, new_nsid, new_ifindex;
9355 
9356 	ASSERT_RTNL();
9357 
9358 	/* Don't allow namespace local devices to be moved. */
9359 	err = -EINVAL;
9360 	if (dev->features & NETIF_F_NETNS_LOCAL)
9361 		goto out;
9362 
9363 	/* Ensure the device has been registrered */
9364 	if (dev->reg_state != NETREG_REGISTERED)
9365 		goto out;
9366 
9367 	/* Get out if there is nothing todo */
9368 	err = 0;
9369 	if (net_eq(dev_net(dev), net))
9370 		goto out;
9371 
9372 	/* Pick the destination device name, and ensure
9373 	 * we can use it in the destination network namespace.
9374 	 */
9375 	err = -EEXIST;
9376 	if (__dev_get_by_name(net, dev->name)) {
9377 		/* We get here if we can't use the current device name */
9378 		if (!pat)
9379 			goto out;
9380 		err = dev_get_valid_name(net, dev, pat);
9381 		if (err < 0)
9382 			goto out;
9383 	}
9384 
9385 	/*
9386 	 * And now a mini version of register_netdevice unregister_netdevice.
9387 	 */
9388 
9389 	/* If device is running close it first. */
9390 	dev_close(dev);
9391 
9392 	/* And unlink it from device chain */
9393 	unlist_netdevice(dev);
9394 
9395 	synchronize_net();
9396 
9397 	/* Shutdown queueing discipline. */
9398 	dev_shutdown(dev);
9399 
9400 	/* Notify protocols, that we are about to destroy
9401 	 * this device. They should clean all the things.
9402 	 *
9403 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9404 	 * This is wanted because this way 8021q and macvlan know
9405 	 * the device is just moving and can keep their slaves up.
9406 	 */
9407 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9408 	rcu_barrier();
9409 
9410 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
9411 	/* If there is an ifindex conflict assign a new one */
9412 	if (__dev_get_by_index(net, dev->ifindex))
9413 		new_ifindex = dev_new_index(net);
9414 	else
9415 		new_ifindex = dev->ifindex;
9416 
9417 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9418 			    new_ifindex);
9419 
9420 	/*
9421 	 *	Flush the unicast and multicast chains
9422 	 */
9423 	dev_uc_flush(dev);
9424 	dev_mc_flush(dev);
9425 
9426 	/* Send a netdev-removed uevent to the old namespace */
9427 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9428 	netdev_adjacent_del_links(dev);
9429 
9430 	/* Actually switch the network namespace */
9431 	dev_net_set(dev, net);
9432 	dev->ifindex = new_ifindex;
9433 
9434 	/* Send a netdev-add uevent to the new namespace */
9435 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9436 	netdev_adjacent_add_links(dev);
9437 
9438 	/* Fixup kobjects */
9439 	err = device_rename(&dev->dev, dev->name);
9440 	WARN_ON(err);
9441 
9442 	/* Add the device back in the hashes */
9443 	list_netdevice(dev);
9444 
9445 	/* Notify protocols, that a new device appeared. */
9446 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9447 
9448 	/*
9449 	 *	Prevent userspace races by waiting until the network
9450 	 *	device is fully setup before sending notifications.
9451 	 */
9452 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9453 
9454 	synchronize_net();
9455 	err = 0;
9456 out:
9457 	return err;
9458 }
9459 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9460 
dev_cpu_dead(unsigned int oldcpu)9461 static int dev_cpu_dead(unsigned int oldcpu)
9462 {
9463 	struct sk_buff **list_skb;
9464 	struct sk_buff *skb;
9465 	unsigned int cpu;
9466 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9467 
9468 	local_irq_disable();
9469 	cpu = smp_processor_id();
9470 	sd = &per_cpu(softnet_data, cpu);
9471 	oldsd = &per_cpu(softnet_data, oldcpu);
9472 
9473 	/* Find end of our completion_queue. */
9474 	list_skb = &sd->completion_queue;
9475 	while (*list_skb)
9476 		list_skb = &(*list_skb)->next;
9477 	/* Append completion queue from offline CPU. */
9478 	*list_skb = oldsd->completion_queue;
9479 	oldsd->completion_queue = NULL;
9480 
9481 	/* Append output queue from offline CPU. */
9482 	if (oldsd->output_queue) {
9483 		*sd->output_queue_tailp = oldsd->output_queue;
9484 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9485 		oldsd->output_queue = NULL;
9486 		oldsd->output_queue_tailp = &oldsd->output_queue;
9487 	}
9488 	/* Append NAPI poll list from offline CPU, with one exception :
9489 	 * process_backlog() must be called by cpu owning percpu backlog.
