1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_pmu.h"
52 #include "i915_query.h"
53 #include "i915_vgpu.h"
54 #include "intel_drv.h"
55 #include "intel_uc.h"
56
57 static struct drm_driver driver;
58
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
60 static unsigned int i915_load_fail_count;
61
__i915_inject_load_failure(const char * func,int line)62 bool __i915_inject_load_failure(const char *func, int line)
63 {
64 if (i915_load_fail_count >= i915_modparams.inject_load_failure)
65 return false;
66
67 if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
68 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
69 i915_modparams.inject_load_failure, func, line);
70 i915_modparams.inject_load_failure = 0;
71 return true;
72 }
73
74 return false;
75 }
76
i915_error_injected(void)77 bool i915_error_injected(void)
78 {
79 return i915_load_fail_count && !i915_modparams.inject_load_failure;
80 }
81
82 #endif
83
84 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
85 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
86 "providing the dmesg log by booting with drm.debug=0xf"
87
88 void
__i915_printk(struct drm_i915_private * dev_priv,const char * level,const char * fmt,...)89 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
90 const char *fmt, ...)
91 {
92 static bool shown_bug_once;
93 struct device *kdev = dev_priv->drm.dev;
94 bool is_error = level[1] <= KERN_ERR[1];
95 bool is_debug = level[1] == KERN_DEBUG[1];
96 struct va_format vaf;
97 va_list args;
98
99 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
100 return;
101
102 va_start(args, fmt);
103
104 vaf.fmt = fmt;
105 vaf.va = &args;
106
107 if (is_error)
108 dev_printk(level, kdev, "%pV", &vaf);
109 else
110 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
111 __builtin_return_address(0), &vaf);
112
113 va_end(args);
114
115 if (is_error && !shown_bug_once) {
116 /*
117 * Ask the user to file a bug report for the error, except
118 * if they may have caused the bug by fiddling with unsafe
119 * module parameters.
120 */
121 if (!test_taint(TAINT_USER))
122 dev_notice(kdev, "%s", FDO_BUG_MSG);
123 shown_bug_once = true;
124 }
125 }
126
127 /* Map PCH device id to PCH type, or PCH_NONE if unknown. */
128 static enum intel_pch
intel_pch_type(const struct drm_i915_private * dev_priv,unsigned short id)129 intel_pch_type(const struct drm_i915_private *dev_priv, unsigned short id)
130 {
131 switch (id) {
132 case INTEL_PCH_IBX_DEVICE_ID_TYPE:
133 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
134 WARN_ON(!IS_GEN5(dev_priv));
135 return PCH_IBX;
136 case INTEL_PCH_CPT_DEVICE_ID_TYPE:
137 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
138 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
139 return PCH_CPT;
140 case INTEL_PCH_PPT_DEVICE_ID_TYPE:
141 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
142 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
143 /* PantherPoint is CPT compatible */
144 return PCH_CPT;
145 case INTEL_PCH_LPT_DEVICE_ID_TYPE:
146 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
147 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
148 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
149 return PCH_LPT;
150 case INTEL_PCH_LPT_LP_DEVICE_ID_TYPE:
151 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
152 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
153 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
154 return PCH_LPT;
155 case INTEL_PCH_WPT_DEVICE_ID_TYPE:
156 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
157 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
158 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
159 /* WildcatPoint is LPT compatible */
160 return PCH_LPT;
161 case INTEL_PCH_WPT_LP_DEVICE_ID_TYPE:
162 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
163 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
164 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
165 /* WildcatPoint is LPT compatible */
166 return PCH_LPT;
167 case INTEL_PCH_SPT_DEVICE_ID_TYPE:
168 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
169 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
170 return PCH_SPT;
171 case INTEL_PCH_SPT_LP_DEVICE_ID_TYPE:
172 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
173 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
174 return PCH_SPT;
175 case INTEL_PCH_KBP_DEVICE_ID_TYPE:
176 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
177 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv) &&
178 !IS_COFFEELAKE(dev_priv));
179 return PCH_KBP;
180 case INTEL_PCH_CNP_DEVICE_ID_TYPE:
181 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
182 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
183 return PCH_CNP;
184 case INTEL_PCH_CNP_LP_DEVICE_ID_TYPE:
185 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
186 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
187 return PCH_CNP;
188 case INTEL_PCH_ICP_DEVICE_ID_TYPE:
189 DRM_DEBUG_KMS("Found Ice Lake PCH\n");
190 WARN_ON(!IS_ICELAKE(dev_priv));
191 return PCH_ICP;
192 default:
193 return PCH_NONE;
194 }
195 }
196
intel_is_virt_pch(unsigned short id,unsigned short svendor,unsigned short sdevice)197 static bool intel_is_virt_pch(unsigned short id,
198 unsigned short svendor, unsigned short sdevice)
199 {
200 return (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
201 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
202 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
203 svendor == PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
204 sdevice == PCI_SUBDEVICE_ID_QEMU));
205 }
206
207 static unsigned short
intel_virt_detect_pch(const struct drm_i915_private * dev_priv)208 intel_virt_detect_pch(const struct drm_i915_private *dev_priv)
209 {
210 unsigned short id = 0;
211
212 /*
213 * In a virtualized passthrough environment we can be in a
214 * setup where the ISA bridge is not able to be passed through.
215 * In this case, a south bridge can be emulated and we have to
216 * make an educated guess as to which PCH is really there.
217 */
218
219 if (IS_GEN5(dev_priv))
220 id = INTEL_PCH_IBX_DEVICE_ID_TYPE;
221 else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
222 id = INTEL_PCH_CPT_DEVICE_ID_TYPE;
223 else if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
224 id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
225 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
226 id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
227 else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
228 id = INTEL_PCH_SPT_DEVICE_ID_TYPE;
229 else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv))
230 id = INTEL_PCH_CNP_DEVICE_ID_TYPE;
231 else if (IS_ICELAKE(dev_priv))
232 id = INTEL_PCH_ICP_DEVICE_ID_TYPE;
233
234 if (id)
235 DRM_DEBUG_KMS("Assuming PCH ID %04x\n", id);
236 else
237 DRM_DEBUG_KMS("Assuming no PCH\n");
238
239 return id;
240 }
241
intel_detect_pch(struct drm_i915_private * dev_priv)242 static void intel_detect_pch(struct drm_i915_private *dev_priv)
243 {
244 struct pci_dev *pch = NULL;
245
246 /*
247 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
248 * make graphics device passthrough work easy for VMM, that only
249 * need to expose ISA bridge to let driver know the real hardware
250 * underneath. This is a requirement from virtualization team.
251 *
252 * In some virtualized environments (e.g. XEN), there is irrelevant
253 * ISA bridge in the system. To work reliably, we should scan trhough
254 * all the ISA bridge devices and check for the first match, instead
255 * of only checking the first one.
256 */
257 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
258 unsigned short id;
259 enum intel_pch pch_type;
260
261 if (pch->vendor != PCI_VENDOR_ID_INTEL)
262 continue;
263
264 id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
265
266 pch_type = intel_pch_type(dev_priv, id);
267 if (pch_type != PCH_NONE) {
268 dev_priv->pch_type = pch_type;
269 dev_priv->pch_id = id;
270 break;
271 } else if (intel_is_virt_pch(id, pch->subsystem_vendor,
272 pch->subsystem_device)) {
273 id = intel_virt_detect_pch(dev_priv);
274 pch_type = intel_pch_type(dev_priv, id);
275
276 /* Sanity check virtual PCH id */
277 if (WARN_ON(id && pch_type == PCH_NONE))
278 id = 0;
279
280 dev_priv->pch_type = pch_type;
281 dev_priv->pch_id = id;
282 break;
283 }
284 }
285
286 /*
287 * Use PCH_NOP (PCH but no South Display) for PCH platforms without
288 * display.
289 */
290 if (pch && INTEL_INFO(dev_priv)->num_pipes == 0) {
291 DRM_DEBUG_KMS("Display disabled, reverting to NOP PCH\n");
292 dev_priv->pch_type = PCH_NOP;
293 dev_priv->pch_id = 0;
294 }
295
296 if (!pch)
297 DRM_DEBUG_KMS("No PCH found.\n");
298
299 pci_dev_put(pch);
300 }
301
i915_getparam_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)302 static int i915_getparam_ioctl(struct drm_device *dev, void *data,
303 struct drm_file *file_priv)
304 {
305 struct drm_i915_private *dev_priv = to_i915(dev);
306 struct pci_dev *pdev = dev_priv->drm.pdev;
307 drm_i915_getparam_t *param = data;
308 int value;
309
310 switch (param->param) {
311 case I915_PARAM_IRQ_ACTIVE:
312 case I915_PARAM_ALLOW_BATCHBUFFER:
313 case I915_PARAM_LAST_DISPATCH:
314 case I915_PARAM_HAS_EXEC_CONSTANTS:
315 /* Reject all old ums/dri params. */
316 return -ENODEV;
317 case I915_PARAM_CHIPSET_ID:
318 value = pdev->device;
319 break;
320 case I915_PARAM_REVISION:
321 value = pdev->revision;
322 break;
323 case I915_PARAM_NUM_FENCES_AVAIL:
324 value = dev_priv->num_fence_regs;
325 break;
326 case I915_PARAM_HAS_OVERLAY:
327 value = dev_priv->overlay ? 1 : 0;
328 break;
329 case I915_PARAM_HAS_BSD:
330 value = !!dev_priv->engine[VCS];
331 break;
332 case I915_PARAM_HAS_BLT:
333 value = !!dev_priv->engine[BCS];
334 break;
335 case I915_PARAM_HAS_VEBOX:
336 value = !!dev_priv->engine[VECS];
337 break;
338 case I915_PARAM_HAS_BSD2:
339 value = !!dev_priv->engine[VCS2];
340 break;
341 case I915_PARAM_HAS_LLC:
342 value = HAS_LLC(dev_priv);
343 break;
344 case I915_PARAM_HAS_WT:
345 value = HAS_WT(dev_priv);
346 break;
347 case I915_PARAM_HAS_ALIASING_PPGTT:
348 value = USES_PPGTT(dev_priv);
349 break;
350 case I915_PARAM_HAS_SEMAPHORES:
351 value = HAS_LEGACY_SEMAPHORES(dev_priv);
352 break;
353 case I915_PARAM_HAS_SECURE_BATCHES:
354 value = HAS_SECURE_BATCHES(dev_priv) && capable(CAP_SYS_ADMIN);
355 break;
356 case I915_PARAM_CMD_PARSER_VERSION:
357 value = i915_cmd_parser_get_version(dev_priv);
358 break;
359 case I915_PARAM_SUBSLICE_TOTAL:
360 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
361 if (!value)
362 return -ENODEV;
363 break;
364 case I915_PARAM_EU_TOTAL:
365 value = INTEL_INFO(dev_priv)->sseu.eu_total;
366 if (!value)
367 return -ENODEV;
368 break;
369 case I915_PARAM_HAS_GPU_RESET:
370 value = i915_modparams.enable_hangcheck &&
371 intel_has_gpu_reset(dev_priv);
372 if (value && intel_has_reset_engine(dev_priv))
373 value = 2;
374 break;
375 case I915_PARAM_HAS_RESOURCE_STREAMER:
376 value = HAS_RESOURCE_STREAMER(dev_priv);
377 break;
378 case I915_PARAM_HAS_POOLED_EU:
379 value = HAS_POOLED_EU(dev_priv);
380 break;
381 case I915_PARAM_MIN_EU_IN_POOL:
382 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
383 break;
384 case I915_PARAM_HUC_STATUS:
385 value = intel_huc_check_status(&dev_priv->huc);
386 if (value < 0)
387 return value;
388 break;
389 case I915_PARAM_MMAP_GTT_VERSION:
390 /* Though we've started our numbering from 1, and so class all
391 * earlier versions as 0, in effect their value is undefined as
392 * the ioctl will report EINVAL for the unknown param!
