1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8 /*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20
21 /*
22 * MUSTDO:
23 * - test ext4_ext_search_left() and ext4_ext_search_right()
24 * - search for metadata in few groups
25 *
26 * TODO v4:
27 * - normalization should take into account whether file is still open
28 * - discard preallocations if no free space left (policy?)
29 * - don't normalize tails
30 * - quota
31 * - reservation for superuser
32 *
33 * TODO v3:
34 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
35 * - track min/max extents in each group for better group selection
36 * - mb_mark_used() may allocate chunk right after splitting buddy
37 * - tree of groups sorted by number of free blocks
38 * - error handling
39 */
40
41 /*
42 * The allocation request involve request for multiple number of blocks
43 * near to the goal(block) value specified.
44 *
45 * During initialization phase of the allocator we decide to use the
46 * group preallocation or inode preallocation depending on the size of
47 * the file. The size of the file could be the resulting file size we
48 * would have after allocation, or the current file size, which ever
49 * is larger. If the size is less than sbi->s_mb_stream_request we
50 * select to use the group preallocation. The default value of
51 * s_mb_stream_request is 16 blocks. This can also be tuned via
52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53 * terms of number of blocks.
54 *
55 * The main motivation for having small file use group preallocation is to
56 * ensure that we have small files closer together on the disk.
57 *
58 * First stage the allocator looks at the inode prealloc list,
59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60 * spaces for this particular inode. The inode prealloc space is
61 * represented as:
62 *
63 * pa_lstart -> the logical start block for this prealloc space
64 * pa_pstart -> the physical start block for this prealloc space
65 * pa_len -> length for this prealloc space (in clusters)
66 * pa_free -> free space available in this prealloc space (in clusters)
67 *
68 * The inode preallocation space is used looking at the _logical_ start
69 * block. If only the logical file block falls within the range of prealloc
70 * space we will consume the particular prealloc space. This makes sure that
71 * we have contiguous physical blocks representing the file blocks
72 *
73 * The important thing to be noted in case of inode prealloc space is that
74 * we don't modify the values associated to inode prealloc space except
75 * pa_free.
76 *
77 * If we are not able to find blocks in the inode prealloc space and if we
78 * have the group allocation flag set then we look at the locality group
79 * prealloc space. These are per CPU prealloc list represented as
80 *
81 * ext4_sb_info.s_locality_groups[smp_processor_id()]
82 *
83 * The reason for having a per cpu locality group is to reduce the contention
84 * between CPUs. It is possible to get scheduled at this point.
85 *
86 * The locality group prealloc space is used looking at whether we have
87 * enough free space (pa_free) within the prealloc space.
88 *
89 * If we can't allocate blocks via inode prealloc or/and locality group
90 * prealloc then we look at the buddy cache. The buddy cache is represented
91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92 * mapped to the buddy and bitmap information regarding different
93 * groups. The buddy information is attached to buddy cache inode so that
94 * we can access them through the page cache. The information regarding
95 * each group is loaded via ext4_mb_load_buddy. The information involve
96 * block bitmap and buddy information. The information are stored in the
97 * inode as:
98 *
99 * { page }
100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101 *
102 *
103 * one block each for bitmap and buddy information. So for each group we
104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105 * blocksize) blocks. So it can have information regarding groups_per_page
106 * which is blocks_per_page/2
107 *
108 * The buddy cache inode is not stored on disk. The inode is thrown
109 * away when the filesystem is unmounted.
110 *
111 * We look for count number of blocks in the buddy cache. If we were able
112 * to locate that many free blocks we return with additional information
113 * regarding rest of the contiguous physical block available
114 *
115 * Before allocating blocks via buddy cache we normalize the request
116 * blocks. This ensure we ask for more blocks that we needed. The extra
117 * blocks that we get after allocation is added to the respective prealloc
118 * list. In case of inode preallocation we follow a list of heuristics
119 * based on file size. This can be found in ext4_mb_normalize_request. If
120 * we are doing a group prealloc we try to normalize the request to
121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
122 * dependent on the cluster size; for non-bigalloc file systems, it is
123 * 512 blocks. This can be tuned via
124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125 * terms of number of blocks. If we have mounted the file system with -O
126 * stripe=<value> option the group prealloc request is normalized to the
127 * smallest multiple of the stripe value (sbi->s_stripe) which is
128 * greater than the default mb_group_prealloc.
129 *
130 * The regular allocator (using the buddy cache) supports a few tunables.
131 *
132 * /sys/fs/ext4/<partition>/mb_min_to_scan
133 * /sys/fs/ext4/<partition>/mb_max_to_scan
134 * /sys/fs/ext4/<partition>/mb_order2_req
135 *
136 * The regular allocator uses buddy scan only if the request len is power of
137 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138 * value of s_mb_order2_reqs can be tuned via
139 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
140 * stripe size (sbi->s_stripe), we try to search for contiguous block in
141 * stripe size. This should result in better allocation on RAID setups. If
142 * not, we search in the specific group using bitmap for best extents. The
143 * tunable min_to_scan and max_to_scan control the behaviour here.
144 * min_to_scan indicate how long the mballoc __must__ look for a best
145 * extent and max_to_scan indicates how long the mballoc __can__ look for a
146 * best extent in the found extents. Searching for the blocks starts with
147 * the group specified as the goal value in allocation context via
148 * ac_g_ex. Each group is first checked based on the criteria whether it
149 * can be used for allocation. ext4_mb_good_group explains how the groups are
150 * checked.
151 *
152 * Both the prealloc space are getting populated as above. So for the first
153 * request we will hit the buddy cache which will result in this prealloc
154 * space getting filled. The prealloc space is then later used for the
155 * subsequent request.
156 */
157
158 /*
159 * mballoc operates on the following data:
160 * - on-disk bitmap
161 * - in-core buddy (actually includes buddy and bitmap)
162 * - preallocation descriptors (PAs)
163 *
164 * there are two types of preallocations:
165 * - inode
166 * assiged to specific inode and can be used for this inode only.
167 * it describes part of inode's space preallocated to specific
168 * physical blocks. any block from that preallocated can be used
169 * independent. the descriptor just tracks number of blocks left
170 * unused. so, before taking some block from descriptor, one must
171 * make sure corresponded logical block isn't allocated yet. this
172 * also means that freeing any block within descriptor's range
173 * must discard all preallocated blocks.
174 * - locality group
175 * assigned to specific locality group which does not translate to
176 * permanent set of inodes: inode can join and leave group. space
177 * from this type of preallocation can be used for any inode. thus
178 * it's consumed from the beginning to the end.
179 *
180 * relation between them can be expressed as:
181 * in-core buddy = on-disk bitmap + preallocation descriptors
182 *
183 * this mean blocks mballoc considers used are:
184 * - allocated blocks (persistent)
185 * - preallocated blocks (non-persistent)
186 *
187 * consistency in mballoc world means that at any time a block is either
188 * free or used in ALL structures. notice: "any time" should not be read
189 * literally -- time is discrete and delimited by locks.
190 *
191 * to keep it simple, we don't use block numbers, instead we count number of
192 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
193 *
194 * all operations can be expressed as:
195 * - init buddy: buddy = on-disk + PAs
196 * - new PA: buddy += N; PA = N
197 * - use inode PA: on-disk += N; PA -= N
198 * - discard inode PA buddy -= on-disk - PA; PA = 0
199 * - use locality group PA on-disk += N; PA -= N
200 * - discard locality group PA buddy -= PA; PA = 0
201 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202 * is used in real operation because we can't know actual used
203 * bits from PA, only from on-disk bitmap
204 *
205 * if we follow this strict logic, then all operations above should be atomic.
206 * given some of them can block, we'd have to use something like semaphores
207 * killing performance on high-end SMP hardware. let's try to relax it using
208 * the following knowledge:
209 * 1) if buddy is referenced, it's already initialized
210 * 2) while block is used in buddy and the buddy is referenced,
211 * nobody can re-allocate that block
212 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213 * bit set and PA claims same block, it's OK. IOW, one can set bit in
214 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
215 * block
216 *
217 * so, now we're building a concurrency table:
218 * - init buddy vs.
219 * - new PA
220 * blocks for PA are allocated in the buddy, buddy must be referenced
221 * until PA is linked to allocation group to avoid concurrent buddy init
222 * - use inode PA
223 * we need to make sure that either on-disk bitmap or PA has uptodate data
224 * given (3) we care that PA-=N operation doesn't interfere with init
225 * - discard inode PA
226 * the simplest way would be to have buddy initialized by the discard
227 * - use locality group PA
228 * again PA-=N must be serialized with init
229 * - discard locality group PA
230 * the simplest way would be to have buddy initialized by the discard
231 * - new PA vs.
232 * - use inode PA
233 * i_data_sem serializes them
234 * - discard inode PA
235 * discard process must wait until PA isn't used by another process
236 * - use locality group PA
237 * some mutex should serialize them
238 * - discard locality group PA
239 * discard process must wait until PA isn't used by another process
240 * - use inode PA
241 * - use inode PA
242 * i_data_sem or another mutex should serializes them
243 * - discard inode PA
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * nothing wrong here -- they're different PAs covering different blocks
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
249 *
250 * now we're ready to make few consequences:
251 * - PA is referenced and while it is no discard is possible
252 * - PA is referenced until block isn't marked in on-disk bitmap
253 * - PA changes only after on-disk bitmap
254 * - discard must not compete with init. either init is done before
255 * any discard or they're serialized somehow
256 * - buddy init as sum of on-disk bitmap and PAs is done atomically
257 *
258 * a special case when we've used PA to emptiness. no need to modify buddy
259 * in this case, but we should care about concurrent init
260 *
261 */
262
263 /*
264 * Logic in few words:
265 *
266 * - allocation:
267 * load group
268 * find blocks
269 * mark bits in on-disk bitmap
270 * release group
271 *
272 * - use preallocation:
273 * find proper PA (per-inode or group)
274 * load group
275 * mark bits in on-disk bitmap
276 * release group
277 * release PA
278 *
279 * - free:
280 * load group
281 * mark bits in on-disk bitmap
282 * release group
283 *
284 * - discard preallocations in group:
285 * mark PAs deleted
286 * move them onto local list
287 * load on-disk bitmap
288 * load group
289 * remove PA from object (inode or locality group)
290 * mark free blocks in-core
291 *
292 * - discard inode's preallocations:
293 */
294
295 /*
296 * Locking rules
297 *
298 * Locks:
299 * - bitlock on a group (group)
300 * - object (inode/locality) (object)
301 * - per-pa lock (pa)
302 *
303 * Paths:
304 * - new pa
305 * object
306 * group
307 *
308 * - find and use pa:
309 * pa
310 *
311 * - release consumed pa:
312 * pa
313 * group
314 * object
315 *
316 * - generate in-core bitmap:
317 * group
318 * pa
319 *
320 * - discard all for given object (inode, locality group):
321 * object
322 * pa
323 * group
324 *
325 * - discard all for given group:
326 * group
327 * pa
328 * group
329 * object
330 *
331 */
332 static struct kmem_cache *ext4_pspace_cachep;
333 static struct kmem_cache *ext4_ac_cachep;
334 static struct kmem_cache *ext4_free_data_cachep;
335
336 /* We create slab caches for groupinfo data structures based on the
337 * superblock block size. There will be one per mounted filesystem for
338 * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
341
342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
343 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
346 };
347
348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
349 ext4_group_t group);
350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
351 ext4_group_t group);
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
353
354 /*
355 * The algorithm using this percpu seq counter goes below:
356 * 1. We sample the percpu discard_pa_seq counter before trying for block
357 * allocation in ext4_mb_new_blocks().
358 * 2. We increment this percpu discard_pa_seq counter when we either allocate
359 * or free these blocks i.e. while marking those blocks as used/free in
360 * mb_mark_used()/mb_free_blocks().
361 * 3. We also increment this percpu seq counter when we successfully identify
362 * that the bb_prealloc_list is not empty and hence proceed for discarding
363 * of those PAs inside ext4_mb_discard_group_preallocations().
364 *
365 * Now to make sure that the regular fast path of block allocation is not
366 * affected, as a small optimization we only sample the percpu seq counter
367 * on that cpu. Only when the block allocation fails and when freed blocks
368 * found were 0, that is when we sample percpu seq counter for all cpus using
369 * below function ext4_get_discard_pa_seq_sum(). This happens after making
370 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
371 */
372 static DEFINE_PER_CPU(u64, discard_pa_seq);
ext4_get_discard_pa_seq_sum(void)373 static inline u64 ext4_get_discard_pa_seq_sum(void)
374 {
375 int __cpu;
376 u64 __seq = 0;
377
378 for_each_possible_cpu(__cpu)
379 __seq += per_cpu(discard_pa_seq, __cpu);
380 return __seq;
381 }
382
mb_correct_addr_and_bit(int * bit,void * addr)383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
384 {
385 #if BITS_PER_LONG == 64
386 *bit += ((unsigned long) addr & 7UL) << 3;
387 addr = (void *) ((unsigned long) addr & ~7UL);
388 #elif BITS_PER_LONG == 32
389 *bit += ((unsigned long) addr & 3UL) << 3;
390 addr = (void *) ((unsigned long) addr & ~3UL);
391 #else
392 #error "how many bits you are?!"
393 #endif
394 return addr;
395 }
396
mb_test_bit(int bit,void * addr)397 static inline int mb_test_bit(int bit, void *addr)
398 {
399 /*
400 * ext4_test_bit on architecture like powerpc
401 * needs unsigned long aligned address
402 */
403 addr = mb_correct_addr_and_bit(&bit, addr);
404 return ext4_test_bit(bit, addr);
405 }
406
mb_set_bit(int bit,void * addr)407 static inline void mb_set_bit(int bit, void *addr)
408 {
409 addr = mb_correct_addr_and_bit(&bit, addr);
410 ext4_set_bit(bit, addr);
411 }
412
mb_clear_bit(int bit,void * addr)413 static inline void mb_clear_bit(int bit, void *addr)
414 {
415 addr = mb_correct_addr_and_bit(&bit, addr);
416 ext4_clear_bit(bit, addr);
417 }
418
mb_test_and_clear_bit(int bit,void * addr)419 static inline int mb_test_and_clear_bit(int bit, void *addr)
420 {
421 addr = mb_correct_addr_and_bit(&bit, addr);
422 return ext4_test_and_clear_bit(bit, addr);
423 }
424
mb_find_next_zero_bit(void * addr,int max,int start)425 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
426 {
427 int fix = 0, ret, tmpmax;
428 addr = mb_correct_addr_and_bit(&fix, addr);
429 tmpmax = max + fix;
430 start += fix;
431
432 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
433 if (ret > max)
434 return max;
435 return ret;
436 }
437
mb_find_next_bit(void * addr,int max,int start)438 static inline int mb_find_next_bit(void *addr, int max, int start)
439 {
440 int fix = 0, ret, tmpmax;
441 addr = mb_correct_addr_and_bit(&fix, addr);
442 tmpmax = max + fix;
443 start += fix;
444
445 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
446 if (ret > max)
447 return max;
448 return ret;
449 }
450
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
452 {
453 char *bb;
454
455 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
456 BUG_ON(max == NULL);
457
458 if (order > e4b->bd_blkbits + 1) {
459 *max = 0;
460 return NULL;
461 }
462
463 /* at order 0 we see each particular block */
464 if (order == 0) {
465 *max = 1 << (e4b->bd_blkbits + 3);
466 return e4b->bd_bitmap;
467 }
468
469 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
470 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
471
472 return bb;
473 }
474
475 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
477 int first, int count)
478 {
479 int i;
480 struct super_block *sb = e4b->bd_sb;
481
482 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 return;
484 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
485 for (i = 0; i < count; i++) {
486 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
487 ext4_fsblk_t blocknr;
488
489 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
490 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
491 ext4_grp_locked_error(sb, e4b->bd_group,
492 inode ? inode->i_ino : 0,
493 blocknr,
494 "freeing block already freed "
495 "(bit %u)",
496 first + i);
497 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
498 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
499 }
500 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
505 {
506 int i;
507
508 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
509 return;
510 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
511 for (i = 0; i < count; i++) {
512 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
513 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
514 }
515 }
516
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
518 {
519 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
520 return;
521 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
522 unsigned char *b1, *b2;
523 int i;
524 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
525 b2 = (unsigned char *) bitmap;
526 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
527 if (b1[i] != b2[i]) {
528 ext4_msg(e4b->bd_sb, KERN_ERR,
529 "corruption in group %u "
530 "at byte %u(%u): %x in copy != %x "
531 "on disk/prealloc",
532 e4b->bd_group, i, i * 8, b1[i], b2[i]);
533 BUG();
534 }
535 }
536 }
537 }
538
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)539 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
540 struct ext4_group_info *grp, ext4_group_t group)
541 {
542 struct buffer_head *bh;
543
544 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
545 if (!grp->bb_bitmap)
546 return;
547
548 bh = ext4_read_block_bitmap(sb, group);
549 if (IS_ERR_OR_NULL(bh)) {
550 kfree(grp->bb_bitmap);
551 grp->bb_bitmap = NULL;
552 return;
553 }
554
555 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
556 put_bh(bh);
557 }
558
mb_group_bb_bitmap_free(struct ext4_group_info * grp)559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
560 {
561 kfree(grp->bb_bitmap);
562 }
563
564 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)565 static inline void mb_free_blocks_double(struct inode *inode,
566 struct ext4_buddy *e4b, int first, int count)
567 {
568 return;
569 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)570 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
571 int first, int count)
572 {
573 return;
574 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
576 {
577 return;
578 }
579
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
581 struct ext4_group_info *grp, ext4_group_t group)
582 {
583 return;
584 }
585
mb_group_bb_bitmap_free(struct ext4_group_info * grp)586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
587 {
588 return;
589 }
590 #endif
591
592 #ifdef AGGRESSIVE_CHECK
593
594 #define MB_CHECK_ASSERT(assert) \
595 do { \
596 if (!(assert)) { \
597 printk(KERN_EMERG \
598 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
599 function, file, line, # assert); \
600 BUG(); \
601 } \
602 } while (0)
603
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
605 const char *function, int line)
606 {
607 struct super_block *sb = e4b->bd_sb;
608 int order = e4b->bd_blkbits + 1;
609 int max;
610 int max2;
611 int i;
612 int j;
613 int k;
614 int count;
615 struct ext4_group_info *grp;
616 int fragments = 0;
617 int fstart;
618 struct list_head *cur;
619 void *buddy;
620 void *buddy2;
621
622 if (e4b->bd_info->bb_check_counter++ % 10)
623 return 0;
624
625 while (order > 1) {
626 buddy = mb_find_buddy(e4b, order, &max);
627 MB_CHECK_ASSERT(buddy);
628 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
629 MB_CHECK_ASSERT(buddy2);
630 MB_CHECK_ASSERT(buddy != buddy2);
631 MB_CHECK_ASSERT(max * 2 == max2);
632
633 count = 0;
634 for (i = 0; i < max; i++) {
635
636 if (mb_test_bit(i, buddy)) {
637 /* only single bit in buddy2 may be 1 */
638 if (!mb_test_bit(i << 1, buddy2)) {
639 MB_CHECK_ASSERT(
640 mb_test_bit((i<<1)+1, buddy2));
641 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
642 MB_CHECK_ASSERT(
643 mb_test_bit(i << 1, buddy2));
644 }
645 continue;
646 }
647
648 /* both bits in buddy2 must be 1 */
649 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
650 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
651
652 for (j = 0; j < (1 << order); j++) {
653 k = (i * (1 << order)) + j;
654 MB_CHECK_ASSERT(
655 !mb_test_bit(k, e4b->bd_bitmap));
656 }
657 count++;
658 }
659 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
660 order--;
661 }
662
663 fstart = -1;
664 buddy = mb_find_buddy(e4b, 0, &max);
665 for (i = 0; i < max; i++) {
666 if (!mb_test_bit(i, buddy)) {
667 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
668 if (fstart == -1) {
669 fragments++;
670 fstart = i;
671 }
672 continue;
673 }
674 fstart = -1;
675 /* check used bits only */
676 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
677 buddy2 = mb_find_buddy(e4b, j, &max2);
678 k = i >> j;
679 MB_CHECK_ASSERT(k < max2);
680 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
681 }
682 }
683 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
684 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
685
686 grp = ext4_get_group_info(sb, e4b->bd_group);
687 list_for_each(cur, &grp->bb_prealloc_list) {
688 ext4_group_t groupnr;
689 struct ext4_prealloc_space *pa;
690 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
691 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
692 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
693 for (i = 0; i < pa->pa_len; i++)
694 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
695 }
696 return 0;
697 }
698 #undef MB_CHECK_ASSERT
699 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
700 __FILE__, __func__, __LINE__)
701 #else
702 #define mb_check_buddy(e4b)
703 #endif
704
705 /*
706 * Divide blocks started from @first with length @len into
707 * smaller chunks with power of 2 blocks.
708 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
709 * then increase bb_counters[] for corresponded chunk size.
710 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)711 static void ext4_mb_mark_free_simple(struct super_block *sb,
712 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
713 struct ext4_group_info *grp)
714 {
715 struct ext4_sb_info *sbi = EXT4_SB(sb);
716 ext4_grpblk_t min;
717 ext4_grpblk_t max;
718 ext4_grpblk_t chunk;
719 unsigned int border;
720
721 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
722
723 border = 2 << sb->s_blocksize_bits;
724
725 while (len > 0) {
726 /* find how many blocks can be covered since this position */
727 max = ffs(first | border) - 1;
728
729 /* find how many blocks of power 2 we need to mark */
730 min = fls(len) - 1;
731
732 if (max < min)
733 min = max;
734 chunk = 1 << min;
735
736 /* mark multiblock chunks only */
737 grp->bb_counters[min]++;
738 if (min > 0)
739 mb_clear_bit(first >> min,
740 buddy + sbi->s_mb_offsets[min]);
741
742 len -= chunk;
743 first += chunk;
744 }
745 }
746
747 /*
748 * Cache the order of the largest free extent we have available in this block
749 * group.
