1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver.
51 * A driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options.
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv6|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is set in skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum or because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills in skb->csum. This means the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, but it should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum -- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note that there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet, presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215 * csum_offset are set to refer to the outermost checksum being offloaded
216 * (two offloaded checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 enum {
254 BRNF_PROTO_UNCHANGED,
255 BRNF_PROTO_8021Q,
256 BRNF_PROTO_PPPOE
257 } orig_proto:8;
258 u8 pkt_otherhost:1;
259 u8 in_prerouting:1;
260 u8 bridged_dnat:1;
261 __u16 frag_max_size;
262 struct net_device *physindev;
263
264 /* always valid & non-NULL from FORWARD on, for physdev match */
265 struct net_device *physoutdev;
266 union {
267 /* prerouting: detect dnat in orig/reply direction */
268 __be32 ipv4_daddr;
269 struct in6_addr ipv6_daddr;
270
271 /* after prerouting + nat detected: store original source
272 * mac since neigh resolution overwrites it, only used while
273 * skb is out in neigh layer.
274 */
275 char neigh_header[8];
276 };
277 };
278 #endif
279
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282 * ovs recirc_id. It will be set to the current chain by tc
283 * and read by ovs to recirc_id.
284 */
285 struct tc_skb_ext {
286 __u32 chain;
287 __u16 mru;
288 };
289 #endif
290
291 struct sk_buff_head {
292 /* These two members must be first. */
293 struct sk_buff *next;
294 struct sk_buff *prev;
295
296 __u32 qlen;
297 spinlock_t lock;
298 };
299
300 struct sk_buff;
301
302 /* To allow 64K frame to be packed as single skb without frag_list we
303 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304 * buffers which do not start on a page boundary.
305 *
306 * Since GRO uses frags we allocate at least 16 regardless of page
307 * size.
308 */
309 #if (65536/PAGE_SIZE + 1) < 16
310 #define MAX_SKB_FRAGS 16UL
311 #else
312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313 #endif
314 extern int sysctl_max_skb_frags;
315
316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317 * segment using its current segmentation instead.
318 */
319 #define GSO_BY_FRAGS 0xFFFF
320
321 typedef struct bio_vec skb_frag_t;
322
323 /**
324 * skb_frag_size() - Returns the size of a skb fragment
325 * @frag: skb fragment
326 */
skb_frag_size(const skb_frag_t * frag)327 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328 {
329 return frag->bv_len;
330 }
331
332 /**
333 * skb_frag_size_set() - Sets the size of a skb fragment
334 * @frag: skb fragment
335 * @size: size of fragment
336 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 {
339 frag->bv_len = size;
340 }
341
342 /**
343 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344 * @frag: skb fragment
345 * @delta: value to add
346 */
skb_frag_size_add(skb_frag_t * frag,int delta)347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348 {
349 frag->bv_len += delta;
350 }
351
352 /**
353 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354 * @frag: skb fragment
355 * @delta: value to subtract
356 */
skb_frag_size_sub(skb_frag_t * frag,int delta)357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358 {
359 frag->bv_len -= delta;
360 }
361
362 /**
363 * skb_frag_must_loop - Test if %p is a high memory page
364 * @p: fragment's page
365 */
skb_frag_must_loop(struct page * p)366 static inline bool skb_frag_must_loop(struct page *p)
367 {
368 #if defined(CONFIG_HIGHMEM)
369 if (PageHighMem(p))
370 return true;
371 #endif
372 return false;
373 }
374
375 /**
376 * skb_frag_foreach_page - loop over pages in a fragment
377 *
378 * @f: skb frag to operate on
379 * @f_off: offset from start of f->bv_page
380 * @f_len: length from f_off to loop over
381 * @p: (temp var) current page
382 * @p_off: (temp var) offset from start of current page,
383 * non-zero only on first page.
384 * @p_len: (temp var) length in current page,
385 * < PAGE_SIZE only on first and last page.
386 * @copied: (temp var) length so far, excluding current p_len.
387 *
388 * A fragment can hold a compound page, in which case per-page
389 * operations, notably kmap_atomic, must be called for each
390 * regular page.
391 */
392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
393 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
394 p_off = (f_off) & (PAGE_SIZE - 1), \
395 p_len = skb_frag_must_loop(p) ? \
396 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
397 copied = 0; \
398 copied < f_len; \
399 copied += p_len, p++, p_off = 0, \
400 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
401
402 #define HAVE_HW_TIME_STAMP
403
404 /**
405 * struct skb_shared_hwtstamps - hardware time stamps
406 * @hwtstamp: hardware time stamp transformed into duration
407 * since arbitrary point in time
408 *
409 * Software time stamps generated by ktime_get_real() are stored in
410 * skb->tstamp.
411 *
412 * hwtstamps can only be compared against other hwtstamps from
413 * the same device.
414 *
415 * This structure is attached to packets as part of the
416 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417 */
418 struct skb_shared_hwtstamps {
419 ktime_t hwtstamp;
420 };
421
422 /* Definitions for tx_flags in struct skb_shared_info */
423 enum {
424 /* generate hardware time stamp */
425 SKBTX_HW_TSTAMP = 1 << 0,
426
427 /* generate software time stamp when queueing packet to NIC */
428 SKBTX_SW_TSTAMP = 1 << 1,
429
430 /* device driver is going to provide hardware time stamp */
431 SKBTX_IN_PROGRESS = 1 << 2,
432
433 /* device driver supports TX zero-copy buffers */
434 SKBTX_DEV_ZEROCOPY = 1 << 3,
435
436 /* generate wifi status information (where possible) */
437 SKBTX_WIFI_STATUS = 1 << 4,
438
439 /* This indicates at least one fragment might be overwritten
440 * (as in vmsplice(), sendfile() ...)
441 * If we need to compute a TX checksum, we'll need to copy
442 * all frags to avoid possible bad checksum
443 */
444 SKBTX_SHARED_FRAG = 1 << 5,
445
446 /* generate software time stamp when entering packet scheduling */
447 SKBTX_SCHED_TSTAMP = 1 << 6,
448 };
449
450 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
452 SKBTX_SCHED_TSTAMP)
453 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454
455 /*
456 * The callback notifies userspace to release buffers when skb DMA is done in
457 * lower device, the skb last reference should be 0 when calling this.
458 * The zerocopy_success argument is true if zero copy transmit occurred,
459 * false on data copy or out of memory error caused by data copy attempt.
460 * The ctx field is used to track device context.
461 * The desc field is used to track userspace buffer index.
462 */
463 struct ubuf_info {
464 void (*callback)(struct ubuf_info *, bool zerocopy_success);
465 union {
466 struct {
467 unsigned long desc;
468 void *ctx;
469 };
470 struct {
471 u32 id;
472 u16 len;
473 u16 zerocopy:1;
474 u32 bytelen;
475 };
476 };
477 refcount_t refcnt;
478
479 struct mmpin {
480 struct user_struct *user;
481 unsigned int num_pg;
482 } mmp;
483 };
484
485 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486
487 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488 void mm_unaccount_pinned_pages(struct mmpin *mmp);
489
490 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492 struct ubuf_info *uarg);
493
sock_zerocopy_get(struct ubuf_info * uarg)494 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495 {
496 refcount_inc(&uarg->refcnt);
497 }
498
499 void sock_zerocopy_put(struct ubuf_info *uarg);
500 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501
502 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503
504 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506 struct msghdr *msg, int len,
507 struct ubuf_info *uarg);
508
509 /* This data is invariant across clones and lives at
510 * the end of the header data, ie. at skb->end.
511 */
512 struct skb_shared_info {
513 __u8 __unused;
514 __u8 meta_len;
515 __u8 nr_frags;
516 __u8 tx_flags;
517 unsigned short gso_size;
518 /* Warning: this field is not always filled in (UFO)! */
519 unsigned short gso_segs;
520 struct sk_buff *frag_list;
521 struct skb_shared_hwtstamps hwtstamps;
522 unsigned int gso_type;
523 u32 tskey;
524
525 /*
526 * Warning : all fields before dataref are cleared in __alloc_skb()
527 */
528 atomic_t dataref;
529
530 /* Intermediate layers must ensure that destructor_arg
531 * remains valid until skb destructor */
532 void * destructor_arg;
533
534 /* must be last field, see pskb_expand_head() */
535 skb_frag_t frags[MAX_SKB_FRAGS];
536 };
537
538 /* We divide dataref into two halves. The higher 16 bits hold references
539 * to the payload part of skb->data. The lower 16 bits hold references to
540 * the entire skb->data. A clone of a headerless skb holds the length of
541 * the header in skb->hdr_len.
542 *
543 * All users must obey the rule that the skb->data reference count must be
544 * greater than or equal to the payload reference count.
545 *
546 * Holding a reference to the payload part means that the user does not
547 * care about modifications to the header part of skb->data.
