1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 #include <linux/overflow.h>
35
36 #include <linux/uaccess.h>
37 #include <asm/tlbflush.h>
38 #include <asm/shmparam.h>
39
40 #include "internal.h"
41
42 struct vfree_deferred {
43 struct llist_head list;
44 struct work_struct wq;
45 };
46 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
47
48 static void __vunmap(const void *, int);
49
free_work(struct work_struct * w)50 static void free_work(struct work_struct *w)
51 {
52 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
53 struct llist_node *t, *llnode;
54
55 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
56 __vunmap((void *)llnode, 1);
57 }
58
59 /*** Page table manipulation functions ***/
60
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end)61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62 {
63 pte_t *pte;
64
65 pte = pte_offset_kernel(pmd, addr);
66 do {
67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 } while (pte++, addr += PAGE_SIZE, addr != end);
70 }
71
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end)72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
73 {
74 pmd_t *pmd;
75 unsigned long next;
76
77 pmd = pmd_offset(pud, addr);
78 do {
79 next = pmd_addr_end(addr, end);
80 if (pmd_clear_huge(pmd))
81 continue;
82 if (pmd_none_or_clear_bad(pmd))
83 continue;
84 vunmap_pte_range(pmd, addr, next);
85 } while (pmd++, addr = next, addr != end);
86 }
87
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end)88 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
89 {
90 pud_t *pud;
91 unsigned long next;
92
93 pud = pud_offset(p4d, addr);
94 do {
95 next = pud_addr_end(addr, end);
96 if (pud_clear_huge(pud))
97 continue;
98 if (pud_none_or_clear_bad(pud))
99 continue;
100 vunmap_pmd_range(pud, addr, next);
101 } while (pud++, addr = next, addr != end);
102 }
103
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end)104 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
105 {
106 p4d_t *p4d;
107 unsigned long next;
108
109 p4d = p4d_offset(pgd, addr);
110 do {
111 next = p4d_addr_end(addr, end);
112 if (p4d_clear_huge(p4d))
113 continue;
114 if (p4d_none_or_clear_bad(p4d))
115 continue;
116 vunmap_pud_range(p4d, addr, next);
117 } while (p4d++, addr = next, addr != end);
118 }
119
vunmap_page_range(unsigned long addr,unsigned long end)120 static void vunmap_page_range(unsigned long addr, unsigned long end)
121 {
122 pgd_t *pgd;
123 unsigned long next;
124
125 BUG_ON(addr >= end);
126 pgd = pgd_offset_k(addr);
127 do {
128 next = pgd_addr_end(addr, end);
129 if (pgd_none_or_clear_bad(pgd))
130 continue;
131 vunmap_p4d_range(pgd, addr, next);
132 } while (pgd++, addr = next, addr != end);
133 }
134
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)135 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
136 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137 {
138 pte_t *pte;
139
140 /*
141 * nr is a running index into the array which helps higher level
142 * callers keep track of where we're up to.
143 */
144
145 pte = pte_alloc_kernel(pmd, addr);
146 if (!pte)
147 return -ENOMEM;
148 do {
149 struct page *page = pages[*nr];
150
151 if (WARN_ON(!pte_none(*pte)))
152 return -EBUSY;
153 if (WARN_ON(!page))
154 return -ENOMEM;
155 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
156 (*nr)++;
157 } while (pte++, addr += PAGE_SIZE, addr != end);
158 return 0;
159 }
160
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)161 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
162 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
163 {
164 pmd_t *pmd;
165 unsigned long next;
166
167 pmd = pmd_alloc(&init_mm, pud, addr);
168 if (!pmd)
169 return -ENOMEM;
170 do {
171 next = pmd_addr_end(addr, end);
172 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
173 return -ENOMEM;
174 } while (pmd++, addr = next, addr != end);
175 return 0;
176 }
177
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)178 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
179 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
180 {
181 pud_t *pud;
182 unsigned long next;
183
184 pud = pud_alloc(&init_mm, p4d, addr);
185 if (!pud)
186 return -ENOMEM;
187 do {
188 next = pud_addr_end(addr, end);
189 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
190 return -ENOMEM;
191 } while (pud++, addr = next, addr != end);
192 return 0;
193 }
194
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)195 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
196 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
197 {
198 p4d_t *p4d;
199 unsigned long next;
200
201 p4d = p4d_alloc(&init_mm, pgd, addr);
202 if (!p4d)
203 return -ENOMEM;
204 do {
205 next = p4d_addr_end(addr, end);
206 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
207 return -ENOMEM;
208 } while (p4d++, addr = next, addr != end);
209 return 0;
210 }
211
212 /*
213 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
214 * will have pfns corresponding to the "pages" array.
215 *
216 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
217 */
vmap_page_range_noflush(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)218 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
219 pgprot_t prot, struct page **pages)
220 {
221 pgd_t *pgd;
222 unsigned long next;
223 unsigned long addr = start;
224 int err = 0;
225 int nr = 0;
226
227 BUG_ON(addr >= end);
228 pgd = pgd_offset_k(addr);
229 do {
230 next = pgd_addr_end(addr, end);
231 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
232 if (err)
233 return err;
234 } while (pgd++, addr = next, addr != end);
235
236 return nr;
237 }
238
vmap_page_range(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)239 static int vmap_page_range(unsigned long start, unsigned long end,
240 pgprot_t prot, struct page **pages)
241 {
242 int ret;
243
244 ret = vmap_page_range_noflush(start, end, prot, pages);
245 flush_cache_vmap(start, end);
246 return ret;
247 }
248
is_vmalloc_or_module_addr(const void * x)249 int is_vmalloc_or_module_addr(const void *x)
250 {
251 /*
252 * ARM, x86-64 and sparc64 put modules in a special place,
253 * and fall back on vmalloc() if that fails. Others
254 * just put it in the vmalloc space.
255 */
256 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
257 unsigned long addr = (unsigned long)x;
258 if (addr >= MODULES_VADDR && addr < MODULES_END)
259 return 1;
260 #endif
261 return is_vmalloc_addr(x);
262 }
263
264 /*
265 * Walk a vmap address to the struct page it maps.
266 */
vmalloc_to_page(const void * vmalloc_addr)267 struct page *vmalloc_to_page(const void *vmalloc_addr)
268 {
269 unsigned long addr = (unsigned long) vmalloc_addr;
270 struct page *page = NULL;
271 pgd_t *pgd = pgd_offset_k(addr);
272 p4d_t *p4d;
273 pud_t *pud;
274 pmd_t *pmd;
275 pte_t *ptep, pte;
276
277 /*
278 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
279 * architectures that do not vmalloc module space
280 */
281 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
282
283 if (pgd_none(*pgd))
284 return NULL;
285 p4d = p4d_offset(pgd, addr);
286 if (p4d_none(*p4d))
287 return NULL;
288 pud = pud_offset(p4d, addr);
289
290 /*
291 * Don't dereference bad PUD or PMD (below) entries. This will also
292 * identify huge mappings, which we may encounter on architectures
293 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
294 * identified as vmalloc addresses by is_vmalloc_addr(), but are
295 * not [unambiguously] associated with a struct page, so there is
296 * no correct value to return for them.
297 */
298 WARN_ON_ONCE(pud_bad(*pud));
299 if (pud_none(*pud) || pud_bad(*pud))
300 return NULL;
301 pmd = pmd_offset(pud, addr);
302 WARN_ON_ONCE(pmd_bad(*pmd));
303 if (pmd_none(*pmd) || pmd_bad(*pmd))
304 return NULL;
305
306 ptep = pte_offset_map(pmd, addr);
307 pte = *ptep;
308 if (pte_present(pte))
309 page = pte_page(pte);
310 pte_unmap(ptep);
311 return page;
312 }
313 EXPORT_SYMBOL(vmalloc_to_page);
314
315 /*
316 * Map a vmalloc()-space virtual address to the physical page frame number.
317 */
vmalloc_to_pfn(const void * vmalloc_addr)318 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
319 {
320 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
321 }
322 EXPORT_SYMBOL(vmalloc_to_pfn);
323
324
325 /*** Global kva allocator ***/
326
327 #define VM_LAZY_FREE 0x02
328 #define VM_VM_AREA 0x04
329
330 static DEFINE_SPINLOCK(vmap_area_lock);
331 /* Export for kexec only */
332 LIST_HEAD(vmap_area_list);
333 static LLIST_HEAD(vmap_purge_list);
334 static struct rb_root vmap_area_root = RB_ROOT;
335
336 /* The vmap cache globals are protected by vmap_area_lock */
337 static struct rb_node *free_vmap_cache;
338 static unsigned long cached_hole_size;
339 static unsigned long cached_vstart;
340 static unsigned long cached_align;
341
342 static unsigned long vmap_area_pcpu_hole;
343
__find_vmap_area(unsigned long addr)344 static struct vmap_area *__find_vmap_area(unsigned long addr)
345 {
346 struct rb_node *n = vmap_area_root.rb_node;
347
348 while (n) {
349 struct vmap_area *va;
350
351 va = rb_entry(n, struct vmap_area, rb_node);
352 if (addr < va->va_start)
353 n = n->rb_left;
354 else if (addr >= va->va_end)
355 n = n->rb_right;
356 else
357 return va;
358 }
359
360 return NULL;
361 }
362
__insert_vmap_area(struct vmap_area * va)363 static void __insert_vmap_area(struct vmap_area *va)
364 {
365 struct rb_node **p = &vmap_area_root.rb_node;
366 struct rb_node *parent = NULL;
367 struct rb_node *tmp;
368
369 while (*p) {
370 struct vmap_area *tmp_va;
371
372 parent = *p;
373 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
374 if (va->va_start < tmp_va->va_end)
375 p = &(*p)->rb_left;
376 else if (va->va_end > tmp_va->va_start)
377 p = &(*p)->rb_right;
378 else
379 BUG();
380 }
381
382 rb_link_node(&va->rb_node, parent, p);
383 rb_insert_color(&va->rb_node, &vmap_area_root);
384
385 /* address-sort this list */
386 tmp = rb_prev(&va->rb_node);
387 if (tmp) {
388 struct vmap_area *prev;
389 prev = rb_entry(tmp, struct vmap_area, rb_node);
390 list_add_rcu(&va->list, &prev->list);
391 } else
392 list_add_rcu(&va->list, &vmap_area_list);
393 }
394
395 static void purge_vmap_area_lazy(void);
396
397 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
398
399 /*
400 * Allocate a region of KVA of the specified size and alignment, within the
401 * vstart and vend.
