• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 #include <linux/overflow.h>
35 
36 #include <linux/uaccess.h>
37 #include <asm/tlbflush.h>
38 #include <asm/shmparam.h>
39 
40 #include "internal.h"
41 
42 struct vfree_deferred {
43 	struct llist_head list;
44 	struct work_struct wq;
45 };
46 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
47 
48 static void __vunmap(const void *, int);
49 
free_work(struct work_struct * w)50 static void free_work(struct work_struct *w)
51 {
52 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
53 	struct llist_node *t, *llnode;
54 
55 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
56 		__vunmap((void *)llnode, 1);
57 }
58 
59 /*** Page table manipulation functions ***/
60 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end)61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62 {
63 	pte_t *pte;
64 
65 	pte = pte_offset_kernel(pmd, addr);
66 	do {
67 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 	} while (pte++, addr += PAGE_SIZE, addr != end);
70 }
71 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end)72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
73 {
74 	pmd_t *pmd;
75 	unsigned long next;
76 
77 	pmd = pmd_offset(pud, addr);
78 	do {
79 		next = pmd_addr_end(addr, end);
80 		if (pmd_clear_huge(pmd))
81 			continue;
82 		if (pmd_none_or_clear_bad(pmd))
83 			continue;
84 		vunmap_pte_range(pmd, addr, next);
85 	} while (pmd++, addr = next, addr != end);
86 }
87 
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end)88 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
89 {
90 	pud_t *pud;
91 	unsigned long next;
92 
93 	pud = pud_offset(p4d, addr);
94 	do {
95 		next = pud_addr_end(addr, end);
96 		if (pud_clear_huge(pud))
97 			continue;
98 		if (pud_none_or_clear_bad(pud))
99 			continue;
100 		vunmap_pmd_range(pud, addr, next);
101 	} while (pud++, addr = next, addr != end);
102 }
103 
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end)104 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
105 {
106 	p4d_t *p4d;
107 	unsigned long next;
108 
109 	p4d = p4d_offset(pgd, addr);
110 	do {
111 		next = p4d_addr_end(addr, end);
112 		if (p4d_clear_huge(p4d))
113 			continue;
114 		if (p4d_none_or_clear_bad(p4d))
115 			continue;
116 		vunmap_pud_range(p4d, addr, next);
117 	} while (p4d++, addr = next, addr != end);
118 }
119 
vunmap_page_range(unsigned long addr,unsigned long end)120 static void vunmap_page_range(unsigned long addr, unsigned long end)
121 {
122 	pgd_t *pgd;
123 	unsigned long next;
124 
125 	BUG_ON(addr >= end);
126 	pgd = pgd_offset_k(addr);
127 	do {
128 		next = pgd_addr_end(addr, end);
129 		if (pgd_none_or_clear_bad(pgd))
130 			continue;
131 		vunmap_p4d_range(pgd, addr, next);
132 	} while (pgd++, addr = next, addr != end);
133 }
134 
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)135 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
136 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137 {
138 	pte_t *pte;
139 
140 	/*
141 	 * nr is a running index into the array which helps higher level
142 	 * callers keep track of where we're up to.
143 	 */
144 
145 	pte = pte_alloc_kernel(pmd, addr);
146 	if (!pte)
147 		return -ENOMEM;
148 	do {
149 		struct page *page = pages[*nr];
150 
151 		if (WARN_ON(!pte_none(*pte)))
152 			return -EBUSY;
153 		if (WARN_ON(!page))
154 			return -ENOMEM;
155 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
156 		(*nr)++;
157 	} while (pte++, addr += PAGE_SIZE, addr != end);
158 	return 0;
159 }
160 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)161 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
162 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
163 {
164 	pmd_t *pmd;
165 	unsigned long next;
166 
167 	pmd = pmd_alloc(&init_mm, pud, addr);
168 	if (!pmd)
169 		return -ENOMEM;
170 	do {
171 		next = pmd_addr_end(addr, end);
172 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
173 			return -ENOMEM;
174 	} while (pmd++, addr = next, addr != end);
175 	return 0;
176 }
177 
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)178 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
179 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
180 {
181 	pud_t *pud;
182 	unsigned long next;
183 
184 	pud = pud_alloc(&init_mm, p4d, addr);
185 	if (!pud)
186 		return -ENOMEM;
187 	do {
188 		next = pud_addr_end(addr, end);
189 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
190 			return -ENOMEM;
191 	} while (pud++, addr = next, addr != end);
192 	return 0;
193 }
194 
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)195 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
196 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
197 {
198 	p4d_t *p4d;
199 	unsigned long next;
200 
201 	p4d = p4d_alloc(&init_mm, pgd, addr);
202 	if (!p4d)
203 		return -ENOMEM;
204 	do {
205 		next = p4d_addr_end(addr, end);
206 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
207 			return -ENOMEM;
208 	} while (p4d++, addr = next, addr != end);
209 	return 0;
210 }
211 
212 /*
213  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
214  * will have pfns corresponding to the "pages" array.
215  *
216  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
217  */
vmap_page_range_noflush(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)218 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
219 				   pgprot_t prot, struct page **pages)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long addr = start;
224 	int err = 0;
225 	int nr = 0;
226 
227 	BUG_ON(addr >= end);
228 	pgd = pgd_offset_k(addr);
229 	do {
230 		next = pgd_addr_end(addr, end);
231 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
232 		if (err)
233 			return err;
234 	} while (pgd++, addr = next, addr != end);
235 
236 	return nr;
237 }
238 
vmap_page_range(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)239 static int vmap_page_range(unsigned long start, unsigned long end,
240 			   pgprot_t prot, struct page **pages)
241 {
242 	int ret;
243 
244 	ret = vmap_page_range_noflush(start, end, prot, pages);
245 	flush_cache_vmap(start, end);
246 	return ret;
247 }
248 
is_vmalloc_or_module_addr(const void * x)249 int is_vmalloc_or_module_addr(const void *x)
250 {
251 	/*
252 	 * ARM, x86-64 and sparc64 put modules in a special place,
253 	 * and fall back on vmalloc() if that fails. Others
254 	 * just put it in the vmalloc space.
255 	 */
256 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
257 	unsigned long addr = (unsigned long)x;
258 	if (addr >= MODULES_VADDR && addr < MODULES_END)
259 		return 1;
260 #endif
261 	return is_vmalloc_addr(x);
262 }
263 
264 /*
265  * Walk a vmap address to the struct page it maps.
266  */
vmalloc_to_page(const void * vmalloc_addr)267 struct page *vmalloc_to_page(const void *vmalloc_addr)
268 {
269 	unsigned long addr = (unsigned long) vmalloc_addr;
270 	struct page *page = NULL;
271 	pgd_t *pgd = pgd_offset_k(addr);
272 	p4d_t *p4d;
273 	pud_t *pud;
274 	pmd_t *pmd;
275 	pte_t *ptep, pte;
276 
277 	/*
278 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
279 	 * architectures that do not vmalloc module space
280 	 */
281 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
282 
283 	if (pgd_none(*pgd))
284 		return NULL;
285 	p4d = p4d_offset(pgd, addr);
286 	if (p4d_none(*p4d))
287 		return NULL;
288 	pud = pud_offset(p4d, addr);
289 
290 	/*
291 	 * Don't dereference bad PUD or PMD (below) entries. This will also
292 	 * identify huge mappings, which we may encounter on architectures
293 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
294 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
295 	 * not [unambiguously] associated with a struct page, so there is
296 	 * no correct value to return for them.
297 	 */
298 	WARN_ON_ONCE(pud_bad(*pud));
299 	if (pud_none(*pud) || pud_bad(*pud))
300 		return NULL;
301 	pmd = pmd_offset(pud, addr);
302 	WARN_ON_ONCE(pmd_bad(*pmd));
303 	if (pmd_none(*pmd) || pmd_bad(*pmd))
304 		return NULL;
305 
306 	ptep = pte_offset_map(pmd, addr);
307 	pte = *ptep;
308 	if (pte_present(pte))
309 		page = pte_page(pte);
310 	pte_unmap(ptep);
311 	return page;
312 }
313 EXPORT_SYMBOL(vmalloc_to_page);
314 
315 /*
316  * Map a vmalloc()-space virtual address to the physical page frame number.
317  */
vmalloc_to_pfn(const void * vmalloc_addr)318 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
319 {
320 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
321 }
322 EXPORT_SYMBOL(vmalloc_to_pfn);
323 
324 
325 /*** Global kva allocator ***/
326 
327 #define VM_LAZY_FREE	0x02
328 #define VM_VM_AREA	0x04
329 
330 static DEFINE_SPINLOCK(vmap_area_lock);
331 /* Export for kexec only */
332 LIST_HEAD(vmap_area_list);
333 static LLIST_HEAD(vmap_purge_list);
334 static struct rb_root vmap_area_root = RB_ROOT;
335 
336 /* The vmap cache globals are protected by vmap_area_lock */
337 static struct rb_node *free_vmap_cache;
338 static unsigned long cached_hole_size;
339 static unsigned long cached_vstart;
340 static unsigned long cached_align;
341 
342 static unsigned long vmap_area_pcpu_hole;
343 
__find_vmap_area(unsigned long addr)344 static struct vmap_area *__find_vmap_area(unsigned long addr)
345 {
346 	struct rb_node *n = vmap_area_root.rb_node;
347 
348 	while (n) {
349 		struct vmap_area *va;
350 
351 		va = rb_entry(n, struct vmap_area, rb_node);
352 		if (addr < va->va_start)
353 			n = n->rb_left;
354 		else if (addr >= va->va_end)
355 			n = n->rb_right;
356 		else
357 			return va;
358 	}
359 
360 	return NULL;
361 }
362 
__insert_vmap_area(struct vmap_area * va)363 static void __insert_vmap_area(struct vmap_area *va)
364 {
365 	struct rb_node **p = &vmap_area_root.rb_node;
366 	struct rb_node *parent = NULL;
367 	struct rb_node *tmp;
368 
369 	while (*p) {
370 		struct vmap_area *tmp_va;
371 
372 		parent = *p;
373 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
374 		if (va->va_start < tmp_va->va_end)
375 			p = &(*p)->rb_left;
376 		else if (va->va_end > tmp_va->va_start)
377 			p = &(*p)->rb_right;
378 		else
379 			BUG();
380 	}
381 
382 	rb_link_node(&va->rb_node, parent, p);
383 	rb_insert_color(&va->rb_node, &vmap_area_root);
384 
385 	/* address-sort this list */
386 	tmp = rb_prev(&va->rb_node);
387 	if (tmp) {
388 		struct vmap_area *prev;
389 		prev = rb_entry(tmp, struct vmap_area, rb_node);
390 		list_add_rcu(&va->list, &prev->list);
391 	} else
392 		list_add_rcu(&va->list, &vmap_area_list);
393 }
394 
395 static void purge_vmap_area_lazy(void);
396 
397 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
398 
399 /*
400  * Allocate a region of KVA of the specified size and alignment, within the
401  * vstart and vend.
