• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43 
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48 
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_pmu.h"
52 #include "i915_query.h"
53 #include "i915_vgpu.h"
54 #include "intel_drv.h"
55 #include "intel_uc.h"
56 
57 static struct drm_driver driver;
58 
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
60 static unsigned int i915_load_fail_count;
61 
__i915_inject_load_failure(const char * func,int line)62 bool __i915_inject_load_failure(const char *func, int line)
63 {
64 	if (i915_load_fail_count >= i915_modparams.inject_load_failure)
65 		return false;
66 
67 	if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
68 		DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
69 			 i915_modparams.inject_load_failure, func, line);
70 		i915_modparams.inject_load_failure = 0;
71 		return true;
72 	}
73 
74 	return false;
75 }
76 
i915_error_injected(void)77 bool i915_error_injected(void)
78 {
79 	return i915_load_fail_count && !i915_modparams.inject_load_failure;
80 }
81 
82 #endif
83 
84 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
85 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
86 		    "providing the dmesg log by booting with drm.debug=0xf"
87 
88 void
__i915_printk(struct drm_i915_private * dev_priv,const char * level,const char * fmt,...)89 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
90 	      const char *fmt, ...)
91 {
92 	static bool shown_bug_once;
93 	struct device *kdev = dev_priv->drm.dev;
94 	bool is_error = level[1] <= KERN_ERR[1];
95 	bool is_debug = level[1] == KERN_DEBUG[1];
96 	struct va_format vaf;
97 	va_list args;
98 
99 	if (is_debug && !(drm_debug & DRM_UT_DRIVER))
100 		return;
101 
102 	va_start(args, fmt);
103 
104 	vaf.fmt = fmt;
105 	vaf.va = &args;
106 
107 	if (is_error)
108 		dev_printk(level, kdev, "%pV", &vaf);
109 	else
110 		dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
111 			   __builtin_return_address(0), &vaf);
112 
113 	va_end(args);
114 
115 	if (is_error && !shown_bug_once) {
116 		/*
117 		 * Ask the user to file a bug report for the error, except
118 		 * if they may have caused the bug by fiddling with unsafe
119 		 * module parameters.
120 		 */
121 		if (!test_taint(TAINT_USER))
122 			dev_notice(kdev, "%s", FDO_BUG_MSG);
123 		shown_bug_once = true;
124 	}
125 }
126 
127 /* Map PCH device id to PCH type, or PCH_NONE if unknown. */
128 static enum intel_pch
intel_pch_type(const struct drm_i915_private * dev_priv,unsigned short id)129 intel_pch_type(const struct drm_i915_private *dev_priv, unsigned short id)
130 {
131 	switch (id) {
132 	case INTEL_PCH_IBX_DEVICE_ID_TYPE:
133 		DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
134 		WARN_ON(!IS_GEN5(dev_priv));
135 		return PCH_IBX;
136 	case INTEL_PCH_CPT_DEVICE_ID_TYPE:
137 		DRM_DEBUG_KMS("Found CougarPoint PCH\n");
138 		WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
139 		return PCH_CPT;
140 	case INTEL_PCH_PPT_DEVICE_ID_TYPE:
141 		DRM_DEBUG_KMS("Found PantherPoint PCH\n");
142 		WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
143 		/* PantherPoint is CPT compatible */
144 		return PCH_CPT;
145 	case INTEL_PCH_LPT_DEVICE_ID_TYPE:
146 		DRM_DEBUG_KMS("Found LynxPoint PCH\n");
147 		WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
148 		WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
149 		return PCH_LPT;
150 	case INTEL_PCH_LPT_LP_DEVICE_ID_TYPE:
151 		DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
152 		WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
153 		WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
154 		return PCH_LPT;
155 	case INTEL_PCH_WPT_DEVICE_ID_TYPE:
156 		DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
157 		WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
158 		WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
159 		/* WildcatPoint is LPT compatible */
160 		return PCH_LPT;
161 	case INTEL_PCH_WPT_LP_DEVICE_ID_TYPE:
162 		DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
163 		WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
164 		WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
165 		/* WildcatPoint is LPT compatible */
166 		return PCH_LPT;
167 	case INTEL_PCH_SPT_DEVICE_ID_TYPE:
168 		DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
169 		WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
170 		return PCH_SPT;
171 	case INTEL_PCH_SPT_LP_DEVICE_ID_TYPE:
172 		DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
173 		WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
174 		return PCH_SPT;
175 	case INTEL_PCH_KBP_DEVICE_ID_TYPE:
176 		DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
177 		WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv) &&
178 			!IS_COFFEELAKE(dev_priv));
179 		return PCH_KBP;
180 	case INTEL_PCH_CNP_DEVICE_ID_TYPE:
181 		DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
182 		WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
183 		return PCH_CNP;
184 	case INTEL_PCH_CNP_LP_DEVICE_ID_TYPE:
185 		DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
186 		WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
187 		return PCH_CNP;
188 	case INTEL_PCH_ICP_DEVICE_ID_TYPE:
189 		DRM_DEBUG_KMS("Found Ice Lake PCH\n");
190 		WARN_ON(!IS_ICELAKE(dev_priv));
191 		return PCH_ICP;
192 	default:
193 		return PCH_NONE;
194 	}
195 }
196 
intel_is_virt_pch(unsigned short id,unsigned short svendor,unsigned short sdevice)197 static bool intel_is_virt_pch(unsigned short id,
198 			      unsigned short svendor, unsigned short sdevice)
199 {
200 	return (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
201 		id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
202 		(id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
203 		 svendor == PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
204 		 sdevice == PCI_SUBDEVICE_ID_QEMU));
205 }
206 
207 static unsigned short
intel_virt_detect_pch(const struct drm_i915_private * dev_priv)208 intel_virt_detect_pch(const struct drm_i915_private *dev_priv)
209 {
210 	unsigned short id = 0;
211 
212 	/*
213 	 * In a virtualized passthrough environment we can be in a
214 	 * setup where the ISA bridge is not able to be passed through.
215 	 * In this case, a south bridge can be emulated and we have to
216 	 * make an educated guess as to which PCH is really there.
217 	 */
218 
219 	if (IS_GEN5(dev_priv))
220 		id = INTEL_PCH_IBX_DEVICE_ID_TYPE;
221 	else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
222 		id = INTEL_PCH_CPT_DEVICE_ID_TYPE;
223 	else if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
224 		id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
225 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
226 		id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
227 	else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
228 		id = INTEL_PCH_SPT_DEVICE_ID_TYPE;
229 	else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv))
230 		id = INTEL_PCH_CNP_DEVICE_ID_TYPE;
231 	else if (IS_ICELAKE(dev_priv))
232 		id = INTEL_PCH_ICP_DEVICE_ID_TYPE;
233 
234 	if (id)
235 		DRM_DEBUG_KMS("Assuming PCH ID %04x\n", id);
236 	else
237 		DRM_DEBUG_KMS("Assuming no PCH\n");
238 
239 	return id;
240 }
241 
intel_detect_pch(struct drm_i915_private * dev_priv)242 static void intel_detect_pch(struct drm_i915_private *dev_priv)
243 {
244 	struct pci_dev *pch = NULL;
245 
246 	/*
247 	 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
248 	 * make graphics device passthrough work easy for VMM, that only
249 	 * need to expose ISA bridge to let driver know the real hardware
250 	 * underneath. This is a requirement from virtualization team.
251 	 *
252 	 * In some virtualized environments (e.g. XEN), there is irrelevant
253 	 * ISA bridge in the system. To work reliably, we should scan trhough
254 	 * all the ISA bridge devices and check for the first match, instead
255 	 * of only checking the first one.
256 	 */
257 	while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
258 		unsigned short id;
259 		enum intel_pch pch_type;
260 
261 		if (pch->vendor != PCI_VENDOR_ID_INTEL)
262 			continue;
263 
264 		id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
265 
266 		pch_type = intel_pch_type(dev_priv, id);
267 		if (pch_type != PCH_NONE) {
268 			dev_priv->pch_type = pch_type;
269 			dev_priv->pch_id = id;
270 			break;
271 		} else if (intel_is_virt_pch(id, pch->subsystem_vendor,
272 					 pch->subsystem_device)) {
273 			id = intel_virt_detect_pch(dev_priv);
274 			pch_type = intel_pch_type(dev_priv, id);
275 
276 			/* Sanity check virtual PCH id */
277 			if (WARN_ON(id && pch_type == PCH_NONE))
278 				id = 0;
279 
280 			dev_priv->pch_type = pch_type;
281 			dev_priv->pch_id = id;
282 			break;
283 		}
284 	}
285 
286 	/*
287 	 * Use PCH_NOP (PCH but no South Display) for PCH platforms without
288 	 * display.
289 	 */
290 	if (pch && INTEL_INFO(dev_priv)->num_pipes == 0) {
291 		DRM_DEBUG_KMS("Display disabled, reverting to NOP PCH\n");
292 		dev_priv->pch_type = PCH_NOP;
293 		dev_priv->pch_id = 0;
294 	}
295 
296 	if (!pch)
297 		DRM_DEBUG_KMS("No PCH found.\n");
298 
299 	pci_dev_put(pch);
300 }
301 
i915_getparam_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)302 static int i915_getparam_ioctl(struct drm_device *dev, void *data,
303 			       struct drm_file *file_priv)
304 {
305 	struct drm_i915_private *dev_priv = to_i915(dev);
306 	struct pci_dev *pdev = dev_priv->drm.pdev;
307 	drm_i915_getparam_t *param = data;
308 	int value;
309 
310 	switch (param->param) {
311 	case I915_PARAM_IRQ_ACTIVE:
312 	case I915_PARAM_ALLOW_BATCHBUFFER:
313 	case I915_PARAM_LAST_DISPATCH:
314 	case I915_PARAM_HAS_EXEC_CONSTANTS:
315 		/* Reject all old ums/dri params. */
316 		return -ENODEV;
317 	case I915_PARAM_CHIPSET_ID:
318 		value = pdev->device;
319 		break;
320 	case I915_PARAM_REVISION:
321 		value = pdev->revision;
322 		break;
323 	case I915_PARAM_NUM_FENCES_AVAIL:
324 		value = dev_priv->num_fence_regs;
325 		break;
326 	case I915_PARAM_HAS_OVERLAY:
327 		value = dev_priv->overlay ? 1 : 0;
328 		break;
329 	case I915_PARAM_HAS_BSD:
330 		value = !!dev_priv->engine[VCS];
331 		break;
332 	case I915_PARAM_HAS_BLT:
333 		value = !!dev_priv->engine[BCS];
334 		break;
335 	case I915_PARAM_HAS_VEBOX:
336 		value = !!dev_priv->engine[VECS];
337 		break;
338 	case I915_PARAM_HAS_BSD2:
339 		value = !!dev_priv->engine[VCS2];
340 		break;
341 	case I915_PARAM_HAS_LLC:
342 		value = HAS_LLC(dev_priv);
343 		break;
344 	case I915_PARAM_HAS_WT:
345 		value = HAS_WT(dev_priv);
346 		break;
347 	case I915_PARAM_HAS_ALIASING_PPGTT:
348 		value = USES_PPGTT(dev_priv);
349 		break;
350 	case I915_PARAM_HAS_SEMAPHORES:
351 		value = HAS_LEGACY_SEMAPHORES(dev_priv);
352 		break;
353 	case I915_PARAM_HAS_SECURE_BATCHES:
354 		value = HAS_SECURE_BATCHES(dev_priv) && capable(CAP_SYS_ADMIN);
355 		break;
356 	case I915_PARAM_CMD_PARSER_VERSION:
357 		value = i915_cmd_parser_get_version(dev_priv);
358 		break;
359 	case I915_PARAM_SUBSLICE_TOTAL:
360 		value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
361 		if (!value)
362 			return -ENODEV;
363 		break;
364 	case I915_PARAM_EU_TOTAL:
365 		value = INTEL_INFO(dev_priv)->sseu.eu_total;
366 		if (!value)
367 			return -ENODEV;
368 		break;
369 	case I915_PARAM_HAS_GPU_RESET:
370 		value = i915_modparams.enable_hangcheck &&
371 			intel_has_gpu_reset(dev_priv);
372 		if (value && intel_has_reset_engine(dev_priv))
373 			value = 2;
374 		break;
375 	case I915_PARAM_HAS_RESOURCE_STREAMER:
376 		value = HAS_RESOURCE_STREAMER(dev_priv);
377 		break;
378 	case I915_PARAM_HAS_POOLED_EU:
379 		value = HAS_POOLED_EU(dev_priv);
380 		break;
381 	case I915_PARAM_MIN_EU_IN_POOL:
382 		value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
383 		break;
384 	case I915_PARAM_HUC_STATUS:
385 		value = intel_huc_check_status(&dev_priv->huc);
386 		if (value < 0)
387 			return value;
388 		break;
389 	case I915_PARAM_MMAP_GTT_VERSION:
390 		/* Though we've started our numbering from 1, and so class all
391 		 * earlier versions as 0, in effect their value is undefined as
392 		 * the ioctl will report EINVAL for the unknown param!