750 */
751 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)752 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
753 {
754 int i;
755 int bits;
756
757 grp->bb_largest_free_order = -1; /* uninit */
758
759 bits = sb->s_blocksize_bits + 1;
760 for (i = bits; i >= 0; i--) {
761 if (grp->bb_counters[i] > 0) {
762 grp->bb_largest_free_order = i;
763 break;
764 }
765 }
766 }
767
768 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)769 void ext4_mb_generate_buddy(struct super_block *sb,
770 void *buddy, void *bitmap, ext4_group_t group)
771 {
772 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
773 struct ext4_sb_info *sbi = EXT4_SB(sb);
774 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
775 ext4_grpblk_t i = 0;
776 ext4_grpblk_t first;
777 ext4_grpblk_t len;
778 unsigned free = 0;
779 unsigned fragments = 0;
780 unsigned long long period = get_cycles();
781
782 /* initialize buddy from bitmap which is aggregation
783 * of on-disk bitmap and preallocations */
784 i = mb_find_next_zero_bit(bitmap, max, 0);
785 grp->bb_first_free = i;
786 while (i < max) {
787 fragments++;
788 first = i;
789 i = mb_find_next_bit(bitmap, max, i);
790 len = i - first;
791 free += len;
792 if (len > 1)
793 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
794 else
795 grp->bb_counters[0]++;
796 if (i < max)
797 i = mb_find_next_zero_bit(bitmap, max, i);
798 }
799 grp->bb_fragments = fragments;
800
801 if (free != grp->bb_free) {
802 ext4_grp_locked_error(sb, group, 0, 0,
803 "block bitmap and bg descriptor "
804 "inconsistent: %u vs %u free clusters",
805 free, grp->bb_free);
806 /*
807 * If we intend to continue, we consider group descriptor
808 * corrupt and update bb_free using bitmap value
809 */
810 grp->bb_free = free;
811 ext4_mark_group_bitmap_corrupted(sb, group,
812 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
813 }
814 mb_set_largest_free_order(sb, grp);
815
816 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
817
818 period = get_cycles() - period;
819 spin_lock(&sbi->s_bal_lock);
820 sbi->s_mb_buddies_generated++;
821 sbi->s_mb_generation_time += period;
822 spin_unlock(&sbi->s_bal_lock);
823 }
824
mb_regenerate_buddy(struct ext4_buddy * e4b)825 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
826 {
827 int count;
828 int order = 1;
829 void *buddy;
830
831 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
832 ext4_set_bits(buddy, 0, count);
833 }
834 e4b->bd_info->bb_fragments = 0;
835 memset(e4b->bd_info->bb_counters, 0,
836 sizeof(*e4b->bd_info->bb_counters) *
837 (e4b->bd_sb->s_blocksize_bits + 2));
838
839 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
840 e4b->bd_bitmap, e4b->bd_group);
841 }
842
843 /* The buddy information is attached the buddy cache inode
844 * for convenience. The information regarding each group
845 * is loaded via ext4_mb_load_buddy. The information involve
846 * block bitmap and buddy information. The information are
847 * stored in the inode as
848 *
849 * { page }
850 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
851 *
852 *
853 * one block each for bitmap and buddy information.
854 * So for each group we take up 2 blocks. A page can
855 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
856 * So it can have information regarding groups_per_page which
857 * is blocks_per_page/2
858 *
859 * Locking note: This routine takes the block group lock of all groups
860 * for this page; do not hold this lock when calling this routine!
861 */
862
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)863 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
864 {
865 ext4_group_t ngroups;
866 int blocksize;
867 int blocks_per_page;
868 int groups_per_page;
869 int err = 0;
870 int i;
871 ext4_group_t first_group, group;
872 int first_block;
873 struct super_block *sb;
874 struct buffer_head *bhs;
875 struct buffer_head **bh = NULL;
876 struct inode *inode;
877 char *data;
878 char *bitmap;
879 struct ext4_group_info *grinfo;
880
881 inode = page->mapping->host;
882 sb = inode->i_sb;
883 ngroups = ext4_get_groups_count(sb);
884 blocksize = i_blocksize(inode);
885 blocks_per_page = PAGE_SIZE / blocksize;
886
887 mb_debug(sb, "init page %lu\n", page->index);
888
889 groups_per_page = blocks_per_page >> 1;
890 if (groups_per_page == 0)
891 groups_per_page = 1;
892
893 /* allocate buffer_heads to read bitmaps */
894 if (groups_per_page > 1) {
895 i = sizeof(struct buffer_head *) * groups_per_page;
896 bh = kzalloc(i, gfp);
897 if (bh == NULL) {
898 err = -ENOMEM;
899 goto out;
900 }
901 } else
902 bh = &bhs;
903
904 first_group = page->index * blocks_per_page / 2;
905
906 /* read all groups the page covers into the cache */
907 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
908 if (group >= ngroups)
909 break;
910
911 grinfo = ext4_get_group_info(sb, group);
912 /*
913 * If page is uptodate then we came here after online resize
914 * which added some new uninitialized group info structs, so
915 * we must skip all initialized uptodate buddies on the page,
916 * which may be currently in use by an allocating task.
917 */
918 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
919 bh[i] = NULL;
920 continue;
921 }
922 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
923 if (IS_ERR(bh[i])) {
924 err = PTR_ERR(bh[i]);
925 bh[i] = NULL;
926 goto out;
927 }
928 mb_debug(sb, "read bitmap for group %u\n", group);
929 }
930
931 /* wait for I/O completion */
932 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
933 int err2;
934
935 if (!bh[i])
936 continue;
937 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
938 if (!err)
939 err = err2;
940 }
941
942 first_block = page->index * blocks_per_page;
943 for (i = 0; i < blocks_per_page; i++) {
944 group = (first_block + i) >> 1;
945 if (group >= ngroups)
946 break;
947
948 if (!bh[group - first_group])
949 /* skip initialized uptodate buddy */
950 continue;
951
952 if (!buffer_verified(bh[group - first_group]))
953 /* Skip faulty bitmaps */
954 continue;
955 err = 0;
956
957 /*
958 * data carry information regarding this
959 * particular group in the format specified
960 * above
961 *
962 */
963 data = page_address(page) + (i * blocksize);
964 bitmap = bh[group - first_group]->b_data;
965
966 /*
967 * We place the buddy block and bitmap block
968 * close together
969 */
970 if ((first_block + i) & 1) {
971 /* this is block of buddy */
972 BUG_ON(incore == NULL);
973 mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
974 group, page->index, i * blocksize);
975 trace_ext4_mb_buddy_bitmap_load(sb, group);
976 grinfo = ext4_get_group_info(sb, group);
977 grinfo->bb_fragments = 0;
978 memset(grinfo->bb_counters, 0,
979 sizeof(*grinfo->bb_counters) *
980 (sb->s_blocksize_bits+2));
981 /*
982 * incore got set to the group block bitmap below
983 */
984 ext4_lock_group(sb, group);
985 /* init the buddy */
986 memset(data, 0xff, blocksize);
987 ext4_mb_generate_buddy(sb, data, incore, group);
988 ext4_unlock_group(sb, group);
989 incore = NULL;
990 } else {
991 /* this is block of bitmap */
992 BUG_ON(incore != NULL);
993 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
994 group, page->index, i * blocksize);
995 trace_ext4_mb_bitmap_load(sb, group);
996
997 /* see comments in ext4_mb_put_pa() */
998 ext4_lock_group(sb, group);
999 memcpy(data, bitmap, blocksize);
1000
1001 /* mark all preallocated blks used in in-core bitmap */
1002 ext4_mb_generate_from_pa(sb, data, group);
1003 ext4_mb_generate_from_freelist(sb, data, group);
1004 ext4_unlock_group(sb, group);
1005
1006 /* set incore so that the buddy information can be
1007 * generated using this
1008 */
1009 incore = data;
1010 }
1011 }
1012 SetPageUptodate(page);
1013
1014 out:
1015 if (bh) {
1016 for (i = 0; i < groups_per_page; i++)
1017 brelse(bh[i]);
1018 if (bh != &bhs)
1019 kfree(bh);
1020 }
1021 return err;
1022 }
1023
1024 /*
1025 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1026 * on the same buddy page doesn't happen whild holding the buddy page lock.
1027 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1028 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1029 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1030 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1031 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1032 {
1033 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1034 int block, pnum, poff;
1035 int blocks_per_page;
1036 struct page *page;
1037
1038 e4b->bd_buddy_page = NULL;
1039 e4b->bd_bitmap_page = NULL;
1040
1041 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1042 /*
1043 * the buddy cache inode stores the block bitmap
1044 * and buddy information in consecutive blocks.
1045 * So for each group we need two blocks.
1046 */
1047 block = group * 2;
1048 pnum = block / blocks_per_page;
1049 poff = block % blocks_per_page;
1050 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1051 if (!page)
1052 return -ENOMEM;
1053 BUG_ON(page->mapping != inode->i_mapping);
1054 e4b->bd_bitmap_page = page;
1055 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1056
1057 if (blocks_per_page >= 2) {
1058 /* buddy and bitmap are on the same page */
1059 return 0;
1060 }
1061
1062 block++;
1063 pnum = block / blocks_per_page;
1064 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1065 if (!page)
1066 return -ENOMEM;
1067 BUG_ON(page->mapping != inode->i_mapping);
1068 e4b->bd_buddy_page = page;
1069 return 0;
1070 }
1071
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1072 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1073 {
1074 if (e4b->bd_bitmap_page) {
1075 unlock_page(e4b->bd_bitmap_page);
1076 put_page(e4b->bd_bitmap_page);
1077 }
1078 if (e4b->bd_buddy_page) {
1079 unlock_page(e4b->bd_buddy_page);
1080 put_page(e4b->bd_buddy_page);
1081 }
1082 }
1083
1084 /*
1085 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1086 * block group lock of all groups for this page; do not hold the BG lock when
1087 * calling this routine!
1088 */
1089 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1090 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1091 {
1092
1093 struct ext4_group_info *this_grp;
1094 struct ext4_buddy e4b;
1095 struct page *page;
1096 int ret = 0;
1097
1098 might_sleep();
1099 mb_debug(sb, "init group %u\n", group);
1100 this_grp = ext4_get_group_info(sb, group);
1101 /*
1102 * This ensures that we don't reinit the buddy cache
1103 * page which map to the group from which we are already
1104 * allocating. If we are looking at the buddy cache we would
1105 * have taken a reference using ext4_mb_load_buddy and that
1106 * would have pinned buddy page to page cache.
1107 * The call to ext4_mb_get_buddy_page_lock will mark the
1108 * page accessed.
1109 */
1110 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1111 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1112 /*
1113 * somebody initialized the group
1114 * return without doing anything
1115 */
1116 goto err;
1117 }
1118
1119 page = e4b.bd_bitmap_page;
1120 ret = ext4_mb_init_cache(page, NULL, gfp);
1121 if (ret)
1122 goto err;
1123 if (!PageUptodate(page)) {
1124 ret = -EIO;
1125 goto err;
1126 }
1127
1128 if (e4b.bd_buddy_page == NULL) {
1129 /*
1130 * If both the bitmap and buddy are in
1131 * the same page we don't need to force
1132 * init the buddy
1133 */
1134 ret = 0;
1135 goto err;
1136 }
1137 /* init buddy cache */
1138 page = e4b.bd_buddy_page;
1139 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1140 if (ret)
1141 goto err;
1142 if (!PageUptodate(page)) {
1143 ret = -EIO;
1144 goto err;
1145 }
1146 err:
1147 ext4_mb_put_buddy_page_lock(&e4b);
1148 return ret;
1149 }
1150
1151 /*
1152 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1153 * block group lock of all groups for this page; do not hold the BG lock when
1154 * calling this routine!
1155 */
1156 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1157 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1158 struct ext4_buddy *e4b, gfp_t gfp)
1159 {
1160 int blocks_per_page;
1161 int block;
1162 int pnum;
1163 int poff;
1164 struct page *page;
1165 int ret;
1166 struct ext4_group_info *grp;
1167 struct ext4_sb_info *sbi = EXT4_SB(sb);
1168 struct inode *inode = sbi->s_buddy_cache;
1169
1170 might_sleep();
1171 mb_debug(sb, "load group %u\n", group);
1172
1173 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1174 grp = ext4_get_group_info(sb, group);
1175
1176 e4b->bd_blkbits = sb->s_blocksize_bits;
1177 e4b->bd_info = grp;
1178 e4b->bd_sb = sb;
1179 e4b->bd_group = group;
1180 e4b->bd_buddy_page = NULL;
1181 e4b->bd_bitmap_page = NULL;
1182
1183 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1184 /*
1185 * we need full data about the group
1186 * to make a good selection
1187 */
1188 ret = ext4_mb_init_group(sb, group, gfp);
1189 if (ret)
1190 return ret;
1191 }
1192
1193 /*
1194 * the buddy cache inode stores the block bitmap
1195 * and buddy information in consecutive blocks.
1196 * So for each group we need two blocks.
1197 */
1198 block = group * 2;
1199 pnum = block / blocks_per_page;
1200 poff = block % blocks_per_page;
1201
1202 /* we could use find_or_create_page(), but it locks page
1203 * what we'd like to avoid in fast path ... */
1204 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1205 if (page == NULL || !PageUptodate(page)) {
1206 if (page)
1207 /*
1208 * drop the page reference and try
1209 * to get the page with lock. If we
1210 * are not uptodate that implies
1211 * somebody just created the page but
1212 * is yet to initialize the same. So
1213 * wait for it to initialize.
1214 */
1215 put_page(page);
1216 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1217 if (page) {
1218 BUG_ON(page->mapping != inode->i_mapping);
1219 if (!PageUptodate(page)) {
1220 ret = ext4_mb_init_cache(page, NULL, gfp);
1221 if (ret) {
1222 unlock_page(page);
1223 goto err;
1224 }
1225 mb_cmp_bitmaps(e4b, page_address(page) +
1226 (poff * sb->s_blocksize));
1227 }
1228 unlock_page(page);
1229 }
1230 }
1231 if (page == NULL) {
1232 ret = -ENOMEM;
1233 goto err;
1234 }
1235 if (!PageUptodate(page)) {
1236 ret = -EIO;
1237 goto err;
1238 }
1239
1240 /* Pages marked accessed already */
1241 e4b->bd_bitmap_page = page;
1242 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1243
1244 block++;
1245 pnum = block / blocks_per_page;
1246 poff = block % blocks_per_page;
1247
1248 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1249 if (page == NULL || !PageUptodate(page)) {
1250 if (page)
1251 put_page(page);
1252 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1253 if (page) {
1254 BUG_ON(page->mapping != inode->i_mapping);
1255 if (!PageUptodate(page)) {
1256 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1257 gfp);
1258 if (ret) {
1259 unlock_page(page);
1260 goto err;
1261 }
1262 }
1263 unlock_page(page);
1264 }
1265 }
1266 if (page == NULL) {
1267 ret = -ENOMEM;
1268 goto err;
1269 }
1270 if (!PageUptodate(page)) {
1271 ret = -EIO;
1272 goto err;
1273 }
1274
1275 /* Pages marked accessed already */
1276 e4b->bd_buddy_page = page;
1277 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1278
1279 return 0;
1280
1281 err:
1282 if (page)
1283 put_page(page);
1284 if (e4b->bd_bitmap_page)
1285 put_page(e4b->bd_bitmap_page);
1286 if (e4b->bd_buddy_page)
1287 put_page(e4b->bd_buddy_page);
1288 e4b->bd_buddy = NULL;
1289 e4b->bd_bitmap = NULL;
1290 return ret;
1291 }
1292
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1293 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1294 struct ext4_buddy *e4b)
1295 {
1296 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1297 }
1298
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1299 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1300 {
1301 if (e4b->bd_bitmap_page)
1302 put_page(e4b->bd_bitmap_page);
1303 if (e4b->bd_buddy_page)
1304 put_page(e4b->bd_buddy_page);
1305 }
1306
1307
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1308 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1309 {
1310 int order = 1;
1311 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1312 void *bb;
1313
1314 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1315 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1316
1317 bb = e4b->bd_buddy;
1318 while (order <= e4b->bd_blkbits + 1) {
1319 block = block >> 1;
1320 if (!mb_test_bit(block, bb)) {
1321 /* this block is part of buddy of order 'order' */
1322 return order;
1323 }
1324 bb += bb_incr;
1325 bb_incr >>= 1;
1326 order++;
1327 }
1328 return 0;
1329 }
1330
mb_clear_bits(void * bm,int cur,int len)1331 static void mb_clear_bits(void *bm, int cur, int len)
1332 {
1333 __u32 *addr;
1334
1335 len = cur + len;
1336 while (cur < len) {
1337 if ((cur & 31) == 0 && (len - cur) >= 32) {
1338 /* fast path: clear whole word at once */
1339 addr = bm + (cur >> 3);
1340 *addr = 0;
1341 cur += 32;
1342 continue;
1343 }
1344 mb_clear_bit(cur, bm);
1345 cur++;
1346 }
1347 }
1348
1349 /* clear bits in given range
1350 * will return first found zero bit if any, -1 otherwise
1351 */
mb_test_and_clear_bits(void * bm,int cur,int len)1352 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1353 {
1354 __u32 *addr;
1355 int zero_bit = -1;
1356
1357 len = cur + len;
1358 while (cur < len) {
1359 if ((cur & 31) == 0 && (len - cur) >= 32) {
1360 /* fast path: clear whole word at once */
1361 addr = bm + (cur >> 3);
1362 if (*addr != (__u32)(-1) && zero_bit == -1)
1363 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1364 *addr = 0;
1365 cur += 32;
1366 continue;
1367 }
1368 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1369 zero_bit = cur;
1370 cur++;
1371 }
1372
1373 return zero_bit;
1374 }
1375
ext4_set_bits(void * bm,int cur,int len)1376 void ext4_set_bits(void *bm, int cur, int len)
1377 {
1378 __u32 *addr;
1379
1380 len = cur + len;
1381 while (cur < len) {
1382 if ((cur & 31) == 0 && (len - cur) >= 32) {
1383 /* fast path: set whole word at once */
1384 addr = bm + (cur >> 3);
1385 *addr = 0xffffffff;
1386 cur += 32;
1387 continue;
1388 }
1389 mb_set_bit(cur, bm);
1390 cur++;
1391 }
1392 }
1393
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1394 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1395 {
1396 if (mb_test_bit(*bit + side, bitmap)) {
1397 mb_clear_bit(*bit, bitmap);
1398 (*bit) -= side;
1399 return 1;
1400 }
1401 else {
1402 (*bit) += side;
1403 mb_set_bit(*bit, bitmap);
1404 return -1;
1405 }
1406 }
1407
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1408 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1409 {
1410 int max;
1411 int order = 1;
1412 void *buddy = mb_find_buddy(e4b, order, &max);
1413
1414 while (buddy) {
1415 void *buddy2;
1416
1417 /* Bits in range [first; last] are known to be set since
1418 * corresponding blocks were allocated. Bits in range
1419 * (first; last) will stay set because they form buddies on
1420 * upper layer. We just deal with borders if they don't
1421 * align with upper layer and then go up.
1422 * Releasing entire group is all about clearing
1423 * single bit of highest order buddy.
1424 */
1425
1426 /* Example:
1427 * ---------------------------------
1428 * | 1 | 1 | 1 | 1 |
1429 * ---------------------------------
1430 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1431 * ---------------------------------
1432 * 0 1 2 3 4 5 6 7
1433 * \_____________________/
1434 *
1435 * Neither [1] nor [6] is aligned to above layer.
1436 * Left neighbour [0] is free, so mark it busy,
1437 * decrease bb_counters and extend range to
1438 * [0; 6]
1439 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1440 * mark [6] free, increase bb_counters and shrink range to
1441 * [0; 5].
1442 * Then shift range to [0; 2], go up and do the same.
1443 */
1444
1445
1446 if (first & 1)
1447 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1448 if (!(last & 1))
1449 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1450 if (first > last)
1451 break;
1452 order++;
1453
1454 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1455 mb_clear_bits(buddy, first, last - first + 1);
1456 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1457 break;
1458 }
1459 first >>= 1;
1460 last >>= 1;
1461 buddy = buddy2;
1462 }
1463 }
1464
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1465 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1466 int first, int count)
1467 {
1468 int left_is_free = 0;
1469 int right_is_free = 0;
1470 int block;
1471 int last = first + count - 1;
1472 struct super_block *sb = e4b->bd_sb;
1473
1474 if (WARN_ON(count == 0))
1475 return;
1476 BUG_ON(last >= (sb->s_blocksize << 3));
1477 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1478 /* Don't bother if the block group is corrupt. */
1479 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1480 return;
1481
1482 mb_check_buddy(e4b);
1483 mb_free_blocks_double(inode, e4b, first, count);
1484
1485 this_cpu_inc(discard_pa_seq);
1486 e4b->bd_info->bb_free += count;
1487 if (first < e4b->bd_info->bb_first_free)
1488 e4b->bd_info->bb_first_free = first;
1489
1490 /* access memory sequentially: check left neighbour,
1491 * clear range and then check right neighbour
1492 */
1493 if (first != 0)
1494 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1495 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1496 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1497 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1498
1499 if (unlikely(block != -1)) {
1500 struct ext4_sb_info *sbi = EXT4_SB(sb);
1501 ext4_fsblk_t blocknr;
1502
1503 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1504 blocknr += EXT4_C2B(sbi, block);
1505 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1506 ext4_grp_locked_error(sb, e4b->bd_group,
1507 inode ? inode->i_ino : 0,
1508 blocknr,
1509 "freeing already freed block (bit %u); block bitmap corrupt.",
1510 block);
1511 ext4_mark_group_bitmap_corrupted(
1512 sb, e4b->bd_group,
1513 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1514 }
1515 mb_regenerate_buddy(e4b);
1516 goto done;
1517 }
1518
1519 /* let's maintain fragments counter */
1520 if (left_is_free && right_is_free)
1521 e4b->bd_info->bb_fragments--;
1522 else if (!left_is_free && !right_is_free)
1523 e4b->bd_info->bb_fragments++;
1524
1525 /* buddy[0] == bd_bitmap is a special case, so handle
1526 * it right away and let mb_buddy_mark_free stay free of
1527 * zero order checks.
1528 * Check if neighbours are to be coaleasced,
1529 * adjust bitmap bb_counters and borders appropriately.
