• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define _GNU_SOURCE
2 #include <stdlib.h>
3 #include <string.h>
4 #include <limits.h>
5 #include <stdint.h>
6 #include <errno.h>
7 #include <sys/mman.h>
8 #include "libc.h"
9 #include "atomic.h"
10 #include "pthread_impl.h"
11 #include "malloc_impl.h"
12 #include <sys/prctl.h>
13 
14 #if defined(__GNUC__) && defined(__PIC__)
15 #define inline inline __attribute__((always_inline))
16 #endif
17 
18 #ifdef HOOK_ENABLE
19 void *__libc_malloc(size_t);
20 void __libc_free(void *p);
21 #endif
22 
23 static struct {
24 	volatile uint64_t binmap;
25 	struct bin bins[64];
26 	volatile int free_lock[2];
27 } mal;
28 
29 int __malloc_replaced;
30 
31 /* Synchronization tools */
32 
lock(volatile int * lk)33 static inline void lock(volatile int *lk)
34 {
35 	if (libc.threads_minus_1)
36 		while(a_swap(lk, 1)) __wait(lk, lk+1, 1, 1);
37 }
38 
unlock(volatile int * lk)39 static inline void unlock(volatile int *lk)
40 {
41 	if (lk[0]) {
42 		a_store(lk, 0);
43 		if (lk[1]) __wake(lk, 1, 1);
44 	}
45 }
46 
lock_bin(int i)47 static inline void lock_bin(int i)
48 {
49 	lock(mal.bins[i].lock);
50 	if (!mal.bins[i].head)
51 		mal.bins[i].head = mal.bins[i].tail = BIN_TO_CHUNK(i);
52 }
53 
unlock_bin(int i)54 static inline void unlock_bin(int i)
55 {
56 	unlock(mal.bins[i].lock);
57 }
58 
first_set(uint64_t x)59 static int first_set(uint64_t x)
60 {
61 #if 1
62 	return a_ctz_64(x);
63 #else
64 	static const char debruijn64[64] = {
65 		0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28,
66 		62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11,
67 		63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10,
68 		51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12
69 	};
70 	static const char debruijn32[32] = {
71 		0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13,
72 		31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14
73 	};
74 	if (sizeof(long) < 8) {
75 		uint32_t y = x;
76 		if (!y) {
77 			y = x>>32;
78 			return 32 + debruijn32[(y&-y)*0x076be629 >> 27];
79 		}
80 		return debruijn32[(y&-y)*0x076be629 >> 27];
81 	}
82 	return debruijn64[(x&-x)*0x022fdd63cc95386dull >> 58];
83 #endif
84 }
85 
86 static const unsigned char bin_tab[60] = {
87 	            32,33,34,35,36,36,37,37,38,38,39,39,
88 	40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,
89 	44,44,44,44,44,44,44,44,45,45,45,45,45,45,45,45,
90 	46,46,46,46,46,46,46,46,47,47,47,47,47,47,47,47,
91 };
92 
bin_index(size_t x)93 static int bin_index(size_t x)
94 {
95 	x = x / SIZE_ALIGN - 1;
96 	if (x <= 32) return x;
97 	if (x < 512) return bin_tab[x/8-4];
98 	if (x > 0x1c00) return 63;
99 	return bin_tab[x/128-4] + 16;
100 }
101 
bin_index_up(size_t x)102 static int bin_index_up(size_t x)
103 {
104 	x = x / SIZE_ALIGN - 1;
105 	if (x <= 32) return x;
106 	x--;
107 	if (x < 512) return bin_tab[x/8-4] + 1;
108 	return bin_tab[x/128-4] + 17;
109 }
110 
111 #if 0
112 void __dump_heap(int x)
113 {
114 	struct chunk *c;
115 	int i;
116 	for (c = (void *)mal.heap; CHUNK_SIZE(c); c = NEXT_CHUNK(c))
117 		fprintf(stderr, "base %p size %zu (%d) flags %d/%d\n",