393 		 */
394 		value = i915_gem_mmap_gtt_version();
395 		break;
396 	case I915_PARAM_HAS_SCHEDULER:
397 		value = dev_priv->caps.scheduler;
398 		break;
399 
400 	case I915_PARAM_MMAP_VERSION:
401 		/* Remember to bump this if the version changes! */
402 	case I915_PARAM_HAS_GEM:
403 	case I915_PARAM_HAS_PAGEFLIPPING:
404 	case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
405 	case I915_PARAM_HAS_RELAXED_FENCING:
406 	case I915_PARAM_HAS_COHERENT_RINGS:
407 	case I915_PARAM_HAS_RELAXED_DELTA:
408 	case I915_PARAM_HAS_GEN7_SOL_RESET:
409 	case I915_PARAM_HAS_WAIT_TIMEOUT:
410 	case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
411 	case I915_PARAM_HAS_PINNED_BATCHES:
412 	case I915_PARAM_HAS_EXEC_NO_RELOC:
413 	case I915_PARAM_HAS_EXEC_HANDLE_LUT:
414 	case I915_PARAM_HAS_COHERENT_PHYS_GTT:
415 	case I915_PARAM_HAS_EXEC_SOFTPIN:
416 	case I915_PARAM_HAS_EXEC_ASYNC:
417 	case I915_PARAM_HAS_EXEC_FENCE:
418 	case I915_PARAM_HAS_EXEC_CAPTURE:
419 	case I915_PARAM_HAS_EXEC_BATCH_FIRST:
420 	case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
421 		/* For the time being all of these are always true;
422 		 * if some supported hardware does not have one of these
423 		 * features this value needs to be provided from
424 		 * INTEL_INFO(), a feature macro, or similar.
425 		 */
426 		value = 1;
427 		break;
428 	case I915_PARAM_HAS_CONTEXT_ISOLATION:
429 		value = intel_engines_has_context_isolation(dev_priv);
430 		break;
431 	case I915_PARAM_SLICE_MASK:
432 		value = INTEL_INFO(dev_priv)->sseu.slice_mask;
433 		if (!value)
434 			return -ENODEV;
435 		break;
436 	case I915_PARAM_SUBSLICE_MASK:
437 		value = INTEL_INFO(dev_priv)->sseu.subslice_mask[0];
438 		if (!value)
439 			return -ENODEV;
440 		break;
441 	case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
442 		value = 1000 * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz;
443 		break;
444 	default:
445 		DRM_DEBUG("Unknown parameter %d\n", param->param);
446 		return -EINVAL;
447 	}
448 
449 	if (put_user(value, param->value))
450 		return -EFAULT;
451 
452 	return 0;
453 }
454 
i915_get_bridge_dev(struct drm_i915_private * dev_priv)455 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
456 {
457 	int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
458 
459 	dev_priv->bridge_dev =
460 		pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
461 	if (!dev_priv->bridge_dev) {
462 		DRM_ERROR("bridge device not found\n");
463 		return -1;
464 	}
465 	return 0;
466 }
467 
468 /* Allocate space for the MCH regs if needed, return nonzero on error */
469 static int
intel_alloc_mchbar_resource(struct drm_i915_private * dev_priv)470 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
471 {
472 	int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
473 	u32 temp_lo, temp_hi = 0;
474 	u64 mchbar_addr;
475 	int ret;
476 
477 	if (INTEL_GEN(dev_priv) >= 4)
478 		pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
479 	pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
480 	mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
481 
482 	/* If ACPI doesn't have it, assume we need to allocate it ourselves */
483 #ifdef CONFIG_PNP
484 	if (mchbar_addr &&
485 	    pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
486 		return 0;
487 #endif
488 
489 	/* Get some space for it */
490 	dev_priv->mch_res.name = "i915 MCHBAR";
491 	dev_priv->mch_res.flags = IORESOURCE_MEM;
492 	ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
493 				     &dev_priv->mch_res,
494 				     MCHBAR_SIZE, MCHBAR_SIZE,
495 				     PCIBIOS_MIN_MEM,
496 				     0, pcibios_align_resource,
497 				     dev_priv->bridge_dev);
498 	if (ret) {
499 		DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
500 		dev_priv->mch_res.start = 0;
501 		return ret;
502 	}
503 
504 	if (INTEL_GEN(dev_priv) >= 4)
505 		pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
506 				       upper_32_bits(dev_priv->mch_res.start));
507 
508 	pci_write_config_dword(dev_priv->bridge_dev, reg,
509 			       lower_32_bits(dev_priv->mch_res.start));
510 	return 0;
511 }
512 
513 /* Setup MCHBAR if possible, return true if we should disable it again */
514 static void
intel_setup_mchbar(struct drm_i915_private * dev_priv)515 intel_setup_mchbar(struct drm_i915_private *dev_priv)
516 {
517 	int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
518 	u32 temp;
519 	bool enabled;
520 
521 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
522 		return;
523 
524 	dev_priv->mchbar_need_disable = false;
525 
526 	if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
527 		pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
528 		enabled = !!(temp & DEVEN_MCHBAR_EN);
529 	} else {
530 		pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
531 		enabled = temp & 1;
532 	}
533 
534 	/* If it's already enabled, don't have to do anything */
535 	if (enabled)
536 		return;
537 
538 	if (intel_alloc_mchbar_resource(dev_priv))
539 		return;
540 
541 	dev_priv->mchbar_need_disable = true;
542 
543 	/* Space is allocated or reserved, so enable it. */
544 	if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
545 		pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
546 				       temp | DEVEN_MCHBAR_EN);
547 	} else {
548 		pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
549 		pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
550 	}
551 }
552 
553 static void
intel_teardown_mchbar(struct drm_i915_private * dev_priv)554 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
555 {
556 	int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
557 
558 	if (dev_priv->mchbar_need_disable) {
559 		if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
560 			u32 deven_val;
561 
562 			pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
563 					      &deven_val);
564 			deven_val &= ~DEVEN_MCHBAR_EN;
565 			pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
566 					       deven_val);
567 		} else {
568 			u32 mchbar_val;
569 
570 			pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
571 					      &mchbar_val);
572 			mchbar_val &= ~1;
573 			pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
574 					       mchbar_val);
575 		}
576 	}
577 
578 	if (dev_priv->mch_res.start)
579 		release_resource(&dev_priv->mch_res);
580 }
581 
582 /* true = enable decode, false = disable decoder */
i915_vga_set_decode(void * cookie,bool state)583 static unsigned int i915_vga_set_decode(void *cookie, bool state)
584 {
585 	struct drm_i915_private *dev_priv = cookie;
586 
587 	intel_modeset_vga_set_state(dev_priv, state);
588 	if (state)
589 		return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
590 		       VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
591 	else
592 		return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
593 }
594 
595 static int i915_resume_switcheroo(struct drm_device *dev);
596 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
597 
i915_switcheroo_set_state(struct pci_dev * pdev,enum vga_switcheroo_state state)598 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
599 {
600 	struct drm_device *dev = pci_get_drvdata(pdev);
601 	pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
602 
603 	if (state == VGA_SWITCHEROO_ON) {
604 		pr_info("switched on\n");
605 		dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
606 		/* i915 resume handler doesn't set to D0 */
607 		pci_set_power_state(pdev, PCI_D0);
608 		i915_resume_switcheroo(dev);
609 		dev->switch_power_state = DRM_SWITCH_POWER_ON;
610 	} else {
611 		pr_info("switched off\n");
612 		dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
613 		i915_suspend_switcheroo(dev, pmm);
614 		dev->switch_power_state = DRM_SWITCH_POWER_OFF;
615 	}
616 }
617 
i915_switcheroo_can_switch(struct pci_dev * pdev)618 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
619 {
620 	struct drm_device *dev = pci_get_drvdata(pdev);
621 
622 	/*
623 	 * FIXME: open_count is protected by drm_global_mutex but that would lead to
624 	 * locking inversion with the driver load path. And the access here is
625 	 * completely racy anyway. So don't bother with locking for now.
626 	 */
627 	return dev->open_count == 0;
628 }
629 
630 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
631 	.set_gpu_state = i915_switcheroo_set_state,
632 	.reprobe = NULL,
633 	.can_switch = i915_switcheroo_can_switch,
634 };
635 
i915_load_modeset_init(struct drm_device * dev)636 static int i915_load_modeset_init(struct drm_device *dev)
637 {
638 	struct drm_i915_private *dev_priv = to_i915(dev);
639 	struct pci_dev *pdev = dev_priv->drm.pdev;
640 	int ret;
641 
642 	if (i915_inject_load_failure())
643 		return -ENODEV;
644 
645 	intel_bios_init(dev_priv);
646 
647 	/* If we have > 1 VGA cards, then we need to arbitrate access
648 	 * to the common VGA resources.
649 	 *
650 	 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
651 	 * then we do not take part in VGA arbitration and the
652 	 * vga_client_register() fails with -ENODEV.
653 	 */
654 	ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
655 	if (ret && ret != -ENODEV)
656 		goto out;
657 
658 	intel_register_dsm_handler();
659 
660 	ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
661 	if (ret)
662 		goto cleanup_vga_client;
663 
664 	/* must happen before intel_power_domains_init_hw() on VLV/CHV */
665 	intel_update_rawclk(dev_priv);
666 
667 	intel_power_domains_init_hw(dev_priv, false);
668 
669 	intel_csr_ucode_init(dev_priv);
670 
671 	ret = intel_irq_install(dev_priv);
672 	if (ret)
673 		goto cleanup_csr;
674 
675 	intel_setup_gmbus(dev_priv);
676 
677 	/* Important: The output setup functions called by modeset_init need
678 	 * working irqs for e.g. gmbus and dp aux transfers. */
679 	ret = intel_modeset_init(dev);
680 	if (ret)
681 		goto cleanup_irq;
682 
683 	ret = i915_gem_init(dev_priv);
684 	if (ret)
685 		goto cleanup_modeset;
686 
687 	intel_setup_overlay(dev_priv);
688 
689 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
690 		return 0;
691 
692 	ret = intel_fbdev_init(dev);
693 	if (ret)
694 		goto cleanup_gem;
695 
696 	/* Only enable hotplug handling once the fbdev is fully set up. */
697 	intel_hpd_init(dev_priv);
698 
699 	return 0;
700 
701 cleanup_gem:
702 	if (i915_gem_suspend(dev_priv))
703 		DRM_ERROR("failed to idle hardware; continuing to unload!\n");
704 	i915_gem_fini(dev_priv);
705 cleanup_modeset:
706 	intel_modeset_cleanup(dev);
707 cleanup_irq:
708 	drm_irq_uninstall(dev);
709 	intel_teardown_gmbus(dev_priv);
710 cleanup_csr:
711 	intel_csr_ucode_fini(dev_priv);
712 	intel_power_domains_fini(dev_priv);
713 	vga_switcheroo_unregister_client(pdev);
714 cleanup_vga_client:
715 	vga_client_register(pdev, NULL, NULL, NULL);
716 out:
717 	return ret;
718 }
719 
i915_kick_out_firmware_fb(struct drm_i915_private * dev_priv)720 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
721 {
722 	struct apertures_struct *ap;
723 	struct pci_dev *pdev = dev_priv->drm.pdev;
724 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
725 	bool primary;
726 	int ret;
727 
728 	ap = alloc_apertures(1);
729 	if (!ap)
730 		return -ENOMEM;
731 
732 	ap->ranges[0].base = ggtt->gmadr.start;
733 	ap->ranges[0].size = ggtt->mappable_end;
734 
735 	primary =
736 		pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
737 
738 	ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
739 
740 	kfree(ap);
741 
742 	return ret;
743 }
744 
745 #if !defined(CONFIG_VGA_CONSOLE)
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)746 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
747 {
748 	return 0;
749 }
750 #elif !defined(CONFIG_DUMMY_CONSOLE)
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)751 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
752 {
753 	return -ENODEV;
754 }
755 #else
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)756 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
757 {
758 	int ret = 0;
759 
760 	DRM_INFO("Replacing VGA console driver\n");
761 
762 	console_lock();
763 	if (con_is_bound(&vga_con))
764 		ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
765 	if (ret == 0) {
766 		ret = do_unregister_con_driver(&vga_con);
767 
768 		/* Ignore "already unregistered". */
769 		if (ret == -ENODEV)
770 			ret = 0;
771 	}
772 	console_unlock();
773 
774 	return ret;
775 }
776 #endif
777 
intel_init_dpio(struct drm_i915_private * dev_priv)778 static void intel_init_dpio(struct drm_i915_private *dev_priv)
779 {
780 	/*
781 	 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
782 	 * CHV x1 PHY (DP/HDMI D)
783 	 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
784 	 */
785 	if (IS_CHERRYVIEW(dev_priv)) {
786 		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
787 		DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
788 	} else if (IS_VALLEYVIEW(dev_priv)) {
789 		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
790 	}
791 }
792 
i915_workqueues_init(struct drm_i915_private * dev_priv)793 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
794 {
795 	/*
796 	 * The i915 workqueue is primarily used for batched retirement of
797 	 * requests (and thus managing bo) once the task has been completed
798 	 * by the GPU. i915_retire_requests() is called directly when we
799 	 * need high-priority retirement, such as waiting for an explicit
800 	 * bo.