1530 */
1531 if (first & 1) {
1532 first += !left_is_free;
1533 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1534 }
1535 if (!(last & 1)) {
1536 last -= !right_is_free;
1537 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1538 }
1539
1540 if (first <= last)
1541 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1542
1543 done:
1544 mb_set_largest_free_order(sb, e4b->bd_info);
1545 mb_check_buddy(e4b);
1546 }
1547
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1548 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1549 int needed, struct ext4_free_extent *ex)
1550 {
1551 int next = block;
1552 int max, order;
1553 void *buddy;
1554
1555 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1556 BUG_ON(ex == NULL);
1557
1558 buddy = mb_find_buddy(e4b, 0, &max);
1559 BUG_ON(buddy == NULL);
1560 BUG_ON(block >= max);
1561 if (mb_test_bit(block, buddy)) {
1562 ex->fe_len = 0;
1563 ex->fe_start = 0;
1564 ex->fe_group = 0;
1565 return 0;
1566 }
1567
1568 /* find actual order */
1569 order = mb_find_order_for_block(e4b, block);
1570 block = block >> order;
1571
1572 ex->fe_len = 1 << order;
1573 ex->fe_start = block << order;
1574 ex->fe_group = e4b->bd_group;
1575
1576 /* calc difference from given start */
1577 next = next - ex->fe_start;
1578 ex->fe_len -= next;
1579 ex->fe_start += next;
1580
1581 while (needed > ex->fe_len &&
1582 mb_find_buddy(e4b, order, &max)) {
1583
1584 if (block + 1 >= max)
1585 break;
1586
1587 next = (block + 1) * (1 << order);
1588 if (mb_test_bit(next, e4b->bd_bitmap))
1589 break;
1590
1591 order = mb_find_order_for_block(e4b, next);
1592
1593 block = next >> order;
1594 ex->fe_len += 1 << order;
1595 }
1596
1597 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1598 /* Should never happen! (but apparently sometimes does?!?) */
1599 WARN_ON(1);
1600 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1601 "corruption or bug in mb_find_extent "
1602 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1603 block, order, needed, ex->fe_group, ex->fe_start,
1604 ex->fe_len, ex->fe_logical);
1605 ex->fe_len = 0;
1606 ex->fe_start = 0;
1607 ex->fe_group = 0;
1608 }
1609 return ex->fe_len;
1610 }
1611
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1612 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1613 {
1614 int ord;
1615 int mlen = 0;
1616 int max = 0;
1617 int cur;
1618 int start = ex->fe_start;
1619 int len = ex->fe_len;
1620 unsigned ret = 0;
1621 int len0 = len;
1622 void *buddy;
1623
1624 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1625 BUG_ON(e4b->bd_group != ex->fe_group);
1626 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1627 mb_check_buddy(e4b);
1628 mb_mark_used_double(e4b, start, len);
1629
1630 this_cpu_inc(discard_pa_seq);
1631 e4b->bd_info->bb_free -= len;
1632 if (e4b->bd_info->bb_first_free == start)
1633 e4b->bd_info->bb_first_free += len;
1634
1635 /* let's maintain fragments counter */
1636 if (start != 0)
1637 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1638 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1639 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1640 if (mlen && max)
1641 e4b->bd_info->bb_fragments++;
1642 else if (!mlen && !max)
1643 e4b->bd_info->bb_fragments--;
1644
1645 /* let's maintain buddy itself */
1646 while (len) {
1647 ord = mb_find_order_for_block(e4b, start);
1648
1649 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1650 /* the whole chunk may be allocated at once! */
1651 mlen = 1 << ord;
1652 buddy = mb_find_buddy(e4b, ord, &max);
1653 BUG_ON((start >> ord) >= max);
1654 mb_set_bit(start >> ord, buddy);
1655 e4b->bd_info->bb_counters[ord]--;
1656 start += mlen;
1657 len -= mlen;
1658 BUG_ON(len < 0);
1659 continue;
1660 }
1661
1662 /* store for history */
1663 if (ret == 0)
1664 ret = len | (ord << 16);
1665
1666 /* we have to split large buddy */
1667 BUG_ON(ord <= 0);
1668 buddy = mb_find_buddy(e4b, ord, &max);
1669 mb_set_bit(start >> ord, buddy);
1670 e4b->bd_info->bb_counters[ord]--;
1671
1672 ord--;
1673 cur = (start >> ord) & ~1U;
1674 buddy = mb_find_buddy(e4b, ord, &max);
1675 mb_clear_bit(cur, buddy);
1676 mb_clear_bit(cur + 1, buddy);
1677 e4b->bd_info->bb_counters[ord]++;
1678 e4b->bd_info->bb_counters[ord]++;
1679 }
1680 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1681
1682 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1683 mb_check_buddy(e4b);
1684
1685 return ret;
1686 }
1687
1688 /*
1689 * Must be called under group lock!
1690 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1691 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1692 struct ext4_buddy *e4b)
1693 {
1694 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1695 int ret;
1696
1697 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1698 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1699
1700 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1701 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1702 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1703
1704 /* preallocation can change ac_b_ex, thus we store actually
1705 * allocated blocks for history */
1706 ac->ac_f_ex = ac->ac_b_ex;
1707
1708 ac->ac_status = AC_STATUS_FOUND;
1709 ac->ac_tail = ret & 0xffff;
1710 ac->ac_buddy = ret >> 16;
1711
1712 /*
1713 * take the page reference. We want the page to be pinned
1714 * so that we don't get a ext4_mb_init_cache_call for this
1715 * group until we update the bitmap. That would mean we
1716 * double allocate blocks. The reference is dropped
1717 * in ext4_mb_release_context
1718 */
1719 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1720 get_page(ac->ac_bitmap_page);
1721 ac->ac_buddy_page = e4b->bd_buddy_page;
1722 get_page(ac->ac_buddy_page);
1723 /* store last allocated for subsequent stream allocation */
1724 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1725 spin_lock(&sbi->s_md_lock);
1726 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1727 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1728 spin_unlock(&sbi->s_md_lock);
1729 }
1730 /*
1731 * As we've just preallocated more space than
1732 * user requested originally, we store allocated
1733 * space in a special descriptor.
1734 */
1735 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
1736 ext4_mb_new_preallocation(ac);
1737
1738 }
1739
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1740 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1741 struct ext4_buddy *e4b,
1742 int finish_group)
1743 {
1744 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1745 struct ext4_free_extent *bex = &ac->ac_b_ex;
1746 struct ext4_free_extent *gex = &ac->ac_g_ex;
1747 struct ext4_free_extent ex;
1748 int max;
1749
1750 if (ac->ac_status == AC_STATUS_FOUND)
1751 return;
1752 /*
1753 * We don't want to scan for a whole year
1754 */
1755 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1756 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1757 ac->ac_status = AC_STATUS_BREAK;
1758 return;
1759 }
1760
1761 /*
1762 * Haven't found good chunk so far, let's continue
1763 */
1764 if (bex->fe_len < gex->fe_len)
1765 return;
1766
1767 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1768 && bex->fe_group == e4b->bd_group) {
1769 /* recheck chunk's availability - we don't know
1770 * when it was found (within this lock-unlock
1771 * period or not) */
1772 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1773 if (max >= gex->fe_len) {
1774 ext4_mb_use_best_found(ac, e4b);
1775 return;
1776 }
1777 }
1778 }
1779
1780 /*
1781 * The routine checks whether found extent is good enough. If it is,
1782 * then the extent gets marked used and flag is set to the context
1783 * to stop scanning. Otherwise, the extent is compared with the
1784 * previous found extent and if new one is better, then it's stored
1785 * in the context. Later, the best found extent will be used, if
1786 * mballoc can't find good enough extent.
1787 *
1788 * FIXME: real allocation policy is to be designed yet!
1789 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1790 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1791 struct ext4_free_extent *ex,
1792 struct ext4_buddy *e4b)
1793 {
1794 struct ext4_free_extent *bex = &ac->ac_b_ex;
1795 struct ext4_free_extent *gex = &ac->ac_g_ex;
1796
1797 BUG_ON(ex->fe_len <= 0);
1798 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1799 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1800 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1801
1802 ac->ac_found++;
1803
1804 /*
1805 * The special case - take what you catch first
1806 */
1807 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1808 *bex = *ex;
1809 ext4_mb_use_best_found(ac, e4b);
1810 return;
1811 }
1812
1813 /*
1814 * Let's check whether the chuck is good enough
1815 */
1816 if (ex->fe_len == gex->fe_len) {
1817 *bex = *ex;
1818 ext4_mb_use_best_found(ac, e4b);
1819 return;
1820 }
1821
1822 /*
1823 * If this is first found extent, just store it in the context
1824 */
1825 if (bex->fe_len == 0) {
1826 *bex = *ex;
1827 return;
1828 }
1829
1830 /*
1831 * If new found extent is better, store it in the context
1832 */
1833 if (bex->fe_len < gex->fe_len) {
1834 /* if the request isn't satisfied, any found extent
1835 * larger than previous best one is better */
1836 if (ex->fe_len > bex->fe_len)
1837 *bex = *ex;
1838 } else if (ex->fe_len > gex->fe_len) {
1839 /* if the request is satisfied, then we try to find
1840 * an extent that still satisfy the request, but is
1841 * smaller than previous one */
1842 if (ex->fe_len < bex->fe_len)
1843 *bex = *ex;
1844 }
1845
1846 ext4_mb_check_limits(ac, e4b, 0);
1847 }
1848
1849 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1850 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1851 struct ext4_buddy *e4b)
1852 {
1853 struct ext4_free_extent ex = ac->ac_b_ex;
1854 ext4_group_t group = ex.fe_group;
1855 int max;
1856 int err;
1857
1858 BUG_ON(ex.fe_len <= 0);
1859 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1860 if (err)
1861 return err;
1862
1863 ext4_lock_group(ac->ac_sb, group);
1864 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1865
1866 if (max > 0) {
1867 ac->ac_b_ex = ex;
1868 ext4_mb_use_best_found(ac, e4b);
1869 }
1870
1871 ext4_unlock_group(ac->ac_sb, group);
1872 ext4_mb_unload_buddy(e4b);
1873
1874 return 0;
1875 }
1876
1877 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1878 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1879 struct ext4_buddy *e4b)
1880 {
1881 ext4_group_t group = ac->ac_g_ex.fe_group;
1882 int max;
1883 int err;
1884 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1885 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1886 struct ext4_free_extent ex;
1887
1888 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1889 return 0;
1890 if (grp->bb_free == 0)
1891 return 0;
1892
1893 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1894 if (err)
1895 return err;
1896
1897 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1898 ext4_mb_unload_buddy(e4b);
1899 return 0;
1900 }
1901
1902 ext4_lock_group(ac->ac_sb, group);
1903 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1904 ac->ac_g_ex.fe_len, &ex);
1905 ex.fe_logical = 0xDEADFA11; /* debug value */
1906
1907 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1908 ext4_fsblk_t start;
1909
1910 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1911 ex.fe_start;
1912 /* use do_div to get remainder (would be 64-bit modulo) */
1913 if (do_div(start, sbi->s_stripe) == 0) {
1914 ac->ac_found++;
1915 ac->ac_b_ex = ex;
1916 ext4_mb_use_best_found(ac, e4b);
1917 }
1918 } else if (max >= ac->ac_g_ex.fe_len) {
1919 BUG_ON(ex.fe_len <= 0);
1920 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1921 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1922 ac->ac_found++;
1923 ac->ac_b_ex = ex;
1924 ext4_mb_use_best_found(ac, e4b);
1925 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1926 /* Sometimes, caller may want to merge even small
1927 * number of blocks to an existing extent */
1928 BUG_ON(ex.fe_len <= 0);
1929 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1930 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1931 ac->ac_found++;
1932 ac->ac_b_ex = ex;
1933 ext4_mb_use_best_found(ac, e4b);
1934 }
1935 ext4_unlock_group(ac->ac_sb, group);
1936 ext4_mb_unload_buddy(e4b);
1937
1938 return 0;
1939 }
1940
1941 /*
1942 * The routine scans buddy structures (not bitmap!) from given order
1943 * to max order and tries to find big enough chunk to satisfy the req
1944 */
1945 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1946 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1947 struct ext4_buddy *e4b)
1948 {
1949 struct super_block *sb = ac->ac_sb;
1950 struct ext4_group_info *grp = e4b->bd_info;
1951 void *buddy;
1952 int i;
1953 int k;
1954 int max;
1955
1956 BUG_ON(ac->ac_2order <= 0);
1957 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1958 if (grp->bb_counters[i] == 0)
1959 continue;
1960
1961 buddy = mb_find_buddy(e4b, i, &max);
1962 BUG_ON(buddy == NULL);
1963
1964 k = mb_find_next_zero_bit(buddy, max, 0);
1965 if (k >= max) {
1966 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1967 "%d free clusters of order %d. But found 0",
1968 grp->bb_counters[i], i);
1969 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1970 e4b->bd_group,
1971 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1972 break;
1973 }
1974 ac->ac_found++;
1975
1976 ac->ac_b_ex.fe_len = 1 << i;
1977 ac->ac_b_ex.fe_start = k << i;
1978 ac->ac_b_ex.fe_group = e4b->bd_group;
1979
1980 ext4_mb_use_best_found(ac, e4b);
1981
1982 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
1983
1984 if (EXT4_SB(sb)->s_mb_stats)
1985 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1986
1987 break;
1988 }
1989 }
1990
1991 /*
1992 * The routine scans the group and measures all found extents.
1993 * In order to optimize scanning, caller must pass number of
1994 * free blocks in the group, so the routine can know upper limit.
1995 */
1996 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1997 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1998 struct ext4_buddy *e4b)
1999 {
2000 struct super_block *sb = ac->ac_sb;
2001 void *bitmap = e4b->bd_bitmap;
2002 struct ext4_free_extent ex;
2003 int i;
2004 int free;
2005
2006 free = e4b->bd_info->bb_free;
2007 if (WARN_ON(free <= 0))
2008 return;
2009
2010 i = e4b->bd_info->bb_first_free;
2011
2012 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2013 i = mb_find_next_zero_bit(bitmap,
2014 EXT4_CLUSTERS_PER_GROUP(sb), i);
2015 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2016 /*
2017 * IF we have corrupt bitmap, we won't find any
2018 * free blocks even though group info says we
2019 * have free blocks
2020 */
2021 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2022 "%d free clusters as per "
2023 "group info. But bitmap says 0",
2024 free);
2025 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2026 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2027 break;
2028 }
2029
2030 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2031 if (WARN_ON(ex.fe_len <= 0))
2032 break;
2033 if (free < ex.fe_len) {
2034 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2035 "%d free clusters as per "
2036 "group info. But got %d blocks",
2037 free, ex.fe_len);
2038 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2039 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2040 /*
2041 * The number of free blocks differs. This mostly
2042 * indicate that the bitmap is corrupt. So exit
2043 * without claiming the space.
2044 */
2045 break;
2046 }
2047 ex.fe_logical = 0xDEADC0DE; /* debug value */
2048 ext4_mb_measure_extent(ac, &ex, e4b);
2049
2050 i += ex.fe_len;
2051 free -= ex.fe_len;
2052 }
2053
2054 ext4_mb_check_limits(ac, e4b, 1);
2055 }
2056
2057 /*
2058 * This is a special case for storages like raid5
2059 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2060 */
2061 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2062 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2063 struct ext4_buddy *e4b)
2064 {
2065 struct super_block *sb = ac->ac_sb;
2066 struct ext4_sb_info *sbi = EXT4_SB(sb);
2067 void *bitmap = e4b->bd_bitmap;
2068 struct ext4_free_extent ex;
2069 ext4_fsblk_t first_group_block;
2070 ext4_fsblk_t a;
2071 ext4_grpblk_t i;
2072 int max;
2073
2074 BUG_ON(sbi->s_stripe == 0);
2075
2076 /* find first stripe-aligned block in group */
2077 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2078
2079 a = first_group_block + sbi->s_stripe - 1;
2080 do_div(a, sbi->s_stripe);
2081 i = (a * sbi->s_stripe) - first_group_block;
2082
2083 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2084 if (!mb_test_bit(i, bitmap)) {
2085 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2086 if (max >= sbi->s_stripe) {
2087 ac->ac_found++;
2088 ex.fe_logical = 0xDEADF00D; /* debug value */
2089 ac->ac_b_ex = ex;
2090 ext4_mb_use_best_found(ac, e4b);
2091 break;
2092 }
2093 }
2094 i += sbi->s_stripe;
2095 }
2096 }
2097
2098 /*
2099 * This is also called BEFORE we load the buddy bitmap.
2100 * Returns either 1 or 0 indicating that the group is either suitable
2101 * for the allocation or not.
2102 */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2103 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2104 ext4_group_t group, int cr)
2105 {
2106 ext4_grpblk_t free, fragments;
2107 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2108 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2109
2110 BUG_ON(cr < 0 || cr >= 4);
2111
2112 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2113 return false;
2114
2115 free = grp->bb_free;
2116 if (free == 0)
2117 return false;
2118
2119 fragments = grp->bb_fragments;
2120 if (fragments == 0)
2121 return false;
2122
2123 switch (cr) {
2124 case 0:
2125 BUG_ON(ac->ac_2order == 0);
2126
2127 /* Avoid using the first bg of a flexgroup for data files */
2128 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2129 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2130 ((group % flex_size) == 0))
2131 return false;
2132
2133 if (free < ac->ac_g_ex.fe_len)
2134 return false;
2135
2136 if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1)
2137 return true;
2138
2139 if (grp->bb_largest_free_order < ac->ac_2order)
2140 return false;
2141
2142 return true;
2143 case 1:
2144 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2145 return true;
2146 break;
2147 case 2:
2148 if (free >= ac->ac_g_ex.fe_len)
2149 return true;
2150 break;
2151 case 3:
2152 return true;
2153 default:
2154 BUG();
2155 }
2156
2157 return false;
2158 }
2159
2160 /*
2161 * This could return negative error code if something goes wrong
2162 * during ext4_mb_init_group(). This should not be called with
2163 * ext4_lock_group() held.
2164 */
ext4_mb_good_group_nolock(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2165 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2166 ext4_group_t group, int cr)
2167 {
2168 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2169 struct super_block *sb = ac->ac_sb;
2170 struct ext4_sb_info *sbi = EXT4_SB(sb);
2171 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2172 ext4_grpblk_t free;
2173 int ret = 0;
2174
2175 if (should_lock)
2176 ext4_lock_group(sb, group);
2177 free = grp->bb_free;
2178 if (free == 0)
2179 goto out;
2180 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2181 goto out;
2182 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2183 goto out;
2184 if (should_lock)
2185 ext4_unlock_group(sb, group);
2186
2187 /* We only do this if the grp has never been initialized */
2188 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2189 struct ext4_group_desc *gdp =
2190 ext4_get_group_desc(sb, group, NULL);
2191 int ret;
2192
2193 /* cr=0/1 is a very optimistic search to find large
2194 * good chunks almost for free. If buddy data is not
2195 * ready, then this optimization makes no sense. But
2196 * we never skip the first block group in a flex_bg,
2197 * since this gets used for metadata block allocation,
2198 * and we want to make sure we locate metadata blocks
2199 * in the first block group in the flex_bg if possible.
2200 */
2201 if (cr < 2 &&
2202 (!sbi->s_log_groups_per_flex ||
2203 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2204 !(ext4_has_group_desc_csum(sb) &&
2205 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2206 return 0;
2207 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2208 if (ret)
2209 return ret;
2210 }
2211
2212 if (should_lock)
2213 ext4_lock_group(sb, group);
2214 ret = ext4_mb_good_group(ac, group, cr);
2215 out:
2216 if (should_lock)
2217 ext4_unlock_group(sb, group);
2218 return ret;
2219 }
2220
2221 /*
2222 * Start prefetching @nr block bitmaps starting at @group.
2223 * Return the next group which needs to be prefetched.
2224 */
ext4_mb_prefetch(struct super_block * sb,ext4_group_t group,unsigned int nr,int * cnt)2225 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2226 unsigned int nr, int *cnt)
2227 {
2228 ext4_group_t ngroups = ext4_get_groups_count(sb);
2229 struct buffer_head *bh;
2230 struct blk_plug plug;
2231
2232 blk_start_plug(&plug);
2233 while (nr-- > 0) {
2234 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2235 NULL);
2236 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2237
2238 /*
2239 * Prefetch block groups with free blocks; but don't
2240 * bother if it is marked uninitialized on disk, since
2241 * it won't require I/O to read. Also only try to
2242 * prefetch once, so we avoid getblk() call, which can
2243 * be expensive.
2244 */
2245 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2246 EXT4_MB_GRP_NEED_INIT(grp) &&
2247 ext4_free_group_clusters(sb, gdp) > 0 &&
2248 !(ext4_has_group_desc_csum(sb) &&
2249 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2250 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2251 if (bh && !IS_ERR(bh)) {
2252 if (!buffer_uptodate(bh) && cnt)
2253 (*cnt)++;
2254 brelse(bh);
2255 }
2256 }
2257 if (++group >= ngroups)
2258 group = 0;
2259 }
2260 blk_finish_plug(&plug);
2261 return group;
2262 }
2263
2264 /*
2265 * Prefetching reads the block bitmap into the buffer cache; but we
2266 * need to make sure that the buddy bitmap in the page cache has been
2267 * initialized. Note that ext4_mb_init_group() will block if the I/O
2268 * is not yet completed, or indeed if it was not initiated by
2269 * ext4_mb_prefetch did not start the I/O.
2270 *
2271 * TODO: We should actually kick off the buddy bitmap setup in a work
2272 * queue when the buffer I/O is completed, so that we don't block
2273 * waiting for the block allocation bitmap read to finish when
2274 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2275 */
ext4_mb_prefetch_fini(struct super_block * sb,ext4_group_t group,unsigned int nr)2276 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2277 unsigned int nr)
2278 {
2279 while (nr-- > 0) {
2280 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2281 NULL);
2282 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2283
2284 if (!group)
2285 group = ext4_get_groups_count(sb);
2286 group--;
2287 grp = ext4_get_group_info(sb, group);
2288
2289 if (EXT4_MB_GRP_NEED_INIT(grp) &&
2290 ext4_free_group_clusters(sb, gdp) > 0 &&
2291 !(ext4_has_group_desc_csum(sb) &&
2292 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2293 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2294 break;
2295 }
2296 }
2297 }
2298
2299 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2300 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2301 {
2302 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2303 int cr = -1;
2304 int err = 0, first_err = 0;
2305 unsigned int nr = 0, prefetch_ios = 0;
2306 struct ext4_sb_info *sbi;
2307 struct super_block *sb;
2308 struct ext4_buddy e4b;
2309 int lost;
2310
2311 sb = ac->ac_sb;
2312 sbi = EXT4_SB(sb);
2313 ngroups = ext4_get_groups_count(sb);
2314 /* non-extent files are limited to low blocks/groups */
2315 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2316 ngroups = sbi->s_blockfile_groups;
2317
2318 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2319
2320 /* first, try the goal */
2321 err = ext4_mb_find_by_goal(ac, &e4b);
2322 if (err || ac->ac_status == AC_STATUS_FOUND)
2323 goto out;
2324
2325 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2326 goto out;
2327
2328 /*
2329 * ac->ac_2order is set only if the fe_len is a power of 2
2330 * if ac->ac_2order is set we also set criteria to 0 so that we
2331 * try exact allocation using buddy.