393 */
394 value = i915_gem_mmap_gtt_version();
395 break;
396 case I915_PARAM_HAS_SCHEDULER:
397 value = dev_priv->caps.scheduler;
398 break;
399
400 case I915_PARAM_MMAP_VERSION:
401 /* Remember to bump this if the version changes! */
402 case I915_PARAM_HAS_GEM:
403 case I915_PARAM_HAS_PAGEFLIPPING:
404 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
405 case I915_PARAM_HAS_RELAXED_FENCING:
406 case I915_PARAM_HAS_COHERENT_RINGS:
407 case I915_PARAM_HAS_RELAXED_DELTA:
408 case I915_PARAM_HAS_GEN7_SOL_RESET:
409 case I915_PARAM_HAS_WAIT_TIMEOUT:
410 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
411 case I915_PARAM_HAS_PINNED_BATCHES:
412 case I915_PARAM_HAS_EXEC_NO_RELOC:
413 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
414 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
415 case I915_PARAM_HAS_EXEC_SOFTPIN:
416 case I915_PARAM_HAS_EXEC_ASYNC:
417 case I915_PARAM_HAS_EXEC_FENCE:
418 case I915_PARAM_HAS_EXEC_CAPTURE:
419 case I915_PARAM_HAS_EXEC_BATCH_FIRST:
420 case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
421 /* For the time being all of these are always true;
422 * if some supported hardware does not have one of these
423 * features this value needs to be provided from
424 * INTEL_INFO(), a feature macro, or similar.
425 */
426 value = 1;
427 break;
428 case I915_PARAM_HAS_CONTEXT_ISOLATION:
429 value = intel_engines_has_context_isolation(dev_priv);
430 break;
431 case I915_PARAM_SLICE_MASK:
432 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
433 if (!value)
434 return -ENODEV;
435 break;
436 case I915_PARAM_SUBSLICE_MASK:
437 value = INTEL_INFO(dev_priv)->sseu.subslice_mask[0];
438 if (!value)
439 return -ENODEV;
440 break;
441 case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
442 value = 1000 * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz;
443 break;
444 default:
445 DRM_DEBUG("Unknown parameter %d\n", param->param);
446 return -EINVAL;
447 }
448
449 if (put_user(value, param->value))
450 return -EFAULT;
451
452 return 0;
453 }
454
i915_get_bridge_dev(struct drm_i915_private * dev_priv)455 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
456 {
457 int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
458
459 dev_priv->bridge_dev =
460 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
461 if (!dev_priv->bridge_dev) {
462 DRM_ERROR("bridge device not found\n");
463 return -1;
464 }
465 return 0;
466 }
467
468 /* Allocate space for the MCH regs if needed, return nonzero on error */
469 static int
intel_alloc_mchbar_resource(struct drm_i915_private * dev_priv)470 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
471 {
472 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
473 u32 temp_lo, temp_hi = 0;
474 u64 mchbar_addr;
475 int ret;
476
477 if (INTEL_GEN(dev_priv) >= 4)
478 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
479 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
480 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
481
482 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
483 #ifdef CONFIG_PNP
484 if (mchbar_addr &&
485 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
486 return 0;
487 #endif
488
489 /* Get some space for it */
490 dev_priv->mch_res.name = "i915 MCHBAR";
491 dev_priv->mch_res.flags = IORESOURCE_MEM;
492 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
493 &dev_priv->mch_res,
494 MCHBAR_SIZE, MCHBAR_SIZE,
495 PCIBIOS_MIN_MEM,
496 0, pcibios_align_resource,
497 dev_priv->bridge_dev);
498 if (ret) {
499 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
500 dev_priv->mch_res.start = 0;
501 return ret;
502 }
503
504 if (INTEL_GEN(dev_priv) >= 4)
505 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
506 upper_32_bits(dev_priv->mch_res.start));
507
508 pci_write_config_dword(dev_priv->bridge_dev, reg,
509 lower_32_bits(dev_priv->mch_res.start));
510 return 0;
511 }
512
513 /* Setup MCHBAR if possible, return true if we should disable it again */
514 static void
intel_setup_mchbar(struct drm_i915_private * dev_priv)515 intel_setup_mchbar(struct drm_i915_private *dev_priv)
516 {
517 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
518 u32 temp;
519 bool enabled;
520
521 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
522 return;
523
524 dev_priv->mchbar_need_disable = false;
525
526 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
527 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
528 enabled = !!(temp & DEVEN_MCHBAR_EN);
529 } else {
530 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
531 enabled = temp & 1;
532 }
533
534 /* If it's already enabled, don't have to do anything */
535 if (enabled)
536 return;
537
538 if (intel_alloc_mchbar_resource(dev_priv))
539 return;
540
541 dev_priv->mchbar_need_disable = true;
542
543 /* Space is allocated or reserved, so enable it. */
544 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
545 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
546 temp | DEVEN_MCHBAR_EN);
547 } else {
548 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
549 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
550 }
551 }
552
553 static void
intel_teardown_mchbar(struct drm_i915_private * dev_priv)554 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
555 {
556 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
557
558 if (dev_priv->mchbar_need_disable) {
559 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
560 u32 deven_val;
561
562 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
563 &deven_val);
564 deven_val &= ~DEVEN_MCHBAR_EN;
565 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
566 deven_val);
567 } else {
568 u32 mchbar_val;
569
570 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
571 &mchbar_val);
572 mchbar_val &= ~1;
573 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
574 mchbar_val);
575 }
576 }
577
578 if (dev_priv->mch_res.start)
579 release_resource(&dev_priv->mch_res);
580 }
581
582 /* true = enable decode, false = disable decoder */
i915_vga_set_decode(void * cookie,bool state)583 static unsigned int i915_vga_set_decode(void *cookie, bool state)
584 {
585 struct drm_i915_private *dev_priv = cookie;
586
587 intel_modeset_vga_set_state(dev_priv, state);
588 if (state)
589 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
590 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
591 else
592 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
593 }
594
595 static int i915_resume_switcheroo(struct drm_device *dev);
596 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
597
i915_switcheroo_set_state(struct pci_dev * pdev,enum vga_switcheroo_state state)598 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
599 {
600 struct drm_device *dev = pci_get_drvdata(pdev);
601 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
602
603 if (state == VGA_SWITCHEROO_ON) {
604 pr_info("switched on\n");
605 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
606 /* i915 resume handler doesn't set to D0 */
607 pci_set_power_state(pdev, PCI_D0);
608 i915_resume_switcheroo(dev);
609 dev->switch_power_state = DRM_SWITCH_POWER_ON;
610 } else {
611 pr_info("switched off\n");
612 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
613 i915_suspend_switcheroo(dev, pmm);
614 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
615 }
616 }
617
i915_switcheroo_can_switch(struct pci_dev * pdev)618 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
619 {
620 struct drm_device *dev = pci_get_drvdata(pdev);
621
622 /*
623 * FIXME: open_count is protected by drm_global_mutex but that would lead to
624 * locking inversion with the driver load path. And the access here is
625 * completely racy anyway. So don't bother with locking for now.
626 */
627 return dev->open_count == 0;
628 }
629
630 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
631 .set_gpu_state = i915_switcheroo_set_state,
632 .reprobe = NULL,
633 .can_switch = i915_switcheroo_can_switch,
634 };
635
i915_load_modeset_init(struct drm_device * dev)636 static int i915_load_modeset_init(struct drm_device *dev)
637 {
638 struct drm_i915_private *dev_priv = to_i915(dev);
639 struct pci_dev *pdev = dev_priv->drm.pdev;
640 int ret;
641
642 if (i915_inject_load_failure())
643 return -ENODEV;
644
645 intel_bios_init(dev_priv);
646
647 /* If we have > 1 VGA cards, then we need to arbitrate access
648 * to the common VGA resources.
649 *
650 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
651 * then we do not take part in VGA arbitration and the
652 * vga_client_register() fails with -ENODEV.
653 */
654 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
655 if (ret && ret != -ENODEV)
656 goto out;
657
658 intel_register_dsm_handler();
659
660 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
661 if (ret)
662 goto cleanup_vga_client;
663
664 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
665 intel_update_rawclk(dev_priv);
666
667 intel_power_domains_init_hw(dev_priv, false);
668
669 intel_csr_ucode_init(dev_priv);
670
671 ret = intel_irq_install(dev_priv);
672 if (ret)
673 goto cleanup_csr;
674
675 intel_setup_gmbus(dev_priv);
676
677 /* Important: The output setup functions called by modeset_init need
678 * working irqs for e.g. gmbus and dp aux transfers. */
679 ret = intel_modeset_init(dev);
680 if (ret)
681 goto cleanup_irq;
682
683 ret = i915_gem_init(dev_priv);
684 if (ret)
685 goto cleanup_modeset;
686
687 intel_setup_overlay(dev_priv);
688
689 if (INTEL_INFO(dev_priv)->num_pipes == 0)
690 return 0;
691
692 ret = intel_fbdev_init(dev);
693 if (ret)
694 goto cleanup_gem;
695
696 /* Only enable hotplug handling once the fbdev is fully set up. */
697 intel_hpd_init(dev_priv);
698
699 return 0;
700
701 cleanup_gem:
702 if (i915_gem_suspend(dev_priv))
703 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
704 i915_gem_fini(dev_priv);
705 cleanup_modeset:
706 intel_modeset_cleanup(dev);
707 cleanup_irq:
708 drm_irq_uninstall(dev);
709 intel_teardown_gmbus(dev_priv);
710 cleanup_csr:
711 intel_csr_ucode_fini(dev_priv);
712 intel_power_domains_fini(dev_priv);
713 vga_switcheroo_unregister_client(pdev);
714 cleanup_vga_client:
715 vga_client_register(pdev, NULL, NULL, NULL);
716 out:
717 return ret;
718 }
719
i915_kick_out_firmware_fb(struct drm_i915_private * dev_priv)720 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
721 {
722 struct apertures_struct *ap;
723 struct pci_dev *pdev = dev_priv->drm.pdev;
724 struct i915_ggtt *ggtt = &dev_priv->ggtt;
725 bool primary;
726 int ret;
727
728 ap = alloc_apertures(1);
729 if (!ap)
730 return -ENOMEM;
731
732 ap->ranges[0].base = ggtt->gmadr.start;
733 ap->ranges[0].size = ggtt->mappable_end;
734
735 primary =
736 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
737
738 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
739
740 kfree(ap);
741
742 return ret;
743 }
744
745 #if !defined(CONFIG_VGA_CONSOLE)
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)746 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
747 {
748 return 0;
749 }
750 #elif !defined(CONFIG_DUMMY_CONSOLE)
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)751 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
752 {
753 return -ENODEV;
754 }
755 #else
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)756 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
757 {
758 int ret = 0;
759
760 DRM_INFO("Replacing VGA console driver\n");
761
762 console_lock();
763 if (con_is_bound(&vga_con))
764 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
765 if (ret == 0) {
766 ret = do_unregister_con_driver(&vga_con);
767
768 /* Ignore "already unregistered". */
769 if (ret == -ENODEV)
770 ret = 0;
771 }
772 console_unlock();
773
774 return ret;
775 }
776 #endif
777
intel_init_dpio(struct drm_i915_private * dev_priv)778 static void intel_init_dpio(struct drm_i915_private *dev_priv)
779 {
780 /*
781 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
782 * CHV x1 PHY (DP/HDMI D)
783 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
784 */
785 if (IS_CHERRYVIEW(dev_priv)) {
786 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
787 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
788 } else if (IS_VALLEYVIEW(dev_priv)) {
789 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
790 }
791 }
792
i915_workqueues_init(struct drm_i915_private * dev_priv)793 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
794 {
795 /*
796 * The i915 workqueue is primarily used for batched retirement of
797 * requests (and thus managing bo) once the task has been completed
798 * by the GPU. i915_retire_requests() is called directly when we
799 * need high-priority retirement, such as waiting for an explicit
800 * bo.