801 	 *
802 	 * It is also used for periodic low-priority events, such as
803 	 * idle-timers and recording error state.
804 	 *
805 	 * All tasks on the workqueue are expected to acquire the dev mutex
806 	 * so there is no point in running more than one instance of the
807 	 * workqueue at any time.  Use an ordered one.
808 	 */
809 	dev_priv->wq = alloc_ordered_workqueue("i915", 0);
810 	if (dev_priv->wq == NULL)
811 		goto out_err;
812 
813 	dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
814 	if (dev_priv->hotplug.dp_wq == NULL)
815 		goto out_free_wq;
816 
817 	return 0;
818 
819 out_free_wq:
820 	destroy_workqueue(dev_priv->wq);
821 out_err:
822 	DRM_ERROR("Failed to allocate workqueues.\n");
823 
824 	return -ENOMEM;
825 }
826 
i915_engines_cleanup(struct drm_i915_private * i915)827 static void i915_engines_cleanup(struct drm_i915_private *i915)
828 {
829 	struct intel_engine_cs *engine;
830 	enum intel_engine_id id;
831 
832 	for_each_engine(engine, i915, id)
833 		kfree(engine);
834 }
835 
i915_workqueues_cleanup(struct drm_i915_private * dev_priv)836 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
837 {
838 	destroy_workqueue(dev_priv->hotplug.dp_wq);
839 	destroy_workqueue(dev_priv->wq);
840 }
841 
842 /*
843  * We don't keep the workarounds for pre-production hardware, so we expect our
844  * driver to fail on these machines in one way or another. A little warning on
845  * dmesg may help both the user and the bug triagers.
846  *
847  * Our policy for removing pre-production workarounds is to keep the
848  * current gen workarounds as a guide to the bring-up of the next gen
849  * (workarounds have a habit of persisting!). Anything older than that
850  * should be removed along with the complications they introduce.
851  */
intel_detect_preproduction_hw(struct drm_i915_private * dev_priv)852 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
853 {
854 	bool pre = false;
855 
856 	pre |= IS_HSW_EARLY_SDV(dev_priv);
857 	pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
858 	pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
859 
860 	if (pre) {
861 		DRM_ERROR("This is a pre-production stepping. "
862 			  "It may not be fully functional.\n");
863 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
864 	}
865 }
866 
867 /**
868  * i915_driver_init_early - setup state not requiring device access
869  * @dev_priv: device private
870  * @ent: the matching pci_device_id
871  *
872  * Initialize everything that is a "SW-only" state, that is state not
873  * requiring accessing the device or exposing the driver via kernel internal
874  * or userspace interfaces. Example steps belonging here: lock initialization,
875  * system memory allocation, setting up device specific attributes and
876  * function hooks not requiring accessing the device.
877  */
i915_driver_init_early(struct drm_i915_private * dev_priv,const struct pci_device_id * ent)878 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
879 				  const struct pci_device_id *ent)
880 {
881 	const struct intel_device_info *match_info =
882 		(struct intel_device_info *)ent->driver_data;
883 	struct intel_device_info *device_info;
884 	int ret = 0;
885 
886 	if (i915_inject_load_failure())
887 		return -ENODEV;
888 
889 	/* Setup the write-once "constant" device info */
890 	device_info = mkwrite_device_info(dev_priv);
891 	memcpy(device_info, match_info, sizeof(*device_info));
892 	device_info->device_id = dev_priv->drm.pdev->device;
893 
894 	BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
895 		     sizeof(device_info->platform_mask) * BITS_PER_BYTE);
896 	BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
897 	spin_lock_init(&dev_priv->irq_lock);
898 	spin_lock_init(&dev_priv->gpu_error.lock);
899 	mutex_init(&dev_priv->backlight_lock);
900 	spin_lock_init(&dev_priv->uncore.lock);
901 
902 	mutex_init(&dev_priv->sb_lock);
903 	mutex_init(&dev_priv->av_mutex);
904 	mutex_init(&dev_priv->wm.wm_mutex);
905 	mutex_init(&dev_priv->pps_mutex);
906 
907 	i915_memcpy_init_early(dev_priv);
908 
909 	ret = i915_workqueues_init(dev_priv);
910 	if (ret < 0)
911 		goto err_engines;
912 
913 	ret = i915_gem_init_early(dev_priv);
914 	if (ret < 0)
915 		goto err_workqueues;
916 
917 	/* This must be called before any calls to HAS_PCH_* */
918 	intel_detect_pch(dev_priv);
919 
920 	intel_wopcm_init_early(&dev_priv->wopcm);
921 	intel_uc_init_early(dev_priv);
922 	intel_pm_setup(dev_priv);
923 	intel_init_dpio(dev_priv);
924 	intel_power_domains_init(dev_priv);
925 	intel_irq_init(dev_priv);
926 	intel_hangcheck_init(dev_priv);
927 	intel_init_display_hooks(dev_priv);
928 	intel_init_clock_gating_hooks(dev_priv);
929 	intel_init_audio_hooks(dev_priv);
930 	intel_display_crc_init(dev_priv);
931 
932 	intel_detect_preproduction_hw(dev_priv);
933 
934 	return 0;
935 
936 err_workqueues:
937 	i915_workqueues_cleanup(dev_priv);
938 err_engines:
939 	i915_engines_cleanup(dev_priv);
940 	return ret;
941 }
942 
943 /**
944  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
945  * @dev_priv: device private
946  */
i915_driver_cleanup_early(struct drm_i915_private * dev_priv)947 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
948 {
949 	intel_irq_fini(dev_priv);
950 	intel_uc_cleanup_early(dev_priv);
951 	i915_gem_cleanup_early(dev_priv);
952 	i915_workqueues_cleanup(dev_priv);
953 	i915_engines_cleanup(dev_priv);
954 }
955 
i915_mmio_setup(struct drm_i915_private * dev_priv)956 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
957 {
958 	struct pci_dev *pdev = dev_priv->drm.pdev;
959 	int mmio_bar;
960 	int mmio_size;
961 
962 	mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
963 	/*
964 	 * Before gen4, the registers and the GTT are behind different BARs.
965 	 * However, from gen4 onwards, the registers and the GTT are shared
966 	 * in the same BAR, so we want to restrict this ioremap from
967 	 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
968 	 * the register BAR remains the same size for all the earlier
969 	 * generations up to Ironlake.
970 	 */
971 	if (INTEL_GEN(dev_priv) < 5)
972 		mmio_size = 512 * 1024;
973 	else
974 		mmio_size = 2 * 1024 * 1024;
975 	dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
976 	if (dev_priv->regs == NULL) {
977 		DRM_ERROR("failed to map registers\n");
978 
979 		return -EIO;
980 	}
981 
982 	/* Try to make sure MCHBAR is enabled before poking at it */
983 	intel_setup_mchbar(dev_priv);
984 
985 	return 0;
986 }
987 
i915_mmio_cleanup(struct drm_i915_private * dev_priv)988 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
989 {
990 	struct pci_dev *pdev = dev_priv->drm.pdev;
991 
992 	intel_teardown_mchbar(dev_priv);
993 	pci_iounmap(pdev, dev_priv->regs);
994 }
995 
996 /**
997  * i915_driver_init_mmio - setup device MMIO
998  * @dev_priv: device private
999  *
1000  * Setup minimal device state necessary for MMIO accesses later in the
1001  * initialization sequence. The setup here should avoid any other device-wide
1002  * side effects or exposing the driver via kernel internal or user space
1003  * interfaces.
1004  */
i915_driver_init_mmio(struct drm_i915_private * dev_priv)1005 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1006 {
1007 	int ret;
1008 
1009 	if (i915_inject_load_failure())
1010 		return -ENODEV;
1011 
1012 	if (i915_get_bridge_dev(dev_priv))
1013 		return -EIO;
1014 
1015 	ret = i915_mmio_setup(dev_priv);
1016 	if (ret < 0)
1017 		goto err_bridge;
1018 
1019 	intel_uncore_init(dev_priv);
1020 
1021 	intel_device_info_init_mmio(dev_priv);
1022 
1023 	intel_uncore_prune(dev_priv);
1024 
1025 	intel_uc_init_mmio(dev_priv);
1026 
1027 	ret = intel_engines_init_mmio(dev_priv);
1028 	if (ret)
1029 		goto err_uncore;
1030 
1031 	i915_gem_init_mmio(dev_priv);
1032 
1033 	return 0;
1034 
1035 err_uncore:
1036 	intel_uncore_fini(dev_priv);
1037 err_bridge:
1038 	pci_dev_put(dev_priv->bridge_dev);
1039 
1040 	return ret;
1041 }
1042 
1043 /**
1044  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1045  * @dev_priv: device private
1046  */
i915_driver_cleanup_mmio(struct drm_i915_private * dev_priv)1047 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1048 {
1049 	intel_uncore_fini(dev_priv);
1050 	i915_mmio_cleanup(dev_priv);
1051 	pci_dev_put(dev_priv->bridge_dev);
1052 }
1053 
intel_sanitize_options(struct drm_i915_private * dev_priv)1054 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1055 {
1056 	/*
1057 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1058 	 * user's requested state against the hardware/driver capabilities.  We
1059 	 * do this now so that we can print out any log messages once rather
1060 	 * than every time we check intel_enable_ppgtt().
1061 	 */
1062 	i915_modparams.enable_ppgtt =
1063 		intel_sanitize_enable_ppgtt(dev_priv,
1064 					    i915_modparams.enable_ppgtt);
1065 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1066 
1067 	intel_gvt_sanitize_options(dev_priv);
1068 }
1069 
1070 /**
1071  * i915_driver_init_hw - setup state requiring device access
1072  * @dev_priv: device private
1073  *
1074  * Setup state that requires accessing the device, but doesn't require
1075  * exposing the driver via kernel internal or userspace interfaces.
1076  */
i915_driver_init_hw(struct drm_i915_private * dev_priv)1077 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1078 {
1079 	struct pci_dev *pdev = dev_priv->drm.pdev;
1080 	int ret;
1081 
1082 	if (i915_inject_load_failure())
1083 		return -ENODEV;
1084 
1085 	intel_device_info_runtime_init(mkwrite_device_info(dev_priv));
1086 
1087 	intel_sanitize_options(dev_priv);
1088 
1089 	i915_perf_init(dev_priv);
1090 
1091 	ret = i915_ggtt_probe_hw(dev_priv);
1092 	if (ret)
1093 		goto err_perf;
1094 
1095 	/*
1096 	 * WARNING: Apparently we must kick fbdev drivers before vgacon,
1097 	 * otherwise the vga fbdev driver falls over.
1098 	 */
1099 	ret = i915_kick_out_firmware_fb(dev_priv);
1100 	if (ret) {
1101 		DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1102 		goto err_ggtt;
1103 	}
1104 
1105 	ret = i915_kick_out_vgacon(dev_priv);
1106 	if (ret) {
1107 		DRM_ERROR("failed to remove conflicting VGA console\n");
1108 		goto err_ggtt;
1109 	}
1110 
1111 	ret = i915_ggtt_init_hw(dev_priv);
1112 	if (ret)
1113 		goto err_ggtt;
1114 
1115 	ret = i915_ggtt_enable_hw(dev_priv);
1116 	if (ret) {
1117 		DRM_ERROR("failed to enable GGTT\n");
1118 		goto err_ggtt;
1119 	}
1120 
1121 	pci_set_master(pdev);
1122 
1123 	/*
1124 	 * We don't have a max segment size, so set it to the max so sg's
1125 	 * debugging layer doesn't complain
1126 	 */
1127 	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1128 
1129 	/* overlay on gen2 is broken and can't address above 1G */
1130 	if (IS_GEN2(dev_priv)) {
1131 		ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1132 		if (ret) {
1133 			DRM_ERROR("failed to set DMA mask\n");
1134 
1135 			goto err_ggtt;
1136 		}
1137 	}
1138 
1139 	/* 965GM sometimes incorrectly writes to hardware status page (HWS)
1140 	 * using 32bit addressing, overwriting memory if HWS is located
1141 	 * above 4GB.
1142 	 *
1143 	 * The documentation also mentions an issue with undefined
1144 	 * behaviour if any general state is accessed within a page above 4GB,
1145 	 * which also needs to be handled carefully.
1146 	 */
1147 	if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1148 		ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1149 
1150 		if (ret) {
1151 			DRM_ERROR("failed to set DMA mask\n");
1152 
1153 			goto err_ggtt;
1154 		}
1155 	}
1156 
1157 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1158 			   PM_QOS_DEFAULT_VALUE);
1159 
1160 	intel_uncore_sanitize(dev_priv);
1161 
1162 	i915_gem_load_init_fences(dev_priv);
1163 
1164 	/* On the 945G/GM, the chipset reports the MSI capability on the
1165 	 * integrated graphics even though the support isn't actually there
1166 	 * according to the published specs.  It doesn't appear to function
1167 	 * correctly in testing on 945G.
