1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/rwsem.h>
87 #include <linux/string.h>
88 #include <linux/mm.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/errno.h>
92 #include <linux/interrupt.h>
93 #include <linux/if_ether.h>
94 #include <linux/netdevice.h>
95 #include <linux/etherdevice.h>
96 #include <linux/ethtool.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153 #define MAX_NEST_DEV 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly; /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
dev_base_seq_inc(struct net * net)201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 while (++net->dev_base_seq == 0)
204 ;
205 }
206
dev_name_hash(struct net * net,const char * name)207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
dev_index_hash(struct net * net,int ifindex)214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
rps_lock(struct softnet_data * sd)219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
rps_unlock(struct softnet_data * sd)226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
list_netdevice(struct net_device * dev)234 static void list_netdevice(struct net_device *dev)
235 {
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
unlist_netdevice(struct net_device * dev)253 static void unlist_netdevice(struct net_device *dev)
254 {
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268 * Our notifier list
269 */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
285 */
286 static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
netdev_lock_pos(unsigned short dev_type)323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342 }
343
netdev_set_addr_lockdep_class(struct net_device * dev)344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352 }
353 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356 {
357 }
netdev_set_addr_lockdep_class(struct net_device * dev)358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
368
369
370 /*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
ptype_head(const struct packet_type * pt)386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
dev_add_pack(struct packet_type * pt)408 void dev_add_pack(struct packet_type *pt)
409 {
410 struct list_head *head = ptype_head(pt);
411
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
__dev_remove_pack(struct packet_type * pt)431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
435
436 spin_lock(&ptype_lock);
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
dev_remove_pack(struct packet_type * pt)463 void dev_remove_pack(struct packet_type *pt)
464 {
465 __dev_remove_pack(pt);
466
467 synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
dev_add_offload(struct packet_offload * po)484 void dev_add_offload(struct packet_offload *po)
485 {
486 struct packet_offload *elem;
487
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
__dev_remove_offload(struct packet_offload * po)511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 spin_unlock(&offload_lock);
528 }
529
530 /**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
dev_remove_offload(struct packet_offload * po)542 void dev_remove_offload(struct packet_offload *po)
543 {
544 __dev_remove_offload(po);
545
546 synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
netdev_boot_setup_add(char * name,struct ifmap * map)568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
589 *
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
594 */
netdev_boot_setup_check(struct net_device * dev)595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
608 }
609 }
610 return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
624 */
netdev_boot_base(const char * prefix,int unit)625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644 }
645
646 /*
647 * Saves at boot time configured settings for any netdevice.
648 */
netdev_boot_setup(char * str)649 int __init netdev_boot_setup(char *str)
650 {
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681 /**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
dev_get_iflink(const struct net_device * dev)689 int dev_get_iflink(const struct net_device *dev)
690 {
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
__dev_get_by_name(struct net * net,const char * name)736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
740
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
744
745 return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
759 */
760
dev_get_by_name_rcu(struct net * net,const char * name)761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
dev_get_by_name(struct net * net,const char * name)786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
__dev_get_by_index(struct net * net,int ifindex)811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
815
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
dev_get_by_index_rcu(struct net * net,int ifindex)835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
dev_get_by_index(struct net * net,int ifindex)860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 struct net_device *dev;
863
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
dev_get_by_napi_id(unsigned int napi_id)883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 */
netdev_get_name(struct net * net,char * name,int ifindex)904 int netdev_get_name(struct net *net, char *name, int ifindex)
905 {
906 struct net_device *dev;
907 int ret;
908
909 down_read(&devnet_rename_sem);
910 rcu_read_lock();
911
912 dev = dev_get_by_index_rcu(net, ifindex);
913 if (!dev) {
914 ret = -ENODEV;
915 goto out;
916 }
917
918 strcpy(name, dev->name);
919
920 ret = 0;
921 out:
922 rcu_read_unlock();
923 up_read(&devnet_rename_sem);
924 return ret;
925 }
926
927 /**
928 * dev_getbyhwaddr_rcu - find a device by its hardware address
929 * @net: the applicable net namespace
930 * @type: media type of device
931 * @ha: hardware address
932 *
933 * Search for an interface by MAC address. Returns NULL if the device
934 * is not found or a pointer to the device.
935 * The caller must hold RCU or RTNL.
936 * The returned device has not had its ref count increased
937 * and the caller must therefore be careful about locking
938 *
939 */
940
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)941 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
942 const char *ha)
943 {
944 struct net_device *dev;
945
946 for_each_netdev_rcu(net, dev)
947 if (dev->type == type &&
948 !memcmp(dev->dev_addr, ha, dev->addr_len))
949 return dev;
950
951 return NULL;
952 }
953 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
954
__dev_getfirstbyhwtype(struct net * net,unsigned short type)955 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
956 {
957 struct net_device *dev;
958
959 ASSERT_RTNL();
960 for_each_netdev(net, dev)
961 if (dev->type == type)
962 return dev;
963
964 return NULL;
965 }
966 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
967
dev_getfirstbyhwtype(struct net * net,unsigned short type)968 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
969 {
970 struct net_device *dev, *ret = NULL;
971
972 rcu_read_lock();
973 for_each_netdev_rcu(net, dev)
974 if (dev->type == type) {
975 dev_hold(dev);
976 ret = dev;
977 break;
978 }
979 rcu_read_unlock();
980 return ret;
981 }
982 EXPORT_SYMBOL(dev_getfirstbyhwtype);
983
984 /**
985 * __dev_get_by_flags - find any device with given flags
986 * @net: the applicable net namespace
987 * @if_flags: IFF_* values
988 * @mask: bitmask of bits in if_flags to check
989 *
990 * Search for any interface with the given flags. Returns NULL if a device
991 * is not found or a pointer to the device. Must be called inside
992 * rtnl_lock(), and result refcount is unchanged.
993 */
994
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)995 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
996 unsigned short mask)
997 {
998 struct net_device *dev, *ret;
999
1000 ASSERT_RTNL();
1001
1002 ret = NULL;
1003 for_each_netdev(net, dev) {
1004 if (((dev->flags ^ if_flags) & mask) == 0) {
1005 ret = dev;
1006 break;
1007 }
1008 }
1009 return ret;
1010 }
1011 EXPORT_SYMBOL(__dev_get_by_flags);
1012
1013 /**
1014 * dev_valid_name - check if name is okay for network device
1015 * @name: name string
1016 *
1017 * Network device names need to be valid file names to
1018 * to allow sysfs to work. We also disallow any kind of
1019 * whitespace.
1020 */
dev_valid_name(const char * name)1021 bool dev_valid_name(const char *name)
1022 {
1023 if (*name == '\0')
1024 return false;
1025 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1026 return false;
1027 if (!strcmp(name, ".") || !strcmp(name, ".."))
1028 return false;
1029
1030 while (*name) {
1031 if (*name == '/' || *name == ':' || isspace(*name))
1032 return false;
1033 name++;
1034 }
1035 return true;
1036 }
1037 EXPORT_SYMBOL(dev_valid_name);
1038
1039 /**
1040 * __dev_alloc_name - allocate a name for a device
1041 * @net: network namespace to allocate the device name in
1042 * @name: name format string
1043 * @buf: scratch buffer and result name string
1044 *
1045 * Passed a format string - eg "lt%d" it will try and find a suitable
1046 * id. It scans list of devices to build up a free map, then chooses
1047 * the first empty slot. The caller must hold the dev_base or rtnl lock
1048 * while allocating the name and adding the device in order to avoid
1049 * duplicates.
1050 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051 * Returns the number of the unit assigned or a negative errno code.
1052 */
1053
__dev_alloc_name(struct net * net,const char * name,char * buf)1054 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1055 {
1056 int i = 0;
1057 const char *p;
1058 const int max_netdevices = 8*PAGE_SIZE;
1059 unsigned long *inuse;
1060 struct net_device *d;
1061
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1064
1065 p = strchr(name, '%');
1066 if (p) {
1067 /*
1068 * Verify the string as this thing may have come from
1069 * the user. There must be either one "%d" and no other "%"
1070 * characters.
1071 */
1072 if (p[1] != 'd' || strchr(p + 2, '%'))
1073 return -EINVAL;
1074
1075 /* Use one page as a bit array of possible slots */
1076 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077 if (!inuse)
1078 return -ENOMEM;
1079
1080 for_each_netdev(net, d) {
1081 if (!sscanf(d->name, name, &i))
1082 continue;
1083 if (i < 0 || i >= max_netdevices)
1084 continue;
1085
1086 /* avoid cases where sscanf is not exact inverse of printf */
1087 snprintf(buf, IFNAMSIZ, name, i);
1088 if (!strncmp(buf, d->name, IFNAMSIZ))
1089 set_bit(i, inuse);
1090 }
1091
1092 i = find_first_zero_bit(inuse, max_netdevices);
1093 free_page((unsigned long) inuse);
1094 }
1095
1096 snprintf(buf, IFNAMSIZ, name, i);
1097 if (!__dev_get_by_name(net, buf))
1098 return i;
1099
1100 /* It is possible to run out of possible slots
1101 * when the name is long and there isn't enough space left
1102 * for the digits, or if all bits are used.
1103 */
1104 return -ENFILE;
1105 }
1106
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1107 static int dev_alloc_name_ns(struct net *net,
1108 struct net_device *dev,
1109 const char *name)
1110 {
1111 char buf[IFNAMSIZ];
1112 int ret;
1113
1114 BUG_ON(!net);
1115 ret = __dev_alloc_name(net, name, buf);
1116 if (ret >= 0)
1117 strlcpy(dev->name, buf, IFNAMSIZ);
1118 return ret;
1119 }
1120
1121 /**
1122 * dev_alloc_name - allocate a name for a device
1123 * @dev: device
1124 * @name: name format string
1125 *
1126 * Passed a format string - eg "lt%d" it will try and find a suitable
1127 * id. It scans list of devices to build up a free map, then chooses
1128 * the first empty slot. The caller must hold the dev_base or rtnl lock
1129 * while allocating the name and adding the device in order to avoid
1130 * duplicates.
1131 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1132 * Returns the number of the unit assigned or a negative errno code.
1133 */
1134
dev_alloc_name(struct net_device * dev,const char * name)1135 int dev_alloc_name(struct net_device *dev, const char *name)
1136 {
1137 return dev_alloc_name_ns(dev_net(dev), dev, name);
1138 }
1139 EXPORT_SYMBOL(dev_alloc_name);
1140
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1141 int dev_get_valid_name(struct net *net, struct net_device *dev,
1142 const char *name)
1143 {
1144 BUG_ON(!net);
1145
1146 if (!dev_valid_name(name))
1147 return -EINVAL;
1148
1149 if (strchr(name, '%'))
1150 return dev_alloc_name_ns(net, dev, name);
1151 else if (__dev_get_by_name(net, name))
1152 return -EEXIST;
1153 else if (dev->name != name)
1154 strlcpy(dev->name, name, IFNAMSIZ);
1155
1156 return 0;
1157 }
1158 EXPORT_SYMBOL(dev_get_valid_name);
1159
1160 /**
1161 * dev_change_name - change name of a device
1162 * @dev: device
1163 * @newname: name (or format string) must be at least IFNAMSIZ
1164 *
1165 * Change name of a device, can pass format strings "eth%d".
1166 * for wildcarding.
1167 */
dev_change_name(struct net_device * dev,const char * newname)1168 int dev_change_name(struct net_device *dev, const char *newname)
1169 {
1170 unsigned char old_assign_type;
1171 char oldname[IFNAMSIZ];
1172 int err = 0;
1173 int ret;
1174 struct net *net;
1175
1176 ASSERT_RTNL();
1177 BUG_ON(!dev_net(dev));
1178
1179 net = dev_net(dev);
1180
1181 /* Some auto-enslaved devices e.g. failover slaves are
1182 * special, as userspace might rename the device after
1183 * the interface had been brought up and running since
1184 * the point kernel initiated auto-enslavement. Allow
1185 * live name change even when these slave devices are
1186 * up and running.
1187 *
1188 * Typically, users of these auto-enslaving devices
1189 * don't actually care about slave name change, as
1190 * they are supposed to operate on master interface
1191 * directly.
1192 */
1193 if (dev->flags & IFF_UP &&
1194 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1195 return -EBUSY;
1196
1197 down_write(&devnet_rename_sem);
1198
1199 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1200 up_write(&devnet_rename_sem);
1201 return 0;
1202 }
1203
1204 memcpy(oldname, dev->name, IFNAMSIZ);
1205
1206 err = dev_get_valid_name(net, dev, newname);
1207 if (err < 0) {
1208 up_write(&devnet_rename_sem);
1209 return err;
1210 }
1211
1212 if (oldname[0] && !strchr(oldname, '%'))
1213 netdev_info(dev, "renamed from %s\n", oldname);
1214
1215 old_assign_type = dev->name_assign_type;
1216 dev->name_assign_type = NET_NAME_RENAMED;
1217
1218 rollback:
1219 ret = device_rename(&dev->dev, dev->name);
1220 if (ret) {
1221 memcpy(dev->name, oldname, IFNAMSIZ);
1222 dev->name_assign_type = old_assign_type;
1223 up_write(&devnet_rename_sem);
1224 return ret;
1225 }
1226
1227 up_write(&devnet_rename_sem);
1228
1229 netdev_adjacent_rename_links(dev, oldname);
1230
1231 write_lock_bh(&dev_base_lock);
1232 hlist_del_rcu(&dev->name_hlist);
1233 write_unlock_bh(&dev_base_lock);
1234
1235 synchronize_rcu();
1236
1237 write_lock_bh(&dev_base_lock);
1238 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1239 write_unlock_bh(&dev_base_lock);
1240
1241 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242 ret = notifier_to_errno(ret);
1243
1244 if (ret) {
1245 /* err >= 0 after dev_alloc_name() or stores the first errno */
1246 if (err >= 0) {
1247 err = ret;
1248 down_write(&devnet_rename_sem);
1249 memcpy(dev->name, oldname, IFNAMSIZ);
1250 memcpy(oldname, newname, IFNAMSIZ);
1251 dev->name_assign_type = old_assign_type;
1252 old_assign_type = NET_NAME_RENAMED;
1253 goto rollback;
1254 } else {
1255 pr_err("%s: name change rollback failed: %d\n",
1256 dev->name, ret);
1257 }
1258 }
1259
1260 return err;
1261 }
1262
1263 /**
1264 * dev_set_alias - change ifalias of a device
1265 * @dev: device
1266 * @alias: name up to IFALIASZ
1267 * @len: limit of bytes to copy from info
1268 *
1269 * Set ifalias for a device,
1270 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1272 {
1273 struct dev_ifalias *new_alias = NULL;
1274
1275 if (len >= IFALIASZ)
1276 return -EINVAL;
1277
1278 if (len) {
1279 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280 if (!new_alias)
1281 return -ENOMEM;
1282
1283 memcpy(new_alias->ifalias, alias, len);
1284 new_alias->ifalias[len] = 0;
1285 }
1286
1287 mutex_lock(&ifalias_mutex);
1288 rcu_swap_protected(dev->ifalias, new_alias,
1289 mutex_is_locked(&ifalias_mutex));
1290 mutex_unlock(&ifalias_mutex);
1291
1292 if (new_alias)
1293 kfree_rcu(new_alias, rcuhead);
1294
1295 return len;
1296 }
1297 EXPORT_SYMBOL(dev_set_alias);
1298
1299 /**
1300 * dev_get_alias - get ifalias of a device
1301 * @dev: device
1302 * @name: buffer to store name of ifalias
1303 * @len: size of buffer
1304 *
1305 * get ifalias for a device. Caller must make sure dev cannot go
1306 * away, e.g. rcu read lock or own a reference count to device.
1307 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1309 {
1310 const struct dev_ifalias *alias;
1311 int ret = 0;
1312
1313 rcu_read_lock();
1314 alias = rcu_dereference(dev->ifalias);
1315 if (alias)
1316 ret = snprintf(name, len, "%s", alias->ifalias);
1317 rcu_read_unlock();
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * netdev_features_change - device changes features
1324 * @dev: device to cause notification
1325 *
1326 * Called to indicate a device has changed features.
1327 */
netdev_features_change(struct net_device * dev)1328 void netdev_features_change(struct net_device *dev)
1329 {
1330 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1331 }
1332 EXPORT_SYMBOL(netdev_features_change);
1333
1334 /**
1335 * netdev_state_change - device changes state
1336 * @dev: device to cause notification
1337 *
1338 * Called to indicate a device has changed state. This function calls
1339 * the notifier chains for netdev_chain and sends a NEWLINK message
1340 * to the routing socket.
1341 */
netdev_state_change(struct net_device * dev)1342 void netdev_state_change(struct net_device *dev)
1343 {
1344 if (dev->flags & IFF_UP) {
1345 struct netdev_notifier_change_info change_info = {
1346 .info.dev = dev,
1347 };
1348
1349 call_netdevice_notifiers_info(NETDEV_CHANGE,
1350 &change_info.info);
1351 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1352 }
1353 }
1354 EXPORT_SYMBOL(netdev_state_change);
1355
1356 /**
1357 * netdev_notify_peers - notify network peers about existence of @dev
1358 * @dev: network device
1359 *
1360 * Generate traffic such that interested network peers are aware of
1361 * @dev, such as by generating a gratuitous ARP. This may be used when
1362 * a device wants to inform the rest of the network about some sort of
1363 * reconfiguration such as a failover event or virtual machine
1364 * migration.
1365 */
netdev_notify_peers(struct net_device * dev)1366 void netdev_notify_peers(struct net_device *dev)
1367 {
1368 rtnl_lock();
1369 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371 rtnl_unlock();
1372 }
1373 EXPORT_SYMBOL(netdev_notify_peers);
1374
__dev_open(struct net_device * dev)1375 static int __dev_open(struct net_device *dev)
1376 {
1377 const struct net_device_ops *ops = dev->netdev_ops;
1378 int ret;
1379
1380 ASSERT_RTNL();
1381
1382 if (!netif_device_present(dev))
1383 return -ENODEV;
1384
1385 /* Block netpoll from trying to do any rx path servicing.
1386 * If we don't do this there is a chance ndo_poll_controller
1387 * or ndo_poll may be running while we open the device
1388 */
1389 netpoll_poll_disable(dev);
1390
1391 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1392 ret = notifier_to_errno(ret);
1393 if (ret)
1394 return ret;
1395
1396 set_bit(__LINK_STATE_START, &dev->state);
1397
1398 if (ops->ndo_validate_addr)
1399 ret = ops->ndo_validate_addr(dev);
1400
1401 if (!ret && ops->ndo_open)
1402 ret = ops->ndo_open(dev);
1403
1404 netpoll_poll_enable(dev);
1405
1406 if (ret)
1407 clear_bit(__LINK_STATE_START, &dev->state);
1408 else {
1409 dev->flags |= IFF_UP;
1410 dev_set_rx_mode(dev);
1411 dev_activate(dev);
1412 add_device_randomness(dev->dev_addr, dev->addr_len);
1413 }
1414
1415 return ret;
1416 }
1417
1418 /**
1419 * dev_open - prepare an interface for use.
1420 * @dev: device to open
1421 *
1422 * Takes a device from down to up state. The device's private open
1423 * function is invoked and then the multicast lists are loaded. Finally
1424 * the device is moved into the up state and a %NETDEV_UP message is
1425 * sent to the netdev notifier chain.
1426 *
1427 * Calling this function on an active interface is a nop. On a failure
1428 * a negative errno code is returned.
1429 */
dev_open(struct net_device * dev)1430 int dev_open(struct net_device *dev)
1431 {
1432 int ret;
1433
1434 if (dev->flags & IFF_UP)
1435 return 0;
1436
1437 ret = __dev_open(dev);
1438 if (ret < 0)
1439 return ret;
1440
1441 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1442 call_netdevice_notifiers(NETDEV_UP, dev);
1443
1444 return ret;
1445 }
1446 EXPORT_SYMBOL(dev_open);
1447
__dev_close_many(struct list_head * head)1448 static void __dev_close_many(struct list_head *head)
1449 {
1450 struct net_device *dev;
1451
1452 ASSERT_RTNL();
1453 might_sleep();
1454
1455 list_for_each_entry(dev, head, close_list) {
1456 /* Temporarily disable netpoll until the interface is down */
1457 netpoll_poll_disable(dev);
1458
1459 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1460
1461 clear_bit(__LINK_STATE_START, &dev->state);
1462
1463 /* Synchronize to scheduled poll. We cannot touch poll list, it
1464 * can be even on different cpu. So just clear netif_running().
1465 *
1466 * dev->stop() will invoke napi_disable() on all of it's
1467 * napi_struct instances on this device.
1468 */
1469 smp_mb__after_atomic(); /* Commit netif_running(). */
1470 }
1471
1472 dev_deactivate_many(head);
1473
1474 list_for_each_entry(dev, head, close_list) {
1475 const struct net_device_ops *ops = dev->netdev_ops;
1476
1477 /*
1478 * Call the device specific close. This cannot fail.
1479 * Only if device is UP
1480 *
1481 * We allow it to be called even after a DETACH hot-plug
1482 * event.
1483 */
1484 if (ops->ndo_stop)
1485 ops->ndo_stop(dev);
1486
1487 dev->flags &= ~IFF_UP;
1488 netpoll_poll_enable(dev);
1489 }
1490 }
1491
__dev_close(struct net_device * dev)1492 static void __dev_close(struct net_device *dev)
1493 {
1494 LIST_HEAD(single);
1495
1496 list_add(&dev->close_list, &single);
1497 __dev_close_many(&single);
1498 list_del(&single);
1499 }
1500
dev_close_many(struct list_head * head,bool unlink)1501 void dev_close_many(struct list_head *head, bool unlink)
1502 {
1503 struct net_device *dev, *tmp;
1504
1505 /* Remove the devices that don't need to be closed */
1506 list_for_each_entry_safe(dev, tmp, head, close_list)
1507 if (!(dev->flags & IFF_UP))
1508 list_del_init(&dev->close_list);
1509
1510 __dev_close_many(head);
1511
1512 list_for_each_entry_safe(dev, tmp, head, close_list) {
1513 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1514 call_netdevice_notifiers(NETDEV_DOWN, dev);
1515 if (unlink)
1516 list_del_init(&dev->close_list);
1517 }
1518 }
1519 EXPORT_SYMBOL(dev_close_many);
1520
1521 /**
1522 * dev_close - shutdown an interface.
1523 * @dev: device to shutdown
1524 *
1525 * This function moves an active device into down state. A
1526 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1527 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1528 * chain.
1529 */
dev_close(struct net_device * dev)1530 void dev_close(struct net_device *dev)
1531 {
1532 if (dev->flags & IFF_UP) {
1533 LIST_HEAD(single);
1534
1535 list_add(&dev->close_list, &single);
1536 dev_close_many(&single, true);
1537 list_del(&single);
1538 }
1539 }
1540 EXPORT_SYMBOL(dev_close);
1541
1542
1543 /**
1544 * dev_disable_lro - disable Large Receive Offload on a device
1545 * @dev: device
1546 *
1547 * Disable Large Receive Offload (LRO) on a net device. Must be
1548 * called under RTNL. This is needed if received packets may be
1549 * forwarded to another interface.
1550 */
dev_disable_lro(struct net_device * dev)1551 void dev_disable_lro(struct net_device *dev)
1552 {
1553 struct net_device *lower_dev;
1554 struct list_head *iter;
1555
1556 dev->wanted_features &= ~NETIF_F_LRO;
1557 netdev_update_features(dev);
1558
1559 if (unlikely(dev->features & NETIF_F_LRO))
1560 netdev_WARN(dev, "failed to disable LRO!\n");
1561
1562 netdev_for_each_lower_dev(dev, lower_dev, iter)
1563 dev_disable_lro(lower_dev);
1564 }
1565 EXPORT_SYMBOL(dev_disable_lro);
1566
1567 /**
1568 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1569 * @dev: device
1570 *
1571 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1572 * called under RTNL. This is needed if Generic XDP is installed on
1573 * the device.
1574 */
dev_disable_gro_hw(struct net_device * dev)1575 static void dev_disable_gro_hw(struct net_device *dev)
1576 {
1577 dev->wanted_features &= ~NETIF_F_GRO_HW;
1578 netdev_update_features(dev);
1579
1580 if (unlikely(dev->features & NETIF_F_GRO_HW))
1581 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1582 }
1583
netdev_cmd_to_name(enum netdev_cmd cmd)1584 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1585 {
1586 #define N(val) \
1587 case NETDEV_##val: \
1588 return "NETDEV_" __stringify(val);
1589 switch (cmd) {
1590 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1591 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1592 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1593 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1594 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1595 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1596 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1597 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1598 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1599 }
1600 #undef N
1601 return "UNKNOWN_NETDEV_EVENT";
1602 }
1603 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1604
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1605 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1606 struct net_device *dev)
1607 {
1608 struct netdev_notifier_info info = {
1609 .dev = dev,
1610 };
1611
1612 return nb->notifier_call(nb, val, &info);
1613 }
1614
1615 static int dev_boot_phase = 1;
1616
1617 /**
1618 * register_netdevice_notifier - register a network notifier block
1619 * @nb: notifier
1620 *
1621 * Register a notifier to be called when network device events occur.
1622 * The notifier passed is linked into the kernel structures and must
1623 * not be reused until it has been unregistered. A negative errno code
1624 * is returned on a failure.
1625 *
1626 * When registered all registration and up events are replayed
1627 * to the new notifier to allow device to have a race free
1628 * view of the network device list.
1629 */
1630
register_netdevice_notifier(struct notifier_block * nb)1631 int register_netdevice_notifier(struct notifier_block *nb)
1632 {
1633 struct net_device *dev;
1634 struct net_device *last;
1635 struct net *net;
1636 int err;
1637
1638 /* Close race with setup_net() and cleanup_net() */
1639 down_write(&pernet_ops_rwsem);
1640 rtnl_lock();
1641 err = raw_notifier_chain_register(&netdev_chain, nb);
1642 if (err)
1643 goto unlock;
1644 if (dev_boot_phase)
1645 goto unlock;
1646 for_each_net(net) {
1647 for_each_netdev(net, dev) {
1648 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1649 err = notifier_to_errno(err);
1650 if (err)
1651 goto rollback;
1652
1653 if (!(dev->flags & IFF_UP))
1654 continue;
1655
1656 call_netdevice_notifier(nb, NETDEV_UP, dev);
1657 }
1658 }
1659
1660 unlock:
1661 rtnl_unlock();
1662 up_write(&pernet_ops_rwsem);
1663 return err;
1664
1665 rollback:
1666 last = dev;
1667 for_each_net(net) {
1668 for_each_netdev(net, dev) {
1669 if (dev == last)
1670 goto outroll;
1671
1672 if (dev->flags & IFF_UP) {
1673 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1674 dev);
1675 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1676 }
1677 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1678 }
1679 }
1680
1681 outroll:
1682 raw_notifier_chain_unregister(&netdev_chain, nb);
1683 goto unlock;
1684 }
1685 EXPORT_SYMBOL(register_netdevice_notifier);
1686
1687 /**
1688 * unregister_netdevice_notifier - unregister a network notifier block
1689 * @nb: notifier
1690 *
1691 * Unregister a notifier previously registered by
1692 * register_netdevice_notifier(). The notifier is unlinked into the
1693 * kernel structures and may then be reused. A negative errno code
1694 * is returned on a failure.
1695 *
1696 * After unregistering unregister and down device events are synthesized
1697 * for all devices on the device list to the removed notifier to remove
1698 * the need for special case cleanup code.
1699 */
1700
unregister_netdevice_notifier(struct notifier_block * nb)1701 int unregister_netdevice_notifier(struct notifier_block *nb)
1702 {
1703 struct net_device *dev;
1704 struct net *net;
1705 int err;
1706
1707 /* Close race with setup_net() and cleanup_net() */
1708 down_write(&pernet_ops_rwsem);
1709 rtnl_lock();
1710 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1711 if (err)
1712 goto unlock;
1713
1714 for_each_net(net) {
1715 for_each_netdev(net, dev) {
1716 if (dev->flags & IFF_UP) {
1717 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1718 dev);
1719 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1720 }
1721 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1722 }
1723 }
1724 unlock:
1725 rtnl_unlock();
1726 up_write(&pernet_ops_rwsem);
1727 return err;
1728 }
1729 EXPORT_SYMBOL(unregister_netdevice_notifier);
1730
1731 /**
1732 * call_netdevice_notifiers_info - call all network notifier blocks
1733 * @val: value passed unmodified to notifier function
1734 * @info: notifier information data
1735 *
1736 * Call all network notifier blocks. Parameters and return value
1737 * are as for raw_notifier_call_chain().
1738 */
1739
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1740 static int call_netdevice_notifiers_info(unsigned long val,
1741 struct netdev_notifier_info *info)
1742 {
1743 ASSERT_RTNL();
1744 return raw_notifier_call_chain(&netdev_chain, val, info);
1745 }
1746
1747 /**
1748 * call_netdevice_notifiers - call all network notifier blocks
1749 * @val: value passed unmodified to notifier function
1750 * @dev: net_device pointer passed unmodified to notifier function
1751 *
1752 * Call all network notifier blocks. Parameters and return value
1753 * are as for raw_notifier_call_chain().
1754 */
1755
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1756 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1757 {
1758 struct netdev_notifier_info info = {
1759 .dev = dev,
1760 };
1761
1762 return call_netdevice_notifiers_info(val, &info);
1763 }
1764 EXPORT_SYMBOL(call_netdevice_notifiers);
1765
1766 /**
1767 * call_netdevice_notifiers_mtu - call all network notifier blocks
1768 * @val: value passed unmodified to notifier function
1769 * @dev: net_device pointer passed unmodified to notifier function
1770 * @arg: additional u32 argument passed to the notifier function
1771 *
1772 * Call all network notifier blocks. Parameters and return value
1773 * are as for raw_notifier_call_chain().
1774 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)1775 static int call_netdevice_notifiers_mtu(unsigned long val,
1776 struct net_device *dev, u32 arg)
1777 {
1778 struct netdev_notifier_info_ext info = {
1779 .info.dev = dev,
1780 .ext.mtu = arg,
1781 };
1782
1783 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1784
1785 return call_netdevice_notifiers_info(val, &info.info);
1786 }
1787
1788 #ifdef CONFIG_NET_INGRESS
1789 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1790
net_inc_ingress_queue(void)1791 void net_inc_ingress_queue(void)
1792 {
1793 static_branch_inc(&ingress_needed_key);
1794 }
1795 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1796
net_dec_ingress_queue(void)1797 void net_dec_ingress_queue(void)
1798 {
1799 static_branch_dec(&ingress_needed_key);
1800 }
1801 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1802 #endif
1803
1804 #ifdef CONFIG_NET_EGRESS
1805 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1806
net_inc_egress_queue(void)1807 void net_inc_egress_queue(void)
1808 {
1809 static_branch_inc(&egress_needed_key);
1810 }
1811 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1812
net_dec_egress_queue(void)1813 void net_dec_egress_queue(void)
1814 {
1815 static_branch_dec(&egress_needed_key);
1816 }
1817 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1818 #endif
1819
1820 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1821 #ifdef CONFIG_JUMP_LABEL
1822 static atomic_t netstamp_needed_deferred;
1823 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)1824 static void netstamp_clear(struct work_struct *work)
1825 {
1826 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1827 int wanted;
1828
1829 wanted = atomic_add_return(deferred, &netstamp_wanted);
1830 if (wanted > 0)
1831 static_branch_enable(&netstamp_needed_key);
1832 else
1833 static_branch_disable(&netstamp_needed_key);
1834 }
1835 static DECLARE_WORK(netstamp_work, netstamp_clear);
1836 #endif
1837
net_enable_timestamp(void)1838 void net_enable_timestamp(void)
1839 {
1840 #ifdef CONFIG_JUMP_LABEL
1841 int wanted;
1842
1843 while (1) {
1844 wanted = atomic_read(&netstamp_wanted);
1845 if (wanted <= 0)
1846 break;
1847 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1848 return;
1849 }
1850 atomic_inc(&netstamp_needed_deferred);
1851 schedule_work(&netstamp_work);
1852 #else
1853 static_branch_inc(&netstamp_needed_key);
1854 #endif
1855 }
1856 EXPORT_SYMBOL(net_enable_timestamp);
1857
net_disable_timestamp(void)1858 void net_disable_timestamp(void)
1859 {
1860 #ifdef CONFIG_JUMP_LABEL
1861 int wanted;
1862
1863 while (1) {
1864 wanted = atomic_read(&netstamp_wanted);
1865 if (wanted <= 1)
1866 break;
1867 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1868 return;
1869 }
1870 atomic_dec(&netstamp_needed_deferred);
1871 schedule_work(&netstamp_work);
1872 #else
1873 static_branch_dec(&netstamp_needed_key);
1874 #endif
1875 }
1876 EXPORT_SYMBOL(net_disable_timestamp);
1877
net_timestamp_set(struct sk_buff * skb)1878 static inline void net_timestamp_set(struct sk_buff *skb)
1879 {
1880 skb->tstamp = 0;
1881 if (static_branch_unlikely(&netstamp_needed_key))
1882 __net_timestamp(skb);
1883 }
1884
1885 #define net_timestamp_check(COND, SKB) \
1886 if (static_branch_unlikely(&netstamp_needed_key)) { \
1887 if ((COND) && !(SKB)->tstamp) \
1888 __net_timestamp(SKB); \
1889 } \
1890
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)1891 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1892 {
1893 unsigned int len;
1894
1895 if (!(dev->flags & IFF_UP))
1896 return false;
1897
1898 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1899 if (skb->len <= len)
1900 return true;
1901
1902 /* if TSO is enabled, we don't care about the length as the packet
1903 * could be forwarded without being segmented before
1904 */
1905 if (skb_is_gso(skb))
1906 return true;
1907
1908 return false;
1909 }
1910 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1911
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1912 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914 int ret = ____dev_forward_skb(dev, skb);
1915
1916 if (likely(!ret)) {
1917 skb->protocol = eth_type_trans(skb, dev);
1918 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1919 }
1920
1921 return ret;
1922 }
1923 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1924
1925 /**
1926 * dev_forward_skb - loopback an skb to another netif
1927 *
1928 * @dev: destination network device
1929 * @skb: buffer to forward
1930 *
1931 * return values:
1932 * NET_RX_SUCCESS (no congestion)
1933 * NET_RX_DROP (packet was dropped, but freed)
1934 *
1935 * dev_forward_skb can be used for injecting an skb from the
1936 * start_xmit function of one device into the receive queue
1937 * of another device.