801 *
802 * It is also used for periodic low-priority events, such as
803 * idle-timers and recording error state.
804 *
805 * All tasks on the workqueue are expected to acquire the dev mutex
806 * so there is no point in running more than one instance of the
807 * workqueue at any time. Use an ordered one.
808 */
809 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
810 if (dev_priv->wq == NULL)
811 goto out_err;
812
813 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
814 if (dev_priv->hotplug.dp_wq == NULL)
815 goto out_free_wq;
816
817 return 0;
818
819 out_free_wq:
820 destroy_workqueue(dev_priv->wq);
821 out_err:
822 DRM_ERROR("Failed to allocate workqueues.\n");
823
824 return -ENOMEM;
825 }
826
i915_engines_cleanup(struct drm_i915_private * i915)827 static void i915_engines_cleanup(struct drm_i915_private *i915)
828 {
829 struct intel_engine_cs *engine;
830 enum intel_engine_id id;
831
832 for_each_engine(engine, i915, id)
833 kfree(engine);
834 }
835
i915_workqueues_cleanup(struct drm_i915_private * dev_priv)836 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
837 {
838 destroy_workqueue(dev_priv->hotplug.dp_wq);
839 destroy_workqueue(dev_priv->wq);
840 }
841
842 /*
843 * We don't keep the workarounds for pre-production hardware, so we expect our
844 * driver to fail on these machines in one way or another. A little warning on
845 * dmesg may help both the user and the bug triagers.
846 *
847 * Our policy for removing pre-production workarounds is to keep the
848 * current gen workarounds as a guide to the bring-up of the next gen
849 * (workarounds have a habit of persisting!). Anything older than that
850 * should be removed along with the complications they introduce.
851 */
intel_detect_preproduction_hw(struct drm_i915_private * dev_priv)852 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
853 {
854 bool pre = false;
855
856 pre |= IS_HSW_EARLY_SDV(dev_priv);
857 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
858 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
859
860 if (pre) {
861 DRM_ERROR("This is a pre-production stepping. "
862 "It may not be fully functional.\n");
863 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
864 }
865 }
866
867 /**
868 * i915_driver_init_early - setup state not requiring device access
869 * @dev_priv: device private
870 * @ent: the matching pci_device_id
871 *
872 * Initialize everything that is a "SW-only" state, that is state not
873 * requiring accessing the device or exposing the driver via kernel internal
874 * or userspace interfaces. Example steps belonging here: lock initialization,
875 * system memory allocation, setting up device specific attributes and
876 * function hooks not requiring accessing the device.
877 */
i915_driver_init_early(struct drm_i915_private * dev_priv,const struct pci_device_id * ent)878 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
879 const struct pci_device_id *ent)
880 {
881 const struct intel_device_info *match_info =
882 (struct intel_device_info *)ent->driver_data;
883 struct intel_device_info *device_info;
884 int ret = 0;
885
886 if (i915_inject_load_failure())
887 return -ENODEV;
888
889 /* Setup the write-once "constant" device info */
890 device_info = mkwrite_device_info(dev_priv);
891 memcpy(device_info, match_info, sizeof(*device_info));
892 device_info->device_id = dev_priv->drm.pdev->device;
893
894 BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
895 sizeof(device_info->platform_mask) * BITS_PER_BYTE);
896 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
897 spin_lock_init(&dev_priv->irq_lock);
898 spin_lock_init(&dev_priv->gpu_error.lock);
899 mutex_init(&dev_priv->backlight_lock);
900 spin_lock_init(&dev_priv->uncore.lock);
901
902 mutex_init(&dev_priv->sb_lock);
903 mutex_init(&dev_priv->av_mutex);
904 mutex_init(&dev_priv->wm.wm_mutex);
905 mutex_init(&dev_priv->pps_mutex);
906
907 i915_memcpy_init_early(dev_priv);
908
909 ret = i915_workqueues_init(dev_priv);
910 if (ret < 0)
911 goto err_engines;
912
913 ret = i915_gem_init_early(dev_priv);
914 if (ret < 0)
915 goto err_workqueues;
916
917 /* This must be called before any calls to HAS_PCH_* */
918 intel_detect_pch(dev_priv);
919
920 intel_wopcm_init_early(&dev_priv->wopcm);
921 intel_uc_init_early(dev_priv);
922 intel_pm_setup(dev_priv);
923 intel_init_dpio(dev_priv);
924 intel_power_domains_init(dev_priv);
925 intel_irq_init(dev_priv);
926 intel_hangcheck_init(dev_priv);
927 intel_init_display_hooks(dev_priv);
928 intel_init_clock_gating_hooks(dev_priv);
929 intel_init_audio_hooks(dev_priv);
930 intel_display_crc_init(dev_priv);
931
932 intel_detect_preproduction_hw(dev_priv);
933
934 return 0;
935
936 err_workqueues:
937 i915_workqueues_cleanup(dev_priv);
938 err_engines:
939 i915_engines_cleanup(dev_priv);
940 return ret;
941 }
942
943 /**
944 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
945 * @dev_priv: device private
946 */
i915_driver_cleanup_early(struct drm_i915_private * dev_priv)947 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
948 {
949 intel_irq_fini(dev_priv);
950 intel_uc_cleanup_early(dev_priv);
951 i915_gem_cleanup_early(dev_priv);
952 i915_workqueues_cleanup(dev_priv);
953 i915_engines_cleanup(dev_priv);
954 }
955
i915_mmio_setup(struct drm_i915_private * dev_priv)956 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
957 {
958 struct pci_dev *pdev = dev_priv->drm.pdev;
959 int mmio_bar;
960 int mmio_size;
961
962 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
963 /*
964 * Before gen4, the registers and the GTT are behind different BARs.
965 * However, from gen4 onwards, the registers and the GTT are shared
966 * in the same BAR, so we want to restrict this ioremap from
967 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
968 * the register BAR remains the same size for all the earlier
969 * generations up to Ironlake.
970 */
971 if (INTEL_GEN(dev_priv) < 5)
972 mmio_size = 512 * 1024;
973 else
974 mmio_size = 2 * 1024 * 1024;
975 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
976 if (dev_priv->regs == NULL) {
977 DRM_ERROR("failed to map registers\n");
978
979 return -EIO;
980 }
981
982 /* Try to make sure MCHBAR is enabled before poking at it */
983 intel_setup_mchbar(dev_priv);
984
985 return 0;
986 }
987
i915_mmio_cleanup(struct drm_i915_private * dev_priv)988 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
989 {
990 struct pci_dev *pdev = dev_priv->drm.pdev;
991
992 intel_teardown_mchbar(dev_priv);
993 pci_iounmap(pdev, dev_priv->regs);
994 }
995
996 /**
997 * i915_driver_init_mmio - setup device MMIO
998 * @dev_priv: device private
999 *
1000 * Setup minimal device state necessary for MMIO accesses later in the
1001 * initialization sequence. The setup here should avoid any other device-wide
1002 * side effects or exposing the driver via kernel internal or user space
1003 * interfaces.
1004 */
i915_driver_init_mmio(struct drm_i915_private * dev_priv)1005 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1006 {
1007 int ret;
1008
1009 if (i915_inject_load_failure())
1010 return -ENODEV;
1011
1012 if (i915_get_bridge_dev(dev_priv))
1013 return -EIO;
1014
1015 ret = i915_mmio_setup(dev_priv);
1016 if (ret < 0)
1017 goto err_bridge;
1018
1019 intel_uncore_init(dev_priv);
1020
1021 intel_device_info_init_mmio(dev_priv);
1022
1023 intel_uncore_prune(dev_priv);
1024
1025 intel_uc_init_mmio(dev_priv);
1026
1027 ret = intel_engines_init_mmio(dev_priv);
1028 if (ret)
1029 goto err_uncore;
1030
1031 i915_gem_init_mmio(dev_priv);
1032
1033 return 0;
1034
1035 err_uncore:
1036 intel_uncore_fini(dev_priv);
1037 err_bridge:
1038 pci_dev_put(dev_priv->bridge_dev);
1039
1040 return ret;
1041 }
1042
1043 /**
1044 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1045 * @dev_priv: device private
1046 */
i915_driver_cleanup_mmio(struct drm_i915_private * dev_priv)1047 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1048 {
1049 intel_uncore_fini(dev_priv);
1050 i915_mmio_cleanup(dev_priv);
1051 pci_dev_put(dev_priv->bridge_dev);
1052 }
1053
intel_sanitize_options(struct drm_i915_private * dev_priv)1054 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1055 {
1056 /*
1057 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1058 * user's requested state against the hardware/driver capabilities. We
1059 * do this now so that we can print out any log messages once rather
1060 * than every time we check intel_enable_ppgtt().
1061 */
1062 i915_modparams.enable_ppgtt =
1063 intel_sanitize_enable_ppgtt(dev_priv,
1064 i915_modparams.enable_ppgtt);
1065 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1066
1067 intel_gvt_sanitize_options(dev_priv);
1068 }
1069
1070 /**
1071 * i915_driver_init_hw - setup state requiring device access
1072 * @dev_priv: device private
1073 *
1074 * Setup state that requires accessing the device, but doesn't require
1075 * exposing the driver via kernel internal or userspace interfaces.
1076 */
i915_driver_init_hw(struct drm_i915_private * dev_priv)1077 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1078 {
1079 struct pci_dev *pdev = dev_priv->drm.pdev;
1080 int ret;
1081
1082 if (i915_inject_load_failure())
1083 return -ENODEV;
1084
1085 intel_device_info_runtime_init(mkwrite_device_info(dev_priv));
1086
1087 intel_sanitize_options(dev_priv);
1088
1089 i915_perf_init(dev_priv);
1090
1091 ret = i915_ggtt_probe_hw(dev_priv);
1092 if (ret)
1093 goto err_perf;
1094
1095 /*
1096 * WARNING: Apparently we must kick fbdev drivers before vgacon,
1097 * otherwise the vga fbdev driver falls over.