1168 	 * This may be a side effect of MSI having been made available for PEG
1169 	 * and the registers being closely associated.
1170 	 *
1171 	 * According to chipset errata, on the 965GM, MSI interrupts may
1172 	 * be lost or delayed, and was defeatured. MSI interrupts seem to
1173 	 * get lost on g4x as well, and interrupt delivery seems to stay
1174 	 * properly dead afterwards. So we'll just disable them for all
1175 	 * pre-gen5 chipsets.
1176 	 *
1177 	 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1178 	 * interrupts even when in MSI mode. This results in spurious
1179 	 * interrupt warnings if the legacy irq no. is shared with another
1180 	 * device. The kernel then disables that interrupt source and so
1181 	 * prevents the other device from working properly.
1182 	 */
1183 	if (INTEL_GEN(dev_priv) >= 5) {
1184 		if (pci_enable_msi(pdev) < 0)
1185 			DRM_DEBUG_DRIVER("can't enable MSI");
1186 	}
1187 
1188 	ret = intel_gvt_init(dev_priv);
1189 	if (ret)
1190 		goto err_msi;
1191 
1192 	intel_opregion_setup(dev_priv);
1193 
1194 	return 0;
1195 
1196 err_msi:
1197 	if (pdev->msi_enabled)
1198 		pci_disable_msi(pdev);
1199 	pm_qos_remove_request(&dev_priv->pm_qos);
1200 err_ggtt:
1201 	i915_ggtt_cleanup_hw(dev_priv);
1202 err_perf:
1203 	i915_perf_fini(dev_priv);
1204 	return ret;
1205 }
1206 
1207 /**
1208  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1209  * @dev_priv: device private
1210  */
i915_driver_cleanup_hw(struct drm_i915_private * dev_priv)1211 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1212 {
1213 	struct pci_dev *pdev = dev_priv->drm.pdev;
1214 
1215 	i915_perf_fini(dev_priv);
1216 
1217 	if (pdev->msi_enabled)
1218 		pci_disable_msi(pdev);
1219 
1220 	pm_qos_remove_request(&dev_priv->pm_qos);
1221 	i915_ggtt_cleanup_hw(dev_priv);
1222 }
1223 
1224 /**
1225  * i915_driver_register - register the driver with the rest of the system
1226  * @dev_priv: device private
1227  *
1228  * Perform any steps necessary to make the driver available via kernel
1229  * internal or userspace interfaces.
1230  */
i915_driver_register(struct drm_i915_private * dev_priv)1231 static void i915_driver_register(struct drm_i915_private *dev_priv)
1232 {
1233 	struct drm_device *dev = &dev_priv->drm;
1234 
1235 	i915_gem_shrinker_register(dev_priv);
1236 	i915_pmu_register(dev_priv);
1237 
1238 	/*
1239 	 * Notify a valid surface after modesetting,
1240 	 * when running inside a VM.
1241 	 */
1242 	if (intel_vgpu_active(dev_priv))
1243 		I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1244 
1245 	/* Reveal our presence to userspace */
1246 	if (drm_dev_register(dev, 0) == 0) {
1247 		i915_debugfs_register(dev_priv);
1248 		i915_setup_sysfs(dev_priv);
1249 
1250 		/* Depends on sysfs having been initialized */
1251 		i915_perf_register(dev_priv);
1252 	} else
1253 		DRM_ERROR("Failed to register driver for userspace access!\n");
1254 
1255 	if (INTEL_INFO(dev_priv)->num_pipes) {
1256 		/* Must be done after probing outputs */
1257 		intel_opregion_register(dev_priv);
1258 		acpi_video_register();
1259 	}
1260 
1261 	if (IS_GEN5(dev_priv))
1262 		intel_gpu_ips_init(dev_priv);
1263 
1264 	intel_audio_init(dev_priv);
1265 
1266 	/*
1267 	 * Some ports require correctly set-up hpd registers for detection to
1268 	 * work properly (leading to ghost connected connector status), e.g. VGA
1269 	 * on gm45.  Hence we can only set up the initial fbdev config after hpd
1270 	 * irqs are fully enabled. We do it last so that the async config
1271 	 * cannot run before the connectors are registered.
1272 	 */
1273 	intel_fbdev_initial_config_async(dev);
1274 
1275 	/*
1276 	 * We need to coordinate the hotplugs with the asynchronous fbdev
1277 	 * configuration, for which we use the fbdev->async_cookie.
1278 	 */
1279 	if (INTEL_INFO(dev_priv)->num_pipes)
1280 		drm_kms_helper_poll_init(dev);
1281 }
1282 
1283 /**
1284  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1285  * @dev_priv: device private
1286  */
i915_driver_unregister(struct drm_i915_private * dev_priv)1287 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1288 {
1289 	intel_fbdev_unregister(dev_priv);
1290 	intel_audio_deinit(dev_priv);
1291 
1292 	/*
1293 	 * After flushing the fbdev (incl. a late async config which will
1294 	 * have delayed queuing of a hotplug event), then flush the hotplug
1295 	 * events.
1296 	 */
1297 	drm_kms_helper_poll_fini(&dev_priv->drm);
1298 
1299 	intel_gpu_ips_teardown();
1300 	acpi_video_unregister();
1301 	intel_opregion_unregister(dev_priv);
1302 
1303 	i915_perf_unregister(dev_priv);
1304 	i915_pmu_unregister(dev_priv);
1305 
1306 	i915_teardown_sysfs(dev_priv);
1307 	drm_dev_unregister(&dev_priv->drm);
1308 
1309 	i915_gem_shrinker_unregister(dev_priv);
1310 }
1311 
i915_welcome_messages(struct drm_i915_private * dev_priv)1312 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1313 {
1314 	if (drm_debug & DRM_UT_DRIVER) {
1315 		struct drm_printer p = drm_debug_printer("i915 device info:");
1316 
1317 		intel_device_info_dump(&dev_priv->info, &p);
1318 		intel_device_info_dump_runtime(&dev_priv->info, &p);
1319 	}
1320 
1321 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1322 		DRM_INFO("DRM_I915_DEBUG enabled\n");
1323 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1324 		DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1325 }
1326 
1327 /**
1328  * i915_driver_load - setup chip and create an initial config
1329  * @pdev: PCI device
1330  * @ent: matching PCI ID entry
1331  *
1332  * The driver load routine has to do several things:
1333  *   - drive output discovery via intel_modeset_init()
1334  *   - initialize the memory manager
1335  *   - allocate initial config memory
1336  *   - setup the DRM framebuffer with the allocated memory
1337  */
i915_driver_load(struct pci_dev * pdev,const struct pci_device_id * ent)1338 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1339 {
1340 	const struct intel_device_info *match_info =
1341 		(struct intel_device_info *)ent->driver_data;
1342 	struct drm_i915_private *dev_priv;
1343 	int ret;
1344 
1345 	/* Enable nuclear pageflip on ILK+ */
1346 	if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1347 		driver.driver_features &= ~DRIVER_ATOMIC;
1348 
1349 	ret = -ENOMEM;
1350 	dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1351 	if (dev_priv)
1352 		ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1353 	if (ret) {
1354 		DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1355 		goto out_free;
1356 	}
1357 
1358 	dev_priv->drm.pdev = pdev;
1359 	dev_priv->drm.dev_private = dev_priv;
1360 
1361 	ret = pci_enable_device(pdev);
1362 	if (ret)
1363 		goto out_fini;
1364 
1365 	pci_set_drvdata(pdev, &dev_priv->drm);
1366 	/*
1367 	 * Disable the system suspend direct complete optimization, which can
1368 	 * leave the device suspended skipping the driver's suspend handlers
1369 	 * if the device was already runtime suspended. This is needed due to
1370 	 * the difference in our runtime and system suspend sequence and
1371 	 * becaue the HDA driver may require us to enable the audio power
1372 	 * domain during system suspend.
1373 	 */
1374 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1375 
1376 	ret = i915_driver_init_early(dev_priv, ent);
1377 	if (ret < 0)
1378 		goto out_pci_disable;
1379 
1380 	intel_runtime_pm_get(dev_priv);
1381 
1382 	ret = i915_driver_init_mmio(dev_priv);
1383 	if (ret < 0)
1384 		goto out_runtime_pm_put;
1385 
1386 	ret = i915_driver_init_hw(dev_priv);
1387 	if (ret < 0)
1388 		goto out_cleanup_mmio;
1389 
1390 	/*
1391 	 * TODO: move the vblank init and parts of modeset init steps into one
1392 	 * of the i915_driver_init_/i915_driver_register functions according
1393 	 * to the role/effect of the given init step.
1394 	 */
1395 	if (INTEL_INFO(dev_priv)->num_pipes) {
1396 		ret = drm_vblank_init(&dev_priv->drm,
1397 				      INTEL_INFO(dev_priv)->num_pipes);
1398 		if (ret)
1399 			goto out_cleanup_hw;
1400 	}
1401 
1402 	ret = i915_load_modeset_init(&dev_priv->drm);
1403 	if (ret < 0)
1404 		goto out_cleanup_hw;
1405 
1406 	i915_driver_register(dev_priv);
1407 
1408 	intel_runtime_pm_enable(dev_priv);
1409 
1410 	intel_init_ipc(dev_priv);
1411 
1412 	intel_runtime_pm_put(dev_priv);
1413 
1414 	i915_welcome_messages(dev_priv);
1415 
1416 	return 0;
1417 
1418 out_cleanup_hw:
1419 	i915_driver_cleanup_hw(dev_priv);
1420 out_cleanup_mmio:
1421 	i915_driver_cleanup_mmio(dev_priv);
1422 out_runtime_pm_put:
1423 	intel_runtime_pm_put(dev_priv);
1424 	i915_driver_cleanup_early(dev_priv);
1425 out_pci_disable:
1426 	pci_disable_device(pdev);
1427 out_fini:
1428 	i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1429 	drm_dev_fini(&dev_priv->drm);
1430 out_free:
1431 	kfree(dev_priv);
1432 	pci_set_drvdata(pdev, NULL);
1433 	return ret;
1434 }
1435 
i915_driver_unload(struct drm_device * dev)1436 void i915_driver_unload(struct drm_device *dev)
1437 {
1438 	struct drm_i915_private *dev_priv = to_i915(dev);
1439 	struct pci_dev *pdev = dev_priv->drm.pdev;
1440 
1441 	i915_driver_unregister(dev_priv);
1442 
1443 	if (i915_gem_suspend(dev_priv))
1444 		DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1445 
1446 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1447 
1448 	drm_atomic_helper_shutdown(dev);
1449 
1450 	intel_gvt_cleanup(dev_priv);
1451 
1452 	intel_modeset_cleanup(dev);
1453 
1454 	intel_bios_cleanup(dev_priv);
1455 
1456 	vga_switcheroo_unregister_client(pdev);
1457 	vga_client_register(pdev, NULL, NULL, NULL);
1458 
1459 	intel_csr_ucode_fini(dev_priv);
1460 
1461 	/* Free error state after interrupts are fully disabled. */
1462 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1463 	i915_reset_error_state(dev_priv);
1464 
1465 	i915_gem_fini(dev_priv);
1466 	intel_fbc_cleanup_cfb(dev_priv);
1467 
1468 	intel_power_domains_fini(dev_priv);
1469 
1470 	i915_driver_cleanup_hw(dev_priv);
1471 	i915_driver_cleanup_mmio(dev_priv);
1472 
1473 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1474 }
1475 
i915_driver_release(struct drm_device * dev)1476 static void i915_driver_release(struct drm_device *dev)
1477 {
1478 	struct drm_i915_private *dev_priv = to_i915(dev);
1479 
1480 	i915_driver_cleanup_early(dev_priv);
1481 	drm_dev_fini(&dev_priv->drm);
1482 
1483 	kfree(dev_priv);
1484 }
1485 
i915_driver_open(struct drm_device * dev,struct drm_file * file)1486 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1487 {
1488 	struct drm_i915_private *i915 = to_i915(dev);
1489 	int ret;
1490 
1491 	ret = i915_gem_open(i915, file);
1492 	if (ret)
1493 		return ret;
1494 
1495 	return 0;
1496 }
1497 
1498 /**
1499  * i915_driver_lastclose - clean up after all DRM clients have exited
1500  * @dev: DRM device
1501  *
1502  * Take care of cleaning up after all DRM clients have exited.  In the
1503  * mode setting case, we want to restore the kernel's initial mode (just
1504  * in case the last client left us in a bad state).
1505  *
1506  * Additionally, in the non-mode setting case, we'll tear down the GTT
1507  * and DMA structures, since the kernel won't be using them, and clea
1508  * up any GEM state.