402 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)403 static struct vmap_area *alloc_vmap_area(unsigned long size,
404 unsigned long align,
405 unsigned long vstart, unsigned long vend,
406 int node, gfp_t gfp_mask)
407 {
408 struct vmap_area *va;
409 struct rb_node *n;
410 unsigned long addr;
411 int purged = 0;
412 struct vmap_area *first;
413
414 BUG_ON(!size);
415 BUG_ON(offset_in_page(size));
416 BUG_ON(!is_power_of_2(align));
417
418 might_sleep();
419
420 va = kmalloc_node(sizeof(struct vmap_area),
421 gfp_mask & GFP_RECLAIM_MASK, node);
422 if (unlikely(!va))
423 return ERR_PTR(-ENOMEM);
424
425 /*
426 * Only scan the relevant parts containing pointers to other objects
427 * to avoid false negatives.
428 */
429 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
430
431 retry:
432 spin_lock(&vmap_area_lock);
433 /*
434 * Invalidate cache if we have more permissive parameters.
435 * cached_hole_size notes the largest hole noticed _below_
436 * the vmap_area cached in free_vmap_cache: if size fits
437 * into that hole, we want to scan from vstart to reuse
438 * the hole instead of allocating above free_vmap_cache.
439 * Note that __free_vmap_area may update free_vmap_cache
440 * without updating cached_hole_size or cached_align.
441 */
442 if (!free_vmap_cache ||
443 size < cached_hole_size ||
444 vstart < cached_vstart ||
445 align < cached_align) {
446 nocache:
447 cached_hole_size = 0;
448 free_vmap_cache = NULL;
449 }
450 /* record if we encounter less permissive parameters */
451 cached_vstart = vstart;
452 cached_align = align;
453
454 /* find starting point for our search */
455 if (free_vmap_cache) {
456 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
457 addr = ALIGN(first->va_end, align);
458 if (addr < vstart)
459 goto nocache;
460 if (addr + size < addr)
461 goto overflow;
462
463 } else {
464 addr = ALIGN(vstart, align);
465 if (addr + size < addr)
466 goto overflow;
467
468 n = vmap_area_root.rb_node;
469 first = NULL;
470
471 while (n) {
472 struct vmap_area *tmp;
473 tmp = rb_entry(n, struct vmap_area, rb_node);
474 if (tmp->va_end >= addr) {
475 first = tmp;
476 if (tmp->va_start <= addr)
477 break;
478 n = n->rb_left;
479 } else
480 n = n->rb_right;
481 }
482
483 if (!first)
484 goto found;
485 }
486
487 /* from the starting point, walk areas until a suitable hole is found */
488 while (addr + size > first->va_start && addr + size <= vend) {
489 if (addr + cached_hole_size < first->va_start)
490 cached_hole_size = first->va_start - addr;
491 addr = ALIGN(first->va_end, align);
492 if (addr + size < addr)
493 goto overflow;
494
495 if (list_is_last(&first->list, &vmap_area_list))
496 goto found;
497
498 first = list_next_entry(first, list);
499 }
500
501 found:
502 /*
503 * Check also calculated address against the vstart,
504 * because it can be 0 because of big align request.
505 */
506 if (addr + size > vend || addr < vstart)
507 goto overflow;
508
509 va->va_start = addr;
510 va->va_end = addr + size;
511 va->flags = 0;
512 __insert_vmap_area(va);
513 free_vmap_cache = &va->rb_node;
514 spin_unlock(&vmap_area_lock);
515
516 BUG_ON(!IS_ALIGNED(va->va_start, align));
517 BUG_ON(va->va_start < vstart);
518 BUG_ON(va->va_end > vend);
519
520 return va;
521
522 overflow:
523 spin_unlock(&vmap_area_lock);
524 if (!purged) {
525 purge_vmap_area_lazy();
526 purged = 1;
527 goto retry;
528 }
529
530 if (gfpflags_allow_blocking(gfp_mask)) {
531 unsigned long freed = 0;
532 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
533 if (freed > 0) {
534 purged = 0;
535 goto retry;
536 }
537 }
538
539 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
540 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
541 size);
542 kfree(va);
543 return ERR_PTR(-EBUSY);
544 }
545
register_vmap_purge_notifier(struct notifier_block * nb)546 int register_vmap_purge_notifier(struct notifier_block *nb)
547 {
548 return blocking_notifier_chain_register(&vmap_notify_list, nb);
549 }
550 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
551
unregister_vmap_purge_notifier(struct notifier_block * nb)552 int unregister_vmap_purge_notifier(struct notifier_block *nb)
553 {
554 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
555 }
556 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
557
__free_vmap_area(struct vmap_area * va)558 static void __free_vmap_area(struct vmap_area *va)
559 {
560 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
561
562 if (free_vmap_cache) {
563 if (va->va_end < cached_vstart) {
564 free_vmap_cache = NULL;
565 } else {
566 struct vmap_area *cache;
567 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
568 if (va->va_start <= cache->va_start) {
569 free_vmap_cache = rb_prev(&va->rb_node);
570 /*
571 * We don't try to update cached_hole_size or
572 * cached_align, but it won't go very wrong.
573 */
574 }
575 }
576 }
577 rb_erase(&va->rb_node, &vmap_area_root);
578 RB_CLEAR_NODE(&va->rb_node);
579 list_del_rcu(&va->list);
580
581 /*
582 * Track the highest possible candidate for pcpu area
583 * allocation. Areas outside of vmalloc area can be returned
584 * here too, consider only end addresses which fall inside
585 * vmalloc area proper.
586 */
587 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
588 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
589
590 kfree_rcu(va, rcu_head);
591 }
592
593 /*
594 * Free a region of KVA allocated by alloc_vmap_area
595 */
free_vmap_area(struct vmap_area * va)596 static void free_vmap_area(struct vmap_area *va)
597 {
598 spin_lock(&vmap_area_lock);
599 __free_vmap_area(va);
600 spin_unlock(&vmap_area_lock);
601 }
602
603 /*
604 * Clear the pagetable entries of a given vmap_area
605 */
unmap_vmap_area(struct vmap_area * va)606 static void unmap_vmap_area(struct vmap_area *va)
607 {
608 vunmap_page_range(va->va_start, va->va_end);
609 }
610
611 /*
612 * lazy_max_pages is the maximum amount of virtual address space we gather up
613 * before attempting to purge with a TLB flush.
614 *
615 * There is a tradeoff here: a larger number will cover more kernel page tables
616 * and take slightly longer to purge, but it will linearly reduce the number of
617 * global TLB flushes that must be performed. It would seem natural to scale
618 * this number up linearly with the number of CPUs (because vmapping activity
619 * could also scale linearly with the number of CPUs), however it is likely
620 * that in practice, workloads might be constrained in other ways that mean
621 * vmap activity will not scale linearly with CPUs. Also, I want to be
622 * conservative and not introduce a big latency on huge systems, so go with
623 * a less aggressive log scale. It will still be an improvement over the old
624 * code, and it will be simple to change the scale factor if we find that it
625 * becomes a problem on bigger systems.
626 */
lazy_max_pages(void)627 static unsigned long lazy_max_pages(void)
628 {
629 unsigned int log;
630
631 log = fls(num_online_cpus());
632
633 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
634 }
635
636 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
637
638 /*
639 * Serialize vmap purging. There is no actual criticial section protected
640 * by this look, but we want to avoid concurrent calls for performance
641 * reasons and to make the pcpu_get_vm_areas more deterministic.
642 */
643 static DEFINE_MUTEX(vmap_purge_lock);
644
645 /* for per-CPU blocks */
646 static void purge_fragmented_blocks_allcpus(void);
647
648 /*
649 * called before a call to iounmap() if the caller wants vm_area_struct's
650 * immediately freed.
651 */
set_iounmap_nonlazy(void)652 void set_iounmap_nonlazy(void)
653 {
654 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
655 }
656
657 /*
658 * Purges all lazily-freed vmap areas.
659 */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)660 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
661 {
662 struct llist_node *valist;
663 struct vmap_area *va;
664 struct vmap_area *n_va;
665 bool do_free = false;
666
667 lockdep_assert_held(&vmap_purge_lock);
668
669 valist = llist_del_all(&vmap_purge_list);
670 llist_for_each_entry(va, valist, purge_list) {
671 if (va->va_start < start)
672 start = va->va_start;
673 if (va->va_end > end)
674 end = va->va_end;
675 do_free = true;
676 }
677
678 if (!do_free)
679 return false;
680
681 flush_tlb_kernel_range(start, end);
682
683 spin_lock(&vmap_area_lock);
684 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
685 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
686
687 __free_vmap_area(va);
688 atomic_sub(nr, &vmap_lazy_nr);
689 cond_resched_lock(&vmap_area_lock);
690 }
691 spin_unlock(&vmap_area_lock);
692 return true;
693 }
694
695 /*
696 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
697 * is already purging.
698 */
try_purge_vmap_area_lazy(void)699 static void try_purge_vmap_area_lazy(void)
700 {
701 if (mutex_trylock(&vmap_purge_lock)) {
702 __purge_vmap_area_lazy(ULONG_MAX, 0);
703 mutex_unlock(&vmap_purge_lock);
704 }
705 }
706
707 /*
708 * Kick off a purge of the outstanding lazy areas.
709 */
purge_vmap_area_lazy(void)710 static void purge_vmap_area_lazy(void)
711 {
712 mutex_lock(&vmap_purge_lock);
713 purge_fragmented_blocks_allcpus();
714 __purge_vmap_area_lazy(ULONG_MAX, 0);
715 mutex_unlock(&vmap_purge_lock);
716 }
717
718 /*
719 * Free a vmap area, caller ensuring that the area has been unmapped
720 * and flush_cache_vunmap had been called for the correct range
721 * previously.