548 */
549 #define SKB_DATAREF_SHIFT 16
550 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551
552
553 enum {
554 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
555 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
556 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
557 };
558
559 enum {
560 SKB_GSO_TCPV4 = 1 << 0,
561
562 /* This indicates the skb is from an untrusted source. */
563 SKB_GSO_DODGY = 1 << 1,
564
565 /* This indicates the tcp segment has CWR set. */
566 SKB_GSO_TCP_ECN = 1 << 2,
567
568 SKB_GSO_TCP_FIXEDID = 1 << 3,
569
570 SKB_GSO_TCPV6 = 1 << 4,
571
572 SKB_GSO_FCOE = 1 << 5,
573
574 SKB_GSO_GRE = 1 << 6,
575
576 SKB_GSO_GRE_CSUM = 1 << 7,
577
578 SKB_GSO_IPXIP4 = 1 << 8,
579
580 SKB_GSO_IPXIP6 = 1 << 9,
581
582 SKB_GSO_UDP_TUNNEL = 1 << 10,
583
584 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585
586 SKB_GSO_PARTIAL = 1 << 12,
587
588 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589
590 SKB_GSO_SCTP = 1 << 14,
591
592 SKB_GSO_ESP = 1 << 15,
593
594 SKB_GSO_UDP = 1 << 16,
595
596 SKB_GSO_UDP_L4 = 1 << 17,
597
598 SKB_GSO_FRAGLIST = 1 << 18,
599 };
600
601 #if BITS_PER_LONG > 32
602 #define NET_SKBUFF_DATA_USES_OFFSET 1
603 #endif
604
605 #ifdef NET_SKBUFF_DATA_USES_OFFSET
606 typedef unsigned int sk_buff_data_t;
607 #else
608 typedef unsigned char *sk_buff_data_t;
609 #endif
610
611 /**
612 * struct sk_buff - socket buffer
613 * @next: Next buffer in list
614 * @prev: Previous buffer in list
615 * @tstamp: Time we arrived/left
616 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617 * for retransmit timer
618 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
619 * @list: queue head
620 * @sk: Socket we are owned by
621 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622 * fragmentation management
623 * @dev: Device we arrived on/are leaving by
624 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625 * @cb: Control buffer. Free for use by every layer. Put private vars here
626 * @_skb_refdst: destination entry (with norefcount bit)
627 * @sp: the security path, used for xfrm
628 * @len: Length of actual data
629 * @data_len: Data length
630 * @mac_len: Length of link layer header
631 * @hdr_len: writable header length of cloned skb
632 * @csum: Checksum (must include start/offset pair)
633 * @csum_start: Offset from skb->head where checksumming should start
634 * @csum_offset: Offset from csum_start where checksum should be stored
635 * @priority: Packet queueing priority
636 * @ignore_df: allow local fragmentation
637 * @cloned: Head may be cloned (check refcnt to be sure)
638 * @ip_summed: Driver fed us an IP checksum
639 * @nohdr: Payload reference only, must not modify header
640 * @pkt_type: Packet class
641 * @fclone: skbuff clone status
642 * @ipvs_property: skbuff is owned by ipvs
643 * @inner_protocol_type: whether the inner protocol is
644 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645 * @remcsum_offload: remote checksum offload is enabled
646 * @offload_fwd_mark: Packet was L2-forwarded in hardware
647 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648 * @tc_skip_classify: do not classify packet. set by IFB device
649 * @tc_at_ingress: used within tc_classify to distinguish in/egress
650 * @redirected: packet was redirected by packet classifier
651 * @from_ingress: packet was redirected from the ingress path
652 * @peeked: this packet has been seen already, so stats have been
653 * done for it, don't do them again
654 * @nf_trace: netfilter packet trace flag
655 * @protocol: Packet protocol from driver
656 * @destructor: Destruct function
657 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658 * @_nfct: Associated connection, if any (with nfctinfo bits)
659 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660 * @skb_iif: ifindex of device we arrived on
661 * @tc_index: Traffic control index
662 * @hash: the packet hash
663 * @queue_mapping: Queue mapping for multiqueue devices
664 * @head_frag: skb was allocated from page fragments,
665 * not allocated by kmalloc() or vmalloc().
666 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667 * @active_extensions: active extensions (skb_ext_id types)
668 * @ndisc_nodetype: router type (from link layer)
669 * @ooo_okay: allow the mapping of a socket to a queue to be changed
670 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
671 * ports.
672 * @sw_hash: indicates hash was computed in software stack
673 * @wifi_acked_valid: wifi_acked was set
674 * @wifi_acked: whether frame was acked on wifi or not
675 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
676 * @encapsulation: indicates the inner headers in the skbuff are valid
677 * @encap_hdr_csum: software checksum is needed
678 * @csum_valid: checksum is already valid
679 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680 * @csum_complete_sw: checksum was completed by software
681 * @csum_level: indicates the number of consecutive checksums found in
682 * the packet minus one that have been verified as
683 * CHECKSUM_UNNECESSARY (max 3)
684 * @scm_io_uring: SKB holds io_uring registered files
685 * @dst_pending_confirm: need to confirm neighbour
686 * @decrypted: Decrypted SKB
687 * @napi_id: id of the NAPI struct this skb came from
688 * @sender_cpu: (aka @napi_id) source CPU in XPS
689 * @secmark: security marking
690 * @mark: Generic packet mark
691 * @reserved_tailroom: (aka @mark) number of bytes of free space available
692 * at the tail of an sk_buff
693 * @vlan_present: VLAN tag is present
694 * @vlan_proto: vlan encapsulation protocol
695 * @vlan_tci: vlan tag control information
696 * @inner_protocol: Protocol (encapsulation)
697 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
698 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
699 * @inner_transport_header: Inner transport layer header (encapsulation)
700 * @inner_network_header: Network layer header (encapsulation)
701 * @inner_mac_header: Link layer header (encapsulation)
702 * @transport_header: Transport layer header
703 * @network_header: Network layer header
704 * @mac_header: Link layer header
705 * @tail: Tail pointer
706 * @end: End pointer
707 * @head: Head of buffer
708 * @data: Data head pointer
709 * @truesize: Buffer size
710 * @users: User count - see {datagram,tcp}.c
711 * @extensions: allocated extensions, valid if active_extensions is nonzero
712 */
713
714 struct sk_buff {
715 union {
716 struct {
717 /* These two members must be first. */
718 struct sk_buff *next;
719 struct sk_buff *prev;
720
721 union {
722 struct net_device *dev;
723 /* Some protocols might use this space to store information,
724 * while device pointer would be NULL.
725 * UDP receive path is one user.
726 */
727 unsigned long dev_scratch;
728 };
729 };
730 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
731 struct list_head list;
732 };
733
734 union {
735 struct sock *sk;
736 int ip_defrag_offset;
737 };
738
739 union {
740 ktime_t tstamp;
741 u64 skb_mstamp_ns; /* earliest departure time */
742 };
743 /*
744 * This is the control buffer. It is free to use for every
745 * layer. Please put your private variables there. If you
746 * want to keep them across layers you have to do a skb_clone()
747 * first. This is owned by whoever has the skb queued ATM.
748 */
749 char cb[48] __aligned(8);
750
751 union {
752 struct {
753 unsigned long _skb_refdst;
754 void (*destructor)(struct sk_buff *skb);
755 };
756 struct list_head tcp_tsorted_anchor;
757 };
758
759 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
760 unsigned long _nfct;
761 #endif
762 unsigned int len,
763 data_len;
764 __u16 mac_len,
765 hdr_len;
766
767 /* Following fields are _not_ copied in __copy_skb_header()
768 * Note that queue_mapping is here mostly to fill a hole.
769 */
770 __u16 queue_mapping;
771
772 /* if you move cloned around you also must adapt those constants */
773 #ifdef __BIG_ENDIAN_BITFIELD
774 #define CLONED_MASK (1 << 7)
775 #else
776 #define CLONED_MASK 1
777 #endif
778 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
779
780 /* private: */
781 __u8 __cloned_offset[0];
782 /* public: */
783 __u8 cloned:1,
784 nohdr:1,
785 fclone:2,
786 peeked:1,
787 head_frag:1,
788 pfmemalloc:1;
789 #ifdef CONFIG_SKB_EXTENSIONS
790 __u8 active_extensions;
791 #endif
792 /* fields enclosed in headers_start/headers_end are copied
793 * using a single memcpy() in __copy_skb_header()
794 */
795 /* private: */
796 __u32 headers_start[0];
797 /* public: */
798
799 /* if you move pkt_type around you also must adapt those constants */
800 #ifdef __BIG_ENDIAN_BITFIELD
801 #define PKT_TYPE_MAX (7 << 5)
802 #else
803 #define PKT_TYPE_MAX 7
804 #endif
805 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
806
807 /* private: */
808 __u8 __pkt_type_offset[0];
809 /* public: */
810 __u8 pkt_type:3;
811 __u8 ignore_df:1;
812 __u8 nf_trace:1;
813 __u8 ip_summed:2;
814 __u8 ooo_okay:1;
815
816 __u8 l4_hash:1;
817 __u8 sw_hash:1;
818 __u8 wifi_acked_valid:1;
819 __u8 wifi_acked:1;
820 __u8 no_fcs:1;
821 /* Indicates the inner headers are valid in the skbuff. */
822 __u8 encapsulation:1;
823 __u8 encap_hdr_csum:1;
824 __u8 csum_valid:1;
825
826 #ifdef __BIG_ENDIAN_BITFIELD
827 #define PKT_VLAN_PRESENT_BIT 7
828 #else
829 #define PKT_VLAN_PRESENT_BIT 0
830 #endif
831 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
832 /* private: */
833 __u8 __pkt_vlan_present_offset[0];
834 /* public: */
835 __u8 vlan_present:1;
836 __u8 csum_complete_sw:1;
837 __u8 csum_level:2;
838 __u8 csum_not_inet:1;
839 __u8 dst_pending_confirm:1;
840 #ifdef CONFIG_IPV6_NDISC_NODETYPE
841 __u8 ndisc_nodetype:2;
842 #endif
843
844 __u8 ipvs_property:1;
845 __u8 inner_protocol_type:1;
846 __u8 remcsum_offload:1;
847 #ifdef CONFIG_NET_SWITCHDEV
848 __u8 offload_fwd_mark:1;
849 __u8 offload_l3_fwd_mark:1;
850 #endif
851 #ifdef CONFIG_NET_CLS_ACT
852 __u8 tc_skip_classify:1;
853 __u8 tc_at_ingress:1;
854 #endif
855 #ifdef CONFIG_NET_REDIRECT
856 __u8 redirected:1;
857 __u8 from_ingress:1;
858 #endif
859 #ifdef CONFIG_TLS_DEVICE
860 __u8 decrypted:1;
861 #endif
862 __u8 scm_io_uring:1;
863
864 #ifdef CONFIG_NET_SCHED
865 __u16 tc_index; /* traffic control index */
866 #endif
867
868 union {
869 __wsum csum;
870 struct {
871 __u16 csum_start;
872 __u16 csum_offset;
873 };
874 };
875 __u32 priority;
876 int skb_iif;
877 __u32 hash;
878 __be16 vlan_proto;
879 __u16 vlan_tci;
880 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
881 union {
882 unsigned int napi_id;
883 unsigned int sender_cpu;
884 };
885 #endif
886 #ifdef CONFIG_NETWORK_SECMARK
887 __u32 secmark;
888 #endif
889
890 union {
891 __u32 mark;
892 __u32 reserved_tailroom;
893 };
894
895 union {
896 __be16 inner_protocol;
897 __u8 inner_ipproto;
898 };
899
900 __u16 inner_transport_header;
901 __u16 inner_network_header;
902 __u16 inner_mac_header;
903
904 __be16 protocol;
905 __u16 transport_header;
906 __u16 network_header;
907 __u16 mac_header;
908
909 /* private: */
910 __u32 headers_end[0];
911 /* public: */
912
913 /* These elements must be at the end, see alloc_skb() for details. */
914 sk_buff_data_t tail;
915 sk_buff_data_t end;
916 unsigned char *head,
917 *data;
918 unsigned int truesize;
919 refcount_t users;
920
921 #ifdef CONFIG_SKB_EXTENSIONS
922 /* only useable after checking ->active_extensions != 0 */
923 struct skb_ext *extensions;
924 #endif
925 };
926
927 #ifdef __KERNEL__
928 /*
929 * Handling routines are only of interest to the kernel
930 */
931
932 #define SKB_ALLOC_FCLONE 0x01
933 #define SKB_ALLOC_RX 0x02
934 #define SKB_ALLOC_NAPI 0x04
935
936 /**
937 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
938 * @skb: buffer
939 */
skb_pfmemalloc(const struct sk_buff * skb)940 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
941 {
942 return unlikely(skb->pfmemalloc);
943 }
944
945 /*
946 * skb might have a dst pointer attached, refcounted or not.