1938 *
1939 * The receiving device may be in another namespace, so
1940 * we have to clear all information in the skb that could
1941 * impact namespace isolation.
1942 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1943 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1944 {
1945 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1946 }
1947 EXPORT_SYMBOL_GPL(dev_forward_skb);
1948
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1949 static inline int deliver_skb(struct sk_buff *skb,
1950 struct packet_type *pt_prev,
1951 struct net_device *orig_dev)
1952 {
1953 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1954 return -ENOMEM;
1955 refcount_inc(&skb->users);
1956 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1957 }
1958
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1959 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1960 struct packet_type **pt,
1961 struct net_device *orig_dev,
1962 __be16 type,
1963 struct list_head *ptype_list)
1964 {
1965 struct packet_type *ptype, *pt_prev = *pt;
1966
1967 list_for_each_entry_rcu(ptype, ptype_list, list) {
1968 if (ptype->type != type)
1969 continue;
1970 if (pt_prev)
1971 deliver_skb(skb, pt_prev, orig_dev);
1972 pt_prev = ptype;
1973 }
1974 *pt = pt_prev;
1975 }
1976
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1977 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1978 {
1979 if (!ptype->af_packet_priv || !skb->sk)
1980 return false;
1981
1982 if (ptype->id_match)
1983 return ptype->id_match(ptype, skb->sk);
1984 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1985 return true;
1986
1987 return false;
1988 }
1989
1990 /*
1991 * Support routine. Sends outgoing frames to any network
1992 * taps currently in use.
1993 */
1994
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996 {
1997 struct packet_type *ptype;
1998 struct sk_buff *skb2 = NULL;
1999 struct packet_type *pt_prev = NULL;
2000 struct list_head *ptype_list = &ptype_all;
2001
2002 rcu_read_lock();
2003 again:
2004 list_for_each_entry_rcu(ptype, ptype_list, list) {
2005 /* Never send packets back to the socket
2006 * they originated from - MvS (miquels@drinkel.ow.org)
2007 */
2008 if (skb_loop_sk(ptype, skb))
2009 continue;
2010
2011 if (pt_prev) {
2012 deliver_skb(skb2, pt_prev, skb->dev);
2013 pt_prev = ptype;
2014 continue;
2015 }
2016
2017 /* need to clone skb, done only once */
2018 skb2 = skb_clone(skb, GFP_ATOMIC);
2019 if (!skb2)
2020 goto out_unlock;
2021
2022 net_timestamp_set(skb2);
2023
2024 /* skb->nh should be correctly
2025 * set by sender, so that the second statement is
2026 * just protection against buggy protocols.
2027 */
2028 skb_reset_mac_header(skb2);
2029
2030 if (skb_network_header(skb2) < skb2->data ||
2031 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2032 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2033 ntohs(skb2->protocol),
2034 dev->name);
2035 skb_reset_network_header(skb2);
2036 }
2037
2038 skb2->transport_header = skb2->network_header;
2039 skb2->pkt_type = PACKET_OUTGOING;
2040 pt_prev = ptype;
2041 }
2042
2043 if (ptype_list == &ptype_all) {
2044 ptype_list = &dev->ptype_all;
2045 goto again;
2046 }
2047 out_unlock:
2048 if (pt_prev) {
2049 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2050 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2051 else
2052 kfree_skb(skb2);
2053 }
2054 rcu_read_unlock();
2055 }
2056 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2057
2058 /**
2059 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2060 * @dev: Network device
2061 * @txq: number of queues available
2062 *
2063 * If real_num_tx_queues is changed the tc mappings may no longer be
2064 * valid. To resolve this verify the tc mapping remains valid and if
2065 * not NULL the mapping. With no priorities mapping to this
2066 * offset/count pair it will no longer be used. In the worst case TC0
2067 * is invalid nothing can be done so disable priority mappings. If is
2068 * expected that drivers will fix this mapping if they can before
2069 * calling netif_set_real_num_tx_queues.
2070 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2071 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2072 {
2073 int i;
2074 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2075
2076 /* If TC0 is invalidated disable TC mapping */
2077 if (tc->offset + tc->count > txq) {
2078 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2079 dev->num_tc = 0;
2080 return;
2081 }
2082
2083 /* Invalidated prio to tc mappings set to TC0 */
2084 for (i = 1; i < TC_BITMASK + 1; i++) {
2085 int q = netdev_get_prio_tc_map(dev, i);
2086
2087 tc = &dev->tc_to_txq[q];
2088 if (tc->offset + tc->count > txq) {
2089 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2090 i, q);
2091 netdev_set_prio_tc_map(dev, i, 0);
2092 }
2093 }
2094 }
2095
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2096 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2097 {
2098 if (dev->num_tc) {
2099 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2100 int i;
2101
2102 /* walk through the TCs and see if it falls into any of them */
2103 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2104 if ((txq - tc->offset) < tc->count)
2105 return i;
2106 }
2107
2108 /* didn't find it, just return -1 to indicate no match */
2109 return -1;
2110 }
2111
2112 return 0;
2113 }
2114 EXPORT_SYMBOL(netdev_txq_to_tc);
2115
2116 #ifdef CONFIG_XPS
2117 struct static_key xps_needed __read_mostly;
2118 EXPORT_SYMBOL(xps_needed);
2119 struct static_key xps_rxqs_needed __read_mostly;
2120 EXPORT_SYMBOL(xps_rxqs_needed);
2121 static DEFINE_MUTEX(xps_map_mutex);
2122 #define xmap_dereference(P) \
2123 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2124
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2125 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2126 int tci, u16 index)
2127 {
2128 struct xps_map *map = NULL;
2129 int pos;
2130
2131 if (dev_maps)
2132 map = xmap_dereference(dev_maps->attr_map[tci]);
2133 if (!map)
2134 return false;
2135
2136 for (pos = map->len; pos--;) {
2137 if (map->queues[pos] != index)
2138 continue;
2139
2140 if (map->len > 1) {
2141 map->queues[pos] = map->queues[--map->len];
2142 break;
2143 }
2144
2145 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2146 kfree_rcu(map, rcu);
2147 return false;
2148 }
2149
2150 return true;
2151 }
2152
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2153 static bool remove_xps_queue_cpu(struct net_device *dev,
2154 struct xps_dev_maps *dev_maps,
2155 int cpu, u16 offset, u16 count)
2156 {
2157 int num_tc = dev->num_tc ? : 1;
2158 bool active = false;
2159 int tci;
2160
2161 for (tci = cpu * num_tc; num_tc--; tci++) {
2162 int i, j;
2163
2164 for (i = count, j = offset; i--; j++) {
2165 if (!remove_xps_queue(dev_maps, tci, j))
2166 break;
2167 }
2168
2169 active |= i < 0;
2170 }
2171
2172 return active;
2173 }
2174
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2175 static void reset_xps_maps(struct net_device *dev,
2176 struct xps_dev_maps *dev_maps,
2177 bool is_rxqs_map)
2178 {
2179 if (is_rxqs_map) {
2180 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2181 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2182 } else {
2183 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2184 }
2185 static_key_slow_dec_cpuslocked(&xps_needed);
2186 kfree_rcu(dev_maps, rcu);
2187 }
2188
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2189 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2190 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2191 u16 offset, u16 count, bool is_rxqs_map)
2192 {
2193 bool active = false;
2194 int i, j;
2195
2196 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2197 j < nr_ids;)
2198 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2199 count);
2200 if (!active)
2201 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2202
2203 if (!is_rxqs_map) {
2204 for (i = offset + (count - 1); count--; i--) {
2205 netdev_queue_numa_node_write(
2206 netdev_get_tx_queue(dev, i),
2207 NUMA_NO_NODE);
2208 }
2209 }
2210 }
2211
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2212 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2213 u16 count)
2214 {
2215 const unsigned long *possible_mask = NULL;
2216 struct xps_dev_maps *dev_maps;
2217 unsigned int nr_ids;
2218
2219 if (!static_key_false(&xps_needed))
2220 return;
2221
2222 cpus_read_lock();
2223 mutex_lock(&xps_map_mutex);
2224
2225 if (static_key_false(&xps_rxqs_needed)) {
2226 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2227 if (dev_maps) {
2228 nr_ids = dev->num_rx_queues;
2229 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2230 offset, count, true);
2231 }
2232 }
2233
2234 dev_maps = xmap_dereference(dev->xps_cpus_map);
2235 if (!dev_maps)
2236 goto out_no_maps;
2237
2238 if (num_possible_cpus() > 1)
2239 possible_mask = cpumask_bits(cpu_possible_mask);
2240 nr_ids = nr_cpu_ids;
2241 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2242 false);
2243
2244 out_no_maps:
2245 mutex_unlock(&xps_map_mutex);
2246 cpus_read_unlock();
2247 }
2248
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2249 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2250 {
2251 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2252 }
2253
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2254 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2255 u16 index, bool is_rxqs_map)
2256 {
2257 struct xps_map *new_map;
2258 int alloc_len = XPS_MIN_MAP_ALLOC;
2259 int i, pos;
2260
2261 for (pos = 0; map && pos < map->len; pos++) {
2262 if (map->queues[pos] != index)
2263 continue;
2264 return map;
2265 }
2266
2267 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2268 if (map) {
2269 if (pos < map->alloc_len)
2270 return map;
2271
2272 alloc_len = map->alloc_len * 2;
2273 }
2274
2275 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2276 * map
2277 */
2278 if (is_rxqs_map)
2279 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2280 else
2281 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2282 cpu_to_node(attr_index));
2283 if (!new_map)
2284 return NULL;
2285
2286 for (i = 0; i < pos; i++)
2287 new_map->queues[i] = map->queues[i];
2288 new_map->alloc_len = alloc_len;
2289 new_map->len = pos;
2290
2291 return new_map;
2292 }
2293
2294 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2295 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2296 u16 index, bool is_rxqs_map)
2297 {
2298 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2299 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2300 int i, j, tci, numa_node_id = -2;
2301 int maps_sz, num_tc = 1, tc = 0;
2302 struct xps_map *map, *new_map;
2303 bool active = false;
2304 unsigned int nr_ids;
2305
2306 if (dev->num_tc) {
2307 /* Do not allow XPS on subordinate device directly */
2308 num_tc = dev->num_tc;
2309 if (num_tc < 0)
2310 return -EINVAL;
2311
2312 /* If queue belongs to subordinate dev use its map */
2313 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2314
2315 tc = netdev_txq_to_tc(dev, index);
2316 if (tc < 0)
2317 return -EINVAL;
2318 }
2319
2320 mutex_lock(&xps_map_mutex);
2321 if (is_rxqs_map) {
2322 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2323 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2324 nr_ids = dev->num_rx_queues;
2325 } else {
2326 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2327 if (num_possible_cpus() > 1) {
2328 online_mask = cpumask_bits(cpu_online_mask);
2329 possible_mask = cpumask_bits(cpu_possible_mask);
2330 }
2331 dev_maps = xmap_dereference(dev->xps_cpus_map);
2332 nr_ids = nr_cpu_ids;
2333 }
2334
2335 if (maps_sz < L1_CACHE_BYTES)
2336 maps_sz = L1_CACHE_BYTES;
2337
2338 /* allocate memory for queue storage */
2339 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2340 j < nr_ids;) {
2341 if (!new_dev_maps)
2342 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2343 if (!new_dev_maps) {
2344 mutex_unlock(&xps_map_mutex);
2345 return -ENOMEM;
2346 }
2347
2348 tci = j * num_tc + tc;
2349 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2350 NULL;
2351
2352 map = expand_xps_map(map, j, index, is_rxqs_map);
2353 if (!map)
2354 goto error;
2355
2356 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2357 }
2358
2359 if (!new_dev_maps)
2360 goto out_no_new_maps;
2361
2362 if (!dev_maps) {
2363 /* Increment static keys at most once per type */
2364 static_key_slow_inc_cpuslocked(&xps_needed);
2365 if (is_rxqs_map)
2366 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2367 }
2368
2369 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2370 j < nr_ids;) {
2371 /* copy maps belonging to foreign traffic classes */
2372 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2373 /* fill in the new device map from the old device map */
2374 map = xmap_dereference(dev_maps->attr_map[tci]);
2375 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2376 }
2377
2378 /* We need to explicitly update tci as prevous loop
2379 * could break out early if dev_maps is NULL.
2380 */
2381 tci = j * num_tc + tc;
2382
2383 if (netif_attr_test_mask(j, mask, nr_ids) &&
2384 netif_attr_test_online(j, online_mask, nr_ids)) {
2385 /* add tx-queue to CPU/rx-queue maps */
2386 int pos = 0;
2387
2388 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2389 while ((pos < map->len) && (map->queues[pos] != index))
2390 pos++;
2391
2392 if (pos == map->len)
2393 map->queues[map->len++] = index;
2394 #ifdef CONFIG_NUMA
2395 if (!is_rxqs_map) {
2396 if (numa_node_id == -2)
2397 numa_node_id = cpu_to_node(j);
2398 else if (numa_node_id != cpu_to_node(j))
2399 numa_node_id = -1;
2400 }
2401 #endif
2402 } else if (dev_maps) {
2403 /* fill in the new device map from the old device map */
2404 map = xmap_dereference(dev_maps->attr_map[tci]);
2405 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2406 }
2407
2408 /* copy maps belonging to foreign traffic classes */
2409 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2410 /* fill in the new device map from the old device map */
2411 map = xmap_dereference(dev_maps->attr_map[tci]);
2412 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2413 }
2414 }
2415
2416 if (is_rxqs_map)
2417 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2418 else
2419 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2420
2421 /* Cleanup old maps */
2422 if (!dev_maps)
2423 goto out_no_old_maps;
2424
2425 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2426 j < nr_ids;) {
2427 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2428 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2429 map = xmap_dereference(dev_maps->attr_map[tci]);
2430 if (map && map != new_map)
2431 kfree_rcu(map, rcu);
2432 }
2433 }
2434
2435 kfree_rcu(dev_maps, rcu);
2436
2437 out_no_old_maps:
2438 dev_maps = new_dev_maps;
2439 active = true;
2440
2441 out_no_new_maps:
2442 if (!is_rxqs_map) {
2443 /* update Tx queue numa node */
2444 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2445 (numa_node_id >= 0) ?
2446 numa_node_id : NUMA_NO_NODE);
2447 }
2448
2449 if (!dev_maps)
2450 goto out_no_maps;
2451
2452 /* removes tx-queue from unused CPUs/rx-queues */
2453 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2454 j < nr_ids;) {
2455 for (i = tc, tci = j * num_tc; i--; tci++)
2456 active |= remove_xps_queue(dev_maps, tci, index);
2457 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2458 !netif_attr_test_online(j, online_mask, nr_ids))
2459 active |= remove_xps_queue(dev_maps, tci, index);
2460 for (i = num_tc - tc, tci++; --i; tci++)
2461 active |= remove_xps_queue(dev_maps, tci, index);
2462 }
2463
2464 /* free map if not active */
2465 if (!active)
2466 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2467
2468 out_no_maps:
2469 mutex_unlock(&xps_map_mutex);
2470
2471 return 0;
2472 error:
2473 /* remove any maps that we added */
2474 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2475 j < nr_ids;) {
2476 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2477 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2478 map = dev_maps ?
2479 xmap_dereference(dev_maps->attr_map[tci]) :
2480 NULL;
2481 if (new_map && new_map != map)
2482 kfree(new_map);
2483 }
2484 }
2485
2486 mutex_unlock(&xps_map_mutex);
2487
2488 kfree(new_dev_maps);
2489 return -ENOMEM;
2490 }
2491 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2492
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2493 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2494 u16 index)
2495 {
2496 int ret;
2497
2498 cpus_read_lock();
2499 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2500 cpus_read_unlock();
2501
2502 return ret;
2503 }
2504 EXPORT_SYMBOL(netif_set_xps_queue);
2505
2506 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2507 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2508 {
2509 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2510
2511 /* Unbind any subordinate channels */
2512 while (txq-- != &dev->_tx[0]) {
2513 if (txq->sb_dev)
2514 netdev_unbind_sb_channel(dev, txq->sb_dev);
2515 }
2516 }
2517
netdev_reset_tc(struct net_device * dev)2518 void netdev_reset_tc(struct net_device *dev)
2519 {
2520 #ifdef CONFIG_XPS
2521 netif_reset_xps_queues_gt(dev, 0);
2522 #endif
2523 netdev_unbind_all_sb_channels(dev);
2524
2525 /* Reset TC configuration of device */
2526 dev->num_tc = 0;
2527 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2528 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2529 }
2530 EXPORT_SYMBOL(netdev_reset_tc);
2531
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2532 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2533 {
2534 if (tc >= dev->num_tc)
2535 return -EINVAL;
2536
2537 #ifdef CONFIG_XPS
2538 netif_reset_xps_queues(dev, offset, count);
2539 #endif
2540 dev->tc_to_txq[tc].count = count;
2541 dev->tc_to_txq[tc].offset = offset;
2542 return 0;
2543 }
2544 EXPORT_SYMBOL(netdev_set_tc_queue);
2545
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2546 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2547 {
2548 if (num_tc > TC_MAX_QUEUE)
2549 return -EINVAL;
2550
2551 #ifdef CONFIG_XPS
2552 netif_reset_xps_queues_gt(dev, 0);
2553 #endif
2554 netdev_unbind_all_sb_channels(dev);
2555
2556 dev->num_tc = num_tc;
2557 return 0;
2558 }
2559 EXPORT_SYMBOL(netdev_set_num_tc);
2560
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2561 void netdev_unbind_sb_channel(struct net_device *dev,
2562 struct net_device *sb_dev)
2563 {
2564 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2565
2566 #ifdef CONFIG_XPS
2567 netif_reset_xps_queues_gt(sb_dev, 0);
2568 #endif
2569 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2570 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2571
2572 while (txq-- != &dev->_tx[0]) {
2573 if (txq->sb_dev == sb_dev)
2574 txq->sb_dev = NULL;
2575 }
2576 }
2577 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2578
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2579 int netdev_bind_sb_channel_queue(struct net_device *dev,
2580 struct net_device *sb_dev,
2581 u8 tc, u16 count, u16 offset)
2582 {
2583 /* Make certain the sb_dev and dev are already configured */
2584 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2585 return -EINVAL;
2586
2587 /* We cannot hand out queues we don't have */
2588 if ((offset + count) > dev->real_num_tx_queues)
2589 return -EINVAL;
2590
2591 /* Record the mapping */
2592 sb_dev->tc_to_txq[tc].count = count;
2593 sb_dev->tc_to_txq[tc].offset = offset;
2594
2595 /* Provide a way for Tx queue to find the tc_to_txq map or
2596 * XPS map for itself.
2597 */
2598 while (count--)
2599 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2600
2601 return 0;
2602 }
2603 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2604
netdev_set_sb_channel(struct net_device * dev,u16 channel)2605 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2606 {
2607 /* Do not use a multiqueue device to represent a subordinate channel */
2608 if (netif_is_multiqueue(dev))
2609 return -ENODEV;
2610
2611 /* We allow channels 1 - 32767 to be used for subordinate channels.
2612 * Channel 0 is meant to be "native" mode and used only to represent
2613 * the main root device. We allow writing 0 to reset the device back
2614 * to normal mode after being used as a subordinate channel.
2615 */
2616 if (channel > S16_MAX)
2617 return -EINVAL;
2618
2619 dev->num_tc = -channel;
2620
2621 return 0;
2622 }
2623 EXPORT_SYMBOL(netdev_set_sb_channel);
2624
2625 /*
2626 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2627 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2628 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2629 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2630 {
2631 bool disabling;
2632 int rc;
2633
2634 disabling = txq < dev->real_num_tx_queues;
2635
2636 if (txq < 1 || txq > dev->num_tx_queues)
2637 return -EINVAL;
2638
2639 if (dev->reg_state == NETREG_REGISTERED ||
2640 dev->reg_state == NETREG_UNREGISTERING) {
2641 ASSERT_RTNL();
2642
2643 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2644 txq);
2645 if (rc)
2646 return rc;
2647
2648 if (dev->num_tc)
2649 netif_setup_tc(dev, txq);
2650
2651 dev->real_num_tx_queues = txq;
2652
2653 if (disabling) {
2654 synchronize_net();
2655 qdisc_reset_all_tx_gt(dev, txq);
2656 #ifdef CONFIG_XPS
2657 netif_reset_xps_queues_gt(dev, txq);
2658 #endif
2659 }
2660 } else {
2661 dev->real_num_tx_queues = txq;
2662 }
2663
2664 return 0;
2665 }
2666 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2667
2668 #ifdef CONFIG_SYSFS
2669 /**
2670 * netif_set_real_num_rx_queues - set actual number of RX queues used
2671 * @dev: Network device
2672 * @rxq: Actual number of RX queues
2673 *
2674 * This must be called either with the rtnl_lock held or before
2675 * registration of the net device. Returns 0 on success, or a
2676 * negative error code. If called before registration, it always
2677 * succeeds.
2678 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2679 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2680 {
2681 int rc;
2682
2683 if (rxq < 1 || rxq > dev->num_rx_queues)
2684 return -EINVAL;
2685
2686 if (dev->reg_state == NETREG_REGISTERED) {
2687 ASSERT_RTNL();
2688
2689 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2690 rxq);
2691 if (rc)
2692 return rc;
2693 }
2694
2695 dev->real_num_rx_queues = rxq;
2696 return 0;
2697 }
2698 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2699 #endif
2700
2701 /**
2702 * netif_get_num_default_rss_queues - default number of RSS queues
2703 *
2704 * This routine should set an upper limit on the number of RSS queues
2705 * used by default by multiqueue devices.
2706 */
netif_get_num_default_rss_queues(void)2707 int netif_get_num_default_rss_queues(void)
2708 {
2709 return is_kdump_kernel() ?
2710 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2711 }
2712 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2713
__netif_reschedule(struct Qdisc * q)2714 static void __netif_reschedule(struct Qdisc *q)
2715 {
2716 struct softnet_data *sd;
2717 unsigned long flags;
2718
2719 local_irq_save(flags);
2720 sd = this_cpu_ptr(&softnet_data);
2721 q->next_sched = NULL;
2722 *sd->output_queue_tailp = q;
2723 sd->output_queue_tailp = &q->next_sched;
2724 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2725 local_irq_restore(flags);
2726 }
2727
__netif_schedule(struct Qdisc * q)2728 void __netif_schedule(struct Qdisc *q)
2729 {
2730 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2731 __netif_reschedule(q);
2732 }
2733 EXPORT_SYMBOL(__netif_schedule);
2734
2735 struct dev_kfree_skb_cb {
2736 enum skb_free_reason reason;
2737 };
2738
get_kfree_skb_cb(const struct sk_buff * skb)2739 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2740 {
2741 return (struct dev_kfree_skb_cb *)skb->cb;
2742 }
2743
netif_schedule_queue(struct netdev_queue * txq)2744 void netif_schedule_queue(struct netdev_queue *txq)
2745 {
2746 rcu_read_lock();
2747 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2748 struct Qdisc *q = rcu_dereference(txq->qdisc);
2749
2750 __netif_schedule(q);
2751 }
2752 rcu_read_unlock();
2753 }
2754 EXPORT_SYMBOL(netif_schedule_queue);
2755
netif_tx_wake_queue(struct netdev_queue * dev_queue)2756 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2757 {
2758 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2759 struct Qdisc *q;
2760
2761 rcu_read_lock();
2762 q = rcu_dereference(dev_queue->qdisc);
2763 __netif_schedule(q);
2764 rcu_read_unlock();
2765 }
2766 }
2767 EXPORT_SYMBOL(netif_tx_wake_queue);
2768
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2769 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2770 {
2771 unsigned long flags;
2772
2773 if (unlikely(!skb))
2774 return;
2775
2776 if (likely(refcount_read(&skb->users) == 1)) {
2777 smp_rmb();
2778 refcount_set(&skb->users, 0);
2779 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2780 return;
2781 }
2782 get_kfree_skb_cb(skb)->reason = reason;
2783 local_irq_save(flags);
2784 skb->next = __this_cpu_read(softnet_data.completion_queue);
2785 __this_cpu_write(softnet_data.completion_queue, skb);
2786 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2787 local_irq_restore(flags);
2788 }
2789 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2790
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2791 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2792 {
2793 if (in_irq() || irqs_disabled())
2794 __dev_kfree_skb_irq(skb, reason);
2795 else
2796 dev_kfree_skb(skb);
2797 }
2798 EXPORT_SYMBOL(__dev_kfree_skb_any);
2799
2800
2801 /**
2802 * netif_device_detach - mark device as removed
2803 * @dev: network device
2804 *
2805 * Mark device as removed from system and therefore no longer available.
2806 */
netif_device_detach(struct net_device * dev)2807 void netif_device_detach(struct net_device *dev)
2808 {
2809 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2810 netif_running(dev)) {
2811 netif_tx_stop_all_queues(dev);
2812 }
2813 }
2814 EXPORT_SYMBOL(netif_device_detach);
2815
2816 /**
2817 * netif_device_attach - mark device as attached
2818 * @dev: network device
2819 *
2820 * Mark device as attached from system and restart if needed.
2821 */
netif_device_attach(struct net_device * dev)2822 void netif_device_attach(struct net_device *dev)
2823 {
2824 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2825 netif_running(dev)) {
2826 netif_tx_wake_all_queues(dev);
2827 __netdev_watchdog_up(dev);
2828 }
2829 }
2830 EXPORT_SYMBOL(netif_device_attach);
2831
2832 /*
2833 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2834 * to be used as a distribution range.
2835 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)2836 static u16 skb_tx_hash(const struct net_device *dev,
2837 const struct net_device *sb_dev,
2838 struct sk_buff *skb)
2839 {
2840 u32 hash;
2841 u16 qoffset = 0;
2842 u16 qcount = dev->real_num_tx_queues;
2843
2844 if (dev->num_tc) {
2845 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2846
2847 qoffset = sb_dev->tc_to_txq[tc].offset;
2848 qcount = sb_dev->tc_to_txq[tc].count;
2849 }
2850
2851 if (skb_rx_queue_recorded(skb)) {
2852 hash = skb_get_rx_queue(skb);
2853 if (hash >= qoffset)
2854 hash -= qoffset;
2855 while (unlikely(hash >= qcount))
2856 hash -= qcount;
2857 return hash + qoffset;
2858 }
2859
2860 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2861 }
2862
skb_warn_bad_offload(const struct sk_buff * skb)2863 static void skb_warn_bad_offload(const struct sk_buff *skb)
2864 {
2865 static const netdev_features_t null_features;
2866 struct net_device *dev = skb->dev;
2867 const char *name = "";
2868
2869 if (!net_ratelimit())
2870 return;
2871
2872 if (dev) {
2873 if (dev->dev.parent)
2874 name = dev_driver_string(dev->dev.parent);
2875 else
2876 name = netdev_name(dev);
2877 }
2878 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2879 "gso_type=%d ip_summed=%d\n",
2880 name, dev ? &dev->features : &null_features,
2881 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2882 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2883 skb_shinfo(skb)->gso_type, skb->ip_summed);
2884 }
2885
2886 /*
2887 * Invalidate hardware checksum when packet is to be mangled, and
2888 * complete checksum manually on outgoing path.
2889 */
skb_checksum_help(struct sk_buff * skb)2890 int skb_checksum_help(struct sk_buff *skb)
2891 {
2892 __wsum csum;
2893 int ret = 0, offset;
2894
2895 if (skb->ip_summed == CHECKSUM_COMPLETE)
2896 goto out_set_summed;
2897
2898 if (unlikely(skb_shinfo(skb)->gso_size)) {
2899 skb_warn_bad_offload(skb);
2900 return -EINVAL;
2901 }
2902
2903 /* Before computing a checksum, we should make sure no frag could
2904 * be modified by an external entity : checksum could be wrong.
2905 */
2906 if (skb_has_shared_frag(skb)) {
2907 ret = __skb_linearize(skb);
2908 if (ret)
2909 goto out;
2910 }
2911
2912 offset = skb_checksum_start_offset(skb);
2913 BUG_ON(offset >= skb_headlen(skb));
2914 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2915
2916 offset += skb->csum_offset;
2917 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2918
2919 if (skb_cloned(skb) &&
2920 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2921 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2922 if (ret)
2923 goto out;
2924 }
2925
2926 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2927 out_set_summed:
2928 skb->ip_summed = CHECKSUM_NONE;
2929 out:
2930 return ret;
2931 }
2932 EXPORT_SYMBOL(skb_checksum_help);
2933
skb_crc32c_csum_help(struct sk_buff * skb)2934 int skb_crc32c_csum_help(struct sk_buff *skb)
2935 {
2936 __le32 crc32c_csum;
2937 int ret = 0, offset, start;
2938
2939 if (skb->ip_summed != CHECKSUM_PARTIAL)
2940 goto out;
2941
2942 if (unlikely(skb_is_gso(skb)))
2943 goto out;
2944
2945 /* Before computing a checksum, we should make sure no frag could
2946 * be modified by an external entity : checksum could be wrong.
2947 */
2948 if (unlikely(skb_has_shared_frag(skb))) {
2949 ret = __skb_linearize(skb);
2950 if (ret)
2951 goto out;
2952 }
2953 start = skb_checksum_start_offset(skb);
2954 offset = start + offsetof(struct sctphdr, checksum);
2955 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2956 ret = -EINVAL;
2957 goto out;
2958 }
2959 if (skb_cloned(skb) &&
2960 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2961 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2962 if (ret)
2963 goto out;
2964 }
2965 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2966 skb->len - start, ~(__u32)0,
2967 crc32c_csum_stub));
2968 *(__le32 *)(skb->data + offset) = crc32c_csum;
2969 skb->ip_summed = CHECKSUM_NONE;
2970 skb->csum_not_inet = 0;
2971 out:
2972 return ret;
2973 }
2974
skb_network_protocol(struct sk_buff * skb,int * depth)2975 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2976 {
2977 __be16 type = skb->protocol;
2978
2979 /* Tunnel gso handlers can set protocol to ethernet. */
2980 if (type == htons(ETH_P_TEB)) {
2981 struct ethhdr *eth;
2982
2983 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2984 return 0;
2985
2986 eth = (struct ethhdr *)skb->data;
2987 type = eth->h_proto;
2988 }
2989
2990 return __vlan_get_protocol(skb, type, depth);
2991 }
2992
2993 /**
2994 * skb_mac_gso_segment - mac layer segmentation handler.
2995 * @skb: buffer to segment
2996 * @features: features for the output path (see dev->features)
2997 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2998 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2999 netdev_features_t features)
3000 {
3001 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3002 struct packet_offload *ptype;
3003 int vlan_depth = skb->mac_len;
3004 __be16 type = skb_network_protocol(skb, &vlan_depth);
3005
3006 if (unlikely(!type))
3007 return ERR_PTR(-EINVAL);
3008
3009 __skb_pull(skb, vlan_depth);
3010
3011 rcu_read_lock();
3012 list_for_each_entry_rcu(ptype, &offload_base, list) {
3013 if (ptype->type == type && ptype->callbacks.gso_segment) {
3014 segs = ptype->callbacks.gso_segment(skb, features);
3015 break;
3016 }
3017 }
3018 rcu_read_unlock();
3019
3020 __skb_push(skb, skb->data - skb_mac_header(skb));
3021
3022 return segs;
3023 }
3024 EXPORT_SYMBOL(skb_mac_gso_segment);
3025
3026
3027 /* openvswitch calls this on rx path, so we need a different check.
3028 */
skb_needs_check(struct sk_buff * skb,bool tx_path)3029 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3030 {
3031 if (tx_path)
3032 return skb->ip_summed != CHECKSUM_PARTIAL &&
3033 skb->ip_summed != CHECKSUM_UNNECESSARY;
3034
3035 return skb->ip_summed == CHECKSUM_NONE;
3036 }
3037
3038 /**
3039 * __skb_gso_segment - Perform segmentation on skb.
3040 * @skb: buffer to segment
3041 * @features: features for the output path (see dev->features)
3042 * @tx_path: whether it is called in TX path
3043 *
3044 * This function segments the given skb and returns a list of segments.
3045 *
3046 * It may return NULL if the skb requires no segmentation. This is
3047 * only possible when GSO is used for verifying header integrity.
3048 *
3049 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3050 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3051 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3052 netdev_features_t features, bool tx_path)
3053 {
3054 struct sk_buff *segs;
3055
3056 if (unlikely(skb_needs_check(skb, tx_path))) {
3057 int err;
3058
3059 /* We're going to init ->check field in TCP or UDP header */
3060 err = skb_cow_head(skb, 0);
3061 if (err < 0)
3062 return ERR_PTR(err);
3063 }
3064
3065 /* Only report GSO partial support if it will enable us to
3066 * support segmentation on this frame without needing additional
3067 * work.