722 */
free_vmap_area_noflush(struct vmap_area * va)723 static void free_vmap_area_noflush(struct vmap_area *va)
724 {
725 int nr_lazy;
726
727 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
728 &vmap_lazy_nr);
729
730 /* After this point, we may free va at any time */
731 llist_add(&va->purge_list, &vmap_purge_list);
732
733 if (unlikely(nr_lazy > lazy_max_pages()))
734 try_purge_vmap_area_lazy();
735 }
736
737 /*
738 * Free and unmap a vmap area
739 */
free_unmap_vmap_area(struct vmap_area * va)740 static void free_unmap_vmap_area(struct vmap_area *va)
741 {
742 flush_cache_vunmap(va->va_start, va->va_end);
743 unmap_vmap_area(va);
744 if (debug_pagealloc_enabled())
745 flush_tlb_kernel_range(va->va_start, va->va_end);
746
747 free_vmap_area_noflush(va);
748 }
749
find_vmap_area(unsigned long addr)750 static struct vmap_area *find_vmap_area(unsigned long addr)
751 {
752 struct vmap_area *va;
753
754 spin_lock(&vmap_area_lock);
755 va = __find_vmap_area(addr);
756 spin_unlock(&vmap_area_lock);
757
758 return va;
759 }
760
761 /*** Per cpu kva allocator ***/
762
763 /*
764 * vmap space is limited especially on 32 bit architectures. Ensure there is
765 * room for at least 16 percpu vmap blocks per CPU.
766 */
767 /*
768 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
769 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
770 * instead (we just need a rough idea)
771 */
772 #if BITS_PER_LONG == 32
773 #define VMALLOC_SPACE (128UL*1024*1024)
774 #else
775 #define VMALLOC_SPACE (128UL*1024*1024*1024)
776 #endif
777
778 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
779 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
780 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
781 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
782 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
783 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
784 #define VMAP_BBMAP_BITS \
785 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
786 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
787 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
788
789 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
790
791 static bool vmap_initialized __read_mostly = false;
792
793 struct vmap_block_queue {
794 spinlock_t lock;
795 struct list_head free;
796 };
797
798 struct vmap_block {
799 spinlock_t lock;
800 struct vmap_area *va;
801 unsigned long free, dirty;
802 unsigned long dirty_min, dirty_max; /*< dirty range */
803 struct list_head free_list;
804 struct rcu_head rcu_head;
805 struct list_head purge;
806 };
807
808 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
809 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
810
811 /*
812 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
813 * in the free path. Could get rid of this if we change the API to return a
814 * "cookie" from alloc, to be passed to free. But no big deal yet.
815 */
816 static DEFINE_SPINLOCK(vmap_block_tree_lock);
817 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
818
819 /*
820 * We should probably have a fallback mechanism to allocate virtual memory
821 * out of partially filled vmap blocks. However vmap block sizing should be
822 * fairly reasonable according to the vmalloc size, so it shouldn't be a
823 * big problem.
824 */
825
addr_to_vb_idx(unsigned long addr)826 static unsigned long addr_to_vb_idx(unsigned long addr)
827 {
828 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
829 addr /= VMAP_BLOCK_SIZE;
830 return addr;
831 }
832
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)833 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
834 {
835 unsigned long addr;
836
837 addr = va_start + (pages_off << PAGE_SHIFT);
838 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
839 return (void *)addr;
840 }
841
842 /**
843 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
844 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
845 * @order: how many 2^order pages should be occupied in newly allocated block
846 * @gfp_mask: flags for the page level allocator
847 *
848 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
849 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)850 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
851 {
852 struct vmap_block_queue *vbq;
853 struct vmap_block *vb;
854 struct vmap_area *va;
855 unsigned long vb_idx;
856 int node, err;
857 void *vaddr;
858
859 node = numa_node_id();
860
861 vb = kmalloc_node(sizeof(struct vmap_block),
862 gfp_mask & GFP_RECLAIM_MASK, node);
863 if (unlikely(!vb))
864 return ERR_PTR(-ENOMEM);
865
866 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
867 VMALLOC_START, VMALLOC_END,
868 node, gfp_mask);
869 if (IS_ERR(va)) {
870 kfree(vb);
871 return ERR_CAST(va);
872 }
873
874 err = radix_tree_preload(gfp_mask);
875 if (unlikely(err)) {
876 kfree(vb);
877 free_vmap_area(va);
878 return ERR_PTR(err);
879 }
880
881 vaddr = vmap_block_vaddr(va->va_start, 0);
882 spin_lock_init(&vb->lock);
883 vb->va = va;
884 /* At least something should be left free */
885 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
886 vb->free = VMAP_BBMAP_BITS - (1UL << order);
887 vb->dirty = 0;
888 vb->dirty_min = VMAP_BBMAP_BITS;
889 vb->dirty_max = 0;
890 INIT_LIST_HEAD(&vb->free_list);
891
892 vb_idx = addr_to_vb_idx(va->va_start);
893 spin_lock(&vmap_block_tree_lock);
894 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
895 spin_unlock(&vmap_block_tree_lock);
896 BUG_ON(err);
897 radix_tree_preload_end();
898
899 vbq = &get_cpu_var(vmap_block_queue);
900 spin_lock(&vbq->lock);
901 list_add_tail_rcu(&vb->free_list, &vbq->free);
902 spin_unlock(&vbq->lock);
903 put_cpu_var(vmap_block_queue);
904
905 return vaddr;
906 }
907
free_vmap_block(struct vmap_block * vb)908 static void free_vmap_block(struct vmap_block *vb)
909 {
910 struct vmap_block *tmp;
911 unsigned long vb_idx;
912
913 vb_idx = addr_to_vb_idx(vb->va->va_start);
914 spin_lock(&vmap_block_tree_lock);
915 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
916 spin_unlock(&vmap_block_tree_lock);
917 BUG_ON(tmp != vb);
918
919 free_vmap_area_noflush(vb->va);
920 kfree_rcu(vb, rcu_head);
921 }
922
purge_fragmented_blocks(int cpu)923 static void purge_fragmented_blocks(int cpu)
924 {
925 LIST_HEAD(purge);
926 struct vmap_block *vb;
927 struct vmap_block *n_vb;
928 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
929
930 rcu_read_lock();
931 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
932
933 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
934 continue;
935
936 spin_lock(&vb->lock);
937 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
938 vb->free = 0; /* prevent further allocs after releasing lock */
939 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
940 vb->dirty_min = 0;
941 vb->dirty_max = VMAP_BBMAP_BITS;
942 spin_lock(&vbq->lock);
943 list_del_rcu(&vb->free_list);
944 spin_unlock(&vbq->lock);
945 spin_unlock(&vb->lock);
946 list_add_tail(&vb->purge, &purge);
947 } else
948 spin_unlock(&vb->lock);
949 }
950 rcu_read_unlock();
951
952 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
953 list_del(&vb->purge);
954 free_vmap_block(vb);
955 }
956 }
957
purge_fragmented_blocks_allcpus(void)958 static void purge_fragmented_blocks_allcpus(void)
959 {
960 int cpu;
961
962 for_each_possible_cpu(cpu)
963 purge_fragmented_blocks(cpu);
964 }
965
vb_alloc(unsigned long size,gfp_t gfp_mask)966 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
967 {
968 struct vmap_block_queue *vbq;
969 struct vmap_block *vb;
970 void *vaddr = NULL;
971 unsigned int order;
972
973 BUG_ON(offset_in_page(size));
974 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
975 if (WARN_ON(size == 0)) {
976 /*
977 * Allocating 0 bytes isn't what caller wants since
978 * get_order(0) returns funny result. Just warn and terminate
979 * early.
980 */
981 return NULL;
982 }
983 order = get_order(size);
984
985 rcu_read_lock();
986 vbq = &get_cpu_var(vmap_block_queue);
987 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
988 unsigned long pages_off;
989
990 spin_lock(&vb->lock);
991 if (vb->free < (1UL << order)) {
992 spin_unlock(&vb->lock);
993 continue;
994 }
995
996 pages_off = VMAP_BBMAP_BITS - vb->free;
997 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
998 vb->free -= 1UL << order;
999 if (vb->free == 0) {
1000 spin_lock(&vbq->lock);
1001 list_del_rcu(&vb->free_list);
1002 spin_unlock(&vbq->lock);
1003 }
1004
1005 spin_unlock(&vb->lock);
1006 break;
1007 }
1008
1009 put_cpu_var(vmap_block_queue);
1010 rcu_read_unlock();
1011
1012 /* Allocate new block if nothing was found */
1013 if (!vaddr)
1014 vaddr = new_vmap_block(order, gfp_mask);
1015
1016 return vaddr;
1017 }
1018
vb_free(const void * addr,unsigned long size)1019 static void vb_free(const void *addr, unsigned long size)
1020 {
1021 unsigned long offset;
1022 unsigned long vb_idx;
1023 unsigned int order;
1024 struct vmap_block *vb;
1025
1026 BUG_ON(offset_in_page(size));
1027 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1028
1029 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1030
1031 order = get_order(size);
1032
1033 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1034 offset >>= PAGE_SHIFT;
1035
1036 vb_idx = addr_to_vb_idx((unsigned long)addr);
1037 rcu_read_lock();
1038 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1039 rcu_read_unlock();
1040 BUG_ON(!vb);
1041
1042 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1043
1044 if (debug_pagealloc_enabled())
1045 flush_tlb_kernel_range((unsigned long)addr,
1046 (unsigned long)addr + size);
1047
1048 spin_lock(&vb->lock);
1049
1050 /* Expand dirty range */
1051 vb->dirty_min = min(vb->dirty_min, offset);
1052 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1053
1054 vb->dirty += 1UL << order;
1055 if (vb->dirty == VMAP_BBMAP_BITS) {
1056 BUG_ON(vb->free);
1057 spin_unlock(&vb->lock);
1058 free_vmap_block(vb);
1059 } else
1060 spin_unlock(&vb->lock);
1061 }
1062
1063 /**
1064 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1065 *
1066 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1067 * to amortize TLB flushing overheads. What this means is that any page you
1068 * have now, may, in a former life, have been mapped into kernel virtual
1069 * address by the vmap layer and so there might be some CPUs with TLB entries
1070 * still referencing that page (additional to the regular 1:1 kernel mapping).
1071 *
1072 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1073 * be sure that none of the pages we have control over will have any aliases
1074 * from the vmap layer.