947 * _skb_refdst low order bit is set if refcount was _not_ taken
948 */
949 #define SKB_DST_NOREF 1UL
950 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
951
952 /**
953 * skb_dst - returns skb dst_entry
954 * @skb: buffer
955 *
956 * Returns skb dst_entry, regardless of reference taken or not.
957 */
skb_dst(const struct sk_buff * skb)958 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
959 {
960 /* If refdst was not refcounted, check we still are in a
961 * rcu_read_lock section
962 */
963 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
964 !rcu_read_lock_held() &&
965 !rcu_read_lock_bh_held());
966 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
967 }
968
969 /**
970 * skb_dst_set - sets skb dst
971 * @skb: buffer
972 * @dst: dst entry
973 *
974 * Sets skb dst, assuming a reference was taken on dst and should
975 * be released by skb_dst_drop()
976 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)977 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
978 {
979 skb->_skb_refdst = (unsigned long)dst;
980 }
981
982 /**
983 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
984 * @skb: buffer
985 * @dst: dst entry
986 *
987 * Sets skb dst, assuming a reference was not taken on dst.
988 * If dst entry is cached, we do not take reference and dst_release
989 * will be avoided by refdst_drop. If dst entry is not cached, we take
990 * reference, so that last dst_release can destroy the dst immediately.
991 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)992 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
993 {
994 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
995 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
996 }
997
998 /**
999 * skb_dst_is_noref - Test if skb dst isn't refcounted
1000 * @skb: buffer
1001 */
skb_dst_is_noref(const struct sk_buff * skb)1002 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1003 {
1004 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1005 }
1006
1007 /**
1008 * skb_rtable - Returns the skb &rtable
1009 * @skb: buffer
1010 */
skb_rtable(const struct sk_buff * skb)1011 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1012 {
1013 return (struct rtable *)skb_dst(skb);
1014 }
1015
1016 /* For mangling skb->pkt_type from user space side from applications
1017 * such as nft, tc, etc, we only allow a conservative subset of
1018 * possible pkt_types to be set.
1019 */
skb_pkt_type_ok(u32 ptype)1020 static inline bool skb_pkt_type_ok(u32 ptype)
1021 {
1022 return ptype <= PACKET_OTHERHOST;
1023 }
1024
1025 /**
1026 * skb_napi_id - Returns the skb's NAPI id
1027 * @skb: buffer
1028 */
skb_napi_id(const struct sk_buff * skb)1029 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1030 {
1031 #ifdef CONFIG_NET_RX_BUSY_POLL
1032 return skb->napi_id;
1033 #else
1034 return 0;
1035 #endif
1036 }
1037
1038 /**
1039 * skb_unref - decrement the skb's reference count
1040 * @skb: buffer
1041 *
1042 * Returns true if we can free the skb.
1043 */
skb_unref(struct sk_buff * skb)1044 static inline bool skb_unref(struct sk_buff *skb)
1045 {
1046 if (unlikely(!skb))
1047 return false;
1048 if (likely(refcount_read(&skb->users) == 1))
1049 smp_rmb();
1050 else if (likely(!refcount_dec_and_test(&skb->users)))
1051 return false;
1052
1053 return true;
1054 }
1055
1056 void skb_release_head_state(struct sk_buff *skb);
1057 void kfree_skb(struct sk_buff *skb);
1058 void kfree_skb_list(struct sk_buff *segs);
1059 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1060 void skb_tx_error(struct sk_buff *skb);
1061
1062 #ifdef CONFIG_TRACEPOINTS
1063 void consume_skb(struct sk_buff *skb);
1064 #else
consume_skb(struct sk_buff * skb)1065 static inline void consume_skb(struct sk_buff *skb)
1066 {
1067 return kfree_skb(skb);
1068 }
1069 #endif
1070
1071 void __consume_stateless_skb(struct sk_buff *skb);
1072 void __kfree_skb(struct sk_buff *skb);
1073 extern struct kmem_cache *skbuff_head_cache;
1074
1075 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1076 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1077 bool *fragstolen, int *delta_truesize);
1078
1079 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1080 int node);
1081 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1082 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1083 struct sk_buff *build_skb_around(struct sk_buff *skb,
1084 void *data, unsigned int frag_size);
1085
1086 /**
1087 * alloc_skb - allocate a network buffer
1088 * @size: size to allocate
1089 * @priority: allocation mask
1090 *
1091 * This function is a convenient wrapper around __alloc_skb().
1092 */
alloc_skb(unsigned int size,gfp_t priority)1093 static inline struct sk_buff *alloc_skb(unsigned int size,
1094 gfp_t priority)
1095 {
1096 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1097 }
1098
1099 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1100 unsigned long data_len,
1101 int max_page_order,
1102 int *errcode,
1103 gfp_t gfp_mask);
1104 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1105
1106 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1107 struct sk_buff_fclones {
1108 struct sk_buff skb1;
1109
1110 struct sk_buff skb2;
1111
1112 refcount_t fclone_ref;
1113 };
1114
1115 /**
1116 * skb_fclone_busy - check if fclone is busy
1117 * @sk: socket
1118 * @skb: buffer
1119 *
1120 * Returns true if skb is a fast clone, and its clone is not freed.
1121 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1122 * so we also check that this didnt happen.
1123 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1124 static inline bool skb_fclone_busy(const struct sock *sk,
1125 const struct sk_buff *skb)
1126 {
1127 const struct sk_buff_fclones *fclones;
1128
1129 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1130
1131 return skb->fclone == SKB_FCLONE_ORIG &&
1132 refcount_read(&fclones->fclone_ref) > 1 &&
1133 fclones->skb2.sk == sk;
1134 }
1135
1136 /**
1137 * alloc_skb_fclone - allocate a network buffer from fclone cache
1138 * @size: size to allocate
1139 * @priority: allocation mask
1140 *
1141 * This function is a convenient wrapper around __alloc_skb().
1142 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1143 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1144 gfp_t priority)
1145 {
1146 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1147 }
1148
1149 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1150 void skb_headers_offset_update(struct sk_buff *skb, int off);
1151 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1152 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1153 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1154 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1155 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1156 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1157 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1158 gfp_t gfp_mask)
1159 {
1160 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1161 }
1162
1163 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1164 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1165 unsigned int headroom);
1166 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1167 int newtailroom, gfp_t priority);
1168 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1169 int offset, int len);
1170 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1171 int offset, int len);
1172 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1173 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1174
1175 /**
1176 * skb_pad - zero pad the tail of an skb
1177 * @skb: buffer to pad
1178 * @pad: space to pad
1179 *
1180 * Ensure that a buffer is followed by a padding area that is zero
1181 * filled. Used by network drivers which may DMA or transfer data
1182 * beyond the buffer end onto the wire.
1183 *
1184 * May return error in out of memory cases. The skb is freed on error.
1185 */
skb_pad(struct sk_buff * skb,int pad)1186 static inline int skb_pad(struct sk_buff *skb, int pad)
1187 {
1188 return __skb_pad(skb, pad, true);
1189 }
1190 #define dev_kfree_skb(a) consume_skb(a)
1191
1192 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1193 int offset, size_t size);
1194
1195 struct skb_seq_state {
1196 __u32 lower_offset;
1197 __u32 upper_offset;
1198 __u32 frag_idx;
1199 __u32 stepped_offset;
1200 struct sk_buff *root_skb;
1201 struct sk_buff *cur_skb;
1202 __u8 *frag_data;
1203 };
1204
1205 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1206 unsigned int to, struct skb_seq_state *st);
1207 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1208 struct skb_seq_state *st);
1209 void skb_abort_seq_read(struct skb_seq_state *st);
1210
1211 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1212 unsigned int to, struct ts_config *config);
1213
1214 /*
1215 * Packet hash types specify the type of hash in skb_set_hash.
1216 *
1217 * Hash types refer to the protocol layer addresses which are used to
1218 * construct a packet's hash. The hashes are used to differentiate or identify
1219 * flows of the protocol layer for the hash type. Hash types are either
1220 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1221 *
1222 * Properties of hashes:
1223 *
1224 * 1) Two packets in different flows have different hash values
1225 * 2) Two packets in the same flow should have the same hash value
1226 *
1227 * A hash at a higher layer is considered to be more specific. A driver should
1228 * set the most specific hash possible.
1229 *
1230 * A driver cannot indicate a more specific hash than the layer at which a hash
1231 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1232 *
1233 * A driver may indicate a hash level which is less specific than the
1234 * actual layer the hash was computed on. For instance, a hash computed
1235 * at L4 may be considered an L3 hash. This should only be done if the
1236 * driver can't unambiguously determine that the HW computed the hash at
1237 * the higher layer. Note that the "should" in the second property above
1238 * permits this.