3068 */
3069 if (features & NETIF_F_GSO_PARTIAL) {
3070 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3071 struct net_device *dev = skb->dev;
3072
3073 partial_features |= dev->features & dev->gso_partial_features;
3074 if (!skb_gso_ok(skb, features | partial_features))
3075 features &= ~NETIF_F_GSO_PARTIAL;
3076 }
3077
3078 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3079 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3080
3081 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3082 SKB_GSO_CB(skb)->encap_level = 0;
3083
3084 skb_reset_mac_header(skb);
3085 skb_reset_mac_len(skb);
3086
3087 segs = skb_mac_gso_segment(skb, features);
3088
3089 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3090 skb_warn_bad_offload(skb);
3091
3092 return segs;
3093 }
3094 EXPORT_SYMBOL(__skb_gso_segment);
3095
3096 /* Take action when hardware reception checksum errors are detected. */
3097 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)3098 void netdev_rx_csum_fault(struct net_device *dev)
3099 {
3100 if (net_ratelimit()) {
3101 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3102 dump_stack();
3103 }
3104 }
3105 EXPORT_SYMBOL(netdev_rx_csum_fault);
3106 #endif
3107
3108 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3109 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3110 {
3111 #ifdef CONFIG_HIGHMEM
3112 int i;
3113
3114 if (!(dev->features & NETIF_F_HIGHDMA)) {
3115 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3116 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3117
3118 if (PageHighMem(skb_frag_page(frag)))
3119 return 1;
3120 }
3121 }
3122 #endif
3123 return 0;
3124 }
3125
3126 /* If MPLS offload request, verify we are testing hardware MPLS features
3127 * instead of standard features for the netdev.
3128 */
3129 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3130 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3131 netdev_features_t features,
3132 __be16 type)
3133 {
3134 if (eth_p_mpls(type))
3135 features &= skb->dev->mpls_features;
3136
3137 return features;
3138 }
3139 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3140 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3141 netdev_features_t features,
3142 __be16 type)
3143 {
3144 return features;
3145 }
3146 #endif
3147
harmonize_features(struct sk_buff * skb,netdev_features_t features)3148 static netdev_features_t harmonize_features(struct sk_buff *skb,
3149 netdev_features_t features)
3150 {
3151 int tmp;
3152 __be16 type;
3153
3154 type = skb_network_protocol(skb, &tmp);
3155 features = net_mpls_features(skb, features, type);
3156
3157 if (skb->ip_summed != CHECKSUM_NONE &&
3158 !can_checksum_protocol(features, type)) {
3159 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3160 }
3161 if (illegal_highdma(skb->dev, skb))
3162 features &= ~NETIF_F_SG;
3163
3164 return features;
3165 }
3166
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3167 netdev_features_t passthru_features_check(struct sk_buff *skb,
3168 struct net_device *dev,
3169 netdev_features_t features)
3170 {
3171 return features;
3172 }
3173 EXPORT_SYMBOL(passthru_features_check);
3174
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3175 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3176 struct net_device *dev,
3177 netdev_features_t features)
3178 {
3179 return vlan_features_check(skb, features);
3180 }
3181
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3182 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3183 struct net_device *dev,
3184 netdev_features_t features)
3185 {
3186 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3187
3188 if (gso_segs > dev->gso_max_segs)
3189 return features & ~NETIF_F_GSO_MASK;
3190
3191 /* Support for GSO partial features requires software
3192 * intervention before we can actually process the packets
3193 * so we need to strip support for any partial features now
3194 * and we can pull them back in after we have partially
3195 * segmented the frame.
3196 */
3197 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3198 features &= ~dev->gso_partial_features;
3199
3200 /* Make sure to clear the IPv4 ID mangling feature if the
3201 * IPv4 header has the potential to be fragmented.
3202 */
3203 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3204 struct iphdr *iph = skb->encapsulation ?
3205 inner_ip_hdr(skb) : ip_hdr(skb);
3206
3207 if (!(iph->frag_off & htons(IP_DF)))
3208 features &= ~NETIF_F_TSO_MANGLEID;
3209 }
3210
3211 return features;
3212 }
3213
netif_skb_features(struct sk_buff * skb)3214 netdev_features_t netif_skb_features(struct sk_buff *skb)
3215 {
3216 struct net_device *dev = skb->dev;
3217 netdev_features_t features = dev->features;
3218
3219 if (skb_is_gso(skb))
3220 features = gso_features_check(skb, dev, features);
3221
3222 /* If encapsulation offload request, verify we are testing
3223 * hardware encapsulation features instead of standard
3224 * features for the netdev
3225 */
3226 if (skb->encapsulation)
3227 features &= dev->hw_enc_features;
3228
3229 if (skb_vlan_tagged(skb))
3230 features = netdev_intersect_features(features,
3231 dev->vlan_features |
3232 NETIF_F_HW_VLAN_CTAG_TX |
3233 NETIF_F_HW_VLAN_STAG_TX);
3234
3235 if (dev->netdev_ops->ndo_features_check)
3236 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3237 features);
3238 else
3239 features &= dflt_features_check(skb, dev, features);
3240
3241 return harmonize_features(skb, features);
3242 }
3243 EXPORT_SYMBOL(netif_skb_features);
3244
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3245 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3246 struct netdev_queue *txq, bool more)
3247 {
3248 unsigned int len;
3249 int rc;
3250
3251 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3252 dev_queue_xmit_nit(skb, dev);
3253
3254 len = skb->len;
3255 trace_net_dev_start_xmit(skb, dev);
3256 rc = netdev_start_xmit(skb, dev, txq, more);
3257 trace_net_dev_xmit(skb, rc, dev, len);
3258
3259 return rc;
3260 }
3261
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3262 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3263 struct netdev_queue *txq, int *ret)
3264 {
3265 struct sk_buff *skb = first;
3266 int rc = NETDEV_TX_OK;
3267
3268 while (skb) {
3269 struct sk_buff *next = skb->next;
3270
3271 skb->next = NULL;
3272 rc = xmit_one(skb, dev, txq, next != NULL);
3273 if (unlikely(!dev_xmit_complete(rc))) {
3274 skb->next = next;
3275 goto out;
3276 }
3277
3278 skb = next;
3279 if (netif_tx_queue_stopped(txq) && skb) {
3280 rc = NETDEV_TX_BUSY;
3281 break;
3282 }
3283 }
3284
3285 out:
3286 *ret = rc;
3287 return skb;
3288 }
3289
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3290 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3291 netdev_features_t features)
3292 {
3293 if (skb_vlan_tag_present(skb) &&
3294 !vlan_hw_offload_capable(features, skb->vlan_proto))
3295 skb = __vlan_hwaccel_push_inside(skb);
3296 return skb;
3297 }
3298
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3299 int skb_csum_hwoffload_help(struct sk_buff *skb,
3300 const netdev_features_t features)
3301 {
3302 if (unlikely(skb->csum_not_inet))
3303 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3304 skb_crc32c_csum_help(skb);
3305
3306 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3307 }
3308 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3309
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3310 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3311 {
3312 netdev_features_t features;
3313
3314 features = netif_skb_features(skb);
3315 skb = validate_xmit_vlan(skb, features);
3316 if (unlikely(!skb))
3317 goto out_null;
3318
3319 skb = sk_validate_xmit_skb(skb, dev);
3320 if (unlikely(!skb))
3321 goto out_null;
3322
3323 if (netif_needs_gso(skb, features)) {
3324 struct sk_buff *segs;
3325
3326 segs = skb_gso_segment(skb, features);
3327 if (IS_ERR(segs)) {
3328 goto out_kfree_skb;
3329 } else if (segs) {
3330 consume_skb(skb);
3331 skb = segs;
3332 }
3333 } else {
3334 if (skb_needs_linearize(skb, features) &&
3335 __skb_linearize(skb))
3336 goto out_kfree_skb;
3337
3338 /* If packet is not checksummed and device does not
3339 * support checksumming for this protocol, complete
3340 * checksumming here.
3341 */
3342 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3343 if (skb->encapsulation)
3344 skb_set_inner_transport_header(skb,
3345 skb_checksum_start_offset(skb));
3346 else
3347 skb_set_transport_header(skb,
3348 skb_checksum_start_offset(skb));
3349 if (skb_csum_hwoffload_help(skb, features))
3350 goto out_kfree_skb;
3351 }
3352 }
3353
3354 skb = validate_xmit_xfrm(skb, features, again);
3355
3356 return skb;
3357
3358 out_kfree_skb:
3359 kfree_skb(skb);
3360 out_null:
3361 atomic_long_inc(&dev->tx_dropped);
3362 return NULL;
3363 }
3364
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3365 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3366 {
3367 struct sk_buff *next, *head = NULL, *tail;
3368
3369 for (; skb != NULL; skb = next) {
3370 next = skb->next;
3371 skb->next = NULL;
3372
3373 /* in case skb wont be segmented, point to itself */
3374 skb->prev = skb;
3375
3376 skb = validate_xmit_skb(skb, dev, again);
3377 if (!skb)
3378 continue;
3379
3380 if (!head)
3381 head = skb;
3382 else
3383 tail->next = skb;
3384 /* If skb was segmented, skb->prev points to
3385 * the last segment. If not, it still contains skb.
3386 */
3387 tail = skb->prev;
3388 }
3389 return head;
3390 }
3391 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3392
qdisc_pkt_len_init(struct sk_buff * skb)3393 static void qdisc_pkt_len_init(struct sk_buff *skb)
3394 {
3395 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3396
3397 qdisc_skb_cb(skb)->pkt_len = skb->len;
3398
3399 /* To get more precise estimation of bytes sent on wire,
3400 * we add to pkt_len the headers size of all segments
3401 */
3402 if (shinfo->gso_size) {
3403 unsigned int hdr_len;
3404 u16 gso_segs = shinfo->gso_segs;
3405
3406 /* mac layer + network layer */
3407 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3408
3409 /* + transport layer */
3410 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3411 const struct tcphdr *th;
3412 struct tcphdr _tcphdr;
3413
3414 th = skb_header_pointer(skb, skb_transport_offset(skb),
3415 sizeof(_tcphdr), &_tcphdr);
3416 if (likely(th))
3417 hdr_len += __tcp_hdrlen(th);
3418 } else {
3419 struct udphdr _udphdr;
3420
3421 if (skb_header_pointer(skb, skb_transport_offset(skb),
3422 sizeof(_udphdr), &_udphdr))
3423 hdr_len += sizeof(struct udphdr);
3424 }
3425
3426 if (shinfo->gso_type & SKB_GSO_DODGY)
3427 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3428 shinfo->gso_size);
3429
3430 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3431 }
3432 }
3433
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3434 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3435 struct net_device *dev,
3436 struct netdev_queue *txq)
3437 {
3438 spinlock_t *root_lock = qdisc_lock(q);
3439 struct sk_buff *to_free = NULL;
3440 bool contended;
3441 int rc;
3442
3443 qdisc_calculate_pkt_len(skb, q);
3444
3445 if (q->flags & TCQ_F_NOLOCK) {
3446 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3447 __qdisc_drop(skb, &to_free);
3448 rc = NET_XMIT_DROP;
3449 } else {
3450 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3451 qdisc_run(q);
3452 }
3453
3454 if (unlikely(to_free))
3455 kfree_skb_list(to_free);
3456 return rc;
3457 }
3458
3459 /*
3460 * Heuristic to force contended enqueues to serialize on a
3461 * separate lock before trying to get qdisc main lock.
3462 * This permits qdisc->running owner to get the lock more
3463 * often and dequeue packets faster.
3464 */
3465 contended = qdisc_is_running(q);
3466 if (unlikely(contended))
3467 spin_lock(&q->busylock);
3468
3469 spin_lock(root_lock);
3470 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3471 __qdisc_drop(skb, &to_free);
3472 rc = NET_XMIT_DROP;
3473 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3474 qdisc_run_begin(q)) {
3475 /*
3476 * This is a work-conserving queue; there are no old skbs
3477 * waiting to be sent out; and the qdisc is not running -
3478 * xmit the skb directly.
3479 */
3480
3481 qdisc_bstats_update(q, skb);
3482
3483 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3484 if (unlikely(contended)) {
3485 spin_unlock(&q->busylock);
3486 contended = false;
3487 }
3488 __qdisc_run(q);
3489 }
3490
3491 qdisc_run_end(q);
3492 rc = NET_XMIT_SUCCESS;
3493 } else {
3494 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3495 if (qdisc_run_begin(q)) {
3496 if (unlikely(contended)) {
3497 spin_unlock(&q->busylock);
3498 contended = false;
3499 }
3500 __qdisc_run(q);
3501 qdisc_run_end(q);
3502 }
3503 }
3504 spin_unlock(root_lock);
3505 if (unlikely(to_free))
3506 kfree_skb_list(to_free);
3507 if (unlikely(contended))
3508 spin_unlock(&q->busylock);
3509 return rc;
3510 }
3511
3512 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3513 static void skb_update_prio(struct sk_buff *skb)
3514 {
3515 const struct netprio_map *map;
3516 const struct sock *sk;
3517 unsigned int prioidx;
3518
3519 if (skb->priority)
3520 return;
3521 map = rcu_dereference_bh(skb->dev->priomap);
3522 if (!map)
3523 return;
3524 sk = skb_to_full_sk(skb);
3525 if (!sk)
3526 return;
3527
3528 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3529
3530 if (prioidx < map->priomap_len)
3531 skb->priority = map->priomap[prioidx];
3532 }
3533 #else
3534 #define skb_update_prio(skb)
3535 #endif
3536
3537 /**
3538 * dev_loopback_xmit - loop back @skb
3539 * @net: network namespace this loopback is happening in
3540 * @sk: sk needed to be a netfilter okfn
3541 * @skb: buffer to transmit
3542 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3543 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3544 {
3545 skb_reset_mac_header(skb);
3546 __skb_pull(skb, skb_network_offset(skb));
3547 skb->pkt_type = PACKET_LOOPBACK;
3548 skb->ip_summed = CHECKSUM_UNNECESSARY;
3549 WARN_ON(!skb_dst(skb));
3550 skb_dst_force(skb);
3551 netif_rx_ni(skb);
3552 return 0;
3553 }
3554 EXPORT_SYMBOL(dev_loopback_xmit);
3555
3556 #ifdef CONFIG_NET_EGRESS
3557 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3558 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3559 {
3560 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3561 struct tcf_result cl_res;
3562
3563 if (!miniq)
3564 return skb;
3565
3566 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3567 mini_qdisc_bstats_cpu_update(miniq, skb);
3568
3569 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3570 case TC_ACT_OK:
3571 case TC_ACT_RECLASSIFY:
3572 skb->tc_index = TC_H_MIN(cl_res.classid);
3573 break;
3574 case TC_ACT_SHOT:
3575 mini_qdisc_qstats_cpu_drop(miniq);
3576 *ret = NET_XMIT_DROP;
3577 kfree_skb(skb);
3578 return NULL;
3579 case TC_ACT_STOLEN:
3580 case TC_ACT_QUEUED:
3581 case TC_ACT_TRAP:
3582 *ret = NET_XMIT_SUCCESS;
3583 consume_skb(skb);
3584 return NULL;
3585 case TC_ACT_REDIRECT:
3586 /* No need to push/pop skb's mac_header here on egress! */
3587 skb_do_redirect(skb);
3588 *ret = NET_XMIT_SUCCESS;
3589 return NULL;
3590 default:
3591 break;
3592 }
3593
3594 return skb;
3595 }
3596 #endif /* CONFIG_NET_EGRESS */
3597
3598 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3599 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3600 struct xps_dev_maps *dev_maps, unsigned int tci)
3601 {
3602 struct xps_map *map;
3603 int queue_index = -1;
3604
3605 if (dev->num_tc) {
3606 tci *= dev->num_tc;
3607 tci += netdev_get_prio_tc_map(dev, skb->priority);
3608 }
3609
3610 map = rcu_dereference(dev_maps->attr_map[tci]);
3611 if (map) {
3612 if (map->len == 1)
3613 queue_index = map->queues[0];
3614 else
3615 queue_index = map->queues[reciprocal_scale(
3616 skb_get_hash(skb), map->len)];
3617 if (unlikely(queue_index >= dev->real_num_tx_queues))
3618 queue_index = -1;
3619 }
3620 return queue_index;
3621 }
3622 #endif
3623
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3624 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3625 struct sk_buff *skb)
3626 {
3627 #ifdef CONFIG_XPS
3628 struct xps_dev_maps *dev_maps;
3629 struct sock *sk = skb->sk;
3630 int queue_index = -1;
3631
3632 if (!static_key_false(&xps_needed))
3633 return -1;
3634
3635 rcu_read_lock();
3636 if (!static_key_false(&xps_rxqs_needed))
3637 goto get_cpus_map;
3638
3639 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3640 if (dev_maps) {
3641 int tci = sk_rx_queue_get(sk);
3642
3643 if (tci >= 0 && tci < dev->num_rx_queues)
3644 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3645 tci);
3646 }
3647
3648 get_cpus_map:
3649 if (queue_index < 0) {
3650 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3651 if (dev_maps) {
3652 unsigned int tci = skb->sender_cpu - 1;
3653
3654 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3655 tci);
3656 }
3657 }
3658 rcu_read_unlock();
3659
3660 return queue_index;
3661 #else
3662 return -1;
3663 #endif
3664 }
3665
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)3666 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3667 struct net_device *sb_dev,
3668 select_queue_fallback_t fallback)
3669 {
3670 return 0;
3671 }
3672 EXPORT_SYMBOL(dev_pick_tx_zero);
3673
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)3674 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3675 struct net_device *sb_dev,
3676 select_queue_fallback_t fallback)
3677 {
3678 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3679 }
3680 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3681
__netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3682 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3683 struct net_device *sb_dev)
3684 {
3685 struct sock *sk = skb->sk;
3686 int queue_index = sk_tx_queue_get(sk);
3687
3688 sb_dev = sb_dev ? : dev;
3689
3690 if (queue_index < 0 || skb->ooo_okay ||
3691 queue_index >= dev->real_num_tx_queues) {
3692 int new_index = get_xps_queue(dev, sb_dev, skb);
3693
3694 if (new_index < 0)
3695 new_index = skb_tx_hash(dev, sb_dev, skb);
3696
3697 if (queue_index != new_index && sk &&
3698 sk_fullsock(sk) &&
3699 rcu_access_pointer(sk->sk_dst_cache))
3700 sk_tx_queue_set(sk, new_index);
3701
3702 queue_index = new_index;
3703 }
3704
3705 return queue_index;
3706 }
3707
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3708 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3709 struct sk_buff *skb,
3710 struct net_device *sb_dev)
3711 {
3712 int queue_index = 0;
3713
3714 #ifdef CONFIG_XPS
3715 u32 sender_cpu = skb->sender_cpu - 1;
3716
3717 if (sender_cpu >= (u32)NR_CPUS)
3718 skb->sender_cpu = raw_smp_processor_id() + 1;
3719 #endif
3720
3721 if (dev->real_num_tx_queues != 1) {
3722 const struct net_device_ops *ops = dev->netdev_ops;
3723
3724 if (ops->ndo_select_queue)
3725 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3726 __netdev_pick_tx);
3727 else
3728 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3729
3730 queue_index = netdev_cap_txqueue(dev, queue_index);
3731 }
3732
3733 skb_set_queue_mapping(skb, queue_index);
3734 return netdev_get_tx_queue(dev, queue_index);
3735 }
3736
3737 /**
3738 * __dev_queue_xmit - transmit a buffer
3739 * @skb: buffer to transmit
3740 * @sb_dev: suboordinate device used for L2 forwarding offload
3741 *
3742 * Queue a buffer for transmission to a network device. The caller must
3743 * have set the device and priority and built the buffer before calling
3744 * this function. The function can be called from an interrupt.
3745 *
3746 * A negative errno code is returned on a failure. A success does not
3747 * guarantee the frame will be transmitted as it may be dropped due
3748 * to congestion or traffic shaping.
3749 *
3750 * -----------------------------------------------------------------------------------
3751 * I notice this method can also return errors from the queue disciplines,
3752 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3753 * be positive.
3754 *
3755 * Regardless of the return value, the skb is consumed, so it is currently
3756 * difficult to retry a send to this method. (You can bump the ref count
3757 * before sending to hold a reference for retry if you are careful.)
3758 *
3759 * When calling this method, interrupts MUST be enabled. This is because
3760 * the BH enable code must have IRQs enabled so that it will not deadlock.
3761 * --BLG
3762 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)3763 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3764 {
3765 struct net_device *dev = skb->dev;
3766 struct netdev_queue *txq;
3767 struct Qdisc *q;
3768 int rc = -ENOMEM;
3769 bool again = false;
3770
3771 skb_reset_mac_header(skb);
3772
3773 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3774 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3775
3776 /* Disable soft irqs for various locks below. Also
3777 * stops preemption for RCU.
3778 */
3779 rcu_read_lock_bh();
3780
3781 skb_update_prio(skb);
3782
3783 qdisc_pkt_len_init(skb);
3784 #ifdef CONFIG_NET_CLS_ACT
3785 skb->tc_at_ingress = 0;
3786 # ifdef CONFIG_NET_EGRESS
3787 if (static_branch_unlikely(&egress_needed_key)) {
3788 skb = sch_handle_egress(skb, &rc, dev);
3789 if (!skb)
3790 goto out;
3791 }
3792 # endif
3793 #endif
3794 /* If device/qdisc don't need skb->dst, release it right now while
3795 * its hot in this cpu cache.
3796 */
3797 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3798 skb_dst_drop(skb);
3799 else
3800 skb_dst_force(skb);
3801
3802 txq = netdev_pick_tx(dev, skb, sb_dev);
3803 q = rcu_dereference_bh(txq->qdisc);
3804
3805 trace_net_dev_queue(skb);
3806 if (q->enqueue) {
3807 rc = __dev_xmit_skb(skb, q, dev, txq);
3808 goto out;
3809 }
3810
3811 /* The device has no queue. Common case for software devices:
3812 * loopback, all the sorts of tunnels...
3813
3814 * Really, it is unlikely that netif_tx_lock protection is necessary
3815 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3816 * counters.)
3817 * However, it is possible, that they rely on protection
3818 * made by us here.
3819
3820 * Check this and shot the lock. It is not prone from deadlocks.
3821 *Either shot noqueue qdisc, it is even simpler 8)
3822 */
3823 if (dev->flags & IFF_UP) {
3824 int cpu = smp_processor_id(); /* ok because BHs are off */
3825
3826 if (txq->xmit_lock_owner != cpu) {
3827 if (dev_xmit_recursion())
3828 goto recursion_alert;
3829
3830 skb = validate_xmit_skb(skb, dev, &again);
3831 if (!skb)
3832 goto out;
3833
3834 HARD_TX_LOCK(dev, txq, cpu);
3835
3836 if (!netif_xmit_stopped(txq)) {
3837 dev_xmit_recursion_inc();
3838 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3839 dev_xmit_recursion_dec();
3840 if (dev_xmit_complete(rc)) {
3841 HARD_TX_UNLOCK(dev, txq);
3842 goto out;
3843 }
3844 }
3845 HARD_TX_UNLOCK(dev, txq);
3846 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3847 dev->name);
3848 } else {
3849 /* Recursion is detected! It is possible,
3850 * unfortunately
3851 */
3852 recursion_alert:
3853 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3854 dev->name);
3855 }
3856 }
3857
3858 rc = -ENETDOWN;
3859 rcu_read_unlock_bh();
3860
3861 atomic_long_inc(&dev->tx_dropped);
3862 kfree_skb_list(skb);
3863 return rc;
3864 out:
3865 rcu_read_unlock_bh();
3866 return rc;
3867 }
3868
dev_queue_xmit(struct sk_buff * skb)3869 int dev_queue_xmit(struct sk_buff *skb)
3870 {
3871 return __dev_queue_xmit(skb, NULL);
3872 }
3873 EXPORT_SYMBOL(dev_queue_xmit);
3874
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3875 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3876 {
3877 return __dev_queue_xmit(skb, sb_dev);
3878 }
3879 EXPORT_SYMBOL(dev_queue_xmit_accel);
3880
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3881 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3882 {
3883 struct net_device *dev = skb->dev;
3884 struct sk_buff *orig_skb = skb;
3885 struct netdev_queue *txq;
3886 int ret = NETDEV_TX_BUSY;
3887 bool again = false;
3888
3889 if (unlikely(!netif_running(dev) ||
3890 !netif_carrier_ok(dev)))
3891 goto drop;
3892
3893 skb = validate_xmit_skb_list(skb, dev, &again);
3894 if (skb != orig_skb)
3895 goto drop;
3896
3897 skb_set_queue_mapping(skb, queue_id);
3898 txq = skb_get_tx_queue(dev, skb);
3899
3900 local_bh_disable();
3901
3902 dev_xmit_recursion_inc();
3903 HARD_TX_LOCK(dev, txq, smp_processor_id());
3904 if (!netif_xmit_frozen_or_drv_stopped(txq))
3905 ret = netdev_start_xmit(skb, dev, txq, false);
3906 HARD_TX_UNLOCK(dev, txq);
3907 dev_xmit_recursion_dec();
3908
3909 local_bh_enable();
3910
3911 if (!dev_xmit_complete(ret))
3912 kfree_skb(skb);
3913
3914 return ret;
3915 drop:
3916 atomic_long_inc(&dev->tx_dropped);
3917 kfree_skb_list(skb);
3918 return NET_XMIT_DROP;
3919 }
3920 EXPORT_SYMBOL(dev_direct_xmit);
3921
3922 /*************************************************************************
3923 * Receiver routines
3924 *************************************************************************/
3925
3926 int netdev_max_backlog __read_mostly = 1000;
3927 EXPORT_SYMBOL(netdev_max_backlog);
3928
3929 int netdev_tstamp_prequeue __read_mostly = 1;
3930 int netdev_budget __read_mostly = 300;
3931 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3932 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3933 int weight_p __read_mostly = 64; /* old backlog weight */
3934 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3935 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3936 int dev_rx_weight __read_mostly = 64;
3937 int dev_tx_weight __read_mostly = 64;
3938
3939 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3940 static inline void ____napi_schedule(struct softnet_data *sd,
3941 struct napi_struct *napi)
3942 {
3943 list_add_tail(&napi->poll_list, &sd->poll_list);
3944 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3945 }
3946
3947 #ifdef CONFIG_RPS
3948
3949 /* One global table that all flow-based protocols share. */
3950 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3951 EXPORT_SYMBOL(rps_sock_flow_table);
3952 u32 rps_cpu_mask __read_mostly;
3953 EXPORT_SYMBOL(rps_cpu_mask);
3954
3955 struct static_key rps_needed __read_mostly;
3956 EXPORT_SYMBOL(rps_needed);
3957 struct static_key rfs_needed __read_mostly;
3958 EXPORT_SYMBOL(rfs_needed);
3959
3960 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3961 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3962 struct rps_dev_flow *rflow, u16 next_cpu)
3963 {
3964 if (next_cpu < nr_cpu_ids) {
3965 #ifdef CONFIG_RFS_ACCEL
3966 struct netdev_rx_queue *rxqueue;
3967 struct rps_dev_flow_table *flow_table;
3968 struct rps_dev_flow *old_rflow;
3969 u32 flow_id;
3970 u16 rxq_index;
3971 int rc;
3972
3973 /* Should we steer this flow to a different hardware queue? */
3974 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3975 !(dev->features & NETIF_F_NTUPLE))
3976 goto out;
3977 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3978 if (rxq_index == skb_get_rx_queue(skb))
3979 goto out;
3980
3981 rxqueue = dev->_rx + rxq_index;
3982 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3983 if (!flow_table)
3984 goto out;
3985 flow_id = skb_get_hash(skb) & flow_table->mask;
3986 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3987 rxq_index, flow_id);
3988 if (rc < 0)
3989 goto out;
3990 old_rflow = rflow;
3991 rflow = &flow_table->flows[flow_id];
3992 rflow->filter = rc;
3993 if (old_rflow->filter == rflow->filter)
3994 old_rflow->filter = RPS_NO_FILTER;
3995 out:
3996 #endif
3997 rflow->last_qtail =
3998 per_cpu(softnet_data, next_cpu).input_queue_head;
3999 }
4000
4001 rflow->cpu = next_cpu;
4002 return rflow;
4003 }
4004
4005 /*
4006 * get_rps_cpu is called from netif_receive_skb and returns the target
4007 * CPU from the RPS map of the receiving queue for a given skb.
4008 * rcu_read_lock must be held on entry.
4009 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4010 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4011 struct rps_dev_flow **rflowp)
4012 {
4013 const struct rps_sock_flow_table *sock_flow_table;
4014 struct netdev_rx_queue *rxqueue = dev->_rx;
4015 struct rps_dev_flow_table *flow_table;
4016 struct rps_map *map;
4017 int cpu = -1;
4018 u32 tcpu;
4019 u32 hash;
4020
4021 if (skb_rx_queue_recorded(skb)) {
4022 u16 index = skb_get_rx_queue(skb);
4023
4024 if (unlikely(index >= dev->real_num_rx_queues)) {
4025 WARN_ONCE(dev->real_num_rx_queues > 1,
4026 "%s received packet on queue %u, but number "
4027 "of RX queues is %u\n",
4028 dev->name, index, dev->real_num_rx_queues);
4029 goto done;
4030 }
4031 rxqueue += index;
4032 }
4033
4034 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4035
4036 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4037 map = rcu_dereference(rxqueue->rps_map);
4038 if (!flow_table && !map)
4039 goto done;
4040
4041 skb_reset_network_header(skb);
4042 hash = skb_get_hash(skb);
4043 if (!hash)
4044 goto done;
4045
4046 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4047 if (flow_table && sock_flow_table) {
4048 struct rps_dev_flow *rflow;
4049 u32 next_cpu;
4050 u32 ident;
4051
4052 /* First check into global flow table if there is a match */
4053 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4054 if ((ident ^ hash) & ~rps_cpu_mask)
4055 goto try_rps;
4056
4057 next_cpu = ident & rps_cpu_mask;
4058
4059 /* OK, now we know there is a match,
4060 * we can look at the local (per receive queue) flow table
4061 */
4062 rflow = &flow_table->flows[hash & flow_table->mask];
4063 tcpu = rflow->cpu;
4064
4065 /*
4066 * If the desired CPU (where last recvmsg was done) is
4067 * different from current CPU (one in the rx-queue flow
4068 * table entry), switch if one of the following holds:
4069 * - Current CPU is unset (>= nr_cpu_ids).
4070 * - Current CPU is offline.
4071 * - The current CPU's queue tail has advanced beyond the
4072 * last packet that was enqueued using this table entry.
4073 * This guarantees that all previous packets for the flow
4074 * have been dequeued, thus preserving in order delivery.
4075 */
4076 if (unlikely(tcpu != next_cpu) &&
4077 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4078 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4079 rflow->last_qtail)) >= 0)) {
4080 tcpu = next_cpu;
4081 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4082 }
4083
4084 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4085 *rflowp = rflow;
4086 cpu = tcpu;
4087 goto done;
4088 }
4089 }
4090
4091 try_rps:
4092
4093 if (map) {
4094 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4095 if (cpu_online(tcpu)) {
4096 cpu = tcpu;
4097 goto done;
4098 }
4099 }
4100
4101 done:
4102 return cpu;
4103 }
4104
4105 #ifdef CONFIG_RFS_ACCEL
4106
4107 /**
4108 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4109 * @dev: Device on which the filter was set
4110 * @rxq_index: RX queue index
4111 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4112 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4113 *
4114 * Drivers that implement ndo_rx_flow_steer() should periodically call
4115 * this function for each installed filter and remove the filters for
4116 * which it returns %true.
4117 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4118 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4119 u32 flow_id, u16 filter_id)
4120 {
4121 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4122 struct rps_dev_flow_table *flow_table;
4123 struct rps_dev_flow *rflow;
4124 bool expire = true;
4125 unsigned int cpu;
4126
4127 rcu_read_lock();
4128 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4129 if (flow_table && flow_id <= flow_table->mask) {
4130 rflow = &flow_table->flows[flow_id];
4131 cpu = READ_ONCE(rflow->cpu);
4132 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4133 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4134 rflow->last_qtail) <
4135 (int)(10 * flow_table->mask)))
4136 expire = false;
4137 }
4138 rcu_read_unlock();
4139 return expire;
4140 }
4141 EXPORT_SYMBOL(rps_may_expire_flow);
4142
4143 #endif /* CONFIG_RFS_ACCEL */
4144
4145 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4146 static void rps_trigger_softirq(void *data)
4147 {
4148 struct softnet_data *sd = data;
4149
4150 ____napi_schedule(sd, &sd->backlog);
4151 sd->received_rps++;
4152 }
4153
4154 #endif /* CONFIG_RPS */
4155
4156 /*
4157 * Check if this softnet_data structure is another cpu one
4158 * If yes, queue it to our IPI list and return 1
4159 * If no, return 0
4160 */
rps_ipi_queued(struct softnet_data * sd)4161 static int rps_ipi_queued(struct softnet_data *sd)
4162 {
4163 #ifdef CONFIG_RPS
4164 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4165
4166 if (sd != mysd) {
4167 sd->rps_ipi_next = mysd->rps_ipi_list;
4168 mysd->rps_ipi_list = sd;
4169
4170 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4171 return 1;
4172 }
4173 #endif /* CONFIG_RPS */
4174 return 0;
4175 }
4176
4177 #ifdef CONFIG_NET_FLOW_LIMIT
4178 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4179 #endif
4180
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4181 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4182 {
4183 #ifdef CONFIG_NET_FLOW_LIMIT
4184 struct sd_flow_limit *fl;
4185 struct softnet_data *sd;
4186 unsigned int old_flow, new_flow;
4187
4188 if (qlen < (netdev_max_backlog >> 1))
4189 return false;
4190
4191 sd = this_cpu_ptr(&softnet_data);
4192
4193 rcu_read_lock();
4194 fl = rcu_dereference(sd->flow_limit);
4195 if (fl) {
4196 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4197 old_flow = fl->history[fl->history_head];
4198 fl->history[fl->history_head] = new_flow;
4199
4200 fl->history_head++;
4201 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4202
4203 if (likely(fl->buckets[old_flow]))
4204 fl->buckets[old_flow]--;
4205
4206 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4207 fl->count++;
4208 rcu_read_unlock();
4209 return true;
4210 }
4211 }
4212 rcu_read_unlock();
4213 #endif
4214 return false;
4215 }
4216
4217 /*
4218 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4219 * queue (may be a remote CPU queue).