1075 */
vm_unmap_aliases(void)1076 void vm_unmap_aliases(void)
1077 {
1078 unsigned long start = ULONG_MAX, end = 0;
1079 int cpu;
1080 int flush = 0;
1081
1082 if (unlikely(!vmap_initialized))
1083 return;
1084
1085 might_sleep();
1086
1087 for_each_possible_cpu(cpu) {
1088 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1089 struct vmap_block *vb;
1090
1091 rcu_read_lock();
1092 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1093 spin_lock(&vb->lock);
1094 if (vb->dirty) {
1095 unsigned long va_start = vb->va->va_start;
1096 unsigned long s, e;
1097
1098 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1099 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1100
1101 start = min(s, start);
1102 end = max(e, end);
1103
1104 flush = 1;
1105 }
1106 spin_unlock(&vb->lock);
1107 }
1108 rcu_read_unlock();
1109 }
1110
1111 mutex_lock(&vmap_purge_lock);
1112 purge_fragmented_blocks_allcpus();
1113 if (!__purge_vmap_area_lazy(start, end) && flush)
1114 flush_tlb_kernel_range(start, end);
1115 mutex_unlock(&vmap_purge_lock);
1116 }
1117 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1118
1119 /**
1120 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1121 * @mem: the pointer returned by vm_map_ram
1122 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1123 */
vm_unmap_ram(const void * mem,unsigned int count)1124 void vm_unmap_ram(const void *mem, unsigned int count)
1125 {
1126 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1127 unsigned long addr = (unsigned long)mem;
1128 struct vmap_area *va;
1129
1130 might_sleep();
1131 BUG_ON(!addr);
1132 BUG_ON(addr < VMALLOC_START);
1133 BUG_ON(addr > VMALLOC_END);
1134 BUG_ON(!PAGE_ALIGNED(addr));
1135
1136 if (likely(count <= VMAP_MAX_ALLOC)) {
1137 debug_check_no_locks_freed(mem, size);
1138 vb_free(mem, size);
1139 return;
1140 }
1141
1142 va = find_vmap_area(addr);
1143 BUG_ON(!va);
1144 debug_check_no_locks_freed((void *)va->va_start,
1145 (va->va_end - va->va_start));
1146 free_unmap_vmap_area(va);
1147 }
1148 EXPORT_SYMBOL(vm_unmap_ram);
1149
1150 /**
1151 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1152 * @pages: an array of pointers to the pages to be mapped
1153 * @count: number of pages
1154 * @node: prefer to allocate data structures on this node
1155 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1156 *
1157 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1158 * faster than vmap so it's good. But if you mix long-life and short-life
1159 * objects with vm_map_ram(), it could consume lots of address space through
1160 * fragmentation (especially on a 32bit machine). You could see failures in
1161 * the end. Please use this function for short-lived objects.
1162 *
1163 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1164 */
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)1165 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1166 {
1167 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1168 unsigned long addr;
1169 void *mem;
1170
1171 if (likely(count <= VMAP_MAX_ALLOC)) {
1172 mem = vb_alloc(size, GFP_KERNEL);
1173 if (IS_ERR(mem))
1174 return NULL;
1175 addr = (unsigned long)mem;
1176 } else {
1177 struct vmap_area *va;
1178 va = alloc_vmap_area(size, PAGE_SIZE,
1179 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1180 if (IS_ERR(va))
1181 return NULL;
1182
1183 addr = va->va_start;
1184 mem = (void *)addr;
1185 }
1186 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1187 vm_unmap_ram(mem, count);
1188 return NULL;
1189 }
1190 return mem;
1191 }
1192 EXPORT_SYMBOL(vm_map_ram);
1193
1194 static struct vm_struct *vmlist __initdata;
1195 /**
1196 * vm_area_add_early - add vmap area early during boot
1197 * @vm: vm_struct to add
1198 *
1199 * This function is used to add fixed kernel vm area to vmlist before
1200 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1201 * should contain proper values and the other fields should be zero.
1202 *
1203 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1204 */
vm_area_add_early(struct vm_struct * vm)1205 void __init vm_area_add_early(struct vm_struct *vm)
1206 {
1207 struct vm_struct *tmp, **p;
1208
1209 BUG_ON(vmap_initialized);
1210 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1211 if (tmp->addr >= vm->addr) {
1212 BUG_ON(tmp->addr < vm->addr + vm->size);
1213 break;
1214 } else
1215 BUG_ON(tmp->addr + tmp->size > vm->addr);
1216 }
1217 vm->next = *p;
1218 *p = vm;
1219 }
1220
1221 /**
1222 * vm_area_register_early - register vmap area early during boot
1223 * @vm: vm_struct to register
1224 * @align: requested alignment
1225 *
1226 * This function is used to register kernel vm area before
1227 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1228 * proper values on entry and other fields should be zero. On return,
1229 * vm->addr contains the allocated address.
1230 *
1231 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1232 */
vm_area_register_early(struct vm_struct * vm,size_t align)1233 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1234 {
1235 static size_t vm_init_off __initdata;
1236 unsigned long addr;
1237
1238 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1239 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1240
1241 vm->addr = (void *)addr;
1242
1243 vm_area_add_early(vm);
1244 }
1245
vmalloc_init(void)1246 void __init vmalloc_init(void)
1247 {
1248 struct vmap_area *va;
1249 struct vm_struct *tmp;
1250 int i;
1251
1252 for_each_possible_cpu(i) {
1253 struct vmap_block_queue *vbq;
1254 struct vfree_deferred *p;
1255
1256 vbq = &per_cpu(vmap_block_queue, i);
1257 spin_lock_init(&vbq->lock);
1258 INIT_LIST_HEAD(&vbq->free);
1259 p = &per_cpu(vfree_deferred, i);
1260 init_llist_head(&p->list);
1261 INIT_WORK(&p->wq, free_work);
1262 }
1263
1264 /* Import existing vmlist entries. */
1265 for (tmp = vmlist; tmp; tmp = tmp->next) {
1266 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1267 va->flags = VM_VM_AREA;
1268 va->va_start = (unsigned long)tmp->addr;
1269 va->va_end = va->va_start + tmp->size;
1270 va->vm = tmp;
1271 __insert_vmap_area(va);
1272 }
1273
1274 vmap_area_pcpu_hole = VMALLOC_END;
1275
1276 vmap_initialized = true;
1277 }
1278
1279 /**
1280 * map_kernel_range_noflush - map kernel VM area with the specified pages
1281 * @addr: start of the VM area to map
1282 * @size: size of the VM area to map
1283 * @prot: page protection flags to use
1284 * @pages: pages to map
1285 *
1286 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1287 * specify should have been allocated using get_vm_area() and its
1288 * friends.
1289 *
1290 * NOTE:
1291 * This function does NOT do any cache flushing. The caller is
1292 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1293 * before calling this function.
1294 *
1295 * RETURNS:
1296 * The number of pages mapped on success, -errno on failure.
1297 */
map_kernel_range_noflush(unsigned long addr,unsigned long size,pgprot_t prot,struct page ** pages)1298 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1299 pgprot_t prot, struct page **pages)
1300 {
1301 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1302 }
1303
1304 /**
1305 * unmap_kernel_range_noflush - unmap kernel VM area
1306 * @addr: start of the VM area to unmap
1307 * @size: size of the VM area to unmap
1308 *
1309 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1310 * specify should have been allocated using get_vm_area() and its
1311 * friends.
1312 *
1313 * NOTE:
1314 * This function does NOT do any cache flushing. The caller is
1315 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1316 * before calling this function and flush_tlb_kernel_range() after.
1317 */
unmap_kernel_range_noflush(unsigned long addr,unsigned long size)1318 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1319 {
1320 vunmap_page_range(addr, addr + size);
1321 }
1322 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1323
1324 /**
1325 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1326 * @addr: start of the VM area to unmap
1327 * @size: size of the VM area to unmap
1328 *
1329 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1330 * the unmapping and tlb after.
1331 */
unmap_kernel_range(unsigned long addr,unsigned long size)1332 void unmap_kernel_range(unsigned long addr, unsigned long size)
1333 {
1334 unsigned long end = addr + size;
1335
1336 flush_cache_vunmap(addr, end);
1337 vunmap_page_range(addr, end);
1338 flush_tlb_kernel_range(addr, end);
1339 }
1340 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1341
map_vm_area(struct vm_struct * area,pgprot_t prot,struct page ** pages)1342 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1343 {
1344 unsigned long addr = (unsigned long)area->addr;
1345 unsigned long end = addr + get_vm_area_size(area);
1346 int err;
1347
1348 err = vmap_page_range(addr, end, prot, pages);
1349
1350 return err > 0 ? 0 : err;
1351 }
1352 EXPORT_SYMBOL_GPL(map_vm_area);
1353
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)1354 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1355 unsigned long flags, const void *caller)
1356 {
1357 spin_lock(&vmap_area_lock);
1358 vm->flags = flags;
1359 vm->addr = (void *)va->va_start;
1360 vm->size = va->va_end - va->va_start;
1361 vm->caller = caller;
1362 va->vm = vm;
1363 va->flags |= VM_VM_AREA;
1364 spin_unlock(&vmap_area_lock);
1365 }
1366
clear_vm_uninitialized_flag(struct vm_struct * vm)1367 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1368 {
1369 /*
1370 * Before removing VM_UNINITIALIZED,
1371 * we should make sure that vm has proper values.
1372 * Pair with smp_rmb() in show_numa_info().
1373 */
1374 smp_wmb();
1375 vm->flags &= ~VM_UNINITIALIZED;
1376 }
1377
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)1378 static struct vm_struct *__get_vm_area_node(unsigned long size,
1379 unsigned long align, unsigned long flags, unsigned long start,
1380 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1381 {
1382 struct vmap_area *va;
1383 struct vm_struct *area;
1384
1385 BUG_ON(in_interrupt());
1386 size = PAGE_ALIGN(size);
1387 if (unlikely(!size))
1388 return NULL;
1389
1390 if (flags & VM_IOREMAP)
1391 align = 1ul << clamp_t(int, get_count_order_long(size),
1392 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1393
1394 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1395 if (unlikely(!area))
1396 return NULL;
1397
1398 if (!(flags & VM_NO_GUARD))
1399 size += PAGE_SIZE;
1400
1401 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1402 if (IS_ERR(va)) {
1403 kfree(area);
1404 return NULL;
1405 }
1406
1407 setup_vmalloc_vm(area, va, flags, caller);
1408
1409 return area;
1410 }
1411
__get_vm_area(unsigned long size,unsigned long flags,unsigned long start,unsigned long end)1412 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1413 unsigned long start, unsigned long end)
1414 {
1415 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1416 GFP_KERNEL, __builtin_return_address(0));
1417 }
1418 EXPORT_SYMBOL_GPL(__get_vm_area);
1419
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)1420 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1421 unsigned long start, unsigned long end,
1422 const void *caller)
1423 {
1424 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1425 GFP_KERNEL, caller);
1426 }
1427
1428 /**
1429 * get_vm_area - reserve a contiguous kernel virtual area
1430 * @size: size of the area
1431 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1432 *
1433 * Search an area of @size in the kernel virtual mapping area,
1434 * and reserved it for out purposes. Returns the area descriptor
1435 * on success or %NULL on failure.