9490 	 * We properly handle process_queue & input_pkt_queue later.
9491 	 */
9492 	while (!list_empty(&oldsd->poll_list)) {
9493 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9494 							    struct napi_struct,
9495 							    poll_list);
9496 
9497 		list_del_init(&napi->poll_list);
9498 		if (napi->poll == process_backlog)
9499 			napi->state = 0;
9500 		else
9501 			____napi_schedule(sd, napi);
9502 	}
9503 
9504 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9505 	local_irq_enable();
9506 
9507 #ifdef CONFIG_RPS
9508 	remsd = oldsd->rps_ipi_list;
9509 	oldsd->rps_ipi_list = NULL;
9510 #endif
9511 	/* send out pending IPI's on offline CPU */
9512 	net_rps_send_ipi(remsd);
9513 
9514 	/* Process offline CPU's input_pkt_queue */
9515 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9516 		netif_rx_ni(skb);
9517 		input_queue_head_incr(oldsd);
9518 	}
9519 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9520 		netif_rx_ni(skb);
9521 		input_queue_head_incr(oldsd);
9522 	}
9523 
9524 	return 0;
9525 }
9526 
9527 /**
9528  *	netdev_increment_features - increment feature set by one
9529  *	@all: current feature set
9530  *	@one: new feature set
9531  *	@mask: mask feature set
9532  *
9533  *	Computes a new feature set after adding a device with feature set
9534  *	@one to the master device with current feature set @all.  Will not
9535  *	enable anything that is off in @mask. Returns the new feature set.
9536  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)9537 netdev_features_t netdev_increment_features(netdev_features_t all,
9538 	netdev_features_t one, netdev_features_t mask)
9539 {
9540 	if (mask & NETIF_F_HW_CSUM)
9541 		mask |= NETIF_F_CSUM_MASK;
9542 	mask |= NETIF_F_VLAN_CHALLENGED;
9543 
9544 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9545 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9546 
9547 	/* If one device supports hw checksumming, set for all. */
9548 	if (all & NETIF_F_HW_CSUM)
9549 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9550 
9551 	return all;
9552 }
9553 EXPORT_SYMBOL(netdev_increment_features);
9554 
netdev_create_hash(void)9555 static struct hlist_head * __net_init netdev_create_hash(void)
9556 {
9557 	int i;
9558 	struct hlist_head *hash;
9559 
9560 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9561 	if (hash != NULL)
9562 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9563 			INIT_HLIST_HEAD(&hash[i]);
9564 
9565 	return hash;
9566 }
9567 
9568 /* Initialize per network namespace state */
netdev_init(struct net * net)9569 static int __net_init netdev_init(struct net *net)
9570 {
9571 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9572 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9573 
9574 	if (net != &init_net)
9575 		INIT_LIST_HEAD(&net->dev_base_head);
9576 
9577 	net->dev_name_head = netdev_create_hash();
9578 	if (net->dev_name_head == NULL)
9579 		goto err_name;
9580 
9581 	net->dev_index_head = netdev_create_hash();
9582 	if (net->dev_index_head == NULL)
9583 		goto err_idx;
9584 
9585 	return 0;
9586 
9587 err_idx:
9588 	kfree(net->dev_name_head);
9589 err_name:
9590 	return -ENOMEM;
9591 }
9592 
9593 /**
9594  *	netdev_drivername - network driver for the device
9595  *	@dev: network device
9596  *
9597  *	Determine network driver for device.
9598  */
netdev_drivername(const struct net_device * dev)9599 const char *netdev_drivername(const struct net_device *dev)
9600 {
9601 	const struct device_driver *driver;
9602 	const struct device *parent;
9603 	const char *empty = "";
9604 
9605 	parent = dev->dev.parent;
9606 	if (!parent)
9607 		return empty;
9608 
9609 	driver = parent->driver;
9610 	if (driver && driver->name)
9611 		return driver->name;
9612 	return empty;
9613 }
9614 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)9615 static void __netdev_printk(const char *level, const struct net_device *dev,
9616 			    struct va_format *vaf)
9617 {
9618 	if (dev && dev->dev.parent) {
9619 		dev_printk_emit(level[1] - '0',
9620 				dev->dev.parent,
9621 				"%s %s %s%s: %pV",
9622 				dev_driver_string(dev->dev.parent),
9623 				dev_name(dev->dev.parent),
9624 				netdev_name(dev), netdev_reg_state(dev),
9625 				vaf);
9626 	} else if (dev) {
9627 		printk("%s%s%s: %pV",
9628 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9629 	} else {
9630 		printk("%s(NULL net_device): %pV", level, vaf);
9631 	}
9632 }
9633 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)9634 void netdev_printk(const char *level, const struct net_device *dev,
9635 		   const char *format, ...)