1098 */
1099 ret = i915_kick_out_firmware_fb(dev_priv);
1100 if (ret) {
1101 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1102 goto err_ggtt;
1103 }
1104
1105 ret = i915_kick_out_vgacon(dev_priv);
1106 if (ret) {
1107 DRM_ERROR("failed to remove conflicting VGA console\n");
1108 goto err_ggtt;
1109 }
1110
1111 ret = i915_ggtt_init_hw(dev_priv);
1112 if (ret)
1113 goto err_ggtt;
1114
1115 ret = i915_ggtt_enable_hw(dev_priv);
1116 if (ret) {
1117 DRM_ERROR("failed to enable GGTT\n");
1118 goto err_ggtt;
1119 }
1120
1121 pci_set_master(pdev);
1122
1123 /*
1124 * We don't have a max segment size, so set it to the max so sg's
1125 * debugging layer doesn't complain
1126 */
1127 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1128
1129 /* overlay on gen2 is broken and can't address above 1G */
1130 if (IS_GEN2(dev_priv)) {
1131 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1132 if (ret) {
1133 DRM_ERROR("failed to set DMA mask\n");
1134
1135 goto err_ggtt;
1136 }
1137 }
1138
1139 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1140 * using 32bit addressing, overwriting memory if HWS is located
1141 * above 4GB.
1142 *
1143 * The documentation also mentions an issue with undefined
1144 * behaviour if any general state is accessed within a page above 4GB,
1145 * which also needs to be handled carefully.
1146 */
1147 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1148 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1149
1150 if (ret) {
1151 DRM_ERROR("failed to set DMA mask\n");
1152
1153 goto err_ggtt;
1154 }
1155 }
1156
1157 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1158 PM_QOS_DEFAULT_VALUE);
1159
1160 intel_uncore_sanitize(dev_priv);
1161
1162 i915_gem_load_init_fences(dev_priv);
1163
1164 /* On the 945G/GM, the chipset reports the MSI capability on the
1165 * integrated graphics even though the support isn't actually there
1166 * according to the published specs. It doesn't appear to function
1167 * correctly in testing on 945G.
1168 * This may be a side effect of MSI having been made available for PEG
1169 * and the registers being closely associated.
1170 *
1171 * According to chipset errata, on the 965GM, MSI interrupts may
1172 * be lost or delayed, and was defeatured. MSI interrupts seem to
1173 * get lost on g4x as well, and interrupt delivery seems to stay
1174 * properly dead afterwards. So we'll just disable them for all
1175 * pre-gen5 chipsets.
1176 *
1177 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1178 * interrupts even when in MSI mode. This results in spurious
1179 * interrupt warnings if the legacy irq no. is shared with another
1180 * device. The kernel then disables that interrupt source and so
1181 * prevents the other device from working properly.
1182 */
1183 if (INTEL_GEN(dev_priv) >= 5) {
1184 if (pci_enable_msi(pdev) < 0)
1185 DRM_DEBUG_DRIVER("can't enable MSI");
1186 }
1187
1188 ret = intel_gvt_init(dev_priv);
1189 if (ret)
1190 goto err_msi;
1191
1192 intel_opregion_setup(dev_priv);
1193
1194 return 0;
1195
1196 err_msi:
1197 if (pdev->msi_enabled)
1198 pci_disable_msi(pdev);
1199 pm_qos_remove_request(&dev_priv->pm_qos);
1200 err_ggtt:
1201 i915_ggtt_cleanup_hw(dev_priv);
1202 err_perf:
1203 i915_perf_fini(dev_priv);
1204 return ret;
1205 }
1206
1207 /**
1208 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1209 * @dev_priv: device private
1210 */
i915_driver_cleanup_hw(struct drm_i915_private * dev_priv)1211 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1212 {
1213 struct pci_dev *pdev = dev_priv->drm.pdev;
1214
1215 i915_perf_fini(dev_priv);
1216
1217 if (pdev->msi_enabled)
1218 pci_disable_msi(pdev);
1219
1220 pm_qos_remove_request(&dev_priv->pm_qos);
1221 i915_ggtt_cleanup_hw(dev_priv);
1222 }
1223
1224 /**
1225 * i915_driver_register - register the driver with the rest of the system
1226 * @dev_priv: device private
1227 *
1228 * Perform any steps necessary to make the driver available via kernel
1229 * internal or userspace interfaces.
1230 */
i915_driver_register(struct drm_i915_private * dev_priv)1231 static void i915_driver_register(struct drm_i915_private *dev_priv)
1232 {
1233 struct drm_device *dev = &dev_priv->drm;
1234
1235 i915_gem_shrinker_register(dev_priv);
1236 i915_pmu_register(dev_priv);
1237
1238 /*
1239 * Notify a valid surface after modesetting,
1240 * when running inside a VM.
1241 */
1242 if (intel_vgpu_active(dev_priv))
1243 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1244
1245 /* Reveal our presence to userspace */
1246 if (drm_dev_register(dev, 0) == 0) {
1247 i915_debugfs_register(dev_priv);
1248 i915_setup_sysfs(dev_priv);
1249
1250 /* Depends on sysfs having been initialized */
1251 i915_perf_register(dev_priv);
1252 } else
1253 DRM_ERROR("Failed to register driver for userspace access!\n");
1254
1255 if (INTEL_INFO(dev_priv)->num_pipes) {
1256 /* Must be done after probing outputs */
1257 intel_opregion_register(dev_priv);
1258 acpi_video_register();
1259 }
1260
1261 if (IS_GEN5(dev_priv))
1262 intel_gpu_ips_init(dev_priv);
1263
1264 intel_audio_init(dev_priv);
1265
1266 /*
1267 * Some ports require correctly set-up hpd registers for detection to
1268 * work properly (leading to ghost connected connector status), e.g. VGA
1269 * on gm45. Hence we can only set up the initial fbdev config after hpd
1270 * irqs are fully enabled. We do it last so that the async config
1271 * cannot run before the connectors are registered.
1272 */
1273 intel_fbdev_initial_config_async(dev);
1274
1275 /*
1276 * We need to coordinate the hotplugs with the asynchronous fbdev
1277 * configuration, for which we use the fbdev->async_cookie.
1278 */
1279 if (INTEL_INFO(dev_priv)->num_pipes)
1280 drm_kms_helper_poll_init(dev);
1281 }
1282
1283 /**
1284 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1285 * @dev_priv: device private
1286 */
i915_driver_unregister(struct drm_i915_private * dev_priv)1287 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1288 {
1289 intel_fbdev_unregister(dev_priv);
1290 intel_audio_deinit(dev_priv);
1291
1292 /*
1293 * After flushing the fbdev (incl. a late async config which will
1294 * have delayed queuing of a hotplug event), then flush the hotplug
1295 * events.
1296 */
1297 drm_kms_helper_poll_fini(&dev_priv->drm);
1298
1299 intel_gpu_ips_teardown();
1300 acpi_video_unregister();
1301 intel_opregion_unregister(dev_priv);
1302
1303 i915_perf_unregister(dev_priv);
1304 i915_pmu_unregister(dev_priv);
1305
1306 i915_teardown_sysfs(dev_priv);
1307 drm_dev_unregister(&dev_priv->drm);
1308
1309 i915_gem_shrinker_unregister(dev_priv);
1310 }
1311
i915_welcome_messages(struct drm_i915_private * dev_priv)1312 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1313 {
1314 if (drm_debug & DRM_UT_DRIVER) {
1315 struct drm_printer p = drm_debug_printer("i915 device info:");
1316
1317 intel_device_info_dump(&dev_priv->info, &p);
1318 intel_device_info_dump_runtime(&dev_priv->info, &p);
1319 }
1320
1321 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1322 DRM_INFO("DRM_I915_DEBUG enabled\n");
1323 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1324 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1325 }
1326
1327 /**
1328 * i915_driver_load - setup chip and create an initial config
1329 * @pdev: PCI device
1330 * @ent: matching PCI ID entry
1331 *
1332 * The driver load routine has to do several things:
1333 * - drive output discovery via intel_modeset_init()
1334 * - initialize the memory manager
1335 * - allocate initial config memory
1336 * - setup the DRM framebuffer with the allocated memory
1337 */
i915_driver_load(struct pci_dev * pdev,const struct pci_device_id * ent)1338 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1339 {
1340 const struct intel_device_info *match_info =
1341 (struct intel_device_info *)ent->driver_data;
1342 struct drm_i915_private *dev_priv;
1343 int ret;
1344
1345 /* Enable nuclear pageflip on ILK+ */
1346 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1347 driver.driver_features &= ~DRIVER_ATOMIC;
1348
1349 ret = -ENOMEM;
1350 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1351 if (dev_priv)
1352 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1353 if (ret) {
1354 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1355 goto out_free;
1356 }
1357
1358 dev_priv->drm.pdev = pdev;
1359 dev_priv->drm.dev_private = dev_priv;
1360
1361 ret = pci_enable_device(pdev);
1362 if (ret)
1363 goto out_fini;
1364
1365 pci_set_drvdata(pdev, &dev_priv->drm);
1366 /*
1367 * Disable the system suspend direct complete optimization, which can
1368 * leave the device suspended skipping the driver's suspend handlers
1369 * if the device was already runtime suspended. This is needed due to
1370 * the difference in our runtime and system suspend sequence and
1371 * becaue the HDA driver may require us to enable the audio power
1372 * domain during system suspend.
1373 */
1374 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1375
1376 ret = i915_driver_init_early(dev_priv, ent);
1377 if (ret < 0)
1378 goto out_pci_disable;
1379
1380 intel_runtime_pm_get(dev_priv);
1381
1382 ret = i915_driver_init_mmio(dev_priv);
1383 if (ret < 0)
1384 goto out_runtime_pm_put;
1385
1386 ret = i915_driver_init_hw(dev_priv);
1387 if (ret < 0)
1388 goto out_cleanup_mmio;
1389
1390 /*
1391 * TODO: move the vblank init and parts of modeset init steps into one
1392 * of the i915_driver_init_/i915_driver_register functions according
1393 * to the role/effect of the given init step.