4220 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4221 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4222 unsigned int *qtail)
4223 {
4224 struct softnet_data *sd;
4225 unsigned long flags;
4226 unsigned int qlen;
4227
4228 sd = &per_cpu(softnet_data, cpu);
4229
4230 local_irq_save(flags);
4231
4232 rps_lock(sd);
4233 if (!netif_running(skb->dev))
4234 goto drop;
4235 qlen = skb_queue_len(&sd->input_pkt_queue);
4236 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4237 if (qlen) {
4238 enqueue:
4239 __skb_queue_tail(&sd->input_pkt_queue, skb);
4240 input_queue_tail_incr_save(sd, qtail);
4241 rps_unlock(sd);
4242 local_irq_restore(flags);
4243 return NET_RX_SUCCESS;
4244 }
4245
4246 /* Schedule NAPI for backlog device
4247 * We can use non atomic operation since we own the queue lock
4248 */
4249 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4250 if (!rps_ipi_queued(sd))
4251 ____napi_schedule(sd, &sd->backlog);
4252 }
4253 goto enqueue;
4254 }
4255
4256 drop:
4257 sd->dropped++;
4258 rps_unlock(sd);
4259
4260 local_irq_restore(flags);
4261
4262 atomic_long_inc(&skb->dev->rx_dropped);
4263 kfree_skb(skb);
4264 return NET_RX_DROP;
4265 }
4266
netif_get_rxqueue(struct sk_buff * skb)4267 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4268 {
4269 struct net_device *dev = skb->dev;
4270 struct netdev_rx_queue *rxqueue;
4271
4272 rxqueue = dev->_rx;
4273
4274 if (skb_rx_queue_recorded(skb)) {
4275 u16 index = skb_get_rx_queue(skb);
4276
4277 if (unlikely(index >= dev->real_num_rx_queues)) {
4278 WARN_ONCE(dev->real_num_rx_queues > 1,
4279 "%s received packet on queue %u, but number "
4280 "of RX queues is %u\n",
4281 dev->name, index, dev->real_num_rx_queues);
4282
4283 return rxqueue; /* Return first rxqueue */
4284 }
4285 rxqueue += index;
4286 }
4287 return rxqueue;
4288 }
4289
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4290 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4291 struct xdp_buff *xdp,
4292 struct bpf_prog *xdp_prog)
4293 {
4294 struct netdev_rx_queue *rxqueue;
4295 void *orig_data, *orig_data_end;
4296 u32 metalen, act = XDP_DROP;
4297 __be16 orig_eth_type;
4298 struct ethhdr *eth;
4299 bool orig_bcast;
4300 int hlen, off;
4301 u32 mac_len;
4302
4303 /* Reinjected packets coming from act_mirred or similar should
4304 * not get XDP generic processing.
4305 */
4306 if (skb_is_tc_redirected(skb))
4307 return XDP_PASS;
4308
4309 /* XDP packets must be linear and must have sufficient headroom
4310 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4311 * native XDP provides, thus we need to do it here as well.
4312 */
4313 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4314 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4315 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4316 int troom = skb->tail + skb->data_len - skb->end;
4317
4318 /* In case we have to go down the path and also linearize,
4319 * then lets do the pskb_expand_head() work just once here.
4320 */
4321 if (pskb_expand_head(skb,
4322 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4323 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4324 goto do_drop;
4325 if (skb_linearize(skb))
4326 goto do_drop;
4327 }
4328
4329 /* The XDP program wants to see the packet starting at the MAC
4330 * header.
4331 */
4332 mac_len = skb->data - skb_mac_header(skb);
4333 hlen = skb_headlen(skb) + mac_len;
4334 xdp->data = skb->data - mac_len;
4335 xdp->data_meta = xdp->data;
4336 xdp->data_end = xdp->data + hlen;
4337 xdp->data_hard_start = skb->data - skb_headroom(skb);
4338 orig_data_end = xdp->data_end;
4339 orig_data = xdp->data;
4340 eth = (struct ethhdr *)xdp->data;
4341 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4342 orig_eth_type = eth->h_proto;
4343
4344 rxqueue = netif_get_rxqueue(skb);
4345 xdp->rxq = &rxqueue->xdp_rxq;
4346
4347 act = bpf_prog_run_xdp(xdp_prog, xdp);
4348
4349 /* check if bpf_xdp_adjust_head was used */
4350 off = xdp->data - orig_data;
4351 if (off) {
4352 if (off > 0)
4353 __skb_pull(skb, off);
4354 else if (off < 0)
4355 __skb_push(skb, -off);
4356
4357 skb->mac_header += off;
4358 skb_reset_network_header(skb);
4359 }
4360
4361 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4362 * pckt.
4363 */
4364 off = orig_data_end - xdp->data_end;
4365 if (off != 0) {
4366 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4367 skb->len -= off;
4368
4369 }
4370
4371 /* check if XDP changed eth hdr such SKB needs update */
4372 eth = (struct ethhdr *)xdp->data;
4373 if ((orig_eth_type != eth->h_proto) ||
4374 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4375 __skb_push(skb, ETH_HLEN);
4376 skb->protocol = eth_type_trans(skb, skb->dev);
4377 }
4378
4379 switch (act) {
4380 case XDP_REDIRECT:
4381 case XDP_TX:
4382 __skb_push(skb, mac_len);
4383 break;
4384 case XDP_PASS:
4385 metalen = xdp->data - xdp->data_meta;
4386 if (metalen)
4387 skb_metadata_set(skb, metalen);
4388 break;
4389 default:
4390 bpf_warn_invalid_xdp_action(act);
4391 /* fall through */
4392 case XDP_ABORTED:
4393 trace_xdp_exception(skb->dev, xdp_prog, act);
4394 /* fall through */
4395 case XDP_DROP:
4396 do_drop:
4397 kfree_skb(skb);
4398 break;
4399 }
4400
4401 return act;
4402 }
4403
4404 /* When doing generic XDP we have to bypass the qdisc layer and the
4405 * network taps in order to match in-driver-XDP behavior.
4406 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4407 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4408 {
4409 struct net_device *dev = skb->dev;
4410 struct netdev_queue *txq;
4411 bool free_skb = true;
4412 int cpu, rc;
4413
4414 txq = netdev_pick_tx(dev, skb, NULL);
4415 cpu = smp_processor_id();
4416 HARD_TX_LOCK(dev, txq, cpu);
4417 if (!netif_xmit_stopped(txq)) {
4418 rc = netdev_start_xmit(skb, dev, txq, 0);
4419 if (dev_xmit_complete(rc))
4420 free_skb = false;
4421 }
4422 HARD_TX_UNLOCK(dev, txq);
4423 if (free_skb) {
4424 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4425 kfree_skb(skb);
4426 }
4427 }
4428 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4429
4430 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4431
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4432 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4433 {
4434 if (xdp_prog) {
4435 struct xdp_buff xdp;
4436 u32 act;
4437 int err;
4438
4439 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4440 if (act != XDP_PASS) {
4441 switch (act) {
4442 case XDP_REDIRECT:
4443 err = xdp_do_generic_redirect(skb->dev, skb,
4444 &xdp, xdp_prog);
4445 if (err)
4446 goto out_redir;
4447 break;
4448 case XDP_TX:
4449 generic_xdp_tx(skb, xdp_prog);
4450 break;
4451 }
4452 return XDP_DROP;
4453 }
4454 }
4455 return XDP_PASS;
4456 out_redir:
4457 kfree_skb(skb);
4458 return XDP_DROP;
4459 }
4460 EXPORT_SYMBOL_GPL(do_xdp_generic);
4461
netif_rx_internal(struct sk_buff * skb)4462 static int netif_rx_internal(struct sk_buff *skb)
4463 {
4464 int ret;
4465
4466 net_timestamp_check(netdev_tstamp_prequeue, skb);
4467
4468 trace_netif_rx(skb);
4469
4470 #ifdef CONFIG_RPS
4471 if (static_key_false(&rps_needed)) {
4472 struct rps_dev_flow voidflow, *rflow = &voidflow;
4473 int cpu;
4474
4475 preempt_disable();
4476 rcu_read_lock();
4477
4478 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4479 if (cpu < 0)
4480 cpu = smp_processor_id();
4481
4482 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4483
4484 rcu_read_unlock();
4485 preempt_enable();
4486 } else
4487 #endif
4488 {
4489 unsigned int qtail;
4490
4491 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4492 put_cpu();
4493 }
4494 return ret;
4495 }
4496
4497 /**
4498 * netif_rx - post buffer to the network code
4499 * @skb: buffer to post
4500 *
4501 * This function receives a packet from a device driver and queues it for
4502 * the upper (protocol) levels to process. It always succeeds. The buffer
4503 * may be dropped during processing for congestion control or by the
4504 * protocol layers.
4505 *
4506 * return values:
4507 * NET_RX_SUCCESS (no congestion)
4508 * NET_RX_DROP (packet was dropped)
4509 *
4510 */
4511
netif_rx(struct sk_buff * skb)4512 int netif_rx(struct sk_buff *skb)
4513 {
4514 trace_netif_rx_entry(skb);
4515
4516 return netif_rx_internal(skb);
4517 }
4518 EXPORT_SYMBOL(netif_rx);
4519
netif_rx_ni(struct sk_buff * skb)4520 int netif_rx_ni(struct sk_buff *skb)
4521 {
4522 int err;
4523
4524 trace_netif_rx_ni_entry(skb);
4525
4526 preempt_disable();
4527 err = netif_rx_internal(skb);
4528 if (local_softirq_pending())
4529 do_softirq();
4530 preempt_enable();
4531
4532 return err;
4533 }
4534 EXPORT_SYMBOL(netif_rx_ni);
4535
net_tx_action(struct softirq_action * h)4536 static __latent_entropy void net_tx_action(struct softirq_action *h)
4537 {
4538 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4539
4540 if (sd->completion_queue) {
4541 struct sk_buff *clist;
4542
4543 local_irq_disable();
4544 clist = sd->completion_queue;
4545 sd->completion_queue = NULL;
4546 local_irq_enable();
4547
4548 while (clist) {
4549 struct sk_buff *skb = clist;
4550
4551 clist = clist->next;
4552
4553 WARN_ON(refcount_read(&skb->users));
4554 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4555 trace_consume_skb(skb);
4556 else
4557 trace_kfree_skb(skb, net_tx_action);
4558
4559 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4560 __kfree_skb(skb);
4561 else
4562 __kfree_skb_defer(skb);
4563 }
4564
4565 __kfree_skb_flush();
4566 }
4567
4568 if (sd->output_queue) {
4569 struct Qdisc *head;
4570
4571 local_irq_disable();
4572 head = sd->output_queue;
4573 sd->output_queue = NULL;
4574 sd->output_queue_tailp = &sd->output_queue;
4575 local_irq_enable();
4576
4577 while (head) {
4578 struct Qdisc *q = head;
4579 spinlock_t *root_lock = NULL;
4580
4581 head = head->next_sched;
4582
4583 if (!(q->flags & TCQ_F_NOLOCK)) {
4584 root_lock = qdisc_lock(q);
4585 spin_lock(root_lock);
4586 }
4587 /* We need to make sure head->next_sched is read
4588 * before clearing __QDISC_STATE_SCHED
4589 */
4590 smp_mb__before_atomic();
4591 clear_bit(__QDISC_STATE_SCHED, &q->state);
4592 qdisc_run(q);
4593 if (root_lock)
4594 spin_unlock(root_lock);
4595 }
4596 }
4597
4598 xfrm_dev_backlog(sd);
4599 }
4600
4601 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4602 /* This hook is defined here for ATM LANE */
4603 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4604 unsigned char *addr) __read_mostly;
4605 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4606 #endif
4607
4608 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4609 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4610 struct net_device *orig_dev)
4611 {
4612 #ifdef CONFIG_NET_CLS_ACT
4613 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4614 struct tcf_result cl_res;
4615
4616 /* If there's at least one ingress present somewhere (so
4617 * we get here via enabled static key), remaining devices
4618 * that are not configured with an ingress qdisc will bail
4619 * out here.
4620 */
4621 if (!miniq)
4622 return skb;
4623
4624 if (*pt_prev) {
4625 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4626 *pt_prev = NULL;
4627 }
4628
4629 qdisc_skb_cb(skb)->pkt_len = skb->len;
4630 skb->tc_at_ingress = 1;
4631 mini_qdisc_bstats_cpu_update(miniq, skb);
4632
4633 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4634 case TC_ACT_OK:
4635 case TC_ACT_RECLASSIFY:
4636 skb->tc_index = TC_H_MIN(cl_res.classid);
4637 break;
4638 case TC_ACT_SHOT:
4639 mini_qdisc_qstats_cpu_drop(miniq);
4640 kfree_skb(skb);
4641 return NULL;
4642 case TC_ACT_STOLEN:
4643 case TC_ACT_QUEUED:
4644 case TC_ACT_TRAP:
4645 consume_skb(skb);
4646 return NULL;
4647 case TC_ACT_REDIRECT:
4648 /* skb_mac_header check was done by cls/act_bpf, so
4649 * we can safely push the L2 header back before
4650 * redirecting to another netdev
4651 */
4652 __skb_push(skb, skb->mac_len);
4653 skb_do_redirect(skb);
4654 return NULL;
4655 case TC_ACT_REINSERT:
4656 /* this does not scrub the packet, and updates stats on error */
4657 skb_tc_reinsert(skb, &cl_res);
4658 return NULL;
4659 default:
4660 break;
4661 }
4662 #endif /* CONFIG_NET_CLS_ACT */
4663 return skb;
4664 }
4665
4666 /**
4667 * netdev_is_rx_handler_busy - check if receive handler is registered
4668 * @dev: device to check
4669 *
4670 * Check if a receive handler is already registered for a given device.
4671 * Return true if there one.
4672 *
4673 * The caller must hold the rtnl_mutex.
4674 */
netdev_is_rx_handler_busy(struct net_device * dev)4675 bool netdev_is_rx_handler_busy(struct net_device *dev)
4676 {
4677 ASSERT_RTNL();
4678 return dev && rtnl_dereference(dev->rx_handler);
4679 }
4680 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4681
4682 /**
4683 * netdev_rx_handler_register - register receive handler
4684 * @dev: device to register a handler for
4685 * @rx_handler: receive handler to register
4686 * @rx_handler_data: data pointer that is used by rx handler
4687 *
4688 * Register a receive handler for a device. This handler will then be
4689 * called from __netif_receive_skb. A negative errno code is returned
4690 * on a failure.
4691 *
4692 * The caller must hold the rtnl_mutex.
4693 *
4694 * For a general description of rx_handler, see enum rx_handler_result.
4695 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)4696 int netdev_rx_handler_register(struct net_device *dev,
4697 rx_handler_func_t *rx_handler,
4698 void *rx_handler_data)
4699 {
4700 if (netdev_is_rx_handler_busy(dev))
4701 return -EBUSY;
4702
4703 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4704 return -EINVAL;
4705
4706 /* Note: rx_handler_data must be set before rx_handler */
4707 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4708 rcu_assign_pointer(dev->rx_handler, rx_handler);
4709
4710 return 0;
4711 }
4712 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4713
4714 /**
4715 * netdev_rx_handler_unregister - unregister receive handler
4716 * @dev: device to unregister a handler from
4717 *
4718 * Unregister a receive handler from a device.
4719 *
4720 * The caller must hold the rtnl_mutex.
4721 */
netdev_rx_handler_unregister(struct net_device * dev)4722 void netdev_rx_handler_unregister(struct net_device *dev)
4723 {
4724
4725 ASSERT_RTNL();
4726 RCU_INIT_POINTER(dev->rx_handler, NULL);
4727 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4728 * section has a guarantee to see a non NULL rx_handler_data
4729 * as well.
4730 */
4731 synchronize_net();
4732 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4733 }
4734 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4735
4736 /*
4737 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4738 * the special handling of PFMEMALLOC skbs.
4739 */
skb_pfmemalloc_protocol(struct sk_buff * skb)4740 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4741 {
4742 switch (skb->protocol) {
4743 case htons(ETH_P_ARP):
4744 case htons(ETH_P_IP):
4745 case htons(ETH_P_IPV6):
4746 case htons(ETH_P_8021Q):
4747 case htons(ETH_P_8021AD):
4748 return true;
4749 default:
4750 return false;
4751 }
4752 }
4753
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4754 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4755 int *ret, struct net_device *orig_dev)
4756 {
4757 #ifdef CONFIG_NETFILTER_INGRESS
4758 if (nf_hook_ingress_active(skb)) {
4759 int ingress_retval;
4760
4761 if (*pt_prev) {
4762 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4763 *pt_prev = NULL;
4764 }
4765
4766 rcu_read_lock();
4767 ingress_retval = nf_hook_ingress(skb);
4768 rcu_read_unlock();
4769 return ingress_retval;
4770 }
4771 #endif /* CONFIG_NETFILTER_INGRESS */
4772 return 0;
4773 }
4774
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)4775 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4776 struct packet_type **ppt_prev)
4777 {
4778 struct packet_type *ptype, *pt_prev;
4779 rx_handler_func_t *rx_handler;
4780 struct sk_buff *skb = *pskb;
4781 struct net_device *orig_dev;
4782 bool deliver_exact = false;
4783 int ret = NET_RX_DROP;
4784 __be16 type;
4785
4786 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4787
4788 trace_netif_receive_skb(skb);
4789
4790 orig_dev = skb->dev;
4791
4792 skb_reset_network_header(skb);
4793 if (!skb_transport_header_was_set(skb))
4794 skb_reset_transport_header(skb);
4795 skb_reset_mac_len(skb);
4796
4797 pt_prev = NULL;
4798
4799 another_round:
4800 skb->skb_iif = skb->dev->ifindex;
4801
4802 __this_cpu_inc(softnet_data.processed);
4803
4804 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4805 int ret2;
4806
4807 preempt_disable();
4808 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4809 preempt_enable();
4810
4811 if (ret2 != XDP_PASS) {
4812 ret = NET_RX_DROP;
4813 goto out;
4814 }
4815 skb_reset_mac_len(skb);
4816 }
4817
4818 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4819 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4820 skb = skb_vlan_untag(skb);
4821 if (unlikely(!skb))
4822 goto out;
4823 }
4824
4825 if (skb_skip_tc_classify(skb))
4826 goto skip_classify;
4827
4828 if (pfmemalloc)
4829 goto skip_taps;
4830
4831 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4832 if (pt_prev)
4833 ret = deliver_skb(skb, pt_prev, orig_dev);
4834 pt_prev = ptype;
4835 }
4836
4837 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4838 if (pt_prev)
4839 ret = deliver_skb(skb, pt_prev, orig_dev);
4840 pt_prev = ptype;
4841 }
4842
4843 skip_taps:
4844 #ifdef CONFIG_NET_INGRESS
4845 if (static_branch_unlikely(&ingress_needed_key)) {
4846 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4847 if (!skb)
4848 goto out;
4849
4850 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4851 goto out;
4852 }
4853 #endif
4854 skb_reset_tc(skb);
4855 skip_classify:
4856 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4857 goto drop;
4858
4859 if (skb_vlan_tag_present(skb)) {
4860 if (pt_prev) {
4861 ret = deliver_skb(skb, pt_prev, orig_dev);
4862 pt_prev = NULL;
4863 }
4864 if (vlan_do_receive(&skb))
4865 goto another_round;
4866 else if (unlikely(!skb))
4867 goto out;
4868 }
4869
4870 rx_handler = rcu_dereference(skb->dev->rx_handler);
4871 if (rx_handler) {
4872 if (pt_prev) {
4873 ret = deliver_skb(skb, pt_prev, orig_dev);
4874 pt_prev = NULL;
4875 }
4876 switch (rx_handler(&skb)) {
4877 case RX_HANDLER_CONSUMED:
4878 ret = NET_RX_SUCCESS;
4879 goto out;
4880 case RX_HANDLER_ANOTHER:
4881 goto another_round;
4882 case RX_HANDLER_EXACT:
4883 deliver_exact = true;
4884 case RX_HANDLER_PASS:
4885 break;
4886 default:
4887 BUG();
4888 }
4889 }
4890
4891 if (unlikely(skb_vlan_tag_present(skb))) {
4892 if (skb_vlan_tag_get_id(skb))
4893 skb->pkt_type = PACKET_OTHERHOST;
4894 /* Note: we might in the future use prio bits
4895 * and set skb->priority like in vlan_do_receive()
4896 * For the time being, just ignore Priority Code Point
4897 */
4898 skb->vlan_tci = 0;
4899 }
4900
4901 type = skb->protocol;
4902
4903 /* deliver only exact match when indicated */
4904 if (likely(!deliver_exact)) {
4905 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4906 &ptype_base[ntohs(type) &
4907 PTYPE_HASH_MASK]);
4908 }
4909
4910 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4911 &orig_dev->ptype_specific);
4912
4913 if (unlikely(skb->dev != orig_dev)) {
4914 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4915 &skb->dev->ptype_specific);
4916 }
4917
4918 if (pt_prev) {
4919 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4920 goto drop;
4921 *ppt_prev = pt_prev;
4922 } else {
4923 drop:
4924 if (!deliver_exact)
4925 atomic_long_inc(&skb->dev->rx_dropped);
4926 else
4927 atomic_long_inc(&skb->dev->rx_nohandler);
4928 kfree_skb(skb);
4929 /* Jamal, now you will not able to escape explaining
4930 * me how you were going to use this. :-)
4931 */
4932 ret = NET_RX_DROP;
4933 }
4934
4935 out:
4936 /* The invariant here is that if *ppt_prev is not NULL
4937 * then skb should also be non-NULL.
4938 *
4939 * Apparently *ppt_prev assignment above holds this invariant due to
4940 * skb dereferencing near it.
4941 */
4942 *pskb = skb;
4943 return ret;
4944 }
4945
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)4946 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4947 {
4948 struct net_device *orig_dev = skb->dev;
4949 struct packet_type *pt_prev = NULL;
4950 int ret;
4951
4952 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
4953 if (pt_prev)
4954 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4955 return ret;
4956 }
4957
4958 /**
4959 * netif_receive_skb_core - special purpose version of netif_receive_skb
4960 * @skb: buffer to process
4961 *
4962 * More direct receive version of netif_receive_skb(). It should
4963 * only be used by callers that have a need to skip RPS and Generic XDP.
4964 * Caller must also take care of handling if (page_is_)pfmemalloc.
4965 *
4966 * This function may only be called from softirq context and interrupts
4967 * should be enabled.
4968 *
4969 * Return values (usually ignored):
4970 * NET_RX_SUCCESS: no congestion
4971 * NET_RX_DROP: packet was dropped
4972 */
netif_receive_skb_core(struct sk_buff * skb)4973 int netif_receive_skb_core(struct sk_buff *skb)
4974 {
4975 int ret;
4976
4977 rcu_read_lock();
4978 ret = __netif_receive_skb_one_core(skb, false);
4979 rcu_read_unlock();
4980
4981 return ret;
4982 }
4983 EXPORT_SYMBOL(netif_receive_skb_core);
4984
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)4985 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4986 struct packet_type *pt_prev,
4987 struct net_device *orig_dev)
4988 {
4989 struct sk_buff *skb, *next;
4990
4991 if (!pt_prev)
4992 return;
4993 if (list_empty(head))
4994 return;
4995 if (pt_prev->list_func != NULL)
4996 pt_prev->list_func(head, pt_prev, orig_dev);
4997 else
4998 list_for_each_entry_safe(skb, next, head, list) {
4999 skb_list_del_init(skb);
5000 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5001 }
5002 }
5003
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5004 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5005 {
5006 /* Fast-path assumptions:
5007 * - There is no RX handler.
5008 * - Only one packet_type matches.
5009 * If either of these fails, we will end up doing some per-packet
5010 * processing in-line, then handling the 'last ptype' for the whole
5011 * sublist. This can't cause out-of-order delivery to any single ptype,
5012 * because the 'last ptype' must be constant across the sublist, and all
5013 * other ptypes are handled per-packet.
5014 */
5015 /* Current (common) ptype of sublist */
5016 struct packet_type *pt_curr = NULL;
5017 /* Current (common) orig_dev of sublist */
5018 struct net_device *od_curr = NULL;
5019 struct list_head sublist;
5020 struct sk_buff *skb, *next;
5021
5022 INIT_LIST_HEAD(&sublist);
5023 list_for_each_entry_safe(skb, next, head, list) {
5024 struct net_device *orig_dev = skb->dev;
5025 struct packet_type *pt_prev = NULL;
5026
5027 skb_list_del_init(skb);
5028 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5029 if (!pt_prev)
5030 continue;
5031 if (pt_curr != pt_prev || od_curr != orig_dev) {
5032 /* dispatch old sublist */
5033 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034 /* start new sublist */
5035 INIT_LIST_HEAD(&sublist);
5036 pt_curr = pt_prev;
5037 od_curr = orig_dev;
5038 }
5039 list_add_tail(&skb->list, &sublist);
5040 }
5041
5042 /* dispatch final sublist */
5043 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5044 }
5045
__netif_receive_skb(struct sk_buff * skb)5046 static int __netif_receive_skb(struct sk_buff *skb)
5047 {
5048 int ret;
5049
5050 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5051 unsigned int noreclaim_flag;
5052
5053 /*
5054 * PFMEMALLOC skbs are special, they should
5055 * - be delivered to SOCK_MEMALLOC sockets only
5056 * - stay away from userspace
5057 * - have bounded memory usage
5058 *
5059 * Use PF_MEMALLOC as this saves us from propagating the allocation
5060 * context down to all allocation sites.
5061 */
5062 noreclaim_flag = memalloc_noreclaim_save();
5063 ret = __netif_receive_skb_one_core(skb, true);
5064 memalloc_noreclaim_restore(noreclaim_flag);
5065 } else
5066 ret = __netif_receive_skb_one_core(skb, false);
5067
5068 return ret;
5069 }
5070
__netif_receive_skb_list(struct list_head * head)5071 static void __netif_receive_skb_list(struct list_head *head)
5072 {
5073 unsigned long noreclaim_flag = 0;
5074 struct sk_buff *skb, *next;
5075 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5076
5077 list_for_each_entry_safe(skb, next, head, list) {
5078 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5079 struct list_head sublist;
5080
5081 /* Handle the previous sublist */
5082 list_cut_before(&sublist, head, &skb->list);
5083 if (!list_empty(&sublist))
5084 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5085 pfmemalloc = !pfmemalloc;
5086 /* See comments in __netif_receive_skb */
5087 if (pfmemalloc)
5088 noreclaim_flag = memalloc_noreclaim_save();
5089 else
5090 memalloc_noreclaim_restore(noreclaim_flag);
5091 }
5092 }
5093 /* Handle the remaining sublist */
5094 if (!list_empty(head))
5095 __netif_receive_skb_list_core(head, pfmemalloc);
5096 /* Restore pflags */
5097 if (pfmemalloc)
5098 memalloc_noreclaim_restore(noreclaim_flag);
5099 }
5100
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5101 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5102 {
5103 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5104 struct bpf_prog *new = xdp->prog;
5105 int ret = 0;
5106
5107 switch (xdp->command) {
5108 case XDP_SETUP_PROG:
5109 rcu_assign_pointer(dev->xdp_prog, new);
5110 if (old)
5111 bpf_prog_put(old);
5112
5113 if (old && !new) {
5114 static_branch_dec(&generic_xdp_needed_key);
5115 } else if (new && !old) {
5116 static_branch_inc(&generic_xdp_needed_key);
5117 dev_disable_lro(dev);
5118 dev_disable_gro_hw(dev);
5119 }
5120 break;
5121
5122 case XDP_QUERY_PROG:
5123 xdp->prog_id = old ? old->aux->id : 0;
5124 break;
5125
5126 default:
5127 ret = -EINVAL;
5128 break;
5129 }
5130
5131 return ret;
5132 }
5133
netif_receive_skb_internal(struct sk_buff * skb)5134 static int netif_receive_skb_internal(struct sk_buff *skb)
5135 {
5136 int ret;
5137
5138 net_timestamp_check(netdev_tstamp_prequeue, skb);
5139
5140 if (skb_defer_rx_timestamp(skb))
5141 return NET_RX_SUCCESS;
5142
5143 rcu_read_lock();
5144 #ifdef CONFIG_RPS
5145 if (static_key_false(&rps_needed)) {
5146 struct rps_dev_flow voidflow, *rflow = &voidflow;
5147 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5148
5149 if (cpu >= 0) {
5150 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5151 rcu_read_unlock();
5152 return ret;
5153 }
5154 }
5155 #endif
5156 ret = __netif_receive_skb(skb);
5157 rcu_read_unlock();
5158 return ret;
5159 }
5160
netif_receive_skb_list_internal(struct list_head * head)5161 static void netif_receive_skb_list_internal(struct list_head *head)
5162 {
5163 struct sk_buff *skb, *next;
5164 struct list_head sublist;
5165
5166 INIT_LIST_HEAD(&sublist);
5167 list_for_each_entry_safe(skb, next, head, list) {
5168 net_timestamp_check(netdev_tstamp_prequeue, skb);
5169 skb_list_del_init(skb);
5170 if (!skb_defer_rx_timestamp(skb))
5171 list_add_tail(&skb->list, &sublist);
5172 }
5173 list_splice_init(&sublist, head);
5174
5175 rcu_read_lock();
5176 #ifdef CONFIG_RPS
5177 if (static_key_false(&rps_needed)) {
5178 list_for_each_entry_safe(skb, next, head, list) {
5179 struct rps_dev_flow voidflow, *rflow = &voidflow;
5180 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5181
5182 if (cpu >= 0) {
5183 /* Will be handled, remove from list */
5184 skb_list_del_init(skb);
5185 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5186 }
5187 }
5188 }
5189 #endif
5190 __netif_receive_skb_list(head);
5191 rcu_read_unlock();
5192 }
5193
5194 /**
5195 * netif_receive_skb - process receive buffer from network
5196 * @skb: buffer to process
5197 *
5198 * netif_receive_skb() is the main receive data processing function.
5199 * It always succeeds. The buffer may be dropped during processing
5200 * for congestion control or by the protocol layers.
5201 *
5202 * This function may only be called from softirq context and interrupts
5203 * should be enabled.
5204 *
5205 * Return values (usually ignored):
5206 * NET_RX_SUCCESS: no congestion
5207 * NET_RX_DROP: packet was dropped
5208 */
netif_receive_skb(struct sk_buff * skb)5209 int netif_receive_skb(struct sk_buff *skb)
5210 {
5211 trace_netif_receive_skb_entry(skb);
5212
5213 return netif_receive_skb_internal(skb);
5214 }
5215 EXPORT_SYMBOL(netif_receive_skb);
5216
5217 /**
5218 * netif_receive_skb_list - process many receive buffers from network
5219 * @head: list of skbs to process.
5220 *
5221 * Since return value of netif_receive_skb() is normally ignored, and
5222 * wouldn't be meaningful for a list, this function returns void.
5223 *
5224 * This function may only be called from softirq context and interrupts
5225 * should be enabled.
5226 */
netif_receive_skb_list(struct list_head * head)5227 void netif_receive_skb_list(struct list_head *head)
5228 {
5229 struct sk_buff *skb;
5230
5231 if (list_empty(head))
5232 return;
5233 list_for_each_entry(skb, head, list)
5234 trace_netif_receive_skb_list_entry(skb);
5235 netif_receive_skb_list_internal(head);
5236 }
5237 EXPORT_SYMBOL(netif_receive_skb_list);
5238
5239 DEFINE_PER_CPU(struct work_struct, flush_works);
5240
5241 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5242 static void flush_backlog(struct work_struct *work)
5243 {
5244 struct sk_buff *skb, *tmp;
5245 struct softnet_data *sd;
5246
5247 local_bh_disable();
5248 sd = this_cpu_ptr(&softnet_data);
5249
5250 local_irq_disable();
5251 rps_lock(sd);
5252 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5253 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5254 __skb_unlink(skb, &sd->input_pkt_queue);
5255 dev_kfree_skb_irq(skb);
5256 input_queue_head_incr(sd);
5257 }
5258 }
5259 rps_unlock(sd);
5260 local_irq_enable();
5261
5262 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5263 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5264 __skb_unlink(skb, &sd->process_queue);
5265 kfree_skb(skb);
5266 input_queue_head_incr(sd);
5267 }
5268 }
5269 local_bh_enable();
5270 }
5271
flush_all_backlogs(void)5272 static void flush_all_backlogs(void)
5273 {
5274 unsigned int cpu;
5275
5276 get_online_cpus();
5277
5278 for_each_online_cpu(cpu)
5279 queue_work_on(cpu, system_highpri_wq,
5280 per_cpu_ptr(&flush_works, cpu));
5281
5282 for_each_online_cpu(cpu)
5283 flush_work(per_cpu_ptr(&flush_works, cpu));
5284
5285 put_online_cpus();
5286 }
5287
napi_gro_complete(struct sk_buff * skb)5288 static int napi_gro_complete(struct sk_buff *skb)
5289 {
5290 struct packet_offload *ptype;
5291 __be16 type = skb->protocol;
5292 struct list_head *head = &offload_base;
5293 int err = -ENOENT;
5294
5295 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5296
5297 if (NAPI_GRO_CB(skb)->count == 1) {
5298 skb_shinfo(skb)->gso_size = 0;
5299 goto out;
5300 }
5301
5302 rcu_read_lock();
5303 list_for_each_entry_rcu(ptype, head, list) {
5304 if (ptype->type != type || !ptype->callbacks.gro_complete)
5305 continue;
5306
5307 err = ptype->callbacks.gro_complete(skb, 0);
5308 break;
5309 }
5310 rcu_read_unlock();
5311
5312 if (err) {
5313 WARN_ON(&ptype->list == head);
5314 kfree_skb(skb);
5315 return NET_RX_SUCCESS;
5316 }
5317
5318 out:
5319 return netif_receive_skb_internal(skb);
5320 }
5321
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5322 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5323 bool flush_old)
5324 {
5325 struct list_head *head = &napi->gro_hash[index].list;
5326 struct sk_buff *skb, *p;
5327
5328 list_for_each_entry_safe_reverse(skb, p, head, list) {
5329 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5330 return;
5331 list_del(&skb->list);
5332 skb->next = NULL;
5333 napi_gro_complete(skb);
5334 napi->gro_hash[index].count--;
5335 }
5336
5337 if (!napi->gro_hash[index].count)
5338 __clear_bit(index, &napi->gro_bitmask);
5339 }
5340
5341 /* napi->gro_hash[].list contains packets ordered by age.