1239 */
1240 enum pkt_hash_types {
1241 PKT_HASH_TYPE_NONE, /* Undefined type */
1242 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1243 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1244 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1245 };
1246
skb_clear_hash(struct sk_buff * skb)1247 static inline void skb_clear_hash(struct sk_buff *skb)
1248 {
1249 skb->hash = 0;
1250 skb->sw_hash = 0;
1251 skb->l4_hash = 0;
1252 }
1253
skb_clear_hash_if_not_l4(struct sk_buff * skb)1254 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1255 {
1256 if (!skb->l4_hash)
1257 skb_clear_hash(skb);
1258 }
1259
1260 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1261 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1262 {
1263 skb->l4_hash = is_l4;
1264 skb->sw_hash = is_sw;
1265 skb->hash = hash;
1266 }
1267
1268 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1269 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1270 {
1271 /* Used by drivers to set hash from HW */
1272 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1273 }
1274
1275 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1276 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1277 {
1278 __skb_set_hash(skb, hash, true, is_l4);
1279 }
1280
1281 void __skb_get_hash(struct sk_buff *skb);
1282 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1283 u32 skb_get_poff(const struct sk_buff *skb);
1284 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1285 const struct flow_keys_basic *keys, int hlen);
1286 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1287 void *data, int hlen_proto);
1288
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1289 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1290 int thoff, u8 ip_proto)
1291 {
1292 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1293 }
1294
1295 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1296 const struct flow_dissector_key *key,
1297 unsigned int key_count);
1298
1299 struct bpf_flow_dissector;
1300 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1301 __be16 proto, int nhoff, int hlen, unsigned int flags);
1302
1303 bool __skb_flow_dissect(const struct net *net,
1304 const struct sk_buff *skb,
1305 struct flow_dissector *flow_dissector,
1306 void *target_container,
1307 void *data, __be16 proto, int nhoff, int hlen,
1308 unsigned int flags);
1309
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1310 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1311 struct flow_dissector *flow_dissector,
1312 void *target_container, unsigned int flags)
1313 {
1314 return __skb_flow_dissect(NULL, skb, flow_dissector,
1315 target_container, NULL, 0, 0, 0, flags);
1316 }
1317
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1318 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1319 struct flow_keys *flow,
1320 unsigned int flags)
1321 {
1322 memset(flow, 0, sizeof(*flow));
1323 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1324 flow, NULL, 0, 0, 0, flags);
1325 }
1326
1327 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1328 skb_flow_dissect_flow_keys_basic(const struct net *net,
1329 const struct sk_buff *skb,
1330 struct flow_keys_basic *flow, void *data,
1331 __be16 proto, int nhoff, int hlen,
1332 unsigned int flags)
1333 {
1334 memset(flow, 0, sizeof(*flow));
1335 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1336 data, proto, nhoff, hlen, flags);
1337 }
1338
1339 void skb_flow_dissect_meta(const struct sk_buff *skb,
1340 struct flow_dissector *flow_dissector,
1341 void *target_container);
1342
1343 /* Gets a skb connection tracking info, ctinfo map should be a
1344 * map of mapsize to translate enum ip_conntrack_info states
1345 * to user states.
1346 */
1347 void
1348 skb_flow_dissect_ct(const struct sk_buff *skb,
1349 struct flow_dissector *flow_dissector,
1350 void *target_container,
1351 u16 *ctinfo_map,
1352 size_t mapsize);
1353 void
1354 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1355 struct flow_dissector *flow_dissector,
1356 void *target_container);
1357
1358 void skb_flow_dissect_hash(const struct sk_buff *skb,
1359 struct flow_dissector *flow_dissector,
1360 void *target_container);
1361
skb_get_hash(struct sk_buff * skb)1362 static inline __u32 skb_get_hash(struct sk_buff *skb)
1363 {
1364 if (!skb->l4_hash && !skb->sw_hash)
1365 __skb_get_hash(skb);
1366
1367 return skb->hash;
1368 }
1369
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1370 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1371 {
1372 if (!skb->l4_hash && !skb->sw_hash) {
1373 struct flow_keys keys;
1374 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1375
1376 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1377 }
1378
1379 return skb->hash;
1380 }
1381
1382 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1383 const siphash_key_t *perturb);
1384
skb_get_hash_raw(const struct sk_buff * skb)1385 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1386 {
1387 return skb->hash;
1388 }
1389
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1390 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1391 {
1392 to->hash = from->hash;
1393 to->sw_hash = from->sw_hash;
1394 to->l4_hash = from->l4_hash;
1395 };
1396
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1397 static inline void skb_copy_decrypted(struct sk_buff *to,
1398 const struct sk_buff *from)
1399 {
1400 #ifdef CONFIG_TLS_DEVICE
1401 to->decrypted = from->decrypted;
1402 #endif
1403 }
1404
1405 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1406 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1407 {
1408 return skb->head + skb->end;
1409 }
1410
skb_end_offset(const struct sk_buff * skb)1411 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1412 {
1413 return skb->end;
1414 }
1415 #else
skb_end_pointer(const struct sk_buff * skb)1416 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1417 {
1418 return skb->end;
1419 }
1420
skb_end_offset(const struct sk_buff * skb)1421 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1422 {
1423 return skb->end - skb->head;
1424 }
1425 #endif
1426
1427 /* Internal */
1428 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1429
skb_hwtstamps(struct sk_buff * skb)1430 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1431 {
1432 return &skb_shinfo(skb)->hwtstamps;
1433 }
1434
skb_zcopy(struct sk_buff * skb)1435 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1436 {
1437 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1438
1439 return is_zcopy ? skb_uarg(skb) : NULL;
1440 }
1441
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1442 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1443 bool *have_ref)
1444 {
1445 if (skb && uarg && !skb_zcopy(skb)) {
1446 if (unlikely(have_ref && *have_ref))
1447 *have_ref = false;
1448 else
1449 sock_zerocopy_get(uarg);
1450 skb_shinfo(skb)->destructor_arg = uarg;
1451 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1452 }
1453 }
1454
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1455 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1456 {
1457 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1458 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1459 }
1460
skb_zcopy_is_nouarg(struct sk_buff * skb)1461 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1462 {
1463 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1464 }
1465
skb_zcopy_get_nouarg(struct sk_buff * skb)1466 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1467 {
1468 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1469 }
1470
1471 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1472 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1473 {
1474 struct ubuf_info *uarg = skb_zcopy(skb);
1475
1476 if (uarg) {
1477 if (skb_zcopy_is_nouarg(skb)) {
1478 /* no notification callback */
1479 } else if (uarg->callback == sock_zerocopy_callback) {
1480 uarg->zerocopy = uarg->zerocopy && zerocopy;
1481 sock_zerocopy_put(uarg);
1482 } else {
1483 uarg->callback(uarg, zerocopy);
1484 }
1485
1486 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1487 }
1488 }
1489
1490 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1491 static inline void skb_zcopy_abort(struct sk_buff *skb)
1492 {
1493 struct ubuf_info *uarg = skb_zcopy(skb);
1494
1495 if (uarg) {
1496 sock_zerocopy_put_abort(uarg, false);
1497 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1498 }
1499 }
1500
skb_mark_not_on_list(struct sk_buff * skb)1501 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1502 {
1503 skb->next = NULL;
1504 }
1505
1506 /* Iterate through singly-linked GSO fragments of an skb. */
1507 #define skb_list_walk_safe(first, skb, next_skb) \
1508 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1509 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1510
skb_list_del_init(struct sk_buff * skb)1511 static inline void skb_list_del_init(struct sk_buff *skb)
1512 {
1513 __list_del_entry(&skb->list);
1514 skb_mark_not_on_list(skb);
1515 }
1516
1517 /**
1518 * skb_queue_empty - check if a queue is empty
1519 * @list: queue head
1520 *
1521 * Returns true if the queue is empty, false otherwise.
1522 */
skb_queue_empty(const struct sk_buff_head * list)1523 static inline int skb_queue_empty(const struct sk_buff_head *list)
1524 {
1525 return list->next == (const struct sk_buff *) list;
1526 }
1527
1528 /**
1529 * skb_queue_empty_lockless - check if a queue is empty
1530 * @list: queue head
1531 *
1532 * Returns true if the queue is empty, false otherwise.
1533 * This variant can be used in lockless contexts.
1534 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1535 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1536 {
1537 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1538 }
1539
1540
1541 /**
1542 * skb_queue_is_last - check if skb is the last entry in the queue
1543 * @list: queue head
1544 * @skb: buffer
1545 *
1546 * Returns true if @skb is the last buffer on the list.
1547 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1548 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1549 const struct sk_buff *skb)
1550 {
1551 return skb->next == (const struct sk_buff *) list;
1552 }
1553
1554 /**
1555 * skb_queue_is_first - check if skb is the first entry in the queue
1556 * @list: queue head
1557 * @skb: buffer
1558 *
1559 * Returns true if @skb is the first buffer on the list.
1560 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1561 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1562 const struct sk_buff *skb)
1563 {
1564 return skb->prev == (const struct sk_buff *) list;
1565 }
1566
1567 /**
1568 * skb_queue_next - return the next packet in the queue
1569 * @list: queue head
1570 * @skb: current buffer
1571 *
1572 * Return the next packet in @list after @skb. It is only valid to
1573 * call this if skb_queue_is_last() evaluates to false.
1574 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1575 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1576 const struct sk_buff *skb)
1577 {
1578 /* This BUG_ON may seem severe, but if we just return then we
1579 * are going to dereference garbage.
1580 */
1581 BUG_ON(skb_queue_is_last(list, skb));
1582 return skb->next;
1583 }
1584
1585 /**
1586 * skb_queue_prev - return the prev packet in the queue
1587 * @list: queue head
1588 * @skb: current buffer
1589 *
1590 * Return the prev packet in @list before @skb. It is only valid to
1591 * call this if skb_queue_is_first() evaluates to false.
1592 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1593 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1594 const struct sk_buff *skb)
1595 {
1596 /* This BUG_ON may seem severe, but if we just return then we
1597 * are going to dereference garbage.
1598 */
1599 BUG_ON(skb_queue_is_first(list, skb));
1600 return skb->prev;
1601 }
1602
1603 /**
1604 * skb_get - reference buffer
1605 * @skb: buffer to reference
1606 *
1607 * Makes another reference to a socket buffer and returns a pointer
1608 * to the buffer.
1609 */
skb_get(struct sk_buff * skb)1610 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1611 {
1612 refcount_inc(&skb->users);
1613 return skb;
1614 }
1615
1616 /*
1617 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1618 */
1619
1620 /**
1621 * skb_cloned - is the buffer a clone
1622 * @skb: buffer to check
1623 *
1624 * Returns true if the buffer was generated with skb_clone() and is
1625 * one of multiple shared copies of the buffer. Cloned buffers are
1626 * shared data so must not be written to under normal circumstances.
1627 */
skb_cloned(const struct sk_buff * skb)1628 static inline int skb_cloned(const struct sk_buff *skb)
1629 {
1630 return skb->cloned &&
1631 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1632 }
1633
skb_unclone(struct sk_buff * skb,gfp_t pri)1634 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1635 {
1636 might_sleep_if(gfpflags_allow_blocking(pri));
1637
1638 if (skb_cloned(skb))
1639 return pskb_expand_head(skb, 0, 0, pri);
1640
1641 return 0;
1642 }
1643
1644 /**
1645 * skb_header_cloned - is the header a clone
1646 * @skb: buffer to check
1647 *
1648 * Returns true if modifying the header part of the buffer requires
1649 * the data to be copied.