1509  */
i915_driver_lastclose(struct drm_device * dev)1510 static void i915_driver_lastclose(struct drm_device *dev)
1511 {
1512 	intel_fbdev_restore_mode(dev);
1513 	vga_switcheroo_process_delayed_switch();
1514 }
1515 
i915_driver_postclose(struct drm_device * dev,struct drm_file * file)1516 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1517 {
1518 	struct drm_i915_file_private *file_priv = file->driver_priv;
1519 
1520 	mutex_lock(&dev->struct_mutex);
1521 	i915_gem_context_close(file);
1522 	i915_gem_release(dev, file);
1523 	mutex_unlock(&dev->struct_mutex);
1524 
1525 	kfree(file_priv);
1526 }
1527 
intel_suspend_encoders(struct drm_i915_private * dev_priv)1528 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1529 {
1530 	struct drm_device *dev = &dev_priv->drm;
1531 	struct intel_encoder *encoder;
1532 
1533 	drm_modeset_lock_all(dev);
1534 	for_each_intel_encoder(dev, encoder)
1535 		if (encoder->suspend)
1536 			encoder->suspend(encoder);
1537 	drm_modeset_unlock_all(dev);
1538 }
1539 
1540 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1541 			      bool rpm_resume);
1542 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1543 
suspend_to_idle(struct drm_i915_private * dev_priv)1544 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1545 {
1546 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1547 	if (acpi_target_system_state() < ACPI_STATE_S3)
1548 		return true;
1549 #endif
1550 	return false;
1551 }
1552 
i915_drm_prepare(struct drm_device * dev)1553 static int i915_drm_prepare(struct drm_device *dev)
1554 {
1555 	struct drm_i915_private *i915 = to_i915(dev);
1556 	int err;
1557 
1558 	/*
1559 	 * NB intel_display_suspend() may issue new requests after we've
1560 	 * ostensibly marked the GPU as ready-to-sleep here. We need to
1561 	 * split out that work and pull it forward so that after point,
1562 	 * the GPU is not woken again.
1563 	 */
1564 	err = i915_gem_suspend(i915);
1565 	if (err)
1566 		dev_err(&i915->drm.pdev->dev,
1567 			"GEM idle failed, suspend/resume might fail\n");
1568 
1569 	return err;
1570 }
1571 
i915_drm_suspend(struct drm_device * dev)1572 static int i915_drm_suspend(struct drm_device *dev)
1573 {
1574 	struct drm_i915_private *dev_priv = to_i915(dev);
1575 	struct pci_dev *pdev = dev_priv->drm.pdev;
1576 	pci_power_t opregion_target_state;
1577 
1578 	disable_rpm_wakeref_asserts(dev_priv);
1579 
1580 	/* We do a lot of poking in a lot of registers, make sure they work
1581 	 * properly. */
1582 	intel_display_set_init_power(dev_priv, true);
1583 
1584 	drm_kms_helper_poll_disable(dev);
1585 
1586 	pci_save_state(pdev);
1587 
1588 	intel_display_suspend(dev);
1589 
1590 	intel_dp_mst_suspend(dev_priv);
1591 
1592 	intel_runtime_pm_disable_interrupts(dev_priv);
1593 	intel_hpd_cancel_work(dev_priv);
1594 
1595 	intel_suspend_encoders(dev_priv);
1596 
1597 	intel_suspend_hw(dev_priv);
1598 
1599 	i915_gem_suspend_gtt_mappings(dev_priv);
1600 
1601 	i915_save_state(dev_priv);
1602 
1603 	opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1604 	intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1605 
1606 	intel_opregion_unregister(dev_priv);
1607 
1608 	intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1609 
1610 	dev_priv->suspend_count++;
1611 
1612 	intel_csr_ucode_suspend(dev_priv);
1613 
1614 	enable_rpm_wakeref_asserts(dev_priv);
1615 
1616 	return 0;
1617 }
1618 
i915_drm_suspend_late(struct drm_device * dev,bool hibernation)1619 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1620 {
1621 	struct drm_i915_private *dev_priv = to_i915(dev);
1622 	struct pci_dev *pdev = dev_priv->drm.pdev;
1623 	int ret;
1624 
1625 	disable_rpm_wakeref_asserts(dev_priv);
1626 
1627 	i915_gem_suspend_late(dev_priv);
1628 
1629 	intel_display_set_init_power(dev_priv, false);
1630 	i915_rc6_ctx_wa_suspend(dev_priv);
1631 	intel_uncore_suspend(dev_priv);
1632 
1633 	/*
1634 	 * In case of firmware assisted context save/restore don't manually
1635 	 * deinit the power domains. This also means the CSR/DMC firmware will
1636 	 * stay active, it will power down any HW resources as required and
1637 	 * also enable deeper system power states that would be blocked if the
1638 	 * firmware was inactive.
1639 	 */
1640 	if (IS_GEN9_LP(dev_priv) || hibernation || !suspend_to_idle(dev_priv) ||
1641 	    dev_priv->csr.dmc_payload == NULL) {
1642 		intel_power_domains_suspend(dev_priv);
1643 		dev_priv->power_domains_suspended = true;
1644 	}
1645 
1646 	ret = 0;
1647 	if (IS_GEN9_LP(dev_priv))
1648 		bxt_enable_dc9(dev_priv);
1649 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1650 		hsw_enable_pc8(dev_priv);
1651 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1652 		ret = vlv_suspend_complete(dev_priv);
1653 
1654 	if (ret) {
1655 		DRM_ERROR("Suspend complete failed: %d\n", ret);
1656 		if (dev_priv->power_domains_suspended) {
1657 			intel_power_domains_init_hw(dev_priv, true);
1658 			dev_priv->power_domains_suspended = false;
1659 		}
1660 
1661 		goto out;
1662 	}
1663 
1664 	pci_disable_device(pdev);
1665 	/*
1666 	 * During hibernation on some platforms the BIOS may try to access
1667 	 * the device even though it's already in D3 and hang the machine. So
1668 	 * leave the device in D0 on those platforms and hope the BIOS will
1669 	 * power down the device properly. The issue was seen on multiple old
1670 	 * GENs with different BIOS vendors, so having an explicit blacklist
1671 	 * is inpractical; apply the workaround on everything pre GEN6. The
1672 	 * platforms where the issue was seen:
1673 	 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1674 	 * Fujitsu FSC S7110
1675 	 * Acer Aspire 1830T
1676 	 */
1677 	if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1678 		pci_set_power_state(pdev, PCI_D3hot);
1679 
1680 out:
1681 	enable_rpm_wakeref_asserts(dev_priv);
1682 
1683 	return ret;
1684 }
1685 
i915_suspend_switcheroo(struct drm_device * dev,pm_message_t state)1686 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1687 {
1688 	int error;
1689 
1690 	if (!dev) {
1691 		DRM_ERROR("dev: %p\n", dev);
1692 		DRM_ERROR("DRM not initialized, aborting suspend.\n");
1693 		return -ENODEV;
1694 	}
1695 
1696 	if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1697 			 state.event != PM_EVENT_FREEZE))
1698 		return -EINVAL;
1699 
1700 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1701 		return 0;
1702 
1703 	error = i915_drm_suspend(dev);
1704 	if (error)
1705 		return error;
1706 
1707 	return i915_drm_suspend_late(dev, false);
1708 }
1709 
i915_drm_resume(struct drm_device * dev)1710 static int i915_drm_resume(struct drm_device *dev)
1711 {
1712 	struct drm_i915_private *dev_priv = to_i915(dev);
1713 	int ret;
1714 
1715 	disable_rpm_wakeref_asserts(dev_priv);
1716 	intel_sanitize_gt_powersave(dev_priv);
1717 
1718 	i915_gem_sanitize(dev_priv);
1719 
1720 	ret = i915_ggtt_enable_hw(dev_priv);
1721 	if (ret)
1722 		DRM_ERROR("failed to re-enable GGTT\n");
1723 
1724 	intel_csr_ucode_resume(dev_priv);
1725 
1726 	i915_restore_state(dev_priv);
1727 	intel_pps_unlock_regs_wa(dev_priv);
1728 	intel_opregion_setup(dev_priv);
1729 
1730 	intel_init_pch_refclk(dev_priv);
1731 
1732 	/*
1733 	 * Interrupts have to be enabled before any batches are run. If not the
1734 	 * GPU will hang. i915_gem_init_hw() will initiate batches to
1735 	 * update/restore the context.
1736 	 *
1737 	 * drm_mode_config_reset() needs AUX interrupts.
1738 	 *
1739 	 * Modeset enabling in intel_modeset_init_hw() also needs working
1740 	 * interrupts.
1741 	 */
1742 	intel_runtime_pm_enable_interrupts(dev_priv);
1743 
1744 	drm_mode_config_reset(dev);
1745 
1746 	i915_gem_resume(dev_priv);
1747 
1748 	intel_modeset_init_hw(dev);
1749 	intel_init_clock_gating(dev_priv);
1750 
1751 	spin_lock_irq(&dev_priv->irq_lock);
1752 	if (dev_priv->display.hpd_irq_setup)
1753 		dev_priv->display.hpd_irq_setup(dev_priv);
1754 	spin_unlock_irq(&dev_priv->irq_lock);
1755 
1756 	intel_dp_mst_resume(dev_priv);
1757 
1758 	intel_display_resume(dev);
1759 
1760 	drm_kms_helper_poll_enable(dev);
1761 
1762 	/*
1763 	 * ... but also need to make sure that hotplug processing
1764 	 * doesn't cause havoc. Like in the driver load code we don't
1765 	 * bother with the tiny race here where we might loose hotplug
1766 	 * notifications.
1767 	 * */
1768 	intel_hpd_init(dev_priv);
1769 
1770 	intel_opregion_register(dev_priv);
1771 
1772 	intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1773 
1774 	intel_opregion_notify_adapter(dev_priv, PCI_D0);
1775 
1776 	enable_rpm_wakeref_asserts(dev_priv);
1777 
1778 	return 0;
1779 }
1780 
i915_drm_resume_early(struct drm_device * dev)1781 static int i915_drm_resume_early(struct drm_device *dev)
1782 {
1783 	struct drm_i915_private *dev_priv = to_i915(dev);
1784 	struct pci_dev *pdev = dev_priv->drm.pdev;
1785 	int ret;
1786 
1787 	/*
1788 	 * We have a resume ordering issue with the snd-hda driver also
1789 	 * requiring our device to be power up. Due to the lack of a
1790 	 * parent/child relationship we currently solve this with an early
1791 	 * resume hook.
1792 	 *
1793 	 * FIXME: This should be solved with a special hdmi sink device or
1794 	 * similar so that power domains can be employed.
1795 	 */
1796 
1797 	/*
1798 	 * Note that we need to set the power state explicitly, since we
1799 	 * powered off the device during freeze and the PCI core won't power
1800 	 * it back up for us during thaw. Powering off the device during
1801 	 * freeze is not a hard requirement though, and during the
1802 	 * suspend/resume phases the PCI core makes sure we get here with the
1803 	 * device powered on. So in case we change our freeze logic and keep
1804 	 * the device powered we can also remove the following set power state
1805 	 * call.
1806 	 */
1807 	ret = pci_set_power_state(pdev, PCI_D0);
1808 	if (ret) {
1809 		DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1810 		goto out;
1811 	}
1812 
1813 	/*
1814 	 * Note that pci_enable_device() first enables any parent bridge
1815 	 * device and only then sets the power state for this device. The
1816 	 * bridge enabling is a nop though, since bridge devices are resumed
1817 	 * first. The order of enabling power and enabling the device is
1818 	 * imposed by the PCI core as described above, so here we preserve the
1819 	 * same order for the freeze/thaw phases.
1820 	 *
1821 	 * TODO: eventually we should remove pci_disable_device() /
1822 	 * pci_enable_enable_device() from suspend/resume. Due to how they
1823 	 * depend on the device enable refcount we can't anyway depend on them
1824 	 * disabling/enabling the device.
1825 	 */
1826 	if (pci_enable_device(pdev)) {
1827 		ret = -EIO;
1828 		goto out;
1829 	}
1830 
1831 	pci_set_master(pdev);
1832 
1833 	disable_rpm_wakeref_asserts(dev_priv);
1834 
1835 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1836 		ret = vlv_resume_prepare(dev_priv, false);
1837 	if (ret)
1838 		DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1839 			  ret);
1840 
1841 	intel_uncore_resume_early(dev_priv);
1842 
1843 	if (IS_GEN9_LP(dev_priv)) {
1844 		gen9_sanitize_dc_state(dev_priv);
1845 		bxt_disable_dc9(dev_priv);
1846 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1847 		hsw_disable_pc8(dev_priv);
1848 	}
1849 
1850 	intel_uncore_sanitize(dev_priv);
1851 
1852 	if (dev_priv->power_domains_suspended)
1853 		intel_power_domains_init_hw(dev_priv, true);
1854 	else
1855 		intel_display_set_init_power(dev_priv, true);
1856 
1857 	i915_rc6_ctx_wa_resume(dev_priv);
1858 
1859 	intel_engines_sanitize(dev_priv);
1860 
1861 	enable_rpm_wakeref_asserts(dev_priv);
1862 
1863 out:
1864 	dev_priv->power_domains_suspended = false;
1865 
1866 	return ret;
1867 }
1868 
i915_resume_switcheroo(struct drm_device * dev)1869 static int i915_resume_switcheroo(struct drm_device *dev)
1870 {
1871 	int ret;
1872 
1873 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1874 		return 0;
1875 
1876 	ret = i915_drm_resume_early(dev);
1877 	if (ret)
1878 		return ret;
1879 
1880 	return i915_drm_resume(dev);
1881 }
1882 
1883 /**
1884  * i915_reset - reset chip after a hang
1885  * @i915: #drm_i915_private to reset
1886  * @stalled_mask: mask of the stalled engines with the guilty requests
1887  * @reason: user error message for why we are resetting
1888  *
1889  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1890  * on failure.