402  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)403 static struct vmap_area *alloc_vmap_area(unsigned long size,
404 				unsigned long align,
405 				unsigned long vstart, unsigned long vend,
406 				int node, gfp_t gfp_mask)
407 {
408 	struct vmap_area *va;
409 	struct rb_node *n;
410 	unsigned long addr;
411 	int purged = 0;
412 	struct vmap_area *first;
413 
414 	BUG_ON(!size);
415 	BUG_ON(offset_in_page(size));
416 	BUG_ON(!is_power_of_2(align));
417 
418 	might_sleep();
419 
420 	va = kmalloc_node(sizeof(struct vmap_area),
421 			gfp_mask & GFP_RECLAIM_MASK, node);
422 	if (unlikely(!va))
423 		return ERR_PTR(-ENOMEM);
424 
425 	/*
426 	 * Only scan the relevant parts containing pointers to other objects
427 	 * to avoid false negatives.
428 	 */
429 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
430 
431 retry:
432 	spin_lock(&vmap_area_lock);
433 	/*
434 	 * Invalidate cache if we have more permissive parameters.
435 	 * cached_hole_size notes the largest hole noticed _below_
436 	 * the vmap_area cached in free_vmap_cache: if size fits
437 	 * into that hole, we want to scan from vstart to reuse
438 	 * the hole instead of allocating above free_vmap_cache.
439 	 * Note that __free_vmap_area may update free_vmap_cache
440 	 * without updating cached_hole_size or cached_align.
441 	 */
442 	if (!free_vmap_cache ||
443 			size < cached_hole_size ||
444 			vstart < cached_vstart ||
445 			align < cached_align) {
446 nocache:
447 		cached_hole_size = 0;
448 		free_vmap_cache = NULL;
449 	}
450 	/* record if we encounter less permissive parameters */
451 	cached_vstart = vstart;
452 	cached_align = align;
453 
454 	/* find starting point for our search */
455 	if (free_vmap_cache) {
456 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
457 		addr = ALIGN(first->va_end, align);
458 		if (addr < vstart)
459 			goto nocache;
460 		if (addr + size < addr)
461 			goto overflow;
462 
463 	} else {
464 		addr = ALIGN(vstart, align);
465 		if (addr + size < addr)
466 			goto overflow;
467 
468 		n = vmap_area_root.rb_node;
469 		first = NULL;
470 
471 		while (n) {
472 			struct vmap_area *tmp;
473 			tmp = rb_entry(n, struct vmap_area, rb_node);
474 			if (tmp->va_end >= addr) {
475 				first = tmp;
476 				if (tmp->va_start <= addr)
477 					break;
478 				n = n->rb_left;
479 			} else
480 				n = n->rb_right;
481 		}
482 
483 		if (!first)
484 			goto found;
485 	}
486 
487 	/* from the starting point, walk areas until a suitable hole is found */
488 	while (addr + size > first->va_start && addr + size <= vend) {
489 		if (addr + cached_hole_size < first->va_start)
490 			cached_hole_size = first->va_start - addr;
491 		addr = ALIGN(first->va_end, align);
492 		if (addr + size < addr)
493 			goto overflow;
494 
495 		if (list_is_last(&first->list, &vmap_area_list))
496 			goto found;
497 
498 		first = list_next_entry(first, list);
499 	}
500 
501 found:
502 	/*
503 	 * Check also calculated address against the vstart,
504 	 * because it can be 0 because of big align request.
505 	 */
506 	if (addr + size > vend || addr < vstart)
507 		goto overflow;
508 
509 	va->va_start = addr;
510 	va->va_end = addr + size;
511 	va->flags = 0;
512 	__insert_vmap_area(va);
513 	free_vmap_cache = &va->rb_node;
514 	spin_unlock(&vmap_area_lock);
515 
516 	BUG_ON(!IS_ALIGNED(va->va_start, align));
517 	BUG_ON(va->va_start < vstart);
518 	BUG_ON(va->va_end > vend);
519 
520 	return va;
521 
522 overflow:
523 	spin_unlock(&vmap_area_lock);
524 	if (!purged) {
525 		purge_vmap_area_lazy();
526 		purged = 1;
527 		goto retry;
528 	}
529 
530 	if (gfpflags_allow_blocking(gfp_mask)) {
531 		unsigned long freed = 0;
532 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
533 		if (freed > 0) {
534 			purged = 0;
535 			goto retry;
536 		}
537 	}
538 
539 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
540 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
541 			size);
542 	kfree(va);
543 	return ERR_PTR(-EBUSY);
544 }
545 
register_vmap_purge_notifier(struct notifier_block * nb)546 int register_vmap_purge_notifier(struct notifier_block *nb)
547 {
548 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
549 }
550 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
551 
unregister_vmap_purge_notifier(struct notifier_block * nb)552 int unregister_vmap_purge_notifier(struct notifier_block *nb)
553 {
554 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
555 }
556 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
557 
__free_vmap_area(struct vmap_area * va)558 static void __free_vmap_area(struct vmap_area *va)
559 {
560 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
561 
562 	if (free_vmap_cache) {
563 		if (va->va_end < cached_vstart) {
564 			free_vmap_cache = NULL;
565 		} else {
566 			struct vmap_area *cache;
567 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
568 			if (va->va_start <= cache->va_start) {
569 				free_vmap_cache = rb_prev(&va->rb_node);
570 				/*
571 				 * We don't try to update cached_hole_size or
572 				 * cached_align, but it won't go very wrong.
573 				 */
574 			}
575 		}
576 	}
577 	rb_erase(&va->rb_node, &vmap_area_root);
578 	RB_CLEAR_NODE(&va->rb_node);
579 	list_del_rcu(&va->list);
580 
581 	/*
582 	 * Track the highest possible candidate for pcpu area
583 	 * allocation.  Areas outside of vmalloc area can be returned
584 	 * here too, consider only end addresses which fall inside
585 	 * vmalloc area proper.
586 	 */
587 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
588 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
589 
590 	kfree_rcu(va, rcu_head);
591 }
592 
593 /*
594  * Free a region of KVA allocated by alloc_vmap_area
595  */
free_vmap_area(struct vmap_area * va)596 static void free_vmap_area(struct vmap_area *va)
597 {
598 	spin_lock(&vmap_area_lock);
599 	__free_vmap_area(va);
600 	spin_unlock(&vmap_area_lock);
601 }
602 
603 /*
604  * Clear the pagetable entries of a given vmap_area
605  */
unmap_vmap_area(struct vmap_area * va)606 static void unmap_vmap_area(struct vmap_area *va)
607 {
608 	vunmap_page_range(va->va_start, va->va_end);
609 }
610 
611 /*
612  * lazy_max_pages is the maximum amount of virtual address space we gather up
613  * before attempting to purge with a TLB flush.
614  *
615  * There is a tradeoff here: a larger number will cover more kernel page tables
616  * and take slightly longer to purge, but it will linearly reduce the number of
617  * global TLB flushes that must be performed. It would seem natural to scale
618  * this number up linearly with the number of CPUs (because vmapping activity
619  * could also scale linearly with the number of CPUs), however it is likely
620  * that in practice, workloads might be constrained in other ways that mean
621  * vmap activity will not scale linearly with CPUs. Also, I want to be
622  * conservative and not introduce a big latency on huge systems, so go with
623  * a less aggressive log scale. It will still be an improvement over the old
624  * code, and it will be simple to change the scale factor if we find that it
625  * becomes a problem on bigger systems.
626  */
lazy_max_pages(void)627 static unsigned long lazy_max_pages(void)
628 {
629 	unsigned int log;
630 
631 	log = fls(num_online_cpus());
632 
633 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
634 }
635 
636 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
637 
638 /*
639  * Serialize vmap purging.  There is no actual criticial section protected
640  * by this look, but we want to avoid concurrent calls for performance
641  * reasons and to make the pcpu_get_vm_areas more deterministic.
642  */
643 static DEFINE_MUTEX(vmap_purge_lock);
644 
645 /* for per-CPU blocks */
646 static void purge_fragmented_blocks_allcpus(void);
647 
648 /*
649  * called before a call to iounmap() if the caller wants vm_area_struct's
650  * immediately freed.
651  */
set_iounmap_nonlazy(void)652 void set_iounmap_nonlazy(void)
653 {
654 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
655 }
656 
657 /*
658  * Purges all lazily-freed vmap areas.
659  */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)660 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
661 {
662 	struct llist_node *valist;
663 	struct vmap_area *va;
664 	struct vmap_area *n_va;
665 	bool do_free = false;
666 
667 	lockdep_assert_held(&vmap_purge_lock);
668 
669 	valist = llist_del_all(&vmap_purge_list);
670 	llist_for_each_entry(va, valist, purge_list) {
671 		if (va->va_start < start)
672 			start = va->va_start;
673 		if (va->va_end > end)
674 			end = va->va_end;
675 		do_free = true;
676 	}
677 
678 	if (!do_free)
679 		return false;
680 
681 	flush_tlb_kernel_range(start, end);
682 
683 	spin_lock(&vmap_area_lock);
684 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
685 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
686 
687 		__free_vmap_area(va);
688 		atomic_sub(nr, &vmap_lazy_nr);
689 		cond_resched_lock(&vmap_area_lock);
690 	}
691 	spin_unlock(&vmap_area_lock);
692 	return true;
693 }
694 
695 /*
696  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
697  * is already purging.
698  */
try_purge_vmap_area_lazy(void)699 static void try_purge_vmap_area_lazy(void)
700 {
701 	if (mutex_trylock(&vmap_purge_lock)) {
702 		__purge_vmap_area_lazy(ULONG_MAX, 0);
703 		mutex_unlock(&vmap_purge_lock);
704 	}
705 }
706 
707 /*
708  * Kick off a purge of the outstanding lazy areas.
709  */
purge_vmap_area_lazy(void)710 static void purge_vmap_area_lazy(void)
711 {
712 	mutex_lock(&vmap_purge_lock);
713 	purge_fragmented_blocks_allcpus();
714 	__purge_vmap_area_lazy(ULONG_MAX, 0);
715 	mutex_unlock(&vmap_purge_lock);
716 }
717 
718 /*
719  * Free a vmap area, caller ensuring that the area has been unmapped
720  * and flush_cache_vunmap had been called for the correct range
721  * previously.