1650 */
skb_header_cloned(const struct sk_buff * skb)1651 static inline int skb_header_cloned(const struct sk_buff *skb)
1652 {
1653 int dataref;
1654
1655 if (!skb->cloned)
1656 return 0;
1657
1658 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1659 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1660 return dataref != 1;
1661 }
1662
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1663 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1664 {
1665 might_sleep_if(gfpflags_allow_blocking(pri));
1666
1667 if (skb_header_cloned(skb))
1668 return pskb_expand_head(skb, 0, 0, pri);
1669
1670 return 0;
1671 }
1672
1673 /**
1674 * __skb_header_release - release reference to header
1675 * @skb: buffer to operate on
1676 */
__skb_header_release(struct sk_buff * skb)1677 static inline void __skb_header_release(struct sk_buff *skb)
1678 {
1679 skb->nohdr = 1;
1680 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1681 }
1682
1683
1684 /**
1685 * skb_shared - is the buffer shared
1686 * @skb: buffer to check
1687 *
1688 * Returns true if more than one person has a reference to this
1689 * buffer.
1690 */
skb_shared(const struct sk_buff * skb)1691 static inline int skb_shared(const struct sk_buff *skb)
1692 {
1693 return refcount_read(&skb->users) != 1;
1694 }
1695
1696 /**
1697 * skb_share_check - check if buffer is shared and if so clone it
1698 * @skb: buffer to check
1699 * @pri: priority for memory allocation
1700 *
1701 * If the buffer is shared the buffer is cloned and the old copy
1702 * drops a reference. A new clone with a single reference is returned.
1703 * If the buffer is not shared the original buffer is returned. When
1704 * being called from interrupt status or with spinlocks held pri must
1705 * be GFP_ATOMIC.
1706 *
1707 * NULL is returned on a memory allocation failure.
1708 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1709 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1710 {
1711 might_sleep_if(gfpflags_allow_blocking(pri));
1712 if (skb_shared(skb)) {
1713 struct sk_buff *nskb = skb_clone(skb, pri);
1714
1715 if (likely(nskb))
1716 consume_skb(skb);
1717 else
1718 kfree_skb(skb);
1719 skb = nskb;
1720 }
1721 return skb;
1722 }
1723
1724 /*
1725 * Copy shared buffers into a new sk_buff. We effectively do COW on
1726 * packets to handle cases where we have a local reader and forward
1727 * and a couple of other messy ones. The normal one is tcpdumping
1728 * a packet thats being forwarded.
1729 */
1730
1731 /**
1732 * skb_unshare - make a copy of a shared buffer
1733 * @skb: buffer to check
1734 * @pri: priority for memory allocation
1735 *
1736 * If the socket buffer is a clone then this function creates a new
1737 * copy of the data, drops a reference count on the old copy and returns
1738 * the new copy with the reference count at 1. If the buffer is not a clone
1739 * the original buffer is returned. When called with a spinlock held or
1740 * from interrupt state @pri must be %GFP_ATOMIC
1741 *
1742 * %NULL is returned on a memory allocation failure.
1743 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1744 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1745 gfp_t pri)
1746 {
1747 might_sleep_if(gfpflags_allow_blocking(pri));
1748 if (skb_cloned(skb)) {
1749 struct sk_buff *nskb = skb_copy(skb, pri);
1750
1751 /* Free our shared copy */
1752 if (likely(nskb))
1753 consume_skb(skb);
1754 else
1755 kfree_skb(skb);
1756 skb = nskb;
1757 }
1758 return skb;
1759 }
1760
1761 /**
1762 * skb_peek - peek at the head of an &sk_buff_head
1763 * @list_: list to peek at
1764 *
1765 * Peek an &sk_buff. Unlike most other operations you _MUST_
1766 * be careful with this one. A peek leaves the buffer on the
1767 * list and someone else may run off with it. You must hold
1768 * the appropriate locks or have a private queue to do this.
1769 *
1770 * Returns %NULL for an empty list or a pointer to the head element.
1771 * The reference count is not incremented and the reference is therefore
1772 * volatile. Use with caution.
1773 */
skb_peek(const struct sk_buff_head * list_)1774 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1775 {
1776 struct sk_buff *skb = list_->next;
1777
1778 if (skb == (struct sk_buff *)list_)
1779 skb = NULL;
1780 return skb;
1781 }
1782
1783 /**
1784 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1785 * @list_: list to peek at
1786 *
1787 * Like skb_peek(), but the caller knows that the list is not empty.
1788 */
__skb_peek(const struct sk_buff_head * list_)1789 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1790 {
1791 return list_->next;
1792 }
1793
1794 /**
1795 * skb_peek_next - peek skb following the given one from a queue
1796 * @skb: skb to start from
1797 * @list_: list to peek at
1798 *
1799 * Returns %NULL when the end of the list is met or a pointer to the
1800 * next element. The reference count is not incremented and the
1801 * reference is therefore volatile. Use with caution.
1802 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1803 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1804 const struct sk_buff_head *list_)
1805 {
1806 struct sk_buff *next = skb->next;
1807
1808 if (next == (struct sk_buff *)list_)
1809 next = NULL;
1810 return next;
1811 }
1812
1813 /**
1814 * skb_peek_tail - peek at the tail of an &sk_buff_head
1815 * @list_: list to peek at
1816 *
1817 * Peek an &sk_buff. Unlike most other operations you _MUST_
1818 * be careful with this one. A peek leaves the buffer on the
1819 * list and someone else may run off with it. You must hold
1820 * the appropriate locks or have a private queue to do this.
1821 *
1822 * Returns %NULL for an empty list or a pointer to the tail element.
1823 * The reference count is not incremented and the reference is therefore
1824 * volatile. Use with caution.
1825 */
skb_peek_tail(const struct sk_buff_head * list_)1826 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1827 {
1828 struct sk_buff *skb = READ_ONCE(list_->prev);
1829
1830 if (skb == (struct sk_buff *)list_)
1831 skb = NULL;
1832 return skb;
1833
1834 }
1835
1836 /**
1837 * skb_queue_len - get queue length
1838 * @list_: list to measure
1839 *
1840 * Return the length of an &sk_buff queue.
1841 */
skb_queue_len(const struct sk_buff_head * list_)1842 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1843 {
1844 return list_->qlen;
1845 }
1846
1847 /**
1848 * skb_queue_len_lockless - get queue length
1849 * @list_: list to measure
1850 *
1851 * Return the length of an &sk_buff queue.
1852 * This variant can be used in lockless contexts.
1853 */
skb_queue_len_lockless(const struct sk_buff_head * list_)1854 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1855 {
1856 return READ_ONCE(list_->qlen);
1857 }
1858
1859 /**
1860 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1861 * @list: queue to initialize
1862 *
1863 * This initializes only the list and queue length aspects of
1864 * an sk_buff_head object. This allows to initialize the list
1865 * aspects of an sk_buff_head without reinitializing things like
1866 * the spinlock. It can also be used for on-stack sk_buff_head
1867 * objects where the spinlock is known to not be used.
1868 */
__skb_queue_head_init(struct sk_buff_head * list)1869 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1870 {
1871 list->prev = list->next = (struct sk_buff *)list;
1872 list->qlen = 0;
1873 }
1874
1875 /*
1876 * This function creates a split out lock class for each invocation;
1877 * this is needed for now since a whole lot of users of the skb-queue
1878 * infrastructure in drivers have different locking usage (in hardirq)
1879 * than the networking core (in softirq only). In the long run either the
1880 * network layer or drivers should need annotation to consolidate the
1881 * main types of usage into 3 classes.
1882 */
skb_queue_head_init(struct sk_buff_head * list)1883 static inline void skb_queue_head_init(struct sk_buff_head *list)
1884 {
1885 spin_lock_init(&list->lock);
1886 __skb_queue_head_init(list);
1887 }
1888
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1889 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1890 struct lock_class_key *class)
1891 {
1892 skb_queue_head_init(list);
1893 lockdep_set_class(&list->lock, class);
1894 }
1895
1896 /*
1897 * Insert an sk_buff on a list.
1898 *
1899 * The "__skb_xxxx()" functions are the non-atomic ones that
1900 * can only be called with interrupts disabled.
1901 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1902 static inline void __skb_insert(struct sk_buff *newsk,
1903 struct sk_buff *prev, struct sk_buff *next,
1904 struct sk_buff_head *list)
1905 {
1906 /* See skb_queue_empty_lockless() and skb_peek_tail()
1907 * for the opposite READ_ONCE()
1908 */
1909 WRITE_ONCE(newsk->next, next);
1910 WRITE_ONCE(newsk->prev, prev);
1911 WRITE_ONCE(next->prev, newsk);
1912 WRITE_ONCE(prev->next, newsk);
1913 WRITE_ONCE(list->qlen, list->qlen + 1);
1914 }
1915
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1916 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1917 struct sk_buff *prev,
1918 struct sk_buff *next)
1919 {
1920 struct sk_buff *first = list->next;
1921 struct sk_buff *last = list->prev;
1922
1923 WRITE_ONCE(first->prev, prev);
1924 WRITE_ONCE(prev->next, first);
1925
1926 WRITE_ONCE(last->next, next);
1927 WRITE_ONCE(next->prev, last);
1928 }
1929
1930 /**
1931 * skb_queue_splice - join two skb lists, this is designed for stacks
1932 * @list: the new list to add
1933 * @head: the place to add it in the first list
1934 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1935 static inline void skb_queue_splice(const struct sk_buff_head *list,
1936 struct sk_buff_head *head)
1937 {
1938 if (!skb_queue_empty(list)) {
1939 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1940 head->qlen += list->qlen;
1941 }
1942 }
1943
1944 /**
1945 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1946 * @list: the new list to add
1947 * @head: the place to add it in the first list
1948 *
1949 * The list at @list is reinitialised
1950 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1951 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1952 struct sk_buff_head *head)
1953 {
1954 if (!skb_queue_empty(list)) {
1955 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1956 head->qlen += list->qlen;
1957 __skb_queue_head_init(list);
1958 }
1959 }
1960
1961 /**
1962 * skb_queue_splice_tail - join two skb lists, each list being a queue
1963 * @list: the new list to add
1964 * @head: the place to add it in the first list
1965 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1966 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1967 struct sk_buff_head *head)
1968 {
1969 if (!skb_queue_empty(list)) {
1970 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1971 head->qlen += list->qlen;
1972 }
1973 }
1974
1975 /**
1976 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1977 * @list: the new list to add
1978 * @head: the place to add it in the first list
1979 *
1980 * Each of the lists is a queue.