1394 */
1395 if (INTEL_INFO(dev_priv)->num_pipes) {
1396 ret = drm_vblank_init(&dev_priv->drm,
1397 INTEL_INFO(dev_priv)->num_pipes);
1398 if (ret)
1399 goto out_cleanup_hw;
1400 }
1401
1402 ret = i915_load_modeset_init(&dev_priv->drm);
1403 if (ret < 0)
1404 goto out_cleanup_hw;
1405
1406 i915_driver_register(dev_priv);
1407
1408 intel_runtime_pm_enable(dev_priv);
1409
1410 intel_init_ipc(dev_priv);
1411
1412 intel_runtime_pm_put(dev_priv);
1413
1414 i915_welcome_messages(dev_priv);
1415
1416 return 0;
1417
1418 out_cleanup_hw:
1419 i915_driver_cleanup_hw(dev_priv);
1420 out_cleanup_mmio:
1421 i915_driver_cleanup_mmio(dev_priv);
1422 out_runtime_pm_put:
1423 intel_runtime_pm_put(dev_priv);
1424 i915_driver_cleanup_early(dev_priv);
1425 out_pci_disable:
1426 pci_disable_device(pdev);
1427 out_fini:
1428 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1429 drm_dev_fini(&dev_priv->drm);
1430 out_free:
1431 kfree(dev_priv);
1432 pci_set_drvdata(pdev, NULL);
1433 return ret;
1434 }
1435
i915_driver_unload(struct drm_device * dev)1436 void i915_driver_unload(struct drm_device *dev)
1437 {
1438 struct drm_i915_private *dev_priv = to_i915(dev);
1439 struct pci_dev *pdev = dev_priv->drm.pdev;
1440
1441 i915_driver_unregister(dev_priv);
1442
1443 if (i915_gem_suspend(dev_priv))
1444 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1445
1446 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1447
1448 drm_atomic_helper_shutdown(dev);
1449
1450 intel_gvt_cleanup(dev_priv);
1451
1452 intel_modeset_cleanup(dev);
1453
1454 intel_bios_cleanup(dev_priv);
1455
1456 vga_switcheroo_unregister_client(pdev);
1457 vga_client_register(pdev, NULL, NULL, NULL);
1458
1459 intel_csr_ucode_fini(dev_priv);
1460
1461 /* Free error state after interrupts are fully disabled. */
1462 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1463 i915_reset_error_state(dev_priv);
1464
1465 i915_gem_fini(dev_priv);
1466 intel_fbc_cleanup_cfb(dev_priv);
1467
1468 intel_power_domains_fini(dev_priv);
1469
1470 i915_driver_cleanup_hw(dev_priv);
1471 i915_driver_cleanup_mmio(dev_priv);
1472
1473 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1474 }
1475
i915_driver_release(struct drm_device * dev)1476 static void i915_driver_release(struct drm_device *dev)
1477 {
1478 struct drm_i915_private *dev_priv = to_i915(dev);
1479
1480 i915_driver_cleanup_early(dev_priv);
1481 drm_dev_fini(&dev_priv->drm);
1482
1483 kfree(dev_priv);
1484 }
1485
i915_driver_open(struct drm_device * dev,struct drm_file * file)1486 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1487 {
1488 struct drm_i915_private *i915 = to_i915(dev);
1489 int ret;
1490
1491 ret = i915_gem_open(i915, file);
1492 if (ret)
1493 return ret;
1494
1495 return 0;
1496 }
1497
1498 /**
1499 * i915_driver_lastclose - clean up after all DRM clients have exited
1500 * @dev: DRM device
1501 *
1502 * Take care of cleaning up after all DRM clients have exited. In the
1503 * mode setting case, we want to restore the kernel's initial mode (just
1504 * in case the last client left us in a bad state).
1505 *
1506 * Additionally, in the non-mode setting case, we'll tear down the GTT
1507 * and DMA structures, since the kernel won't be using them, and clea
1508 * up any GEM state.
1509 */
i915_driver_lastclose(struct drm_device * dev)1510 static void i915_driver_lastclose(struct drm_device *dev)
1511 {
1512 intel_fbdev_restore_mode(dev);
1513 vga_switcheroo_process_delayed_switch();
1514 }
1515
i915_driver_postclose(struct drm_device * dev,struct drm_file * file)1516 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1517 {
1518 struct drm_i915_file_private *file_priv = file->driver_priv;
1519
1520 mutex_lock(&dev->struct_mutex);
1521 i915_gem_context_close(file);
1522 i915_gem_release(dev, file);
1523 mutex_unlock(&dev->struct_mutex);
1524
1525 kfree(file_priv);
1526 }
1527
intel_suspend_encoders(struct drm_i915_private * dev_priv)1528 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1529 {
1530 struct drm_device *dev = &dev_priv->drm;
1531 struct intel_encoder *encoder;
1532
1533 drm_modeset_lock_all(dev);
1534 for_each_intel_encoder(dev, encoder)
1535 if (encoder->suspend)
1536 encoder->suspend(encoder);
1537 drm_modeset_unlock_all(dev);
1538 }
1539
1540 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1541 bool rpm_resume);
1542 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1543
suspend_to_idle(struct drm_i915_private * dev_priv)1544 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1545 {
1546 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1547 if (acpi_target_system_state() < ACPI_STATE_S3)
1548 return true;
1549 #endif
1550 return false;
1551 }
1552
i915_drm_prepare(struct drm_device * dev)1553 static int i915_drm_prepare(struct drm_device *dev)
1554 {
1555 struct drm_i915_private *i915 = to_i915(dev);
1556 int err;
1557
1558 /*
1559 * NB intel_display_suspend() may issue new requests after we've
1560 * ostensibly marked the GPU as ready-to-sleep here. We need to
1561 * split out that work and pull it forward so that after point,
1562 * the GPU is not woken again.
1563 */
1564 err = i915_gem_suspend(i915);
1565 if (err)
1566 dev_err(&i915->drm.pdev->dev,
1567 "GEM idle failed, suspend/resume might fail\n");
1568
1569 return err;
1570 }
1571
i915_drm_suspend(struct drm_device * dev)1572 static int i915_drm_suspend(struct drm_device *dev)
1573 {
1574 struct drm_i915_private *dev_priv = to_i915(dev);
1575 struct pci_dev *pdev = dev_priv->drm.pdev;
1576 pci_power_t opregion_target_state;
1577
1578 disable_rpm_wakeref_asserts(dev_priv);
1579
1580 /* We do a lot of poking in a lot of registers, make sure they work
1581 * properly. */
1582 intel_display_set_init_power(dev_priv, true);
1583
1584 drm_kms_helper_poll_disable(dev);
1585
1586 pci_save_state(pdev);
1587
1588 intel_display_suspend(dev);
1589
1590 intel_dp_mst_suspend(dev_priv);
1591
1592 intel_runtime_pm_disable_interrupts(dev_priv);
1593 intel_hpd_cancel_work(dev_priv);
1594
1595 intel_suspend_encoders(dev_priv);
1596
1597 intel_suspend_hw(dev_priv);
1598
1599 i915_gem_suspend_gtt_mappings(dev_priv);
1600
1601 i915_save_state(dev_priv);
1602
1603 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1604 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1605
1606 intel_opregion_unregister(dev_priv);
1607
1608 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1609
1610 dev_priv->suspend_count++;
1611
1612 intel_csr_ucode_suspend(dev_priv);
1613
1614 enable_rpm_wakeref_asserts(dev_priv);
1615
1616 return 0;
1617 }
1618
i915_drm_suspend_late(struct drm_device * dev,bool hibernation)1619 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1620 {
1621 struct drm_i915_private *dev_priv = to_i915(dev);
1622 struct pci_dev *pdev = dev_priv->drm.pdev;
1623 int ret;
1624
1625 disable_rpm_wakeref_asserts(dev_priv);
1626
1627 i915_gem_suspend_late(dev_priv);
1628
1629 intel_display_set_init_power(dev_priv, false);
1630 i915_rc6_ctx_wa_suspend(dev_priv);
1631 intel_uncore_suspend(dev_priv);
1632
1633 /*
1634 * In case of firmware assisted context save/restore don't manually
1635 * deinit the power domains. This also means the CSR/DMC firmware will
1636 * stay active, it will power down any HW resources as required and
1637 * also enable deeper system power states that would be blocked if the
1638 * firmware was inactive.
1639 */
1640 if (IS_GEN9_LP(dev_priv) || hibernation || !suspend_to_idle(dev_priv) ||
1641 dev_priv->csr.dmc_payload == NULL) {
1642 intel_power_domains_suspend(dev_priv);
1643 dev_priv->power_domains_suspended = true;
1644 }
1645
1646 ret = 0;
1647 if (IS_GEN9_LP(dev_priv))
1648 bxt_enable_dc9(dev_priv);
1649 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1650 hsw_enable_pc8(dev_priv);
1651 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1652 ret = vlv_suspend_complete(dev_priv);
1653
1654 if (ret) {
1655 DRM_ERROR("Suspend complete failed: %d\n", ret);
1656 if (dev_priv->power_domains_suspended) {
1657 intel_power_domains_init_hw(dev_priv, true);
1658 dev_priv->power_domains_suspended = false;
1659 }
1660
1661 goto out;
1662 }
1663
1664 pci_disable_device(pdev);
1665 /*
1666 * During hibernation on some platforms the BIOS may try to access
1667 * the device even though it's already in D3 and hang the machine. So
1668 * leave the device in D0 on those platforms and hope the BIOS will
1669 * power down the device properly. The issue was seen on multiple old
1670 * GENs with different BIOS vendors, so having an explicit blacklist
1671 * is inpractical; apply the workaround on everything pre GEN6. The
1672 * platforms where the issue was seen:
1673 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1674 * Fujitsu FSC S7110
1675 * Acer Aspire 1830T
1676 */
1677 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1678 pci_set_power_state(pdev, PCI_D3hot);
1679
1680 out:
1681 enable_rpm_wakeref_asserts(dev_priv);
1682
1683 return ret;
1684 }
1685
i915_suspend_switcheroo(struct drm_device * dev,pm_message_t state)1686 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1687 {
1688 int error;
1689
1690 if (!dev) {
1691 DRM_ERROR("dev: %p\n", dev);
1692 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1693 return -ENODEV;
1694 }
1695
1696 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1697 state.event != PM_EVENT_FREEZE))
1698 return -EINVAL;
1699
1700 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1701 return 0;
1702
1703 error = i915_drm_suspend(dev);
1704 if (error)
1705 return error;
1706
1707 return i915_drm_suspend_late(dev, false);
1708 }
1709
i915_drm_resume(struct drm_device * dev)1710 static int i915_drm_resume(struct drm_device *dev)
1711 {
1712 struct drm_i915_private *dev_priv = to_i915(dev);
1713 int ret;
1714
1715 disable_rpm_wakeref_asserts(dev_priv);
1716 intel_sanitize_gt_powersave(dev_priv);
1717
1718 i915_gem_sanitize(dev_priv);
1719
1720 ret = i915_ggtt_enable_hw(dev_priv);
1721 if (ret)
1722 DRM_ERROR("failed to re-enable GGTT\n");
1723
1724 intel_csr_ucode_resume(dev_priv);
1725
1726 i915_restore_state(dev_priv);
1727 intel_pps_unlock_regs_wa(dev_priv);
1728 intel_opregion_setup(dev_priv);
1729
1730 intel_init_pch_refclk(dev_priv);
1731
1732 /*
1733 * Interrupts have to be enabled before any batches are run. If not the
1734 * GPU will hang. i915_gem_init_hw() will initiate batches to
1735 * update/restore the context.
1736 *
1737 * drm_mode_config_reset() needs AUX interrupts.
1738 *
1739 * Modeset enabling in intel_modeset_init_hw() also needs working
1740 * interrupts.
1741 */
1742 intel_runtime_pm_enable_interrupts(dev_priv);
1743
1744 drm_mode_config_reset(dev);
1745
1746 i915_gem_resume(dev_priv);
1747
1748 intel_modeset_init_hw(dev);
1749 intel_init_clock_gating(dev_priv);
1750
1751 spin_lock_irq(&dev_priv->irq_lock);
1752 if (dev_priv->display.hpd_irq_setup)
1753 dev_priv->display.hpd_irq_setup(dev_priv);
1754 spin_unlock_irq(&dev_priv->irq_lock);
1755
1756 intel_dp_mst_resume(dev_priv);
1757
1758 intel_display_resume(dev);
1759
1760 drm_kms_helper_poll_enable(dev);
1761
1762 /*
1763 * ... but also need to make sure that hotplug processing
1764 * doesn't cause havoc. Like in the driver load code we don't
1765 * bother with the tiny race here where we might loose hotplug
1766 * notifications.