5342 * youngest packets at the head of it.
5343 * Complete skbs in reverse order to reduce latencies.
5344 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5345 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5346 {
5347 u32 i;
5348
5349 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5350 if (test_bit(i, &napi->gro_bitmask))
5351 __napi_gro_flush_chain(napi, i, flush_old);
5352 }
5353 }
5354 EXPORT_SYMBOL(napi_gro_flush);
5355
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5356 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5357 struct sk_buff *skb)
5358 {
5359 unsigned int maclen = skb->dev->hard_header_len;
5360 u32 hash = skb_get_hash_raw(skb);
5361 struct list_head *head;
5362 struct sk_buff *p;
5363
5364 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5365 list_for_each_entry(p, head, list) {
5366 unsigned long diffs;
5367
5368 NAPI_GRO_CB(p)->flush = 0;
5369
5370 if (hash != skb_get_hash_raw(p)) {
5371 NAPI_GRO_CB(p)->same_flow = 0;
5372 continue;
5373 }
5374
5375 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5376 diffs |= p->vlan_tci ^ skb->vlan_tci;
5377 diffs |= skb_metadata_dst_cmp(p, skb);
5378 diffs |= skb_metadata_differs(p, skb);
5379 if (maclen == ETH_HLEN)
5380 diffs |= compare_ether_header(skb_mac_header(p),
5381 skb_mac_header(skb));
5382 else if (!diffs)
5383 diffs = memcmp(skb_mac_header(p),
5384 skb_mac_header(skb),
5385 maclen);
5386 NAPI_GRO_CB(p)->same_flow = !diffs;
5387 }
5388
5389 return head;
5390 }
5391
skb_gro_reset_offset(struct sk_buff * skb)5392 static void skb_gro_reset_offset(struct sk_buff *skb)
5393 {
5394 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5395 const skb_frag_t *frag0 = &pinfo->frags[0];
5396
5397 NAPI_GRO_CB(skb)->data_offset = 0;
5398 NAPI_GRO_CB(skb)->frag0 = NULL;
5399 NAPI_GRO_CB(skb)->frag0_len = 0;
5400
5401 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5402 pinfo->nr_frags &&
5403 !PageHighMem(skb_frag_page(frag0))) {
5404 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5405 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5406 skb_frag_size(frag0),
5407 skb->end - skb->tail);
5408 }
5409 }
5410
gro_pull_from_frag0(struct sk_buff * skb,int grow)5411 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5412 {
5413 struct skb_shared_info *pinfo = skb_shinfo(skb);
5414
5415 BUG_ON(skb->end - skb->tail < grow);
5416
5417 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5418
5419 skb->data_len -= grow;
5420 skb->tail += grow;
5421
5422 pinfo->frags[0].page_offset += grow;
5423 skb_frag_size_sub(&pinfo->frags[0], grow);
5424
5425 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5426 skb_frag_unref(skb, 0);
5427 memmove(pinfo->frags, pinfo->frags + 1,
5428 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5429 }
5430 }
5431
gro_flush_oldest(struct list_head * head)5432 static void gro_flush_oldest(struct list_head *head)
5433 {
5434 struct sk_buff *oldest;
5435
5436 oldest = list_last_entry(head, struct sk_buff, list);
5437
5438 /* We are called with head length >= MAX_GRO_SKBS, so this is
5439 * impossible.
5440 */
5441 if (WARN_ON_ONCE(!oldest))
5442 return;
5443
5444 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5445 * SKB to the chain.
5446 */
5447 list_del(&oldest->list);
5448 oldest->next = NULL;
5449 napi_gro_complete(oldest);
5450 }
5451
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5452 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5453 {
5454 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5455 struct list_head *head = &offload_base;
5456 struct packet_offload *ptype;
5457 __be16 type = skb->protocol;
5458 struct list_head *gro_head;
5459 struct sk_buff *pp = NULL;
5460 enum gro_result ret;
5461 int same_flow;
5462 int grow;
5463
5464 if (netif_elide_gro(skb->dev))
5465 goto normal;
5466
5467 gro_head = gro_list_prepare(napi, skb);
5468
5469 rcu_read_lock();
5470 list_for_each_entry_rcu(ptype, head, list) {
5471 if (ptype->type != type || !ptype->callbacks.gro_receive)
5472 continue;
5473
5474 skb_set_network_header(skb, skb_gro_offset(skb));
5475 skb_reset_mac_len(skb);
5476 NAPI_GRO_CB(skb)->same_flow = 0;
5477 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5478 NAPI_GRO_CB(skb)->free = 0;
5479 NAPI_GRO_CB(skb)->encap_mark = 0;
5480 NAPI_GRO_CB(skb)->recursion_counter = 0;
5481 NAPI_GRO_CB(skb)->is_fou = 0;
5482 NAPI_GRO_CB(skb)->is_atomic = 1;
5483 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5484
5485 /* Setup for GRO checksum validation */
5486 switch (skb->ip_summed) {
5487 case CHECKSUM_COMPLETE:
5488 NAPI_GRO_CB(skb)->csum = skb->csum;
5489 NAPI_GRO_CB(skb)->csum_valid = 1;
5490 NAPI_GRO_CB(skb)->csum_cnt = 0;
5491 break;
5492 case CHECKSUM_UNNECESSARY:
5493 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5494 NAPI_GRO_CB(skb)->csum_valid = 0;
5495 break;
5496 default:
5497 NAPI_GRO_CB(skb)->csum_cnt = 0;
5498 NAPI_GRO_CB(skb)->csum_valid = 0;
5499 }
5500
5501 pp = ptype->callbacks.gro_receive(gro_head, skb);
5502 break;
5503 }
5504 rcu_read_unlock();
5505
5506 if (&ptype->list == head)
5507 goto normal;
5508
5509 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5510 ret = GRO_CONSUMED;
5511 goto ok;
5512 }
5513
5514 same_flow = NAPI_GRO_CB(skb)->same_flow;
5515 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5516
5517 if (pp) {
5518 list_del(&pp->list);
5519 pp->next = NULL;
5520 napi_gro_complete(pp);
5521 napi->gro_hash[hash].count--;
5522 }
5523
5524 if (same_flow)
5525 goto ok;
5526
5527 if (NAPI_GRO_CB(skb)->flush)
5528 goto normal;
5529
5530 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5531 gro_flush_oldest(gro_head);
5532 } else {
5533 napi->gro_hash[hash].count++;
5534 }
5535 NAPI_GRO_CB(skb)->count = 1;
5536 NAPI_GRO_CB(skb)->age = jiffies;
5537 NAPI_GRO_CB(skb)->last = skb;
5538 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5539 list_add(&skb->list, gro_head);
5540 ret = GRO_HELD;
5541
5542 pull:
5543 grow = skb_gro_offset(skb) - skb_headlen(skb);
5544 if (grow > 0)
5545 gro_pull_from_frag0(skb, grow);
5546 ok:
5547 if (napi->gro_hash[hash].count) {
5548 if (!test_bit(hash, &napi->gro_bitmask))
5549 __set_bit(hash, &napi->gro_bitmask);
5550 } else if (test_bit(hash, &napi->gro_bitmask)) {
5551 __clear_bit(hash, &napi->gro_bitmask);
5552 }
5553
5554 return ret;
5555
5556 normal:
5557 ret = GRO_NORMAL;
5558 goto pull;
5559 }
5560
gro_find_receive_by_type(__be16 type)5561 struct packet_offload *gro_find_receive_by_type(__be16 type)
5562 {
5563 struct list_head *offload_head = &offload_base;
5564 struct packet_offload *ptype;
5565
5566 list_for_each_entry_rcu(ptype, offload_head, list) {
5567 if (ptype->type != type || !ptype->callbacks.gro_receive)
5568 continue;
5569 return ptype;
5570 }
5571 return NULL;
5572 }
5573 EXPORT_SYMBOL(gro_find_receive_by_type);
5574
gro_find_complete_by_type(__be16 type)5575 struct packet_offload *gro_find_complete_by_type(__be16 type)
5576 {
5577 struct list_head *offload_head = &offload_base;
5578 struct packet_offload *ptype;
5579
5580 list_for_each_entry_rcu(ptype, offload_head, list) {
5581 if (ptype->type != type || !ptype->callbacks.gro_complete)
5582 continue;
5583 return ptype;
5584 }
5585 return NULL;
5586 }
5587 EXPORT_SYMBOL(gro_find_complete_by_type);
5588
napi_skb_free_stolen_head(struct sk_buff * skb)5589 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5590 {
5591 skb_dst_drop(skb);
5592 secpath_reset(skb);
5593 kmem_cache_free(skbuff_head_cache, skb);
5594 }
5595
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)5596 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5597 {
5598 switch (ret) {
5599 case GRO_NORMAL:
5600 if (netif_receive_skb_internal(skb))
5601 ret = GRO_DROP;
5602 break;
5603
5604 case GRO_DROP:
5605 kfree_skb(skb);
5606 break;
5607
5608 case GRO_MERGED_FREE:
5609 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5610 napi_skb_free_stolen_head(skb);
5611 else
5612 __kfree_skb(skb);
5613 break;
5614
5615 case GRO_HELD:
5616 case GRO_MERGED:
5617 case GRO_CONSUMED:
5618 break;
5619 }
5620
5621 return ret;
5622 }
5623
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5624 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5625 {
5626 skb_mark_napi_id(skb, napi);
5627 trace_napi_gro_receive_entry(skb);
5628
5629 skb_gro_reset_offset(skb);
5630
5631 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5632 }
5633 EXPORT_SYMBOL(napi_gro_receive);
5634
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)5635 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5636 {
5637 if (unlikely(skb->pfmemalloc)) {
5638 consume_skb(skb);
5639 return;
5640 }
5641 __skb_pull(skb, skb_headlen(skb));
5642 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5643 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5644 skb->vlan_tci = 0;
5645 skb->dev = napi->dev;
5646 skb->skb_iif = 0;
5647
5648 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5649 skb->pkt_type = PACKET_HOST;
5650
5651 skb->encapsulation = 0;
5652 skb_shinfo(skb)->gso_type = 0;
5653 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5654 secpath_reset(skb);
5655
5656 napi->skb = skb;
5657 }
5658
napi_get_frags(struct napi_struct * napi)5659 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5660 {
5661 struct sk_buff *skb = napi->skb;
5662
5663 if (!skb) {
5664 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5665 if (skb) {
5666 napi->skb = skb;
5667 skb_mark_napi_id(skb, napi);
5668 }
5669 }
5670 return skb;
5671 }
5672 EXPORT_SYMBOL(napi_get_frags);
5673
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)5674 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5675 struct sk_buff *skb,
5676 gro_result_t ret)
5677 {
5678 switch (ret) {
5679 case GRO_NORMAL:
5680 case GRO_HELD:
5681 __skb_push(skb, ETH_HLEN);
5682 skb->protocol = eth_type_trans(skb, skb->dev);
5683 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5684 ret = GRO_DROP;
5685 break;
5686
5687 case GRO_DROP:
5688 napi_reuse_skb(napi, skb);
5689 break;
5690
5691 case GRO_MERGED_FREE:
5692 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5693 napi_skb_free_stolen_head(skb);
5694 else
5695 napi_reuse_skb(napi, skb);
5696 break;
5697
5698 case GRO_MERGED:
5699 case GRO_CONSUMED:
5700 break;
5701 }
5702
5703 return ret;
5704 }
5705
5706 /* Upper GRO stack assumes network header starts at gro_offset=0
5707 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5708 * We copy ethernet header into skb->data to have a common layout.
5709 */
napi_frags_skb(struct napi_struct * napi)5710 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5711 {
5712 struct sk_buff *skb = napi->skb;
5713 const struct ethhdr *eth;
5714 unsigned int hlen = sizeof(*eth);
5715
5716 napi->skb = NULL;
5717
5718 skb_reset_mac_header(skb);
5719 skb_gro_reset_offset(skb);
5720
5721 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5722 eth = skb_gro_header_slow(skb, hlen, 0);
5723 if (unlikely(!eth)) {
5724 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5725 __func__, napi->dev->name);
5726 napi_reuse_skb(napi, skb);
5727 return NULL;
5728 }
5729 } else {
5730 eth = (const struct ethhdr *)skb->data;
5731 gro_pull_from_frag0(skb, hlen);
5732 NAPI_GRO_CB(skb)->frag0 += hlen;
5733 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5734 }
5735 __skb_pull(skb, hlen);
5736
5737 /*
5738 * This works because the only protocols we care about don't require
5739 * special handling.
5740 * We'll fix it up properly in napi_frags_finish()
5741 */
5742 skb->protocol = eth->h_proto;
5743
5744 return skb;
5745 }
5746
napi_gro_frags(struct napi_struct * napi)5747 gro_result_t napi_gro_frags(struct napi_struct *napi)
5748 {
5749 struct sk_buff *skb = napi_frags_skb(napi);
5750
5751 if (!skb)
5752 return GRO_DROP;
5753
5754 trace_napi_gro_frags_entry(skb);
5755
5756 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5757 }
5758 EXPORT_SYMBOL(napi_gro_frags);
5759
5760 /* Compute the checksum from gro_offset and return the folded value
5761 * after adding in any pseudo checksum.
5762 */
__skb_gro_checksum_complete(struct sk_buff * skb)5763 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5764 {
5765 __wsum wsum;
5766 __sum16 sum;
5767
5768 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5769
5770 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5771 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5772 if (likely(!sum)) {
5773 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5774 !skb->csum_complete_sw)
5775 netdev_rx_csum_fault(skb->dev);
5776 }
5777
5778 NAPI_GRO_CB(skb)->csum = wsum;
5779 NAPI_GRO_CB(skb)->csum_valid = 1;
5780
5781 return sum;
5782 }
5783 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5784
net_rps_send_ipi(struct softnet_data * remsd)5785 static void net_rps_send_ipi(struct softnet_data *remsd)
5786 {
5787 #ifdef CONFIG_RPS
5788 while (remsd) {
5789 struct softnet_data *next = remsd->rps_ipi_next;
5790
5791 if (cpu_online(remsd->cpu))
5792 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5793 remsd = next;
5794 }
5795 #endif
5796 }
5797
5798 /*
5799 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5800 * Note: called with local irq disabled, but exits with local irq enabled.
5801 */
net_rps_action_and_irq_enable(struct softnet_data * sd)5802 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5803 {
5804 #ifdef CONFIG_RPS
5805 struct softnet_data *remsd = sd->rps_ipi_list;
5806
5807 if (remsd) {
5808 sd->rps_ipi_list = NULL;
5809
5810 local_irq_enable();
5811
5812 /* Send pending IPI's to kick RPS processing on remote cpus. */
5813 net_rps_send_ipi(remsd);
5814 } else
5815 #endif
5816 local_irq_enable();
5817 }
5818
sd_has_rps_ipi_waiting(struct softnet_data * sd)5819 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5820 {
5821 #ifdef CONFIG_RPS
5822 return sd->rps_ipi_list != NULL;
5823 #else
5824 return false;
5825 #endif
5826 }
5827
process_backlog(struct napi_struct * napi,int quota)5828 static int process_backlog(struct napi_struct *napi, int quota)
5829 {
5830 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5831 bool again = true;
5832 int work = 0;
5833
5834 /* Check if we have pending ipi, its better to send them now,
5835 * not waiting net_rx_action() end.
5836 */
5837 if (sd_has_rps_ipi_waiting(sd)) {
5838 local_irq_disable();
5839 net_rps_action_and_irq_enable(sd);
5840 }
5841
5842 napi->weight = dev_rx_weight;
5843 while (again) {
5844 struct sk_buff *skb;
5845
5846 while ((skb = __skb_dequeue(&sd->process_queue))) {
5847 rcu_read_lock();
5848 __netif_receive_skb(skb);
5849 rcu_read_unlock();
5850 input_queue_head_incr(sd);
5851 if (++work >= quota)
5852 return work;
5853
5854 }
5855
5856 local_irq_disable();
5857 rps_lock(sd);
5858 if (skb_queue_empty(&sd->input_pkt_queue)) {
5859 /*
5860 * Inline a custom version of __napi_complete().
5861 * only current cpu owns and manipulates this napi,
5862 * and NAPI_STATE_SCHED is the only possible flag set
5863 * on backlog.
5864 * We can use a plain write instead of clear_bit(),
5865 * and we dont need an smp_mb() memory barrier.
5866 */
5867 napi->state = 0;
5868 again = false;
5869 } else {
5870 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5871 &sd->process_queue);
5872 }
5873 rps_unlock(sd);
5874 local_irq_enable();
5875 }
5876
5877 return work;
5878 }
5879
5880 /**
5881 * __napi_schedule - schedule for receive
5882 * @n: entry to schedule
5883 *
5884 * The entry's receive function will be scheduled to run.
5885 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5886 */
__napi_schedule(struct napi_struct * n)5887 void __napi_schedule(struct napi_struct *n)
5888 {
5889 unsigned long flags;
5890
5891 local_irq_save(flags);
5892 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5893 local_irq_restore(flags);
5894 }
5895 EXPORT_SYMBOL(__napi_schedule);
5896
5897 /**
5898 * napi_schedule_prep - check if napi can be scheduled
5899 * @n: napi context
5900 *
5901 * Test if NAPI routine is already running, and if not mark
5902 * it as running. This is used as a condition variable
5903 * insure only one NAPI poll instance runs. We also make
5904 * sure there is no pending NAPI disable.
5905 */
napi_schedule_prep(struct napi_struct * n)5906 bool napi_schedule_prep(struct napi_struct *n)
5907 {
5908 unsigned long val, new;
5909
5910 do {
5911 val = READ_ONCE(n->state);
5912 if (unlikely(val & NAPIF_STATE_DISABLE))
5913 return false;
5914 new = val | NAPIF_STATE_SCHED;
5915
5916 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5917 * This was suggested by Alexander Duyck, as compiler
5918 * emits better code than :
5919 * if (val & NAPIF_STATE_SCHED)
5920 * new |= NAPIF_STATE_MISSED;
5921 */
5922 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5923 NAPIF_STATE_MISSED;
5924 } while (cmpxchg(&n->state, val, new) != val);
5925
5926 return !(val & NAPIF_STATE_SCHED);
5927 }
5928 EXPORT_SYMBOL(napi_schedule_prep);
5929
5930 /**
5931 * __napi_schedule_irqoff - schedule for receive
5932 * @n: entry to schedule
5933 *
5934 * Variant of __napi_schedule() assuming hard irqs are masked
5935 */
__napi_schedule_irqoff(struct napi_struct * n)5936 void __napi_schedule_irqoff(struct napi_struct *n)
5937 {
5938 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5939 }
5940 EXPORT_SYMBOL(__napi_schedule_irqoff);
5941
napi_complete_done(struct napi_struct * n,int work_done)5942 bool napi_complete_done(struct napi_struct *n, int work_done)
5943 {
5944 unsigned long flags, val, new;
5945
5946 /*
5947 * 1) Don't let napi dequeue from the cpu poll list
5948 * just in case its running on a different cpu.
5949 * 2) If we are busy polling, do nothing here, we have
5950 * the guarantee we will be called later.
5951 */
5952 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5953 NAPIF_STATE_IN_BUSY_POLL)))
5954 return false;
5955
5956 if (n->gro_bitmask) {
5957 unsigned long timeout = 0;
5958
5959 if (work_done)
5960 timeout = n->dev->gro_flush_timeout;
5961
5962 /* When the NAPI instance uses a timeout and keeps postponing
5963 * it, we need to bound somehow the time packets are kept in
5964 * the GRO layer
5965 */
5966 napi_gro_flush(n, !!timeout);
5967 if (timeout)
5968 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5969 HRTIMER_MODE_REL_PINNED);
5970 }
5971 if (unlikely(!list_empty(&n->poll_list))) {
5972 /* If n->poll_list is not empty, we need to mask irqs */
5973 local_irq_save(flags);
5974 list_del_init(&n->poll_list);
5975 local_irq_restore(flags);
5976 }
5977
5978 do {
5979 val = READ_ONCE(n->state);
5980
5981 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5982
5983 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5984
5985 /* If STATE_MISSED was set, leave STATE_SCHED set,
5986 * because we will call napi->poll() one more time.
5987 * This C code was suggested by Alexander Duyck to help gcc.
5988 */
5989 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5990 NAPIF_STATE_SCHED;
5991 } while (cmpxchg(&n->state, val, new) != val);
5992
5993 if (unlikely(val & NAPIF_STATE_MISSED)) {
5994 __napi_schedule(n);
5995 return false;
5996 }
5997
5998 return true;
5999 }
6000 EXPORT_SYMBOL(napi_complete_done);
6001
6002 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6003 static struct napi_struct *napi_by_id(unsigned int napi_id)
6004 {
6005 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6006 struct napi_struct *napi;
6007
6008 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6009 if (napi->napi_id == napi_id)
6010 return napi;
6011
6012 return NULL;
6013 }
6014
6015 #if defined(CONFIG_NET_RX_BUSY_POLL)
6016
6017 #define BUSY_POLL_BUDGET 8
6018
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6019 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6020 {
6021 int rc;
6022
6023 /* Busy polling means there is a high chance device driver hard irq
6024 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6025 * set in napi_schedule_prep().
6026 * Since we are about to call napi->poll() once more, we can safely
6027 * clear NAPI_STATE_MISSED.
6028 *
6029 * Note: x86 could use a single "lock and ..." instruction
6030 * to perform these two clear_bit()
6031 */
6032 clear_bit(NAPI_STATE_MISSED, &napi->state);
6033 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6034
6035 local_bh_disable();
6036
6037 /* All we really want here is to re-enable device interrupts.
6038 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6039 */
6040 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6041 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6042 netpoll_poll_unlock(have_poll_lock);
6043 if (rc == BUSY_POLL_BUDGET)
6044 __napi_schedule(napi);
6045 local_bh_enable();
6046 }
6047
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6048 void napi_busy_loop(unsigned int napi_id,
6049 bool (*loop_end)(void *, unsigned long),
6050 void *loop_end_arg)
6051 {
6052 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6053 int (*napi_poll)(struct napi_struct *napi, int budget);
6054 void *have_poll_lock = NULL;
6055 struct napi_struct *napi;
6056
6057 restart:
6058 napi_poll = NULL;
6059
6060 rcu_read_lock();
6061
6062 napi = napi_by_id(napi_id);
6063 if (!napi)
6064 goto out;
6065
6066 preempt_disable();
6067 for (;;) {
6068 int work = 0;
6069
6070 local_bh_disable();
6071 if (!napi_poll) {
6072 unsigned long val = READ_ONCE(napi->state);
6073
6074 /* If multiple threads are competing for this napi,
6075 * we avoid dirtying napi->state as much as we can.
6076 */
6077 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6078 NAPIF_STATE_IN_BUSY_POLL))
6079 goto count;
6080 if (cmpxchg(&napi->state, val,
6081 val | NAPIF_STATE_IN_BUSY_POLL |
6082 NAPIF_STATE_SCHED) != val)
6083 goto count;
6084 have_poll_lock = netpoll_poll_lock(napi);
6085 napi_poll = napi->poll;
6086 }
6087 work = napi_poll(napi, BUSY_POLL_BUDGET);
6088 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6089 count:
6090 if (work > 0)
6091 __NET_ADD_STATS(dev_net(napi->dev),
6092 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6093 local_bh_enable();
6094
6095 if (!loop_end || loop_end(loop_end_arg, start_time))
6096 break;
6097
6098 if (unlikely(need_resched())) {
6099 if (napi_poll)
6100 busy_poll_stop(napi, have_poll_lock);
6101 preempt_enable();
6102 rcu_read_unlock();
6103 cond_resched();
6104 if (loop_end(loop_end_arg, start_time))
6105 return;
6106 goto restart;
6107 }
6108 cpu_relax();
6109 }
6110 if (napi_poll)
6111 busy_poll_stop(napi, have_poll_lock);
6112 preempt_enable();
6113 out:
6114 rcu_read_unlock();
6115 }
6116 EXPORT_SYMBOL(napi_busy_loop);
6117
6118 #endif /* CONFIG_NET_RX_BUSY_POLL */
6119
napi_hash_add(struct napi_struct * napi)6120 static void napi_hash_add(struct napi_struct *napi)
6121 {
6122 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6123 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6124 return;
6125
6126 spin_lock(&napi_hash_lock);
6127
6128 /* 0..NR_CPUS range is reserved for sender_cpu use */
6129 do {
6130 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6131 napi_gen_id = MIN_NAPI_ID;
6132 } while (napi_by_id(napi_gen_id));
6133 napi->napi_id = napi_gen_id;
6134
6135 hlist_add_head_rcu(&napi->napi_hash_node,
6136 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6137
6138 spin_unlock(&napi_hash_lock);
6139 }
6140
6141 /* Warning : caller is responsible to make sure rcu grace period
6142 * is respected before freeing memory containing @napi
6143 */
napi_hash_del(struct napi_struct * napi)6144 bool napi_hash_del(struct napi_struct *napi)
6145 {
6146 bool rcu_sync_needed = false;
6147
6148 spin_lock(&napi_hash_lock);
6149
6150 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6151 rcu_sync_needed = true;
6152 hlist_del_rcu(&napi->napi_hash_node);
6153 }
6154 spin_unlock(&napi_hash_lock);
6155 return rcu_sync_needed;
6156 }
6157 EXPORT_SYMBOL_GPL(napi_hash_del);
6158
napi_watchdog(struct hrtimer * timer)6159 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6160 {
6161 struct napi_struct *napi;
6162
6163 napi = container_of(timer, struct napi_struct, timer);
6164
6165 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6166 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6167 */
6168 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6169 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6170 __napi_schedule_irqoff(napi);
6171
6172 return HRTIMER_NORESTART;
6173 }
6174
init_gro_hash(struct napi_struct * napi)6175 static void init_gro_hash(struct napi_struct *napi)
6176 {
6177 int i;
6178
6179 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6180 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6181 napi->gro_hash[i].count = 0;
6182 }
6183 napi->gro_bitmask = 0;
6184 }
6185
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6186 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6187 int (*poll)(struct napi_struct *, int), int weight)
6188 {
6189 INIT_LIST_HEAD(&napi->poll_list);
6190 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6191 napi->timer.function = napi_watchdog;
6192 init_gro_hash(napi);
6193 napi->skb = NULL;
6194 napi->poll = poll;
6195 if (weight > NAPI_POLL_WEIGHT)
6196 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6197 weight, dev->name);
6198 napi->weight = weight;
6199 napi->dev = dev;
6200 #ifdef CONFIG_NETPOLL
6201 napi->poll_owner = -1;
6202 #endif
6203 set_bit(NAPI_STATE_SCHED, &napi->state);
6204 set_bit(NAPI_STATE_NPSVC, &napi->state);
6205 list_add_rcu(&napi->dev_list, &dev->napi_list);
6206 napi_hash_add(napi);
6207 }
6208 EXPORT_SYMBOL(netif_napi_add);
6209
napi_disable(struct napi_struct * n)6210 void napi_disable(struct napi_struct *n)
6211 {
6212 might_sleep();
6213 set_bit(NAPI_STATE_DISABLE, &n->state);
6214
6215 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6216 msleep(1);
6217 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6218 msleep(1);
6219
6220 hrtimer_cancel(&n->timer);
6221
6222 clear_bit(NAPI_STATE_DISABLE, &n->state);
6223 }
6224 EXPORT_SYMBOL(napi_disable);
6225
flush_gro_hash(struct napi_struct * napi)6226 static void flush_gro_hash(struct napi_struct *napi)
6227 {
6228 int i;
6229
6230 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6231 struct sk_buff *skb, *n;
6232
6233 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6234 kfree_skb(skb);
6235 napi->gro_hash[i].count = 0;
6236 }
6237 }
6238
6239 /* Must be called in process context */
netif_napi_del(struct napi_struct * napi)6240 void netif_napi_del(struct napi_struct *napi)
6241 {
6242 might_sleep();
6243 if (napi_hash_del(napi))
6244 synchronize_net();
6245 list_del_init(&napi->dev_list);
6246 napi_free_frags(napi);
6247
6248 flush_gro_hash(napi);
6249 napi->gro_bitmask = 0;
6250 }
6251 EXPORT_SYMBOL(netif_napi_del);
6252
napi_poll(struct napi_struct * n,struct list_head * repoll)6253 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6254 {
6255 void *have;
6256 int work, weight;
6257
6258 list_del_init(&n->poll_list);
6259
6260 have = netpoll_poll_lock(n);
6261
6262 weight = n->weight;
6263
6264 /* This NAPI_STATE_SCHED test is for avoiding a race
6265 * with netpoll's poll_napi(). Only the entity which
6266 * obtains the lock and sees NAPI_STATE_SCHED set will
6267 * actually make the ->poll() call. Therefore we avoid
6268 * accidentally calling ->poll() when NAPI is not scheduled.
6269 */
6270 work = 0;
6271 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6272 work = n->poll(n, weight);
6273 trace_napi_poll(n, work, weight);
6274 }
6275
6276 WARN_ON_ONCE(work > weight);
6277
6278 if (likely(work < weight))
6279 goto out_unlock;
6280
6281 /* Drivers must not modify the NAPI state if they
6282 * consume the entire weight. In such cases this code
6283 * still "owns" the NAPI instance and therefore can
6284 * move the instance around on the list at-will.
6285 */
6286 if (unlikely(napi_disable_pending(n))) {
6287 napi_complete(n);
6288 goto out_unlock;
6289 }
6290
6291 if (n->gro_bitmask) {
6292 /* flush too old packets
6293 * If HZ < 1000, flush all packets.
6294 */
6295 napi_gro_flush(n, HZ >= 1000);
6296 }
6297
6298 /* Some drivers may have called napi_schedule
6299 * prior to exhausting their budget.
6300 */
6301 if (unlikely(!list_empty(&n->poll_list))) {
6302 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6303 n->dev ? n->dev->name : "backlog");
6304 goto out_unlock;
6305 }
6306
6307 list_add_tail(&n->poll_list, repoll);
6308
6309 out_unlock:
6310 netpoll_poll_unlock(have);
6311
6312 return work;
6313 }
6314
net_rx_action(struct softirq_action * h)6315 static __latent_entropy void net_rx_action(struct softirq_action *h)
6316 {
6317 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6318 unsigned long time_limit = jiffies +
6319 usecs_to_jiffies(netdev_budget_usecs);
6320 int budget = netdev_budget;
6321 LIST_HEAD(list);
6322 LIST_HEAD(repoll);
6323
6324 local_irq_disable();
6325 list_splice_init(&sd->poll_list, &list);
6326 local_irq_enable();
6327
6328 for (;;) {
6329 struct napi_struct *n;
6330
6331 if (list_empty(&list)) {
6332 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6333 goto out;
6334 break;
6335 }
6336
6337 n = list_first_entry(&list, struct napi_struct, poll_list);
6338 budget -= napi_poll(n, &repoll);
6339
6340 /* If softirq window is exhausted then punt.
6341 * Allow this to run for 2 jiffies since which will allow
6342 * an average latency of 1.5/HZ.
6343 */
6344 if (unlikely(budget <= 0 ||
6345 time_after_eq(jiffies, time_limit))) {
6346 sd->time_squeeze++;
6347 break;
6348 }
6349 }
6350
6351 local_irq_disable();
6352
6353 list_splice_tail_init(&sd->poll_list, &list);
6354 list_splice_tail(&repoll, &list);
6355 list_splice(&list, &sd->poll_list);
6356 if (!list_empty(&sd->poll_list))
6357 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6358
6359 net_rps_action_and_irq_enable(sd);
6360 out:
6361 __kfree_skb_flush();
6362 }
6363
6364 struct netdev_adjacent {
6365 struct net_device *dev;
6366
6367 /* upper master flag, there can only be one master device per list */
6368 bool master;
6369
6370 /* counter for the number of times this device was added to us */
6371 u16 ref_nr;
6372
6373 /* private field for the users */
6374 void *private;
6375
6376 struct list_head list;
6377 struct rcu_head rcu;
6378 };
6379
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6380 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6381 struct list_head *adj_list)
6382 {
6383 struct netdev_adjacent *adj;
6384
6385 list_for_each_entry(adj, adj_list, list) {
6386 if (adj->dev == adj_dev)
6387 return adj;
6388 }
6389 return NULL;
6390 }
6391
__netdev_has_upper_dev(struct net_device * upper_dev,void * data)6392 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6393 {
6394 struct net_device *dev = data;
6395
6396 return upper_dev == dev;
6397 }
6398
6399 /**
6400 * netdev_has_upper_dev - Check if device is linked to an upper device
6401 * @dev: device
6402 * @upper_dev: upper device to check
6403 *
6404 * Find out if a device is linked to specified upper device and return true
6405 * in case it is. Note that this checks only immediate upper device,
6406 * not through a complete stack of devices. The caller must hold the RTNL lock.
6407 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6408 bool netdev_has_upper_dev(struct net_device *dev,
6409 struct net_device *upper_dev)
6410 {
6411 ASSERT_RTNL();
6412
6413 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6414 upper_dev);
6415 }
6416 EXPORT_SYMBOL(netdev_has_upper_dev);
6417
6418 /**
6419 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6420 * @dev: device
6421 * @upper_dev: upper device to check
6422 *
6423 * Find out if a device is linked to specified upper device and return true
6424 * in case it is. Note that this checks the entire upper device chain.
6425 * The caller must hold rcu lock.
6426 */
6427
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6428 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6429 struct net_device *upper_dev)
6430 {
6431 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6432 upper_dev);
6433 }
6434 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6435
6436 /**
6437 * netdev_has_any_upper_dev - Check if device is linked to some device
6438 * @dev: device
6439 *
6440 * Find out if a device is linked to an upper device and return true in case
6441 * it is. The caller must hold the RTNL lock.