2332 */
2333 i = fls(ac->ac_g_ex.fe_len);
2334 ac->ac_2order = 0;
2335 /*
2336 * We search using buddy data only if the order of the request
2337 * is greater than equal to the sbi_s_mb_order2_reqs
2338 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2339 * We also support searching for power-of-two requests only for
2340 * requests upto maximum buddy size we have constructed.
2341 */
2342 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2343 /*
2344 * This should tell if fe_len is exactly power of 2
2345 */
2346 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2347 ac->ac_2order = array_index_nospec(i - 1,
2348 sb->s_blocksize_bits + 2);
2349 }
2350
2351 /* if stream allocation is enabled, use global goal */
2352 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2353 /* TBD: may be hot point */
2354 spin_lock(&sbi->s_md_lock);
2355 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2356 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2357 spin_unlock(&sbi->s_md_lock);
2358 }
2359
2360 /* Let's just scan groups to find more-less suitable blocks */
2361 cr = ac->ac_2order ? 0 : 1;
2362 /*
2363 * cr == 0 try to get exact allocation,
2364 * cr == 3 try to get anything
2365 */
2366 repeat:
2367 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2368 ac->ac_criteria = cr;
2369 /*
2370 * searching for the right group start
2371 * from the goal value specified
2372 */
2373 group = ac->ac_g_ex.fe_group;
2374 prefetch_grp = group;
2375
2376 for (i = 0; i < ngroups; group++, i++) {
2377 int ret = 0;
2378 cond_resched();
2379 /*
2380 * Artificially restricted ngroups for non-extent
2381 * files makes group > ngroups possible on first loop.
2382 */
2383 if (group >= ngroups)
2384 group = 0;
2385
2386 /*
2387 * Batch reads of the block allocation bitmaps
2388 * to get multiple READs in flight; limit
2389 * prefetching at cr=0/1, otherwise mballoc can
2390 * spend a lot of time loading imperfect groups
2391 */
2392 if ((prefetch_grp == group) &&
2393 (cr > 1 ||
2394 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2395 unsigned int curr_ios = prefetch_ios;
2396
2397 nr = sbi->s_mb_prefetch;
2398 if (ext4_has_feature_flex_bg(sb)) {
2399 nr = 1 << sbi->s_log_groups_per_flex;
2400 nr -= group & (nr - 1);
2401 nr = min(nr, sbi->s_mb_prefetch);
2402 }
2403 prefetch_grp = ext4_mb_prefetch(sb, group,
2404 nr, &prefetch_ios);
2405 if (prefetch_ios == curr_ios)
2406 nr = 0;
2407 }
2408
2409 /* This now checks without needing the buddy page */
2410 ret = ext4_mb_good_group_nolock(ac, group, cr);
2411 if (ret <= 0) {
2412 if (!first_err)
2413 first_err = ret;
2414 continue;
2415 }
2416
2417 err = ext4_mb_load_buddy(sb, group, &e4b);
2418 if (err)
2419 goto out;
2420
2421 ext4_lock_group(sb, group);
2422
2423 /*
2424 * We need to check again after locking the
2425 * block group
2426 */
2427 ret = ext4_mb_good_group(ac, group, cr);
2428 if (ret == 0) {
2429 ext4_unlock_group(sb, group);
2430 ext4_mb_unload_buddy(&e4b);
2431 continue;
2432 }
2433
2434 ac->ac_groups_scanned++;
2435 if (cr == 0)
2436 ext4_mb_simple_scan_group(ac, &e4b);
2437 else if (cr == 1 && sbi->s_stripe &&
2438 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2439 ext4_mb_scan_aligned(ac, &e4b);
2440 else
2441 ext4_mb_complex_scan_group(ac, &e4b);
2442
2443 ext4_unlock_group(sb, group);
2444 ext4_mb_unload_buddy(&e4b);
2445
2446 if (ac->ac_status != AC_STATUS_CONTINUE)
2447 break;
2448 }
2449 }
2450
2451 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2452 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2453 /*
2454 * We've been searching too long. Let's try to allocate
2455 * the best chunk we've found so far
2456 */
2457 ext4_mb_try_best_found(ac, &e4b);
2458 if (ac->ac_status != AC_STATUS_FOUND) {
2459 /*
2460 * Someone more lucky has already allocated it.
2461 * The only thing we can do is just take first
2462 * found block(s)
2463 */
2464 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2465 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2466 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2467 ac->ac_b_ex.fe_len, lost);
2468
2469 ac->ac_b_ex.fe_group = 0;
2470 ac->ac_b_ex.fe_start = 0;
2471 ac->ac_b_ex.fe_len = 0;
2472 ac->ac_status = AC_STATUS_CONTINUE;
2473 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2474 cr = 3;
2475 goto repeat;
2476 }
2477 }
2478 out:
2479 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2480 err = first_err;
2481
2482 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2483 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2484 ac->ac_flags, cr, err);
2485
2486 if (nr)
2487 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2488
2489 return err;
2490 }
2491
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2492 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2493 {
2494 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2495 ext4_group_t group;
2496
2497 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2498 return NULL;
2499 group = *pos + 1;
2500 return (void *) ((unsigned long) group);
2501 }
2502
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2503 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2504 {
2505 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2506 ext4_group_t group;
2507
2508 ++*pos;
2509 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2510 return NULL;
2511 group = *pos + 1;
2512 return (void *) ((unsigned long) group);
2513 }
2514
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2515 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2516 {
2517 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2518 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2519 int i;
2520 int err, buddy_loaded = 0;
2521 struct ext4_buddy e4b;
2522 struct ext4_group_info *grinfo;
2523 unsigned char blocksize_bits = min_t(unsigned char,
2524 sb->s_blocksize_bits,
2525 EXT4_MAX_BLOCK_LOG_SIZE);
2526 struct sg {
2527 struct ext4_group_info info;
2528 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2529 } sg;
2530
2531 group--;
2532 if (group == 0)
2533 seq_puts(seq, "#group: free frags first ["
2534 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2535 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2536
2537 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2538 sizeof(struct ext4_group_info);
2539
2540 grinfo = ext4_get_group_info(sb, group);
2541 /* Load the group info in memory only if not already loaded. */
2542 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2543 err = ext4_mb_load_buddy(sb, group, &e4b);
2544 if (err) {
2545 seq_printf(seq, "#%-5u: I/O error\n", group);
2546 return 0;
2547 }
2548 buddy_loaded = 1;
2549 }
2550
2551 memcpy(&sg, ext4_get_group_info(sb, group), i);
2552
2553 if (buddy_loaded)
2554 ext4_mb_unload_buddy(&e4b);
2555
2556 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2557 sg.info.bb_fragments, sg.info.bb_first_free);
2558 for (i = 0; i <= 13; i++)
2559 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2560 sg.info.bb_counters[i] : 0);
2561 seq_puts(seq, " ]\n");
2562
2563 return 0;
2564 }
2565
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2566 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2567 {
2568 }
2569
2570 const struct seq_operations ext4_mb_seq_groups_ops = {
2571 .start = ext4_mb_seq_groups_start,
2572 .next = ext4_mb_seq_groups_next,
2573 .stop = ext4_mb_seq_groups_stop,
2574 .show = ext4_mb_seq_groups_show,
2575 };
2576
get_groupinfo_cache(int blocksize_bits)2577 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2578 {
2579 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2580 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2581
2582 BUG_ON(!cachep);
2583 return cachep;
2584 }
2585
2586 /*
2587 * Allocate the top-level s_group_info array for the specified number
2588 * of groups
2589 */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2590 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2591 {
2592 struct ext4_sb_info *sbi = EXT4_SB(sb);
2593 unsigned size;
2594 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2595
2596 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2597 EXT4_DESC_PER_BLOCK_BITS(sb);
2598 if (size <= sbi->s_group_info_size)
2599 return 0;
2600
2601 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2602 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2603 if (!new_groupinfo) {
2604 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2605 return -ENOMEM;
2606 }
2607 rcu_read_lock();
2608 old_groupinfo = rcu_dereference(sbi->s_group_info);
2609 if (old_groupinfo)
2610 memcpy(new_groupinfo, old_groupinfo,
2611 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2612 rcu_read_unlock();
2613 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2614 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2615 if (old_groupinfo)
2616 ext4_kvfree_array_rcu(old_groupinfo);
2617 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2618 sbi->s_group_info_size);
2619 return 0;
2620 }
2621
2622 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2623 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2624 struct ext4_group_desc *desc)
2625 {
2626 int i;
2627 int metalen = 0;
2628 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2629 struct ext4_sb_info *sbi = EXT4_SB(sb);
2630 struct ext4_group_info **meta_group_info;
2631 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2632
2633 /*
2634 * First check if this group is the first of a reserved block.
2635 * If it's true, we have to allocate a new table of pointers
2636 * to ext4_group_info structures
2637 */
2638 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2639 metalen = sizeof(*meta_group_info) <<
2640 EXT4_DESC_PER_BLOCK_BITS(sb);
2641 meta_group_info = kmalloc(metalen, GFP_NOFS);
2642 if (meta_group_info == NULL) {
2643 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2644 "for a buddy group");
2645 goto exit_meta_group_info;
2646 }
2647 rcu_read_lock();
2648 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2649 rcu_read_unlock();
2650 }
2651
2652 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2653 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2654
2655 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2656 if (meta_group_info[i] == NULL) {
2657 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2658 goto exit_group_info;
2659 }
2660 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2661 &(meta_group_info[i]->bb_state));
2662
2663 /*
2664 * initialize bb_free to be able to skip
2665 * empty groups without initialization
2666 */
2667 if (ext4_has_group_desc_csum(sb) &&
2668 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2669 meta_group_info[i]->bb_free =
2670 ext4_free_clusters_after_init(sb, group, desc);
2671 } else {
2672 meta_group_info[i]->bb_free =
2673 ext4_free_group_clusters(sb, desc);
2674 }
2675
2676 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2677 init_rwsem(&meta_group_info[i]->alloc_sem);
2678 meta_group_info[i]->bb_free_root = RB_ROOT;
2679 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2680
2681 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
2682 return 0;
2683
2684 exit_group_info:
2685 /* If a meta_group_info table has been allocated, release it now */
2686 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2687 struct ext4_group_info ***group_info;
2688
2689 rcu_read_lock();
2690 group_info = rcu_dereference(sbi->s_group_info);
2691 kfree(group_info[idx]);
2692 group_info[idx] = NULL;
2693 rcu_read_unlock();
2694 }
2695 exit_meta_group_info:
2696 return -ENOMEM;
2697 } /* ext4_mb_add_groupinfo */
2698
ext4_mb_init_backend(struct super_block * sb)2699 static int ext4_mb_init_backend(struct super_block *sb)
2700 {
2701 ext4_group_t ngroups = ext4_get_groups_count(sb);
2702 ext4_group_t i;
2703 struct ext4_sb_info *sbi = EXT4_SB(sb);
2704 int err;
2705 struct ext4_group_desc *desc;
2706 struct ext4_group_info ***group_info;
2707 struct kmem_cache *cachep;
2708
2709 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2710 if (err)
2711 return err;
2712
2713 sbi->s_buddy_cache = new_inode(sb);
2714 if (sbi->s_buddy_cache == NULL) {
2715 ext4_msg(sb, KERN_ERR, "can't get new inode");
2716 goto err_freesgi;
2717 }
2718 /* To avoid potentially colliding with an valid on-disk inode number,
2719 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2720 * not in the inode hash, so it should never be found by iget(), but
2721 * this will avoid confusion if it ever shows up during debugging. */
2722 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2723 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2724 for (i = 0; i < ngroups; i++) {
2725 cond_resched();
2726 desc = ext4_get_group_desc(sb, i, NULL);
2727 if (desc == NULL) {
2728 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2729 goto err_freebuddy;
2730 }
2731 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2732 goto err_freebuddy;
2733 }
2734
2735 if (ext4_has_feature_flex_bg(sb)) {
2736 /* a single flex group is supposed to be read by a single IO.
2737 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
2738 * unsigned integer, so the maximum shift is 32.
2739 */
2740 if (sbi->s_es->s_log_groups_per_flex >= 32) {
2741 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
2742 goto err_freebuddy;
2743 }
2744 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
2745 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
2746 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
2747 } else {
2748 sbi->s_mb_prefetch = 32;
2749 }
2750 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
2751 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
2752 /* now many real IOs to prefetch within a single allocation at cr=0
2753 * given cr=0 is an CPU-related optimization we shouldn't try to
2754 * load too many groups, at some point we should start to use what
2755 * we've got in memory.
2756 * with an average random access time 5ms, it'd take a second to get
2757 * 200 groups (* N with flex_bg), so let's make this limit 4
2758 */
2759 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
2760 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
2761 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
2762
2763 return 0;
2764
2765 err_freebuddy:
2766 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2767 while (i-- > 0)
2768 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2769 i = sbi->s_group_info_size;
2770 rcu_read_lock();
2771 group_info = rcu_dereference(sbi->s_group_info);
2772 while (i-- > 0)
2773 kfree(group_info[i]);
2774 rcu_read_unlock();
2775 iput(sbi->s_buddy_cache);
2776 err_freesgi:
2777 rcu_read_lock();
2778 kvfree(rcu_dereference(sbi->s_group_info));
2779 rcu_read_unlock();
2780 return -ENOMEM;
2781 }
2782
ext4_groupinfo_destroy_slabs(void)2783 static void ext4_groupinfo_destroy_slabs(void)
2784 {
2785 int i;
2786
2787 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2788 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2789 ext4_groupinfo_caches[i] = NULL;
2790 }
2791 }
2792
ext4_groupinfo_create_slab(size_t size)2793 static int ext4_groupinfo_create_slab(size_t size)
2794 {
2795 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2796 int slab_size;
2797 int blocksize_bits = order_base_2(size);
2798 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2799 struct kmem_cache *cachep;
2800
2801 if (cache_index >= NR_GRPINFO_CACHES)
2802 return -EINVAL;
2803
2804 if (unlikely(cache_index < 0))
2805 cache_index = 0;
2806
2807 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2808 if (ext4_groupinfo_caches[cache_index]) {
2809 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2810 return 0; /* Already created */
2811 }
2812
2813 slab_size = offsetof(struct ext4_group_info,
2814 bb_counters[blocksize_bits + 2]);
2815
2816 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2817 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2818 NULL);
2819
2820 ext4_groupinfo_caches[cache_index] = cachep;
2821
2822 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2823 if (!cachep) {
2824 printk(KERN_EMERG
2825 "EXT4-fs: no memory for groupinfo slab cache\n");
2826 return -ENOMEM;
2827 }
2828
2829 return 0;
2830 }
2831
ext4_mb_init(struct super_block * sb)2832 int ext4_mb_init(struct super_block *sb)
2833 {
2834 struct ext4_sb_info *sbi = EXT4_SB(sb);
2835 unsigned i, j;
2836 unsigned offset, offset_incr;
2837 unsigned max;
2838 int ret;
2839
2840 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2841
2842 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2843 if (sbi->s_mb_offsets == NULL) {
2844 ret = -ENOMEM;
2845 goto out;
2846 }
2847
2848 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2849 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2850 if (sbi->s_mb_maxs == NULL) {
2851 ret = -ENOMEM;
2852 goto out;
2853 }
2854
2855 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2856 if (ret < 0)
2857 goto out;
2858
2859 /* order 0 is regular bitmap */
2860 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2861 sbi->s_mb_offsets[0] = 0;
2862
2863 i = 1;
2864 offset = 0;
2865 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2866 max = sb->s_blocksize << 2;
2867 do {
2868 sbi->s_mb_offsets[i] = offset;
2869 sbi->s_mb_maxs[i] = max;
2870 offset += offset_incr;
2871 offset_incr = offset_incr >> 1;
2872 max = max >> 1;
2873 i++;
2874 } while (i <= sb->s_blocksize_bits + 1);
2875
2876 spin_lock_init(&sbi->s_md_lock);
2877 spin_lock_init(&sbi->s_bal_lock);
2878 sbi->s_mb_free_pending = 0;
2879 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2880
2881 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2882 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2883 sbi->s_mb_stats = MB_DEFAULT_STATS;
2884 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2885 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2886 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
2887 /*
2888 * The default group preallocation is 512, which for 4k block
2889 * sizes translates to 2 megabytes. However for bigalloc file
2890 * systems, this is probably too big (i.e, if the cluster size
2891 * is 1 megabyte, then group preallocation size becomes half a
2892 * gigabyte!). As a default, we will keep a two megabyte
2893 * group pralloc size for cluster sizes up to 64k, and after
2894 * that, we will force a minimum group preallocation size of
2895 * 32 clusters. This translates to 8 megs when the cluster
2896 * size is 256k, and 32 megs when the cluster size is 1 meg,
2897 * which seems reasonable as a default.
2898 */
2899 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2900 sbi->s_cluster_bits, 32);
2901 /*
2902 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2903 * to the lowest multiple of s_stripe which is bigger than
2904 * the s_mb_group_prealloc as determined above. We want
2905 * the preallocation size to be an exact multiple of the
2906 * RAID stripe size so that preallocations don't fragment
2907 * the stripes.
2908 */
2909 if (sbi->s_stripe > 1) {
2910 sbi->s_mb_group_prealloc = roundup(
2911 sbi->s_mb_group_prealloc, sbi->s_stripe);
2912 }
2913
2914 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2915 if (sbi->s_locality_groups == NULL) {
2916 ret = -ENOMEM;
2917 goto out;
2918 }
2919 for_each_possible_cpu(i) {
2920 struct ext4_locality_group *lg;
2921 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2922 mutex_init(&lg->lg_mutex);
2923 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2924 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2925 spin_lock_init(&lg->lg_prealloc_lock);
2926 }
2927
2928 /* init file for buddy data */
2929 ret = ext4_mb_init_backend(sb);
2930 if (ret != 0)
2931 goto out_free_locality_groups;
2932
2933 return 0;
2934
2935 out_free_locality_groups:
2936 free_percpu(sbi->s_locality_groups);
2937 sbi->s_locality_groups = NULL;
2938 out:
2939 kfree(sbi->s_mb_offsets);
2940 sbi->s_mb_offsets = NULL;
2941 kfree(sbi->s_mb_maxs);
2942 sbi->s_mb_maxs = NULL;
2943 return ret;
2944 }
2945
2946 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2947 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2948 {
2949 struct ext4_prealloc_space *pa;
2950 struct list_head *cur, *tmp;
2951 int count = 0;
2952
2953 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2954 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2955 list_del(&pa->pa_group_list);
2956 count++;
2957 kmem_cache_free(ext4_pspace_cachep, pa);
2958 }
2959 return count;
2960 }
2961
ext4_mb_release(struct super_block * sb)2962 int ext4_mb_release(struct super_block *sb)
2963 {
2964 ext4_group_t ngroups = ext4_get_groups_count(sb);
2965 ext4_group_t i;
2966 int num_meta_group_infos;
2967 struct ext4_group_info *grinfo, ***group_info;
2968 struct ext4_sb_info *sbi = EXT4_SB(sb);
2969 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2970 int count;
2971
2972 if (sbi->s_group_info) {
2973 for (i = 0; i < ngroups; i++) {
2974 cond_resched();
2975 grinfo = ext4_get_group_info(sb, i);
2976 mb_group_bb_bitmap_free(grinfo);
2977 ext4_lock_group(sb, i);
2978 count = ext4_mb_cleanup_pa(grinfo);
2979 if (count)
2980 mb_debug(sb, "mballoc: %d PAs left\n",
2981 count);
2982 ext4_unlock_group(sb, i);
2983 kmem_cache_free(cachep, grinfo);
2984 }
2985 num_meta_group_infos = (ngroups +
2986 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2987 EXT4_DESC_PER_BLOCK_BITS(sb);
2988 rcu_read_lock();
2989 group_info = rcu_dereference(sbi->s_group_info);
2990 for (i = 0; i < num_meta_group_infos; i++)
2991 kfree(group_info[i]);
2992 kvfree(group_info);
2993 rcu_read_unlock();
2994 }
2995 kfree(sbi->s_mb_offsets);
2996 kfree(sbi->s_mb_maxs);
2997 iput(sbi->s_buddy_cache);
2998 if (sbi->s_mb_stats) {
2999 ext4_msg(sb, KERN_INFO,
3000 "mballoc: %u blocks %u reqs (%u success)",
3001 atomic_read(&sbi->s_bal_allocated),
3002 atomic_read(&sbi->s_bal_reqs),
3003 atomic_read(&sbi->s_bal_success));
3004 ext4_msg(sb, KERN_INFO,
3005 "mballoc: %u extents scanned, %u goal hits, "
3006 "%u 2^N hits, %u breaks, %u lost",
3007 atomic_read(&sbi->s_bal_ex_scanned),
3008 atomic_read(&sbi->s_bal_goals),
3009 atomic_read(&sbi->s_bal_2orders),
3010 atomic_read(&sbi->s_bal_breaks),
3011 atomic_read(&sbi->s_mb_lost_chunks));
3012 ext4_msg(sb, KERN_INFO,
3013 "mballoc: %lu generated and it took %Lu",
3014 sbi->s_mb_buddies_generated,
3015 sbi->s_mb_generation_time);
3016 ext4_msg(sb, KERN_INFO,
3017 "mballoc: %u preallocated, %u discarded",
3018 atomic_read(&sbi->s_mb_preallocated),
3019 atomic_read(&sbi->s_mb_discarded));
3020 }
3021
3022 free_percpu(sbi->s_locality_groups);
3023
3024 return 0;
3025 }
3026
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,struct bio ** biop)3027 static inline int ext4_issue_discard(struct super_block *sb,
3028 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3029 struct bio **biop)
3030 {
3031 ext4_fsblk_t discard_block;
3032
3033 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3034 ext4_group_first_block_no(sb, block_group));
3035 count = EXT4_C2B(EXT4_SB(sb), count);
3036 trace_ext4_discard_blocks(sb,
3037 (unsigned long long) discard_block, count);
3038 if (biop) {
3039 return __blkdev_issue_discard(sb->s_bdev,
3040 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3041 (sector_t)count << (sb->s_blocksize_bits - 9),
3042 GFP_NOFS, 0, biop);
3043 } else
3044 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3045 }
3046
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)3047 static void ext4_free_data_in_buddy(struct super_block *sb,
3048 struct ext4_free_data *entry)
3049 {
3050 struct ext4_buddy e4b;
3051 struct ext4_group_info *db;
3052 int err, count = 0, count2 = 0;
3053
3054 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3055 entry->efd_count, entry->efd_group, entry);
3056
3057 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3058 /* we expect to find existing buddy because it's pinned */
3059 BUG_ON(err != 0);
3060
3061 spin_lock(&EXT4_SB(sb)->s_md_lock);
3062 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3063 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3064
3065 db = e4b.bd_info;
3066 /* there are blocks to put in buddy to make them really free */
3067 count += entry->efd_count;
3068 count2++;
3069 ext4_lock_group(sb, entry->efd_group);
3070 /* Take it out of per group rb tree */
3071 rb_erase(&entry->efd_node, &(db->bb_free_root));
3072 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3073
3074 /*
3075 * Clear the trimmed flag for the group so that the next
3076 * ext4_trim_fs can trim it.