1436 */
get_vm_area(unsigned long size,unsigned long flags)1437 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1438 {
1439 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1440 NUMA_NO_NODE, GFP_KERNEL,
1441 __builtin_return_address(0));
1442 }
1443
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)1444 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1445 const void *caller)
1446 {
1447 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1448 NUMA_NO_NODE, GFP_KERNEL, caller);
1449 }
1450
1451 /**
1452 * find_vm_area - find a continuous kernel virtual area
1453 * @addr: base address
1454 *
1455 * Search for the kernel VM area starting at @addr, and return it.
1456 * It is up to the caller to do all required locking to keep the returned
1457 * pointer valid.
1458 */
find_vm_area(const void * addr)1459 struct vm_struct *find_vm_area(const void *addr)
1460 {
1461 struct vmap_area *va;
1462
1463 va = find_vmap_area((unsigned long)addr);
1464 if (va && va->flags & VM_VM_AREA)
1465 return va->vm;
1466
1467 return NULL;
1468 }
1469
1470 /**
1471 * remove_vm_area - find and remove a continuous kernel virtual area
1472 * @addr: base address
1473 *
1474 * Search for the kernel VM area starting at @addr, and remove it.
1475 * This function returns the found VM area, but using it is NOT safe
1476 * on SMP machines, except for its size or flags.
1477 */
remove_vm_area(const void * addr)1478 struct vm_struct *remove_vm_area(const void *addr)
1479 {
1480 struct vmap_area *va;
1481
1482 might_sleep();
1483
1484 va = find_vmap_area((unsigned long)addr);
1485 if (va && va->flags & VM_VM_AREA) {
1486 struct vm_struct *vm = va->vm;
1487
1488 spin_lock(&vmap_area_lock);
1489 va->vm = NULL;
1490 va->flags &= ~VM_VM_AREA;
1491 va->flags |= VM_LAZY_FREE;
1492 spin_unlock(&vmap_area_lock);
1493
1494 kasan_free_shadow(vm);
1495 free_unmap_vmap_area(va);
1496
1497 return vm;
1498 }
1499 return NULL;
1500 }
1501
__vunmap(const void * addr,int deallocate_pages)1502 static void __vunmap(const void *addr, int deallocate_pages)
1503 {
1504 struct vm_struct *area;
1505
1506 if (!addr)
1507 return;
1508
1509 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1510 addr))
1511 return;
1512
1513 area = find_vm_area(addr);
1514 if (unlikely(!area)) {
1515 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1516 addr);
1517 return;
1518 }
1519
1520 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
1521 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
1522
1523 remove_vm_area(addr);
1524 if (deallocate_pages) {
1525 int i;
1526
1527 for (i = 0; i < area->nr_pages; i++) {
1528 struct page *page = area->pages[i];
1529
1530 BUG_ON(!page);
1531 __free_pages(page, 0);
1532 }
1533
1534 kvfree(area->pages);
1535 }
1536
1537 kfree(area);
1538 return;
1539 }
1540
__vfree_deferred(const void * addr)1541 static inline void __vfree_deferred(const void *addr)
1542 {
1543 /*
1544 * Use raw_cpu_ptr() because this can be called from preemptible
1545 * context. Preemption is absolutely fine here, because the llist_add()
1546 * implementation is lockless, so it works even if we are adding to
1547 * nother cpu's list. schedule_work() should be fine with this too.
1548 */
1549 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1550
1551 if (llist_add((struct llist_node *)addr, &p->list))
1552 schedule_work(&p->wq);
1553 }
1554
1555 /**
1556 * vfree_atomic - release memory allocated by vmalloc()
1557 * @addr: memory base address
1558 *
1559 * This one is just like vfree() but can be called in any atomic context
1560 * except NMIs.
1561 */
vfree_atomic(const void * addr)1562 void vfree_atomic(const void *addr)
1563 {
1564 BUG_ON(in_nmi());
1565
1566 kmemleak_free(addr);
1567
1568 if (!addr)
1569 return;
1570 __vfree_deferred(addr);
1571 }
1572
1573 /**
1574 * vfree - release memory allocated by vmalloc()
1575 * @addr: memory base address
1576 *
1577 * Free the virtually continuous memory area starting at @addr, as
1578 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1579 * NULL, no operation is performed.
1580 *
1581 * Must not be called in NMI context (strictly speaking, only if we don't
1582 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1583 * conventions for vfree() arch-depenedent would be a really bad idea)
1584 *
1585 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1586 */
vfree(const void * addr)1587 void vfree(const void *addr)
1588 {
1589 BUG_ON(in_nmi());
1590
1591 kmemleak_free(addr);
1592
1593 if (!addr)
1594 return;
1595 if (unlikely(in_interrupt()))
1596 __vfree_deferred(addr);
1597 else
1598 __vunmap(addr, 1);
1599 }
1600 EXPORT_SYMBOL(vfree);
1601
1602 /**
1603 * vunmap - release virtual mapping obtained by vmap()
1604 * @addr: memory base address
1605 *
1606 * Free the virtually contiguous memory area starting at @addr,
1607 * which was created from the page array passed to vmap().
1608 *
1609 * Must not be called in interrupt context.
1610 */
vunmap(const void * addr)1611 void vunmap(const void *addr)
1612 {
1613 BUG_ON(in_interrupt());
1614 might_sleep();
1615 if (addr)
1616 __vunmap(addr, 0);
1617 }
1618 EXPORT_SYMBOL(vunmap);
1619
1620 /**
1621 * vmap - map an array of pages into virtually contiguous space
1622 * @pages: array of page pointers
1623 * @count: number of pages to map
1624 * @flags: vm_area->flags
1625 * @prot: page protection for the mapping
1626 *
1627 * Maps @count pages from @pages into contiguous kernel virtual
1628 * space.
1629 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)1630 void *vmap(struct page **pages, unsigned int count,
1631 unsigned long flags, pgprot_t prot)
1632 {
1633 struct vm_struct *area;
1634 unsigned long size; /* In bytes */
1635
1636 might_sleep();
1637
1638 if (count > totalram_pages)
1639 return NULL;
1640
1641 size = (unsigned long)count << PAGE_SHIFT;
1642 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1643 if (!area)
1644 return NULL;
1645
1646 if (map_vm_area(area, prot, pages)) {
1647 vunmap(area->addr);
1648 return NULL;
1649 }
1650
1651 return area->addr;
1652 }
1653 EXPORT_SYMBOL(vmap);
1654
1655 static void *__vmalloc_node(unsigned long size, unsigned long align,
1656 gfp_t gfp_mask, pgprot_t prot,
1657 int node, const void *caller);
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node)1658 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1659 pgprot_t prot, int node)
1660 {
1661 struct page **pages;
1662 unsigned int nr_pages, array_size, i;
1663 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1664 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1665 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1666 0 :
1667 __GFP_HIGHMEM;
1668
1669 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1670 array_size = (nr_pages * sizeof(struct page *));
1671
1672 /* Please note that the recursion is strictly bounded. */
1673 if (array_size > PAGE_SIZE) {
1674 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1675 PAGE_KERNEL, node, area->caller);
1676 } else {
1677 pages = kmalloc_node(array_size, nested_gfp, node);
1678 }
1679
1680 if (!pages) {
1681 remove_vm_area(area->addr);
1682 kfree(area);
1683 return NULL;
1684 }
1685
1686 area->pages = pages;
1687 area->nr_pages = nr_pages;
1688
1689 for (i = 0; i < area->nr_pages; i++) {
1690 struct page *page;
1691
1692 if (node == NUMA_NO_NODE)
1693 page = alloc_page(alloc_mask|highmem_mask);
1694 else
1695 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1696
1697 if (unlikely(!page)) {
1698 /* Successfully allocated i pages, free them in __vunmap() */
1699 area->nr_pages = i;
1700 goto fail;
1701 }
1702 area->pages[i] = page;
1703 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1704 cond_resched();
1705 }
1706
1707 if (map_vm_area(area, prot, pages))
1708 goto fail;
1709 return area->addr;
1710
1711 fail:
1712 warn_alloc(gfp_mask, NULL,
1713 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1714 (area->nr_pages*PAGE_SIZE), area->size);
1715 vfree(area->addr);
1716 return NULL;
1717 }
1718
1719 /**
1720 * __vmalloc_node_range - allocate virtually contiguous memory
1721 * @size: allocation size
1722 * @align: desired alignment
1723 * @start: vm area range start
1724 * @end: vm area range end
1725 * @gfp_mask: flags for the page level allocator
1726 * @prot: protection mask for the allocated pages
1727 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1728 * @node: node to use for allocation or NUMA_NO_NODE
1729 * @caller: caller's return address
1730 *
1731 * Allocate enough pages to cover @size from the page level
1732 * allocator with @gfp_mask flags. Map them into contiguous
1733 * kernel virtual space, using a pagetable protection of @prot.
1734 */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)1735 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1736 unsigned long start, unsigned long end, gfp_t gfp_mask,
1737 pgprot_t prot, unsigned long vm_flags, int node,
1738 const void *caller)
1739 {
1740 struct vm_struct *area;
1741 void *addr;
1742 unsigned long real_size = size;
1743
1744 size = PAGE_ALIGN(size);
1745 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1746 goto fail;
1747
1748 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1749 vm_flags, start, end, node, gfp_mask, caller);
1750 if (!area)
1751 goto fail;
1752
1753 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1754 if (!addr)
1755 return NULL;
1756
1757 /*
1758 * First make sure the mappings are removed from all page-tables
1759 * before they are freed.
1760 */
1761 vmalloc_sync_unmappings();
1762
1763 /*
1764 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1765 * flag. It means that vm_struct is not fully initialized.
1766 * Now, it is fully initialized, so remove this flag here.
1767 */
1768 clear_vm_uninitialized_flag(area);
1769
1770 kmemleak_vmalloc(area, size, gfp_mask);
1771
1772 return addr;
1773
1774 fail:
1775 warn_alloc(gfp_mask, NULL,
1776 "vmalloc: allocation failure: %lu bytes", real_size);
1777 return NULL;
1778 }
1779
1780 /**
1781 * __vmalloc_node - allocate virtually contiguous memory
1782 * @size: allocation size
1783 * @align: desired alignment
1784 * @gfp_mask: flags for the page level allocator
1785 * @prot: protection mask for the allocated pages
1786 * @node: node to use for allocation or NUMA_NO_NODE
1787 * @caller: caller's return address
1788 *
1789 * Allocate enough pages to cover @size from the page level
1790 * allocator with @gfp_mask flags. Map them into contiguous
1791 * kernel virtual space, using a pagetable protection of @prot.