1891  *
1892  * Caller must hold the struct_mutex.
1893  *
1894  * Procedure is fairly simple:
1895  *   - reset the chip using the reset reg
1896  *   - re-init context state
1897  *   - re-init hardware status page
1898  *   - re-init ring buffer
1899  *   - re-init interrupt state
1900  *   - re-init display
1901  */
i915_reset(struct drm_i915_private * i915,unsigned int stalled_mask,const char * reason)1902 void i915_reset(struct drm_i915_private *i915,
1903 		unsigned int stalled_mask,
1904 		const char *reason)
1905 {
1906 	struct i915_gpu_error *error = &i915->gpu_error;
1907 	int ret;
1908 	int i;
1909 
1910 	GEM_TRACE("flags=%lx\n", error->flags);
1911 
1912 	might_sleep();
1913 	lockdep_assert_held(&i915->drm.struct_mutex);
1914 	GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1915 
1916 	if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1917 		return;
1918 
1919 	/* Clear any previous failed attempts at recovery. Time to try again. */
1920 	if (!i915_gem_unset_wedged(i915))
1921 		goto wakeup;
1922 
1923 	if (reason)
1924 		dev_notice(i915->drm.dev, "Resetting chip for %s\n", reason);
1925 	error->reset_count++;
1926 
1927 	disable_irq(i915->drm.irq);
1928 	ret = i915_gem_reset_prepare(i915);
1929 	if (ret) {
1930 		dev_err(i915->drm.dev, "GPU recovery failed\n");
1931 		goto taint;
1932 	}
1933 
1934 	if (!intel_has_gpu_reset(i915)) {
1935 		if (i915_modparams.reset)
1936 			dev_err(i915->drm.dev, "GPU reset not supported\n");
1937 		else
1938 			DRM_DEBUG_DRIVER("GPU reset disabled\n");
1939 		goto error;
1940 	}
1941 
1942 	for (i = 0; i < 3; i++) {
1943 		ret = intel_gpu_reset(i915, ALL_ENGINES);
1944 		if (ret == 0)
1945 			break;
1946 
1947 		msleep(100);
1948 	}
1949 	if (ret) {
1950 		dev_err(i915->drm.dev, "Failed to reset chip\n");
1951 		goto taint;
1952 	}
1953 
1954 	/* Ok, now get things going again... */
1955 
1956 	/*
1957 	 * Everything depends on having the GTT running, so we need to start
1958 	 * there.
1959 	 */
1960 	ret = i915_ggtt_enable_hw(i915);
1961 	if (ret) {
1962 		DRM_ERROR("Failed to re-enable GGTT following reset (%d)\n",
1963 			  ret);
1964 		goto error;
1965 	}
1966 
1967 	i915_gem_reset(i915, stalled_mask);
1968 	intel_overlay_reset(i915);
1969 
1970 	/*
1971 	 * Next we need to restore the context, but we don't use those
1972 	 * yet either...
1973 	 *
1974 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1975 	 * was running at the time of the reset (i.e. we weren't VT
1976 	 * switched away).
1977 	 */
1978 	ret = i915_gem_init_hw(i915);
1979 	if (ret) {
1980 		DRM_ERROR("Failed to initialise HW following reset (%d)\n",
1981 			  ret);
1982 		goto error;
1983 	}
1984 
1985 	i915_queue_hangcheck(i915);
1986 
1987 finish:
1988 	i915_gem_reset_finish(i915);
1989 	enable_irq(i915->drm.irq);
1990 
1991 wakeup:
1992 	clear_bit(I915_RESET_HANDOFF, &error->flags);
1993 	wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1994 	return;
1995 
1996 taint:
1997 	/*
1998 	 * History tells us that if we cannot reset the GPU now, we
1999 	 * never will. This then impacts everything that is run
2000 	 * subsequently. On failing the reset, we mark the driver
2001 	 * as wedged, preventing further execution on the GPU.
2002 	 * We also want to go one step further and add a taint to the
2003 	 * kernel so that any subsequent faults can be traced back to
2004 	 * this failure. This is important for CI, where if the
2005 	 * GPU/driver fails we would like to reboot and restart testing
2006 	 * rather than continue on into oblivion. For everyone else,
2007 	 * the system should still plod along, but they have been warned!
2008 	 */
2009 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2010 error:
2011 	i915_gem_set_wedged(i915);
2012 	i915_retire_requests(i915);
2013 	goto finish;
2014 }
2015 
intel_gt_reset_engine(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2016 static inline int intel_gt_reset_engine(struct drm_i915_private *dev_priv,
2017 					struct intel_engine_cs *engine)
2018 {
2019 	return intel_gpu_reset(dev_priv, intel_engine_flag(engine));
2020 }
2021 
2022 /**
2023  * i915_reset_engine - reset GPU engine to recover from a hang
2024  * @engine: engine to reset
2025  * @msg: reason for GPU reset; or NULL for no dev_notice()
2026  *
2027  * Reset a specific GPU engine. Useful if a hang is detected.
2028  * Returns zero on successful reset or otherwise an error code.
2029  *
2030  * Procedure is:
2031  *  - identifies the request that caused the hang and it is dropped
2032  *  - reset engine (which will force the engine to idle)
2033  *  - re-init/configure engine
2034  */
i915_reset_engine(struct intel_engine_cs * engine,const char * msg)2035 int i915_reset_engine(struct intel_engine_cs *engine, const char *msg)
2036 {
2037 	struct i915_gpu_error *error = &engine->i915->gpu_error;
2038 	struct i915_request *active_request;
2039 	int ret;
2040 
2041 	GEM_TRACE("%s flags=%lx\n", engine->name, error->flags);
2042 	GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
2043 
2044 	active_request = i915_gem_reset_prepare_engine(engine);
2045 	if (IS_ERR_OR_NULL(active_request)) {
2046 		/* Either the previous reset failed, or we pardon the reset. */
2047 		ret = PTR_ERR(active_request);
2048 		goto out;
2049 	}
2050 
2051 	if (msg)
2052 		dev_notice(engine->i915->drm.dev,
2053 			   "Resetting %s for %s\n", engine->name, msg);
2054 	error->reset_engine_count[engine->id]++;
2055 
2056 	if (!engine->i915->guc.execbuf_client)
2057 		ret = intel_gt_reset_engine(engine->i915, engine);
2058 	else
2059 		ret = intel_guc_reset_engine(&engine->i915->guc, engine);
2060 	if (ret) {
2061 		/* If we fail here, we expect to fallback to a global reset */
2062 		DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
2063 				 engine->i915->guc.execbuf_client ? "GuC " : "",
2064 				 engine->name, ret);
2065 		goto out;
2066 	}
2067 
2068 	/*
2069 	 * The request that caused the hang is stuck on elsp, we know the
2070 	 * active request and can drop it, adjust head to skip the offending
2071 	 * request to resume executing remaining requests in the queue.
2072 	 */
2073 	i915_gem_reset_engine(engine, active_request, true);
2074 
2075 	/*
2076 	 * The engine and its registers (and workarounds in case of render)
2077 	 * have been reset to their default values. Follow the init_ring
2078 	 * process to program RING_MODE, HWSP and re-enable submission.
2079 	 */
2080 	ret = engine->init_hw(engine);
2081 	if (ret)
2082 		goto out;
2083 
2084 out:
2085 	i915_gem_reset_finish_engine(engine);
2086 	return ret;
2087 }
2088 
i915_pm_prepare(struct device * kdev)2089 static int i915_pm_prepare(struct device *kdev)
2090 {
2091 	struct pci_dev *pdev = to_pci_dev(kdev);
2092 	struct drm_device *dev = pci_get_drvdata(pdev);
2093 
2094 	if (!dev) {
2095 		dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2096 		return -ENODEV;
2097 	}
2098 
2099 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2100 		return 0;
2101 
2102 	return i915_drm_prepare(dev);
2103 }
2104 
i915_pm_suspend(struct device * kdev)2105 static int i915_pm_suspend(struct device *kdev)
2106 {
2107 	struct pci_dev *pdev = to_pci_dev(kdev);
2108 	struct drm_device *dev = pci_get_drvdata(pdev);
2109 
2110 	if (!dev) {
2111 		dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2112 		return -ENODEV;
2113 	}
2114 
2115 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2116 		return 0;
2117 
2118 	return i915_drm_suspend(dev);
2119 }
2120 
i915_pm_suspend_late(struct device * kdev)2121 static int i915_pm_suspend_late(struct device *kdev)
2122 {
2123 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2124 
2125 	/*
2126 	 * We have a suspend ordering issue with the snd-hda driver also
2127 	 * requiring our device to be power up. Due to the lack of a
2128 	 * parent/child relationship we currently solve this with an late
2129 	 * suspend hook.
2130 	 *
2131 	 * FIXME: This should be solved with a special hdmi sink device or
2132 	 * similar so that power domains can be employed.
2133 	 */
2134 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2135 		return 0;
2136 
2137 	return i915_drm_suspend_late(dev, false);
2138 }
2139 
i915_pm_poweroff_late(struct device * kdev)2140 static int i915_pm_poweroff_late(struct device *kdev)
2141 {
2142 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2143 
2144 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2145 		return 0;
2146 
2147 	return i915_drm_suspend_late(dev, true);
2148 }
2149 
i915_pm_resume_early(struct device * kdev)2150 static int i915_pm_resume_early(struct device *kdev)
2151 {
2152 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2153 
2154 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2155 		return 0;
2156 
2157 	return i915_drm_resume_early(dev);
2158 }
2159 
i915_pm_resume(struct device * kdev)2160 static int i915_pm_resume(struct device *kdev)
2161 {
2162 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2163 
2164 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2165 		return 0;
2166 
2167 	return i915_drm_resume(dev);
2168 }
2169 
2170 /* freeze: before creating the hibernation_image */
i915_pm_freeze(struct device * kdev)2171 static int i915_pm_freeze(struct device *kdev)
2172 {
2173 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2174 	int ret;
2175 
2176 	if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2177 		ret = i915_drm_suspend(dev);
2178 		if (ret)
2179 			return ret;
2180 	}
2181 
2182 	ret = i915_gem_freeze(kdev_to_i915(kdev));
2183 	if (ret)
2184 		return ret;
2185 
2186 	return 0;
2187 }
2188 
i915_pm_freeze_late(struct device * kdev)2189 static int i915_pm_freeze_late(struct device *kdev)
2190 {
2191 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2192 	int ret;
2193 
2194 	if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2195 		ret = i915_drm_suspend_late(dev, true);
2196 		if (ret)
2197 			return ret;
2198 	}
2199 
2200 	ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2201 	if (ret)
2202 		return ret;
2203 
2204 	return 0;
2205 }
2206 
2207 /* thaw: called after creating the hibernation image, but before turning off. */
i915_pm_thaw_early(struct device * kdev)2208 static int i915_pm_thaw_early(struct device *kdev)
2209 {
2210 	return i915_pm_resume_early(kdev);
2211 }
2212 
i915_pm_thaw(struct device * kdev)2213 static int i915_pm_thaw(struct device *kdev)
2214 {
2215 	return i915_pm_resume(kdev);
2216 }
2217 
2218 /* restore: called after loading the hibernation image. */
i915_pm_restore_early(struct device * kdev)2219 static int i915_pm_restore_early(struct device *kdev)
2220 {
2221 	return i915_pm_resume_early(kdev);
2222 }
2223 
i915_pm_restore(struct device * kdev)2224 static int i915_pm_restore(struct device *kdev)
2225 {
2226 	return i915_pm_resume(kdev);
2227 }
2228 
2229 /*
2230  * Save all Gunit registers that may be lost after a D3 and a subsequent
2231  * S0i[R123] transition. The list of registers needing a save/restore is
2232  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2233  * registers in the following way:
2234  * - Driver: saved/restored by the driver
2235  * - Punit : saved/restored by the Punit firmware
2236  * - No, w/o marking: no need to save/restore, since the register is R/O or
2237  *                    used internally by the HW in a way that doesn't depend
2238  *                    keeping the content across a suspend/resume.
2239  * - Debug : used for debugging
2240  *
2241  * We save/restore all registers marked with 'Driver', with the following
2242  * exceptions:
2243  * - Registers out of use, including also registers marked with 'Debug'.