1981 * The list at @list is reinitialised
1982 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1983 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1984 struct sk_buff_head *head)
1985 {
1986 if (!skb_queue_empty(list)) {
1987 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1988 head->qlen += list->qlen;
1989 __skb_queue_head_init(list);
1990 }
1991 }
1992
1993 /**
1994 * __skb_queue_after - queue a buffer at the list head
1995 * @list: list to use
1996 * @prev: place after this buffer
1997 * @newsk: buffer to queue
1998 *
1999 * Queue a buffer int the middle of a list. This function takes no locks
2000 * and you must therefore hold required locks before calling it.
2001 *
2002 * A buffer cannot be placed on two lists at the same time.
2003 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2004 static inline void __skb_queue_after(struct sk_buff_head *list,
2005 struct sk_buff *prev,
2006 struct sk_buff *newsk)
2007 {
2008 __skb_insert(newsk, prev, prev->next, list);
2009 }
2010
2011 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2012 struct sk_buff_head *list);
2013
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2014 static inline void __skb_queue_before(struct sk_buff_head *list,
2015 struct sk_buff *next,
2016 struct sk_buff *newsk)
2017 {
2018 __skb_insert(newsk, next->prev, next, list);
2019 }
2020
2021 /**
2022 * __skb_queue_head - queue a buffer at the list head
2023 * @list: list to use
2024 * @newsk: buffer to queue
2025 *
2026 * Queue a buffer at the start of a list. This function takes no locks
2027 * and you must therefore hold required locks before calling it.
2028 *
2029 * A buffer cannot be placed on two lists at the same time.
2030 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2031 static inline void __skb_queue_head(struct sk_buff_head *list,
2032 struct sk_buff *newsk)
2033 {
2034 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2035 }
2036 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2037
2038 /**
2039 * __skb_queue_tail - queue a buffer at the list tail
2040 * @list: list to use
2041 * @newsk: buffer to queue
2042 *
2043 * Queue a buffer at the end of a list. This function takes no locks
2044 * and you must therefore hold required locks before calling it.
2045 *
2046 * A buffer cannot be placed on two lists at the same time.
2047 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2048 static inline void __skb_queue_tail(struct sk_buff_head *list,
2049 struct sk_buff *newsk)
2050 {
2051 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2052 }
2053 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2054
2055 /*
2056 * remove sk_buff from list. _Must_ be called atomically, and with
2057 * the list known..
2058 */
2059 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2060 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2061 {
2062 struct sk_buff *next, *prev;
2063
2064 WRITE_ONCE(list->qlen, list->qlen - 1);
2065 next = skb->next;
2066 prev = skb->prev;
2067 skb->next = skb->prev = NULL;
2068 WRITE_ONCE(next->prev, prev);
2069 WRITE_ONCE(prev->next, next);
2070 }
2071
2072 /**
2073 * __skb_dequeue - remove from the head of the queue
2074 * @list: list to dequeue from
2075 *
2076 * Remove the head of the list. This function does not take any locks
2077 * so must be used with appropriate locks held only. The head item is
2078 * returned or %NULL if the list is empty.
2079 */
__skb_dequeue(struct sk_buff_head * list)2080 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2081 {
2082 struct sk_buff *skb = skb_peek(list);
2083 if (skb)
2084 __skb_unlink(skb, list);
2085 return skb;
2086 }
2087 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2088
2089 /**
2090 * __skb_dequeue_tail - remove from the tail of the queue
2091 * @list: list to dequeue from
2092 *
2093 * Remove the tail of the list. This function does not take any locks
2094 * so must be used with appropriate locks held only. The tail item is
2095 * returned or %NULL if the list is empty.
2096 */
__skb_dequeue_tail(struct sk_buff_head * list)2097 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2098 {
2099 struct sk_buff *skb = skb_peek_tail(list);
2100 if (skb)
2101 __skb_unlink(skb, list);
2102 return skb;
2103 }
2104 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2105
2106
skb_is_nonlinear(const struct sk_buff * skb)2107 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2108 {
2109 return skb->data_len;
2110 }
2111
skb_headlen(const struct sk_buff * skb)2112 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2113 {
2114 return skb->len - skb->data_len;
2115 }
2116
__skb_pagelen(const struct sk_buff * skb)2117 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2118 {
2119 unsigned int i, len = 0;
2120
2121 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2122 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2123 return len;
2124 }
2125
skb_pagelen(const struct sk_buff * skb)2126 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2127 {
2128 return skb_headlen(skb) + __skb_pagelen(skb);
2129 }
2130
2131 /**
2132 * __skb_fill_page_desc - initialise a paged fragment in an skb
2133 * @skb: buffer containing fragment to be initialised
2134 * @i: paged fragment index to initialise
2135 * @page: the page to use for this fragment
2136 * @off: the offset to the data with @page
2137 * @size: the length of the data
2138 *
2139 * Initialises the @i'th fragment of @skb to point to &size bytes at
2140 * offset @off within @page.
2141 *
2142 * Does not take any additional reference on the fragment.
2143 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2144 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2145 struct page *page, int off, int size)
2146 {
2147 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2148
2149 /*
2150 * Propagate page pfmemalloc to the skb if we can. The problem is
2151 * that not all callers have unique ownership of the page but rely
2152 * on page_is_pfmemalloc doing the right thing(tm).
2153 */
2154 frag->bv_page = page;
2155 frag->bv_offset = off;
2156 skb_frag_size_set(frag, size);
2157
2158 page = compound_head(page);
2159 if (page_is_pfmemalloc(page))
2160 skb->pfmemalloc = true;
2161 }
2162
2163 /**
2164 * skb_fill_page_desc - initialise a paged fragment in an skb
2165 * @skb: buffer containing fragment to be initialised
2166 * @i: paged fragment index to initialise
2167 * @page: the page to use for this fragment
2168 * @off: the offset to the data with @page
2169 * @size: the length of the data
2170 *
2171 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2172 * @skb to point to @size bytes at offset @off within @page. In
2173 * addition updates @skb such that @i is the last fragment.
2174 *
2175 * Does not take any additional reference on the fragment.
2176 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2177 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2178 struct page *page, int off, int size)
2179 {
2180 __skb_fill_page_desc(skb, i, page, off, size);
2181 skb_shinfo(skb)->nr_frags = i + 1;
2182 }
2183
2184 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2185 int size, unsigned int truesize);
2186
2187 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2188 unsigned int truesize);
2189
2190 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2191
2192 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2193 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2194 {
2195 return skb->head + skb->tail;
2196 }
2197
skb_reset_tail_pointer(struct sk_buff * skb)2198 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2199 {
2200 skb->tail = skb->data - skb->head;
2201 }
2202
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2203 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2204 {
2205 skb_reset_tail_pointer(skb);
2206 skb->tail += offset;
2207 }
2208
2209 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2210 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2211 {
2212 return skb->tail;
2213 }
2214
skb_reset_tail_pointer(struct sk_buff * skb)2215 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2216 {
2217 skb->tail = skb->data;
2218 }
2219
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2220 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2221 {
2222 skb->tail = skb->data + offset;
2223 }
2224
2225 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2226
2227 /*
2228 * Add data to an sk_buff
2229 */
2230 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2231 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2232 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2233 {
2234 void *tmp = skb_tail_pointer(skb);
2235 SKB_LINEAR_ASSERT(skb);
2236 skb->tail += len;
2237 skb->len += len;
2238 return tmp;
2239 }
2240
__skb_put_zero(struct sk_buff * skb,unsigned int len)2241 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2242 {
2243 void *tmp = __skb_put(skb, len);
2244
2245 memset(tmp, 0, len);
2246 return tmp;
2247 }
2248
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2249 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2250 unsigned int len)
2251 {
2252 void *tmp = __skb_put(skb, len);
2253
2254 memcpy(tmp, data, len);
2255 return tmp;
2256 }
2257
__skb_put_u8(struct sk_buff * skb,u8 val)2258 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2259 {
2260 *(u8 *)__skb_put(skb, 1) = val;
2261 }
2262
skb_put_zero(struct sk_buff * skb,unsigned int len)2263 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2264 {
2265 void *tmp = skb_put(skb, len);
2266
2267 memset(tmp, 0, len);
2268
2269 return tmp;
2270 }
2271
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2272 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2273 unsigned int len)
2274 {
2275 void *tmp = skb_put(skb, len);
2276
2277 memcpy(tmp, data, len);
2278
2279 return tmp;
2280 }
2281
skb_put_u8(struct sk_buff * skb,u8 val)2282 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2283 {
2284 *(u8 *)skb_put(skb, 1) = val;
2285 }
2286
2287 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2288 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2289 {
2290 skb->data -= len;
2291 skb->len += len;
2292 return skb->data;
2293 }
2294
2295 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2296 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2297 {
2298 skb->len -= len;
2299 BUG_ON(skb->len < skb->data_len);
2300 return skb->data += len;
2301 }
2302
skb_pull_inline(struct sk_buff * skb,unsigned int len)2303 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2304 {
2305 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2306 }
2307
2308 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2309
__pskb_pull(struct sk_buff * skb,unsigned int len)2310 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2311 {
2312 if (len > skb_headlen(skb) &&
2313 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2314 return NULL;
2315 skb->len -= len;
2316 return skb->data += len;
2317 }
2318
pskb_pull(struct sk_buff * skb,unsigned int len)2319 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2320 {
2321 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2322 }
2323
pskb_may_pull(struct sk_buff * skb,unsigned int len)2324 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2325 {
2326 if (likely(len <= skb_headlen(skb)))
2327 return true;
2328 if (unlikely(len > skb->len))
2329 return false;
2330 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2331 }
2332
2333 void skb_condense(struct sk_buff *skb);
2334
2335 /**
2336 * skb_headroom - bytes at buffer head
2337 * @skb: buffer to check
2338 *
2339 * Return the number of bytes of free space at the head of an &sk_buff.