3077 * If the volume is mounted with -o discard, online discard
3078 * is supported and the free blocks will be trimmed online.
3079 */
3080 if (!test_opt(sb, DISCARD))
3081 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3082
3083 if (!db->bb_free_root.rb_node) {
3084 /* No more items in the per group rb tree
3085 * balance refcounts from ext4_mb_free_metadata()
3086 */
3087 put_page(e4b.bd_buddy_page);
3088 put_page(e4b.bd_bitmap_page);
3089 }
3090 ext4_unlock_group(sb, entry->efd_group);
3091 kmem_cache_free(ext4_free_data_cachep, entry);
3092 ext4_mb_unload_buddy(&e4b);
3093
3094 mb_debug(sb, "freed %d blocks in %d structures\n", count,
3095 count2);
3096 }
3097
3098 /*
3099 * This function is called by the jbd2 layer once the commit has finished,
3100 * so we know we can free the blocks that were released with that commit.
3101 */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)3102 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3103 {
3104 struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 struct ext4_free_data *entry, *tmp;
3106 struct bio *discard_bio = NULL;
3107 struct list_head freed_data_list;
3108 struct list_head *cut_pos = NULL;
3109 int err;
3110
3111 INIT_LIST_HEAD(&freed_data_list);
3112
3113 spin_lock(&sbi->s_md_lock);
3114 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3115 if (entry->efd_tid != commit_tid)
3116 break;
3117 cut_pos = &entry->efd_list;
3118 }
3119 if (cut_pos)
3120 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3121 cut_pos);
3122 spin_unlock(&sbi->s_md_lock);
3123
3124 if (test_opt(sb, DISCARD)) {
3125 list_for_each_entry(entry, &freed_data_list, efd_list) {
3126 err = ext4_issue_discard(sb, entry->efd_group,
3127 entry->efd_start_cluster,
3128 entry->efd_count,
3129 &discard_bio);
3130 if (err && err != -EOPNOTSUPP) {
3131 ext4_msg(sb, KERN_WARNING, "discard request in"
3132 " group:%d block:%d count:%d failed"
3133 " with %d", entry->efd_group,
3134 entry->efd_start_cluster,
3135 entry->efd_count, err);
3136 } else if (err == -EOPNOTSUPP)
3137 break;
3138 }
3139
3140 if (discard_bio) {
3141 submit_bio_wait(discard_bio);
3142 bio_put(discard_bio);
3143 }
3144 }
3145
3146 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3147 ext4_free_data_in_buddy(sb, entry);
3148 }
3149
ext4_init_mballoc(void)3150 int __init ext4_init_mballoc(void)
3151 {
3152 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3153 SLAB_RECLAIM_ACCOUNT);
3154 if (ext4_pspace_cachep == NULL)
3155 goto out;
3156
3157 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3158 SLAB_RECLAIM_ACCOUNT);
3159 if (ext4_ac_cachep == NULL)
3160 goto out_pa_free;
3161
3162 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3163 SLAB_RECLAIM_ACCOUNT);
3164 if (ext4_free_data_cachep == NULL)
3165 goto out_ac_free;
3166
3167 return 0;
3168
3169 out_ac_free:
3170 kmem_cache_destroy(ext4_ac_cachep);
3171 out_pa_free:
3172 kmem_cache_destroy(ext4_pspace_cachep);
3173 out:
3174 return -ENOMEM;
3175 }
3176
ext4_exit_mballoc(void)3177 void ext4_exit_mballoc(void)
3178 {
3179 /*
3180 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3181 * before destroying the slab cache.
3182 */
3183 rcu_barrier();
3184 kmem_cache_destroy(ext4_pspace_cachep);
3185 kmem_cache_destroy(ext4_ac_cachep);
3186 kmem_cache_destroy(ext4_free_data_cachep);
3187 ext4_groupinfo_destroy_slabs();
3188 }
3189
3190
3191 /*
3192 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3193 * Returns 0 if success or error code
3194 */
3195 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)3196 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3197 handle_t *handle, unsigned int reserv_clstrs)
3198 {
3199 struct buffer_head *bitmap_bh = NULL;
3200 struct ext4_group_desc *gdp;
3201 struct buffer_head *gdp_bh;
3202 struct ext4_sb_info *sbi;
3203 struct super_block *sb;
3204 ext4_fsblk_t block;
3205 int err, len;
3206
3207 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3208 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3209
3210 sb = ac->ac_sb;
3211 sbi = EXT4_SB(sb);
3212
3213 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3214 if (IS_ERR(bitmap_bh)) {
3215 err = PTR_ERR(bitmap_bh);
3216 bitmap_bh = NULL;
3217 goto out_err;
3218 }
3219
3220 BUFFER_TRACE(bitmap_bh, "getting write access");
3221 err = ext4_journal_get_write_access(handle, bitmap_bh);
3222 if (err)
3223 goto out_err;
3224
3225 err = -EIO;
3226 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3227 if (!gdp)
3228 goto out_err;
3229
3230 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3231 ext4_free_group_clusters(sb, gdp));
3232
3233 BUFFER_TRACE(gdp_bh, "get_write_access");
3234 err = ext4_journal_get_write_access(handle, gdp_bh);
3235 if (err)
3236 goto out_err;
3237
3238 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3239
3240 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3241 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3242 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3243 "fs metadata", block, block+len);
3244 /* File system mounted not to panic on error
3245 * Fix the bitmap and return EFSCORRUPTED
3246 * We leak some of the blocks here.
3247 */
3248 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3249 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3250 ac->ac_b_ex.fe_len);
3251 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3252 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3253 if (!err)
3254 err = -EFSCORRUPTED;
3255 goto out_err;
3256 }
3257
3258 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3259 #ifdef AGGRESSIVE_CHECK
3260 {
3261 int i;
3262 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3263 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3264 bitmap_bh->b_data));
3265 }
3266 }
3267 #endif
3268 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3269 ac->ac_b_ex.fe_len);
3270 if (ext4_has_group_desc_csum(sb) &&
3271 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3272 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3273 ext4_free_group_clusters_set(sb, gdp,
3274 ext4_free_clusters_after_init(sb,
3275 ac->ac_b_ex.fe_group, gdp));
3276 }
3277 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3278 ext4_free_group_clusters_set(sb, gdp, len);
3279 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3280 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3281
3282 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3283 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3284 /*
3285 * Now reduce the dirty block count also. Should not go negative
3286 */
3287 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3288 /* release all the reserved blocks if non delalloc */
3289 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3290 reserv_clstrs);
3291
3292 if (sbi->s_log_groups_per_flex) {
3293 ext4_group_t flex_group = ext4_flex_group(sbi,
3294 ac->ac_b_ex.fe_group);
3295 atomic64_sub(ac->ac_b_ex.fe_len,
3296 &sbi_array_rcu_deref(sbi, s_flex_groups,
3297 flex_group)->free_clusters);
3298 }
3299
3300 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3301 if (err)
3302 goto out_err;
3303 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3304
3305 out_err:
3306 brelse(bitmap_bh);
3307 return err;
3308 }
3309
3310 /*
3311 * Idempotent helper for Ext4 fast commit replay path to set the state of
3312 * blocks in bitmaps and update counters.
3313 */
ext4_mb_mark_bb(struct super_block * sb,ext4_fsblk_t block,int len,int state)3314 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3315 int len, int state)
3316 {
3317 struct buffer_head *bitmap_bh = NULL;
3318 struct ext4_group_desc *gdp;
3319 struct buffer_head *gdp_bh;
3320 struct ext4_sb_info *sbi = EXT4_SB(sb);
3321 ext4_group_t group;
3322 ext4_grpblk_t blkoff;
3323 int i, clen, err;
3324 int already;
3325
3326 clen = EXT4_B2C(sbi, len);
3327
3328 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3329 bitmap_bh = ext4_read_block_bitmap(sb, group);
3330 if (IS_ERR(bitmap_bh)) {
3331 err = PTR_ERR(bitmap_bh);
3332 bitmap_bh = NULL;
3333 goto out_err;
3334 }
3335
3336 err = -EIO;
3337 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3338 if (!gdp)
3339 goto out_err;
3340
3341 ext4_lock_group(sb, group);
3342 already = 0;
3343 for (i = 0; i < clen; i++)
3344 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
3345 already++;
3346
3347 if (state)
3348 ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3349 else
3350 mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
3351 if (ext4_has_group_desc_csum(sb) &&
3352 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3353 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3354 ext4_free_group_clusters_set(sb, gdp,
3355 ext4_free_clusters_after_init(sb,
3356 group, gdp));
3357 }
3358 if (state)
3359 clen = ext4_free_group_clusters(sb, gdp) - clen + already;
3360 else
3361 clen = ext4_free_group_clusters(sb, gdp) + clen - already;
3362
3363 ext4_free_group_clusters_set(sb, gdp, clen);
3364 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3365 ext4_group_desc_csum_set(sb, group, gdp);
3366
3367 ext4_unlock_group(sb, group);
3368
3369 if (sbi->s_log_groups_per_flex) {
3370 ext4_group_t flex_group = ext4_flex_group(sbi, group);
3371
3372 atomic64_sub(len,
3373 &sbi_array_rcu_deref(sbi, s_flex_groups,
3374 flex_group)->free_clusters);
3375 }
3376
3377 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3378 if (err)
3379 goto out_err;
3380 sync_dirty_buffer(bitmap_bh);
3381 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3382 sync_dirty_buffer(gdp_bh);
3383
3384 out_err:
3385 brelse(bitmap_bh);
3386 }
3387
3388 /*
3389 * here we normalize request for locality group
3390 * Group request are normalized to s_mb_group_prealloc, which goes to
3391 * s_strip if we set the same via mount option.
3392 * s_mb_group_prealloc can be configured via
3393 * /sys/fs/ext4/<partition>/mb_group_prealloc
3394 *
3395 * XXX: should we try to preallocate more than the group has now?
3396 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3397 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3398 {
3399 struct super_block *sb = ac->ac_sb;
3400 struct ext4_locality_group *lg = ac->ac_lg;
3401
3402 BUG_ON(lg == NULL);
3403 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3404 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3405 }
3406
3407 /*
3408 * Normalization means making request better in terms of
3409 * size and alignment
3410 */
3411 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3412 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3413 struct ext4_allocation_request *ar)
3414 {
3415 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3416 int bsbits, max;
3417 ext4_lblk_t end;
3418 loff_t size, start_off;
3419 loff_t orig_size __maybe_unused;
3420 ext4_lblk_t start;
3421 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3422 struct ext4_prealloc_space *pa;
3423
3424 /* do normalize only data requests, metadata requests
3425 do not need preallocation */
3426 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3427 return;
3428
3429 /* sometime caller may want exact blocks */
3430 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3431 return;
3432
3433 /* caller may indicate that preallocation isn't
3434 * required (it's a tail, for example) */
3435 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3436 return;
3437
3438 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3439 ext4_mb_normalize_group_request(ac);
3440 return ;
3441 }
3442
3443 bsbits = ac->ac_sb->s_blocksize_bits;
3444
3445 /* first, let's learn actual file size
3446 * given current request is allocated */
3447 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3448 size = size << bsbits;
3449 if (size < i_size_read(ac->ac_inode))
3450 size = i_size_read(ac->ac_inode);
3451 orig_size = size;
3452
3453 /* max size of free chunks */
3454 max = 2 << bsbits;
3455
3456 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3457 (req <= (size) || max <= (chunk_size))
3458
3459 /* first, try to predict filesize */
3460 /* XXX: should this table be tunable? */
3461 start_off = 0;
3462 if (size <= 16 * 1024) {
3463 size = 16 * 1024;
3464 } else if (size <= 32 * 1024) {
3465 size = 32 * 1024;
3466 } else if (size <= 64 * 1024) {
3467 size = 64 * 1024;
3468 } else if (size <= 128 * 1024) {
3469 size = 128 * 1024;
3470 } else if (size <= 256 * 1024) {
3471 size = 256 * 1024;
3472 } else if (size <= 512 * 1024) {
3473 size = 512 * 1024;
3474 } else if (size <= 1024 * 1024) {
3475 size = 1024 * 1024;
3476 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3477 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3478 (21 - bsbits)) << 21;
3479 size = 2 * 1024 * 1024;
3480 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3481 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3482 (22 - bsbits)) << 22;
3483 size = 4 * 1024 * 1024;
3484 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3485 (8<<20)>>bsbits, max, 8 * 1024)) {
3486 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3487 (23 - bsbits)) << 23;
3488 size = 8 * 1024 * 1024;
3489 } else {
3490 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3491 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3492 ac->ac_o_ex.fe_len) << bsbits;
3493 }
3494 size = size >> bsbits;
3495 start = start_off >> bsbits;
3496
3497 /* don't cover already allocated blocks in selected range */
3498 if (ar->pleft && start <= ar->lleft) {
3499 size -= ar->lleft + 1 - start;
3500 start = ar->lleft + 1;
3501 }
3502 if (ar->pright && start + size - 1 >= ar->lright)
3503 size -= start + size - ar->lright;
3504
3505 /*
3506 * Trim allocation request for filesystems with artificially small
3507 * groups.
3508 */
3509 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3510 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3511
3512 end = start + size;
3513
3514 /* check we don't cross already preallocated blocks */
3515 rcu_read_lock();
3516 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3517 ext4_lblk_t pa_end;
3518
3519 if (pa->pa_deleted)
3520 continue;
3521 spin_lock(&pa->pa_lock);
3522 if (pa->pa_deleted) {
3523 spin_unlock(&pa->pa_lock);
3524 continue;
3525 }
3526
3527 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3528 pa->pa_len);
3529
3530 /* PA must not overlap original request */
3531 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3532 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3533
3534 /* skip PAs this normalized request doesn't overlap with */
3535 if (pa->pa_lstart >= end || pa_end <= start) {
3536 spin_unlock(&pa->pa_lock);
3537 continue;
3538 }
3539 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3540
3541 /* adjust start or end to be adjacent to this pa */
3542 if (pa_end <= ac->ac_o_ex.fe_logical) {
3543 BUG_ON(pa_end < start);
3544 start = pa_end;
3545 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3546 BUG_ON(pa->pa_lstart > end);
3547 end = pa->pa_lstart;
3548 }
3549 spin_unlock(&pa->pa_lock);
3550 }
3551 rcu_read_unlock();
3552 size = end - start;
3553
3554 /* XXX: extra loop to check we really don't overlap preallocations */
3555 rcu_read_lock();
3556 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3557 ext4_lblk_t pa_end;
3558
3559 spin_lock(&pa->pa_lock);
3560 if (pa->pa_deleted == 0) {
3561 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3562 pa->pa_len);
3563 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3564 }
3565 spin_unlock(&pa->pa_lock);
3566 }
3567 rcu_read_unlock();
3568
3569 if (start + size <= ac->ac_o_ex.fe_logical &&
3570 start > ac->ac_o_ex.fe_logical) {
3571 ext4_msg(ac->ac_sb, KERN_ERR,
3572 "start %lu, size %lu, fe_logical %lu",
3573 (unsigned long) start, (unsigned long) size,
3574 (unsigned long) ac->ac_o_ex.fe_logical);
3575 BUG();
3576 }
3577 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3578
3579 /* now prepare goal request */
3580
3581 /* XXX: is it better to align blocks WRT to logical
3582 * placement or satisfy big request as is */
3583 ac->ac_g_ex.fe_logical = start;
3584 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3585
3586 /* define goal start in order to merge */
3587 if (ar->pright && (ar->lright == (start + size))) {
3588 /* merge to the right */
3589 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3590 &ac->ac_f_ex.fe_group,
3591 &ac->ac_f_ex.fe_start);
3592 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3593 }
3594 if (ar->pleft && (ar->lleft + 1 == start)) {
3595 /* merge to the left */
3596 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3597 &ac->ac_f_ex.fe_group,
3598 &ac->ac_f_ex.fe_start);
3599 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3600 }
3601
3602 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
3603 orig_size, start);
3604 }
3605
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3606 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3607 {
3608 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3609
3610 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3611 atomic_inc(&sbi->s_bal_reqs);
3612 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3613 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3614 atomic_inc(&sbi->s_bal_success);
3615 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3616 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3617 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3618 atomic_inc(&sbi->s_bal_goals);
3619 if (ac->ac_found > sbi->s_mb_max_to_scan)
3620 atomic_inc(&sbi->s_bal_breaks);
3621 }
3622
3623 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3624 trace_ext4_mballoc_alloc(ac);
3625 else
3626 trace_ext4_mballoc_prealloc(ac);
3627 }
3628
3629 /*
3630 * Called on failure; free up any blocks from the inode PA for this
3631 * context. We don't need this for MB_GROUP_PA because we only change
3632 * pa_free in ext4_mb_release_context(), but on failure, we've already
3633 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3634 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3635 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3636 {
3637 struct ext4_prealloc_space *pa = ac->ac_pa;
3638 struct ext4_buddy e4b;
3639 int err;
3640
3641 if (pa == NULL) {
3642 if (ac->ac_f_ex.fe_len == 0)
3643 return;
3644 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3645 if (err) {
3646 /*
3647 * This should never happen since we pin the
3648 * pages in the ext4_allocation_context so
3649 * ext4_mb_load_buddy() should never fail.
3650 */
3651 WARN(1, "mb_load_buddy failed (%d)", err);
3652 return;
3653 }
3654 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3655 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3656 ac->ac_f_ex.fe_len);
3657 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3658 ext4_mb_unload_buddy(&e4b);
3659 return;
3660 }
3661 if (pa->pa_type == MB_INODE_PA)
3662 pa->pa_free += ac->ac_b_ex.fe_len;
3663 }
3664
3665 /*
3666 * use blocks preallocated to inode
3667 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3668 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3669 struct ext4_prealloc_space *pa)
3670 {
3671 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3672 ext4_fsblk_t start;
3673 ext4_fsblk_t end;
3674 int len;
3675
3676 /* found preallocated blocks, use them */
3677 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3678 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3679 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3680 len = EXT4_NUM_B2C(sbi, end - start);
3681 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3682 &ac->ac_b_ex.fe_start);
3683 ac->ac_b_ex.fe_len = len;
3684 ac->ac_status = AC_STATUS_FOUND;
3685 ac->ac_pa = pa;
3686
3687 BUG_ON(start < pa->pa_pstart);
3688 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3689 BUG_ON(pa->pa_free < len);
3690 pa->pa_free -= len;
3691
3692 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
3693 }
3694
3695 /*
3696 * use blocks preallocated to locality group
3697 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3698 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3699 struct ext4_prealloc_space *pa)
3700 {
3701 unsigned int len = ac->ac_o_ex.fe_len;
3702
3703 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3704 &ac->ac_b_ex.fe_group,
3705 &ac->ac_b_ex.fe_start);
3706 ac->ac_b_ex.fe_len = len;
3707 ac->ac_status = AC_STATUS_FOUND;
3708 ac->ac_pa = pa;
3709
3710 /* we don't correct pa_pstart or pa_plen here to avoid
3711 * possible race when the group is being loaded concurrently
3712 * instead we correct pa later, after blocks are marked
3713 * in on-disk bitmap -- see ext4_mb_release_context()
3714 * Other CPUs are prevented from allocating from this pa by lg_mutex
3715 */
3716 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
3717 pa->pa_lstart-len, len, pa);
3718 }
3719
3720 /*
3721 * Return the prealloc space that have minimal distance
3722 * from the goal block. @cpa is the prealloc
3723 * space that is having currently known minimal distance
3724 * from the goal block.
3725 */
3726 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3727 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3728 struct ext4_prealloc_space *pa,
3729 struct ext4_prealloc_space *cpa)
3730 {
3731 ext4_fsblk_t cur_distance, new_distance;
3732
3733 if (cpa == NULL) {
3734 atomic_inc(&pa->pa_count);
3735 return pa;
3736 }
3737 cur_distance = abs(goal_block - cpa->pa_pstart);
3738 new_distance = abs(goal_block - pa->pa_pstart);
3739
3740 if (cur_distance <= new_distance)
3741 return cpa;
3742
3743 /* drop the previous reference */
3744 atomic_dec(&cpa->pa_count);
3745 atomic_inc(&pa->pa_count);
3746 return pa;
3747 }
3748
3749 /*
3750 * search goal blocks in preallocated space
3751 */
3752 static noinline_for_stack bool
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3753 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3754 {
3755 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3756 int order, i;
3757 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3758 struct ext4_locality_group *lg;
3759 struct ext4_prealloc_space *pa, *cpa = NULL;
3760 ext4_fsblk_t goal_block;
3761
3762 /* only data can be preallocated */
3763 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3764 return false;
3765
3766 /* first, try per-file preallocation */
3767 rcu_read_lock();
3768 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3769
3770 /* all fields in this condition don't change,
3771 * so we can skip locking for them */
3772 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3773 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3774 EXT4_C2B(sbi, pa->pa_len)))
3775 continue;
3776
3777 /* non-extent files can't have physical blocks past 2^32 */
3778 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3779 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3780 EXT4_MAX_BLOCK_FILE_PHYS))
3781 continue;
3782
3783 /* found preallocated blocks, use them */
3784 spin_lock(&pa->pa_lock);
3785 if (pa->pa_deleted == 0 && pa->pa_free) {
3786 atomic_inc(&pa->pa_count);
3787 ext4_mb_use_inode_pa(ac, pa);
3788 spin_unlock(&pa->pa_lock);
3789 ac->ac_criteria = 10;
3790 rcu_read_unlock();
3791 return true;
3792 }
3793 spin_unlock(&pa->pa_lock);
3794 }
3795 rcu_read_unlock();
3796
3797 /* can we use group allocation? */
3798 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3799 return false;
3800
3801 /* inode may have no locality group for some reason */
3802 lg = ac->ac_lg;
3803 if (lg == NULL)
3804 return false;
3805 order = fls(ac->ac_o_ex.fe_len) - 1;
3806 if (order > PREALLOC_TB_SIZE - 1)
3807 /* The max size of hash table is PREALLOC_TB_SIZE */
3808 order = PREALLOC_TB_SIZE - 1;
3809
3810 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3811 /*
3812 * search for the prealloc space that is having
3813 * minimal distance from the goal block.