722  */
free_vmap_area_noflush(struct vmap_area * va)723 static void free_vmap_area_noflush(struct vmap_area *va)
724 {
725 	int nr_lazy;
726 
727 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
728 				    &vmap_lazy_nr);
729 
730 	/* After this point, we may free va at any time */
731 	llist_add(&va->purge_list, &vmap_purge_list);
732 
733 	if (unlikely(nr_lazy > lazy_max_pages()))
734 		try_purge_vmap_area_lazy();
735 }
736 
737 /*
738  * Free and unmap a vmap area
739  */
free_unmap_vmap_area(struct vmap_area * va)740 static void free_unmap_vmap_area(struct vmap_area *va)
741 {
742 	flush_cache_vunmap(va->va_start, va->va_end);
743 	unmap_vmap_area(va);
744 	if (debug_pagealloc_enabled())
745 		flush_tlb_kernel_range(va->va_start, va->va_end);
746 
747 	free_vmap_area_noflush(va);
748 }
749 
find_vmap_area(unsigned long addr)750 static struct vmap_area *find_vmap_area(unsigned long addr)
751 {
752 	struct vmap_area *va;
753 
754 	spin_lock(&vmap_area_lock);
755 	va = __find_vmap_area(addr);
756 	spin_unlock(&vmap_area_lock);
757 
758 	return va;
759 }
760 
761 /*** Per cpu kva allocator ***/
762 
763 /*
764  * vmap space is limited especially on 32 bit architectures. Ensure there is
765  * room for at least 16 percpu vmap blocks per CPU.
766  */
767 /*
768  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
769  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
770  * instead (we just need a rough idea)
771  */
772 #if BITS_PER_LONG == 32
773 #define VMALLOC_SPACE		(128UL*1024*1024)
774 #else
775 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
776 #endif
777 
778 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
779 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
780 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
781 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
782 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
783 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
784 #define VMAP_BBMAP_BITS		\
785 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
786 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
787 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
788 
789 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
790 
791 static bool vmap_initialized __read_mostly = false;
792 
793 struct vmap_block_queue {
794 	spinlock_t lock;
795 	struct list_head free;
796 };
797 
798 struct vmap_block {
799 	spinlock_t lock;
800 	struct vmap_area *va;
801 	unsigned long free, dirty;
802 	unsigned long dirty_min, dirty_max; /*< dirty range */
803 	struct list_head free_list;
804 	struct rcu_head rcu_head;
805 	struct list_head purge;
806 };
807 
808 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
809 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
810 
811 /*
812  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
813  * in the free path. Could get rid of this if we change the API to return a
814  * "cookie" from alloc, to be passed to free. But no big deal yet.
815  */
816 static DEFINE_SPINLOCK(vmap_block_tree_lock);
817 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
818 
819 /*
820  * We should probably have a fallback mechanism to allocate virtual memory
821  * out of partially filled vmap blocks. However vmap block sizing should be
822  * fairly reasonable according to the vmalloc size, so it shouldn't be a
823  * big problem.
824  */
825 
addr_to_vb_idx(unsigned long addr)826 static unsigned long addr_to_vb_idx(unsigned long addr)
827 {
828 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
829 	addr /= VMAP_BLOCK_SIZE;
830 	return addr;
831 }
832 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)833 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
834 {
835 	unsigned long addr;
836 
837 	addr = va_start + (pages_off << PAGE_SHIFT);
838 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
839 	return (void *)addr;
840 }
841 
842 /**
843  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
844  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
845  * @order:    how many 2^order pages should be occupied in newly allocated block
846  * @gfp_mask: flags for the page level allocator
847  *
848  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
849  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)850 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
851 {
852 	struct vmap_block_queue *vbq;
853 	struct vmap_block *vb;
854 	struct vmap_area *va;
855 	unsigned long vb_idx;
856 	int node, err;
857 	void *vaddr;
858 
859 	node = numa_node_id();
860 
861 	vb = kmalloc_node(sizeof(struct vmap_block),
862 			gfp_mask & GFP_RECLAIM_MASK, node);
863 	if (unlikely(!vb))
864 		return ERR_PTR(-ENOMEM);
865 
866 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
867 					VMALLOC_START, VMALLOC_END,
868 					node, gfp_mask);
869 	if (IS_ERR(va)) {
870 		kfree(vb);
871 		return ERR_CAST(va);
872 	}
873 
874 	err = radix_tree_preload(gfp_mask);
875 	if (unlikely(err)) {
876 		kfree(vb);
877 		free_vmap_area(va);
878 		return ERR_PTR(err);
879 	}
880 
881 	vaddr = vmap_block_vaddr(va->va_start, 0);
882 	spin_lock_init(&vb->lock);
883 	vb->va = va;
884 	/* At least something should be left free */
885 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
886 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
887 	vb->dirty = 0;
888 	vb->dirty_min = VMAP_BBMAP_BITS;
889 	vb->dirty_max = 0;
890 	INIT_LIST_HEAD(&vb->free_list);
891 
892 	vb_idx = addr_to_vb_idx(va->va_start);
893 	spin_lock(&vmap_block_tree_lock);
894 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
895 	spin_unlock(&vmap_block_tree_lock);
896 	BUG_ON(err);
897 	radix_tree_preload_end();
898 
899 	vbq = &get_cpu_var(vmap_block_queue);
900 	spin_lock(&vbq->lock);
901 	list_add_tail_rcu(&vb->free_list, &vbq->free);
902 	spin_unlock(&vbq->lock);
903 	put_cpu_var(vmap_block_queue);
904 
905 	return vaddr;
906 }
907 
free_vmap_block(struct vmap_block * vb)908 static void free_vmap_block(struct vmap_block *vb)
909 {
910 	struct vmap_block *tmp;
911 	unsigned long vb_idx;
912 
913 	vb_idx = addr_to_vb_idx(vb->va->va_start);
914 	spin_lock(&vmap_block_tree_lock);
915 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
916 	spin_unlock(&vmap_block_tree_lock);
917 	BUG_ON(tmp != vb);
918 
919 	free_vmap_area_noflush(vb->va);
920 	kfree_rcu(vb, rcu_head);
921 }
922 
purge_fragmented_blocks(int cpu)923 static void purge_fragmented_blocks(int cpu)
924 {
925 	LIST_HEAD(purge);
926 	struct vmap_block *vb;
927 	struct vmap_block *n_vb;
928 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
929 
930 	rcu_read_lock();
931 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
932 
933 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
934 			continue;
935 
936 		spin_lock(&vb->lock);
937 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
938 			vb->free = 0; /* prevent further allocs after releasing lock */
939 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
940 			vb->dirty_min = 0;
941 			vb->dirty_max = VMAP_BBMAP_BITS;
942 			spin_lock(&vbq->lock);
943 			list_del_rcu(&vb->free_list);
944 			spin_unlock(&vbq->lock);
945 			spin_unlock(&vb->lock);
946 			list_add_tail(&vb->purge, &purge);
947 		} else
948 			spin_unlock(&vb->lock);
949 	}
950 	rcu_read_unlock();
951 
952 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
953 		list_del(&vb->purge);
954 		free_vmap_block(vb);
955 	}
956 }
957 
purge_fragmented_blocks_allcpus(void)958 static void purge_fragmented_blocks_allcpus(void)
959 {
960 	int cpu;
961 
962 	for_each_possible_cpu(cpu)
963 		purge_fragmented_blocks(cpu);
964 }
965 
vb_alloc(unsigned long size,gfp_t gfp_mask)966 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
967 {
968 	struct vmap_block_queue *vbq;
969 	struct vmap_block *vb;
970 	void *vaddr = NULL;
971 	unsigned int order;
972 
973 	BUG_ON(offset_in_page(size));
974 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
975 	if (WARN_ON(size == 0)) {
976 		/*
977 		 * Allocating 0 bytes isn't what caller wants since
978 		 * get_order(0) returns funny result. Just warn and terminate
979 		 * early.
980 		 */
981 		return NULL;
982 	}
983 	order = get_order(size);
984 
985 	rcu_read_lock();
986 	vbq = &get_cpu_var(vmap_block_queue);
987 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
988 		unsigned long pages_off;
989 
990 		spin_lock(&vb->lock);
991 		if (vb->free < (1UL << order)) {
992 			spin_unlock(&vb->lock);
993 			continue;
994 		}
995 
996 		pages_off = VMAP_BBMAP_BITS - vb->free;
997 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
998 		vb->free -= 1UL << order;
999 		if (vb->free == 0) {
1000 			spin_lock(&vbq->lock);
1001 			list_del_rcu(&vb->free_list);
1002 			spin_unlock(&vbq->lock);
1003 		}
1004 
1005 		spin_unlock(&vb->lock);
1006 		break;
1007 	}
1008 
1009 	put_cpu_var(vmap_block_queue);
1010 	rcu_read_unlock();
1011 
1012 	/* Allocate new block if nothing was found */
1013 	if (!vaddr)
1014 		vaddr = new_vmap_block(order, gfp_mask);
1015 
1016 	return vaddr;
1017 }
1018 
vb_free(const void * addr,unsigned long size)1019 static void vb_free(const void *addr, unsigned long size)
1020 {
1021 	unsigned long offset;
1022 	unsigned long vb_idx;
1023 	unsigned int order;
1024 	struct vmap_block *vb;
1025 
1026 	BUG_ON(offset_in_page(size));
1027 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1028 
1029 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1030 
1031 	order = get_order(size);
1032 
1033 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1034 	offset >>= PAGE_SHIFT;
1035 
1036 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1037 	rcu_read_lock();
1038 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1039 	rcu_read_unlock();
1040 	BUG_ON(!vb);
1041 
1042 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1043 
1044 	if (debug_pagealloc_enabled())
1045 		flush_tlb_kernel_range((unsigned long)addr,
1046 					(unsigned long)addr + size);
1047 
1048 	spin_lock(&vb->lock);
1049 
1050 	/* Expand dirty range */
1051 	vb->dirty_min = min(vb->dirty_min, offset);
1052 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1053 
1054 	vb->dirty += 1UL << order;
1055 	if (vb->dirty == VMAP_BBMAP_BITS) {
1056 		BUG_ON(vb->free);
1057 		spin_unlock(&vb->lock);
1058 		free_vmap_block(vb);
1059 	} else
1060 		spin_unlock(&vb->lock);
1061 }
1062 
1063 /**
1064  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1065  *
1066  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1067  * to amortize TLB flushing overheads. What this means is that any page you
1068  * have now, may, in a former life, have been mapped into kernel virtual
1069  * address by the vmap layer and so there might be some CPUs with TLB entries
1070  * still referencing that page (additional to the regular 1:1 kernel mapping).
1071  *
1072  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1073  * be sure that none of the pages we have control over will have any aliases
1074  * from the vmap layer.