118 			c, CHUNK_SIZE(c), bin_index(CHUNK_SIZE(c)),
119 			c->csize & 15,
120 			NEXT_CHUNK(c)->psize & 15);
121 	for (i=0; i<64; i++) {
122 		if (mal.bins[i].head != BIN_TO_CHUNK(i) && mal.bins[i].head) {
123 			fprintf(stderr, "bin %d: %p\n", i, mal.bins[i].head);
124 			if (!(mal.binmap & 1ULL<<i))
125 				fprintf(stderr, "missing from binmap!\n");
126 		} else if (mal.binmap & 1ULL<<i)
127 			fprintf(stderr, "binmap wrongly contains %d!\n", i);
128 	}
129 }
130 #endif
131 
expand_heap(size_t n)132 static struct chunk *expand_heap(size_t n)
133 {
134 	static int heap_lock[2];
135 	static void *end;
136 	void *p;
137 	struct chunk *w;
138 
139 	/* The argument n already accounts for the caller's chunk
140 	 * overhead needs, but if the heap can't be extended in-place,
141 	 * we need room for an extra zero-sized sentinel chunk. */
142 	n += SIZE_ALIGN;
143 
144 	lock(heap_lock);
145 
146 	p = __expand_heap(&n);
147 	if (!p) {
148 		unlock(heap_lock);
149 		return 0;
150 	}
151 
152 	/* If not just expanding existing space, we need to make a
153 	 * new sentinel chunk below the allocated space. */
154 	if (p != end) {
155 		/* Valid/safe because of the prologue increment. */
156 		n -= SIZE_ALIGN;
157 		p = (char *)p + SIZE_ALIGN;
158 		w = MEM_TO_CHUNK(p);
159 		w->psize = 0 | C_INUSE;
160 	}
161 
162 	/* Record new heap end and fill in footer. */
163 	end = (char *)p + n;
164 	w = MEM_TO_CHUNK(end);
165 	w->psize = n | C_INUSE;
166 	w->csize = 0 | C_INUSE;
167 
168 	/* Fill in header, which may be new or may be replacing a
169 	 * zero-size sentinel header at the old end-of-heap. */
170 	w = MEM_TO_CHUNK(p);
171 	w->csize = n | C_INUSE;
172 
173 	unlock(heap_lock);
174 
175 	return w;
176 }
177 
adjust_size(size_t * n)178 static int adjust_size(size_t *n)
179 {
180 	/* Result of pointer difference must fit in ptrdiff_t. */
181 	if (*n-1 > PTRDIFF_MAX - SIZE_ALIGN - PAGE_SIZE) {
182 		if (*n) {
183 			errno = ENOMEM;
184 			return -1;
185 		} else {
186 			*n = SIZE_ALIGN;
187 			return 0;
188 		}
189 	}
190 	*n = (*n + OVERHEAD + SIZE_ALIGN - 1) & SIZE_MASK;
191 	return 0;
192 }
193 
unbin(struct chunk * c,int i)194 static void unbin(struct chunk *c, int i)
195 {
196 	if (c->prev == c->next)
197 		a_and_64(&mal.binmap, ~(1ULL<<i));
198 	c->prev->next = c->next;
199 	c->next->prev = c->prev;
200 	c->csize |= C_INUSE;
201 	NEXT_CHUNK(c)->psize |= C_INUSE;
202 }
203 
alloc_fwd(struct chunk * c)204 static int alloc_fwd(struct chunk *c)
205 {
206 	int i;
207 	size_t k;
208 	while (!((k=c->csize) & C_INUSE)) {
209 		i = bin_index(k);
210 		lock_bin(i);
211 		if (c->csize == k) {
212 			unbin(c, i);
213 			unlock_bin(i);
214 			return 1;
215 		}
216 		unlock_bin(i);
217 	}
218 	return 0;
219 }
220 
alloc_rev(struct chunk * c)221 static int alloc_rev(struct chunk *c)
222 {
223 	int i;
224 	size_t k;
225 	while (!((k=c->psize) & C_INUSE)) {
226 		i = bin_index(k);
227 		lock_bin(i);
228 		if (c->psize == k) {
229 			unbin(PREV_CHUNK(c), i);
230 			unlock_bin(i);
231 			return 1;
232 		}
233 		unlock_bin(i);
234 	}
235 	return 0;
236 }
237 
238 
239 /* pretrim - trims a chunk _prior_ to removing it from its bin.