2340 */
skb_headroom(const struct sk_buff * skb)2341 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2342 {
2343 return skb->data - skb->head;
2344 }
2345
2346 /**
2347 * skb_tailroom - bytes at buffer end
2348 * @skb: buffer to check
2349 *
2350 * Return the number of bytes of free space at the tail of an sk_buff
2351 */
skb_tailroom(const struct sk_buff * skb)2352 static inline int skb_tailroom(const struct sk_buff *skb)
2353 {
2354 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2355 }
2356
2357 /**
2358 * skb_availroom - bytes at buffer end
2359 * @skb: buffer to check
2360 *
2361 * Return the number of bytes of free space at the tail of an sk_buff
2362 * allocated by sk_stream_alloc()
2363 */
skb_availroom(const struct sk_buff * skb)2364 static inline int skb_availroom(const struct sk_buff *skb)
2365 {
2366 if (skb_is_nonlinear(skb))
2367 return 0;
2368
2369 return skb->end - skb->tail - skb->reserved_tailroom;
2370 }
2371
2372 /**
2373 * skb_reserve - adjust headroom
2374 * @skb: buffer to alter
2375 * @len: bytes to move
2376 *
2377 * Increase the headroom of an empty &sk_buff by reducing the tail
2378 * room. This is only allowed for an empty buffer.
2379 */
skb_reserve(struct sk_buff * skb,int len)2380 static inline void skb_reserve(struct sk_buff *skb, int len)
2381 {
2382 skb->data += len;
2383 skb->tail += len;
2384 }
2385
2386 /**
2387 * skb_tailroom_reserve - adjust reserved_tailroom
2388 * @skb: buffer to alter
2389 * @mtu: maximum amount of headlen permitted
2390 * @needed_tailroom: minimum amount of reserved_tailroom
2391 *
2392 * Set reserved_tailroom so that headlen can be as large as possible but
2393 * not larger than mtu and tailroom cannot be smaller than
2394 * needed_tailroom.
2395 * The required headroom should already have been reserved before using
2396 * this function.
2397 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2398 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2399 unsigned int needed_tailroom)
2400 {
2401 SKB_LINEAR_ASSERT(skb);
2402 if (mtu < skb_tailroom(skb) - needed_tailroom)
2403 /* use at most mtu */
2404 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2405 else
2406 /* use up to all available space */
2407 skb->reserved_tailroom = needed_tailroom;
2408 }
2409
2410 #define ENCAP_TYPE_ETHER 0
2411 #define ENCAP_TYPE_IPPROTO 1
2412
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2413 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2414 __be16 protocol)
2415 {
2416 skb->inner_protocol = protocol;
2417 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2418 }
2419
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2420 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2421 __u8 ipproto)
2422 {
2423 skb->inner_ipproto = ipproto;
2424 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2425 }
2426
skb_reset_inner_headers(struct sk_buff * skb)2427 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2428 {
2429 skb->inner_mac_header = skb->mac_header;
2430 skb->inner_network_header = skb->network_header;
2431 skb->inner_transport_header = skb->transport_header;
2432 }
2433
skb_reset_mac_len(struct sk_buff * skb)2434 static inline void skb_reset_mac_len(struct sk_buff *skb)
2435 {
2436 skb->mac_len = skb->network_header - skb->mac_header;
2437 }
2438
skb_inner_transport_header(const struct sk_buff * skb)2439 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2440 *skb)
2441 {
2442 return skb->head + skb->inner_transport_header;
2443 }
2444
skb_inner_transport_offset(const struct sk_buff * skb)2445 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2446 {
2447 return skb_inner_transport_header(skb) - skb->data;
2448 }
2449
skb_reset_inner_transport_header(struct sk_buff * skb)2450 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2451 {
2452 skb->inner_transport_header = skb->data - skb->head;
2453 }
2454
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2455 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2456 const int offset)
2457 {
2458 skb_reset_inner_transport_header(skb);
2459 skb->inner_transport_header += offset;
2460 }
2461
skb_inner_network_header(const struct sk_buff * skb)2462 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2463 {
2464 return skb->head + skb->inner_network_header;
2465 }
2466
skb_reset_inner_network_header(struct sk_buff * skb)2467 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2468 {
2469 skb->inner_network_header = skb->data - skb->head;
2470 }
2471
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2472 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2473 const int offset)
2474 {
2475 skb_reset_inner_network_header(skb);
2476 skb->inner_network_header += offset;
2477 }
2478
skb_inner_mac_header(const struct sk_buff * skb)2479 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2480 {
2481 return skb->head + skb->inner_mac_header;
2482 }
2483
skb_reset_inner_mac_header(struct sk_buff * skb)2484 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2485 {
2486 skb->inner_mac_header = skb->data - skb->head;
2487 }
2488
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2489 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2490 const int offset)
2491 {
2492 skb_reset_inner_mac_header(skb);
2493 skb->inner_mac_header += offset;
2494 }
skb_transport_header_was_set(const struct sk_buff * skb)2495 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2496 {
2497 return skb->transport_header != (typeof(skb->transport_header))~0U;
2498 }
2499
skb_transport_header(const struct sk_buff * skb)2500 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2501 {
2502 return skb->head + skb->transport_header;
2503 }
2504
skb_reset_transport_header(struct sk_buff * skb)2505 static inline void skb_reset_transport_header(struct sk_buff *skb)
2506 {
2507 skb->transport_header = skb->data - skb->head;
2508 }
2509
skb_set_transport_header(struct sk_buff * skb,const int offset)2510 static inline void skb_set_transport_header(struct sk_buff *skb,
2511 const int offset)
2512 {
2513 skb_reset_transport_header(skb);
2514 skb->transport_header += offset;
2515 }
2516
skb_network_header(const struct sk_buff * skb)2517 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2518 {
2519 return skb->head + skb->network_header;
2520 }
2521
skb_reset_network_header(struct sk_buff * skb)2522 static inline void skb_reset_network_header(struct sk_buff *skb)
2523 {
2524 skb->network_header = skb->data - skb->head;
2525 }
2526
skb_set_network_header(struct sk_buff * skb,const int offset)2527 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2528 {
2529 skb_reset_network_header(skb);
2530 skb->network_header += offset;
2531 }
2532
skb_mac_header(const struct sk_buff * skb)2533 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2534 {
2535 return skb->head + skb->mac_header;
2536 }
2537
skb_mac_offset(const struct sk_buff * skb)2538 static inline int skb_mac_offset(const struct sk_buff *skb)
2539 {
2540 return skb_mac_header(skb) - skb->data;
2541 }
2542
skb_mac_header_len(const struct sk_buff * skb)2543 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2544 {
2545 return skb->network_header - skb->mac_header;
2546 }
2547
skb_mac_header_was_set(const struct sk_buff * skb)2548 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2549 {
2550 return skb->mac_header != (typeof(skb->mac_header))~0U;
2551 }
2552
skb_unset_mac_header(struct sk_buff * skb)2553 static inline void skb_unset_mac_header(struct sk_buff *skb)
2554 {
2555 skb->mac_header = (typeof(skb->mac_header))~0U;
2556 }
2557
skb_reset_mac_header(struct sk_buff * skb)2558 static inline void skb_reset_mac_header(struct sk_buff *skb)
2559 {
2560 skb->mac_header = skb->data - skb->head;
2561 }
2562
skb_set_mac_header(struct sk_buff * skb,const int offset)2563 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2564 {
2565 skb_reset_mac_header(skb);
2566 skb->mac_header += offset;
2567 }
2568
skb_pop_mac_header(struct sk_buff * skb)2569 static inline void skb_pop_mac_header(struct sk_buff *skb)
2570 {
2571 skb->mac_header = skb->network_header;
2572 }
2573
skb_probe_transport_header(struct sk_buff * skb)2574 static inline void skb_probe_transport_header(struct sk_buff *skb)
2575 {
2576 struct flow_keys_basic keys;
2577
2578 if (skb_transport_header_was_set(skb))
2579 return;
2580
2581 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2582 NULL, 0, 0, 0, 0))
2583 skb_set_transport_header(skb, keys.control.thoff);
2584 }
2585
skb_mac_header_rebuild(struct sk_buff * skb)2586 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2587 {
2588 if (skb_mac_header_was_set(skb)) {
2589 const unsigned char *old_mac = skb_mac_header(skb);
2590
2591 skb_set_mac_header(skb, -skb->mac_len);
2592 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2593 }
2594 }
2595
skb_checksum_start_offset(const struct sk_buff * skb)2596 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2597 {
2598 return skb->csum_start - skb_headroom(skb);
2599 }
2600
skb_checksum_start(const struct sk_buff * skb)2601 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2602 {
2603 return skb->head + skb->csum_start;
2604 }
2605
skb_transport_offset(const struct sk_buff * skb)2606 static inline int skb_transport_offset(const struct sk_buff *skb)
2607 {
2608 return skb_transport_header(skb) - skb->data;
2609 }
2610
skb_network_header_len(const struct sk_buff * skb)2611 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2612 {
2613 return skb->transport_header - skb->network_header;
2614 }
2615
skb_inner_network_header_len(const struct sk_buff * skb)2616 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2617 {
2618 return skb->inner_transport_header - skb->inner_network_header;
2619 }
2620
skb_network_offset(const struct sk_buff * skb)2621 static inline int skb_network_offset(const struct sk_buff *skb)
2622 {
2623 return skb_network_header(skb) - skb->data;
2624 }
2625
skb_inner_network_offset(const struct sk_buff * skb)2626 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2627 {
2628 return skb_inner_network_header(skb) - skb->data;
2629 }
2630
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2631 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2632 {
2633 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2634 }
2635
2636 /*
2637 * CPUs often take a performance hit when accessing unaligned memory
2638 * locations. The actual performance hit varies, it can be small if the
2639 * hardware handles it or large if we have to take an exception and fix it
2640 * in software.
2641 *
2642 * Since an ethernet header is 14 bytes network drivers often end up with
2643 * the IP header at an unaligned offset. The IP header can be aligned by
2644 * shifting the start of the packet by 2 bytes. Drivers should do this
2645 * with:
2646 *
2647 * skb_reserve(skb, NET_IP_ALIGN);
2648 *
2649 * The downside to this alignment of the IP header is that the DMA is now
2650 * unaligned. On some architectures the cost of an unaligned DMA is high
2651 * and this cost outweighs the gains made by aligning the IP header.
2652 *
2653 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2654 * to be overridden.
2655 */
2656 #ifndef NET_IP_ALIGN
2657 #define NET_IP_ALIGN 2
2658 #endif
2659
2660 /*
2661 * The networking layer reserves some headroom in skb data (via
2662 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2663 * the header has to grow. In the default case, if the header has to grow
2664 * 32 bytes or less we avoid the reallocation.
2665 *
2666 * Unfortunately this headroom changes the DMA alignment of the resulting
2667 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2668 * on some architectures. An architecture can override this value,
2669 * perhaps setting it to a cacheline in size (since that will maintain
2670 * cacheline alignment of the DMA). It must be a power of 2.