3814 */
3815 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3816 rcu_read_lock();
3817 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3818 pa_inode_list) {
3819 spin_lock(&pa->pa_lock);
3820 if (pa->pa_deleted == 0 &&
3821 pa->pa_free >= ac->ac_o_ex.fe_len) {
3822
3823 cpa = ext4_mb_check_group_pa(goal_block,
3824 pa, cpa);
3825 }
3826 spin_unlock(&pa->pa_lock);
3827 }
3828 rcu_read_unlock();
3829 }
3830 if (cpa) {
3831 ext4_mb_use_group_pa(ac, cpa);
3832 ac->ac_criteria = 20;
3833 return true;
3834 }
3835 return false;
3836 }
3837
3838 /*
3839 * the function goes through all block freed in the group
3840 * but not yet committed and marks them used in in-core bitmap.
3841 * buddy must be generated from this bitmap
3842 * Need to be called with the ext4 group lock held
3843 */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3844 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3845 ext4_group_t group)
3846 {
3847 struct rb_node *n;
3848 struct ext4_group_info *grp;
3849 struct ext4_free_data *entry;
3850
3851 grp = ext4_get_group_info(sb, group);
3852 n = rb_first(&(grp->bb_free_root));
3853
3854 while (n) {
3855 entry = rb_entry(n, struct ext4_free_data, efd_node);
3856 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3857 n = rb_next(n);
3858 }
3859 return;
3860 }
3861
3862 /*
3863 * the function goes through all preallocation in this group and marks them
3864 * used in in-core bitmap. buddy must be generated from this bitmap
3865 * Need to be called with ext4 group lock held
3866 */
3867 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3868 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3869 ext4_group_t group)
3870 {
3871 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3872 struct ext4_prealloc_space *pa;
3873 struct list_head *cur;
3874 ext4_group_t groupnr;
3875 ext4_grpblk_t start;
3876 int preallocated = 0;
3877 int len;
3878
3879 /* all form of preallocation discards first load group,
3880 * so the only competing code is preallocation use.
3881 * we don't need any locking here
3882 * notice we do NOT ignore preallocations with pa_deleted
3883 * otherwise we could leave used blocks available for
3884 * allocation in buddy when concurrent ext4_mb_put_pa()
3885 * is dropping preallocation
3886 */
3887 list_for_each(cur, &grp->bb_prealloc_list) {
3888 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3889 spin_lock(&pa->pa_lock);
3890 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3891 &groupnr, &start);
3892 len = pa->pa_len;
3893 spin_unlock(&pa->pa_lock);
3894 if (unlikely(len == 0))
3895 continue;
3896 BUG_ON(groupnr != group);
3897 ext4_set_bits(bitmap, start, len);
3898 preallocated += len;
3899 }
3900 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
3901 }
3902
ext4_mb_mark_pa_deleted(struct super_block * sb,struct ext4_prealloc_space * pa)3903 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
3904 struct ext4_prealloc_space *pa)
3905 {
3906 struct ext4_inode_info *ei;
3907
3908 if (pa->pa_deleted) {
3909 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
3910 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
3911 pa->pa_len);
3912 return;
3913 }
3914
3915 pa->pa_deleted = 1;
3916
3917 if (pa->pa_type == MB_INODE_PA) {
3918 ei = EXT4_I(pa->pa_inode);
3919 atomic_dec(&ei->i_prealloc_active);
3920 }
3921 }
3922
ext4_mb_pa_callback(struct rcu_head * head)3923 static void ext4_mb_pa_callback(struct rcu_head *head)
3924 {
3925 struct ext4_prealloc_space *pa;
3926 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3927
3928 BUG_ON(atomic_read(&pa->pa_count));
3929 BUG_ON(pa->pa_deleted == 0);
3930 kmem_cache_free(ext4_pspace_cachep, pa);
3931 }
3932
3933 /*
3934 * drops a reference to preallocated space descriptor
3935 * if this was the last reference and the space is consumed
3936 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3937 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3938 struct super_block *sb, struct ext4_prealloc_space *pa)
3939 {
3940 ext4_group_t grp;
3941 ext4_fsblk_t grp_blk;
3942
3943 /* in this short window concurrent discard can set pa_deleted */
3944 spin_lock(&pa->pa_lock);
3945 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3946 spin_unlock(&pa->pa_lock);
3947 return;
3948 }
3949
3950 if (pa->pa_deleted == 1) {
3951 spin_unlock(&pa->pa_lock);
3952 return;
3953 }
3954
3955 ext4_mb_mark_pa_deleted(sb, pa);
3956 spin_unlock(&pa->pa_lock);
3957
3958 grp_blk = pa->pa_pstart;
3959 /*
3960 * If doing group-based preallocation, pa_pstart may be in the
3961 * next group when pa is used up
3962 */
3963 if (pa->pa_type == MB_GROUP_PA)
3964 grp_blk--;
3965
3966 grp = ext4_get_group_number(sb, grp_blk);
3967
3968 /*
3969 * possible race:
3970 *
3971 * P1 (buddy init) P2 (regular allocation)
3972 * find block B in PA
3973 * copy on-disk bitmap to buddy
3974 * mark B in on-disk bitmap
3975 * drop PA from group
3976 * mark all PAs in buddy
3977 *
3978 * thus, P1 initializes buddy with B available. to prevent this
3979 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3980 * against that pair
3981 */
3982 ext4_lock_group(sb, grp);
3983 list_del(&pa->pa_group_list);
3984 ext4_unlock_group(sb, grp);
3985
3986 spin_lock(pa->pa_obj_lock);
3987 list_del_rcu(&pa->pa_inode_list);
3988 spin_unlock(pa->pa_obj_lock);
3989
3990 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3991 }
3992
3993 /*
3994 * creates new preallocated space for given inode
3995 */
3996 static noinline_for_stack void
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3997 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3998 {
3999 struct super_block *sb = ac->ac_sb;
4000 struct ext4_sb_info *sbi = EXT4_SB(sb);
4001 struct ext4_prealloc_space *pa;
4002 struct ext4_group_info *grp;
4003 struct ext4_inode_info *ei;
4004
4005 /* preallocate only when found space is larger then requested */
4006 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4007 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4008 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4009 BUG_ON(ac->ac_pa == NULL);
4010
4011 pa = ac->ac_pa;
4012
4013 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4014 int winl;
4015 int wins;
4016 int win;
4017 int offs;
4018
4019 /* we can't allocate as much as normalizer wants.
4020 * so, found space must get proper lstart
4021 * to cover original request */
4022 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4023 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4024
4025 /* we're limited by original request in that
4026 * logical block must be covered any way
4027 * winl is window we can move our chunk within */
4028 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
4029
4030 /* also, we should cover whole original request */
4031 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4032
4033 /* the smallest one defines real window */
4034 win = min(winl, wins);
4035
4036 offs = ac->ac_o_ex.fe_logical %
4037 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4038 if (offs && offs < win)
4039 win = offs;
4040
4041 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4042 EXT4_NUM_B2C(sbi, win);
4043 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4044 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4045 }
4046
4047 /* preallocation can change ac_b_ex, thus we store actually
4048 * allocated blocks for history */
4049 ac->ac_f_ex = ac->ac_b_ex;
4050
4051 pa->pa_lstart = ac->ac_b_ex.fe_logical;
4052 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4053 pa->pa_len = ac->ac_b_ex.fe_len;
4054 pa->pa_free = pa->pa_len;
4055 spin_lock_init(&pa->pa_lock);
4056 INIT_LIST_HEAD(&pa->pa_inode_list);
4057 INIT_LIST_HEAD(&pa->pa_group_list);
4058 pa->pa_deleted = 0;
4059 pa->pa_type = MB_INODE_PA;
4060
4061 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4062 pa->pa_len, pa->pa_lstart);
4063 trace_ext4_mb_new_inode_pa(ac, pa);
4064
4065 ext4_mb_use_inode_pa(ac, pa);
4066 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4067
4068 ei = EXT4_I(ac->ac_inode);
4069 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4070
4071 pa->pa_obj_lock = &ei->i_prealloc_lock;
4072 pa->pa_inode = ac->ac_inode;
4073
4074 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4075
4076 spin_lock(pa->pa_obj_lock);
4077 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4078 spin_unlock(pa->pa_obj_lock);
4079 atomic_inc(&ei->i_prealloc_active);
4080 }
4081
4082 /*
4083 * creates new preallocated space for locality group inodes belongs to
4084 */
4085 static noinline_for_stack void
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)4086 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4087 {
4088 struct super_block *sb = ac->ac_sb;
4089 struct ext4_locality_group *lg;
4090 struct ext4_prealloc_space *pa;
4091 struct ext4_group_info *grp;
4092
4093 /* preallocate only when found space is larger then requested */
4094 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4095 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4096 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4097 BUG_ON(ac->ac_pa == NULL);
4098
4099 pa = ac->ac_pa;
4100
4101 /* preallocation can change ac_b_ex, thus we store actually
4102 * allocated blocks for history */
4103 ac->ac_f_ex = ac->ac_b_ex;
4104
4105 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4106 pa->pa_lstart = pa->pa_pstart;
4107 pa->pa_len = ac->ac_b_ex.fe_len;
4108 pa->pa_free = pa->pa_len;
4109 spin_lock_init(&pa->pa_lock);
4110 INIT_LIST_HEAD(&pa->pa_inode_list);
4111 INIT_LIST_HEAD(&pa->pa_group_list);
4112 pa->pa_deleted = 0;
4113 pa->pa_type = MB_GROUP_PA;
4114
4115 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4116 pa->pa_len, pa->pa_lstart);
4117 trace_ext4_mb_new_group_pa(ac, pa);
4118
4119 ext4_mb_use_group_pa(ac, pa);
4120 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4121
4122 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4123 lg = ac->ac_lg;
4124 BUG_ON(lg == NULL);
4125
4126 pa->pa_obj_lock = &lg->lg_prealloc_lock;
4127 pa->pa_inode = NULL;
4128
4129 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4130
4131 /*
4132 * We will later add the new pa to the right bucket
4133 * after updating the pa_free in ext4_mb_release_context
4134 */
4135 }
4136
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)4137 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4138 {
4139 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4140 ext4_mb_new_group_pa(ac);
4141 else
4142 ext4_mb_new_inode_pa(ac);
4143 }
4144
4145 /*
4146 * finds all unused blocks in on-disk bitmap, frees them in
4147 * in-core bitmap and buddy.
4148 * @pa must be unlinked from inode and group lists, so that
4149 * nobody else can find/use it.
4150 * the caller MUST hold group/inode locks.
4151 * TODO: optimize the case when there are no in-core structures yet
4152 */
4153 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)4154 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4155 struct ext4_prealloc_space *pa)
4156 {
4157 struct super_block *sb = e4b->bd_sb;
4158 struct ext4_sb_info *sbi = EXT4_SB(sb);
4159 unsigned int end;
4160 unsigned int next;
4161 ext4_group_t group;
4162 ext4_grpblk_t bit;
4163 unsigned long long grp_blk_start;
4164 int free = 0;
4165
4166 BUG_ON(pa->pa_deleted == 0);
4167 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4168 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4169 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4170 end = bit + pa->pa_len;
4171
4172 while (bit < end) {
4173 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4174 if (bit >= end)
4175 break;
4176 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4177 mb_debug(sb, "free preallocated %u/%u in group %u\n",
4178 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4179 (unsigned) next - bit, (unsigned) group);
4180 free += next - bit;
4181
4182 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4183 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4184 EXT4_C2B(sbi, bit)),
4185 next - bit);
4186 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4187 bit = next + 1;
4188 }
4189 if (free != pa->pa_free) {
4190 ext4_msg(e4b->bd_sb, KERN_CRIT,
4191 "pa %p: logic %lu, phys. %lu, len %d",
4192 pa, (unsigned long) pa->pa_lstart,
4193 (unsigned long) pa->pa_pstart,
4194 pa->pa_len);
4195 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4196 free, pa->pa_free);
4197 /*
4198 * pa is already deleted so we use the value obtained
4199 * from the bitmap and continue.
4200 */
4201 }
4202 atomic_add(free, &sbi->s_mb_discarded);
4203
4204 return 0;
4205 }
4206
4207 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)4208 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4209 struct ext4_prealloc_space *pa)
4210 {
4211 struct super_block *sb = e4b->bd_sb;
4212 ext4_group_t group;
4213 ext4_grpblk_t bit;
4214
4215 trace_ext4_mb_release_group_pa(sb, pa);
4216 BUG_ON(pa->pa_deleted == 0);
4217 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4218 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4219 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4220 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4221 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4222
4223 return 0;
4224 }
4225
4226 /*
4227 * releases all preallocations in given group
4228 *
4229 * first, we need to decide discard policy:
4230 * - when do we discard
4231 * 1) ENOSPC
4232 * - how many do we discard
4233 * 1) how many requested
4234 */
4235 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)4236 ext4_mb_discard_group_preallocations(struct super_block *sb,
4237 ext4_group_t group, int needed)
4238 {
4239 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4240 struct buffer_head *bitmap_bh = NULL;
4241 struct ext4_prealloc_space *pa, *tmp;
4242 struct list_head list;
4243 struct ext4_buddy e4b;
4244 int err;
4245 int busy = 0;
4246 int free, free_total = 0;
4247
4248 mb_debug(sb, "discard preallocation for group %u\n", group);
4249 if (list_empty(&grp->bb_prealloc_list))
4250 goto out_dbg;
4251
4252 bitmap_bh = ext4_read_block_bitmap(sb, group);
4253 if (IS_ERR(bitmap_bh)) {
4254 err = PTR_ERR(bitmap_bh);
4255 ext4_error_err(sb, -err,
4256 "Error %d reading block bitmap for %u",
4257 err, group);
4258 goto out_dbg;
4259 }
4260
4261 err = ext4_mb_load_buddy(sb, group, &e4b);
4262 if (err) {
4263 ext4_warning(sb, "Error %d loading buddy information for %u",
4264 err, group);
4265 put_bh(bitmap_bh);
4266 goto out_dbg;
4267 }
4268
4269 if (needed == 0)
4270 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4271
4272 INIT_LIST_HEAD(&list);
4273 repeat:
4274 free = 0;
4275 ext4_lock_group(sb, group);
4276 list_for_each_entry_safe(pa, tmp,
4277 &grp->bb_prealloc_list, pa_group_list) {
4278 spin_lock(&pa->pa_lock);
4279 if (atomic_read(&pa->pa_count)) {
4280 spin_unlock(&pa->pa_lock);
4281 busy = 1;
4282 continue;
4283 }
4284 if (pa->pa_deleted) {
4285 spin_unlock(&pa->pa_lock);
4286 continue;
4287 }
4288
4289 /* seems this one can be freed ... */
4290 ext4_mb_mark_pa_deleted(sb, pa);
4291
4292 if (!free)
4293 this_cpu_inc(discard_pa_seq);
4294
4295 /* we can trust pa_free ... */
4296 free += pa->pa_free;
4297
4298 spin_unlock(&pa->pa_lock);
4299
4300 list_del(&pa->pa_group_list);
4301 list_add(&pa->u.pa_tmp_list, &list);
4302 }
4303
4304 /* now free all selected PAs */
4305 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4306
4307 /* remove from object (inode or locality group) */
4308 spin_lock(pa->pa_obj_lock);
4309 list_del_rcu(&pa->pa_inode_list);
4310 spin_unlock(pa->pa_obj_lock);
4311
4312 if (pa->pa_type == MB_GROUP_PA)
4313 ext4_mb_release_group_pa(&e4b, pa);
4314 else
4315 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4316
4317 list_del(&pa->u.pa_tmp_list);
4318 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4319 }
4320
4321 free_total += free;
4322
4323 /* if we still need more blocks and some PAs were used, try again */
4324 if (free_total < needed && busy) {
4325 ext4_unlock_group(sb, group);
4326 cond_resched();
4327 busy = 0;
4328 goto repeat;
4329 }
4330 ext4_unlock_group(sb, group);
4331 ext4_mb_unload_buddy(&e4b);
4332 put_bh(bitmap_bh);
4333 out_dbg:
4334 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4335 free_total, group, grp->bb_free);
4336 return free_total;
4337 }
4338
4339 /*
4340 * releases all non-used preallocated blocks for given inode
4341 *
4342 * It's important to discard preallocations under i_data_sem
4343 * We don't want another block to be served from the prealloc
4344 * space when we are discarding the inode prealloc space.
4345 *
4346 * FIXME!! Make sure it is valid at all the call sites
4347 */
ext4_discard_preallocations(struct inode * inode,unsigned int needed)4348 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4349 {
4350 struct ext4_inode_info *ei = EXT4_I(inode);
4351 struct super_block *sb = inode->i_sb;
4352 struct buffer_head *bitmap_bh = NULL;
4353 struct ext4_prealloc_space *pa, *tmp;
4354 ext4_group_t group = 0;
4355 struct list_head list;
4356 struct ext4_buddy e4b;
4357 int err;
4358
4359 if (!S_ISREG(inode->i_mode)) {
4360 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4361 return;
4362 }
4363
4364 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4365 return;
4366
4367 mb_debug(sb, "discard preallocation for inode %lu\n",
4368 inode->i_ino);
4369 trace_ext4_discard_preallocations(inode,
4370 atomic_read(&ei->i_prealloc_active), needed);
4371
4372 INIT_LIST_HEAD(&list);
4373
4374 if (needed == 0)
4375 needed = UINT_MAX;
4376
4377 repeat:
4378 /* first, collect all pa's in the inode */
4379 spin_lock(&ei->i_prealloc_lock);
4380 while (!list_empty(&ei->i_prealloc_list) && needed) {
4381 pa = list_entry(ei->i_prealloc_list.prev,
4382 struct ext4_prealloc_space, pa_inode_list);
4383 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4384 spin_lock(&pa->pa_lock);
4385 if (atomic_read(&pa->pa_count)) {
4386 /* this shouldn't happen often - nobody should
4387 * use preallocation while we're discarding it */
4388 spin_unlock(&pa->pa_lock);
4389 spin_unlock(&ei->i_prealloc_lock);
4390 ext4_msg(sb, KERN_ERR,
4391 "uh-oh! used pa while discarding");
4392 WARN_ON(1);
4393 schedule_timeout_uninterruptible(HZ);
4394 goto repeat;
4395
4396 }
4397 if (pa->pa_deleted == 0) {
4398 ext4_mb_mark_pa_deleted(sb, pa);
4399 spin_unlock(&pa->pa_lock);
4400 list_del_rcu(&pa->pa_inode_list);
4401 list_add(&pa->u.pa_tmp_list, &list);
4402 needed--;
4403 continue;
4404 }
4405
4406 /* someone is deleting pa right now */
4407 spin_unlock(&pa->pa_lock);
4408 spin_unlock(&ei->i_prealloc_lock);
4409
4410 /* we have to wait here because pa_deleted
4411 * doesn't mean pa is already unlinked from
4412 * the list. as we might be called from
4413 * ->clear_inode() the inode will get freed
4414 * and concurrent thread which is unlinking
4415 * pa from inode's list may access already
4416 * freed memory, bad-bad-bad */
4417
4418 /* XXX: if this happens too often, we can
4419 * add a flag to force wait only in case
4420 * of ->clear_inode(), but not in case of
4421 * regular truncate */
4422 schedule_timeout_uninterruptible(HZ);
4423 goto repeat;
4424 }
4425 spin_unlock(&ei->i_prealloc_lock);
4426
4427 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4428 BUG_ON(pa->pa_type != MB_INODE_PA);
4429 group = ext4_get_group_number(sb, pa->pa_pstart);
4430
4431 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4432 GFP_NOFS|__GFP_NOFAIL);
4433 if (err) {
4434 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4435 err, group);
4436 continue;
4437 }
4438
4439 bitmap_bh = ext4_read_block_bitmap(sb, group);
4440 if (IS_ERR(bitmap_bh)) {
4441 err = PTR_ERR(bitmap_bh);
4442 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4443 err, group);
4444 ext4_mb_unload_buddy(&e4b);
4445 continue;
4446 }
4447
4448 ext4_lock_group(sb, group);
4449 list_del(&pa->pa_group_list);
4450 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4451 ext4_unlock_group(sb, group);
4452
4453 ext4_mb_unload_buddy(&e4b);
4454 put_bh(bitmap_bh);
4455
4456 list_del(&pa->u.pa_tmp_list);
4457 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4458 }
4459 }
4460
ext4_mb_pa_alloc(struct ext4_allocation_context * ac)4461 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4462 {
4463 struct ext4_prealloc_space *pa;
4464
4465 BUG_ON(ext4_pspace_cachep == NULL);
4466 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4467 if (!pa)
4468 return -ENOMEM;
4469 atomic_set(&pa->pa_count, 1);
4470 ac->ac_pa = pa;
4471 return 0;
4472 }
4473
ext4_mb_pa_free(struct ext4_allocation_context * ac)4474 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4475 {
4476 struct ext4_prealloc_space *pa = ac->ac_pa;
4477
4478 BUG_ON(!pa);
4479 ac->ac_pa = NULL;
4480 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4481 kmem_cache_free(ext4_pspace_cachep, pa);
4482 }
4483
4484 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_pa(struct super_block * sb)4485 static inline void ext4_mb_show_pa(struct super_block *sb)
4486 {
4487 ext4_group_t i, ngroups;
4488
4489 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4490 return;
4491
4492 ngroups = ext4_get_groups_count(sb);
4493 mb_debug(sb, "groups: ");
4494 for (i = 0; i < ngroups; i++) {
4495 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4496 struct ext4_prealloc_space *pa;
4497 ext4_grpblk_t start;
4498 struct list_head *cur;
4499 ext4_lock_group(sb, i);
4500 list_for_each(cur, &grp->bb_prealloc_list) {
4501 pa = list_entry(cur, struct ext4_prealloc_space,
4502 pa_group_list);
4503 spin_lock(&pa->pa_lock);
4504 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4505 NULL, &start);
4506 spin_unlock(&pa->pa_lock);
4507 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
4508 pa->pa_len);
4509 }
4510 ext4_unlock_group(sb, i);
4511 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
4512 grp->bb_fragments);
4513 }
4514 }
4515
ext4_mb_show_ac(struct ext4_allocation_context * ac)4516 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4517 {
4518 struct super_block *sb = ac->ac_sb;
4519
4520 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4521 return;
4522
4523 mb_debug(sb, "Can't allocate:"
4524 " Allocation context details:");
4525 mb_debug(sb, "status %u flags 0x%x",
4526 ac->ac_status, ac->ac_flags);
4527 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
4528 "goal %lu/%lu/%lu@%lu, "
4529 "best %lu/%lu/%lu@%lu cr %d",
4530 (unsigned long)ac->ac_o_ex.fe_group,
4531 (unsigned long)ac->ac_o_ex.fe_start,
4532 (unsigned long)ac->ac_o_ex.fe_len,
4533 (unsigned long)ac->ac_o_ex.fe_logical,
4534 (unsigned long)ac->ac_g_ex.fe_group,
4535 (unsigned long)ac->ac_g_ex.fe_start,
4536 (unsigned long)ac->ac_g_ex.fe_len,
4537 (unsigned long)ac->ac_g_ex.fe_logical,
4538 (unsigned long)ac->ac_b_ex.fe_group,
4539 (unsigned long)ac->ac_b_ex.fe_start,
4540 (unsigned long)ac->ac_b_ex.fe_len,
4541 (unsigned long)ac->ac_b_ex.fe_logical,
4542 (int)ac->ac_criteria);
4543 mb_debug(sb, "%u found", ac->ac_found);
4544 ext4_mb_show_pa(sb);
4545 }
4546 #else
ext4_mb_show_pa(struct super_block * sb)4547 static inline void ext4_mb_show_pa(struct super_block *sb)
4548 {
4549 return;
4550 }
ext4_mb_show_ac(struct ext4_allocation_context * ac)4551 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4552 {
4553 ext4_mb_show_pa(ac->ac_sb);
4554 return;
4555 }
4556 #endif
4557
4558 /*
4559 * We use locality group preallocation for small size file. The size of the
4560 * file is determined by the current size or the resulting size after
4561 * allocation which ever is larger
4562 *
4563 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4564 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4565 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4566 {
4567 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4568 int bsbits = ac->ac_sb->s_blocksize_bits;
4569 loff_t size, isize;
4570
4571 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4572 return;
4573
4574 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4575 return;
4576
4577 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4578 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4579 >> bsbits;
4580
4581 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4582 !inode_is_open_for_write(ac->ac_inode)) {
4583 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4584 return;
4585 }
4586
4587 if (sbi->s_mb_group_prealloc <= 0) {
4588 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4589 return;
4590 }
4591
4592 /* don't use group allocation for large files */
4593 size = max(size, isize);
4594 if (size > sbi->s_mb_stream_request) {
4595 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4596 return;
4597 }
4598
4599 BUG_ON(ac->ac_lg != NULL);
4600 /*
4601 * locality group prealloc space are per cpu. The reason for having
4602 * per cpu locality group is to reduce the contention between block
4603 * request from multiple CPUs.