1767 * */
1768 intel_hpd_init(dev_priv);
1769
1770 intel_opregion_register(dev_priv);
1771
1772 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1773
1774 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1775
1776 enable_rpm_wakeref_asserts(dev_priv);
1777
1778 return 0;
1779 }
1780
i915_drm_resume_early(struct drm_device * dev)1781 static int i915_drm_resume_early(struct drm_device *dev)
1782 {
1783 struct drm_i915_private *dev_priv = to_i915(dev);
1784 struct pci_dev *pdev = dev_priv->drm.pdev;
1785 int ret;
1786
1787 /*
1788 * We have a resume ordering issue with the snd-hda driver also
1789 * requiring our device to be power up. Due to the lack of a
1790 * parent/child relationship we currently solve this with an early
1791 * resume hook.
1792 *
1793 * FIXME: This should be solved with a special hdmi sink device or
1794 * similar so that power domains can be employed.
1795 */
1796
1797 /*
1798 * Note that we need to set the power state explicitly, since we
1799 * powered off the device during freeze and the PCI core won't power
1800 * it back up for us during thaw. Powering off the device during
1801 * freeze is not a hard requirement though, and during the
1802 * suspend/resume phases the PCI core makes sure we get here with the
1803 * device powered on. So in case we change our freeze logic and keep
1804 * the device powered we can also remove the following set power state
1805 * call.
1806 */
1807 ret = pci_set_power_state(pdev, PCI_D0);
1808 if (ret) {
1809 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1810 goto out;
1811 }
1812
1813 /*
1814 * Note that pci_enable_device() first enables any parent bridge
1815 * device and only then sets the power state for this device. The
1816 * bridge enabling is a nop though, since bridge devices are resumed
1817 * first. The order of enabling power and enabling the device is
1818 * imposed by the PCI core as described above, so here we preserve the
1819 * same order for the freeze/thaw phases.
1820 *
1821 * TODO: eventually we should remove pci_disable_device() /
1822 * pci_enable_enable_device() from suspend/resume. Due to how they
1823 * depend on the device enable refcount we can't anyway depend on them
1824 * disabling/enabling the device.
1825 */
1826 if (pci_enable_device(pdev)) {
1827 ret = -EIO;
1828 goto out;
1829 }
1830
1831 pci_set_master(pdev);
1832
1833 disable_rpm_wakeref_asserts(dev_priv);
1834
1835 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1836 ret = vlv_resume_prepare(dev_priv, false);
1837 if (ret)
1838 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1839 ret);
1840
1841 intel_uncore_resume_early(dev_priv);
1842
1843 if (IS_GEN9_LP(dev_priv)) {
1844 gen9_sanitize_dc_state(dev_priv);
1845 bxt_disable_dc9(dev_priv);
1846 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1847 hsw_disable_pc8(dev_priv);
1848 }
1849
1850 intel_uncore_sanitize(dev_priv);
1851
1852 if (dev_priv->power_domains_suspended)
1853 intel_power_domains_init_hw(dev_priv, true);
1854 else
1855 intel_display_set_init_power(dev_priv, true);
1856
1857 i915_rc6_ctx_wa_resume(dev_priv);
1858
1859 intel_engines_sanitize(dev_priv);
1860
1861 enable_rpm_wakeref_asserts(dev_priv);
1862
1863 out:
1864 dev_priv->power_domains_suspended = false;
1865
1866 return ret;
1867 }
1868
i915_resume_switcheroo(struct drm_device * dev)1869 static int i915_resume_switcheroo(struct drm_device *dev)
1870 {
1871 int ret;
1872
1873 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1874 return 0;
1875
1876 ret = i915_drm_resume_early(dev);
1877 if (ret)
1878 return ret;
1879
1880 return i915_drm_resume(dev);
1881 }
1882
1883 /**
1884 * i915_reset - reset chip after a hang
1885 * @i915: #drm_i915_private to reset
1886 * @stalled_mask: mask of the stalled engines with the guilty requests
1887 * @reason: user error message for why we are resetting
1888 *
1889 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1890 * on failure.
1891 *
1892 * Caller must hold the struct_mutex.
1893 *
1894 * Procedure is fairly simple:
1895 * - reset the chip using the reset reg
1896 * - re-init context state
1897 * - re-init hardware status page
1898 * - re-init ring buffer
1899 * - re-init interrupt state
1900 * - re-init display
1901 */
i915_reset(struct drm_i915_private * i915,unsigned int stalled_mask,const char * reason)1902 void i915_reset(struct drm_i915_private *i915,
1903 unsigned int stalled_mask,
1904 const char *reason)
1905 {
1906 struct i915_gpu_error *error = &i915->gpu_error;
1907 int ret;
1908 int i;
1909
1910 GEM_TRACE("flags=%lx\n", error->flags);
1911
1912 might_sleep();
1913 lockdep_assert_held(&i915->drm.struct_mutex);
1914 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1915
1916 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1917 return;
1918
1919 /* Clear any previous failed attempts at recovery. Time to try again. */
1920 if (!i915_gem_unset_wedged(i915))
1921 goto wakeup;
1922
1923 if (reason)
1924 dev_notice(i915->drm.dev, "Resetting chip for %s\n", reason);
1925 error->reset_count++;
1926
1927 disable_irq(i915->drm.irq);
1928 ret = i915_gem_reset_prepare(i915);
1929 if (ret) {
1930 dev_err(i915->drm.dev, "GPU recovery failed\n");
1931 goto taint;
1932 }
1933
1934 if (!intel_has_gpu_reset(i915)) {
1935 if (i915_modparams.reset)
1936 dev_err(i915->drm.dev, "GPU reset not supported\n");
1937 else
1938 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1939 goto error;
1940 }
1941
1942 for (i = 0; i < 3; i++) {
1943 ret = intel_gpu_reset(i915, ALL_ENGINES);
1944 if (ret == 0)
1945 break;
1946
1947 msleep(100);
1948 }
1949 if (ret) {
1950 dev_err(i915->drm.dev, "Failed to reset chip\n");
1951 goto taint;
1952 }
1953
1954 /* Ok, now get things going again... */
1955
1956 /*
1957 * Everything depends on having the GTT running, so we need to start
1958 * there.
1959 */
1960 ret = i915_ggtt_enable_hw(i915);
1961 if (ret) {
1962 DRM_ERROR("Failed to re-enable GGTT following reset (%d)\n",
1963 ret);
1964 goto error;
1965 }
1966
1967 i915_gem_reset(i915, stalled_mask);
1968 intel_overlay_reset(i915);
1969
1970 /*
1971 * Next we need to restore the context, but we don't use those
1972 * yet either...
1973 *
1974 * Ring buffer needs to be re-initialized in the KMS case, or if X
1975 * was running at the time of the reset (i.e. we weren't VT
1976 * switched away).
1977 */
1978 ret = i915_gem_init_hw(i915);
1979 if (ret) {
1980 DRM_ERROR("Failed to initialise HW following reset (%d)\n",
1981 ret);
1982 goto error;
1983 }
1984
1985 i915_queue_hangcheck(i915);
1986
1987 finish:
1988 i915_gem_reset_finish(i915);
1989 enable_irq(i915->drm.irq);
1990
1991 wakeup:
1992 clear_bit(I915_RESET_HANDOFF, &error->flags);
1993 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1994 return;
1995
1996 taint:
1997 /*
1998 * History tells us that if we cannot reset the GPU now, we
1999 * never will. This then impacts everything that is run
2000 * subsequently. On failing the reset, we mark the driver
2001 * as wedged, preventing further execution on the GPU.
2002 * We also want to go one step further and add a taint to the
2003 * kernel so that any subsequent faults can be traced back to
2004 * this failure. This is important for CI, where if the
2005 * GPU/driver fails we would like to reboot and restart testing
2006 * rather than continue on into oblivion. For everyone else,
2007 * the system should still plod along, but they have been warned!
2008 */
2009 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2010 error:
2011 i915_gem_set_wedged(i915);
2012 i915_retire_requests(i915);
2013 goto finish;
2014 }
2015
intel_gt_reset_engine(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2016 static inline int intel_gt_reset_engine(struct drm_i915_private *dev_priv,
2017 struct intel_engine_cs *engine)
2018 {
2019 return intel_gpu_reset(dev_priv, intel_engine_flag(engine));
2020 }
2021
2022 /**
2023 * i915_reset_engine - reset GPU engine to recover from a hang
2024 * @engine: engine to reset
2025 * @msg: reason for GPU reset; or NULL for no dev_notice()
2026 *
2027 * Reset a specific GPU engine. Useful if a hang is detected.
2028 * Returns zero on successful reset or otherwise an error code.
2029 *
2030 * Procedure is:
2031 * - identifies the request that caused the hang and it is dropped
2032 * - reset engine (which will force the engine to idle)
2033 * - re-init/configure engine
2034 */
i915_reset_engine(struct intel_engine_cs * engine,const char * msg)2035 int i915_reset_engine(struct intel_engine_cs *engine, const char *msg)
2036 {
2037 struct i915_gpu_error *error = &engine->i915->gpu_error;
2038 struct i915_request *active_request;
2039 int ret;
2040
2041 GEM_TRACE("%s flags=%lx\n", engine->name, error->flags);
2042 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
2043
2044 active_request = i915_gem_reset_prepare_engine(engine);
2045 if (IS_ERR_OR_NULL(active_request)) {
2046 /* Either the previous reset failed, or we pardon the reset. */
2047 ret = PTR_ERR(active_request);
2048 goto out;
2049 }
2050
2051 if (msg)
2052 dev_notice(engine->i915->drm.dev,
2053 "Resetting %s for %s\n", engine->name, msg);
2054 error->reset_engine_count[engine->id]++;
2055
2056 if (!engine->i915->guc.execbuf_client)
2057 ret = intel_gt_reset_engine(engine->i915, engine);
2058 else
2059 ret = intel_guc_reset_engine(&engine->i915->guc, engine);
2060 if (ret) {
2061 /* If we fail here, we expect to fallback to a global reset */
2062 DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
2063 engine->i915->guc.execbuf_client ? "GuC " : "",
2064 engine->name, ret);
2065 goto out;
2066 }
2067
2068 /*
2069 * The request that caused the hang is stuck on elsp, we know the
2070 * active request and can drop it, adjust head to skip the offending
2071 * request to resume executing remaining requests in the queue.
2072 */
2073 i915_gem_reset_engine(engine, active_request, true);
2074
2075 /*
2076 * The engine and its registers (and workarounds in case of render)
2077 * have been reset to their default values. Follow the init_ring
2078 * process to program RING_MODE, HWSP and re-enable submission.
2079 */
2080 ret = engine->init_hw(engine);
2081 if (ret)
2082 goto out;
2083
2084 out:
2085 i915_gem_reset_finish_engine(engine);
2086 return ret;
2087 }
2088
i915_pm_prepare(struct device * kdev)2089 static int i915_pm_prepare(struct device *kdev)
2090 {
2091 struct pci_dev *pdev = to_pci_dev(kdev);
2092 struct drm_device *dev = pci_get_drvdata(pdev);
2093
2094 if (!dev) {
2095 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2096 return -ENODEV;
2097 }
2098
2099 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2100 return 0;
2101
2102 return i915_drm_prepare(dev);
2103 }
2104
i915_pm_suspend(struct device * kdev)2105 static int i915_pm_suspend(struct device *kdev)
2106 {
2107 struct pci_dev *pdev = to_pci_dev(kdev);
2108 struct drm_device *dev = pci_get_drvdata(pdev);
2109
2110 if (!dev) {
2111 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2112 return -ENODEV;
2113 }
2114
2115 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2116 return 0;
2117
2118 return i915_drm_suspend(dev);
2119 }
2120
i915_pm_suspend_late(struct device * kdev)2121 static int i915_pm_suspend_late(struct device *kdev)
2122 {
2123 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2124
2125 /*
2126 * We have a suspend ordering issue with the snd-hda driver also
2127 * requiring our device to be power up. Due to the lack of a
2128 * parent/child relationship we currently solve this with an late
2129 * suspend hook.