1075  */
vm_unmap_aliases(void)1076 void vm_unmap_aliases(void)
1077 {
1078 	unsigned long start = ULONG_MAX, end = 0;
1079 	int cpu;
1080 	int flush = 0;
1081 
1082 	if (unlikely(!vmap_initialized))
1083 		return;
1084 
1085 	might_sleep();
1086 
1087 	for_each_possible_cpu(cpu) {
1088 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1089 		struct vmap_block *vb;
1090 
1091 		rcu_read_lock();
1092 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1093 			spin_lock(&vb->lock);
1094 			if (vb->dirty) {
1095 				unsigned long va_start = vb->va->va_start;
1096 				unsigned long s, e;
1097 
1098 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1099 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1100 
1101 				start = min(s, start);
1102 				end   = max(e, end);
1103 
1104 				flush = 1;
1105 			}
1106 			spin_unlock(&vb->lock);
1107 		}
1108 		rcu_read_unlock();
1109 	}
1110 
1111 	mutex_lock(&vmap_purge_lock);
1112 	purge_fragmented_blocks_allcpus();
1113 	if (!__purge_vmap_area_lazy(start, end) && flush)
1114 		flush_tlb_kernel_range(start, end);
1115 	mutex_unlock(&vmap_purge_lock);
1116 }
1117 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1118 
1119 /**
1120  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1121  * @mem: the pointer returned by vm_map_ram
1122  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1123  */
vm_unmap_ram(const void * mem,unsigned int count)1124 void vm_unmap_ram(const void *mem, unsigned int count)
1125 {
1126 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1127 	unsigned long addr = (unsigned long)mem;
1128 	struct vmap_area *va;
1129 
1130 	might_sleep();
1131 	BUG_ON(!addr);
1132 	BUG_ON(addr < VMALLOC_START);
1133 	BUG_ON(addr > VMALLOC_END);
1134 	BUG_ON(!PAGE_ALIGNED(addr));
1135 
1136 	if (likely(count <= VMAP_MAX_ALLOC)) {
1137 		debug_check_no_locks_freed(mem, size);
1138 		vb_free(mem, size);
1139 		return;
1140 	}
1141 
1142 	va = find_vmap_area(addr);
1143 	BUG_ON(!va);
1144 	debug_check_no_locks_freed((void *)va->va_start,
1145 				    (va->va_end - va->va_start));
1146 	free_unmap_vmap_area(va);
1147 }
1148 EXPORT_SYMBOL(vm_unmap_ram);
1149 
1150 /**
1151  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1152  * @pages: an array of pointers to the pages to be mapped
1153  * @count: number of pages
1154  * @node: prefer to allocate data structures on this node
1155  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1156  *
1157  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1158  * faster than vmap so it's good.  But if you mix long-life and short-life
1159  * objects with vm_map_ram(), it could consume lots of address space through
1160  * fragmentation (especially on a 32bit machine).  You could see failures in
1161  * the end.  Please use this function for short-lived objects.
1162  *
1163  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1164  */
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)1165 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1166 {
1167 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1168 	unsigned long addr;
1169 	void *mem;
1170 
1171 	if (likely(count <= VMAP_MAX_ALLOC)) {
1172 		mem = vb_alloc(size, GFP_KERNEL);
1173 		if (IS_ERR(mem))
1174 			return NULL;
1175 		addr = (unsigned long)mem;
1176 	} else {
1177 		struct vmap_area *va;
1178 		va = alloc_vmap_area(size, PAGE_SIZE,
1179 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1180 		if (IS_ERR(va))
1181 			return NULL;
1182 
1183 		addr = va->va_start;
1184 		mem = (void *)addr;
1185 	}
1186 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1187 		vm_unmap_ram(mem, count);
1188 		return NULL;
1189 	}
1190 	return mem;
1191 }
1192 EXPORT_SYMBOL(vm_map_ram);
1193 
1194 static struct vm_struct *vmlist __initdata;
1195 /**
1196  * vm_area_add_early - add vmap area early during boot
1197  * @vm: vm_struct to add
1198  *
1199  * This function is used to add fixed kernel vm area to vmlist before
1200  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1201  * should contain proper values and the other fields should be zero.
1202  *
1203  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1204  */
vm_area_add_early(struct vm_struct * vm)1205 void __init vm_area_add_early(struct vm_struct *vm)
1206 {
1207 	struct vm_struct *tmp, **p;
1208 
1209 	BUG_ON(vmap_initialized);
1210 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1211 		if (tmp->addr >= vm->addr) {
1212 			BUG_ON(tmp->addr < vm->addr + vm->size);
1213 			break;
1214 		} else
1215 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1216 	}
1217 	vm->next = *p;
1218 	*p = vm;
1219 }
1220 
1221 /**
1222  * vm_area_register_early - register vmap area early during boot
1223  * @vm: vm_struct to register
1224  * @align: requested alignment
1225  *
1226  * This function is used to register kernel vm area before
1227  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1228  * proper values on entry and other fields should be zero.  On return,
1229  * vm->addr contains the allocated address.
1230  *
1231  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1232  */
vm_area_register_early(struct vm_struct * vm,size_t align)1233 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1234 {
1235 	static size_t vm_init_off __initdata;
1236 	unsigned long addr;
1237 
1238 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1239 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1240 
1241 	vm->addr = (void *)addr;
1242 
1243 	vm_area_add_early(vm);
1244 }
1245 
vmalloc_init(void)1246 void __init vmalloc_init(void)
1247 {
1248 	struct vmap_area *va;
1249 	struct vm_struct *tmp;
1250 	int i;
1251 
1252 	for_each_possible_cpu(i) {
1253 		struct vmap_block_queue *vbq;
1254 		struct vfree_deferred *p;
1255 
1256 		vbq = &per_cpu(vmap_block_queue, i);
1257 		spin_lock_init(&vbq->lock);
1258 		INIT_LIST_HEAD(&vbq->free);
1259 		p = &per_cpu(vfree_deferred, i);
1260 		init_llist_head(&p->list);
1261 		INIT_WORK(&p->wq, free_work);
1262 	}
1263 
1264 	/* Import existing vmlist entries. */
1265 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1266 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1267 		va->flags = VM_VM_AREA;
1268 		va->va_start = (unsigned long)tmp->addr;
1269 		va->va_end = va->va_start + tmp->size;
1270 		va->vm = tmp;
1271 		__insert_vmap_area(va);
1272 	}
1273 
1274 	vmap_area_pcpu_hole = VMALLOC_END;
1275 
1276 	vmap_initialized = true;
1277 }
1278 
1279 /**
1280  * map_kernel_range_noflush - map kernel VM area with the specified pages
1281  * @addr: start of the VM area to map
1282  * @size: size of the VM area to map
1283  * @prot: page protection flags to use
1284  * @pages: pages to map
1285  *
1286  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1287  * specify should have been allocated using get_vm_area() and its
1288  * friends.
1289  *
1290  * NOTE:
1291  * This function does NOT do any cache flushing.  The caller is
1292  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1293  * before calling this function.
1294  *
1295  * RETURNS:
1296  * The number of pages mapped on success, -errno on failure.
1297  */
map_kernel_range_noflush(unsigned long addr,unsigned long size,pgprot_t prot,struct page ** pages)1298 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1299 			     pgprot_t prot, struct page **pages)
1300 {
1301 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1302 }
1303 
1304 /**
1305  * unmap_kernel_range_noflush - unmap kernel VM area
1306  * @addr: start of the VM area to unmap
1307  * @size: size of the VM area to unmap
1308  *
1309  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1310  * specify should have been allocated using get_vm_area() and its
1311  * friends.
1312  *
1313  * NOTE:
1314  * This function does NOT do any cache flushing.  The caller is
1315  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1316  * before calling this function and flush_tlb_kernel_range() after.
1317  */
unmap_kernel_range_noflush(unsigned long addr,unsigned long size)1318 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1319 {
1320 	vunmap_page_range(addr, addr + size);
1321 }
1322 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1323 
1324 /**
1325  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1326  * @addr: start of the VM area to unmap
1327  * @size: size of the VM area to unmap
1328  *
1329  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1330  * the unmapping and tlb after.
1331  */
unmap_kernel_range(unsigned long addr,unsigned long size)1332 void unmap_kernel_range(unsigned long addr, unsigned long size)
1333 {
1334 	unsigned long end = addr + size;
1335 
1336 	flush_cache_vunmap(addr, end);
1337 	vunmap_page_range(addr, end);
1338 	flush_tlb_kernel_range(addr, end);
1339 }
1340 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1341 
map_vm_area(struct vm_struct * area,pgprot_t prot,struct page ** pages)1342 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1343 {
1344 	unsigned long addr = (unsigned long)area->addr;
1345 	unsigned long end = addr + get_vm_area_size(area);
1346 	int err;
1347 
1348 	err = vmap_page_range(addr, end, prot, pages);
1349 
1350 	return err > 0 ? 0 : err;
1351 }
1352 EXPORT_SYMBOL_GPL(map_vm_area);
1353 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)1354 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1355 			      unsigned long flags, const void *caller)
1356 {
1357 	spin_lock(&vmap_area_lock);
1358 	vm->flags = flags;
1359 	vm->addr = (void *)va->va_start;
1360 	vm->size = va->va_end - va->va_start;
1361 	vm->caller = caller;
1362 	va->vm = vm;
1363 	va->flags |= VM_VM_AREA;
1364 	spin_unlock(&vmap_area_lock);
1365 }
1366 
clear_vm_uninitialized_flag(struct vm_struct * vm)1367 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1368 {
1369 	/*
1370 	 * Before removing VM_UNINITIALIZED,
1371 	 * we should make sure that vm has proper values.
1372 	 * Pair with smp_rmb() in show_numa_info().
1373 	 */
1374 	smp_wmb();
1375 	vm->flags &= ~VM_UNINITIALIZED;
1376 }
1377 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)1378 static struct vm_struct *__get_vm_area_node(unsigned long size,
1379 		unsigned long align, unsigned long flags, unsigned long start,
1380 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1381 {
1382 	struct vmap_area *va;
1383 	struct vm_struct *area;
1384 
1385 	BUG_ON(in_interrupt());
1386 	size = PAGE_ALIGN(size);
1387 	if (unlikely(!size))
1388 		return NULL;
1389 
1390 	if (flags & VM_IOREMAP)
1391 		align = 1ul << clamp_t(int, get_count_order_long(size),
1392 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1393 
1394 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1395 	if (unlikely(!area))
1396 		return NULL;
1397 
1398 	if (!(flags & VM_NO_GUARD))
1399 		size += PAGE_SIZE;
1400 
1401 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1402 	if (IS_ERR(va)) {
1403 		kfree(area);
1404 		return NULL;
1405 	}
1406 
1407 	setup_vmalloc_vm(area, va, flags, caller);
1408 
1409 	return area;
1410 }
1411 
__get_vm_area(unsigned long size,unsigned long flags,unsigned long start,unsigned long end)1412 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1413 				unsigned long start, unsigned long end)
1414 {
1415 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1416 				  GFP_KERNEL, __builtin_return_address(0));
1417 }
1418 EXPORT_SYMBOL_GPL(__get_vm_area);
1419 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)1420 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1421 				       unsigned long start, unsigned long end,
1422 				       const void *caller)
1423 {
1424 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1425 				  GFP_KERNEL, caller);
1426 }
1427 
1428 /**
1429  *	get_vm_area  -  reserve a contiguous kernel virtual area
1430  *	@size:		size of the area
1431  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1432  *
1433  *	Search an area of @size in the kernel virtual mapping area,
1434  *	and reserved it for out purposes.  Returns the area descriptor
1435  *	on success or %NULL on failure.