4604 */
4605 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4606
4607 /* we're going to use group allocation */
4608 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4609
4610 /* serialize all allocations in the group */
4611 mutex_lock(&ac->ac_lg->lg_mutex);
4612 }
4613
4614 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4615 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4616 struct ext4_allocation_request *ar)
4617 {
4618 struct super_block *sb = ar->inode->i_sb;
4619 struct ext4_sb_info *sbi = EXT4_SB(sb);
4620 struct ext4_super_block *es = sbi->s_es;
4621 ext4_group_t group;
4622 unsigned int len;
4623 ext4_fsblk_t goal;
4624 ext4_grpblk_t block;
4625
4626 /* we can't allocate > group size */
4627 len = ar->len;
4628
4629 /* just a dirty hack to filter too big requests */
4630 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4631 len = EXT4_CLUSTERS_PER_GROUP(sb);
4632
4633 /* start searching from the goal */
4634 goal = ar->goal;
4635 if (goal < le32_to_cpu(es->s_first_data_block) ||
4636 goal >= ext4_blocks_count(es))
4637 goal = le32_to_cpu(es->s_first_data_block);
4638 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4639
4640 /* set up allocation goals */
4641 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4642 ac->ac_status = AC_STATUS_CONTINUE;
4643 ac->ac_sb = sb;
4644 ac->ac_inode = ar->inode;
4645 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4646 ac->ac_o_ex.fe_group = group;
4647 ac->ac_o_ex.fe_start = block;
4648 ac->ac_o_ex.fe_len = len;
4649 ac->ac_g_ex = ac->ac_o_ex;
4650 ac->ac_flags = ar->flags;
4651
4652 /* we have to define context: we'll work with a file or
4653 * locality group. this is a policy, actually */
4654 ext4_mb_group_or_file(ac);
4655
4656 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4657 "left: %u/%u, right %u/%u to %swritable\n",
4658 (unsigned) ar->len, (unsigned) ar->logical,
4659 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4660 (unsigned) ar->lleft, (unsigned) ar->pleft,
4661 (unsigned) ar->lright, (unsigned) ar->pright,
4662 inode_is_open_for_write(ar->inode) ? "" : "non-");
4663 return 0;
4664
4665 }
4666
4667 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4668 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4669 struct ext4_locality_group *lg,
4670 int order, int total_entries)
4671 {
4672 ext4_group_t group = 0;
4673 struct ext4_buddy e4b;
4674 struct list_head discard_list;
4675 struct ext4_prealloc_space *pa, *tmp;
4676
4677 mb_debug(sb, "discard locality group preallocation\n");
4678
4679 INIT_LIST_HEAD(&discard_list);
4680
4681 spin_lock(&lg->lg_prealloc_lock);
4682 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4683 pa_inode_list,
4684 lockdep_is_held(&lg->lg_prealloc_lock)) {
4685 spin_lock(&pa->pa_lock);
4686 if (atomic_read(&pa->pa_count)) {
4687 /*
4688 * This is the pa that we just used
4689 * for block allocation. So don't
4690 * free that
4691 */
4692 spin_unlock(&pa->pa_lock);
4693 continue;
4694 }
4695 if (pa->pa_deleted) {
4696 spin_unlock(&pa->pa_lock);
4697 continue;
4698 }
4699 /* only lg prealloc space */
4700 BUG_ON(pa->pa_type != MB_GROUP_PA);
4701
4702 /* seems this one can be freed ... */
4703 ext4_mb_mark_pa_deleted(sb, pa);
4704 spin_unlock(&pa->pa_lock);
4705
4706 list_del_rcu(&pa->pa_inode_list);
4707 list_add(&pa->u.pa_tmp_list, &discard_list);
4708
4709 total_entries--;
4710 if (total_entries <= 5) {
4711 /*
4712 * we want to keep only 5 entries
4713 * allowing it to grow to 8. This
4714 * mak sure we don't call discard
4715 * soon for this list.
4716 */
4717 break;
4718 }
4719 }
4720 spin_unlock(&lg->lg_prealloc_lock);
4721
4722 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4723 int err;
4724
4725 group = ext4_get_group_number(sb, pa->pa_pstart);
4726 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4727 GFP_NOFS|__GFP_NOFAIL);
4728 if (err) {
4729 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4730 err, group);
4731 continue;
4732 }
4733 ext4_lock_group(sb, group);
4734 list_del(&pa->pa_group_list);
4735 ext4_mb_release_group_pa(&e4b, pa);
4736 ext4_unlock_group(sb, group);
4737
4738 ext4_mb_unload_buddy(&e4b);
4739 list_del(&pa->u.pa_tmp_list);
4740 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4741 }
4742 }
4743
4744 /*
4745 * We have incremented pa_count. So it cannot be freed at this
4746 * point. Also we hold lg_mutex. So no parallel allocation is
4747 * possible from this lg. That means pa_free cannot be updated.
4748 *
4749 * A parallel ext4_mb_discard_group_preallocations is possible.
4750 * which can cause the lg_prealloc_list to be updated.
4751 */
4752
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4753 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4754 {
4755 int order, added = 0, lg_prealloc_count = 1;
4756 struct super_block *sb = ac->ac_sb;
4757 struct ext4_locality_group *lg = ac->ac_lg;
4758 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4759
4760 order = fls(pa->pa_free) - 1;
4761 if (order > PREALLOC_TB_SIZE - 1)
4762 /* The max size of hash table is PREALLOC_TB_SIZE */
4763 order = PREALLOC_TB_SIZE - 1;
4764 /* Add the prealloc space to lg */
4765 spin_lock(&lg->lg_prealloc_lock);
4766 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4767 pa_inode_list,
4768 lockdep_is_held(&lg->lg_prealloc_lock)) {
4769 spin_lock(&tmp_pa->pa_lock);
4770 if (tmp_pa->pa_deleted) {
4771 spin_unlock(&tmp_pa->pa_lock);
4772 continue;
4773 }
4774 if (!added && pa->pa_free < tmp_pa->pa_free) {
4775 /* Add to the tail of the previous entry */
4776 list_add_tail_rcu(&pa->pa_inode_list,
4777 &tmp_pa->pa_inode_list);
4778 added = 1;
4779 /*
4780 * we want to count the total
4781 * number of entries in the list
4782 */
4783 }
4784 spin_unlock(&tmp_pa->pa_lock);
4785 lg_prealloc_count++;
4786 }
4787 if (!added)
4788 list_add_tail_rcu(&pa->pa_inode_list,
4789 &lg->lg_prealloc_list[order]);
4790 spin_unlock(&lg->lg_prealloc_lock);
4791
4792 /* Now trim the list to be not more than 8 elements */
4793 if (lg_prealloc_count > 8) {
4794 ext4_mb_discard_lg_preallocations(sb, lg,
4795 order, lg_prealloc_count);
4796 return;
4797 }
4798 return ;
4799 }
4800
4801 /*
4802 * if per-inode prealloc list is too long, trim some PA
4803 */
ext4_mb_trim_inode_pa(struct inode * inode)4804 static void ext4_mb_trim_inode_pa(struct inode *inode)
4805 {
4806 struct ext4_inode_info *ei = EXT4_I(inode);
4807 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4808 int count, delta;
4809
4810 count = atomic_read(&ei->i_prealloc_active);
4811 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
4812 if (count > sbi->s_mb_max_inode_prealloc + delta) {
4813 count -= sbi->s_mb_max_inode_prealloc;
4814 ext4_discard_preallocations(inode, count);
4815 }
4816 }
4817
4818 /*
4819 * release all resource we used in allocation
4820 */
ext4_mb_release_context(struct ext4_allocation_context * ac)4821 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4822 {
4823 struct inode *inode = ac->ac_inode;
4824 struct ext4_inode_info *ei = EXT4_I(inode);
4825 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4826 struct ext4_prealloc_space *pa = ac->ac_pa;
4827 if (pa) {
4828 if (pa->pa_type == MB_GROUP_PA) {
4829 /* see comment in ext4_mb_use_group_pa() */
4830 spin_lock(&pa->pa_lock);
4831 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4832 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4833 pa->pa_free -= ac->ac_b_ex.fe_len;
4834 pa->pa_len -= ac->ac_b_ex.fe_len;
4835 spin_unlock(&pa->pa_lock);
4836
4837 /*
4838 * We want to add the pa to the right bucket.
4839 * Remove it from the list and while adding
4840 * make sure the list to which we are adding
4841 * doesn't grow big.
4842 */
4843 if (likely(pa->pa_free)) {
4844 spin_lock(pa->pa_obj_lock);
4845 list_del_rcu(&pa->pa_inode_list);
4846 spin_unlock(pa->pa_obj_lock);
4847 ext4_mb_add_n_trim(ac);
4848 }
4849 }
4850
4851 if (pa->pa_type == MB_INODE_PA) {
4852 /*
4853 * treat per-inode prealloc list as a lru list, then try
4854 * to trim the least recently used PA.
4855 */
4856 spin_lock(pa->pa_obj_lock);
4857 list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
4858 spin_unlock(pa->pa_obj_lock);
4859 }
4860
4861 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4862 }
4863 if (ac->ac_bitmap_page)
4864 put_page(ac->ac_bitmap_page);
4865 if (ac->ac_buddy_page)
4866 put_page(ac->ac_buddy_page);
4867 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4868 mutex_unlock(&ac->ac_lg->lg_mutex);
4869 ext4_mb_collect_stats(ac);
4870 ext4_mb_trim_inode_pa(inode);
4871 return 0;
4872 }
4873
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4874 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4875 {
4876 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4877 int ret;
4878 int freed = 0;
4879
4880 trace_ext4_mb_discard_preallocations(sb, needed);
4881 for (i = 0; i < ngroups && needed > 0; i++) {
4882 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4883 freed += ret;
4884 needed -= ret;
4885 }
4886
4887 return freed;
4888 }
4889
ext4_mb_discard_preallocations_should_retry(struct super_block * sb,struct ext4_allocation_context * ac,u64 * seq)4890 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
4891 struct ext4_allocation_context *ac, u64 *seq)
4892 {
4893 int freed;
4894 u64 seq_retry = 0;
4895 bool ret = false;
4896
4897 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4898 if (freed) {
4899 ret = true;
4900 goto out_dbg;
4901 }
4902 seq_retry = ext4_get_discard_pa_seq_sum();
4903 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
4904 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
4905 *seq = seq_retry;
4906 ret = true;
4907 }
4908
4909 out_dbg:
4910 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
4911 return ret;
4912 }
4913
4914 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
4915 struct ext4_allocation_request *ar, int *errp);
4916
4917 /*
4918 * Main entry point into mballoc to allocate blocks
4919 * it tries to use preallocation first, then falls back
4920 * to usual allocation
4921 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4922 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4923 struct ext4_allocation_request *ar, int *errp)
4924 {
4925 struct ext4_allocation_context *ac = NULL;
4926 struct ext4_sb_info *sbi;
4927 struct super_block *sb;
4928 ext4_fsblk_t block = 0;
4929 unsigned int inquota = 0;
4930 unsigned int reserv_clstrs = 0;
4931 u64 seq;
4932
4933 might_sleep();
4934 sb = ar->inode->i_sb;
4935 sbi = EXT4_SB(sb);
4936
4937 trace_ext4_request_blocks(ar);
4938 if (sbi->s_mount_state & EXT4_FC_REPLAY)
4939 return ext4_mb_new_blocks_simple(handle, ar, errp);
4940
4941 /* Allow to use superuser reservation for quota file */
4942 if (ext4_is_quota_file(ar->inode))
4943 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4944
4945 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4946 /* Without delayed allocation we need to verify
4947 * there is enough free blocks to do block allocation
4948 * and verify allocation doesn't exceed the quota limits.
4949 */
4950 while (ar->len &&
4951 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4952
4953 /* let others to free the space */
4954 cond_resched();
4955 ar->len = ar->len >> 1;
4956 }
4957 if (!ar->len) {
4958 ext4_mb_show_pa(sb);
4959 *errp = -ENOSPC;
4960 return 0;
4961 }
4962 reserv_clstrs = ar->len;
4963 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4964 dquot_alloc_block_nofail(ar->inode,
4965 EXT4_C2B(sbi, ar->len));
4966 } else {
4967 while (ar->len &&
4968 dquot_alloc_block(ar->inode,
4969 EXT4_C2B(sbi, ar->len))) {
4970
4971 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4972 ar->len--;
4973 }
4974 }
4975 inquota = ar->len;
4976 if (ar->len == 0) {
4977 *errp = -EDQUOT;
4978 goto out;
4979 }
4980 }
4981
4982 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4983 if (!ac) {
4984 ar->len = 0;
4985 *errp = -ENOMEM;
4986 goto out;
4987 }
4988
4989 *errp = ext4_mb_initialize_context(ac, ar);
4990 if (*errp) {
4991 ar->len = 0;
4992 goto out;
4993 }
4994
4995 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4996 seq = this_cpu_read(discard_pa_seq);
4997 if (!ext4_mb_use_preallocated(ac)) {
4998 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4999 ext4_mb_normalize_request(ac, ar);
5000
5001 *errp = ext4_mb_pa_alloc(ac);
5002 if (*errp)
5003 goto errout;
5004 repeat:
5005 /* allocate space in core */
5006 *errp = ext4_mb_regular_allocator(ac);
5007 /*
5008 * pa allocated above is added to grp->bb_prealloc_list only
5009 * when we were able to allocate some block i.e. when
5010 * ac->ac_status == AC_STATUS_FOUND.
5011 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5012 * So we have to free this pa here itself.
5013 */
5014 if (*errp) {
5015 ext4_mb_pa_free(ac);
5016 ext4_discard_allocated_blocks(ac);
5017 goto errout;
5018 }
5019 if (ac->ac_status == AC_STATUS_FOUND &&
5020 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5021 ext4_mb_pa_free(ac);
5022 }
5023 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5024 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5025 if (*errp) {
5026 ext4_discard_allocated_blocks(ac);
5027 goto errout;
5028 } else {
5029 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5030 ar->len = ac->ac_b_ex.fe_len;
5031 }
5032 } else {
5033 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5034 goto repeat;
5035 /*
5036 * If block allocation fails then the pa allocated above
5037 * needs to be freed here itself.
5038 */
5039 ext4_mb_pa_free(ac);
5040 *errp = -ENOSPC;
5041 }
5042
5043 errout:
5044 if (*errp) {
5045 ac->ac_b_ex.fe_len = 0;
5046 ar->len = 0;
5047 ext4_mb_show_ac(ac);
5048 }
5049 ext4_mb_release_context(ac);
5050 out:
5051 if (ac)
5052 kmem_cache_free(ext4_ac_cachep, ac);
5053 if (inquota && ar->len < inquota)
5054 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5055 if (!ar->len) {
5056 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5057 /* release all the reserved blocks if non delalloc */
5058 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5059 reserv_clstrs);
5060 }
5061
5062 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5063
5064 return block;
5065 }
5066
5067 /*
5068 * We can merge two free data extents only if the physical blocks
5069 * are contiguous, AND the extents were freed by the same transaction,
5070 * AND the blocks are associated with the same group.
5071 */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)5072 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5073 struct ext4_free_data *entry,
5074 struct ext4_free_data *new_entry,
5075 struct rb_root *entry_rb_root)
5076 {
5077 if ((entry->efd_tid != new_entry->efd_tid) ||
5078 (entry->efd_group != new_entry->efd_group))
5079 return;
5080 if (entry->efd_start_cluster + entry->efd_count ==
5081 new_entry->efd_start_cluster) {
5082 new_entry->efd_start_cluster = entry->efd_start_cluster;
5083 new_entry->efd_count += entry->efd_count;
5084 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5085 entry->efd_start_cluster) {
5086 new_entry->efd_count += entry->efd_count;
5087 } else
5088 return;
5089 spin_lock(&sbi->s_md_lock);
5090 list_del(&entry->efd_list);
5091 spin_unlock(&sbi->s_md_lock);
5092 rb_erase(&entry->efd_node, entry_rb_root);
5093 kmem_cache_free(ext4_free_data_cachep, entry);
5094 }
5095
5096 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)5097 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5098 struct ext4_free_data *new_entry)
5099 {
5100 ext4_group_t group = e4b->bd_group;
5101 ext4_grpblk_t cluster;
5102 ext4_grpblk_t clusters = new_entry->efd_count;
5103 struct ext4_free_data *entry;
5104 struct ext4_group_info *db = e4b->bd_info;
5105 struct super_block *sb = e4b->bd_sb;
5106 struct ext4_sb_info *sbi = EXT4_SB(sb);
5107 struct rb_node **n = &db->bb_free_root.rb_node, *node;
5108 struct rb_node *parent = NULL, *new_node;
5109
5110 BUG_ON(!ext4_handle_valid(handle));
5111 BUG_ON(e4b->bd_bitmap_page == NULL);
5112 BUG_ON(e4b->bd_buddy_page == NULL);
5113
5114 new_node = &new_entry->efd_node;
5115 cluster = new_entry->efd_start_cluster;
5116
5117 if (!*n) {
5118 /* first free block exent. We need to
5119 protect buddy cache from being freed,
5120 * otherwise we'll refresh it from
5121 * on-disk bitmap and lose not-yet-available
5122 * blocks */
5123 get_page(e4b->bd_buddy_page);
5124 get_page(e4b->bd_bitmap_page);
5125 }
5126 while (*n) {
5127 parent = *n;
5128 entry = rb_entry(parent, struct ext4_free_data, efd_node);
5129 if (cluster < entry->efd_start_cluster)
5130 n = &(*n)->rb_left;
5131 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5132 n = &(*n)->rb_right;
5133 else {
5134 ext4_grp_locked_error(sb, group, 0,
5135 ext4_group_first_block_no(sb, group) +
5136 EXT4_C2B(sbi, cluster),
5137 "Block already on to-be-freed list");
5138 kmem_cache_free(ext4_free_data_cachep, new_entry);
5139 return 0;
5140 }
5141 }
5142
5143 rb_link_node(new_node, parent, n);
5144 rb_insert_color(new_node, &db->bb_free_root);
5145
5146 /* Now try to see the extent can be merged to left and right */
5147 node = rb_prev(new_node);
5148 if (node) {
5149 entry = rb_entry(node, struct ext4_free_data, efd_node);
5150 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5151 &(db->bb_free_root));
5152 }
5153
5154 node = rb_next(new_node);
5155 if (node) {
5156 entry = rb_entry(node, struct ext4_free_data, efd_node);
5157 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5158 &(db->bb_free_root));
5159 }
5160
5161 spin_lock(&sbi->s_md_lock);
5162 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5163 sbi->s_mb_free_pending += clusters;
5164 spin_unlock(&sbi->s_md_lock);
5165 return 0;
5166 }
5167
5168 /*
5169 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5170 * linearly starting at the goal block and also excludes the blocks which
5171 * are going to be in use after fast commit replay.