9636 {
9637 	struct va_format vaf;
9638 	va_list args;
9639 
9640 	va_start(args, format);
9641 
9642 	vaf.fmt = format;
9643 	vaf.va = &args;
9644 
9645 	__netdev_printk(level, dev, &vaf);
9646 
9647 	va_end(args);
9648 }
9649 EXPORT_SYMBOL(netdev_printk);
9650 
9651 #define define_netdev_printk_level(func, level)			\
9652 void func(const struct net_device *dev, const char *fmt, ...)	\
9653 {								\
9654 	struct va_format vaf;					\
9655 	va_list args;						\
9656 								\
9657 	va_start(args, fmt);					\
9658 								\
9659 	vaf.fmt = fmt;						\
9660 	vaf.va = &args;						\
9661 								\
9662 	__netdev_printk(level, dev, &vaf);			\
9663 								\
9664 	va_end(args);						\
9665 }								\
9666 EXPORT_SYMBOL(func);
9667 
9668 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9669 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9670 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9671 define_netdev_printk_level(netdev_err, KERN_ERR);
9672 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9673 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9674 define_netdev_printk_level(netdev_info, KERN_INFO);
9675 
netdev_exit(struct net * net)9676 static void __net_exit netdev_exit(struct net *net)
9677 {
9678 	kfree(net->dev_name_head);
9679 	kfree(net->dev_index_head);
9680 	if (net != &init_net)
9681 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9682 }
9683 
9684 static struct pernet_operations __net_initdata netdev_net_ops = {
9685 	.init = netdev_init,
9686 	.exit = netdev_exit,
9687 };
9688 
default_device_exit(struct net * net)9689 static void __net_exit default_device_exit(struct net *net)
9690 {
9691 	struct net_device *dev, *aux;
9692 	/*
9693 	 * Push all migratable network devices back to the
9694 	 * initial network namespace
9695 	 */
9696 	rtnl_lock();
9697 	for_each_netdev_safe(net, dev, aux) {
9698 		int err;
9699 		char fb_name[IFNAMSIZ];
9700 
9701 		/* Ignore unmoveable devices (i.e. loopback) */
9702 		if (dev->features & NETIF_F_NETNS_LOCAL)
9703 			continue;
9704 
9705 		/* Leave virtual devices for the generic cleanup */
9706 		if (dev->rtnl_link_ops)
9707 			continue;
9708 
9709 		/* Push remaining network devices to init_net */
9710 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9711 		if (__dev_get_by_name(&init_net, fb_name))
9712 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
9713 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9714 		if (err) {
9715 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9716 				 __func__, dev->name, err);
9717 			BUG();
9718 		}
9719 	}
9720 	rtnl_unlock();
9721 }
9722 
rtnl_lock_unregistering(struct list_head * net_list)9723 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9724 {
9725 	/* Return with the rtnl_lock held when there are no network
9726 	 * devices unregistering in any network namespace in net_list.
9727 	 */
9728 	struct net *net;
9729 	bool unregistering;
9730 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9731 
9732 	add_wait_queue(&netdev_unregistering_wq, &wait);
9733 	for (;;) {
9734 		unregistering = false;
9735 		rtnl_lock();
9736 		list_for_each_entry(net, net_list, exit_list) {
9737 			if (net->dev_unreg_count > 0) {
9738 				unregistering = true;
9739 				break;
9740 			}
9741 		}
9742 		if (!unregistering)
9743 			break;
9744 		__rtnl_unlock();
9745 
9746 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9747 	}
9748 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9749 }
9750 
default_device_exit_batch(struct list_head * net_list)9751 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9752 {
9753 	/* At exit all network devices most be removed from a network
9754 	 * namespace.  Do this in the reverse order of registration.