2244  *   These have no effect on the driver's operation, so we don't save/restore
2245  *   them to reduce the overhead.
2246  * - Registers that are fully setup by an initialization function called from
2247  *   the resume path. For example many clock gating and RPS/RC6 registers.
2248  * - Registers that provide the right functionality with their reset defaults.
2249  *
2250  * TODO: Except for registers that based on the above 3 criteria can be safely
2251  * ignored, we save/restore all others, practically treating the HW context as
2252  * a black-box for the driver. Further investigation is needed to reduce the
2253  * saved/restored registers even further, by following the same 3 criteria.
2254  */
vlv_save_gunit_s0ix_state(struct drm_i915_private * dev_priv)2255 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2256 {
2257 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2258 	int i;
2259 
2260 	/* GAM 0x4000-0x4770 */
2261 	s->wr_watermark		= I915_READ(GEN7_WR_WATERMARK);
2262 	s->gfx_prio_ctrl	= I915_READ(GEN7_GFX_PRIO_CTRL);
2263 	s->arb_mode		= I915_READ(ARB_MODE);
2264 	s->gfx_pend_tlb0	= I915_READ(GEN7_GFX_PEND_TLB0);
2265 	s->gfx_pend_tlb1	= I915_READ(GEN7_GFX_PEND_TLB1);
2266 
2267 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2268 		s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2269 
2270 	s->media_max_req_count	= I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2271 	s->gfx_max_req_count	= I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2272 
2273 	s->render_hwsp		= I915_READ(RENDER_HWS_PGA_GEN7);
2274 	s->ecochk		= I915_READ(GAM_ECOCHK);
2275 	s->bsd_hwsp		= I915_READ(BSD_HWS_PGA_GEN7);
2276 	s->blt_hwsp		= I915_READ(BLT_HWS_PGA_GEN7);
2277 
2278 	s->tlb_rd_addr		= I915_READ(GEN7_TLB_RD_ADDR);
2279 
2280 	/* MBC 0x9024-0x91D0, 0x8500 */
2281 	s->g3dctl		= I915_READ(VLV_G3DCTL);
2282 	s->gsckgctl		= I915_READ(VLV_GSCKGCTL);
2283 	s->mbctl		= I915_READ(GEN6_MBCTL);
2284 
2285 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
2286 	s->ucgctl1		= I915_READ(GEN6_UCGCTL1);
2287 	s->ucgctl3		= I915_READ(GEN6_UCGCTL3);
2288 	s->rcgctl1		= I915_READ(GEN6_RCGCTL1);
2289 	s->rcgctl2		= I915_READ(GEN6_RCGCTL2);
2290 	s->rstctl		= I915_READ(GEN6_RSTCTL);
2291 	s->misccpctl		= I915_READ(GEN7_MISCCPCTL);
2292 
2293 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2294 	s->gfxpause		= I915_READ(GEN6_GFXPAUSE);
2295 	s->rpdeuhwtc		= I915_READ(GEN6_RPDEUHWTC);
2296 	s->rpdeuc		= I915_READ(GEN6_RPDEUC);
2297 	s->ecobus		= I915_READ(ECOBUS);
2298 	s->pwrdwnupctl		= I915_READ(VLV_PWRDWNUPCTL);
2299 	s->rp_down_timeout	= I915_READ(GEN6_RP_DOWN_TIMEOUT);
2300 	s->rp_deucsw		= I915_READ(GEN6_RPDEUCSW);
2301 	s->rcubmabdtmr		= I915_READ(GEN6_RCUBMABDTMR);
2302 	s->rcedata		= I915_READ(VLV_RCEDATA);
2303 	s->spare2gh		= I915_READ(VLV_SPAREG2H);
2304 
2305 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2306 	s->gt_imr		= I915_READ(GTIMR);
2307 	s->gt_ier		= I915_READ(GTIER);
2308 	s->pm_imr		= I915_READ(GEN6_PMIMR);
2309 	s->pm_ier		= I915_READ(GEN6_PMIER);
2310 
2311 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2312 		s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2313 
2314 	/* GT SA CZ domain, 0x100000-0x138124 */
2315 	s->tilectl		= I915_READ(TILECTL);
2316 	s->gt_fifoctl		= I915_READ(GTFIFOCTL);
2317 	s->gtlc_wake_ctrl	= I915_READ(VLV_GTLC_WAKE_CTRL);
2318 	s->gtlc_survive		= I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2319 	s->pmwgicz		= I915_READ(VLV_PMWGICZ);
2320 
2321 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
2322 	s->gu_ctl0		= I915_READ(VLV_GU_CTL0);
2323 	s->gu_ctl1		= I915_READ(VLV_GU_CTL1);
2324 	s->pcbr			= I915_READ(VLV_PCBR);
2325 	s->clock_gate_dis2	= I915_READ(VLV_GUNIT_CLOCK_GATE2);
2326 
2327 	/*
2328 	 * Not saving any of:
2329 	 * DFT,		0x9800-0x9EC0
2330 	 * SARB,	0xB000-0xB1FC
2331 	 * GAC,		0x5208-0x524C, 0x14000-0x14C000
2332 	 * PCI CFG
2333 	 */
2334 }
2335 
vlv_restore_gunit_s0ix_state(struct drm_i915_private * dev_priv)2336 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2337 {
2338 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2339 	u32 val;
2340 	int i;
2341 
2342 	/* GAM 0x4000-0x4770 */
2343 	I915_WRITE(GEN7_WR_WATERMARK,	s->wr_watermark);
2344 	I915_WRITE(GEN7_GFX_PRIO_CTRL,	s->gfx_prio_ctrl);
2345 	I915_WRITE(ARB_MODE,		s->arb_mode | (0xffff << 16));
2346 	I915_WRITE(GEN7_GFX_PEND_TLB0,	s->gfx_pend_tlb0);
2347 	I915_WRITE(GEN7_GFX_PEND_TLB1,	s->gfx_pend_tlb1);
2348 
2349 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2350 		I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2351 
2352 	I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2353 	I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2354 
2355 	I915_WRITE(RENDER_HWS_PGA_GEN7,	s->render_hwsp);
2356 	I915_WRITE(GAM_ECOCHK,		s->ecochk);
2357 	I915_WRITE(BSD_HWS_PGA_GEN7,	s->bsd_hwsp);
2358 	I915_WRITE(BLT_HWS_PGA_GEN7,	s->blt_hwsp);
2359 
2360 	I915_WRITE(GEN7_TLB_RD_ADDR,	s->tlb_rd_addr);
2361 
2362 	/* MBC 0x9024-0x91D0, 0x8500 */
2363 	I915_WRITE(VLV_G3DCTL,		s->g3dctl);
2364 	I915_WRITE(VLV_GSCKGCTL,	s->gsckgctl);
2365 	I915_WRITE(GEN6_MBCTL,		s->mbctl);
2366 
2367 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
2368 	I915_WRITE(GEN6_UCGCTL1,	s->ucgctl1);
2369 	I915_WRITE(GEN6_UCGCTL3,	s->ucgctl3);
2370 	I915_WRITE(GEN6_RCGCTL1,	s->rcgctl1);
2371 	I915_WRITE(GEN6_RCGCTL2,	s->rcgctl2);
2372 	I915_WRITE(GEN6_RSTCTL,		s->rstctl);
2373 	I915_WRITE(GEN7_MISCCPCTL,	s->misccpctl);
2374 
2375 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2376 	I915_WRITE(GEN6_GFXPAUSE,	s->gfxpause);
2377 	I915_WRITE(GEN6_RPDEUHWTC,	s->rpdeuhwtc);
2378 	I915_WRITE(GEN6_RPDEUC,		s->rpdeuc);
2379 	I915_WRITE(ECOBUS,		s->ecobus);
2380 	I915_WRITE(VLV_PWRDWNUPCTL,	s->pwrdwnupctl);
2381 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2382 	I915_WRITE(GEN6_RPDEUCSW,	s->rp_deucsw);
2383 	I915_WRITE(GEN6_RCUBMABDTMR,	s->rcubmabdtmr);
2384 	I915_WRITE(VLV_RCEDATA,		s->rcedata);
2385 	I915_WRITE(VLV_SPAREG2H,	s->spare2gh);
2386 
2387 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2388 	I915_WRITE(GTIMR,		s->gt_imr);
2389 	I915_WRITE(GTIER,		s->gt_ier);
2390 	I915_WRITE(GEN6_PMIMR,		s->pm_imr);
2391 	I915_WRITE(GEN6_PMIER,		s->pm_ier);
2392 
2393 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2394 		I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2395 
2396 	/* GT SA CZ domain, 0x100000-0x138124 */
2397 	I915_WRITE(TILECTL,			s->tilectl);
2398 	I915_WRITE(GTFIFOCTL,			s->gt_fifoctl);
2399 	/*
2400 	 * Preserve the GT allow wake and GFX force clock bit, they are not
2401 	 * be restored, as they are used to control the s0ix suspend/resume
2402 	 * sequence by the caller.
2403 	 */
2404 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
2405 	val &= VLV_GTLC_ALLOWWAKEREQ;
2406 	val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2407 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2408 
2409 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2410 	val &= VLV_GFX_CLK_FORCE_ON_BIT;
2411 	val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2412 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2413 
2414 	I915_WRITE(VLV_PMWGICZ,			s->pmwgicz);
2415 
2416 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
2417 	I915_WRITE(VLV_GU_CTL0,			s->gu_ctl0);
2418 	I915_WRITE(VLV_GU_CTL1,			s->gu_ctl1);
2419 	I915_WRITE(VLV_PCBR,			s->pcbr);
2420 	I915_WRITE(VLV_GUNIT_CLOCK_GATE2,	s->clock_gate_dis2);
2421 }
2422 
vlv_wait_for_pw_status(struct drm_i915_private * dev_priv,u32 mask,u32 val)2423 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2424 				  u32 mask, u32 val)
2425 {
2426 	/* The HW does not like us polling for PW_STATUS frequently, so
2427 	 * use the sleeping loop rather than risk the busy spin within
2428 	 * intel_wait_for_register().
2429 	 *
2430 	 * Transitioning between RC6 states should be at most 2ms (see
2431 	 * valleyview_enable_rps) so use a 3ms timeout.
2432 	 */
2433 	return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2434 			3);
2435 }
2436 
vlv_force_gfx_clock(struct drm_i915_private * dev_priv,bool force_on)2437 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2438 {
2439 	u32 val;
2440 	int err;
2441 
2442 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2443 	val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2444 	if (force_on)
2445 		val |= VLV_GFX_CLK_FORCE_ON_BIT;
2446 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2447 
2448 	if (!force_on)
2449 		return 0;
2450 
2451 	err = intel_wait_for_register(dev_priv,
2452 				      VLV_GTLC_SURVIVABILITY_REG,
2453 				      VLV_GFX_CLK_STATUS_BIT,
2454 				      VLV_GFX_CLK_STATUS_BIT,
2455 				      20);
2456 	if (err)
2457 		DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2458 			  I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2459 
2460 	return err;
2461 }
2462 
vlv_allow_gt_wake(struct drm_i915_private * dev_priv,bool allow)2463 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2464 {
2465 	u32 mask;
2466 	u32 val;
2467 	int err;
2468 
2469 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
2470 	val &= ~VLV_GTLC_ALLOWWAKEREQ;
2471 	if (allow)
2472 		val |= VLV_GTLC_ALLOWWAKEREQ;
2473 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2474 	POSTING_READ(VLV_GTLC_WAKE_CTRL);
2475 
2476 	mask = VLV_GTLC_ALLOWWAKEACK;
2477 	val = allow ? mask : 0;
2478 
2479 	err = vlv_wait_for_pw_status(dev_priv, mask, val);
2480 	if (err)
2481 		DRM_ERROR("timeout disabling GT waking\n");
2482 
2483 	return err;
2484 }
2485 
vlv_wait_for_gt_wells(struct drm_i915_private * dev_priv,bool wait_for_on)2486 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2487 				  bool wait_for_on)
2488 {
2489 	u32 mask;
2490 	u32 val;
2491 
2492 	mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2493 	val = wait_for_on ? mask : 0;
2494 
2495 	/*
2496 	 * RC6 transitioning can be delayed up to 2 msec (see
2497 	 * valleyview_enable_rps), use 3 msec for safety.
2498 	 *
2499 	 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2500 	 * reset and we are trying to force the machine to sleep.
2501 	 */
2502 	if (vlv_wait_for_pw_status(dev_priv, mask, val))
2503 		DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2504 				 onoff(wait_for_on));
2505 }
2506 
vlv_check_no_gt_access(struct drm_i915_private * dev_priv)2507 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2508 {
2509 	if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2510 		return;
2511 
2512 	DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2513 	I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2514 }
2515 
vlv_suspend_complete(struct drm_i915_private * dev_priv)2516 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2517 {
2518 	u32 mask;
2519 	int err;
2520 
2521 	/*
2522 	 * Bspec defines the following GT well on flags as debug only, so
2523 	 * don't treat them as hard failures.