2130 *
2131 * FIXME: This should be solved with a special hdmi sink device or
2132 * similar so that power domains can be employed.
2133 */
2134 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2135 return 0;
2136
2137 return i915_drm_suspend_late(dev, false);
2138 }
2139
i915_pm_poweroff_late(struct device * kdev)2140 static int i915_pm_poweroff_late(struct device *kdev)
2141 {
2142 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2143
2144 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2145 return 0;
2146
2147 return i915_drm_suspend_late(dev, true);
2148 }
2149
i915_pm_resume_early(struct device * kdev)2150 static int i915_pm_resume_early(struct device *kdev)
2151 {
2152 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2153
2154 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2155 return 0;
2156
2157 return i915_drm_resume_early(dev);
2158 }
2159
i915_pm_resume(struct device * kdev)2160 static int i915_pm_resume(struct device *kdev)
2161 {
2162 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2163
2164 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2165 return 0;
2166
2167 return i915_drm_resume(dev);
2168 }
2169
2170 /* freeze: before creating the hibernation_image */
i915_pm_freeze(struct device * kdev)2171 static int i915_pm_freeze(struct device *kdev)
2172 {
2173 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2174 int ret;
2175
2176 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2177 ret = i915_drm_suspend(dev);
2178 if (ret)
2179 return ret;
2180 }
2181
2182 ret = i915_gem_freeze(kdev_to_i915(kdev));
2183 if (ret)
2184 return ret;
2185
2186 return 0;
2187 }
2188
i915_pm_freeze_late(struct device * kdev)2189 static int i915_pm_freeze_late(struct device *kdev)
2190 {
2191 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2192 int ret;
2193
2194 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2195 ret = i915_drm_suspend_late(dev, true);
2196 if (ret)
2197 return ret;
2198 }
2199
2200 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2201 if (ret)
2202 return ret;
2203
2204 return 0;
2205 }
2206
2207 /* thaw: called after creating the hibernation image, but before turning off. */
i915_pm_thaw_early(struct device * kdev)2208 static int i915_pm_thaw_early(struct device *kdev)
2209 {
2210 return i915_pm_resume_early(kdev);
2211 }
2212
i915_pm_thaw(struct device * kdev)2213 static int i915_pm_thaw(struct device *kdev)
2214 {
2215 return i915_pm_resume(kdev);
2216 }
2217
2218 /* restore: called after loading the hibernation image. */
i915_pm_restore_early(struct device * kdev)2219 static int i915_pm_restore_early(struct device *kdev)
2220 {
2221 return i915_pm_resume_early(kdev);
2222 }
2223
i915_pm_restore(struct device * kdev)2224 static int i915_pm_restore(struct device *kdev)
2225 {
2226 return i915_pm_resume(kdev);
2227 }
2228
2229 /*
2230 * Save all Gunit registers that may be lost after a D3 and a subsequent
2231 * S0i[R123] transition. The list of registers needing a save/restore is
2232 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2233 * registers in the following way:
2234 * - Driver: saved/restored by the driver
2235 * - Punit : saved/restored by the Punit firmware
2236 * - No, w/o marking: no need to save/restore, since the register is R/O or
2237 * used internally by the HW in a way that doesn't depend
2238 * keeping the content across a suspend/resume.
2239 * - Debug : used for debugging
2240 *
2241 * We save/restore all registers marked with 'Driver', with the following
2242 * exceptions:
2243 * - Registers out of use, including also registers marked with 'Debug'.
2244 * These have no effect on the driver's operation, so we don't save/restore
2245 * them to reduce the overhead.
2246 * - Registers that are fully setup by an initialization function called from
2247 * the resume path. For example many clock gating and RPS/RC6 registers.
2248 * - Registers that provide the right functionality with their reset defaults.
2249 *
2250 * TODO: Except for registers that based on the above 3 criteria can be safely
2251 * ignored, we save/restore all others, practically treating the HW context as
2252 * a black-box for the driver. Further investigation is needed to reduce the
2253 * saved/restored registers even further, by following the same 3 criteria.
2254 */
vlv_save_gunit_s0ix_state(struct drm_i915_private * dev_priv)2255 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2256 {
2257 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2258 int i;
2259
2260 /* GAM 0x4000-0x4770 */
2261 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2262 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2263 s->arb_mode = I915_READ(ARB_MODE);
2264 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2265 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2266
2267 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2268 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2269
2270 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2271 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2272
2273 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2274 s->ecochk = I915_READ(GAM_ECOCHK);
2275 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2276 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2277
2278 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2279
2280 /* MBC 0x9024-0x91D0, 0x8500 */
2281 s->g3dctl = I915_READ(VLV_G3DCTL);
2282 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2283 s->mbctl = I915_READ(GEN6_MBCTL);
2284
2285 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2286 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2287 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2288 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2289 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2290 s->rstctl = I915_READ(GEN6_RSTCTL);
2291 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2292
2293 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2294 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2295 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2296 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2297 s->ecobus = I915_READ(ECOBUS);
2298 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2299 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2300 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2301 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2302 s->rcedata = I915_READ(VLV_RCEDATA);
2303 s->spare2gh = I915_READ(VLV_SPAREG2H);
2304
2305 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2306 s->gt_imr = I915_READ(GTIMR);
2307 s->gt_ier = I915_READ(GTIER);
2308 s->pm_imr = I915_READ(GEN6_PMIMR);
2309 s->pm_ier = I915_READ(GEN6_PMIER);
2310
2311 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2312 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2313
2314 /* GT SA CZ domain, 0x100000-0x138124 */
2315 s->tilectl = I915_READ(TILECTL);
2316 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2317 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2318 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2319 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2320
2321 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2322 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2323 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2324 s->pcbr = I915_READ(VLV_PCBR);
2325 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2326
2327 /*
2328 * Not saving any of:
2329 * DFT, 0x9800-0x9EC0
2330 * SARB, 0xB000-0xB1FC
2331 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2332 * PCI CFG
2333 */
2334 }
2335
vlv_restore_gunit_s0ix_state(struct drm_i915_private * dev_priv)2336 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2337 {
2338 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2339 u32 val;
2340 int i;
2341
2342 /* GAM 0x4000-0x4770 */
2343 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2344 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2345 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2346 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2347 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2348
2349 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2350 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2351
2352 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2353 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2354
2355 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2356 I915_WRITE(GAM_ECOCHK, s->ecochk);
2357 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2358 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2359
2360 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2361
2362 /* MBC 0x9024-0x91D0, 0x8500 */
2363 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2364 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2365 I915_WRITE(GEN6_MBCTL, s->mbctl);
2366
2367 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2368 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2369 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2370 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2371 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2372 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2373 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2374
2375 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2376 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2377 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2378 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2379 I915_WRITE(ECOBUS, s->ecobus);
2380 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2381 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2382 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2383 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2384 I915_WRITE(VLV_RCEDATA, s->rcedata);
2385 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2386
2387 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2388 I915_WRITE(GTIMR, s->gt_imr);
2389 I915_WRITE(GTIER, s->gt_ier);
2390 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2391 I915_WRITE(GEN6_PMIER, s->pm_ier);
2392
2393 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2394 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2395
2396 /* GT SA CZ domain, 0x100000-0x138124 */
2397 I915_WRITE(TILECTL, s->tilectl);
2398 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2399 /*
2400 * Preserve the GT allow wake and GFX force clock bit, they are not
2401 * be restored, as they are used to control the s0ix suspend/resume
2402 * sequence by the caller.
2403 */
2404 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2405 val &= VLV_GTLC_ALLOWWAKEREQ;
2406 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2407 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2408
2409 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2410 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2411 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2412 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2413
2414 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2415
2416 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2417 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2418 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2419 I915_WRITE(VLV_PCBR, s->pcbr);
2420 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2421 }
2422
vlv_wait_for_pw_status(struct drm_i915_private * dev_priv,u32 mask,u32 val)2423 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2424 u32 mask, u32 val)
2425 {
2426 /* The HW does not like us polling for PW_STATUS frequently, so
2427 * use the sleeping loop rather than risk the busy spin within
2428 * intel_wait_for_register().
2429 *
2430 * Transitioning between RC6 states should be at most 2ms (see
2431 * valleyview_enable_rps) so use a 3ms timeout.
2432 */
2433 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2434 3);
2435 }
2436
vlv_force_gfx_clock(struct drm_i915_private * dev_priv,bool force_on)2437 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2438 {
2439 u32 val;
2440 int err;
2441
2442 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2443 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2444 if (force_on)
2445 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2446 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2447
2448 if (!force_on)
2449 return 0;
2450
2451 err = intel_wait_for_register(dev_priv,
2452 VLV_GTLC_SURVIVABILITY_REG,
2453 VLV_GFX_CLK_STATUS_BIT,
2454 VLV_GFX_CLK_STATUS_BIT,
2455 20);
2456 if (err)
2457 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2458 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2459
2460 return err;
2461 }
2462
vlv_allow_gt_wake(struct drm_i915_private * dev_priv,bool allow)2463 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2464 {
2465 u32 mask;
2466 u32 val;
2467 int err;
2468
2469 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2470 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2471 if (allow)
2472 val |= VLV_GTLC_ALLOWWAKEREQ;
2473 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2474 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2475
2476 mask = VLV_GTLC_ALLOWWAKEACK;
2477 val = allow ? mask : 0;
2478
2479 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2480 if (err)
2481 DRM_ERROR("timeout disabling GT waking\n");
2482
2483 return err;
2484 }
2485
vlv_wait_for_gt_wells(struct drm_i915_private * dev_priv,bool wait_for_on)2486 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2487 bool wait_for_on)
2488 {
2489 u32 mask;
2490 u32 val;
2491
2492 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2493 val = wait_for_on ? mask : 0;
2494
2495 /*
2496 * RC6 transitioning can be delayed up to 2 msec (see
2497 * valleyview_enable_rps), use 3 msec for safety.
2498 *
2499 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2500 * reset and we are trying to force the machine to sleep.
2501 */
2502 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2503 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2504 onoff(wait_for_on));
2505 }
2506
vlv_check_no_gt_access(struct drm_i915_private * dev_priv)2507 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2508 {
2509 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2510 return;
2511
2512 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2513 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2514 }
2515
vlv_suspend_complete(struct drm_i915_private * dev_priv)2516 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2517 {
2518 u32 mask;
2519 int err;
2520
2521 /*
2522 * Bspec defines the following GT well on flags as debug only, so
2523 * don't treat them as hard failures.