9755 	 * Do this across as many network namespaces as possible to
9756 	 * improve batching efficiency.
9757 	 */
9758 	struct net_device *dev;
9759 	struct net *net;
9760 	LIST_HEAD(dev_kill_list);
9761 
9762 	/* To prevent network device cleanup code from dereferencing
9763 	 * loopback devices or network devices that have been freed
9764 	 * wait here for all pending unregistrations to complete,
9765 	 * before unregistring the loopback device and allowing the
9766 	 * network namespace be freed.
9767 	 *
9768 	 * The netdev todo list containing all network devices
9769 	 * unregistrations that happen in default_device_exit_batch
9770 	 * will run in the rtnl_unlock() at the end of
9771 	 * default_device_exit_batch.
9772 	 */
9773 	rtnl_lock_unregistering(net_list);
9774 	list_for_each_entry(net, net_list, exit_list) {
9775 		for_each_netdev_reverse(net, dev) {
9776 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9777 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9778 			else
9779 				unregister_netdevice_queue(dev, &dev_kill_list);
9780 		}
9781 	}
9782 	unregister_netdevice_many(&dev_kill_list);
9783 	rtnl_unlock();
9784 }
9785 
9786 static struct pernet_operations __net_initdata default_device_ops = {
9787 	.exit = default_device_exit,
9788 	.exit_batch = default_device_exit_batch,
9789 };
9790 
9791 /*
9792  *	Initialize the DEV module. At boot time this walks the device list and
9793  *	unhooks any devices that fail to initialise (normally hardware not
9794  *	present) and leaves us with a valid list of present and active devices.
9795  *
9796  */
9797 
9798 /*
9799  *       This is called single threaded during boot, so no need
9800  *       to take the rtnl semaphore.
9801  */
net_dev_init(void)9802 static int __init net_dev_init(void)
9803 {
9804 	int i, rc = -ENOMEM;
9805 
9806 	BUG_ON(!dev_boot_phase);
9807 
9808 	if (dev_proc_init())
9809 		goto out;
9810 
9811 	if (netdev_kobject_init())
9812 		goto out;
9813 
9814 	INIT_LIST_HEAD(&ptype_all);
9815 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9816 		INIT_LIST_HEAD(&ptype_base[i]);
9817 
9818 	INIT_LIST_HEAD(&offload_base);
9819 
9820 	if (register_pernet_subsys(&netdev_net_ops))
9821 		goto out;
9822 
9823 	/*
9824 	 *	Initialise the packet receive queues.
9825 	 */
9826 
9827 	for_each_possible_cpu(i) {
9828 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9829 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9830 
9831 		INIT_WORK(flush, flush_backlog);
9832 
9833 		skb_queue_head_init(&sd->input_pkt_queue);
9834 		skb_queue_head_init(&sd->process_queue);
9835 #ifdef CONFIG_XFRM_OFFLOAD
9836 		skb_queue_head_init(&sd->xfrm_backlog);
9837 #endif
9838 		INIT_LIST_HEAD(&sd->poll_list);
9839 		sd->output_queue_tailp = &sd->output_queue;
9840 #ifdef CONFIG_RPS
9841 		sd->csd.func = rps_trigger_softirq;
9842 		sd->csd.info = sd;
9843 		sd->cpu = i;
9844 #endif
9845 
9846 		init_gro_hash(&sd->backlog);
9847 		sd->backlog.poll = process_backlog;
9848 		sd->backlog.weight = weight_p;
9849 	}
9850 
9851 	dev_boot_phase = 0;
9852 
9853 	/* The loopback device is special if any other network devices
9854 	 * is present in a network namespace the loopback device must
9855 	 * be present. Since we now dynamically allocate and free the
9856 	 * loopback device ensure this invariant is maintained by
9857 	 * keeping the loopback device as the first device on the
9858 	 * list of network devices.  Ensuring the loopback devices
9859 	 * is the first device that appears and the last network device
9860 	 * that disappears.
9861 	 */
9862 	if (register_pernet_device(&loopback_net_ops))
9863 		goto out;
9864 
9865 	if (register_pernet_device(&default_device_ops))
9866 		goto out;
9867 
9868 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9869 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9870 
9871 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9872 				       NULL, dev_cpu_dead);
9873 	WARN_ON(rc < 0);
9874 	rc = 0;
9875 out:
9876 	return rc;
9877 }
9878 
9879 subsys_initcall(net_dev_init);
9880