240  * Must be called with i as the ideal bin for size n, j the bin
241  * for the _free_ chunk self, and bin j locked. */
pretrim(struct chunk * self,size_t n,int i,int j)242 static int pretrim(struct chunk *self, size_t n, int i, int j)
243 {
244 	size_t n1;
245 	struct chunk *next, *split;
246 
247 	/* We cannot pretrim if it would require re-binning. */
248 	if (j < 40) return 0;
249 	if (j < i+3) {
250 		if (j != 63) return 0;
251 		n1 = CHUNK_SIZE(self);
252 		if (n1-n <= MMAP_THRESHOLD) return 0;
253 	} else {
254 		n1 = CHUNK_SIZE(self);
255 	}
256 	if (bin_index(n1-n) != j) return 0;
257 
258 	next = NEXT_CHUNK(self);
259 	split = (void *)((char *)self + n);
260 
261 	split->prev = self->prev;
262 	split->next = self->next;
263 	split->prev->next = split;
264 	split->next->prev = split;
265 	split->psize = n | C_INUSE;
266 	split->csize = n1-n;
267 	next->psize = n1-n;
268 	self->csize = n | C_INUSE;
269 	return 1;
270 }
271 
trim(struct chunk * self,size_t n)272 static void trim(struct chunk *self, size_t n)
273 {
274 	size_t n1 = CHUNK_SIZE(self);
275 	struct chunk *next, *split;
276 
277 	if (n >= n1 - DONTCARE) return;
278 
279 	next = NEXT_CHUNK(self);
280 	split = (void *)((char *)self + n);
281 
282 	split->psize = n | C_INUSE;
283 	split->csize = n1-n | C_INUSE;
284 	next->psize = n1-n | C_INUSE;
285 	self->csize = n | C_INUSE;
286 
287 	__bin_chunk(split);
288 }
289 
290 #ifdef HOOK_ENABLE
__libc_malloc(size_t n)291 void *__libc_malloc(size_t n)
292 #else
293 void *malloc(size_t n)
294 #endif
295 {
296 	struct chunk *c;
297 	int i, j;
298 
299 	if (adjust_size(&n) < 0) return 0;
300 
301 	if (n > MMAP_THRESHOLD) {
302 		size_t len = n + OVERHEAD + PAGE_SIZE - 1 & -PAGE_SIZE;
303 		char *base = __mmap(0, len, PROT_READ|PROT_WRITE,
304 			MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
305 		if (base == (void *)-1) return 0;
306 
307 		prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, base, len, "native_heap:musl");
308 
309 		c = (void *)(base + SIZE_ALIGN - OVERHEAD);
310 		c->csize = len - (SIZE_ALIGN - OVERHEAD);
311 		c->psize = SIZE_ALIGN - OVERHEAD;
312 		return CHUNK_TO_MEM(c);
313 	}
314 
315 	i = bin_index_up(n);
316 	for (;;) {
317 		uint64_t mask = mal.binmap & -(1ULL<<i);
318 		if (!mask) {
319 			c = expand_heap(n);
320 			if (!c) return 0;
321 			if (alloc_rev(c)) {
322 				struct chunk *x = c;
323 				c = PREV_CHUNK(c);
324 				NEXT_CHUNK(x)->psize = c->csize =
325 					x->csize + CHUNK_SIZE(c);
326 			}
327 			break;
328 		}
329 		j = first_set(mask);
330 		lock_bin(j);
331 		c = mal.bins[j].head;
332 		if (c != BIN_TO_CHUNK(j)) {
333 			if (!pretrim(c, n, i, j)) unbin(c, j);
334 			unlock_bin(j);
335 			break;
336 		}
337 		unlock_bin(j);
338 	}
339 
340 	/* Now patch up in case we over-allocated */
341 	trim(c, n);
342 
343 	return CHUNK_TO_MEM(c);
344 }
345 
mal0_clear(char * p,size_t pagesz,size_t n)346 static size_t mal0_clear(char *p, size_t pagesz, size_t n)
347 {
348 #ifdef __GNUC__
349 	typedef uint64_t __attribute__((__may_alias__)) T;
350 #else
351 	typedef unsigned char T;
352 #endif
353 	char *pp = p + n;