2524 */
2525 vlv_wait_for_gt_wells(dev_priv, false);
2526
2527 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2528 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2529
2530 vlv_check_no_gt_access(dev_priv);
2531
2532 err = vlv_force_gfx_clock(dev_priv, true);
2533 if (err)
2534 goto err1;
2535
2536 err = vlv_allow_gt_wake(dev_priv, false);
2537 if (err)
2538 goto err2;
2539
2540 if (!IS_CHERRYVIEW(dev_priv))
2541 vlv_save_gunit_s0ix_state(dev_priv);
2542
2543 err = vlv_force_gfx_clock(dev_priv, false);
2544 if (err)
2545 goto err2;
2546
2547 return 0;
2548
2549 err2:
2550 /* For safety always re-enable waking and disable gfx clock forcing */
2551 vlv_allow_gt_wake(dev_priv, true);
2552 err1:
2553 vlv_force_gfx_clock(dev_priv, false);
2554
2555 return err;
2556 }
2557
vlv_resume_prepare(struct drm_i915_private * dev_priv,bool rpm_resume)2558 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2559 bool rpm_resume)
2560 {
2561 int err;
2562 int ret;
2563
2564 /*
2565 * If any of the steps fail just try to continue, that's the best we
2566 * can do at this point. Return the first error code (which will also
2567 * leave RPM permanently disabled).
2568 */
2569 ret = vlv_force_gfx_clock(dev_priv, true);
2570
2571 if (!IS_CHERRYVIEW(dev_priv))
2572 vlv_restore_gunit_s0ix_state(dev_priv);
2573
2574 err = vlv_allow_gt_wake(dev_priv, true);
2575 if (!ret)
2576 ret = err;
2577
2578 err = vlv_force_gfx_clock(dev_priv, false);
2579 if (!ret)
2580 ret = err;
2581
2582 vlv_check_no_gt_access(dev_priv);
2583
2584 if (rpm_resume)
2585 intel_init_clock_gating(dev_priv);
2586
2587 return ret;
2588 }
2589
intel_runtime_suspend(struct device * kdev)2590 static int intel_runtime_suspend(struct device *kdev)
2591 {
2592 struct pci_dev *pdev = to_pci_dev(kdev);
2593 struct drm_device *dev = pci_get_drvdata(pdev);
2594 struct drm_i915_private *dev_priv = to_i915(dev);
2595 int ret;
2596
2597 if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2598 return -ENODEV;
2599
2600 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2601 return -ENODEV;
2602
2603 DRM_DEBUG_KMS("Suspending device\n");
2604
2605 disable_rpm_wakeref_asserts(dev_priv);
2606
2607 /*
2608 * We are safe here against re-faults, since the fault handler takes
2609 * an RPM reference.
2610 */
2611 i915_gem_runtime_suspend(dev_priv);
2612
2613 intel_uc_suspend(dev_priv);
2614
2615 intel_runtime_pm_disable_interrupts(dev_priv);
2616
2617 intel_uncore_suspend(dev_priv);
2618
2619 ret = 0;
2620 if (IS_GEN9_LP(dev_priv)) {
2621 bxt_display_core_uninit(dev_priv);
2622 bxt_enable_dc9(dev_priv);
2623 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2624 hsw_enable_pc8(dev_priv);
2625 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2626 ret = vlv_suspend_complete(dev_priv);
2627 }
2628
2629 if (ret) {
2630 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2631 intel_uncore_runtime_resume(dev_priv);
2632
2633 intel_runtime_pm_enable_interrupts(dev_priv);
2634
2635 intel_uc_resume(dev_priv);
2636
2637 i915_gem_init_swizzling(dev_priv);
2638 i915_gem_restore_fences(dev_priv);
2639
2640 enable_rpm_wakeref_asserts(dev_priv);
2641
2642 return ret;
2643 }
2644
2645 enable_rpm_wakeref_asserts(dev_priv);
2646 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2647
2648 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2649 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2650
2651 dev_priv->runtime_pm.suspended = true;
2652
2653 /*
2654 * FIXME: We really should find a document that references the arguments
2655 * used below!
2656 */
2657 if (IS_BROADWELL(dev_priv)) {
2658 /*
2659 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2660 * being detected, and the call we do at intel_runtime_resume()
2661 * won't be able to restore them. Since PCI_D3hot matches the
2662 * actual specification and appears to be working, use it.
2663 */
2664 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2665 } else {
2666 /*
2667 * current versions of firmware which depend on this opregion
2668 * notification have repurposed the D1 definition to mean
2669 * "runtime suspended" vs. what you would normally expect (D3)
2670 * to distinguish it from notifications that might be sent via
2671 * the suspend path.
2672 */
2673 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2674 }
2675
2676 assert_forcewakes_inactive(dev_priv);
2677
2678 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2679 intel_hpd_poll_init(dev_priv);
2680
2681 DRM_DEBUG_KMS("Device suspended\n");
2682 return 0;
2683 }
2684
intel_runtime_resume(struct device * kdev)2685 static int intel_runtime_resume(struct device *kdev)
2686 {
2687 struct pci_dev *pdev = to_pci_dev(kdev);
2688 struct drm_device *dev = pci_get_drvdata(pdev);
2689 struct drm_i915_private *dev_priv = to_i915(dev);
2690 int ret = 0;
2691
2692 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2693 return -ENODEV;
2694
2695 DRM_DEBUG_KMS("Resuming device\n");
2696
2697 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2698 disable_rpm_wakeref_asserts(dev_priv);
2699
2700 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2701 dev_priv->runtime_pm.suspended = false;
2702 if (intel_uncore_unclaimed_mmio(dev_priv))
2703 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2704
2705 if (IS_GEN9_LP(dev_priv)) {
2706 bxt_disable_dc9(dev_priv);
2707 bxt_display_core_init(dev_priv, true);
2708 if (dev_priv->csr.dmc_payload &&
2709 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2710 gen9_enable_dc5(dev_priv);
2711 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2712 hsw_disable_pc8(dev_priv);
2713 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2714 ret = vlv_resume_prepare(dev_priv, true);
2715 }
2716
2717 intel_uncore_runtime_resume(dev_priv);
2718
2719 intel_runtime_pm_enable_interrupts(dev_priv);
2720
2721 intel_uc_resume(dev_priv);
2722
2723 /*
2724 * No point of rolling back things in case of an error, as the best
2725 * we can do is to hope that things will still work (and disable RPM).
2726 */
2727 i915_gem_init_swizzling(dev_priv);
2728 i915_gem_restore_fences(dev_priv);
2729
2730 /*
2731 * On VLV/CHV display interrupts are part of the display
2732 * power well, so hpd is reinitialized from there. For
2733 * everyone else do it here.
2734 */
2735 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2736 intel_hpd_init(dev_priv);
2737
2738 intel_enable_ipc(dev_priv);
2739
2740 enable_rpm_wakeref_asserts(dev_priv);
2741
2742 if (ret)
2743 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2744 else
2745 DRM_DEBUG_KMS("Device resumed\n");
2746
2747 return ret;
2748 }
2749
2750 const struct dev_pm_ops i915_pm_ops = {
2751 /*
2752 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2753 * PMSG_RESUME]
2754 */
2755 .prepare = i915_pm_prepare,
2756 .suspend = i915_pm_suspend,
2757 .suspend_late = i915_pm_suspend_late,
2758 .resume_early = i915_pm_resume_early,
2759 .resume = i915_pm_resume,
2760
2761 /*
2762 * S4 event handlers
2763 * @freeze, @freeze_late : called (1) before creating the
2764 * hibernation image [PMSG_FREEZE] and
2765 * (2) after rebooting, before restoring
2766 * the image [PMSG_QUIESCE]
2767 * @thaw, @thaw_early : called (1) after creating the hibernation
2768 * image, before writing it [PMSG_THAW]
2769 * and (2) after failing to create or
2770 * restore the image [PMSG_RECOVER]
2771 * @poweroff, @poweroff_late: called after writing the hibernation
2772 * image, before rebooting [PMSG_HIBERNATE]
2773 * @restore, @restore_early : called after rebooting and restoring the
2774 * hibernation image [PMSG_RESTORE]
2775 */
2776 .freeze = i915_pm_freeze,
2777 .freeze_late = i915_pm_freeze_late,
2778 .thaw_early = i915_pm_thaw_early,
2779 .thaw = i915_pm_thaw,
2780 .poweroff = i915_pm_suspend,
2781 .poweroff_late = i915_pm_poweroff_late,
2782 .restore_early = i915_pm_restore_early,
2783 .restore = i915_pm_restore,
2784
2785 /* S0ix (via runtime suspend) event handlers */
2786 .runtime_suspend = intel_runtime_suspend,
2787 .runtime_resume = intel_runtime_resume,
2788 };
2789
2790 static const struct vm_operations_struct i915_gem_vm_ops = {
2791 .fault = i915_gem_fault,
2792 .open = drm_gem_vm_open,
2793 .close = drm_gem_vm_close,
2794 };
2795
2796 static const struct file_operations i915_driver_fops = {
2797 .owner = THIS_MODULE,
2798 .open = drm_open,
2799 .release = drm_release,
2800 .unlocked_ioctl = drm_ioctl,
2801 .mmap = drm_gem_mmap,
2802 .poll = drm_poll,
2803 .read = drm_read,
2804 .compat_ioctl = i915_compat_ioctl,
2805 .llseek = noop_llseek,
2806 };
2807
2808 static int
i915_gem_reject_pin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2809 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2810 struct drm_file *file)
2811 {
2812 return -ENODEV;
2813 }
2814
2815 static const struct drm_ioctl_desc i915_ioctls[] = {
2816 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2817 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2818 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2819 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2820 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2821 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2822 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2823 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2824 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2825 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2826 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2827 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2828 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2829 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2830 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2831 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2832 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2833 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2834 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2835 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2836 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2837 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2838 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2839 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2840 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2841 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2842 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2843 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2844 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2845 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2846 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2847 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2848 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2849 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2850 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2851 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2852 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2853 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2854 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2855 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2856 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2857 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2858 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2859 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2860 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2861 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2862 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2863 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2864 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2865 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2866 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2867 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2868 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2869 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2870 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2871 DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2872 };
2873
2874 static struct drm_driver driver = {
2875 /* Don't use MTRRs here; the Xserver or userspace app should
2876 * deal with them for Intel hardware.
2877 */
2878 .driver_features =
2879 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2880 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2881 .release = i915_driver_release,
2882 .open = i915_driver_open,
2883 .lastclose = i915_driver_lastclose,
2884 .postclose = i915_driver_postclose,
2885
2886 .gem_close_object = i915_gem_close_object,
2887 .gem_free_object_unlocked = i915_gem_free_object,
2888 .gem_vm_ops = &i915_gem_vm_ops,
2889
2890 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2891 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2892 .gem_prime_export = i915_gem_prime_export,
2893 .gem_prime_import = i915_gem_prime_import,
2894
2895 .dumb_create = i915_gem_dumb_create,
2896 .dumb_map_offset = i915_gem_mmap_gtt,
2897 .ioctls = i915_ioctls,
2898 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2899 .fops = &i915_driver_fops,
2900 .name = DRIVER_NAME,
2901 .desc = DRIVER_DESC,
2902 .date = DRIVER_DATE,
2903 .major = DRIVER_MAJOR,
2904 .minor = DRIVER_MINOR,
2905 .patchlevel = DRIVER_PATCHLEVEL,
2906 };
2907
2908 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2909 #include "selftests/mock_drm.c"
2910 #endif
2911