1436  */
get_vm_area(unsigned long size,unsigned long flags)1437 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1438 {
1439 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1440 				  NUMA_NO_NODE, GFP_KERNEL,
1441 				  __builtin_return_address(0));
1442 }
1443 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)1444 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1445 				const void *caller)
1446 {
1447 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1448 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1449 }
1450 
1451 /**
1452  *	find_vm_area  -  find a continuous kernel virtual area
1453  *	@addr:		base address
1454  *
1455  *	Search for the kernel VM area starting at @addr, and return it.
1456  *	It is up to the caller to do all required locking to keep the returned
1457  *	pointer valid.
1458  */
find_vm_area(const void * addr)1459 struct vm_struct *find_vm_area(const void *addr)
1460 {
1461 	struct vmap_area *va;
1462 
1463 	va = find_vmap_area((unsigned long)addr);
1464 	if (va && va->flags & VM_VM_AREA)
1465 		return va->vm;
1466 
1467 	return NULL;
1468 }
1469 
1470 /**
1471  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1472  *	@addr:		base address
1473  *
1474  *	Search for the kernel VM area starting at @addr, and remove it.
1475  *	This function returns the found VM area, but using it is NOT safe
1476  *	on SMP machines, except for its size or flags.
1477  */
remove_vm_area(const void * addr)1478 struct vm_struct *remove_vm_area(const void *addr)
1479 {
1480 	struct vmap_area *va;
1481 
1482 	might_sleep();
1483 
1484 	va = find_vmap_area((unsigned long)addr);
1485 	if (va && va->flags & VM_VM_AREA) {
1486 		struct vm_struct *vm = va->vm;
1487 
1488 		spin_lock(&vmap_area_lock);
1489 		va->vm = NULL;
1490 		va->flags &= ~VM_VM_AREA;
1491 		va->flags |= VM_LAZY_FREE;
1492 		spin_unlock(&vmap_area_lock);
1493 
1494 		kasan_free_shadow(vm);
1495 		free_unmap_vmap_area(va);
1496 
1497 		return vm;
1498 	}
1499 	return NULL;
1500 }
1501 
__vunmap(const void * addr,int deallocate_pages)1502 static void __vunmap(const void *addr, int deallocate_pages)
1503 {
1504 	struct vm_struct *area;
1505 
1506 	if (!addr)
1507 		return;
1508 
1509 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1510 			addr))
1511 		return;
1512 
1513 	area = find_vm_area(addr);
1514 	if (unlikely(!area)) {
1515 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1516 				addr);
1517 		return;
1518 	}
1519 
1520 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
1521 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
1522 
1523 	remove_vm_area(addr);
1524 	if (deallocate_pages) {
1525 		int i;
1526 
1527 		for (i = 0; i < area->nr_pages; i++) {
1528 			struct page *page = area->pages[i];
1529 
1530 			BUG_ON(!page);
1531 			__free_pages(page, 0);
1532 		}
1533 
1534 		kvfree(area->pages);
1535 	}
1536 
1537 	kfree(area);
1538 	return;
1539 }
1540 
__vfree_deferred(const void * addr)1541 static inline void __vfree_deferred(const void *addr)
1542 {
1543 	/*
1544 	 * Use raw_cpu_ptr() because this can be called from preemptible
1545 	 * context. Preemption is absolutely fine here, because the llist_add()
1546 	 * implementation is lockless, so it works even if we are adding to
1547 	 * nother cpu's list.  schedule_work() should be fine with this too.
1548 	 */
1549 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1550 
1551 	if (llist_add((struct llist_node *)addr, &p->list))
1552 		schedule_work(&p->wq);
1553 }
1554 
1555 /**
1556  *	vfree_atomic  -  release memory allocated by vmalloc()
1557  *	@addr:		memory base address
1558  *
1559  *	This one is just like vfree() but can be called in any atomic context
1560  *	except NMIs.
1561  */
vfree_atomic(const void * addr)1562 void vfree_atomic(const void *addr)
1563 {
1564 	BUG_ON(in_nmi());
1565 
1566 	kmemleak_free(addr);
1567 
1568 	if (!addr)
1569 		return;
1570 	__vfree_deferred(addr);
1571 }
1572 
1573 /**
1574  *	vfree  -  release memory allocated by vmalloc()
1575  *	@addr:		memory base address
1576  *
1577  *	Free the virtually continuous memory area starting at @addr, as
1578  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1579  *	NULL, no operation is performed.
1580  *
1581  *	Must not be called in NMI context (strictly speaking, only if we don't
1582  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1583  *	conventions for vfree() arch-depenedent would be a really bad idea)
1584  *
1585  *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1586  */
vfree(const void * addr)1587 void vfree(const void *addr)
1588 {
1589 	BUG_ON(in_nmi());
1590 
1591 	kmemleak_free(addr);
1592 
1593 	if (!addr)
1594 		return;
1595 	if (unlikely(in_interrupt()))
1596 		__vfree_deferred(addr);
1597 	else
1598 		__vunmap(addr, 1);
1599 }
1600 EXPORT_SYMBOL(vfree);
1601 
1602 /**
1603  *	vunmap  -  release virtual mapping obtained by vmap()
1604  *	@addr:		memory base address
1605  *
1606  *	Free the virtually contiguous memory area starting at @addr,
1607  *	which was created from the page array passed to vmap().
1608  *
1609  *	Must not be called in interrupt context.
1610  */
vunmap(const void * addr)1611 void vunmap(const void *addr)
1612 {
1613 	BUG_ON(in_interrupt());
1614 	might_sleep();
1615 	if (addr)
1616 		__vunmap(addr, 0);
1617 }
1618 EXPORT_SYMBOL(vunmap);
1619 
1620 /**
1621  *	vmap  -  map an array of pages into virtually contiguous space
1622  *	@pages:		array of page pointers
1623  *	@count:		number of pages to map
1624  *	@flags:		vm_area->flags
1625  *	@prot:		page protection for the mapping
1626  *
1627  *	Maps @count pages from @pages into contiguous kernel virtual
1628  *	space.
1629  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)1630 void *vmap(struct page **pages, unsigned int count,
1631 		unsigned long flags, pgprot_t prot)
1632 {
1633 	struct vm_struct *area;
1634 	unsigned long size;		/* In bytes */
1635 
1636 	might_sleep();
1637 
1638 	if (count > totalram_pages)
1639 		return NULL;
1640 
1641 	size = (unsigned long)count << PAGE_SHIFT;
1642 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1643 	if (!area)
1644 		return NULL;
1645 
1646 	if (map_vm_area(area, prot, pages)) {
1647 		vunmap(area->addr);
1648 		return NULL;
1649 	}
1650 
1651 	return area->addr;
1652 }
1653 EXPORT_SYMBOL(vmap);
1654 
1655 static void *__vmalloc_node(unsigned long size, unsigned long align,
1656 			    gfp_t gfp_mask, pgprot_t prot,
1657 			    int node, const void *caller);
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node)1658 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1659 				 pgprot_t prot, int node)
1660 {
1661 	struct page **pages;
1662 	unsigned int nr_pages, array_size, i;
1663 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1664 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1665 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1666 					0 :
1667 					__GFP_HIGHMEM;
1668 
1669 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1670 	array_size = (nr_pages * sizeof(struct page *));
1671 
1672 	/* Please note that the recursion is strictly bounded. */
1673 	if (array_size > PAGE_SIZE) {
1674 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1675 				PAGE_KERNEL, node, area->caller);
1676 	} else {
1677 		pages = kmalloc_node(array_size, nested_gfp, node);
1678 	}
1679 
1680 	if (!pages) {
1681 		remove_vm_area(area->addr);
1682 		kfree(area);
1683 		return NULL;
1684 	}
1685 
1686 	area->pages = pages;
1687 	area->nr_pages = nr_pages;
1688 
1689 	for (i = 0; i < area->nr_pages; i++) {
1690 		struct page *page;
1691 
1692 		if (node == NUMA_NO_NODE)
1693 			page = alloc_page(alloc_mask|highmem_mask);
1694 		else
1695 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1696 
1697 		if (unlikely(!page)) {
1698 			/* Successfully allocated i pages, free them in __vunmap() */
1699 			area->nr_pages = i;
1700 			goto fail;
1701 		}
1702 		area->pages[i] = page;
1703 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1704 			cond_resched();
1705 	}
1706 
1707 	if (map_vm_area(area, prot, pages))
1708 		goto fail;
1709 	return area->addr;
1710 
1711 fail:
1712 	warn_alloc(gfp_mask, NULL,
1713 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1714 			  (area->nr_pages*PAGE_SIZE), area->size);
1715 	vfree(area->addr);
1716 	return NULL;
1717 }
1718 
1719 /**
1720  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1721  *	@size:		allocation size
1722  *	@align:		desired alignment
1723  *	@start:		vm area range start
1724  *	@end:		vm area range end
1725  *	@gfp_mask:	flags for the page level allocator
1726  *	@prot:		protection mask for the allocated pages
1727  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1728  *	@node:		node to use for allocation or NUMA_NO_NODE
1729  *	@caller:	caller's return address
1730  *
1731  *	Allocate enough pages to cover @size from the page level
1732  *	allocator with @gfp_mask flags.  Map them into contiguous
1733  *	kernel virtual space, using a pagetable protection of @prot.
1734  */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)1735 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1736 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1737 			pgprot_t prot, unsigned long vm_flags, int node,
1738 			const void *caller)
1739 {
1740 	struct vm_struct *area;
1741 	void *addr;
1742 	unsigned long real_size = size;
1743 
1744 	size = PAGE_ALIGN(size);
1745 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1746 		goto fail;
1747 
1748 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1749 				vm_flags, start, end, node, gfp_mask, caller);
1750 	if (!area)
1751 		goto fail;
1752 
1753 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1754 	if (!addr)
1755 		return NULL;
1756 
1757 	/*
1758 	 * First make sure the mappings are removed from all page-tables
1759 	 * before they are freed.
1760 	 */
1761 	vmalloc_sync_unmappings();
1762 
1763 	/*
1764 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1765 	 * flag. It means that vm_struct is not fully initialized.
1766 	 * Now, it is fully initialized, so remove this flag here.
1767 	 */
1768 	clear_vm_uninitialized_flag(area);
1769 
1770 	kmemleak_vmalloc(area, size, gfp_mask);
1771 
1772 	return addr;
1773 
1774 fail:
1775 	warn_alloc(gfp_mask, NULL,
1776 			  "vmalloc: allocation failure: %lu bytes", real_size);
1777 	return NULL;
1778 }
1779 
1780 /**
1781  *	__vmalloc_node  -  allocate virtually contiguous memory
1782  *	@size:		allocation size
1783  *	@align:		desired alignment
1784  *	@gfp_mask:	flags for the page level allocator
1785  *	@prot:		protection mask for the allocated pages
1786  *	@node:		node to use for allocation or NUMA_NO_NODE
1787  *	@caller:	caller's return address
1788  *
1789  *	Allocate enough pages to cover @size from the page level
1790  *	allocator with @gfp_mask flags.  Map them into contiguous
1791  *	kernel virtual space, using a pagetable protection of @prot.