354 	size_t i = (uintptr_t)pp & (pagesz - 1);
355 	for (;;) {
356 		pp = memset(pp - i, 0, i);
357 		if (pp - p < pagesz) return pp - p;
358 		for (i = pagesz; i; i -= 2*sizeof(T), pp -= 2*sizeof(T))
359 		        if (((T *)pp)[-1] | ((T *)pp)[-2])
360 				break;
361 	}
362 }
363 
calloc(size_t m,size_t n)364 void *calloc(size_t m, size_t n)
365 {
366 	if (n && m > (size_t)-1/n) {
367 		errno = ENOMEM;
368 		return 0;
369 	}
370 	n *= m;
371 	void *p = malloc(n);
372 	if (!p) return p;
373 	if (!__malloc_replaced) {
374 		if (IS_MMAPPED(MEM_TO_CHUNK(p)))
375 			return p;
376 		if (n >= PAGE_SIZE)
377 			n = mal0_clear(p, PAGE_SIZE, n);
378 	}
379 	return memset(p, 0, n);
380 }
381 
realloc(void * p,size_t n)382 void *realloc(void *p, size_t n)
383 {
384 	struct chunk *self, *next;
385 	size_t n0, n1;
386 	void *new;
387 
388 	if (!p) return malloc(n);
389 	if (!n) {
390 		free(p);
391 		return NULL;
392 	}
393 
394 	if (adjust_size(&n) < 0) return 0;
395 
396 	self = MEM_TO_CHUNK(p);
397 	n1 = n0 = CHUNK_SIZE(self);
398 
399 	if (IS_MMAPPED(self)) {
400 		size_t extra = self->psize;
401 		char *base = (char *)self - extra;
402 		size_t oldlen = n0 + extra;
403 		size_t newlen = n + extra;
404 		/* Crash on realloc of freed chunk */
405 		if (extra & 1) a_crash();
406 		if (newlen < PAGE_SIZE && (new = malloc(n-OVERHEAD))) {
407 			n0 = n;
408 			goto copy_free_ret;
409 		}
410 		newlen = (newlen + PAGE_SIZE-1) & -PAGE_SIZE;
411 		if (oldlen == newlen) return p;
412 		base = __mremap(base, oldlen, newlen, MREMAP_MAYMOVE);
413 		if (base == (void *)-1)
414 			goto copy_realloc;
415 		self = (void *)(base + extra);
416 		self->csize = newlen - extra;
417 		return CHUNK_TO_MEM(self);
418 	}
419 
420 	next = NEXT_CHUNK(self);
421 
422 	/* Crash on corrupted footer (likely from buffer overflow) */
423 	if (next->psize != self->csize) a_crash();
424 
425 	/* Merge adjacent chunks if we need more space. This is not
426 	 * a waste of time even if we fail to get enough space, because our
427 	 * subsequent call to free would otherwise have to do the merge. */
428 	if (n > n1 && alloc_fwd(next)) {
429 		n1 += CHUNK_SIZE(next);
430 		next = NEXT_CHUNK(next);
431 	}
432 	/* FIXME: find what's wrong here and reenable it..? */
433 	if (0 && n > n1 && alloc_rev(self)) {
434 		self = PREV_CHUNK(self);
435 		n1 += CHUNK_SIZE(self);
436 	}
437 	self->csize = n1 | C_INUSE;
438 	next->psize = n1 | C_INUSE;
439 
440 	/* If we got enough space, split off the excess and return */
441 	if (n <= n1) {
442 		//memmove(CHUNK_TO_MEM(self), p, n0-OVERHEAD);
443 		trim(self, n);
444 		return CHUNK_TO_MEM(self);
445 	}
446 
447 copy_realloc:
448 	/* As a last resort, allocate a new chunk and copy to it. */
449 	new = malloc(n-OVERHEAD);
450 	if (!new) return 0;
451 copy_free_ret:
452 	memcpy(new, p, n0-OVERHEAD);
453 	free(CHUNK_TO_MEM(self));
454 	return new;
455 }
456 
__bin_chunk(struct chunk * self)457 void __bin_chunk(struct chunk *self)
458 {
459 	struct chunk *next = NEXT_CHUNK(self);
460 	size_t final_size, new_size, size;
461 	int reclaim=0;
462 	int i;
463 