6442 */
netdev_has_any_upper_dev(struct net_device * dev)6443 bool netdev_has_any_upper_dev(struct net_device *dev)
6444 {
6445 ASSERT_RTNL();
6446
6447 return !list_empty(&dev->adj_list.upper);
6448 }
6449 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6450
6451 /**
6452 * netdev_master_upper_dev_get - Get master upper device
6453 * @dev: device
6454 *
6455 * Find a master upper device and return pointer to it or NULL in case
6456 * it's not there. The caller must hold the RTNL lock.
6457 */
netdev_master_upper_dev_get(struct net_device * dev)6458 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6459 {
6460 struct netdev_adjacent *upper;
6461
6462 ASSERT_RTNL();
6463
6464 if (list_empty(&dev->adj_list.upper))
6465 return NULL;
6466
6467 upper = list_first_entry(&dev->adj_list.upper,
6468 struct netdev_adjacent, list);
6469 if (likely(upper->master))
6470 return upper->dev;
6471 return NULL;
6472 }
6473 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6474
6475 /**
6476 * netdev_has_any_lower_dev - Check if device is linked to some device
6477 * @dev: device
6478 *
6479 * Find out if a device is linked to a lower device and return true in case
6480 * it is. The caller must hold the RTNL lock.
6481 */
netdev_has_any_lower_dev(struct net_device * dev)6482 static bool netdev_has_any_lower_dev(struct net_device *dev)
6483 {
6484 ASSERT_RTNL();
6485
6486 return !list_empty(&dev->adj_list.lower);
6487 }
6488
netdev_adjacent_get_private(struct list_head * adj_list)6489 void *netdev_adjacent_get_private(struct list_head *adj_list)
6490 {
6491 struct netdev_adjacent *adj;
6492
6493 adj = list_entry(adj_list, struct netdev_adjacent, list);
6494
6495 return adj->private;
6496 }
6497 EXPORT_SYMBOL(netdev_adjacent_get_private);
6498
6499 /**
6500 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6501 * @dev: device
6502 * @iter: list_head ** of the current position
6503 *
6504 * Gets the next device from the dev's upper list, starting from iter
6505 * position. The caller must hold RCU read lock.
6506 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6507 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6508 struct list_head **iter)
6509 {
6510 struct netdev_adjacent *upper;
6511
6512 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6513
6514 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6515
6516 if (&upper->list == &dev->adj_list.upper)
6517 return NULL;
6518
6519 *iter = &upper->list;
6520
6521 return upper->dev;
6522 }
6523 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6524
netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter)6525 static struct net_device *netdev_next_upper_dev(struct net_device *dev,
6526 struct list_head **iter)
6527 {
6528 struct netdev_adjacent *upper;
6529
6530 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6531
6532 if (&upper->list == &dev->adj_list.upper)
6533 return NULL;
6534
6535 *iter = &upper->list;
6536
6537 return upper->dev;
6538 }
6539
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)6540 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6541 struct list_head **iter)
6542 {
6543 struct netdev_adjacent *upper;
6544
6545 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6546
6547 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6548
6549 if (&upper->list == &dev->adj_list.upper)
6550 return NULL;
6551
6552 *iter = &upper->list;
6553
6554 return upper->dev;
6555 }
6556
netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6557 static int netdev_walk_all_upper_dev(struct net_device *dev,
6558 int (*fn)(struct net_device *dev,
6559 void *data),
6560 void *data)
6561 {
6562 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6563 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6564 int ret, cur = 0;
6565
6566 now = dev;
6567 iter = &dev->adj_list.upper;
6568
6569 while (1) {
6570 if (now != dev) {
6571 ret = fn(now, data);
6572 if (ret)
6573 return ret;
6574 }
6575
6576 next = NULL;
6577 while (1) {
6578 udev = netdev_next_upper_dev(now, &iter);
6579 if (!udev)
6580 break;
6581
6582 next = udev;
6583 niter = &udev->adj_list.upper;
6584 dev_stack[cur] = now;
6585 iter_stack[cur++] = iter;
6586 break;
6587 }
6588
6589 if (!next) {
6590 if (!cur)
6591 return 0;
6592 next = dev_stack[--cur];
6593 niter = iter_stack[cur];
6594 }
6595
6596 now = next;
6597 iter = niter;
6598 }
6599
6600 return 0;
6601 }
6602
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6603 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6604 int (*fn)(struct net_device *dev,
6605 void *data),
6606 void *data)
6607 {
6608 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6609 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6610 int ret, cur = 0;
6611
6612 now = dev;
6613 iter = &dev->adj_list.upper;
6614
6615 while (1) {
6616 if (now != dev) {
6617 ret = fn(now, data);
6618 if (ret)
6619 return ret;
6620 }
6621
6622 next = NULL;
6623 while (1) {
6624 udev = netdev_next_upper_dev_rcu(now, &iter);
6625 if (!udev)
6626 break;
6627
6628 next = udev;
6629 niter = &udev->adj_list.upper;
6630 dev_stack[cur] = now;
6631 iter_stack[cur++] = iter;
6632 break;
6633 }
6634
6635 if (!next) {
6636 if (!cur)
6637 return 0;
6638 next = dev_stack[--cur];
6639 niter = iter_stack[cur];
6640 }
6641
6642 now = next;
6643 iter = niter;
6644 }
6645
6646 return 0;
6647 }
6648 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6649
6650 /**
6651 * netdev_lower_get_next_private - Get the next ->private from the
6652 * lower neighbour list
6653 * @dev: device
6654 * @iter: list_head ** of the current position
6655 *
6656 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6657 * list, starting from iter position. The caller must hold either hold the
6658 * RTNL lock or its own locking that guarantees that the neighbour lower
6659 * list will remain unchanged.
6660 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)6661 void *netdev_lower_get_next_private(struct net_device *dev,
6662 struct list_head **iter)
6663 {
6664 struct netdev_adjacent *lower;
6665
6666 lower = list_entry(*iter, struct netdev_adjacent, list);
6667
6668 if (&lower->list == &dev->adj_list.lower)
6669 return NULL;
6670
6671 *iter = lower->list.next;
6672
6673 return lower->private;
6674 }
6675 EXPORT_SYMBOL(netdev_lower_get_next_private);
6676
6677 /**
6678 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6679 * lower neighbour list, RCU
6680 * variant
6681 * @dev: device
6682 * @iter: list_head ** of the current position
6683 *
6684 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6685 * list, starting from iter position. The caller must hold RCU read lock.
6686 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)6687 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6688 struct list_head **iter)
6689 {
6690 struct netdev_adjacent *lower;
6691
6692 WARN_ON_ONCE(!rcu_read_lock_held());
6693
6694 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6695
6696 if (&lower->list == &dev->adj_list.lower)
6697 return NULL;
6698
6699 *iter = &lower->list;
6700
6701 return lower->private;
6702 }
6703 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6704
6705 /**
6706 * netdev_lower_get_next - Get the next device from the lower neighbour
6707 * list
6708 * @dev: device
6709 * @iter: list_head ** of the current position
6710 *
6711 * Gets the next netdev_adjacent from the dev's lower neighbour
6712 * list, starting from iter position. The caller must hold RTNL lock or
6713 * its own locking that guarantees that the neighbour lower
6714 * list will remain unchanged.
6715 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)6716 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6717 {
6718 struct netdev_adjacent *lower;
6719
6720 lower = list_entry(*iter, struct netdev_adjacent, list);
6721
6722 if (&lower->list == &dev->adj_list.lower)
6723 return NULL;
6724
6725 *iter = lower->list.next;
6726
6727 return lower->dev;
6728 }
6729 EXPORT_SYMBOL(netdev_lower_get_next);
6730
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)6731 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6732 struct list_head **iter)
6733 {
6734 struct netdev_adjacent *lower;
6735
6736 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6737
6738 if (&lower->list == &dev->adj_list.lower)
6739 return NULL;
6740
6741 *iter = &lower->list;
6742
6743 return lower->dev;
6744 }
6745
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6746 int netdev_walk_all_lower_dev(struct net_device *dev,
6747 int (*fn)(struct net_device *dev,
6748 void *data),
6749 void *data)
6750 {
6751 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6752 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6753 int ret, cur = 0;
6754
6755 now = dev;
6756 iter = &dev->adj_list.lower;
6757
6758 while (1) {
6759 if (now != dev) {
6760 ret = fn(now, data);
6761 if (ret)
6762 return ret;
6763 }
6764
6765 next = NULL;
6766 while (1) {
6767 ldev = netdev_next_lower_dev(now, &iter);
6768 if (!ldev)
6769 break;
6770
6771 next = ldev;
6772 niter = &ldev->adj_list.lower;
6773 dev_stack[cur] = now;
6774 iter_stack[cur++] = iter;
6775 break;
6776 }
6777
6778 if (!next) {
6779 if (!cur)
6780 return 0;
6781 next = dev_stack[--cur];
6782 niter = iter_stack[cur];
6783 }
6784
6785 now = next;
6786 iter = niter;
6787 }
6788
6789 return 0;
6790 }
6791 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6792
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)6793 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6794 struct list_head **iter)
6795 {
6796 struct netdev_adjacent *lower;
6797
6798 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6799 if (&lower->list == &dev->adj_list.lower)
6800 return NULL;
6801
6802 *iter = &lower->list;
6803
6804 return lower->dev;
6805 }
6806
__netdev_upper_depth(struct net_device * dev)6807 static u8 __netdev_upper_depth(struct net_device *dev)
6808 {
6809 struct net_device *udev;
6810 struct list_head *iter;
6811 u8 max_depth = 0;
6812
6813 for (iter = &dev->adj_list.upper,
6814 udev = netdev_next_upper_dev(dev, &iter);
6815 udev;
6816 udev = netdev_next_upper_dev(dev, &iter)) {
6817 if (max_depth < udev->upper_level)
6818 max_depth = udev->upper_level;
6819 }
6820
6821 return max_depth;
6822 }
6823
__netdev_lower_depth(struct net_device * dev)6824 static u8 __netdev_lower_depth(struct net_device *dev)
6825 {
6826 struct net_device *ldev;
6827 struct list_head *iter;
6828 u8 max_depth = 0;
6829
6830 for (iter = &dev->adj_list.lower,
6831 ldev = netdev_next_lower_dev(dev, &iter);
6832 ldev;
6833 ldev = netdev_next_lower_dev(dev, &iter)) {
6834 if (max_depth < ldev->lower_level)
6835 max_depth = ldev->lower_level;
6836 }
6837
6838 return max_depth;
6839 }
6840
__netdev_update_upper_level(struct net_device * dev,void * data)6841 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6842 {
6843 dev->upper_level = __netdev_upper_depth(dev) + 1;
6844 return 0;
6845 }
6846
__netdev_update_lower_level(struct net_device * dev,void * data)6847 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6848 {
6849 dev->lower_level = __netdev_lower_depth(dev) + 1;
6850 return 0;
6851 }
6852
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6853 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6854 int (*fn)(struct net_device *dev,
6855 void *data),
6856 void *data)
6857 {
6858 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6859 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6860 int ret, cur = 0;
6861
6862 now = dev;
6863 iter = &dev->adj_list.lower;
6864
6865 while (1) {
6866 if (now != dev) {
6867 ret = fn(now, data);
6868 if (ret)
6869 return ret;
6870 }
6871
6872 next = NULL;
6873 while (1) {
6874 ldev = netdev_next_lower_dev_rcu(now, &iter);
6875 if (!ldev)
6876 break;
6877
6878 next = ldev;
6879 niter = &ldev->adj_list.lower;
6880 dev_stack[cur] = now;
6881 iter_stack[cur++] = iter;
6882 break;
6883 }
6884
6885 if (!next) {
6886 if (!cur)
6887 return 0;
6888 next = dev_stack[--cur];
6889 niter = iter_stack[cur];
6890 }
6891
6892 now = next;
6893 iter = niter;
6894 }
6895
6896 return 0;
6897 }
6898 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6899
6900 /**
6901 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6902 * lower neighbour list, RCU
6903 * variant
6904 * @dev: device
6905 *
6906 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6907 * list. The caller must hold RCU read lock.
6908 */
netdev_lower_get_first_private_rcu(struct net_device * dev)6909 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6910 {
6911 struct netdev_adjacent *lower;
6912
6913 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6914 struct netdev_adjacent, list);
6915 if (lower)
6916 return lower->private;
6917 return NULL;
6918 }
6919 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6920
6921 /**
6922 * netdev_master_upper_dev_get_rcu - Get master upper device
6923 * @dev: device
6924 *
6925 * Find a master upper device and return pointer to it or NULL in case
6926 * it's not there. The caller must hold the RCU read lock.
6927 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)6928 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6929 {
6930 struct netdev_adjacent *upper;
6931
6932 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6933 struct netdev_adjacent, list);
6934 if (upper && likely(upper->master))
6935 return upper->dev;
6936 return NULL;
6937 }
6938 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6939
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6940 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6941 struct net_device *adj_dev,
6942 struct list_head *dev_list)
6943 {
6944 char linkname[IFNAMSIZ+7];
6945
6946 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6947 "upper_%s" : "lower_%s", adj_dev->name);
6948 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6949 linkname);
6950 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)6951 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6952 char *name,
6953 struct list_head *dev_list)
6954 {
6955 char linkname[IFNAMSIZ+7];
6956
6957 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6958 "upper_%s" : "lower_%s", name);
6959 sysfs_remove_link(&(dev->dev.kobj), linkname);
6960 }
6961
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6962 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6963 struct net_device *adj_dev,
6964 struct list_head *dev_list)
6965 {
6966 return (dev_list == &dev->adj_list.upper ||
6967 dev_list == &dev->adj_list.lower) &&
6968 net_eq(dev_net(dev), dev_net(adj_dev));
6969 }
6970
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)6971 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6972 struct net_device *adj_dev,
6973 struct list_head *dev_list,
6974 void *private, bool master)
6975 {
6976 struct netdev_adjacent *adj;
6977 int ret;
6978
6979 adj = __netdev_find_adj(adj_dev, dev_list);
6980
6981 if (adj) {
6982 adj->ref_nr += 1;
6983 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6984 dev->name, adj_dev->name, adj->ref_nr);
6985
6986 return 0;
6987 }
6988
6989 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6990 if (!adj)
6991 return -ENOMEM;
6992
6993 adj->dev = adj_dev;
6994 adj->master = master;
6995 adj->ref_nr = 1;
6996 adj->private = private;
6997 dev_hold(adj_dev);
6998
6999 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7000 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7001
7002 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7003 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7004 if (ret)
7005 goto free_adj;
7006 }
7007
7008 /* Ensure that master link is always the first item in list. */
7009 if (master) {
7010 ret = sysfs_create_link(&(dev->dev.kobj),
7011 &(adj_dev->dev.kobj), "master");
7012 if (ret)
7013 goto remove_symlinks;
7014
7015 list_add_rcu(&adj->list, dev_list);
7016 } else {
7017 list_add_tail_rcu(&adj->list, dev_list);
7018 }
7019
7020 return 0;
7021
7022 remove_symlinks:
7023 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7024 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7025 free_adj:
7026 kfree(adj);
7027 dev_put(adj_dev);
7028
7029 return ret;
7030 }
7031
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7032 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7033 struct net_device *adj_dev,
7034 u16 ref_nr,
7035 struct list_head *dev_list)
7036 {
7037 struct netdev_adjacent *adj;
7038
7039 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7040 dev->name, adj_dev->name, ref_nr);
7041
7042 adj = __netdev_find_adj(adj_dev, dev_list);
7043
7044 if (!adj) {
7045 pr_err("Adjacency does not exist for device %s from %s\n",
7046 dev->name, adj_dev->name);
7047 WARN_ON(1);
7048 return;
7049 }
7050
7051 if (adj->ref_nr > ref_nr) {
7052 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7053 dev->name, adj_dev->name, ref_nr,
7054 adj->ref_nr - ref_nr);
7055 adj->ref_nr -= ref_nr;
7056 return;
7057 }
7058
7059 if (adj->master)
7060 sysfs_remove_link(&(dev->dev.kobj), "master");
7061
7062 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7063 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7064
7065 list_del_rcu(&adj->list);
7066 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7067 adj_dev->name, dev->name, adj_dev->name);
7068 dev_put(adj_dev);
7069 kfree_rcu(adj, rcu);
7070 }
7071
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7072 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7073 struct net_device *upper_dev,
7074 struct list_head *up_list,
7075 struct list_head *down_list,
7076 void *private, bool master)
7077 {
7078 int ret;
7079
7080 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7081 private, master);
7082 if (ret)
7083 return ret;
7084
7085 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7086 private, false);
7087 if (ret) {
7088 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7089 return ret;
7090 }
7091
7092 return 0;
7093 }
7094
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7095 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7096 struct net_device *upper_dev,
7097 u16 ref_nr,
7098 struct list_head *up_list,
7099 struct list_head *down_list)
7100 {
7101 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7102 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7103 }
7104
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7105 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7106 struct net_device *upper_dev,
7107 void *private, bool master)
7108 {
7109 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7110 &dev->adj_list.upper,
7111 &upper_dev->adj_list.lower,
7112 private, master);
7113 }
7114
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7115 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7116 struct net_device *upper_dev)
7117 {
7118 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7119 &dev->adj_list.upper,
7120 &upper_dev->adj_list.lower);
7121 }
7122
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7123 static int __netdev_upper_dev_link(struct net_device *dev,
7124 struct net_device *upper_dev, bool master,
7125 void *upper_priv, void *upper_info,
7126 struct netlink_ext_ack *extack)
7127 {
7128 struct netdev_notifier_changeupper_info changeupper_info = {
7129 .info = {
7130 .dev = dev,
7131 .extack = extack,
7132 },
7133 .upper_dev = upper_dev,
7134 .master = master,
7135 .linking = true,
7136 .upper_info = upper_info,
7137 };
7138 struct net_device *master_dev;
7139 int ret = 0;
7140
7141 ASSERT_RTNL();
7142
7143 if (dev == upper_dev)
7144 return -EBUSY;
7145
7146 /* To prevent loops, check if dev is not upper device to upper_dev. */
7147 if (netdev_has_upper_dev(upper_dev, dev))
7148 return -EBUSY;
7149
7150 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7151 return -EMLINK;
7152
7153 if (!master) {
7154 if (netdev_has_upper_dev(dev, upper_dev))
7155 return -EEXIST;
7156 } else {
7157 master_dev = netdev_master_upper_dev_get(dev);
7158 if (master_dev)
7159 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7160 }
7161
7162 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7163 &changeupper_info.info);
7164 ret = notifier_to_errno(ret);
7165 if (ret)
7166 return ret;
7167
7168 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7169 master);
7170 if (ret)
7171 return ret;
7172
7173 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7174 &changeupper_info.info);
7175 ret = notifier_to_errno(ret);
7176 if (ret)
7177 goto rollback;
7178
7179 __netdev_update_upper_level(dev, NULL);
7180 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7181
7182 __netdev_update_lower_level(upper_dev, NULL);
7183 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7184
7185 return 0;
7186
7187 rollback:
7188 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7189
7190 return ret;
7191 }
7192
7193 /**
7194 * netdev_upper_dev_link - Add a link to the upper device
7195 * @dev: device
7196 * @upper_dev: new upper device
7197 * @extack: netlink extended ack
7198 *
7199 * Adds a link to device which is upper to this one. The caller must hold
7200 * the RTNL lock. On a failure a negative errno code is returned.
7201 * On success the reference counts are adjusted and the function
7202 * returns zero.
7203 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7204 int netdev_upper_dev_link(struct net_device *dev,
7205 struct net_device *upper_dev,
7206 struct netlink_ext_ack *extack)
7207 {
7208 return __netdev_upper_dev_link(dev, upper_dev, false,
7209 NULL, NULL, extack);
7210 }
7211 EXPORT_SYMBOL(netdev_upper_dev_link);
7212
7213 /**
7214 * netdev_master_upper_dev_link - Add a master link to the upper device
7215 * @dev: device
7216 * @upper_dev: new upper device
7217 * @upper_priv: upper device private
7218 * @upper_info: upper info to be passed down via notifier
7219 * @extack: netlink extended ack
7220 *
7221 * Adds a link to device which is upper to this one. In this case, only
7222 * one master upper device can be linked, although other non-master devices
7223 * might be linked as well. The caller must hold the RTNL lock.
7224 * On a failure a negative errno code is returned. On success the reference
7225 * counts are adjusted and the function returns zero.
7226 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7227 int netdev_master_upper_dev_link(struct net_device *dev,
7228 struct net_device *upper_dev,
7229 void *upper_priv, void *upper_info,
7230 struct netlink_ext_ack *extack)
7231 {
7232 return __netdev_upper_dev_link(dev, upper_dev, true,
7233 upper_priv, upper_info, extack);
7234 }
7235 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7236
7237 /**
7238 * netdev_upper_dev_unlink - Removes a link to upper device
7239 * @dev: device
7240 * @upper_dev: new upper device
7241 *
7242 * Removes a link to device which is upper to this one. The caller must hold
7243 * the RTNL lock.
7244 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7245 void netdev_upper_dev_unlink(struct net_device *dev,
7246 struct net_device *upper_dev)
7247 {
7248 struct netdev_notifier_changeupper_info changeupper_info = {
7249 .info = {
7250 .dev = dev,
7251 },
7252 .upper_dev = upper_dev,
7253 .linking = false,
7254 };
7255
7256 ASSERT_RTNL();
7257
7258 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7259
7260 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7261 &changeupper_info.info);
7262
7263 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7264
7265 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7266 &changeupper_info.info);
7267
7268 __netdev_update_upper_level(dev, NULL);
7269 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7270
7271 __netdev_update_lower_level(upper_dev, NULL);
7272 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7273 }
7274 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7275
7276 /**
7277 * netdev_bonding_info_change - Dispatch event about slave change
7278 * @dev: device
7279 * @bonding_info: info to dispatch
7280 *
7281 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7282 * The caller must hold the RTNL lock.
7283 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7284 void netdev_bonding_info_change(struct net_device *dev,
7285 struct netdev_bonding_info *bonding_info)
7286 {
7287 struct netdev_notifier_bonding_info info = {
7288 .info.dev = dev,
7289 };
7290
7291 memcpy(&info.bonding_info, bonding_info,
7292 sizeof(struct netdev_bonding_info));
7293 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7294 &info.info);
7295 }
7296 EXPORT_SYMBOL(netdev_bonding_info_change);
7297
netdev_adjacent_add_links(struct net_device * dev)7298 static void netdev_adjacent_add_links(struct net_device *dev)
7299 {
7300 struct netdev_adjacent *iter;
7301
7302 struct net *net = dev_net(dev);
7303
7304 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7305 if (!net_eq(net, dev_net(iter->dev)))
7306 continue;
7307 netdev_adjacent_sysfs_add(iter->dev, dev,
7308 &iter->dev->adj_list.lower);
7309 netdev_adjacent_sysfs_add(dev, iter->dev,
7310 &dev->adj_list.upper);
7311 }
7312
7313 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7314 if (!net_eq(net, dev_net(iter->dev)))
7315 continue;
7316 netdev_adjacent_sysfs_add(iter->dev, dev,
7317 &iter->dev->adj_list.upper);
7318 netdev_adjacent_sysfs_add(dev, iter->dev,
7319 &dev->adj_list.lower);
7320 }
7321 }
7322
netdev_adjacent_del_links(struct net_device * dev)7323 static void netdev_adjacent_del_links(struct net_device *dev)
7324 {
7325 struct netdev_adjacent *iter;
7326
7327 struct net *net = dev_net(dev);
7328
7329 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7330 if (!net_eq(net, dev_net(iter->dev)))
7331 continue;
7332 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7333 &iter->dev->adj_list.lower);
7334 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7335 &dev->adj_list.upper);
7336 }
7337
7338 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7339 if (!net_eq(net, dev_net(iter->dev)))
7340 continue;
7341 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7342 &iter->dev->adj_list.upper);
7343 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7344 &dev->adj_list.lower);
7345 }
7346 }
7347
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)7348 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7349 {
7350 struct netdev_adjacent *iter;
7351
7352 struct net *net = dev_net(dev);
7353
7354 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7355 if (!net_eq(net, dev_net(iter->dev)))
7356 continue;
7357 netdev_adjacent_sysfs_del(iter->dev, oldname,
7358 &iter->dev->adj_list.lower);
7359 netdev_adjacent_sysfs_add(iter->dev, dev,
7360 &iter->dev->adj_list.lower);
7361 }
7362
7363 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7364 if (!net_eq(net, dev_net(iter->dev)))
7365 continue;
7366 netdev_adjacent_sysfs_del(iter->dev, oldname,
7367 &iter->dev->adj_list.upper);
7368 netdev_adjacent_sysfs_add(iter->dev, dev,
7369 &iter->dev->adj_list.upper);
7370 }
7371 }
7372
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)7373 void *netdev_lower_dev_get_private(struct net_device *dev,
7374 struct net_device *lower_dev)
7375 {
7376 struct netdev_adjacent *lower;
7377
7378 if (!lower_dev)
7379 return NULL;
7380 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7381 if (!lower)
7382 return NULL;
7383
7384 return lower->private;
7385 }
7386 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7387
7388
dev_get_nest_level(struct net_device * dev)7389 int dev_get_nest_level(struct net_device *dev)
7390 {
7391 struct net_device *lower = NULL;
7392 struct list_head *iter;
7393 int max_nest = -1;
7394 int nest;
7395
7396 ASSERT_RTNL();
7397
7398 netdev_for_each_lower_dev(dev, lower, iter) {
7399 nest = dev_get_nest_level(lower);
7400 if (max_nest < nest)
7401 max_nest = nest;
7402 }
7403
7404 return max_nest + 1;
7405 }
7406 EXPORT_SYMBOL(dev_get_nest_level);
7407
7408 /**
7409 * netdev_lower_change - Dispatch event about lower device state change
7410 * @lower_dev: device
7411 * @lower_state_info: state to dispatch
7412 *
7413 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7414 * The caller must hold the RTNL lock.
7415 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)7416 void netdev_lower_state_changed(struct net_device *lower_dev,
7417 void *lower_state_info)
7418 {
7419 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7420 .info.dev = lower_dev,
7421 };
7422
7423 ASSERT_RTNL();
7424 changelowerstate_info.lower_state_info = lower_state_info;
7425 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7426 &changelowerstate_info.info);
7427 }
7428 EXPORT_SYMBOL(netdev_lower_state_changed);
7429
dev_change_rx_flags(struct net_device * dev,int flags)7430 static void dev_change_rx_flags(struct net_device *dev, int flags)
7431 {
7432 const struct net_device_ops *ops = dev->netdev_ops;
7433
7434 if (ops->ndo_change_rx_flags)
7435 ops->ndo_change_rx_flags(dev, flags);
7436 }
7437
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)7438 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7439 {
7440 unsigned int old_flags = dev->flags;
7441 kuid_t uid;
7442 kgid_t gid;
7443
7444 ASSERT_RTNL();
7445
7446 dev->flags |= IFF_PROMISC;
7447 dev->promiscuity += inc;
7448 if (dev->promiscuity == 0) {
7449 /*
7450 * Avoid overflow.
7451 * If inc causes overflow, untouch promisc and return error.
7452 */
7453 if (inc < 0)
7454 dev->flags &= ~IFF_PROMISC;
7455 else {
7456 dev->promiscuity -= inc;
7457 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7458 dev->name);
7459 return -EOVERFLOW;
7460 }
7461 }
7462 if (dev->flags != old_flags) {
7463 pr_info("device %s %s promiscuous mode\n",
7464 dev->name,
7465 dev->flags & IFF_PROMISC ? "entered" : "left");
7466 if (audit_enabled) {
7467 current_uid_gid(&uid, &gid);
7468 audit_log(audit_context(), GFP_ATOMIC,
7469 AUDIT_ANOM_PROMISCUOUS,
7470 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7471 dev->name, (dev->flags & IFF_PROMISC),
7472 (old_flags & IFF_PROMISC),
7473 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7474 from_kuid(&init_user_ns, uid),
7475 from_kgid(&init_user_ns, gid),
7476 audit_get_sessionid(current));
7477 }
7478
7479 dev_change_rx_flags(dev, IFF_PROMISC);
7480 }
7481 if (notify)
7482 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7483 return 0;
7484 }
7485
7486 /**
7487 * dev_set_promiscuity - update promiscuity count on a device
7488 * @dev: device
7489 * @inc: modifier
7490 *
7491 * Add or remove promiscuity from a device. While the count in the device
7492 * remains above zero the interface remains promiscuous. Once it hits zero
7493 * the device reverts back to normal filtering operation. A negative inc
7494 * value is used to drop promiscuity on the device.
7495 * Return 0 if successful or a negative errno code on error.
7496 */
dev_set_promiscuity(struct net_device * dev,int inc)7497 int dev_set_promiscuity(struct net_device *dev, int inc)
7498 {
7499 unsigned int old_flags = dev->flags;
7500 int err;
7501
7502 err = __dev_set_promiscuity(dev, inc, true);
7503 if (err < 0)
7504 return err;
7505 if (dev->flags != old_flags)
7506 dev_set_rx_mode(dev);
7507 return err;
7508 }
7509 EXPORT_SYMBOL(dev_set_promiscuity);
7510
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)7511 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7512 {
7513 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7514
7515 ASSERT_RTNL();
7516
7517 dev->flags |= IFF_ALLMULTI;
7518 dev->allmulti += inc;
7519 if (dev->allmulti == 0) {
7520 /*
7521 * Avoid overflow.
7522 * If inc causes overflow, untouch allmulti and return error.
7523 */
7524 if (inc < 0)
7525 dev->flags &= ~IFF_ALLMULTI;
7526 else {
7527 dev->allmulti -= inc;
7528 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7529 dev->name);
7530 return -EOVERFLOW;
7531 }
7532 }
7533 if (dev->flags ^ old_flags) {
7534 dev_change_rx_flags(dev, IFF_ALLMULTI);
7535 dev_set_rx_mode(dev);
7536 if (notify)
7537 __dev_notify_flags(dev, old_flags,
7538 dev->gflags ^ old_gflags);
7539 }
7540 return 0;
7541 }
7542
7543 /**
7544 * dev_set_allmulti - update allmulti count on a device
7545 * @dev: device
7546 * @inc: modifier
7547 *
7548 * Add or remove reception of all multicast frames to a device. While the
7549 * count in the device remains above zero the interface remains listening
7550 * to all interfaces. Once it hits zero the device reverts back to normal
7551 * filtering operation. A negative @inc value is used to drop the counter
7552 * when releasing a resource needing all multicasts.
7553 * Return 0 if successful or a negative errno code on error.
7554 */
7555
dev_set_allmulti(struct net_device * dev,int inc)7556 int dev_set_allmulti(struct net_device *dev, int inc)
7557 {
7558 return __dev_set_allmulti(dev, inc, true);
7559 }
7560 EXPORT_SYMBOL(dev_set_allmulti);
7561
7562 /*
7563 * Upload unicast and multicast address lists to device and
7564 * configure RX filtering. When the device doesn't support unicast
7565 * filtering it is put in promiscuous mode while unicast addresses
7566 * are present.
7567 */
__dev_set_rx_mode(struct net_device * dev)7568 void __dev_set_rx_mode(struct net_device *dev)
7569 {
7570 const struct net_device_ops *ops = dev->netdev_ops;
7571
7572 /* dev_open will call this function so the list will stay sane. */
7573 if (!(dev->flags&IFF_UP))
7574 return;
7575
7576 if (!netif_device_present(dev))
7577 return;
7578
7579 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7580 /* Unicast addresses changes may only happen under the rtnl,
7581 * therefore calling __dev_set_promiscuity here is safe.
7582 */
7583 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7584 __dev_set_promiscuity(dev, 1, false);
7585 dev->uc_promisc = true;
7586 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7587 __dev_set_promiscuity(dev, -1, false);
7588 dev->uc_promisc = false;
7589 }
7590 }
7591
7592 if (ops->ndo_set_rx_mode)
7593 ops->ndo_set_rx_mode(dev);
7594 }
7595
dev_set_rx_mode(struct net_device * dev)7596 void dev_set_rx_mode(struct net_device *dev)
7597 {
7598 netif_addr_lock_bh(dev);
7599 __dev_set_rx_mode(dev);
7600 netif_addr_unlock_bh(dev);
7601 }
7602
7603 /**
7604 * dev_get_flags - get flags reported to userspace
7605 * @dev: device
7606 *
7607 * Get the combination of flag bits exported through APIs to userspace.
7608 */
dev_get_flags(const struct net_device * dev)7609 unsigned int dev_get_flags(const struct net_device *dev)
7610 {
7611 unsigned int flags;
7612
7613 flags = (dev->flags & ~(IFF_PROMISC |
7614 IFF_ALLMULTI |
7615 IFF_RUNNING |
7616 IFF_LOWER_UP |
7617 IFF_DORMANT)) |
7618 (dev->gflags & (IFF_PROMISC |
7619 IFF_ALLMULTI));
7620
7621 if (netif_running(dev)) {
7622 if (netif_oper_up(dev))
7623 flags |= IFF_RUNNING;
7624 if (netif_carrier_ok(dev))
7625 flags |= IFF_LOWER_UP;
7626 if (netif_dormant(dev))
7627 flags |= IFF_DORMANT;
7628 }
7629
7630 return flags;
7631 }
7632 EXPORT_SYMBOL(dev_get_flags);
7633
__dev_change_flags(struct net_device * dev,unsigned int flags)7634 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7635 {
7636 unsigned int old_flags = dev->flags;
7637 int ret;
7638
7639 ASSERT_RTNL();
7640
7641 /*
7642 * Set the flags on our device.
7643 */
7644
7645 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7646 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7647 IFF_AUTOMEDIA)) |
7648 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7649 IFF_ALLMULTI));
7650
7651 /*
7652 * Load in the correct multicast list now the flags have changed.
7653 */
7654
7655 if ((old_flags ^ flags) & IFF_MULTICAST)
7656 dev_change_rx_flags(dev, IFF_MULTICAST);
7657
7658 dev_set_rx_mode(dev);
7659
7660 /*
7661 * Have we downed the interface. We handle IFF_UP ourselves
7662 * according to user attempts to set it, rather than blindly
7663 * setting it.