2524 	 */
2525 	vlv_wait_for_gt_wells(dev_priv, false);
2526 
2527 	mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2528 	WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2529 
2530 	vlv_check_no_gt_access(dev_priv);
2531 
2532 	err = vlv_force_gfx_clock(dev_priv, true);
2533 	if (err)
2534 		goto err1;
2535 
2536 	err = vlv_allow_gt_wake(dev_priv, false);
2537 	if (err)
2538 		goto err2;
2539 
2540 	if (!IS_CHERRYVIEW(dev_priv))
2541 		vlv_save_gunit_s0ix_state(dev_priv);
2542 
2543 	err = vlv_force_gfx_clock(dev_priv, false);
2544 	if (err)
2545 		goto err2;
2546 
2547 	return 0;
2548 
2549 err2:
2550 	/* For safety always re-enable waking and disable gfx clock forcing */
2551 	vlv_allow_gt_wake(dev_priv, true);
2552 err1:
2553 	vlv_force_gfx_clock(dev_priv, false);
2554 
2555 	return err;
2556 }
2557 
vlv_resume_prepare(struct drm_i915_private * dev_priv,bool rpm_resume)2558 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2559 				bool rpm_resume)
2560 {
2561 	int err;
2562 	int ret;
2563 
2564 	/*
2565 	 * If any of the steps fail just try to continue, that's the best we
2566 	 * can do at this point. Return the first error code (which will also
2567 	 * leave RPM permanently disabled).
2568 	 */
2569 	ret = vlv_force_gfx_clock(dev_priv, true);
2570 
2571 	if (!IS_CHERRYVIEW(dev_priv))
2572 		vlv_restore_gunit_s0ix_state(dev_priv);
2573 
2574 	err = vlv_allow_gt_wake(dev_priv, true);
2575 	if (!ret)
2576 		ret = err;
2577 
2578 	err = vlv_force_gfx_clock(dev_priv, false);
2579 	if (!ret)
2580 		ret = err;
2581 
2582 	vlv_check_no_gt_access(dev_priv);
2583 
2584 	if (rpm_resume)
2585 		intel_init_clock_gating(dev_priv);
2586 
2587 	return ret;
2588 }
2589 
intel_runtime_suspend(struct device * kdev)2590 static int intel_runtime_suspend(struct device *kdev)
2591 {
2592 	struct pci_dev *pdev = to_pci_dev(kdev);
2593 	struct drm_device *dev = pci_get_drvdata(pdev);
2594 	struct drm_i915_private *dev_priv = to_i915(dev);
2595 	int ret;
2596 
2597 	if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2598 		return -ENODEV;
2599 
2600 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2601 		return -ENODEV;
2602 
2603 	DRM_DEBUG_KMS("Suspending device\n");
2604 
2605 	disable_rpm_wakeref_asserts(dev_priv);
2606 
2607 	/*
2608 	 * We are safe here against re-faults, since the fault handler takes
2609 	 * an RPM reference.
2610 	 */
2611 	i915_gem_runtime_suspend(dev_priv);
2612 
2613 	intel_uc_suspend(dev_priv);
2614 
2615 	intel_runtime_pm_disable_interrupts(dev_priv);
2616 
2617 	intel_uncore_suspend(dev_priv);
2618 
2619 	ret = 0;
2620 	if (IS_GEN9_LP(dev_priv)) {
2621 		bxt_display_core_uninit(dev_priv);
2622 		bxt_enable_dc9(dev_priv);
2623 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2624 		hsw_enable_pc8(dev_priv);
2625 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2626 		ret = vlv_suspend_complete(dev_priv);
2627 	}
2628 
2629 	if (ret) {
2630 		DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2631 		intel_uncore_runtime_resume(dev_priv);
2632 
2633 		intel_runtime_pm_enable_interrupts(dev_priv);
2634 
2635 		intel_uc_resume(dev_priv);
2636 
2637 		i915_gem_init_swizzling(dev_priv);
2638 		i915_gem_restore_fences(dev_priv);
2639 
2640 		enable_rpm_wakeref_asserts(dev_priv);
2641 
2642 		return ret;
2643 	}
2644 
2645 	enable_rpm_wakeref_asserts(dev_priv);
2646 	WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2647 
2648 	if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2649 		DRM_ERROR("Unclaimed access detected prior to suspending\n");
2650 
2651 	dev_priv->runtime_pm.suspended = true;
2652 
2653 	/*
2654 	 * FIXME: We really should find a document that references the arguments
2655 	 * used below!
2656 	 */
2657 	if (IS_BROADWELL(dev_priv)) {
2658 		/*
2659 		 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2660 		 * being detected, and the call we do at intel_runtime_resume()
2661 		 * won't be able to restore them. Since PCI_D3hot matches the
2662 		 * actual specification and appears to be working, use it.
2663 		 */
2664 		intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2665 	} else {
2666 		/*
2667 		 * current versions of firmware which depend on this opregion
2668 		 * notification have repurposed the D1 definition to mean
2669 		 * "runtime suspended" vs. what you would normally expect (D3)
2670 		 * to distinguish it from notifications that might be sent via
2671 		 * the suspend path.
2672 		 */
2673 		intel_opregion_notify_adapter(dev_priv, PCI_D1);
2674 	}
2675 
2676 	assert_forcewakes_inactive(dev_priv);
2677 
2678 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2679 		intel_hpd_poll_init(dev_priv);
2680 
2681 	DRM_DEBUG_KMS("Device suspended\n");
2682 	return 0;
2683 }
2684 
intel_runtime_resume(struct device * kdev)2685 static int intel_runtime_resume(struct device *kdev)
2686 {
2687 	struct pci_dev *pdev = to_pci_dev(kdev);
2688 	struct drm_device *dev = pci_get_drvdata(pdev);
2689 	struct drm_i915_private *dev_priv = to_i915(dev);
2690 	int ret = 0;
2691 
2692 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2693 		return -ENODEV;
2694 
2695 	DRM_DEBUG_KMS("Resuming device\n");
2696 
2697 	WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2698 	disable_rpm_wakeref_asserts(dev_priv);
2699 
2700 	intel_opregion_notify_adapter(dev_priv, PCI_D0);
2701 	dev_priv->runtime_pm.suspended = false;
2702 	if (intel_uncore_unclaimed_mmio(dev_priv))
2703 		DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2704 
2705 	if (IS_GEN9_LP(dev_priv)) {
2706 		bxt_disable_dc9(dev_priv);
2707 		bxt_display_core_init(dev_priv, true);
2708 		if (dev_priv->csr.dmc_payload &&
2709 		    (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2710 			gen9_enable_dc5(dev_priv);
2711 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2712 		hsw_disable_pc8(dev_priv);
2713 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2714 		ret = vlv_resume_prepare(dev_priv, true);
2715 	}
2716 
2717 	intel_uncore_runtime_resume(dev_priv);
2718 
2719 	intel_runtime_pm_enable_interrupts(dev_priv);
2720 
2721 	intel_uc_resume(dev_priv);
2722 
2723 	/*
2724 	 * No point of rolling back things in case of an error, as the best
2725 	 * we can do is to hope that things will still work (and disable RPM).
2726 	 */
2727 	i915_gem_init_swizzling(dev_priv);
2728 	i915_gem_restore_fences(dev_priv);
2729 
2730 	/*
2731 	 * On VLV/CHV display interrupts are part of the display
2732 	 * power well, so hpd is reinitialized from there. For
2733 	 * everyone else do it here.
2734 	 */
2735 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2736 		intel_hpd_init(dev_priv);
2737 
2738 	intel_enable_ipc(dev_priv);
2739 
2740 	enable_rpm_wakeref_asserts(dev_priv);
2741 
2742 	if (ret)
2743 		DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2744 	else
2745 		DRM_DEBUG_KMS("Device resumed\n");
2746 
2747 	return ret;
2748 }
2749 
2750 const struct dev_pm_ops i915_pm_ops = {
2751 	/*
2752 	 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2753 	 * PMSG_RESUME]
2754 	 */
2755 	.prepare = i915_pm_prepare,
2756 	.suspend = i915_pm_suspend,
2757 	.suspend_late = i915_pm_suspend_late,
2758 	.resume_early = i915_pm_resume_early,
2759 	.resume = i915_pm_resume,
2760 
2761 	/*
2762 	 * S4 event handlers
2763 	 * @freeze, @freeze_late    : called (1) before creating the
2764 	 *                            hibernation image [PMSG_FREEZE] and
2765 	 *                            (2) after rebooting, before restoring
2766 	 *                            the image [PMSG_QUIESCE]
2767 	 * @thaw, @thaw_early       : called (1) after creating the hibernation
2768 	 *                            image, before writing it [PMSG_THAW]
2769 	 *                            and (2) after failing to create or
2770 	 *                            restore the image [PMSG_RECOVER]
2771 	 * @poweroff, @poweroff_late: called after writing the hibernation
2772 	 *                            image, before rebooting [PMSG_HIBERNATE]
2773 	 * @restore, @restore_early : called after rebooting and restoring the
2774 	 *                            hibernation image [PMSG_RESTORE]
2775 	 */
2776 	.freeze = i915_pm_freeze,
2777 	.freeze_late = i915_pm_freeze_late,
2778 	.thaw_early = i915_pm_thaw_early,
2779 	.thaw = i915_pm_thaw,
2780 	.poweroff = i915_pm_suspend,
2781 	.poweroff_late = i915_pm_poweroff_late,
2782 	.restore_early = i915_pm_restore_early,
2783 	.restore = i915_pm_restore,
2784 
2785 	/* S0ix (via runtime suspend) event handlers */
2786 	.runtime_suspend = intel_runtime_suspend,
2787 	.runtime_resume = intel_runtime_resume,
2788 };
2789 
2790 static const struct vm_operations_struct i915_gem_vm_ops = {
2791 	.fault = i915_gem_fault,
2792 	.open = drm_gem_vm_open,
2793 	.close = drm_gem_vm_close,
2794 };
2795 
2796 static const struct file_operations i915_driver_fops = {
2797 	.owner = THIS_MODULE,
2798 	.open = drm_open,
2799 	.release = drm_release,
2800 	.unlocked_ioctl = drm_ioctl,
2801 	.mmap = drm_gem_mmap,
2802 	.poll = drm_poll,
2803 	.read = drm_read,
2804 	.compat_ioctl = i915_compat_ioctl,
2805 	.llseek = noop_llseek,
2806 };
2807 
2808 static int
i915_gem_reject_pin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2809 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2810 			  struct drm_file *file)
2811 {
2812 	return -ENODEV;
2813 }
2814 
2815 static const struct drm_ioctl_desc i915_ioctls[] = {
2816 	DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2817 	DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2818 	DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2819 	DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2820 	DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2821 	DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2822 	DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2823 	DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2824 	DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2825 	DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2826 	DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2827 	DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2828 	DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2829 	DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2830 	DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
2831 	DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2832 	DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2833 	DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2834 	DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2835 	DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2836 	DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2837 	DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2838 	DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2839 	DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2840 	DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2841 	DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2842 	DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2843 	DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2844 	DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2845 	DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2846 	DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2847 	DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2848 	DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2849 	DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2850 	DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2851 	DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2852 	DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2853 	DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2854 	DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2855 	DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2856 	DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2857 	DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2858 	DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2859 	DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2860 	DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2861 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2862 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2863 	DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2864 	DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2865 	DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2866 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2867 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2868 	DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2869 	DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2870 	DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2871 	DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2872 };
2873 
2874 static struct drm_driver driver = {
2875 	/* Don't use MTRRs here; the Xserver or userspace app should
2876 	 * deal with them for Intel hardware.
2877 	 */
2878 	.driver_features =
2879 	    DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2880 	    DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2881 	.release = i915_driver_release,
2882 	.open = i915_driver_open,
2883 	.lastclose = i915_driver_lastclose,
2884 	.postclose = i915_driver_postclose,
2885 
2886 	.gem_close_object = i915_gem_close_object,
2887 	.gem_free_object_unlocked = i915_gem_free_object,
2888 	.gem_vm_ops = &i915_gem_vm_ops,
2889 
2890 	.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2891 	.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2892 	.gem_prime_export = i915_gem_prime_export,
2893 	.gem_prime_import = i915_gem_prime_import,
2894 
2895 	.dumb_create = i915_gem_dumb_create,
2896 	.dumb_map_offset = i915_gem_mmap_gtt,
2897 	.ioctls = i915_ioctls,
2898 	.num_ioctls = ARRAY_SIZE(i915_ioctls),
2899 	.fops = &i915_driver_fops,
2900 	.name = DRIVER_NAME,
2901 	.desc = DRIVER_DESC,
2902 	.date = DRIVER_DATE,
2903 	.major = DRIVER_MAJOR,
2904 	.minor = DRIVER_MINOR,
2905 	.patchlevel = DRIVER_PATCHLEVEL,
2906 };
2907 
2908 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2909 #include "selftests/mock_drm.c"
2910 #endif
2911