1792  *
1793  *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1794  *	and __GFP_NOFAIL are not supported
1795  *
1796  *	Any use of gfp flags outside of GFP_KERNEL should be consulted
1797  *	with mm people.
1798  *
1799  */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,pgprot_t prot,int node,const void * caller)1800 static void *__vmalloc_node(unsigned long size, unsigned long align,
1801 			    gfp_t gfp_mask, pgprot_t prot,
1802 			    int node, const void *caller)
1803 {
1804 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1805 				gfp_mask, prot, 0, node, caller);
1806 }
1807 
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)1808 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1809 {
1810 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1811 				__builtin_return_address(0));
1812 }
1813 EXPORT_SYMBOL(__vmalloc);
1814 
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)1815 static inline void *__vmalloc_node_flags(unsigned long size,
1816 					int node, gfp_t flags)
1817 {
1818 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1819 					node, __builtin_return_address(0));
1820 }
1821 
1822 
__vmalloc_node_flags_caller(unsigned long size,int node,gfp_t flags,void * caller)1823 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1824 				  void *caller)
1825 {
1826 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1827 }
1828 
1829 /**
1830  *	vmalloc  -  allocate virtually contiguous memory
1831  *	@size:		allocation size
1832  *	Allocate enough pages to cover @size from the page level
1833  *	allocator and map them into contiguous kernel virtual space.
1834  *
1835  *	For tight control over page level allocator and protection flags
1836  *	use __vmalloc() instead.
1837  */
vmalloc(unsigned long size)1838 void *vmalloc(unsigned long size)
1839 {
1840 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1841 				    GFP_KERNEL);
1842 }
1843 EXPORT_SYMBOL(vmalloc);
1844 
1845 /**
1846  *	vzalloc - allocate virtually contiguous memory with zero fill
1847  *	@size:	allocation size
1848  *	Allocate enough pages to cover @size from the page level
1849  *	allocator and map them into contiguous kernel virtual space.
1850  *	The memory allocated is set to zero.
1851  *
1852  *	For tight control over page level allocator and protection flags
1853  *	use __vmalloc() instead.
1854  */
vzalloc(unsigned long size)1855 void *vzalloc(unsigned long size)
1856 {
1857 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1858 				GFP_KERNEL | __GFP_ZERO);
1859 }
1860 EXPORT_SYMBOL(vzalloc);
1861 
1862 /**
1863  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1864  * @size: allocation size
1865  *
1866  * The resulting memory area is zeroed so it can be mapped to userspace
1867  * without leaking data.
1868  */
vmalloc_user(unsigned long size)1869 void *vmalloc_user(unsigned long size)
1870 {
1871 	struct vm_struct *area;
1872 	void *ret;
1873 
1874 	ret = __vmalloc_node(size, SHMLBA,
1875 			     GFP_KERNEL | __GFP_ZERO,
1876 			     PAGE_KERNEL, NUMA_NO_NODE,
1877 			     __builtin_return_address(0));
1878 	if (ret) {
1879 		area = find_vm_area(ret);
1880 		area->flags |= VM_USERMAP;
1881 	}
1882 	return ret;
1883 }
1884 EXPORT_SYMBOL(vmalloc_user);
1885 
1886 /**
1887  *	vmalloc_node  -  allocate memory on a specific node
1888  *	@size:		allocation size
1889  *	@node:		numa node
1890  *
1891  *	Allocate enough pages to cover @size from the page level
1892  *	allocator and map them into contiguous kernel virtual space.
1893  *
1894  *	For tight control over page level allocator and protection flags
1895  *	use __vmalloc() instead.
1896  */
vmalloc_node(unsigned long size,int node)1897 void *vmalloc_node(unsigned long size, int node)
1898 {
1899 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1900 					node, __builtin_return_address(0));
1901 }
1902 EXPORT_SYMBOL(vmalloc_node);
1903 
1904 /**
1905  * vzalloc_node - allocate memory on a specific node with zero fill
1906  * @size:	allocation size
1907  * @node:	numa node
1908  *
1909  * Allocate enough pages to cover @size from the page level
1910  * allocator and map them into contiguous kernel virtual space.
1911  * The memory allocated is set to zero.
1912  *
1913  * For tight control over page level allocator and protection flags
1914  * use __vmalloc_node() instead.
1915  */
vzalloc_node(unsigned long size,int node)1916 void *vzalloc_node(unsigned long size, int node)
1917 {
1918 	return __vmalloc_node_flags(size, node,
1919 			 GFP_KERNEL | __GFP_ZERO);
1920 }
1921 EXPORT_SYMBOL(vzalloc_node);
1922 
1923 /**
1924  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1925  *	@size:		allocation size
1926  *
1927  *	Kernel-internal function to allocate enough pages to cover @size
1928  *	the page level allocator and map them into contiguous and
1929  *	executable kernel virtual space.
1930  *
1931  *	For tight control over page level allocator and protection flags
1932  *	use __vmalloc() instead.
1933  */
1934 
vmalloc_exec(unsigned long size)1935 void *vmalloc_exec(unsigned long size)
1936 {
1937 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1938 			      NUMA_NO_NODE, __builtin_return_address(0));
1939 }
1940 
1941 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1942 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1943 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1944 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1945 #else
1946 /*
1947  * 64b systems should always have either DMA or DMA32 zones. For others
1948  * GFP_DMA32 should do the right thing and use the normal zone.
1949  */
1950 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1951 #endif
1952 
1953 /**
1954  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1955  *	@size:		allocation size
1956  *
1957  *	Allocate enough 32bit PA addressable pages to cover @size from the
1958  *	page level allocator and map them into contiguous kernel virtual space.
1959  */
vmalloc_32(unsigned long size)1960 void *vmalloc_32(unsigned long size)
1961 {
1962 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1963 			      NUMA_NO_NODE, __builtin_return_address(0));
1964 }
1965 EXPORT_SYMBOL(vmalloc_32);
1966 
1967 /**
1968  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1969  *	@size:		allocation size
1970  *
1971  * The resulting memory area is 32bit addressable and zeroed so it can be
1972  * mapped to userspace without leaking data.
1973  */
vmalloc_32_user(unsigned long size)1974 void *vmalloc_32_user(unsigned long size)
1975 {
1976 	struct vm_struct *area;
1977 	void *ret;
1978 
1979 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1980 			     NUMA_NO_NODE, __builtin_return_address(0));
1981 	if (ret) {
1982 		area = find_vm_area(ret);
1983 		area->flags |= VM_USERMAP;
1984 	}
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL(vmalloc_32_user);
1988 
1989 /*
1990  * small helper routine , copy contents to buf from addr.
1991  * If the page is not present, fill zero.
1992  */
1993 
aligned_vread(char * buf,char * addr,unsigned long count)1994 static int aligned_vread(char *buf, char *addr, unsigned long count)
1995 {
1996 	struct page *p;
1997 	int copied = 0;
1998 
1999 	while (count) {
2000 		unsigned long offset, length;
2001 
2002 		offset = offset_in_page(addr);
2003 		length = PAGE_SIZE - offset;
2004 		if (length > count)
2005 			length = count;
2006 		p = vmalloc_to_page(addr);
2007 		/*
2008 		 * To do safe access to this _mapped_ area, we need
2009 		 * lock. But adding lock here means that we need to add
2010 		 * overhead of vmalloc()/vfree() calles for this _debug_
2011 		 * interface, rarely used. Instead of that, we'll use
2012 		 * kmap() and get small overhead in this access function.
2013 		 */
2014 		if (p) {
2015 			/*
2016 			 * we can expect USER0 is not used (see vread/vwrite's
2017 			 * function description)
2018 			 */
2019 			void *map = kmap_atomic(p);
2020 			memcpy(buf, map + offset, length);
2021 			kunmap_atomic(map);
2022 		} else
2023 			memset(buf, 0, length);
2024 
2025 		addr += length;
2026 		buf += length;
2027 		copied += length;
2028 		count -= length;
2029 	}
2030 	return copied;
2031 }
2032 
aligned_vwrite(char * buf,char * addr,unsigned long count)2033 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2034 {
2035 	struct page *p;
2036 	int copied = 0;
2037 
2038 	while (count) {
2039 		unsigned long offset, length;
2040 
2041 		offset = offset_in_page(addr);
2042 		length = PAGE_SIZE - offset;
2043 		if (length > count)
2044 			length = count;
2045 		p = vmalloc_to_page(addr);
2046 		/*
2047 		 * To do safe access to this _mapped_ area, we need
2048 		 * lock. But adding lock here means that we need to add
2049 		 * overhead of vmalloc()/vfree() calles for this _debug_
2050 		 * interface, rarely used. Instead of that, we'll use
2051 		 * kmap() and get small overhead in this access function.
2052 		 */
2053 		if (p) {
2054 			/*
2055 			 * we can expect USER0 is not used (see vread/vwrite's
2056 			 * function description)
2057 			 */
2058 			void *map = kmap_atomic(p);
2059 			memcpy(map + offset, buf, length);
2060 			kunmap_atomic(map);
2061 		}
2062 		addr += length;
2063 		buf += length;
2064 		copied += length;
2065 		count -= length;
2066 	}
2067 	return copied;
2068 }
2069 
2070 /**
2071  *	vread() -  read vmalloc area in a safe way.
2072  *	@buf:		buffer for reading data
2073  *	@addr:		vm address.
2074  *	@count:		number of bytes to be read.
2075  *
2076  *	Returns # of bytes which addr and buf should be increased.
2077  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2078  *	includes any intersect with alive vmalloc area.
2079  *
2080  *	This function checks that addr is a valid vmalloc'ed area, and
2081  *	copy data from that area to a given buffer. If the given memory range
2082  *	of [addr...addr+count) includes some valid address, data is copied to
2083  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2084  *	IOREMAP area is treated as memory hole and no copy is done.
2085  *
2086  *	If [addr...addr+count) doesn't includes any intersects with alive
2087  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2088  *
2089  *	Note: In usual ops, vread() is never necessary because the caller
2090  *	should know vmalloc() area is valid and can use memcpy().
2091  *	This is for routines which have to access vmalloc area without
2092  *	any informaion, as /dev/kmem.