1792 *
1793 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1794 * and __GFP_NOFAIL are not supported
1795 *
1796 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1797 * with mm people.
1798 *
1799 */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,pgprot_t prot,int node,const void * caller)1800 static void *__vmalloc_node(unsigned long size, unsigned long align,
1801 gfp_t gfp_mask, pgprot_t prot,
1802 int node, const void *caller)
1803 {
1804 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1805 gfp_mask, prot, 0, node, caller);
1806 }
1807
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)1808 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1809 {
1810 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1811 __builtin_return_address(0));
1812 }
1813 EXPORT_SYMBOL(__vmalloc);
1814
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)1815 static inline void *__vmalloc_node_flags(unsigned long size,
1816 int node, gfp_t flags)
1817 {
1818 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1819 node, __builtin_return_address(0));
1820 }
1821
1822
__vmalloc_node_flags_caller(unsigned long size,int node,gfp_t flags,void * caller)1823 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1824 void *caller)
1825 {
1826 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1827 }
1828
1829 /**
1830 * vmalloc - allocate virtually contiguous memory
1831 * @size: allocation size
1832 * Allocate enough pages to cover @size from the page level
1833 * allocator and map them into contiguous kernel virtual space.
1834 *
1835 * For tight control over page level allocator and protection flags
1836 * use __vmalloc() instead.
1837 */
vmalloc(unsigned long size)1838 void *vmalloc(unsigned long size)
1839 {
1840 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1841 GFP_KERNEL);
1842 }
1843 EXPORT_SYMBOL(vmalloc);
1844
1845 /**
1846 * vzalloc - allocate virtually contiguous memory with zero fill
1847 * @size: allocation size
1848 * Allocate enough pages to cover @size from the page level
1849 * allocator and map them into contiguous kernel virtual space.
1850 * The memory allocated is set to zero.
1851 *
1852 * For tight control over page level allocator and protection flags
1853 * use __vmalloc() instead.
1854 */
vzalloc(unsigned long size)1855 void *vzalloc(unsigned long size)
1856 {
1857 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1858 GFP_KERNEL | __GFP_ZERO);
1859 }
1860 EXPORT_SYMBOL(vzalloc);
1861
1862 /**
1863 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1864 * @size: allocation size
1865 *
1866 * The resulting memory area is zeroed so it can be mapped to userspace
1867 * without leaking data.
1868 */
vmalloc_user(unsigned long size)1869 void *vmalloc_user(unsigned long size)
1870 {
1871 struct vm_struct *area;
1872 void *ret;
1873
1874 ret = __vmalloc_node(size, SHMLBA,
1875 GFP_KERNEL | __GFP_ZERO,
1876 PAGE_KERNEL, NUMA_NO_NODE,
1877 __builtin_return_address(0));
1878 if (ret) {
1879 area = find_vm_area(ret);
1880 area->flags |= VM_USERMAP;
1881 }
1882 return ret;
1883 }
1884 EXPORT_SYMBOL(vmalloc_user);
1885
1886 /**
1887 * vmalloc_node - allocate memory on a specific node
1888 * @size: allocation size
1889 * @node: numa node
1890 *
1891 * Allocate enough pages to cover @size from the page level
1892 * allocator and map them into contiguous kernel virtual space.
1893 *
1894 * For tight control over page level allocator and protection flags
1895 * use __vmalloc() instead.
1896 */
vmalloc_node(unsigned long size,int node)1897 void *vmalloc_node(unsigned long size, int node)
1898 {
1899 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1900 node, __builtin_return_address(0));
1901 }
1902 EXPORT_SYMBOL(vmalloc_node);
1903
1904 /**
1905 * vzalloc_node - allocate memory on a specific node with zero fill
1906 * @size: allocation size
1907 * @node: numa node
1908 *
1909 * Allocate enough pages to cover @size from the page level
1910 * allocator and map them into contiguous kernel virtual space.
1911 * The memory allocated is set to zero.
1912 *
1913 * For tight control over page level allocator and protection flags
1914 * use __vmalloc_node() instead.
1915 */
vzalloc_node(unsigned long size,int node)1916 void *vzalloc_node(unsigned long size, int node)
1917 {
1918 return __vmalloc_node_flags(size, node,
1919 GFP_KERNEL | __GFP_ZERO);
1920 }
1921 EXPORT_SYMBOL(vzalloc_node);
1922
1923 /**
1924 * vmalloc_exec - allocate virtually contiguous, executable memory
1925 * @size: allocation size
1926 *
1927 * Kernel-internal function to allocate enough pages to cover @size
1928 * the page level allocator and map them into contiguous and
1929 * executable kernel virtual space.
1930 *
1931 * For tight control over page level allocator and protection flags
1932 * use __vmalloc() instead.
1933 */
1934
vmalloc_exec(unsigned long size)1935 void *vmalloc_exec(unsigned long size)
1936 {
1937 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1938 NUMA_NO_NODE, __builtin_return_address(0));
1939 }
1940
1941 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1942 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1943 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1944 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1945 #else
1946 /*
1947 * 64b systems should always have either DMA or DMA32 zones. For others
1948 * GFP_DMA32 should do the right thing and use the normal zone.
1949 */
1950 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1951 #endif
1952
1953 /**
1954 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1955 * @size: allocation size
1956 *
1957 * Allocate enough 32bit PA addressable pages to cover @size from the
1958 * page level allocator and map them into contiguous kernel virtual space.
1959 */
vmalloc_32(unsigned long size)1960 void *vmalloc_32(unsigned long size)
1961 {
1962 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1963 NUMA_NO_NODE, __builtin_return_address(0));
1964 }
1965 EXPORT_SYMBOL(vmalloc_32);
1966
1967 /**
1968 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1969 * @size: allocation size
1970 *
1971 * The resulting memory area is 32bit addressable and zeroed so it can be
1972 * mapped to userspace without leaking data.
1973 */
vmalloc_32_user(unsigned long size)1974 void *vmalloc_32_user(unsigned long size)
1975 {
1976 struct vm_struct *area;
1977 void *ret;
1978
1979 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1980 NUMA_NO_NODE, __builtin_return_address(0));
1981 if (ret) {
1982 area = find_vm_area(ret);
1983 area->flags |= VM_USERMAP;
1984 }
1985 return ret;
1986 }
1987 EXPORT_SYMBOL(vmalloc_32_user);
1988
1989 /*
1990 * small helper routine , copy contents to buf from addr.
1991 * If the page is not present, fill zero.
1992 */
1993
aligned_vread(char * buf,char * addr,unsigned long count)1994 static int aligned_vread(char *buf, char *addr, unsigned long count)
1995 {
1996 struct page *p;
1997 int copied = 0;
1998
1999 while (count) {
2000 unsigned long offset, length;
2001
2002 offset = offset_in_page(addr);
2003 length = PAGE_SIZE - offset;
2004 if (length > count)
2005 length = count;
2006 p = vmalloc_to_page(addr);
2007 /*
2008 * To do safe access to this _mapped_ area, we need
2009 * lock. But adding lock here means that we need to add
2010 * overhead of vmalloc()/vfree() calles for this _debug_
2011 * interface, rarely used. Instead of that, we'll use
2012 * kmap() and get small overhead in this access function.
2013 */
2014 if (p) {
2015 /*
2016 * we can expect USER0 is not used (see vread/vwrite's
2017 * function description)
2018 */
2019 void *map = kmap_atomic(p);
2020 memcpy(buf, map + offset, length);
2021 kunmap_atomic(map);
2022 } else
2023 memset(buf, 0, length);
2024
2025 addr += length;
2026 buf += length;
2027 copied += length;
2028 count -= length;
2029 }
2030 return copied;
2031 }
2032
aligned_vwrite(char * buf,char * addr,unsigned long count)2033 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2034 {
2035 struct page *p;
2036 int copied = 0;
2037
2038 while (count) {
2039 unsigned long offset, length;
2040
2041 offset = offset_in_page(addr);
2042 length = PAGE_SIZE - offset;
2043 if (length > count)
2044 length = count;
2045 p = vmalloc_to_page(addr);
2046 /*
2047 * To do safe access to this _mapped_ area, we need
2048 * lock. But adding lock here means that we need to add
2049 * overhead of vmalloc()/vfree() calles for this _debug_
2050 * interface, rarely used. Instead of that, we'll use
2051 * kmap() and get small overhead in this access function.
2052 */
2053 if (p) {
2054 /*
2055 * we can expect USER0 is not used (see vread/vwrite's
2056 * function description)
2057 */
2058 void *map = kmap_atomic(p);
2059 memcpy(map + offset, buf, length);
2060 kunmap_atomic(map);
2061 }
2062 addr += length;
2063 buf += length;
2064 copied += length;
2065 count -= length;
2066 }
2067 return copied;
2068 }
2069
2070 /**
2071 * vread() - read vmalloc area in a safe way.
2072 * @buf: buffer for reading data
2073 * @addr: vm address.
2074 * @count: number of bytes to be read.
2075 *
2076 * Returns # of bytes which addr and buf should be increased.
2077 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2078 * includes any intersect with alive vmalloc area.
2079 *
2080 * This function checks that addr is a valid vmalloc'ed area, and
2081 * copy data from that area to a given buffer. If the given memory range
2082 * of [addr...addr+count) includes some valid address, data is copied to
2083 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2084 * IOREMAP area is treated as memory hole and no copy is done.
2085 *
2086 * If [addr...addr+count) doesn't includes any intersects with alive
2087 * vm_struct area, returns 0. @buf should be kernel's buffer.
2088 *
2089 * Note: In usual ops, vread() is never necessary because the caller
2090 * should know vmalloc() area is valid and can use memcpy().
2091 * This is for routines which have to access vmalloc area without
2092 * any informaion, as /dev/kmem.