7664 */
7665
7666 ret = 0;
7667 if ((old_flags ^ flags) & IFF_UP) {
7668 if (old_flags & IFF_UP)
7669 __dev_close(dev);
7670 else
7671 ret = __dev_open(dev);
7672 }
7673
7674 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7675 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7676 unsigned int old_flags = dev->flags;
7677
7678 dev->gflags ^= IFF_PROMISC;
7679
7680 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7681 if (dev->flags != old_flags)
7682 dev_set_rx_mode(dev);
7683 }
7684
7685 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7686 * is important. Some (broken) drivers set IFF_PROMISC, when
7687 * IFF_ALLMULTI is requested not asking us and not reporting.
7688 */
7689 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7690 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7691
7692 dev->gflags ^= IFF_ALLMULTI;
7693 __dev_set_allmulti(dev, inc, false);
7694 }
7695
7696 return ret;
7697 }
7698
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)7699 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7700 unsigned int gchanges)
7701 {
7702 unsigned int changes = dev->flags ^ old_flags;
7703
7704 if (gchanges)
7705 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7706
7707 if (changes & IFF_UP) {
7708 if (dev->flags & IFF_UP)
7709 call_netdevice_notifiers(NETDEV_UP, dev);
7710 else
7711 call_netdevice_notifiers(NETDEV_DOWN, dev);
7712 }
7713
7714 if (dev->flags & IFF_UP &&
7715 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7716 struct netdev_notifier_change_info change_info = {
7717 .info = {
7718 .dev = dev,
7719 },
7720 .flags_changed = changes,
7721 };
7722
7723 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7724 }
7725 }
7726
7727 /**
7728 * dev_change_flags - change device settings
7729 * @dev: device
7730 * @flags: device state flags
7731 *
7732 * Change settings on device based state flags. The flags are
7733 * in the userspace exported format.
7734 */
dev_change_flags(struct net_device * dev,unsigned int flags)7735 int dev_change_flags(struct net_device *dev, unsigned int flags)
7736 {
7737 int ret;
7738 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7739
7740 ret = __dev_change_flags(dev, flags);
7741 if (ret < 0)
7742 return ret;
7743
7744 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7745 __dev_notify_flags(dev, old_flags, changes);
7746 return ret;
7747 }
7748 EXPORT_SYMBOL(dev_change_flags);
7749
__dev_set_mtu(struct net_device * dev,int new_mtu)7750 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7751 {
7752 const struct net_device_ops *ops = dev->netdev_ops;
7753
7754 if (ops->ndo_change_mtu)
7755 return ops->ndo_change_mtu(dev, new_mtu);
7756
7757 /* Pairs with all the lockless reads of dev->mtu in the stack */
7758 WRITE_ONCE(dev->mtu, new_mtu);
7759 return 0;
7760 }
7761 EXPORT_SYMBOL(__dev_set_mtu);
7762
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)7763 int dev_validate_mtu(struct net_device *dev, int new_mtu,
7764 struct netlink_ext_ack *extack)
7765 {
7766 /* MTU must be positive, and in range */
7767 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7768 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7769 return -EINVAL;
7770 }
7771
7772 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7773 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7774 return -EINVAL;
7775 }
7776 return 0;
7777 }
7778
7779 /**
7780 * dev_set_mtu_ext - Change maximum transfer unit
7781 * @dev: device
7782 * @new_mtu: new transfer unit
7783 * @extack: netlink extended ack
7784 *
7785 * Change the maximum transfer size of the network device.
7786 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)7787 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7788 struct netlink_ext_ack *extack)
7789 {
7790 int err, orig_mtu;
7791
7792 if (new_mtu == dev->mtu)
7793 return 0;
7794
7795 err = dev_validate_mtu(dev, new_mtu, extack);
7796 if (err)
7797 return err;
7798
7799 if (!netif_device_present(dev))
7800 return -ENODEV;
7801
7802 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7803 err = notifier_to_errno(err);
7804 if (err)
7805 return err;
7806
7807 orig_mtu = dev->mtu;
7808 err = __dev_set_mtu(dev, new_mtu);
7809
7810 if (!err) {
7811 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7812 orig_mtu);
7813 err = notifier_to_errno(err);
7814 if (err) {
7815 /* setting mtu back and notifying everyone again,
7816 * so that they have a chance to revert changes.
7817 */
7818 __dev_set_mtu(dev, orig_mtu);
7819 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7820 new_mtu);
7821 }
7822 }
7823 return err;
7824 }
7825
dev_set_mtu(struct net_device * dev,int new_mtu)7826 int dev_set_mtu(struct net_device *dev, int new_mtu)
7827 {
7828 struct netlink_ext_ack extack;
7829 int err;
7830
7831 memset(&extack, 0, sizeof(extack));
7832 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7833 if (err && extack._msg)
7834 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7835 return err;
7836 }
7837 EXPORT_SYMBOL(dev_set_mtu);
7838
7839 /**
7840 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7841 * @dev: device
7842 * @new_len: new tx queue length
7843 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)7844 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7845 {
7846 unsigned int orig_len = dev->tx_queue_len;
7847 int res;
7848
7849 if (new_len != (unsigned int)new_len)
7850 return -ERANGE;
7851
7852 if (new_len != orig_len) {
7853 dev->tx_queue_len = new_len;
7854 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7855 res = notifier_to_errno(res);
7856 if (res)
7857 goto err_rollback;
7858 res = dev_qdisc_change_tx_queue_len(dev);
7859 if (res)
7860 goto err_rollback;
7861 }
7862
7863 return 0;
7864
7865 err_rollback:
7866 netdev_err(dev, "refused to change device tx_queue_len\n");
7867 dev->tx_queue_len = orig_len;
7868 return res;
7869 }
7870
7871 /**
7872 * dev_set_group - Change group this device belongs to
7873 * @dev: device
7874 * @new_group: group this device should belong to
7875 */
dev_set_group(struct net_device * dev,int new_group)7876 void dev_set_group(struct net_device *dev, int new_group)
7877 {
7878 dev->group = new_group;
7879 }
7880 EXPORT_SYMBOL(dev_set_group);
7881
7882 /**
7883 * dev_set_mac_address - Change Media Access Control Address
7884 * @dev: device
7885 * @sa: new address
7886 *
7887 * Change the hardware (MAC) address of the device
7888 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)7889 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7890 {
7891 const struct net_device_ops *ops = dev->netdev_ops;
7892 int err;
7893
7894 if (!ops->ndo_set_mac_address)
7895 return -EOPNOTSUPP;
7896 if (sa->sa_family != dev->type)
7897 return -EINVAL;
7898 if (!netif_device_present(dev))
7899 return -ENODEV;
7900 err = ops->ndo_set_mac_address(dev, sa);
7901 if (err)
7902 return err;
7903 dev->addr_assign_type = NET_ADDR_SET;
7904 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7905 add_device_randomness(dev->dev_addr, dev->addr_len);
7906 return 0;
7907 }
7908 EXPORT_SYMBOL(dev_set_mac_address);
7909
7910 /**
7911 * dev_change_carrier - Change device carrier
7912 * @dev: device
7913 * @new_carrier: new value
7914 *
7915 * Change device carrier
7916 */
dev_change_carrier(struct net_device * dev,bool new_carrier)7917 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7918 {
7919 const struct net_device_ops *ops = dev->netdev_ops;
7920
7921 if (!ops->ndo_change_carrier)
7922 return -EOPNOTSUPP;
7923 if (!netif_device_present(dev))
7924 return -ENODEV;
7925 return ops->ndo_change_carrier(dev, new_carrier);
7926 }
7927 EXPORT_SYMBOL(dev_change_carrier);
7928
7929 /**
7930 * dev_get_phys_port_id - Get device physical port ID
7931 * @dev: device
7932 * @ppid: port ID
7933 *
7934 * Get device physical port ID
7935 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)7936 int dev_get_phys_port_id(struct net_device *dev,
7937 struct netdev_phys_item_id *ppid)
7938 {
7939 const struct net_device_ops *ops = dev->netdev_ops;
7940
7941 if (!ops->ndo_get_phys_port_id)
7942 return -EOPNOTSUPP;
7943 return ops->ndo_get_phys_port_id(dev, ppid);
7944 }
7945 EXPORT_SYMBOL(dev_get_phys_port_id);
7946
7947 /**
7948 * dev_get_phys_port_name - Get device physical port name
7949 * @dev: device
7950 * @name: port name
7951 * @len: limit of bytes to copy to name
7952 *
7953 * Get device physical port name
7954 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)7955 int dev_get_phys_port_name(struct net_device *dev,
7956 char *name, size_t len)
7957 {
7958 const struct net_device_ops *ops = dev->netdev_ops;
7959
7960 if (!ops->ndo_get_phys_port_name)
7961 return -EOPNOTSUPP;
7962 return ops->ndo_get_phys_port_name(dev, name, len);
7963 }
7964 EXPORT_SYMBOL(dev_get_phys_port_name);
7965
7966 /**
7967 * dev_change_proto_down - update protocol port state information
7968 * @dev: device
7969 * @proto_down: new value
7970 *
7971 * This info can be used by switch drivers to set the phys state of the
7972 * port.
7973 */
dev_change_proto_down(struct net_device * dev,bool proto_down)7974 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7975 {
7976 const struct net_device_ops *ops = dev->netdev_ops;
7977
7978 if (!ops->ndo_change_proto_down)
7979 return -EOPNOTSUPP;
7980 if (!netif_device_present(dev))
7981 return -ENODEV;
7982 return ops->ndo_change_proto_down(dev, proto_down);
7983 }
7984 EXPORT_SYMBOL(dev_change_proto_down);
7985
__dev_xdp_query(struct net_device * dev,bpf_op_t bpf_op,enum bpf_netdev_command cmd)7986 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7987 enum bpf_netdev_command cmd)
7988 {
7989 struct netdev_bpf xdp;
7990
7991 if (!bpf_op)
7992 return 0;
7993
7994 memset(&xdp, 0, sizeof(xdp));
7995 xdp.command = cmd;
7996
7997 /* Query must always succeed. */
7998 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7999
8000 return xdp.prog_id;
8001 }
8002
dev_xdp_install(struct net_device * dev,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)8003 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8004 struct netlink_ext_ack *extack, u32 flags,
8005 struct bpf_prog *prog)
8006 {
8007 struct netdev_bpf xdp;
8008
8009 memset(&xdp, 0, sizeof(xdp));
8010 if (flags & XDP_FLAGS_HW_MODE)
8011 xdp.command = XDP_SETUP_PROG_HW;
8012 else
8013 xdp.command = XDP_SETUP_PROG;
8014 xdp.extack = extack;
8015 xdp.flags = flags;
8016 xdp.prog = prog;
8017
8018 return bpf_op(dev, &xdp);
8019 }
8020
dev_xdp_uninstall(struct net_device * dev)8021 static void dev_xdp_uninstall(struct net_device *dev)
8022 {
8023 struct netdev_bpf xdp;
8024 bpf_op_t ndo_bpf;
8025
8026 /* Remove generic XDP */
8027 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8028
8029 /* Remove from the driver */
8030 ndo_bpf = dev->netdev_ops->ndo_bpf;
8031 if (!ndo_bpf)
8032 return;
8033
8034 memset(&xdp, 0, sizeof(xdp));
8035 xdp.command = XDP_QUERY_PROG;
8036 WARN_ON(ndo_bpf(dev, &xdp));
8037 if (xdp.prog_id)
8038 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8039 NULL));
8040
8041 /* Remove HW offload */
8042 memset(&xdp, 0, sizeof(xdp));
8043 xdp.command = XDP_QUERY_PROG_HW;
8044 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8045 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8046 NULL));
8047 }
8048
8049 /**
8050 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8051 * @dev: device
8052 * @extack: netlink extended ack
8053 * @fd: new program fd or negative value to clear
8054 * @flags: xdp-related flags
8055 *
8056 * Set or clear a bpf program for a device
8057 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,u32 flags)8058 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8059 int fd, u32 flags)
8060 {
8061 const struct net_device_ops *ops = dev->netdev_ops;
8062 enum bpf_netdev_command query;
8063 struct bpf_prog *prog = NULL;
8064 bpf_op_t bpf_op, bpf_chk;
8065 int err;
8066
8067 ASSERT_RTNL();
8068
8069 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8070
8071 bpf_op = bpf_chk = ops->ndo_bpf;
8072 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
8073 return -EOPNOTSUPP;
8074 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8075 bpf_op = generic_xdp_install;
8076 if (bpf_op == bpf_chk)
8077 bpf_chk = generic_xdp_install;
8078
8079 if (fd >= 0) {
8080 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
8081 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
8082 return -EEXIST;
8083 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8084 __dev_xdp_query(dev, bpf_op, query))
8085 return -EBUSY;
8086
8087 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8088 bpf_op == ops->ndo_bpf);
8089 if (IS_ERR(prog))
8090 return PTR_ERR(prog);
8091
8092 if (!(flags & XDP_FLAGS_HW_MODE) &&
8093 bpf_prog_is_dev_bound(prog->aux)) {
8094 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8095 bpf_prog_put(prog);
8096 return -EINVAL;
8097 }
8098 }
8099
8100 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8101 if (err < 0 && prog)
8102 bpf_prog_put(prog);
8103
8104 return err;
8105 }
8106
8107 /**
8108 * dev_new_index - allocate an ifindex
8109 * @net: the applicable net namespace
8110 *
8111 * Returns a suitable unique value for a new device interface
8112 * number. The caller must hold the rtnl semaphore or the
8113 * dev_base_lock to be sure it remains unique.
8114 */
dev_new_index(struct net * net)8115 static int dev_new_index(struct net *net)
8116 {
8117 int ifindex = net->ifindex;
8118
8119 for (;;) {
8120 if (++ifindex <= 0)
8121 ifindex = 1;
8122 if (!__dev_get_by_index(net, ifindex))
8123 return net->ifindex = ifindex;
8124 }
8125 }
8126
8127 /* Delayed registration/unregisteration */
8128 static LIST_HEAD(net_todo_list);
8129 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8130
net_set_todo(struct net_device * dev)8131 static void net_set_todo(struct net_device *dev)
8132 {
8133 list_add_tail(&dev->todo_list, &net_todo_list);
8134 dev_net(dev)->dev_unreg_count++;
8135 }
8136
rollback_registered_many(struct list_head * head)8137 static void rollback_registered_many(struct list_head *head)
8138 {
8139 struct net_device *dev, *tmp;
8140 LIST_HEAD(close_head);
8141
8142 BUG_ON(dev_boot_phase);
8143 ASSERT_RTNL();
8144
8145 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8146 /* Some devices call without registering
8147 * for initialization unwind. Remove those
8148 * devices and proceed with the remaining.
8149 */
8150 if (dev->reg_state == NETREG_UNINITIALIZED) {
8151 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8152 dev->name, dev);
8153
8154 WARN_ON(1);
8155 list_del(&dev->unreg_list);
8156 continue;
8157 }
8158 dev->dismantle = true;
8159 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8160 }
8161
8162 /* If device is running, close it first. */
8163 list_for_each_entry(dev, head, unreg_list)
8164 list_add_tail(&dev->close_list, &close_head);
8165 dev_close_many(&close_head, true);
8166
8167 list_for_each_entry(dev, head, unreg_list) {
8168 /* And unlink it from device chain. */
8169 unlist_netdevice(dev);
8170
8171 dev->reg_state = NETREG_UNREGISTERING;
8172 }
8173 flush_all_backlogs();
8174
8175 synchronize_net();
8176
8177 list_for_each_entry(dev, head, unreg_list) {
8178 struct sk_buff *skb = NULL;
8179
8180 /* Shutdown queueing discipline. */
8181 dev_shutdown(dev);
8182
8183 dev_xdp_uninstall(dev);
8184
8185 /* Notify protocols, that we are about to destroy
8186 * this device. They should clean all the things.
8187 */
8188 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8189
8190 if (!dev->rtnl_link_ops ||
8191 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8192 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8193 GFP_KERNEL, NULL, 0);
8194
8195 /*
8196 * Flush the unicast and multicast chains
8197 */
8198 dev_uc_flush(dev);
8199 dev_mc_flush(dev);
8200
8201 if (dev->netdev_ops->ndo_uninit)
8202 dev->netdev_ops->ndo_uninit(dev);
8203
8204 if (skb)
8205 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8206
8207 /* Notifier chain MUST detach us all upper devices. */
8208 WARN_ON(netdev_has_any_upper_dev(dev));
8209 WARN_ON(netdev_has_any_lower_dev(dev));
8210
8211 /* Remove entries from kobject tree */
8212 netdev_unregister_kobject(dev);
8213 #ifdef CONFIG_XPS
8214 /* Remove XPS queueing entries */
8215 netif_reset_xps_queues_gt(dev, 0);
8216 #endif
8217 }
8218
8219 synchronize_net();
8220
8221 list_for_each_entry(dev, head, unreg_list)
8222 dev_put(dev);
8223 }
8224
rollback_registered(struct net_device * dev)8225 static void rollback_registered(struct net_device *dev)
8226 {
8227 LIST_HEAD(single);
8228
8229 list_add(&dev->unreg_list, &single);
8230 rollback_registered_many(&single);
8231 list_del(&single);
8232 }
8233
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)8234 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8235 struct net_device *upper, netdev_features_t features)
8236 {
8237 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8238 netdev_features_t feature;
8239 int feature_bit;
8240
8241 for_each_netdev_feature(upper_disables, feature_bit) {
8242 feature = __NETIF_F_BIT(feature_bit);
8243 if (!(upper->wanted_features & feature)
8244 && (features & feature)) {
8245 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8246 &feature, upper->name);
8247 features &= ~feature;
8248 }
8249 }
8250
8251 return features;
8252 }
8253
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)8254 static void netdev_sync_lower_features(struct net_device *upper,
8255 struct net_device *lower, netdev_features_t features)
8256 {
8257 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8258 netdev_features_t feature;
8259 int feature_bit;
8260
8261 for_each_netdev_feature(upper_disables, feature_bit) {
8262 feature = __NETIF_F_BIT(feature_bit);
8263 if (!(features & feature) && (lower->features & feature)) {
8264 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8265 &feature, lower->name);
8266 lower->wanted_features &= ~feature;
8267 __netdev_update_features(lower);
8268
8269 if (unlikely(lower->features & feature))
8270 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8271 &feature, lower->name);
8272 else
8273 netdev_features_change(lower);
8274 }
8275 }
8276 }
8277
netdev_fix_features(struct net_device * dev,netdev_features_t features)8278 static netdev_features_t netdev_fix_features(struct net_device *dev,
8279 netdev_features_t features)
8280 {
8281 /* Fix illegal checksum combinations */
8282 if ((features & NETIF_F_HW_CSUM) &&
8283 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8284 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8285 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8286 }
8287
8288 /* TSO requires that SG is present as well. */
8289 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8290 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8291 features &= ~NETIF_F_ALL_TSO;
8292 }
8293
8294 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8295 !(features & NETIF_F_IP_CSUM)) {
8296 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8297 features &= ~NETIF_F_TSO;
8298 features &= ~NETIF_F_TSO_ECN;
8299 }
8300
8301 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8302 !(features & NETIF_F_IPV6_CSUM)) {
8303 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8304 features &= ~NETIF_F_TSO6;
8305 }
8306
8307 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8308 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8309 features &= ~NETIF_F_TSO_MANGLEID;
8310
8311 /* TSO ECN requires that TSO is present as well. */
8312 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8313 features &= ~NETIF_F_TSO_ECN;
8314
8315 /* Software GSO depends on SG. */
8316 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8317 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8318 features &= ~NETIF_F_GSO;
8319 }
8320
8321 /* GSO partial features require GSO partial be set */
8322 if ((features & dev->gso_partial_features) &&
8323 !(features & NETIF_F_GSO_PARTIAL)) {
8324 netdev_dbg(dev,
8325 "Dropping partially supported GSO features since no GSO partial.\n");
8326 features &= ~dev->gso_partial_features;
8327 }
8328
8329 if (!(features & NETIF_F_RXCSUM)) {
8330 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8331 * successfully merged by hardware must also have the
8332 * checksum verified by hardware. If the user does not
8333 * want to enable RXCSUM, logically, we should disable GRO_HW.
8334 */
8335 if (features & NETIF_F_GRO_HW) {
8336 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8337 features &= ~NETIF_F_GRO_HW;
8338 }
8339 }
8340
8341 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8342 if (features & NETIF_F_RXFCS) {
8343 if (features & NETIF_F_LRO) {
8344 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8345 features &= ~NETIF_F_LRO;
8346 }
8347
8348 if (features & NETIF_F_GRO_HW) {
8349 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8350 features &= ~NETIF_F_GRO_HW;
8351 }
8352 }
8353
8354 return features;
8355 }
8356
__netdev_update_features(struct net_device * dev)8357 int __netdev_update_features(struct net_device *dev)
8358 {
8359 struct net_device *upper, *lower;
8360 netdev_features_t features;
8361 struct list_head *iter;
8362 int err = -1;
8363
8364 ASSERT_RTNL();
8365
8366 features = netdev_get_wanted_features(dev);
8367
8368 if (dev->netdev_ops->ndo_fix_features)
8369 features = dev->netdev_ops->ndo_fix_features(dev, features);
8370
8371 /* driver might be less strict about feature dependencies */
8372 features = netdev_fix_features(dev, features);
8373
8374 /* some features can't be enabled if they're off an an upper device */
8375 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8376 features = netdev_sync_upper_features(dev, upper, features);
8377
8378 if (dev->features == features)
8379 goto sync_lower;
8380
8381 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8382 &dev->features, &features);
8383
8384 if (dev->netdev_ops->ndo_set_features)
8385 err = dev->netdev_ops->ndo_set_features(dev, features);
8386 else
8387 err = 0;
8388
8389 if (unlikely(err < 0)) {
8390 netdev_err(dev,
8391 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8392 err, &features, &dev->features);
8393 /* return non-0 since some features might have changed and
8394 * it's better to fire a spurious notification than miss it
8395 */
8396 return -1;
8397 }
8398
8399 sync_lower:
8400 /* some features must be disabled on lower devices when disabled
8401 * on an upper device (think: bonding master or bridge)
8402 */
8403 netdev_for_each_lower_dev(dev, lower, iter)
8404 netdev_sync_lower_features(dev, lower, features);
8405
8406 if (!err) {
8407 netdev_features_t diff = features ^ dev->features;
8408
8409 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8410 /* udp_tunnel_{get,drop}_rx_info both need
8411 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8412 * device, or they won't do anything.
8413 * Thus we need to update dev->features
8414 * *before* calling udp_tunnel_get_rx_info,
8415 * but *after* calling udp_tunnel_drop_rx_info.
8416 */
8417 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8418 dev->features = features;
8419 udp_tunnel_get_rx_info(dev);
8420 } else {
8421 udp_tunnel_drop_rx_info(dev);
8422 }
8423 }
8424
8425 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8426 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8427 dev->features = features;
8428 err |= vlan_get_rx_ctag_filter_info(dev);
8429 } else {
8430 vlan_drop_rx_ctag_filter_info(dev);
8431 }
8432 }
8433
8434 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8435 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8436 dev->features = features;
8437 err |= vlan_get_rx_stag_filter_info(dev);
8438 } else {
8439 vlan_drop_rx_stag_filter_info(dev);
8440 }
8441 }
8442
8443 dev->features = features;
8444 }
8445
8446 return err < 0 ? 0 : 1;
8447 }
8448
8449 /**
8450 * netdev_update_features - recalculate device features
8451 * @dev: the device to check
8452 *
8453 * Recalculate dev->features set and send notifications if it
8454 * has changed. Should be called after driver or hardware dependent
8455 * conditions might have changed that influence the features.
8456 */
netdev_update_features(struct net_device * dev)8457 void netdev_update_features(struct net_device *dev)
8458 {
8459 if (__netdev_update_features(dev))
8460 netdev_features_change(dev);
8461 }
8462 EXPORT_SYMBOL(netdev_update_features);
8463
8464 /**
8465 * netdev_change_features - recalculate device features
8466 * @dev: the device to check
8467 *
8468 * Recalculate dev->features set and send notifications even
8469 * if they have not changed. Should be called instead of
8470 * netdev_update_features() if also dev->vlan_features might
8471 * have changed to allow the changes to be propagated to stacked
8472 * VLAN devices.
8473 */
netdev_change_features(struct net_device * dev)8474 void netdev_change_features(struct net_device *dev)
8475 {
8476 __netdev_update_features(dev);
8477 netdev_features_change(dev);
8478 }
8479 EXPORT_SYMBOL(netdev_change_features);
8480
8481 /**
8482 * netif_stacked_transfer_operstate - transfer operstate
8483 * @rootdev: the root or lower level device to transfer state from
8484 * @dev: the device to transfer operstate to
8485 *
8486 * Transfer operational state from root to device. This is normally
8487 * called when a stacking relationship exists between the root
8488 * device and the device(a leaf device).
8489 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)8490 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8491 struct net_device *dev)
8492 {
8493 if (rootdev->operstate == IF_OPER_DORMANT)
8494 netif_dormant_on(dev);
8495 else
8496 netif_dormant_off(dev);
8497
8498 if (netif_carrier_ok(rootdev))
8499 netif_carrier_on(dev);
8500 else
8501 netif_carrier_off(dev);
8502 }
8503 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8504
netif_alloc_rx_queues(struct net_device * dev)8505 static int netif_alloc_rx_queues(struct net_device *dev)
8506 {
8507 unsigned int i, count = dev->num_rx_queues;
8508 struct netdev_rx_queue *rx;
8509 size_t sz = count * sizeof(*rx);
8510 int err = 0;
8511
8512 BUG_ON(count < 1);
8513
8514 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8515 if (!rx)
8516 return -ENOMEM;
8517
8518 dev->_rx = rx;
8519
8520 for (i = 0; i < count; i++) {
8521 rx[i].dev = dev;
8522
8523 /* XDP RX-queue setup */
8524 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8525 if (err < 0)
8526 goto err_rxq_info;
8527 }
8528 return 0;
8529
8530 err_rxq_info:
8531 /* Rollback successful reg's and free other resources */
8532 while (i--)
8533 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8534 kvfree(dev->_rx);
8535 dev->_rx = NULL;
8536 return err;
8537 }
8538
netif_free_rx_queues(struct net_device * dev)8539 static void netif_free_rx_queues(struct net_device *dev)
8540 {
8541 unsigned int i, count = dev->num_rx_queues;
8542
8543 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8544 if (!dev->_rx)
8545 return;
8546
8547 for (i = 0; i < count; i++)
8548 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8549
8550 kvfree(dev->_rx);
8551 }
8552
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)8553 static void netdev_init_one_queue(struct net_device *dev,
8554 struct netdev_queue *queue, void *_unused)
8555 {
8556 /* Initialize queue lock */
8557 spin_lock_init(&queue->_xmit_lock);
8558 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8559 queue->xmit_lock_owner = -1;
8560 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8561 queue->dev = dev;
8562 #ifdef CONFIG_BQL
8563 dql_init(&queue->dql, HZ);
8564 #endif
8565 }
8566
netif_free_tx_queues(struct net_device * dev)8567 static void netif_free_tx_queues(struct net_device *dev)
8568 {
8569 kvfree(dev->_tx);
8570 }
8571
netif_alloc_netdev_queues(struct net_device * dev)8572 static int netif_alloc_netdev_queues(struct net_device *dev)
8573 {
8574 unsigned int count = dev->num_tx_queues;
8575 struct netdev_queue *tx;
8576 size_t sz = count * sizeof(*tx);
8577
8578 if (count < 1 || count > 0xffff)
8579 return -EINVAL;
8580
8581 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8582 if (!tx)
8583 return -ENOMEM;
8584
8585 dev->_tx = tx;
8586
8587 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8588 spin_lock_init(&dev->tx_global_lock);
8589
8590 return 0;
8591 }
8592
netif_tx_stop_all_queues(struct net_device * dev)8593 void netif_tx_stop_all_queues(struct net_device *dev)
8594 {
8595 unsigned int i;
8596
8597 for (i = 0; i < dev->num_tx_queues; i++) {
8598 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8599
8600 netif_tx_stop_queue(txq);
8601 }
8602 }
8603 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8604
8605 /**
8606 * register_netdevice - register a network device
8607 * @dev: device to register
8608 *
8609 * Take a completed network device structure and add it to the kernel
8610 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8611 * chain. 0 is returned on success. A negative errno code is returned
8612 * on a failure to set up the device, or if the name is a duplicate.
8613 *
8614 * Callers must hold the rtnl semaphore. You may want
8615 * register_netdev() instead of this.
8616 *
8617 * BUGS:
8618 * The locking appears insufficient to guarantee two parallel registers
8619 * will not get the same name.
8620 */
8621
register_netdevice(struct net_device * dev)8622 int register_netdevice(struct net_device *dev)
8623 {
8624 int ret;
8625 struct net *net = dev_net(dev);
8626
8627 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8628 NETDEV_FEATURE_COUNT);
8629 BUG_ON(dev_boot_phase);
8630 ASSERT_RTNL();
8631
8632 might_sleep();
8633
8634 /* When net_device's are persistent, this will be fatal. */
8635 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8636 BUG_ON(!net);
8637
8638 spin_lock_init(&dev->addr_list_lock);
8639 netdev_set_addr_lockdep_class(dev);
8640
8641 ret = dev_get_valid_name(net, dev, dev->name);
8642 if (ret < 0)
8643 goto out;
8644
8645 /* Init, if this function is available */
8646 if (dev->netdev_ops->ndo_init) {
8647 ret = dev->netdev_ops->ndo_init(dev);
8648 if (ret) {
8649 if (ret > 0)
8650 ret = -EIO;
8651 goto out;
8652 }
8653 }
8654
8655 if (((dev->hw_features | dev->features) &
8656 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8657 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8658 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8659 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8660 ret = -EINVAL;
8661 goto err_uninit;
8662 }
8663
8664 ret = -EBUSY;
8665 if (!dev->ifindex)
8666 dev->ifindex = dev_new_index(net);
8667 else if (__dev_get_by_index(net, dev->ifindex))
8668 goto err_uninit;
8669
8670 /* Transfer changeable features to wanted_features and enable
8671 * software offloads (GSO and GRO).
8672 */
8673 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8674 dev->features |= NETIF_F_SOFT_FEATURES;
8675
8676 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8677 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8678 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8679 }
8680
8681 dev->wanted_features = dev->features & dev->hw_features;
8682
8683 if (!(dev->flags & IFF_LOOPBACK))
8684 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8685
8686 /* If IPv4 TCP segmentation offload is supported we should also
8687 * allow the device to enable segmenting the frame with the option
8688 * of ignoring a static IP ID value. This doesn't enable the
8689 * feature itself but allows the user to enable it later.
8690 */
8691 if (dev->hw_features & NETIF_F_TSO)
8692 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8693 if (dev->vlan_features & NETIF_F_TSO)
8694 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8695 if (dev->mpls_features & NETIF_F_TSO)
8696 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8697 if (dev->hw_enc_features & NETIF_F_TSO)
8698 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8699
8700 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8701 */
8702 dev->vlan_features |= NETIF_F_HIGHDMA;
8703
8704 /* Make NETIF_F_SG inheritable to tunnel devices.
8705 */
8706 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8707
8708 /* Make NETIF_F_SG inheritable to MPLS.
8709 */
8710 dev->mpls_features |= NETIF_F_SG;
8711
8712 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8713 ret = notifier_to_errno(ret);
8714 if (ret)
8715 goto err_uninit;
8716
8717 ret = netdev_register_kobject(dev);
8718 if (ret) {
8719 dev->reg_state = NETREG_UNREGISTERED;
8720 goto err_uninit;
8721 }
8722 dev->reg_state = NETREG_REGISTERED;
8723
8724 __netdev_update_features(dev);
8725
8726 /*
8727 * Default initial state at registry is that the
8728 * device is present.
8729 */
8730
8731 set_bit(__LINK_STATE_PRESENT, &dev->state);
8732
8733 linkwatch_init_dev(dev);
8734
8735 dev_init_scheduler(dev);
8736 dev_hold(dev);
8737 list_netdevice(dev);
8738 add_device_randomness(dev->dev_addr, dev->addr_len);
8739
8740 /* If the device has permanent device address, driver should
8741 * set dev_addr and also addr_assign_type should be set to
8742 * NET_ADDR_PERM (default value).
8743 */
8744 if (dev->addr_assign_type == NET_ADDR_PERM)
8745 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8746
8747 /* Notify protocols, that a new device appeared. */
8748 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8749 ret = notifier_to_errno(ret);
8750 if (ret) {
8751 rollback_registered(dev);
8752 rcu_barrier();
8753
8754 dev->reg_state = NETREG_UNREGISTERED;
8755 /* We should put the kobject that hold in
8756 * netdev_unregister_kobject(), otherwise
8757 * the net device cannot be freed when
8758 * driver calls free_netdev(), because the
8759 * kobject is being hold.
8760 */
8761 kobject_put(&dev->dev.kobj);
8762 }
8763 /*
8764 * Prevent userspace races by waiting until the network
8765 * device is fully setup before sending notifications.
8766 */
8767 if (!dev->rtnl_link_ops ||
8768 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8769 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8770
8771 out:
8772 return ret;
8773
8774 err_uninit:
8775 if (dev->netdev_ops->ndo_uninit)
8776 dev->netdev_ops->ndo_uninit(dev);
8777 if (dev->priv_destructor)
8778 dev->priv_destructor(dev);
8779 goto out;
8780 }
8781 EXPORT_SYMBOL(register_netdevice);
8782
8783 /**
8784 * init_dummy_netdev - init a dummy network device for NAPI
8785 * @dev: device to init
8786 *
8787 * This takes a network device structure and initialize the minimum
8788 * amount of fields so it can be used to schedule NAPI polls without
8789 * registering a full blown interface. This is to be used by drivers
8790 * that need to tie several hardware interfaces to a single NAPI
8791 * poll scheduler due to HW limitations.