2093  *
2094  */
2095 
vread(char * buf,char * addr,unsigned long count)2096 long vread(char *buf, char *addr, unsigned long count)
2097 {
2098 	struct vmap_area *va;
2099 	struct vm_struct *vm;
2100 	char *vaddr, *buf_start = buf;
2101 	unsigned long buflen = count;
2102 	unsigned long n;
2103 
2104 	/* Don't allow overflow */
2105 	if ((unsigned long) addr + count < count)
2106 		count = -(unsigned long) addr;
2107 
2108 	spin_lock(&vmap_area_lock);
2109 	list_for_each_entry(va, &vmap_area_list, list) {
2110 		if (!count)
2111 			break;
2112 
2113 		if (!(va->flags & VM_VM_AREA))
2114 			continue;
2115 
2116 		vm = va->vm;
2117 		vaddr = (char *) vm->addr;
2118 		if (addr >= vaddr + get_vm_area_size(vm))
2119 			continue;
2120 		while (addr < vaddr) {
2121 			if (count == 0)
2122 				goto finished;
2123 			*buf = '\0';
2124 			buf++;
2125 			addr++;
2126 			count--;
2127 		}
2128 		n = vaddr + get_vm_area_size(vm) - addr;
2129 		if (n > count)
2130 			n = count;
2131 		if (!(vm->flags & VM_IOREMAP))
2132 			aligned_vread(buf, addr, n);
2133 		else /* IOREMAP area is treated as memory hole */
2134 			memset(buf, 0, n);
2135 		buf += n;
2136 		addr += n;
2137 		count -= n;
2138 	}
2139 finished:
2140 	spin_unlock(&vmap_area_lock);
2141 
2142 	if (buf == buf_start)
2143 		return 0;
2144 	/* zero-fill memory holes */
2145 	if (buf != buf_start + buflen)
2146 		memset(buf, 0, buflen - (buf - buf_start));
2147 
2148 	return buflen;
2149 }
2150 
2151 /**
2152  *	vwrite() -  write vmalloc area in a safe way.
2153  *	@buf:		buffer for source data
2154  *	@addr:		vm address.
2155  *	@count:		number of bytes to be read.
2156  *
2157  *	Returns # of bytes which addr and buf should be incresed.
2158  *	(same number to @count).
2159  *	If [addr...addr+count) doesn't includes any intersect with valid
2160  *	vmalloc area, returns 0.
2161  *
2162  *	This function checks that addr is a valid vmalloc'ed area, and
2163  *	copy data from a buffer to the given addr. If specified range of
2164  *	[addr...addr+count) includes some valid address, data is copied from
2165  *	proper area of @buf. If there are memory holes, no copy to hole.
2166  *	IOREMAP area is treated as memory hole and no copy is done.
2167  *
2168  *	If [addr...addr+count) doesn't includes any intersects with alive
2169  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2170  *
2171  *	Note: In usual ops, vwrite() is never necessary because the caller
2172  *	should know vmalloc() area is valid and can use memcpy().
2173  *	This is for routines which have to access vmalloc area without
2174  *	any informaion, as /dev/kmem.
2175  */
2176 
vwrite(char * buf,char * addr,unsigned long count)2177 long vwrite(char *buf, char *addr, unsigned long count)
2178 {
2179 	struct vmap_area *va;
2180 	struct vm_struct *vm;
2181 	char *vaddr;
2182 	unsigned long n, buflen;
2183 	int copied = 0;
2184 
2185 	/* Don't allow overflow */
2186 	if ((unsigned long) addr + count < count)
2187 		count = -(unsigned long) addr;
2188 	buflen = count;
2189 
2190 	spin_lock(&vmap_area_lock);
2191 	list_for_each_entry(va, &vmap_area_list, list) {
2192 		if (!count)
2193 			break;
2194 
2195 		if (!(va->flags & VM_VM_AREA))
2196 			continue;
2197 
2198 		vm = va->vm;
2199 		vaddr = (char *) vm->addr;
2200 		if (addr >= vaddr + get_vm_area_size(vm))
2201 			continue;
2202 		while (addr < vaddr) {
2203 			if (count == 0)
2204 				goto finished;
2205 			buf++;
2206 			addr++;
2207 			count--;
2208 		}
2209 		n = vaddr + get_vm_area_size(vm) - addr;
2210 		if (n > count)
2211 			n = count;
2212 		if (!(vm->flags & VM_IOREMAP)) {
2213 			aligned_vwrite(buf, addr, n);
2214 			copied++;
2215 		}
2216 		buf += n;
2217 		addr += n;
2218 		count -= n;
2219 	}
2220 finished:
2221 	spin_unlock(&vmap_area_lock);
2222 	if (!copied)
2223 		return 0;
2224 	return buflen;
2225 }
2226 
2227 /**
2228  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2229  *	@vma:		vma to cover
2230  *	@uaddr:		target user address to start at
2231  *	@kaddr:		virtual address of vmalloc kernel memory
2232  *	@pgoff:		offset from @kaddr to start at
2233  *	@size:		size of map area
2234  *
2235  *	Returns:	0 for success, -Exxx on failure
2236  *
2237  *	This function checks that @kaddr is a valid vmalloc'ed area,
2238  *	and that it is big enough to cover the range starting at
2239  *	@uaddr in @vma. Will return failure if that criteria isn't
2240  *	met.
2241  *
2242  *	Similar to remap_pfn_range() (see mm/memory.c)
2243  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)2244 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2245 				void *kaddr, unsigned long pgoff,
2246 				unsigned long size)
2247 {
2248 	struct vm_struct *area;
2249 	unsigned long off;
2250 	unsigned long end_index;
2251 
2252 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
2253 		return -EINVAL;
2254 
2255 	size = PAGE_ALIGN(size);
2256 
2257 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2258 		return -EINVAL;
2259 
2260 	area = find_vm_area(kaddr);
2261 	if (!area)
2262 		return -EINVAL;
2263 
2264 	if (!(area->flags & VM_USERMAP))
2265 		return -EINVAL;
2266 
2267 	if (check_add_overflow(size, off, &end_index) ||
2268 	    end_index > get_vm_area_size(area))
2269 		return -EINVAL;
2270 	kaddr += off;
2271 
2272 	do {
2273 		struct page *page = vmalloc_to_page(kaddr);
2274 		int ret;
2275 
2276 		ret = vm_insert_page(vma, uaddr, page);
2277 		if (ret)
2278 			return ret;
2279 
2280 		uaddr += PAGE_SIZE;
2281 		kaddr += PAGE_SIZE;
2282 		size -= PAGE_SIZE;
2283 	} while (size > 0);
2284 
2285 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2286 
2287 	return 0;
2288 }
2289 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2290 
2291 /**
2292  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2293  *	@vma:		vma to cover (map full range of vma)
2294  *	@addr:		vmalloc memory
2295  *	@pgoff:		number of pages into addr before first page to map
2296  *
2297  *	Returns:	0 for success, -Exxx on failure
2298  *
2299  *	This function checks that addr is a valid vmalloc'ed area, and
2300  *	that it is big enough to cover the vma. Will return failure if
2301  *	that criteria isn't met.
2302  *
2303  *	Similar to remap_pfn_range() (see mm/memory.c)
2304  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)2305 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2306 						unsigned long pgoff)
2307 {
2308 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2309 					   addr, pgoff,
2310 					   vma->vm_end - vma->vm_start);
2311 }
2312 EXPORT_SYMBOL(remap_vmalloc_range);
2313 
2314 /*
2315  * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
2316  * not to have one.
2317  *
2318  * The purpose of this function is to make sure the vmalloc area
2319  * mappings are identical in all page-tables in the system.
2320  */
vmalloc_sync_mappings(void)2321 void __weak vmalloc_sync_mappings(void)
2322 {
2323 }
2324 
vmalloc_sync_unmappings(void)2325 void __weak vmalloc_sync_unmappings(void)
2326 {
2327 }
2328 
f(pte_t * pte,pgtable_t table,unsigned long addr,void * data)2329 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2330 {
2331 	pte_t ***p = data;
2332 
2333 	if (p) {
2334 		*(*p) = pte;
2335 		(*p)++;
2336 	}
2337 	return 0;
2338 }
2339 
2340 /**
2341  *	alloc_vm_area - allocate a range of kernel address space
2342  *	@size:		size of the area
2343  *	@ptes:		returns the PTEs for the address space
2344  *
2345  *	Returns:	NULL on failure, vm_struct on success
2346  *
2347  *	This function reserves a range of kernel address space, and
2348  *	allocates pagetables to map that range.  No actual mappings
2349  *	are created.
2350  *
2351  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2352  *	allocated for the VM area are returned.
2353  */
alloc_vm_area(size_t size,pte_t ** ptes)2354 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2355 {
2356 	struct vm_struct *area;
2357 
2358 	area = get_vm_area_caller(size, VM_IOREMAP,
2359 				__builtin_return_address(0));
2360 	if (area == NULL)
2361 		return NULL;
2362 
2363 	/*
2364 	 * This ensures that page tables are constructed for this region
2365 	 * of kernel virtual address space and mapped into init_mm.
2366 	 */
2367 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2368 				size, f, ptes ? &ptes : NULL)) {
2369 		free_vm_area(area);
2370 		return NULL;
2371 	}
2372 
2373 	return area;
2374 }
2375 EXPORT_SYMBOL_GPL(alloc_vm_area);
2376 
free_vm_area(struct vm_struct * area)2377 void free_vm_area(struct vm_struct *area)
2378 {
2379 	struct vm_struct *ret;
2380 	ret = remove_vm_area(area->addr);
2381 	BUG_ON(ret != area);
2382 	kfree(area);
2383 }
2384 EXPORT_SYMBOL_GPL(free_vm_area);
2385 
2386 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)2387 static struct vmap_area *node_to_va(struct rb_node *n)
2388 {
2389 	return rb_entry_safe(n, struct vmap_area, rb_node);
2390 }
2391 
2392 /**
2393  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2394  * @end: target address
2395  * @pnext: out arg for the next vmap_area
2396  * @pprev: out arg for the previous vmap_area
2397  *
2398  * Returns: %true if either or both of next and prev are found,
2399  *	    %false if no vmap_area exists
2400  *
2401  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2402  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2403  */
pvm_find_next_prev(unsigned long end,struct vmap_area ** pnext,struct vmap_area ** pprev)2404 static bool pvm_find_next_prev(unsigned long end,
2405 			       struct vmap_area **pnext,
2406 			       struct vmap_area **pprev)
2407 {
2408 	struct rb_node *n = vmap_area_root.rb_node;
2409 	struct vmap_area *va = NULL;
2410 
2411 	while (n) {
2412 		va = rb_entry(n, struct vmap_area, rb_node);
2413 		if (end < va->va_end)
2414 			n = n->rb_left;
2415 		else if (end > va->va_end)
2416 			n = n->rb_right;
2417 		else
2418 			break;
2419 	}
2420 
2421 	if (!va)
2422 		return false;
2423 
2424 	if (va->va_end > end) {
2425 		*pnext = va;
2426 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2427 	} else {
2428 		*pprev = va;
2429 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2430 	}
2431 	return true;
2432 }
2433 
2434 /**
2435  * pvm_determine_end - find the highest aligned address between two vmap_areas
2436  * @pnext: in/out arg for the next vmap_area
2437  * @pprev: in/out arg for the previous vmap_area
2438  * @align: alignment
2439  *
2440  * Returns: determined end address
2441  *
2442  * Find the highest aligned address between *@pnext and *@pprev below
2443  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2444  * down address is between the end addresses of the two vmap_areas.