464 	final_size = new_size = CHUNK_SIZE(self);
465 
466 	/* Crash on corrupted footer (likely from buffer overflow) */
467 	if (next->psize != self->csize) a_crash();
468 
469 	for (;;) {
470 		if (self->psize & next->csize & C_INUSE) {
471 			self->csize = final_size | C_INUSE;
472 			next->psize = final_size | C_INUSE;
473 			i = bin_index(final_size);
474 			lock_bin(i);
475 			lock(mal.free_lock);
476 			if (self->psize & next->csize & C_INUSE)
477 				break;
478 			unlock(mal.free_lock);
479 			unlock_bin(i);
480 		}
481 
482 		if (alloc_rev(self)) {
483 			self = PREV_CHUNK(self);
484 			size = CHUNK_SIZE(self);
485 			final_size += size;
486 			if (new_size+size > RECLAIM && (new_size+size^size) > size)
487 				reclaim = 1;
488 		}
489 
490 		if (alloc_fwd(next)) {
491 			size = CHUNK_SIZE(next);
492 			final_size += size;
493 			if (new_size+size > RECLAIM && (new_size+size^size) > size)
494 				reclaim = 1;
495 			next = NEXT_CHUNK(next);
496 		}
497 	}
498 
499 	if (!(mal.binmap & 1ULL<<i))
500 		a_or_64(&mal.binmap, 1ULL<<i);
501 
502 	self->csize = final_size;
503 	next->psize = final_size;
504 	unlock(mal.free_lock);
505 
506 	self->next = BIN_TO_CHUNK(i);
507 	self->prev = mal.bins[i].tail;
508 	self->next->prev = self;
509 	self->prev->next = self;
510 
511 	/* Replace middle of large chunks with fresh zero pages */
512 	if (reclaim) {
513 		uintptr_t a = (uintptr_t)self + SIZE_ALIGN+PAGE_SIZE-1 & -PAGE_SIZE;
514 		uintptr_t b = (uintptr_t)next - SIZE_ALIGN & -PAGE_SIZE;
515 #if 1
516 		__madvise((void *)a, b-a, MADV_DONTNEED);
517 #else
518 		__mmap((void *)a, b-a, PROT_READ|PROT_WRITE,
519 			MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0);
520 #endif
521 	}
522 
523 	unlock_bin(i);
524 }
525 
unmap_chunk(struct chunk * self)526 static void unmap_chunk(struct chunk *self)
527 {
528 	size_t extra = self->psize;
529 	char *base = (char *)self - extra;
530 	size_t len = CHUNK_SIZE(self) + extra;
531 	/* Crash on double free */
532 	if (extra & 1) a_crash();
533 	__munmap(base, len);
534 }
535 
536 #ifdef HOOK_ENABLE
__libc_free(void * p)537 void __libc_free(void *p)
538 #else
539 void free(void *p)
540 #endif
541 {
542 	if (!p) return;
543 
544 	struct chunk *self = MEM_TO_CHUNK(p);
545 
546 	if (IS_MMAPPED(self))
547 		unmap_chunk(self);
548 	else
549 		__bin_chunk(self);
550 }
551 
__malloc_donate(char * start,char * end)552 void __malloc_donate(char *start, char *end)
553 {
554 	size_t align_start_up = (SIZE_ALIGN-1) & (-(uintptr_t)start - OVERHEAD);
555 	size_t align_end_down = (SIZE_ALIGN-1) & (uintptr_t)end;
556 
557 	/* Getting past this condition ensures that the padding for alignment
558 	 * and header overhead will not overflow and will leave a nonzero
559 	 * multiple of SIZE_ALIGN bytes between start and end. */
560 	if (end - start <= OVERHEAD + align_start_up + align_end_down)
561 		return;
562 	start += align_start_up + OVERHEAD;
563 	end   -= align_end_down;
564 
565 	struct chunk *c = MEM_TO_CHUNK(start), *n = MEM_TO_CHUNK(end);
566 	c->psize = n->csize = C_INUSE;
567 	c->csize = n->psize = C_INUSE | (end-start);
568 	__bin_chunk(c);
569 }
570