2093 *
2094 */
2095
vread(char * buf,char * addr,unsigned long count)2096 long vread(char *buf, char *addr, unsigned long count)
2097 {
2098 struct vmap_area *va;
2099 struct vm_struct *vm;
2100 char *vaddr, *buf_start = buf;
2101 unsigned long buflen = count;
2102 unsigned long n;
2103
2104 /* Don't allow overflow */
2105 if ((unsigned long) addr + count < count)
2106 count = -(unsigned long) addr;
2107
2108 spin_lock(&vmap_area_lock);
2109 list_for_each_entry(va, &vmap_area_list, list) {
2110 if (!count)
2111 break;
2112
2113 if (!(va->flags & VM_VM_AREA))
2114 continue;
2115
2116 vm = va->vm;
2117 vaddr = (char *) vm->addr;
2118 if (addr >= vaddr + get_vm_area_size(vm))
2119 continue;
2120 while (addr < vaddr) {
2121 if (count == 0)
2122 goto finished;
2123 *buf = '\0';
2124 buf++;
2125 addr++;
2126 count--;
2127 }
2128 n = vaddr + get_vm_area_size(vm) - addr;
2129 if (n > count)
2130 n = count;
2131 if (!(vm->flags & VM_IOREMAP))
2132 aligned_vread(buf, addr, n);
2133 else /* IOREMAP area is treated as memory hole */
2134 memset(buf, 0, n);
2135 buf += n;
2136 addr += n;
2137 count -= n;
2138 }
2139 finished:
2140 spin_unlock(&vmap_area_lock);
2141
2142 if (buf == buf_start)
2143 return 0;
2144 /* zero-fill memory holes */
2145 if (buf != buf_start + buflen)
2146 memset(buf, 0, buflen - (buf - buf_start));
2147
2148 return buflen;
2149 }
2150
2151 /**
2152 * vwrite() - write vmalloc area in a safe way.
2153 * @buf: buffer for source data
2154 * @addr: vm address.
2155 * @count: number of bytes to be read.
2156 *
2157 * Returns # of bytes which addr and buf should be incresed.
2158 * (same number to @count).
2159 * If [addr...addr+count) doesn't includes any intersect with valid
2160 * vmalloc area, returns 0.
2161 *
2162 * This function checks that addr is a valid vmalloc'ed area, and
2163 * copy data from a buffer to the given addr. If specified range of
2164 * [addr...addr+count) includes some valid address, data is copied from
2165 * proper area of @buf. If there are memory holes, no copy to hole.
2166 * IOREMAP area is treated as memory hole and no copy is done.
2167 *
2168 * If [addr...addr+count) doesn't includes any intersects with alive
2169 * vm_struct area, returns 0. @buf should be kernel's buffer.
2170 *
2171 * Note: In usual ops, vwrite() is never necessary because the caller
2172 * should know vmalloc() area is valid and can use memcpy().
2173 * This is for routines which have to access vmalloc area without
2174 * any informaion, as /dev/kmem.
2175 */
2176
vwrite(char * buf,char * addr,unsigned long count)2177 long vwrite(char *buf, char *addr, unsigned long count)
2178 {
2179 struct vmap_area *va;
2180 struct vm_struct *vm;
2181 char *vaddr;
2182 unsigned long n, buflen;
2183 int copied = 0;
2184
2185 /* Don't allow overflow */
2186 if ((unsigned long) addr + count < count)
2187 count = -(unsigned long) addr;
2188 buflen = count;
2189
2190 spin_lock(&vmap_area_lock);
2191 list_for_each_entry(va, &vmap_area_list, list) {
2192 if (!count)
2193 break;
2194
2195 if (!(va->flags & VM_VM_AREA))
2196 continue;
2197
2198 vm = va->vm;
2199 vaddr = (char *) vm->addr;
2200 if (addr >= vaddr + get_vm_area_size(vm))
2201 continue;
2202 while (addr < vaddr) {
2203 if (count == 0)
2204 goto finished;
2205 buf++;
2206 addr++;
2207 count--;
2208 }
2209 n = vaddr + get_vm_area_size(vm) - addr;
2210 if (n > count)
2211 n = count;
2212 if (!(vm->flags & VM_IOREMAP)) {
2213 aligned_vwrite(buf, addr, n);
2214 copied++;
2215 }
2216 buf += n;
2217 addr += n;
2218 count -= n;
2219 }
2220 finished:
2221 spin_unlock(&vmap_area_lock);
2222 if (!copied)
2223 return 0;
2224 return buflen;
2225 }
2226
2227 /**
2228 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2229 * @vma: vma to cover
2230 * @uaddr: target user address to start at
2231 * @kaddr: virtual address of vmalloc kernel memory
2232 * @pgoff: offset from @kaddr to start at
2233 * @size: size of map area
2234 *
2235 * Returns: 0 for success, -Exxx on failure
2236 *
2237 * This function checks that @kaddr is a valid vmalloc'ed area,
2238 * and that it is big enough to cover the range starting at
2239 * @uaddr in @vma. Will return failure if that criteria isn't
2240 * met.
2241 *
2242 * Similar to remap_pfn_range() (see mm/memory.c)
2243 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)2244 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2245 void *kaddr, unsigned long pgoff,
2246 unsigned long size)
2247 {
2248 struct vm_struct *area;
2249 unsigned long off;
2250 unsigned long end_index;
2251
2252 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
2253 return -EINVAL;
2254
2255 size = PAGE_ALIGN(size);
2256
2257 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2258 return -EINVAL;
2259
2260 area = find_vm_area(kaddr);
2261 if (!area)
2262 return -EINVAL;
2263
2264 if (!(area->flags & VM_USERMAP))
2265 return -EINVAL;
2266
2267 if (check_add_overflow(size, off, &end_index) ||
2268 end_index > get_vm_area_size(area))
2269 return -EINVAL;
2270 kaddr += off;
2271
2272 do {
2273 struct page *page = vmalloc_to_page(kaddr);
2274 int ret;
2275
2276 ret = vm_insert_page(vma, uaddr, page);
2277 if (ret)
2278 return ret;
2279
2280 uaddr += PAGE_SIZE;
2281 kaddr += PAGE_SIZE;
2282 size -= PAGE_SIZE;
2283 } while (size > 0);
2284
2285 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2286
2287 return 0;
2288 }
2289 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2290
2291 /**
2292 * remap_vmalloc_range - map vmalloc pages to userspace
2293 * @vma: vma to cover (map full range of vma)
2294 * @addr: vmalloc memory
2295 * @pgoff: number of pages into addr before first page to map
2296 *
2297 * Returns: 0 for success, -Exxx on failure
2298 *
2299 * This function checks that addr is a valid vmalloc'ed area, and
2300 * that it is big enough to cover the vma. Will return failure if
2301 * that criteria isn't met.
2302 *
2303 * Similar to remap_pfn_range() (see mm/memory.c)
2304 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)2305 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2306 unsigned long pgoff)
2307 {
2308 return remap_vmalloc_range_partial(vma, vma->vm_start,
2309 addr, pgoff,
2310 vma->vm_end - vma->vm_start);
2311 }
2312 EXPORT_SYMBOL(remap_vmalloc_range);
2313
2314 /*
2315 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
2316 * not to have one.
2317 *
2318 * The purpose of this function is to make sure the vmalloc area
2319 * mappings are identical in all page-tables in the system.
2320 */
vmalloc_sync_mappings(void)2321 void __weak vmalloc_sync_mappings(void)
2322 {
2323 }
2324
vmalloc_sync_unmappings(void)2325 void __weak vmalloc_sync_unmappings(void)
2326 {
2327 }
2328
f(pte_t * pte,pgtable_t table,unsigned long addr,void * data)2329 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2330 {
2331 pte_t ***p = data;
2332
2333 if (p) {
2334 *(*p) = pte;
2335 (*p)++;
2336 }
2337 return 0;
2338 }
2339
2340 /**
2341 * alloc_vm_area - allocate a range of kernel address space
2342 * @size: size of the area
2343 * @ptes: returns the PTEs for the address space
2344 *
2345 * Returns: NULL on failure, vm_struct on success
2346 *
2347 * This function reserves a range of kernel address space, and
2348 * allocates pagetables to map that range. No actual mappings
2349 * are created.
2350 *
2351 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2352 * allocated for the VM area are returned.
2353 */
alloc_vm_area(size_t size,pte_t ** ptes)2354 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2355 {
2356 struct vm_struct *area;
2357
2358 area = get_vm_area_caller(size, VM_IOREMAP,
2359 __builtin_return_address(0));
2360 if (area == NULL)
2361 return NULL;
2362
2363 /*
2364 * This ensures that page tables are constructed for this region
2365 * of kernel virtual address space and mapped into init_mm.
2366 */
2367 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2368 size, f, ptes ? &ptes : NULL)) {
2369 free_vm_area(area);
2370 return NULL;
2371 }
2372
2373 return area;
2374 }
2375 EXPORT_SYMBOL_GPL(alloc_vm_area);
2376
free_vm_area(struct vm_struct * area)2377 void free_vm_area(struct vm_struct *area)
2378 {
2379 struct vm_struct *ret;
2380 ret = remove_vm_area(area->addr);
2381 BUG_ON(ret != area);
2382 kfree(area);
2383 }
2384 EXPORT_SYMBOL_GPL(free_vm_area);
2385
2386 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)2387 static struct vmap_area *node_to_va(struct rb_node *n)
2388 {
2389 return rb_entry_safe(n, struct vmap_area, rb_node);
2390 }
2391
2392 /**
2393 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2394 * @end: target address
2395 * @pnext: out arg for the next vmap_area
2396 * @pprev: out arg for the previous vmap_area
2397 *
2398 * Returns: %true if either or both of next and prev are found,
2399 * %false if no vmap_area exists
2400 *
2401 * Find vmap_areas end addresses of which enclose @end. ie. if not
2402 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2403 */
pvm_find_next_prev(unsigned long end,struct vmap_area ** pnext,struct vmap_area ** pprev)2404 static bool pvm_find_next_prev(unsigned long end,
2405 struct vmap_area **pnext,
2406 struct vmap_area **pprev)
2407 {
2408 struct rb_node *n = vmap_area_root.rb_node;
2409 struct vmap_area *va = NULL;
2410
2411 while (n) {
2412 va = rb_entry(n, struct vmap_area, rb_node);
2413 if (end < va->va_end)
2414 n = n->rb_left;
2415 else if (end > va->va_end)
2416 n = n->rb_right;
2417 else
2418 break;
2419 }
2420
2421 if (!va)
2422 return false;
2423
2424 if (va->va_end > end) {
2425 *pnext = va;
2426 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2427 } else {
2428 *pprev = va;
2429 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2430 }
2431 return true;
2432 }
2433
2434 /**
2435 * pvm_determine_end - find the highest aligned address between two vmap_areas
2436 * @pnext: in/out arg for the next vmap_area
2437 * @pprev: in/out arg for the previous vmap_area
2438 * @align: alignment
2439 *
2440 * Returns: determined end address
2441 *
2442 * Find the highest aligned address between *@pnext and *@pprev below
2443 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2444 * down address is between the end addresses of the two vmap_areas.