2445  *
2446  * Please note that the address returned by this function may fall
2447  * inside *@pnext vmap_area.  The caller is responsible for checking
2448  * that.
2449  */
pvm_determine_end(struct vmap_area ** pnext,struct vmap_area ** pprev,unsigned long align)2450 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2451 				       struct vmap_area **pprev,
2452 				       unsigned long align)
2453 {
2454 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2455 	unsigned long addr;
2456 
2457 	if (*pnext)
2458 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2459 	else
2460 		addr = vmalloc_end;
2461 
2462 	while (*pprev && (*pprev)->va_end > addr) {
2463 		*pnext = *pprev;
2464 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2465 	}
2466 
2467 	return addr;
2468 }
2469 
2470 /**
2471  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2472  * @offsets: array containing offset of each area
2473  * @sizes: array containing size of each area
2474  * @nr_vms: the number of areas to allocate
2475  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2476  *
2477  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2478  *	    vm_structs on success, %NULL on failure
2479  *
2480  * Percpu allocator wants to use congruent vm areas so that it can
2481  * maintain the offsets among percpu areas.  This function allocates
2482  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2483  * be scattered pretty far, distance between two areas easily going up
2484  * to gigabytes.  To avoid interacting with regular vmallocs, these
2485  * areas are allocated from top.
2486  *
2487  * Despite its complicated look, this allocator is rather simple.  It
2488  * does everything top-down and scans areas from the end looking for
2489  * matching slot.  While scanning, if any of the areas overlaps with
2490  * existing vmap_area, the base address is pulled down to fit the
2491  * area.  Scanning is repeated till all the areas fit and then all
2492  * necessary data structures are inserted and the result is returned.
2493  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)2494 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2495 				     const size_t *sizes, int nr_vms,
2496 				     size_t align)
2497 {
2498 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2499 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2500 	struct vmap_area **vas, *prev, *next;
2501 	struct vm_struct **vms;
2502 	int area, area2, last_area, term_area;
2503 	unsigned long base, start, end, last_end;
2504 	bool purged = false;
2505 
2506 	/* verify parameters and allocate data structures */
2507 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2508 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2509 		start = offsets[area];
2510 		end = start + sizes[area];
2511 
2512 		/* is everything aligned properly? */
2513 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2514 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2515 
2516 		/* detect the area with the highest address */
2517 		if (start > offsets[last_area])
2518 			last_area = area;
2519 
2520 		for (area2 = area + 1; area2 < nr_vms; area2++) {
2521 			unsigned long start2 = offsets[area2];
2522 			unsigned long end2 = start2 + sizes[area2];
2523 
2524 			BUG_ON(start2 < end && start < end2);
2525 		}
2526 	}
2527 	last_end = offsets[last_area] + sizes[last_area];
2528 
2529 	if (vmalloc_end - vmalloc_start < last_end) {
2530 		WARN_ON(true);
2531 		return NULL;
2532 	}
2533 
2534 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2535 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2536 	if (!vas || !vms)
2537 		goto err_free2;
2538 
2539 	for (area = 0; area < nr_vms; area++) {
2540 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2541 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2542 		if (!vas[area] || !vms[area])
2543 			goto err_free;
2544 	}
2545 retry:
2546 	spin_lock(&vmap_area_lock);
2547 
2548 	/* start scanning - we scan from the top, begin with the last area */
2549 	area = term_area = last_area;
2550 	start = offsets[area];
2551 	end = start + sizes[area];
2552 
2553 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2554 		base = vmalloc_end - last_end;
2555 		goto found;
2556 	}
2557 	base = pvm_determine_end(&next, &prev, align) - end;
2558 
2559 	while (true) {
2560 		BUG_ON(next && next->va_end <= base + end);
2561 		BUG_ON(prev && prev->va_end > base + end);
2562 
2563 		/*
2564 		 * base might have underflowed, add last_end before
2565 		 * comparing.
2566 		 */
2567 		if (base + last_end < vmalloc_start + last_end) {
2568 			spin_unlock(&vmap_area_lock);
2569 			if (!purged) {
2570 				purge_vmap_area_lazy();
2571 				purged = true;
2572 				goto retry;
2573 			}
2574 			goto err_free;
2575 		}
2576 
2577 		/*
2578 		 * If next overlaps, move base downwards so that it's
2579 		 * right below next and then recheck.
2580 		 */
2581 		if (next && next->va_start < base + end) {
2582 			base = pvm_determine_end(&next, &prev, align) - end;
2583 			term_area = area;
2584 			continue;
2585 		}
2586 
2587 		/*
2588 		 * If prev overlaps, shift down next and prev and move
2589 		 * base so that it's right below new next and then
2590 		 * recheck.
2591 		 */
2592 		if (prev && prev->va_end > base + start)  {
2593 			next = prev;
2594 			prev = node_to_va(rb_prev(&next->rb_node));
2595 			base = pvm_determine_end(&next, &prev, align) - end;
2596 			term_area = area;
2597 			continue;
2598 		}
2599 
2600 		/*
2601 		 * This area fits, move on to the previous one.  If
2602 		 * the previous one is the terminal one, we're done.
2603 		 */
2604 		area = (area + nr_vms - 1) % nr_vms;
2605 		if (area == term_area)
2606 			break;
2607 		start = offsets[area];
2608 		end = start + sizes[area];
2609 		pvm_find_next_prev(base + end, &next, &prev);
2610 	}
2611 found:
2612 	/* we've found a fitting base, insert all va's */
2613 	for (area = 0; area < nr_vms; area++) {
2614 		struct vmap_area *va = vas[area];
2615 
2616 		va->va_start = base + offsets[area];
2617 		va->va_end = va->va_start + sizes[area];
2618 		__insert_vmap_area(va);
2619 	}
2620 
2621 	vmap_area_pcpu_hole = base + offsets[last_area];
2622 
2623 	spin_unlock(&vmap_area_lock);
2624 
2625 	/* insert all vm's */
2626 	for (area = 0; area < nr_vms; area++)
2627 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2628 				 pcpu_get_vm_areas);
2629 
2630 	kfree(vas);
2631 	return vms;
2632 
2633 err_free:
2634 	for (area = 0; area < nr_vms; area++) {
2635 		kfree(vas[area]);
2636 		kfree(vms[area]);
2637 	}
2638 err_free2:
2639 	kfree(vas);
2640 	kfree(vms);
2641 	return NULL;
2642 }
2643 
2644 /**
2645  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2646  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2647  * @nr_vms: the number of allocated areas
2648  *
2649  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2650  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)2651 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2652 {
2653 	int i;
2654 
2655 	for (i = 0; i < nr_vms; i++)
2656 		free_vm_area(vms[i]);
2657 	kfree(vms);
2658 }
2659 #endif	/* CONFIG_SMP */
2660 
2661 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)2662 static void *s_start(struct seq_file *m, loff_t *pos)
2663 	__acquires(&vmap_area_lock)
2664 {
2665 	spin_lock(&vmap_area_lock);
2666 	return seq_list_start(&vmap_area_list, *pos);
2667 }
2668 
s_next(struct seq_file * m,void * p,loff_t * pos)2669 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2670 {
2671 	return seq_list_next(p, &vmap_area_list, pos);
2672 }
2673 
s_stop(struct seq_file * m,void * p)2674 static void s_stop(struct seq_file *m, void *p)
2675 	__releases(&vmap_area_lock)
2676 {
2677 	spin_unlock(&vmap_area_lock);
2678 }
2679 
show_numa_info(struct seq_file * m,struct vm_struct * v)2680 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2681 {
2682 	if (IS_ENABLED(CONFIG_NUMA)) {
2683 		unsigned int nr, *counters = m->private;
2684 
2685 		if (!counters)
2686 			return;
2687 
2688 		if (v->flags & VM_UNINITIALIZED)
2689 			return;
2690 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2691 		smp_rmb();
2692 
2693 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2694 
2695 		for (nr = 0; nr < v->nr_pages; nr++)
2696 			counters[page_to_nid(v->pages[nr])]++;
2697 
2698 		for_each_node_state(nr, N_HIGH_MEMORY)
2699 			if (counters[nr])
2700 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2701 	}
2702 }
2703 
s_show(struct seq_file * m,void * p)2704 static int s_show(struct seq_file *m, void *p)
2705 {
2706 	struct vmap_area *va;
2707 	struct vm_struct *v;
2708 
2709 	va = list_entry(p, struct vmap_area, list);
2710 
2711 	/*
2712 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2713 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2714 	 */
2715 	if (!(va->flags & VM_VM_AREA)) {
2716 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2717 			(void *)va->va_start, (void *)va->va_end,
2718 			va->va_end - va->va_start,
2719 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2720 
2721 		return 0;
2722 	}
2723 
2724 	v = va->vm;
2725 
2726 	seq_printf(m, "0x%pK-0x%pK %7ld",
2727 		v->addr, v->addr + v->size, v->size);
2728 
2729 	if (v->caller)
2730 		seq_printf(m, " %pS", v->caller);
2731 
2732 	if (v->nr_pages)
2733 		seq_printf(m, " pages=%d", v->nr_pages);
2734 
2735 	if (v->phys_addr)
2736 		seq_printf(m, " phys=%pa", &v->phys_addr);
2737 
2738 	if (v->flags & VM_IOREMAP)
2739 		seq_puts(m, " ioremap");
2740 
2741 	if (v->flags & VM_ALLOC)
2742 		seq_puts(m, " vmalloc");
2743 
2744 	if (v->flags & VM_MAP)
2745 		seq_puts(m, " vmap");
2746 
2747 	if (v->flags & VM_USERMAP)
2748 		seq_puts(m, " user");
2749 
2750 	if (is_vmalloc_addr(v->pages))
2751 		seq_puts(m, " vpages");
2752 
2753 	show_numa_info(m, v);
2754 	seq_putc(m, '\n');
2755 	return 0;
2756 }
2757 
2758 static const struct seq_operations vmalloc_op = {
2759 	.start = s_start,
2760 	.next = s_next,
2761 	.stop = s_stop,
2762 	.show = s_show,
2763 };
2764 
proc_vmalloc_init(void)2765 static int __init proc_vmalloc_init(void)
2766 {
2767 	if (IS_ENABLED(CONFIG_NUMA))
2768 		proc_create_seq_private("vmallocinfo", 0400, NULL,
2769 				&vmalloc_op,
2770 				nr_node_ids * sizeof(unsigned int), NULL);
2771 	else
2772 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
2773 	return 0;
2774 }
2775 module_init(proc_vmalloc_init);
2776 
2777 #endif
2778 
2779