8792 */
init_dummy_netdev(struct net_device * dev)8793 int init_dummy_netdev(struct net_device *dev)
8794 {
8795 /* Clear everything. Note we don't initialize spinlocks
8796 * are they aren't supposed to be taken by any of the
8797 * NAPI code and this dummy netdev is supposed to be
8798 * only ever used for NAPI polls
8799 */
8800 memset(dev, 0, sizeof(struct net_device));
8801
8802 /* make sure we BUG if trying to hit standard
8803 * register/unregister code path
8804 */
8805 dev->reg_state = NETREG_DUMMY;
8806
8807 /* NAPI wants this */
8808 INIT_LIST_HEAD(&dev->napi_list);
8809
8810 /* a dummy interface is started by default */
8811 set_bit(__LINK_STATE_PRESENT, &dev->state);
8812 set_bit(__LINK_STATE_START, &dev->state);
8813
8814 /* napi_busy_loop stats accounting wants this */
8815 dev_net_set(dev, &init_net);
8816
8817 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8818 * because users of this 'device' dont need to change
8819 * its refcount.
8820 */
8821
8822 return 0;
8823 }
8824 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8825
8826
8827 /**
8828 * register_netdev - register a network device
8829 * @dev: device to register
8830 *
8831 * Take a completed network device structure and add it to the kernel
8832 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8833 * chain. 0 is returned on success. A negative errno code is returned
8834 * on a failure to set up the device, or if the name is a duplicate.
8835 *
8836 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8837 * and expands the device name if you passed a format string to
8838 * alloc_netdev.
8839 */
register_netdev(struct net_device * dev)8840 int register_netdev(struct net_device *dev)
8841 {
8842 int err;
8843
8844 if (rtnl_lock_killable())
8845 return -EINTR;
8846 err = register_netdevice(dev);
8847 rtnl_unlock();
8848 return err;
8849 }
8850 EXPORT_SYMBOL(register_netdev);
8851
netdev_refcnt_read(const struct net_device * dev)8852 int netdev_refcnt_read(const struct net_device *dev)
8853 {
8854 int i, refcnt = 0;
8855
8856 for_each_possible_cpu(i)
8857 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8858 return refcnt;
8859 }
8860 EXPORT_SYMBOL(netdev_refcnt_read);
8861
8862 /**
8863 * netdev_wait_allrefs - wait until all references are gone.
8864 * @dev: target net_device
8865 *
8866 * This is called when unregistering network devices.
8867 *
8868 * Any protocol or device that holds a reference should register
8869 * for netdevice notification, and cleanup and put back the
8870 * reference if they receive an UNREGISTER event.
8871 * We can get stuck here if buggy protocols don't correctly
8872 * call dev_put.
8873 */
netdev_wait_allrefs(struct net_device * dev)8874 static void netdev_wait_allrefs(struct net_device *dev)
8875 {
8876 unsigned long rebroadcast_time, warning_time;
8877 int refcnt;
8878
8879 linkwatch_forget_dev(dev);
8880
8881 rebroadcast_time = warning_time = jiffies;
8882 refcnt = netdev_refcnt_read(dev);
8883
8884 while (refcnt != 0) {
8885 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8886 rtnl_lock();
8887
8888 /* Rebroadcast unregister notification */
8889 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8890
8891 __rtnl_unlock();
8892 rcu_barrier();
8893 rtnl_lock();
8894
8895 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8896 &dev->state)) {
8897 /* We must not have linkwatch events
8898 * pending on unregister. If this
8899 * happens, we simply run the queue
8900 * unscheduled, resulting in a noop
8901 * for this device.
8902 */
8903 linkwatch_run_queue();
8904 }
8905
8906 __rtnl_unlock();
8907
8908 rebroadcast_time = jiffies;
8909 }
8910
8911 msleep(250);
8912
8913 refcnt = netdev_refcnt_read(dev);
8914
8915 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8916 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8917 dev->name, refcnt);
8918 warning_time = jiffies;
8919 }
8920 }
8921 }
8922
8923 /* The sequence is:
8924 *
8925 * rtnl_lock();
8926 * ...
8927 * register_netdevice(x1);
8928 * register_netdevice(x2);
8929 * ...
8930 * unregister_netdevice(y1);
8931 * unregister_netdevice(y2);
8932 * ...
8933 * rtnl_unlock();
8934 * free_netdev(y1);
8935 * free_netdev(y2);
8936 *
8937 * We are invoked by rtnl_unlock().
8938 * This allows us to deal with problems:
8939 * 1) We can delete sysfs objects which invoke hotplug
8940 * without deadlocking with linkwatch via keventd.
8941 * 2) Since we run with the RTNL semaphore not held, we can sleep
8942 * safely in order to wait for the netdev refcnt to drop to zero.
8943 *
8944 * We must not return until all unregister events added during
8945 * the interval the lock was held have been completed.
8946 */
netdev_run_todo(void)8947 void netdev_run_todo(void)
8948 {
8949 struct list_head list;
8950
8951 /* Snapshot list, allow later requests */
8952 list_replace_init(&net_todo_list, &list);
8953
8954 __rtnl_unlock();
8955
8956
8957 /* Wait for rcu callbacks to finish before next phase */
8958 if (!list_empty(&list))
8959 rcu_barrier();
8960
8961 while (!list_empty(&list)) {
8962 struct net_device *dev
8963 = list_first_entry(&list, struct net_device, todo_list);
8964 list_del(&dev->todo_list);
8965
8966 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8967 pr_err("network todo '%s' but state %d\n",
8968 dev->name, dev->reg_state);
8969 dump_stack();
8970 continue;
8971 }
8972
8973 dev->reg_state = NETREG_UNREGISTERED;
8974
8975 netdev_wait_allrefs(dev);
8976
8977 /* paranoia */
8978 BUG_ON(netdev_refcnt_read(dev));
8979 BUG_ON(!list_empty(&dev->ptype_all));
8980 BUG_ON(!list_empty(&dev->ptype_specific));
8981 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8982 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8983 #if IS_ENABLED(CONFIG_DECNET)
8984 WARN_ON(dev->dn_ptr);
8985 #endif
8986 if (dev->priv_destructor)
8987 dev->priv_destructor(dev);
8988 if (dev->needs_free_netdev)
8989 free_netdev(dev);
8990
8991 /* Report a network device has been unregistered */
8992 rtnl_lock();
8993 dev_net(dev)->dev_unreg_count--;
8994 __rtnl_unlock();
8995 wake_up(&netdev_unregistering_wq);
8996
8997 /* Free network device */
8998 kobject_put(&dev->dev.kobj);
8999 }
9000 }
9001
9002 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9003 * all the same fields in the same order as net_device_stats, with only
9004 * the type differing, but rtnl_link_stats64 may have additional fields
9005 * at the end for newer counters.
9006 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)9007 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9008 const struct net_device_stats *netdev_stats)
9009 {
9010 #if BITS_PER_LONG == 64
9011 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9012 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9013 /* zero out counters that only exist in rtnl_link_stats64 */
9014 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9015 sizeof(*stats64) - sizeof(*netdev_stats));
9016 #else
9017 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9018 const unsigned long *src = (const unsigned long *)netdev_stats;
9019 u64 *dst = (u64 *)stats64;
9020
9021 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9022 for (i = 0; i < n; i++)
9023 dst[i] = src[i];
9024 /* zero out counters that only exist in rtnl_link_stats64 */
9025 memset((char *)stats64 + n * sizeof(u64), 0,
9026 sizeof(*stats64) - n * sizeof(u64));
9027 #endif
9028 }
9029 EXPORT_SYMBOL(netdev_stats_to_stats64);
9030
9031 /**
9032 * dev_get_stats - get network device statistics
9033 * @dev: device to get statistics from
9034 * @storage: place to store stats
9035 *
9036 * Get network statistics from device. Return @storage.
9037 * The device driver may provide its own method by setting
9038 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9039 * otherwise the internal statistics structure is used.
9040 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)9041 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9042 struct rtnl_link_stats64 *storage)
9043 {
9044 const struct net_device_ops *ops = dev->netdev_ops;
9045
9046 if (ops->ndo_get_stats64) {
9047 memset(storage, 0, sizeof(*storage));
9048 ops->ndo_get_stats64(dev, storage);
9049 } else if (ops->ndo_get_stats) {
9050 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9051 } else {
9052 netdev_stats_to_stats64(storage, &dev->stats);
9053 }
9054 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9055 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9056 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9057 return storage;
9058 }
9059 EXPORT_SYMBOL(dev_get_stats);
9060
dev_ingress_queue_create(struct net_device * dev)9061 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9062 {
9063 struct netdev_queue *queue = dev_ingress_queue(dev);
9064
9065 #ifdef CONFIG_NET_CLS_ACT
9066 if (queue)
9067 return queue;
9068 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9069 if (!queue)
9070 return NULL;
9071 netdev_init_one_queue(dev, queue, NULL);
9072 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9073 queue->qdisc_sleeping = &noop_qdisc;
9074 rcu_assign_pointer(dev->ingress_queue, queue);
9075 #endif
9076 return queue;
9077 }
9078
9079 static const struct ethtool_ops default_ethtool_ops;
9080
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)9081 void netdev_set_default_ethtool_ops(struct net_device *dev,
9082 const struct ethtool_ops *ops)
9083 {
9084 if (dev->ethtool_ops == &default_ethtool_ops)
9085 dev->ethtool_ops = ops;
9086 }
9087 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9088
netdev_freemem(struct net_device * dev)9089 void netdev_freemem(struct net_device *dev)
9090 {
9091 char *addr = (char *)dev - dev->padded;
9092
9093 kvfree(addr);
9094 }
9095
9096 /**
9097 * alloc_netdev_mqs - allocate network device
9098 * @sizeof_priv: size of private data to allocate space for
9099 * @name: device name format string
9100 * @name_assign_type: origin of device name
9101 * @setup: callback to initialize device
9102 * @txqs: the number of TX subqueues to allocate
9103 * @rxqs: the number of RX subqueues to allocate
9104 *
9105 * Allocates a struct net_device with private data area for driver use
9106 * and performs basic initialization. Also allocates subqueue structs
9107 * for each queue on the device.
9108 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)9109 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9110 unsigned char name_assign_type,
9111 void (*setup)(struct net_device *),
9112 unsigned int txqs, unsigned int rxqs)
9113 {
9114 struct net_device *dev;
9115 unsigned int alloc_size;
9116 struct net_device *p;
9117
9118 BUG_ON(strlen(name) >= sizeof(dev->name));
9119
9120 if (txqs < 1) {
9121 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9122 return NULL;
9123 }
9124
9125 if (rxqs < 1) {
9126 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9127 return NULL;
9128 }
9129
9130 alloc_size = sizeof(struct net_device);
9131 if (sizeof_priv) {
9132 /* ensure 32-byte alignment of private area */
9133 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9134 alloc_size += sizeof_priv;
9135 }
9136 /* ensure 32-byte alignment of whole construct */
9137 alloc_size += NETDEV_ALIGN - 1;
9138
9139 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9140 if (!p)
9141 return NULL;
9142
9143 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9144 dev->padded = (char *)dev - (char *)p;
9145
9146 dev->pcpu_refcnt = alloc_percpu(int);
9147 if (!dev->pcpu_refcnt)
9148 goto free_dev;
9149
9150 if (dev_addr_init(dev))
9151 goto free_pcpu;
9152
9153 dev_mc_init(dev);
9154 dev_uc_init(dev);
9155
9156 dev_net_set(dev, &init_net);
9157
9158 dev->gso_max_size = GSO_MAX_SIZE;
9159 dev->gso_max_segs = GSO_MAX_SEGS;
9160 dev->upper_level = 1;
9161 dev->lower_level = 1;
9162
9163 INIT_LIST_HEAD(&dev->napi_list);
9164 INIT_LIST_HEAD(&dev->unreg_list);
9165 INIT_LIST_HEAD(&dev->close_list);
9166 INIT_LIST_HEAD(&dev->link_watch_list);
9167 INIT_LIST_HEAD(&dev->adj_list.upper);
9168 INIT_LIST_HEAD(&dev->adj_list.lower);
9169 INIT_LIST_HEAD(&dev->ptype_all);
9170 INIT_LIST_HEAD(&dev->ptype_specific);
9171 #ifdef CONFIG_NET_SCHED
9172 hash_init(dev->qdisc_hash);
9173 #endif
9174 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9175 setup(dev);
9176
9177 if (!dev->tx_queue_len) {
9178 dev->priv_flags |= IFF_NO_QUEUE;
9179 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9180 }
9181
9182 dev->num_tx_queues = txqs;
9183 dev->real_num_tx_queues = txqs;
9184 if (netif_alloc_netdev_queues(dev))
9185 goto free_all;
9186
9187 dev->num_rx_queues = rxqs;
9188 dev->real_num_rx_queues = rxqs;
9189 if (netif_alloc_rx_queues(dev))
9190 goto free_all;
9191
9192 strcpy(dev->name, name);
9193 dev->name_assign_type = name_assign_type;
9194 dev->group = INIT_NETDEV_GROUP;
9195 if (!dev->ethtool_ops)
9196 dev->ethtool_ops = &default_ethtool_ops;
9197
9198 nf_hook_ingress_init(dev);
9199
9200 return dev;
9201
9202 free_all:
9203 free_netdev(dev);
9204 return NULL;
9205
9206 free_pcpu:
9207 free_percpu(dev->pcpu_refcnt);
9208 free_dev:
9209 netdev_freemem(dev);
9210 return NULL;
9211 }
9212 EXPORT_SYMBOL(alloc_netdev_mqs);
9213
9214 /**
9215 * free_netdev - free network device
9216 * @dev: device
9217 *
9218 * This function does the last stage of destroying an allocated device
9219 * interface. The reference to the device object is released. If this
9220 * is the last reference then it will be freed.Must be called in process
9221 * context.
9222 */
free_netdev(struct net_device * dev)9223 void free_netdev(struct net_device *dev)
9224 {
9225 struct napi_struct *p, *n;
9226
9227 might_sleep();
9228 netif_free_tx_queues(dev);
9229 netif_free_rx_queues(dev);
9230
9231 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9232
9233 /* Flush device addresses */
9234 dev_addr_flush(dev);
9235
9236 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9237 netif_napi_del(p);
9238
9239 free_percpu(dev->pcpu_refcnt);
9240 dev->pcpu_refcnt = NULL;
9241
9242 /* Compatibility with error handling in drivers */
9243 if (dev->reg_state == NETREG_UNINITIALIZED) {
9244 netdev_freemem(dev);
9245 return;
9246 }
9247
9248 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9249 dev->reg_state = NETREG_RELEASED;
9250
9251 /* will free via device release */
9252 put_device(&dev->dev);
9253 }
9254 EXPORT_SYMBOL(free_netdev);
9255
9256 /**
9257 * synchronize_net - Synchronize with packet receive processing
9258 *
9259 * Wait for packets currently being received to be done.
9260 * Does not block later packets from starting.
9261 */
synchronize_net(void)9262 void synchronize_net(void)
9263 {
9264 might_sleep();
9265 if (rtnl_is_locked())
9266 synchronize_rcu_expedited();
9267 else
9268 synchronize_rcu();
9269 }
9270 EXPORT_SYMBOL(synchronize_net);
9271
9272 /**
9273 * unregister_netdevice_queue - remove device from the kernel
9274 * @dev: device
9275 * @head: list
9276 *
9277 * This function shuts down a device interface and removes it
9278 * from the kernel tables.
9279 * If head not NULL, device is queued to be unregistered later.
9280 *
9281 * Callers must hold the rtnl semaphore. You may want
9282 * unregister_netdev() instead of this.
9283 */
9284
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)9285 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9286 {
9287 ASSERT_RTNL();
9288
9289 if (head) {
9290 list_move_tail(&dev->unreg_list, head);
9291 } else {
9292 rollback_registered(dev);
9293 /* Finish processing unregister after unlock */
9294 net_set_todo(dev);
9295 }
9296 }
9297 EXPORT_SYMBOL(unregister_netdevice_queue);
9298
9299 /**
9300 * unregister_netdevice_many - unregister many devices
9301 * @head: list of devices
9302 *
9303 * Note: As most callers use a stack allocated list_head,
9304 * we force a list_del() to make sure stack wont be corrupted later.
9305 */
unregister_netdevice_many(struct list_head * head)9306 void unregister_netdevice_many(struct list_head *head)
9307 {
9308 struct net_device *dev;
9309
9310 if (!list_empty(head)) {
9311 rollback_registered_many(head);
9312 list_for_each_entry(dev, head, unreg_list)
9313 net_set_todo(dev);
9314 list_del(head);
9315 }
9316 }
9317 EXPORT_SYMBOL(unregister_netdevice_many);
9318
9319 /**
9320 * unregister_netdev - remove device from the kernel
9321 * @dev: device
9322 *
9323 * This function shuts down a device interface and removes it
9324 * from the kernel tables.
9325 *
9326 * This is just a wrapper for unregister_netdevice that takes
9327 * the rtnl semaphore. In general you want to use this and not
9328 * unregister_netdevice.
9329 */
unregister_netdev(struct net_device * dev)9330 void unregister_netdev(struct net_device *dev)
9331 {
9332 rtnl_lock();
9333 unregister_netdevice(dev);
9334 rtnl_unlock();
9335 }
9336 EXPORT_SYMBOL(unregister_netdev);
9337
9338 /**
9339 * dev_change_net_namespace - move device to different nethost namespace
9340 * @dev: device
9341 * @net: network namespace
9342 * @pat: If not NULL name pattern to try if the current device name
9343 * is already taken in the destination network namespace.
9344 *
9345 * This function shuts down a device interface and moves it
9346 * to a new network namespace. On success 0 is returned, on
9347 * a failure a netagive errno code is returned.
9348 *
9349 * Callers must hold the rtnl semaphore.
9350 */
9351
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)9352 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9353 {
9354 int err, new_nsid, new_ifindex;
9355
9356 ASSERT_RTNL();
9357
9358 /* Don't allow namespace local devices to be moved. */
9359 err = -EINVAL;
9360 if (dev->features & NETIF_F_NETNS_LOCAL)
9361 goto out;
9362
9363 /* Ensure the device has been registrered */
9364 if (dev->reg_state != NETREG_REGISTERED)
9365 goto out;
9366
9367 /* Get out if there is nothing todo */
9368 err = 0;
9369 if (net_eq(dev_net(dev), net))
9370 goto out;
9371
9372 /* Pick the destination device name, and ensure
9373 * we can use it in the destination network namespace.
9374 */
9375 err = -EEXIST;
9376 if (__dev_get_by_name(net, dev->name)) {
9377 /* We get here if we can't use the current device name */
9378 if (!pat)
9379 goto out;
9380 err = dev_get_valid_name(net, dev, pat);
9381 if (err < 0)
9382 goto out;
9383 }
9384
9385 /*
9386 * And now a mini version of register_netdevice unregister_netdevice.
9387 */
9388
9389 /* If device is running close it first. */
9390 dev_close(dev);
9391
9392 /* And unlink it from device chain */
9393 unlist_netdevice(dev);
9394
9395 synchronize_net();
9396
9397 /* Shutdown queueing discipline. */
9398 dev_shutdown(dev);
9399
9400 /* Notify protocols, that we are about to destroy
9401 * this device. They should clean all the things.
9402 *
9403 * Note that dev->reg_state stays at NETREG_REGISTERED.
9404 * This is wanted because this way 8021q and macvlan know
9405 * the device is just moving and can keep their slaves up.
9406 */
9407 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9408 rcu_barrier();
9409
9410 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
9411 /* If there is an ifindex conflict assign a new one */
9412 if (__dev_get_by_index(net, dev->ifindex))
9413 new_ifindex = dev_new_index(net);
9414 else
9415 new_ifindex = dev->ifindex;
9416
9417 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9418 new_ifindex);
9419
9420 /*
9421 * Flush the unicast and multicast chains
9422 */
9423 dev_uc_flush(dev);
9424 dev_mc_flush(dev);
9425
9426 /* Send a netdev-removed uevent to the old namespace */
9427 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9428 netdev_adjacent_del_links(dev);
9429
9430 /* Actually switch the network namespace */
9431 dev_net_set(dev, net);
9432 dev->ifindex = new_ifindex;
9433
9434 /* Send a netdev-add uevent to the new namespace */
9435 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9436 netdev_adjacent_add_links(dev);
9437
9438 /* Fixup kobjects */
9439 err = device_rename(&dev->dev, dev->name);
9440 WARN_ON(err);
9441
9442 /* Add the device back in the hashes */
9443 list_netdevice(dev);
9444
9445 /* Notify protocols, that a new device appeared. */
9446 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9447
9448 /*
9449 * Prevent userspace races by waiting until the network
9450 * device is fully setup before sending notifications.
9451 */
9452 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9453
9454 synchronize_net();
9455 err = 0;
9456 out:
9457 return err;
9458 }
9459 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9460
dev_cpu_dead(unsigned int oldcpu)9461 static int dev_cpu_dead(unsigned int oldcpu)
9462 {
9463 struct sk_buff **list_skb;
9464 struct sk_buff *skb;
9465 unsigned int cpu;
9466 struct softnet_data *sd, *oldsd, *remsd = NULL;
9467
9468 local_irq_disable();
9469 cpu = smp_processor_id();
9470 sd = &per_cpu(softnet_data, cpu);
9471 oldsd = &per_cpu(softnet_data, oldcpu);
9472
9473 /* Find end of our completion_queue. */
9474 list_skb = &sd->completion_queue;
9475 while (*list_skb)
9476 list_skb = &(*list_skb)->next;
9477 /* Append completion queue from offline CPU. */
9478 *list_skb = oldsd->completion_queue;
9479 oldsd->completion_queue = NULL;
9480
9481 /* Append output queue from offline CPU. */
9482 if (oldsd->output_queue) {
9483 *sd->output_queue_tailp = oldsd->output_queue;
9484 sd->output_queue_tailp = oldsd->output_queue_tailp;
9485 oldsd->output_queue = NULL;
9486 oldsd->output_queue_tailp = &oldsd->output_queue;
9487 }
9488 /* Append NAPI poll list from offline CPU, with one exception :
9489 * process_backlog() must be called by cpu owning percpu backlog.
9490 * We properly handle process_queue & input_pkt_queue later.
9491 */
9492 while (!list_empty(&oldsd->poll_list)) {
9493 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9494 struct napi_struct,
9495 poll_list);
9496
9497 list_del_init(&napi->poll_list);
9498 if (napi->poll == process_backlog)
9499 napi->state = 0;
9500 else
9501 ____napi_schedule(sd, napi);
9502 }
9503
9504 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9505 local_irq_enable();
9506
9507 #ifdef CONFIG_RPS
9508 remsd = oldsd->rps_ipi_list;
9509 oldsd->rps_ipi_list = NULL;
9510 #endif
9511 /* send out pending IPI's on offline CPU */
9512 net_rps_send_ipi(remsd);
9513
9514 /* Process offline CPU's input_pkt_queue */
9515 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9516 netif_rx_ni(skb);
9517 input_queue_head_incr(oldsd);
9518 }
9519 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9520 netif_rx_ni(skb);
9521 input_queue_head_incr(oldsd);
9522 }
9523
9524 return 0;
9525 }
9526
9527 /**
9528 * netdev_increment_features - increment feature set by one
9529 * @all: current feature set
9530 * @one: new feature set
9531 * @mask: mask feature set
9532 *
9533 * Computes a new feature set after adding a device with feature set
9534 * @one to the master device with current feature set @all. Will not
9535 * enable anything that is off in @mask. Returns the new feature set.
9536 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)9537 netdev_features_t netdev_increment_features(netdev_features_t all,
9538 netdev_features_t one, netdev_features_t mask)
9539 {
9540 if (mask & NETIF_F_HW_CSUM)
9541 mask |= NETIF_F_CSUM_MASK;
9542 mask |= NETIF_F_VLAN_CHALLENGED;
9543
9544 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9545 all &= one | ~NETIF_F_ALL_FOR_ALL;
9546
9547 /* If one device supports hw checksumming, set for all. */
9548 if (all & NETIF_F_HW_CSUM)
9549 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9550
9551 return all;
9552 }
9553 EXPORT_SYMBOL(netdev_increment_features);
9554
netdev_create_hash(void)9555 static struct hlist_head * __net_init netdev_create_hash(void)
9556 {
9557 int i;
9558 struct hlist_head *hash;
9559
9560 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9561 if (hash != NULL)
9562 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9563 INIT_HLIST_HEAD(&hash[i]);
9564
9565 return hash;
9566 }
9567
9568 /* Initialize per network namespace state */
netdev_init(struct net * net)9569 static int __net_init netdev_init(struct net *net)
9570 {
9571 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9572 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9573
9574 if (net != &init_net)
9575 INIT_LIST_HEAD(&net->dev_base_head);
9576
9577 net->dev_name_head = netdev_create_hash();
9578 if (net->dev_name_head == NULL)
9579 goto err_name;
9580
9581 net->dev_index_head = netdev_create_hash();
9582 if (net->dev_index_head == NULL)
9583 goto err_idx;
9584
9585 return 0;
9586
9587 err_idx:
9588 kfree(net->dev_name_head);
9589 err_name:
9590 return -ENOMEM;
9591 }
9592
9593 /**
9594 * netdev_drivername - network driver for the device
9595 * @dev: network device
9596 *
9597 * Determine network driver for device.
9598 */
netdev_drivername(const struct net_device * dev)9599 const char *netdev_drivername(const struct net_device *dev)
9600 {
9601 const struct device_driver *driver;
9602 const struct device *parent;
9603 const char *empty = "";
9604
9605 parent = dev->dev.parent;
9606 if (!parent)
9607 return empty;
9608
9609 driver = parent->driver;
9610 if (driver && driver->name)
9611 return driver->name;
9612 return empty;
9613 }
9614
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)9615 static void __netdev_printk(const char *level, const struct net_device *dev,
9616 struct va_format *vaf)
9617 {
9618 if (dev && dev->dev.parent) {
9619 dev_printk_emit(level[1] - '0',
9620 dev->dev.parent,
9621 "%s %s %s%s: %pV",
9622 dev_driver_string(dev->dev.parent),
9623 dev_name(dev->dev.parent),
9624 netdev_name(dev), netdev_reg_state(dev),
9625 vaf);
9626 } else if (dev) {
9627 printk("%s%s%s: %pV",
9628 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9629 } else {
9630 printk("%s(NULL net_device): %pV", level, vaf);
9631 }
9632 }
9633
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)9634 void netdev_printk(const char *level, const struct net_device *dev,
9635 const char *format, ...)
9636 {
9637 struct va_format vaf;
9638 va_list args;
9639
9640 va_start(args, format);
9641
9642 vaf.fmt = format;
9643 vaf.va = &args;
9644
9645 __netdev_printk(level, dev, &vaf);
9646
9647 va_end(args);
9648 }
9649 EXPORT_SYMBOL(netdev_printk);
9650
9651 #define define_netdev_printk_level(func, level) \
9652 void func(const struct net_device *dev, const char *fmt, ...) \
9653 { \
9654 struct va_format vaf; \
9655 va_list args; \
9656 \
9657 va_start(args, fmt); \
9658 \
9659 vaf.fmt = fmt; \
9660 vaf.va = &args; \
9661 \
9662 __netdev_printk(level, dev, &vaf); \
9663 \
9664 va_end(args); \
9665 } \
9666 EXPORT_SYMBOL(func);
9667
9668 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9669 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9670 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9671 define_netdev_printk_level(netdev_err, KERN_ERR);
9672 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9673 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9674 define_netdev_printk_level(netdev_info, KERN_INFO);
9675
netdev_exit(struct net * net)9676 static void __net_exit netdev_exit(struct net *net)
9677 {
9678 kfree(net->dev_name_head);
9679 kfree(net->dev_index_head);
9680 if (net != &init_net)
9681 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9682 }
9683
9684 static struct pernet_operations __net_initdata netdev_net_ops = {
9685 .init = netdev_init,
9686 .exit = netdev_exit,
9687 };
9688
default_device_exit(struct net * net)9689 static void __net_exit default_device_exit(struct net *net)
9690 {
9691 struct net_device *dev, *aux;
9692 /*
9693 * Push all migratable network devices back to the
9694 * initial network namespace
9695 */
9696 rtnl_lock();
9697 for_each_netdev_safe(net, dev, aux) {
9698 int err;
9699 char fb_name[IFNAMSIZ];
9700
9701 /* Ignore unmoveable devices (i.e. loopback) */
9702 if (dev->features & NETIF_F_NETNS_LOCAL)
9703 continue;
9704
9705 /* Leave virtual devices for the generic cleanup */
9706 if (dev->rtnl_link_ops)
9707 continue;
9708
9709 /* Push remaining network devices to init_net */
9710 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9711 if (__dev_get_by_name(&init_net, fb_name))
9712 snprintf(fb_name, IFNAMSIZ, "dev%%d");
9713 err = dev_change_net_namespace(dev, &init_net, fb_name);
9714 if (err) {
9715 pr_emerg("%s: failed to move %s to init_net: %d\n",
9716 __func__, dev->name, err);
9717 BUG();
9718 }
9719 }
9720 rtnl_unlock();
9721 }
9722
rtnl_lock_unregistering(struct list_head * net_list)9723 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9724 {
9725 /* Return with the rtnl_lock held when there are no network
9726 * devices unregistering in any network namespace in net_list.
9727 */
9728 struct net *net;
9729 bool unregistering;
9730 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9731
9732 add_wait_queue(&netdev_unregistering_wq, &wait);
9733 for (;;) {
9734 unregistering = false;
9735 rtnl_lock();
9736 list_for_each_entry(net, net_list, exit_list) {
9737 if (net->dev_unreg_count > 0) {
9738 unregistering = true;
9739 break;
9740 }
9741 }
9742 if (!unregistering)
9743 break;
9744 __rtnl_unlock();
9745
9746 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9747 }
9748 remove_wait_queue(&netdev_unregistering_wq, &wait);
9749 }
9750
default_device_exit_batch(struct list_head * net_list)9751 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9752 {
9753 /* At exit all network devices most be removed from a network
9754 * namespace. Do this in the reverse order of registration.
9755 * Do this across as many network namespaces as possible to
9756 * improve batching efficiency.
9757 */
9758 struct net_device *dev;
9759 struct net *net;
9760 LIST_HEAD(dev_kill_list);
9761
9762 /* To prevent network device cleanup code from dereferencing
9763 * loopback devices or network devices that have been freed
9764 * wait here for all pending unregistrations to complete,
9765 * before unregistring the loopback device and allowing the
9766 * network namespace be freed.
9767 *
9768 * The netdev todo list containing all network devices
9769 * unregistrations that happen in default_device_exit_batch
9770 * will run in the rtnl_unlock() at the end of
9771 * default_device_exit_batch.
9772 */
9773 rtnl_lock_unregistering(net_list);
9774 list_for_each_entry(net, net_list, exit_list) {
9775 for_each_netdev_reverse(net, dev) {
9776 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9777 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9778 else
9779 unregister_netdevice_queue(dev, &dev_kill_list);
9780 }
9781 }
9782 unregister_netdevice_many(&dev_kill_list);
9783 rtnl_unlock();
9784 }
9785
9786 static struct pernet_operations __net_initdata default_device_ops = {
9787 .exit = default_device_exit,
9788 .exit_batch = default_device_exit_batch,
9789 };
9790
9791 /*
9792 * Initialize the DEV module. At boot time this walks the device list and
9793 * unhooks any devices that fail to initialise (normally hardware not
9794 * present) and leaves us with a valid list of present and active devices.
9795 *
9796 */
9797
9798 /*
9799 * This is called single threaded during boot, so no need
9800 * to take the rtnl semaphore.
9801 */
net_dev_init(void)9802 static int __init net_dev_init(void)
9803 {
9804 int i, rc = -ENOMEM;
9805
9806 BUG_ON(!dev_boot_phase);
9807
9808 if (dev_proc_init())
9809 goto out;
9810
9811 if (netdev_kobject_init())
9812 goto out;
9813
9814 INIT_LIST_HEAD(&ptype_all);
9815 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9816 INIT_LIST_HEAD(&ptype_base[i]);
9817
9818 INIT_LIST_HEAD(&offload_base);
9819
9820 if (register_pernet_subsys(&netdev_net_ops))
9821 goto out;
9822
9823 /*
9824 * Initialise the packet receive queues.
9825 */
9826
9827 for_each_possible_cpu(i) {
9828 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9829 struct softnet_data *sd = &per_cpu(softnet_data, i);
9830
9831 INIT_WORK(flush, flush_backlog);
9832
9833 skb_queue_head_init(&sd->input_pkt_queue);
9834 skb_queue_head_init(&sd->process_queue);
9835 #ifdef CONFIG_XFRM_OFFLOAD
9836 skb_queue_head_init(&sd->xfrm_backlog);
9837 #endif
9838 INIT_LIST_HEAD(&sd->poll_list);
9839 sd->output_queue_tailp = &sd->output_queue;
9840 #ifdef CONFIG_RPS
9841 sd->csd.func = rps_trigger_softirq;
9842 sd->csd.info = sd;
9843 sd->cpu = i;
9844 #endif
9845
9846 init_gro_hash(&sd->backlog);
9847 sd->backlog.poll = process_backlog;
9848 sd->backlog.weight = weight_p;
9849 }
9850
9851 dev_boot_phase = 0;
9852
9853 /* The loopback device is special if any other network devices
9854 * is present in a network namespace the loopback device must
9855 * be present. Since we now dynamically allocate and free the
9856 * loopback device ensure this invariant is maintained by
9857 * keeping the loopback device as the first device on the
9858 * list of network devices. Ensuring the loopback devices
9859 * is the first device that appears and the last network device
9860 * that disappears.
9861 */
9862 if (register_pernet_device(&loopback_net_ops))
9863 goto out;
9864
9865 if (register_pernet_device(&default_device_ops))
9866 goto out;
9867
9868 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9869 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9870
9871 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9872 NULL, dev_cpu_dead);
9873 WARN_ON(rc < 0);
9874 rc = 0;
9875 out:
9876 return rc;
9877 }
9878
9879 subsys_initcall(net_dev_init);
9880