5172 */
ext4_mb_new_blocks_simple(handle_t * handle,struct ext4_allocation_request * ar,int * errp)5173 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5174 struct ext4_allocation_request *ar, int *errp)
5175 {
5176 struct buffer_head *bitmap_bh;
5177 struct super_block *sb = ar->inode->i_sb;
5178 ext4_group_t group;
5179 ext4_grpblk_t blkoff;
5180 int i = sb->s_blocksize;
5181 ext4_fsblk_t goal, block;
5182 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5183
5184 goal = ar->goal;
5185 if (goal < le32_to_cpu(es->s_first_data_block) ||
5186 goal >= ext4_blocks_count(es))
5187 goal = le32_to_cpu(es->s_first_data_block);
5188
5189 ar->len = 0;
5190 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5191 for (; group < ext4_get_groups_count(sb); group++) {
5192 bitmap_bh = ext4_read_block_bitmap(sb, group);
5193 if (IS_ERR(bitmap_bh)) {
5194 *errp = PTR_ERR(bitmap_bh);
5195 pr_warn("Failed to read block bitmap\n");
5196 return 0;
5197 }
5198
5199 ext4_get_group_no_and_offset(sb,
5200 max(ext4_group_first_block_no(sb, group), goal),
5201 NULL, &blkoff);
5202 i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize,
5203 blkoff);
5204 brelse(bitmap_bh);
5205 if (i >= sb->s_blocksize)
5206 continue;
5207 if (ext4_fc_replay_check_excluded(sb,
5208 ext4_group_first_block_no(sb, group) + i))
5209 continue;
5210 break;
5211 }
5212
5213 if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize)
5214 return 0;
5215
5216 block = ext4_group_first_block_no(sb, group) + i;
5217 ext4_mb_mark_bb(sb, block, 1, 1);
5218 ar->len = 1;
5219
5220 return block;
5221 }
5222
ext4_free_blocks_simple(struct inode * inode,ext4_fsblk_t block,unsigned long count)5223 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5224 unsigned long count)
5225 {
5226 struct buffer_head *bitmap_bh;
5227 struct super_block *sb = inode->i_sb;
5228 struct ext4_group_desc *gdp;
5229 struct buffer_head *gdp_bh;
5230 ext4_group_t group;
5231 ext4_grpblk_t blkoff;
5232 int already_freed = 0, err, i;
5233
5234 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5235 bitmap_bh = ext4_read_block_bitmap(sb, group);
5236 if (IS_ERR(bitmap_bh)) {
5237 err = PTR_ERR(bitmap_bh);
5238 pr_warn("Failed to read block bitmap\n");
5239 return;
5240 }
5241 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5242 if (!gdp)
5243 return;
5244
5245 for (i = 0; i < count; i++) {
5246 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5247 already_freed++;
5248 }
5249 mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5250 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5251 if (err)
5252 return;
5253 ext4_free_group_clusters_set(
5254 sb, gdp, ext4_free_group_clusters(sb, gdp) +
5255 count - already_freed);
5256 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5257 ext4_group_desc_csum_set(sb, group, gdp);
5258 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5259 sync_dirty_buffer(bitmap_bh);
5260 sync_dirty_buffer(gdp_bh);
5261 brelse(bitmap_bh);
5262 }
5263
5264 /**
5265 * ext4_free_blocks() -- Free given blocks and update quota
5266 * @handle: handle for this transaction
5267 * @inode: inode
5268 * @bh: optional buffer of the block to be freed
5269 * @block: starting physical block to be freed
5270 * @count: number of blocks to be freed
5271 * @flags: flags used by ext4_free_blocks
5272 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)5273 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5274 struct buffer_head *bh, ext4_fsblk_t block,
5275 unsigned long count, int flags)
5276 {
5277 struct buffer_head *bitmap_bh = NULL;
5278 struct super_block *sb = inode->i_sb;
5279 struct ext4_group_desc *gdp;
5280 unsigned int overflow;
5281 ext4_grpblk_t bit;
5282 struct buffer_head *gd_bh;
5283 ext4_group_t block_group;
5284 struct ext4_sb_info *sbi;
5285 struct ext4_buddy e4b;
5286 unsigned int count_clusters;
5287 int err = 0;
5288 int ret;
5289
5290 sbi = EXT4_SB(sb);
5291
5292 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
5293 ext4_free_blocks_simple(inode, block, count);
5294 return;
5295 }
5296
5297 might_sleep();
5298 if (bh) {
5299 if (block)
5300 BUG_ON(block != bh->b_blocknr);
5301 else
5302 block = bh->b_blocknr;
5303 }
5304
5305 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5306 !ext4_inode_block_valid(inode, block, count)) {
5307 ext4_error(sb, "Freeing blocks not in datazone - "
5308 "block = %llu, count = %lu", block, count);
5309 goto error_return;
5310 }
5311
5312 ext4_debug("freeing block %llu\n", block);
5313 trace_ext4_free_blocks(inode, block, count, flags);
5314
5315 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5316 BUG_ON(count > 1);
5317
5318 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5319 inode, bh, block);
5320 }
5321
5322 /*
5323 * If the extent to be freed does not begin on a cluster
5324 * boundary, we need to deal with partial clusters at the
5325 * beginning and end of the extent. Normally we will free
5326 * blocks at the beginning or the end unless we are explicitly
5327 * requested to avoid doing so.
5328 */
5329 overflow = EXT4_PBLK_COFF(sbi, block);
5330 if (overflow) {
5331 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5332 overflow = sbi->s_cluster_ratio - overflow;
5333 block += overflow;
5334 if (count > overflow)
5335 count -= overflow;
5336 else
5337 return;
5338 } else {
5339 block -= overflow;
5340 count += overflow;
5341 }
5342 }
5343 overflow = EXT4_LBLK_COFF(sbi, count);
5344 if (overflow) {
5345 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5346 if (count > overflow)
5347 count -= overflow;
5348 else
5349 return;
5350 } else
5351 count += sbi->s_cluster_ratio - overflow;
5352 }
5353
5354 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5355 int i;
5356 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5357
5358 for (i = 0; i < count; i++) {
5359 cond_resched();
5360 if (is_metadata)
5361 bh = sb_find_get_block(inode->i_sb, block + i);
5362 ext4_forget(handle, is_metadata, inode, bh, block + i);
5363 }
5364 }
5365
5366 do_more:
5367 overflow = 0;
5368 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5369
5370 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5371 ext4_get_group_info(sb, block_group))))
5372 return;
5373
5374 /*
5375 * Check to see if we are freeing blocks across a group
5376 * boundary.
5377 */
5378 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5379 overflow = EXT4_C2B(sbi, bit) + count -
5380 EXT4_BLOCKS_PER_GROUP(sb);
5381 count -= overflow;
5382 }
5383 count_clusters = EXT4_NUM_B2C(sbi, count);
5384 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5385 if (IS_ERR(bitmap_bh)) {
5386 err = PTR_ERR(bitmap_bh);
5387 bitmap_bh = NULL;
5388 goto error_return;
5389 }
5390 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5391 if (!gdp) {
5392 err = -EIO;
5393 goto error_return;
5394 }
5395
5396 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5397 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5398 in_range(block, ext4_inode_table(sb, gdp),
5399 sbi->s_itb_per_group) ||
5400 in_range(block + count - 1, ext4_inode_table(sb, gdp),
5401 sbi->s_itb_per_group)) {
5402
5403 ext4_error(sb, "Freeing blocks in system zone - "
5404 "Block = %llu, count = %lu", block, count);
5405 /* err = 0. ext4_std_error should be a no op */
5406 goto error_return;
5407 }
5408
5409 BUFFER_TRACE(bitmap_bh, "getting write access");
5410 err = ext4_journal_get_write_access(handle, bitmap_bh);
5411 if (err)
5412 goto error_return;
5413
5414 /*
5415 * We are about to modify some metadata. Call the journal APIs
5416 * to unshare ->b_data if a currently-committing transaction is
5417 * using it
5418 */
5419 BUFFER_TRACE(gd_bh, "get_write_access");
5420 err = ext4_journal_get_write_access(handle, gd_bh);
5421 if (err)
5422 goto error_return;
5423 #ifdef AGGRESSIVE_CHECK
5424 {
5425 int i;
5426 for (i = 0; i < count_clusters; i++)
5427 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5428 }
5429 #endif
5430 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5431
5432 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5433 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5434 GFP_NOFS|__GFP_NOFAIL);
5435 if (err)
5436 goto error_return;
5437
5438 /*
5439 * We need to make sure we don't reuse the freed block until after the
5440 * transaction is committed. We make an exception if the inode is to be
5441 * written in writeback mode since writeback mode has weak data
5442 * consistency guarantees.
5443 */
5444 if (ext4_handle_valid(handle) &&
5445 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5446 !ext4_should_writeback_data(inode))) {
5447 struct ext4_free_data *new_entry;
5448 /*
5449 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5450 * to fail.
5451 */
5452 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5453 GFP_NOFS|__GFP_NOFAIL);
5454 new_entry->efd_start_cluster = bit;
5455 new_entry->efd_group = block_group;
5456 new_entry->efd_count = count_clusters;
5457 new_entry->efd_tid = handle->h_transaction->t_tid;
5458
5459 ext4_lock_group(sb, block_group);
5460 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5461 ext4_mb_free_metadata(handle, &e4b, new_entry);
5462 } else {
5463 /* need to update group_info->bb_free and bitmap
5464 * with group lock held. generate_buddy look at
5465 * them with group lock_held
5466 */
5467 if (test_opt(sb, DISCARD)) {
5468 err = ext4_issue_discard(sb, block_group, bit, count,
5469 NULL);
5470 if (err && err != -EOPNOTSUPP)
5471 ext4_msg(sb, KERN_WARNING, "discard request in"
5472 " group:%d block:%d count:%lu failed"
5473 " with %d", block_group, bit, count,
5474 err);
5475 } else
5476 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5477
5478 ext4_lock_group(sb, block_group);
5479 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5480 mb_free_blocks(inode, &e4b, bit, count_clusters);
5481 }
5482
5483 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5484 ext4_free_group_clusters_set(sb, gdp, ret);
5485 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5486 ext4_group_desc_csum_set(sb, block_group, gdp);
5487 ext4_unlock_group(sb, block_group);
5488
5489 if (sbi->s_log_groups_per_flex) {
5490 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5491 atomic64_add(count_clusters,
5492 &sbi_array_rcu_deref(sbi, s_flex_groups,
5493 flex_group)->free_clusters);
5494 }
5495
5496 /*
5497 * on a bigalloc file system, defer the s_freeclusters_counter
5498 * update to the caller (ext4_remove_space and friends) so they
5499 * can determine if a cluster freed here should be rereserved
5500 */
5501 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
5502 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
5503 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
5504 percpu_counter_add(&sbi->s_freeclusters_counter,
5505 count_clusters);
5506 }
5507
5508 ext4_mb_unload_buddy(&e4b);
5509
5510 /* We dirtied the bitmap block */
5511 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5512 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5513
5514 /* And the group descriptor block */
5515 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5516 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5517 if (!err)
5518 err = ret;
5519
5520 if (overflow && !err) {
5521 block += count;
5522 count = overflow;
5523 put_bh(bitmap_bh);
5524 goto do_more;
5525 }
5526 error_return:
5527 brelse(bitmap_bh);
5528 ext4_std_error(sb, err);
5529 return;
5530 }
5531
5532 /**
5533 * ext4_group_add_blocks() -- Add given blocks to an existing group
5534 * @handle: handle to this transaction
5535 * @sb: super block
5536 * @block: start physical block to add to the block group
5537 * @count: number of blocks to free
5538 *
5539 * This marks the blocks as free in the bitmap and buddy.
5540 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)5541 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5542 ext4_fsblk_t block, unsigned long count)
5543 {
5544 struct buffer_head *bitmap_bh = NULL;
5545 struct buffer_head *gd_bh;
5546 ext4_group_t block_group;
5547 ext4_grpblk_t bit;
5548 unsigned int i;
5549 struct ext4_group_desc *desc;
5550 struct ext4_sb_info *sbi = EXT4_SB(sb);
5551 struct ext4_buddy e4b;
5552 int err = 0, ret, free_clusters_count;
5553 ext4_grpblk_t clusters_freed;
5554 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5555 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5556 unsigned long cluster_count = last_cluster - first_cluster + 1;
5557
5558 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5559
5560 if (count == 0)
5561 return 0;
5562
5563 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5564 /*
5565 * Check to see if we are freeing blocks across a group
5566 * boundary.
5567 */
5568 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5569 ext4_warning(sb, "too many blocks added to group %u",
5570 block_group);
5571 err = -EINVAL;
5572 goto error_return;
5573 }
5574
5575 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5576 if (IS_ERR(bitmap_bh)) {
5577 err = PTR_ERR(bitmap_bh);
5578 bitmap_bh = NULL;
5579 goto error_return;
5580 }
5581
5582 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5583 if (!desc) {
5584 err = -EIO;
5585 goto error_return;
5586 }
5587
5588 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5589 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5590 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5591 in_range(block + count - 1, ext4_inode_table(sb, desc),
5592 sbi->s_itb_per_group)) {
5593 ext4_error(sb, "Adding blocks in system zones - "
5594 "Block = %llu, count = %lu",
5595 block, count);
5596 err = -EINVAL;
5597 goto error_return;
5598 }
5599
5600 BUFFER_TRACE(bitmap_bh, "getting write access");
5601 err = ext4_journal_get_write_access(handle, bitmap_bh);
5602 if (err)
5603 goto error_return;
5604
5605 /*
5606 * We are about to modify some metadata. Call the journal APIs
5607 * to unshare ->b_data if a currently-committing transaction is
5608 * using it
5609 */
5610 BUFFER_TRACE(gd_bh, "get_write_access");
5611 err = ext4_journal_get_write_access(handle, gd_bh);
5612 if (err)
5613 goto error_return;
5614
5615 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5616 BUFFER_TRACE(bitmap_bh, "clear bit");
5617 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5618 ext4_error(sb, "bit already cleared for block %llu",
5619 (ext4_fsblk_t)(block + i));
5620 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5621 } else {
5622 clusters_freed++;
5623 }
5624 }
5625
5626 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5627 if (err)
5628 goto error_return;
5629
5630 /*
5631 * need to update group_info->bb_free and bitmap
5632 * with group lock held. generate_buddy look at
5633 * them with group lock_held
5634 */
5635 ext4_lock_group(sb, block_group);
5636 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5637 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5638 free_clusters_count = clusters_freed +
5639 ext4_free_group_clusters(sb, desc);
5640 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5641 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5642 ext4_group_desc_csum_set(sb, block_group, desc);
5643 ext4_unlock_group(sb, block_group);
5644 percpu_counter_add(&sbi->s_freeclusters_counter,
5645 clusters_freed);
5646
5647 if (sbi->s_log_groups_per_flex) {
5648 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5649 atomic64_add(clusters_freed,
5650 &sbi_array_rcu_deref(sbi, s_flex_groups,
5651 flex_group)->free_clusters);
5652 }
5653
5654 ext4_mb_unload_buddy(&e4b);
5655
5656 /* We dirtied the bitmap block */
5657 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5658 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5659
5660 /* And the group descriptor block */
5661 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5662 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5663 if (!err)
5664 err = ret;
5665
5666 error_return:
5667 brelse(bitmap_bh);
5668 ext4_std_error(sb, err);
5669 return err;
5670 }
5671
5672 /**
5673 * ext4_trim_extent -- function to TRIM one single free extent in the group
5674 * @sb: super block for the file system
5675 * @start: starting block of the free extent in the alloc. group
5676 * @count: number of blocks to TRIM
5677 * @group: alloc. group we are working with
5678 * @e4b: ext4 buddy for the group
5679 *
5680 * Trim "count" blocks starting at "start" in the "group". To assure that no
5681 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5682 * be called with under the group lock.
5683 */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b)5684 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5685 ext4_group_t group, struct ext4_buddy *e4b)
5686 __releases(bitlock)
5687 __acquires(bitlock)
5688 {
5689 struct ext4_free_extent ex;
5690 int ret = 0;
5691
5692 trace_ext4_trim_extent(sb, group, start, count);
5693
5694 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5695
5696 ex.fe_start = start;
5697 ex.fe_group = group;
5698 ex.fe_len = count;
5699
5700 /*
5701 * Mark blocks used, so no one can reuse them while
5702 * being trimmed.
5703 */
5704 mb_mark_used(e4b, &ex);
5705 ext4_unlock_group(sb, group);
5706 ret = ext4_issue_discard(sb, group, start, count, NULL);
5707 ext4_lock_group(sb, group);
5708 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5709 return ret;
5710 }
5711
5712 /**
5713 * ext4_trim_all_free -- function to trim all free space in alloc. group
5714 * @sb: super block for file system
5715 * @group: group to be trimmed
5716 * @start: first group block to examine
5717 * @max: last group block to examine
5718 * @minblocks: minimum extent block count
5719 *
5720 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5721 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5722 * the extent.
5723 *
5724 *
5725 * ext4_trim_all_free walks through group's block bitmap searching for free
5726 * extents. When the free extent is found, mark it as used in group buddy
5727 * bitmap. Then issue a TRIM command on this extent and free the extent in
5728 * the group buddy bitmap. This is done until whole group is scanned.
5729 */
5730 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5731 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5732 ext4_grpblk_t start, ext4_grpblk_t max,
5733 ext4_grpblk_t minblocks)
5734 {
5735 void *bitmap;
5736 ext4_grpblk_t next, count = 0, free_count = 0;
5737 struct ext4_buddy e4b;
5738 int ret = 0;
5739
5740 trace_ext4_trim_all_free(sb, group, start, max);
5741
5742 ret = ext4_mb_load_buddy(sb, group, &e4b);
5743 if (ret) {
5744 ext4_warning(sb, "Error %d loading buddy information for %u",
5745 ret, group);
5746 return ret;
5747 }
5748 bitmap = e4b.bd_bitmap;
5749
5750 ext4_lock_group(sb, group);
5751 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5752 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5753 goto out;
5754
5755 start = (e4b.bd_info->bb_first_free > start) ?
5756 e4b.bd_info->bb_first_free : start;
5757
5758 while (start <= max) {
5759 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5760 if (start > max)
5761 break;
5762 next = mb_find_next_bit(bitmap, max + 1, start);
5763
5764 if ((next - start) >= minblocks) {
5765 ret = ext4_trim_extent(sb, start,
5766 next - start, group, &e4b);
5767 if (ret && ret != -EOPNOTSUPP)
5768 break;
5769 ret = 0;
5770 count += next - start;
5771 }
5772 free_count += next - start;
5773 start = next + 1;
5774
5775 if (fatal_signal_pending(current)) {
5776 count = -ERESTARTSYS;
5777 break;
5778 }
5779
5780 if (need_resched()) {
5781 ext4_unlock_group(sb, group);
5782 cond_resched();
5783 ext4_lock_group(sb, group);
5784 }
5785
5786 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5787 break;
5788 }
5789
5790 if (!ret) {
5791 ret = count;
5792 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5793 }
5794 out:
5795 ext4_unlock_group(sb, group);
5796 ext4_mb_unload_buddy(&e4b);
5797
5798 ext4_debug("trimmed %d blocks in the group %d\n",
5799 count, group);
5800
5801 return ret;
5802 }
5803
5804 /**
5805 * ext4_trim_fs() -- trim ioctl handle function
5806 * @sb: superblock for filesystem
5807 * @range: fstrim_range structure
5808 *
5809 * start: First Byte to trim
5810 * len: number of Bytes to trim from start
5811 * minlen: minimum extent length in Bytes
5812 * ext4_trim_fs goes through all allocation groups containing Bytes from
5813 * start to start+len. For each such a group ext4_trim_all_free function
5814 * is invoked to trim all free space.
5815 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)5816 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5817 {
5818 struct ext4_group_info *grp;
5819 ext4_group_t group, first_group, last_group;
5820 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5821 uint64_t start, end, minlen, trimmed = 0;
5822 ext4_fsblk_t first_data_blk =
5823 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5824 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5825 int ret = 0;
5826
5827 start = range->start >> sb->s_blocksize_bits;
5828 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5829 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5830 range->minlen >> sb->s_blocksize_bits);
5831
5832 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5833 start >= max_blks ||
5834 range->len < sb->s_blocksize)
5835 return -EINVAL;
5836 if (end >= max_blks)
5837 end = max_blks - 1;
5838 if (end <= first_data_blk)
5839 goto out;
5840 if (start < first_data_blk)
5841 start = first_data_blk;
5842
5843 /* Determine first and last group to examine based on start and end */
5844 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5845 &first_group, &first_cluster);
5846 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5847 &last_group, &last_cluster);
5848
5849 /* end now represents the last cluster to discard in this group */
5850 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5851
5852 for (group = first_group; group <= last_group; group++) {
5853 grp = ext4_get_group_info(sb, group);
5854 /* We only do this if the grp has never been initialized */
5855 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5856 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5857 if (ret)
5858 break;
5859 }
5860
5861 /*
5862 * For all the groups except the last one, last cluster will
5863 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5864 * change it for the last group, note that last_cluster is
5865 * already computed earlier by ext4_get_group_no_and_offset()
5866 */
5867 if (group == last_group)
5868 end = last_cluster;
5869
5870 if (grp->bb_free >= minlen) {
5871 cnt = ext4_trim_all_free(sb, group, first_cluster,
5872 end, minlen);
5873 if (cnt < 0) {
5874 ret = cnt;
5875 break;
5876 }
5877 trimmed += cnt;
5878 }
5879
5880 /*
5881 * For every group except the first one, we are sure
5882 * that the first cluster to discard will be cluster #0.
5883 */
5884 first_cluster = 0;
5885 }
5886
5887 if (!ret)
5888 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5889
5890 out:
5891 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5892 return ret;
5893 }
5894
5895 /* Iterate all the free extents in the group. */
5896 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t end,ext4_mballoc_query_range_fn formatter,void * priv)5897 ext4_mballoc_query_range(
5898 struct super_block *sb,
5899 ext4_group_t group,
5900 ext4_grpblk_t start,
5901 ext4_grpblk_t end,
5902 ext4_mballoc_query_range_fn formatter,
5903 void *priv)
5904 {
5905 void *bitmap;
5906 ext4_grpblk_t next;
5907 struct ext4_buddy e4b;
5908 int error;
5909
5910 error = ext4_mb_load_buddy(sb, group, &e4b);
5911 if (error)
5912 return error;
5913 bitmap = e4b.bd_bitmap;
5914
5915 ext4_lock_group(sb, group);
5916
5917 start = (e4b.bd_info->bb_first_free > start) ?
5918 e4b.bd_info->bb_first_free : start;
5919 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5920 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5921
5922 while (start <= end) {
5923 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5924 if (start > end)
5925 break;
5926 next = mb_find_next_bit(bitmap, end + 1, start);
5927
5928 ext4_unlock_group(sb, group);
5929 error = formatter(sb, group, start, next - start, priv);
5930 if (error)
5931 goto out_unload;
5932 ext4_lock_group(sb, group);
5933
5934 start = next + 1;
5935 }
5936
5937 ext4_unlock_group(sb, group);
5938 out_unload:
5939 ext4_mb_unload_buddy(&e4b);
5940
5941 return error;
5942 }
5943