2445 *
2446 * Please note that the address returned by this function may fall
2447 * inside *@pnext vmap_area. The caller is responsible for checking
2448 * that.
2449 */
pvm_determine_end(struct vmap_area ** pnext,struct vmap_area ** pprev,unsigned long align)2450 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2451 struct vmap_area **pprev,
2452 unsigned long align)
2453 {
2454 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2455 unsigned long addr;
2456
2457 if (*pnext)
2458 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2459 else
2460 addr = vmalloc_end;
2461
2462 while (*pprev && (*pprev)->va_end > addr) {
2463 *pnext = *pprev;
2464 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2465 }
2466
2467 return addr;
2468 }
2469
2470 /**
2471 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2472 * @offsets: array containing offset of each area
2473 * @sizes: array containing size of each area
2474 * @nr_vms: the number of areas to allocate
2475 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2476 *
2477 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2478 * vm_structs on success, %NULL on failure
2479 *
2480 * Percpu allocator wants to use congruent vm areas so that it can
2481 * maintain the offsets among percpu areas. This function allocates
2482 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2483 * be scattered pretty far, distance between two areas easily going up
2484 * to gigabytes. To avoid interacting with regular vmallocs, these
2485 * areas are allocated from top.
2486 *
2487 * Despite its complicated look, this allocator is rather simple. It
2488 * does everything top-down and scans areas from the end looking for
2489 * matching slot. While scanning, if any of the areas overlaps with
2490 * existing vmap_area, the base address is pulled down to fit the
2491 * area. Scanning is repeated till all the areas fit and then all
2492 * necessary data structures are inserted and the result is returned.
2493 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)2494 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2495 const size_t *sizes, int nr_vms,
2496 size_t align)
2497 {
2498 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2499 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2500 struct vmap_area **vas, *prev, *next;
2501 struct vm_struct **vms;
2502 int area, area2, last_area, term_area;
2503 unsigned long base, start, end, last_end;
2504 bool purged = false;
2505
2506 /* verify parameters and allocate data structures */
2507 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2508 for (last_area = 0, area = 0; area < nr_vms; area++) {
2509 start = offsets[area];
2510 end = start + sizes[area];
2511
2512 /* is everything aligned properly? */
2513 BUG_ON(!IS_ALIGNED(offsets[area], align));
2514 BUG_ON(!IS_ALIGNED(sizes[area], align));
2515
2516 /* detect the area with the highest address */
2517 if (start > offsets[last_area])
2518 last_area = area;
2519
2520 for (area2 = area + 1; area2 < nr_vms; area2++) {
2521 unsigned long start2 = offsets[area2];
2522 unsigned long end2 = start2 + sizes[area2];
2523
2524 BUG_ON(start2 < end && start < end2);
2525 }
2526 }
2527 last_end = offsets[last_area] + sizes[last_area];
2528
2529 if (vmalloc_end - vmalloc_start < last_end) {
2530 WARN_ON(true);
2531 return NULL;
2532 }
2533
2534 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2535 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2536 if (!vas || !vms)
2537 goto err_free2;
2538
2539 for (area = 0; area < nr_vms; area++) {
2540 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2541 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2542 if (!vas[area] || !vms[area])
2543 goto err_free;
2544 }
2545 retry:
2546 spin_lock(&vmap_area_lock);
2547
2548 /* start scanning - we scan from the top, begin with the last area */
2549 area = term_area = last_area;
2550 start = offsets[area];
2551 end = start + sizes[area];
2552
2553 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2554 base = vmalloc_end - last_end;
2555 goto found;
2556 }
2557 base = pvm_determine_end(&next, &prev, align) - end;
2558
2559 while (true) {
2560 BUG_ON(next && next->va_end <= base + end);
2561 BUG_ON(prev && prev->va_end > base + end);
2562
2563 /*
2564 * base might have underflowed, add last_end before
2565 * comparing.
2566 */
2567 if (base + last_end < vmalloc_start + last_end) {
2568 spin_unlock(&vmap_area_lock);
2569 if (!purged) {
2570 purge_vmap_area_lazy();
2571 purged = true;
2572 goto retry;
2573 }
2574 goto err_free;
2575 }
2576
2577 /*
2578 * If next overlaps, move base downwards so that it's
2579 * right below next and then recheck.
2580 */
2581 if (next && next->va_start < base + end) {
2582 base = pvm_determine_end(&next, &prev, align) - end;
2583 term_area = area;
2584 continue;
2585 }
2586
2587 /*
2588 * If prev overlaps, shift down next and prev and move
2589 * base so that it's right below new next and then
2590 * recheck.
2591 */
2592 if (prev && prev->va_end > base + start) {
2593 next = prev;
2594 prev = node_to_va(rb_prev(&next->rb_node));
2595 base = pvm_determine_end(&next, &prev, align) - end;
2596 term_area = area;
2597 continue;
2598 }
2599
2600 /*
2601 * This area fits, move on to the previous one. If
2602 * the previous one is the terminal one, we're done.
2603 */
2604 area = (area + nr_vms - 1) % nr_vms;
2605 if (area == term_area)
2606 break;
2607 start = offsets[area];
2608 end = start + sizes[area];
2609 pvm_find_next_prev(base + end, &next, &prev);
2610 }
2611 found:
2612 /* we've found a fitting base, insert all va's */
2613 for (area = 0; area < nr_vms; area++) {
2614 struct vmap_area *va = vas[area];
2615
2616 va->va_start = base + offsets[area];
2617 va->va_end = va->va_start + sizes[area];
2618 __insert_vmap_area(va);
2619 }
2620
2621 vmap_area_pcpu_hole = base + offsets[last_area];
2622
2623 spin_unlock(&vmap_area_lock);
2624
2625 /* insert all vm's */
2626 for (area = 0; area < nr_vms; area++)
2627 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2628 pcpu_get_vm_areas);
2629
2630 kfree(vas);
2631 return vms;
2632
2633 err_free:
2634 for (area = 0; area < nr_vms; area++) {
2635 kfree(vas[area]);
2636 kfree(vms[area]);
2637 }
2638 err_free2:
2639 kfree(vas);
2640 kfree(vms);
2641 return NULL;
2642 }
2643
2644 /**
2645 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2646 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2647 * @nr_vms: the number of allocated areas
2648 *
2649 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2650 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)2651 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2652 {
2653 int i;
2654
2655 for (i = 0; i < nr_vms; i++)
2656 free_vm_area(vms[i]);
2657 kfree(vms);
2658 }
2659 #endif /* CONFIG_SMP */
2660
2661 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)2662 static void *s_start(struct seq_file *m, loff_t *pos)
2663 __acquires(&vmap_area_lock)
2664 {
2665 spin_lock(&vmap_area_lock);
2666 return seq_list_start(&vmap_area_list, *pos);
2667 }
2668
s_next(struct seq_file * m,void * p,loff_t * pos)2669 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2670 {
2671 return seq_list_next(p, &vmap_area_list, pos);
2672 }
2673
s_stop(struct seq_file * m,void * p)2674 static void s_stop(struct seq_file *m, void *p)
2675 __releases(&vmap_area_lock)
2676 {
2677 spin_unlock(&vmap_area_lock);
2678 }
2679
show_numa_info(struct seq_file * m,struct vm_struct * v)2680 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2681 {
2682 if (IS_ENABLED(CONFIG_NUMA)) {
2683 unsigned int nr, *counters = m->private;
2684
2685 if (!counters)
2686 return;
2687
2688 if (v->flags & VM_UNINITIALIZED)
2689 return;
2690 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2691 smp_rmb();
2692
2693 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2694
2695 for (nr = 0; nr < v->nr_pages; nr++)
2696 counters[page_to_nid(v->pages[nr])]++;
2697
2698 for_each_node_state(nr, N_HIGH_MEMORY)
2699 if (counters[nr])
2700 seq_printf(m, " N%u=%u", nr, counters[nr]);
2701 }
2702 }
2703
s_show(struct seq_file * m,void * p)2704 static int s_show(struct seq_file *m, void *p)
2705 {
2706 struct vmap_area *va;
2707 struct vm_struct *v;
2708
2709 va = list_entry(p, struct vmap_area, list);
2710
2711 /*
2712 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2713 * behalf of vmap area is being tear down or vm_map_ram allocation.
2714 */
2715 if (!(va->flags & VM_VM_AREA)) {
2716 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2717 (void *)va->va_start, (void *)va->va_end,
2718 va->va_end - va->va_start,
2719 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2720
2721 return 0;
2722 }
2723
2724 v = va->vm;
2725
2726 seq_printf(m, "0x%pK-0x%pK %7ld",
2727 v->addr, v->addr + v->size, v->size);
2728
2729 if (v->caller)
2730 seq_printf(m, " %pS", v->caller);
2731
2732 if (v->nr_pages)
2733 seq_printf(m, " pages=%d", v->nr_pages);
2734
2735 if (v->phys_addr)
2736 seq_printf(m, " phys=%pa", &v->phys_addr);
2737
2738 if (v->flags & VM_IOREMAP)
2739 seq_puts(m, " ioremap");
2740
2741 if (v->flags & VM_ALLOC)
2742 seq_puts(m, " vmalloc");
2743
2744 if (v->flags & VM_MAP)
2745 seq_puts(m, " vmap");
2746
2747 if (v->flags & VM_USERMAP)
2748 seq_puts(m, " user");
2749
2750 if (is_vmalloc_addr(v->pages))
2751 seq_puts(m, " vpages");
2752
2753 show_numa_info(m, v);
2754 seq_putc(m, '\n');
2755 return 0;
2756 }
2757
2758 static const struct seq_operations vmalloc_op = {
2759 .start = s_start,
2760 .next = s_next,
2761 .stop = s_stop,
2762 .show = s_show,
2763 };
2764
proc_vmalloc_init(void)2765 static int __init proc_vmalloc_init(void)
2766 {
2767 if (IS_ENABLED(CONFIG_NUMA))
2768 proc_create_seq_private("vmallocinfo", 0400, NULL,
2769 &vmalloc_op,
2770 nr_node_ids * sizeof(unsigned int), NULL);
2771 else
2772 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
2773 return 0;
2774 }
2775 module_init(proc_vmalloc_init);
2776
2777 #endif
2778
2779