2671 *
2672 * Various parts of the networking layer expect at least 32 bytes of
2673 * headroom, you should not reduce this.
2674 *
2675 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2676 * to reduce average number of cache lines per packet.
2677 * get_rps_cpu() for example only access one 64 bytes aligned block :
2678 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2679 */
2680 #ifndef NET_SKB_PAD
2681 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2682 #endif
2683
2684 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2685
__skb_set_length(struct sk_buff * skb,unsigned int len)2686 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2687 {
2688 if (WARN_ON(skb_is_nonlinear(skb)))
2689 return;
2690 skb->len = len;
2691 skb_set_tail_pointer(skb, len);
2692 }
2693
__skb_trim(struct sk_buff * skb,unsigned int len)2694 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2695 {
2696 __skb_set_length(skb, len);
2697 }
2698
2699 void skb_trim(struct sk_buff *skb, unsigned int len);
2700
__pskb_trim(struct sk_buff * skb,unsigned int len)2701 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2702 {
2703 if (skb->data_len)
2704 return ___pskb_trim(skb, len);
2705 __skb_trim(skb, len);
2706 return 0;
2707 }
2708
pskb_trim(struct sk_buff * skb,unsigned int len)2709 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2710 {
2711 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2712 }
2713
2714 /**
2715 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2716 * @skb: buffer to alter
2717 * @len: new length
2718 *
2719 * This is identical to pskb_trim except that the caller knows that
2720 * the skb is not cloned so we should never get an error due to out-
2721 * of-memory.
2722 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2723 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2724 {
2725 int err = pskb_trim(skb, len);
2726 BUG_ON(err);
2727 }
2728
__skb_grow(struct sk_buff * skb,unsigned int len)2729 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2730 {
2731 unsigned int diff = len - skb->len;
2732
2733 if (skb_tailroom(skb) < diff) {
2734 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2735 GFP_ATOMIC);
2736 if (ret)
2737 return ret;
2738 }
2739 __skb_set_length(skb, len);
2740 return 0;
2741 }
2742
2743 /**
2744 * skb_orphan - orphan a buffer
2745 * @skb: buffer to orphan
2746 *
2747 * If a buffer currently has an owner then we call the owner's
2748 * destructor function and make the @skb unowned. The buffer continues
2749 * to exist but is no longer charged to its former owner.
2750 */
skb_orphan(struct sk_buff * skb)2751 static inline void skb_orphan(struct sk_buff *skb)
2752 {
2753 if (skb->destructor) {
2754 skb->destructor(skb);
2755 skb->destructor = NULL;
2756 skb->sk = NULL;
2757 } else {
2758 BUG_ON(skb->sk);
2759 }
2760 }
2761
2762 /**
2763 * skb_orphan_frags - orphan the frags contained in a buffer
2764 * @skb: buffer to orphan frags from
2765 * @gfp_mask: allocation mask for replacement pages
2766 *
2767 * For each frag in the SKB which needs a destructor (i.e. has an
2768 * owner) create a copy of that frag and release the original
2769 * page by calling the destructor.
2770 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2771 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2772 {
2773 if (likely(!skb_zcopy(skb)))
2774 return 0;
2775 if (!skb_zcopy_is_nouarg(skb) &&
2776 skb_uarg(skb)->callback == sock_zerocopy_callback)
2777 return 0;
2778 return skb_copy_ubufs(skb, gfp_mask);
2779 }
2780
2781 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2782 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2783 {
2784 if (likely(!skb_zcopy(skb)))
2785 return 0;
2786 return skb_copy_ubufs(skb, gfp_mask);
2787 }
2788
2789 /**
2790 * __skb_queue_purge - empty a list
2791 * @list: list to empty
2792 *
2793 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2794 * the list and one reference dropped. This function does not take the
2795 * list lock and the caller must hold the relevant locks to use it.
2796 */
__skb_queue_purge(struct sk_buff_head * list)2797 static inline void __skb_queue_purge(struct sk_buff_head *list)
2798 {
2799 struct sk_buff *skb;
2800 while ((skb = __skb_dequeue(list)) != NULL)
2801 kfree_skb(skb);
2802 }
2803 void skb_queue_purge(struct sk_buff_head *list);
2804
2805 unsigned int skb_rbtree_purge(struct rb_root *root);
2806
2807 void *netdev_alloc_frag(unsigned int fragsz);
2808
2809 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2810 gfp_t gfp_mask);
2811
2812 /**
2813 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2814 * @dev: network device to receive on
2815 * @length: length to allocate
2816 *
2817 * Allocate a new &sk_buff and assign it a usage count of one. The
2818 * buffer has unspecified headroom built in. Users should allocate
2819 * the headroom they think they need without accounting for the
2820 * built in space. The built in space is used for optimisations.
2821 *
2822 * %NULL is returned if there is no free memory. Although this function
2823 * allocates memory it can be called from an interrupt.
2824 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2825 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2826 unsigned int length)
2827 {
2828 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2829 }
2830
2831 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2832 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2833 gfp_t gfp_mask)
2834 {
2835 return __netdev_alloc_skb(NULL, length, gfp_mask);
2836 }
2837
2838 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2839 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2840 {
2841 return netdev_alloc_skb(NULL, length);
2842 }
2843
2844
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2845 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2846 unsigned int length, gfp_t gfp)
2847 {
2848 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2849
2850 if (NET_IP_ALIGN && skb)
2851 skb_reserve(skb, NET_IP_ALIGN);
2852 return skb;
2853 }
2854
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2855 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2856 unsigned int length)
2857 {
2858 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2859 }
2860
skb_free_frag(void * addr)2861 static inline void skb_free_frag(void *addr)
2862 {
2863 page_frag_free(addr);
2864 }
2865
2866 void *napi_alloc_frag(unsigned int fragsz);
2867 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2868 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2869 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2870 unsigned int length)
2871 {
2872 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2873 }
2874 void napi_consume_skb(struct sk_buff *skb, int budget);
2875
2876 void __kfree_skb_flush(void);
2877 void __kfree_skb_defer(struct sk_buff *skb);
2878
2879 /**
2880 * __dev_alloc_pages - allocate page for network Rx
2881 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2882 * @order: size of the allocation
2883 *
2884 * Allocate a new page.
2885 *
2886 * %NULL is returned if there is no free memory.
2887 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2888 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2889 unsigned int order)
2890 {
2891 /* This piece of code contains several assumptions.
2892 * 1. This is for device Rx, therefor a cold page is preferred.
2893 * 2. The expectation is the user wants a compound page.
2894 * 3. If requesting a order 0 page it will not be compound
2895 * due to the check to see if order has a value in prep_new_page
2896 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2897 * code in gfp_to_alloc_flags that should be enforcing this.
2898 */
2899 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2900
2901 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2902 }
2903
dev_alloc_pages(unsigned int order)2904 static inline struct page *dev_alloc_pages(unsigned int order)
2905 {
2906 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2907 }
2908
2909 /**
2910 * __dev_alloc_page - allocate a page for network Rx
2911 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2912 *
2913 * Allocate a new page.
2914 *
2915 * %NULL is returned if there is no free memory.
2916 */
__dev_alloc_page(gfp_t gfp_mask)2917 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2918 {
2919 return __dev_alloc_pages(gfp_mask, 0);
2920 }
2921
dev_alloc_page(void)2922 static inline struct page *dev_alloc_page(void)
2923 {
2924 return dev_alloc_pages(0);
2925 }
2926
2927 /**
2928 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2929 * @page: The page that was allocated from skb_alloc_page
2930 * @skb: The skb that may need pfmemalloc set
2931 */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2932 static inline void skb_propagate_pfmemalloc(struct page *page,
2933 struct sk_buff *skb)
2934 {
2935 if (page_is_pfmemalloc(page))
2936 skb->pfmemalloc = true;
2937 }
2938
2939 /**
2940 * skb_frag_off() - Returns the offset of a skb fragment
2941 * @frag: the paged fragment
2942 */
skb_frag_off(const skb_frag_t * frag)2943 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2944 {
2945 return frag->bv_offset;
2946 }
2947
2948 /**
2949 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2950 * @frag: skb fragment
2951 * @delta: value to add
2952 */
skb_frag_off_add(skb_frag_t * frag,int delta)2953 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2954 {
2955 frag->bv_offset += delta;
2956 }
2957
2958 /**
2959 * skb_frag_off_set() - Sets the offset of a skb fragment
2960 * @frag: skb fragment
2961 * @offset: offset of fragment
2962 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)2963 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2964 {
2965 frag->bv_offset = offset;
2966 }
2967
2968 /**
2969 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2970 * @fragto: skb fragment where offset is set
2971 * @fragfrom: skb fragment offset is copied from
2972 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)2973 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2974 const skb_frag_t *fragfrom)
2975 {
2976 fragto->bv_offset = fragfrom->bv_offset;
2977 }
2978
2979 /**
2980 * skb_frag_page - retrieve the page referred to by a paged fragment
2981 * @frag: the paged fragment
2982 *
2983 * Returns the &struct page associated with @frag.
2984 */
skb_frag_page(const skb_frag_t * frag)2985 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2986 {
2987 return frag->bv_page;
2988 }
2989
2990 /**
2991 * __skb_frag_ref - take an addition reference on a paged fragment.
2992 * @frag: the paged fragment
2993 *
2994 * Takes an additional reference on the paged fragment @frag.
2995 */
__skb_frag_ref(skb_frag_t * frag)2996 static inline void __skb_frag_ref(skb_frag_t *frag)
2997 {
2998 get_page(skb_frag_page(frag));
2999 }
3000
3001 /**
3002 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3003 * @skb: the buffer
3004 * @f: the fragment offset.
3005 *
3006 * Takes an additional reference on the @f'th paged fragment of @skb.
3007 */
skb_frag_ref(struct sk_buff * skb,int f)3008 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3009 {
3010 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3011 }
3012
3013 /**
3014 * __skb_frag_unref - release a reference on a paged fragment.
3015 * @frag: the paged fragment
3016 *
3017 * Releases a reference on the paged fragment @frag.
3018 */
__skb_frag_unref(skb_frag_t * frag)3019 static inline void __skb_frag_unref(skb_frag_t *frag)
3020 {
3021 put_page(skb_frag_page(frag));
3022 }
3023
3024 /**
3025 * skb_frag_unref - release a reference on a paged fragment of an skb.
3026 * @skb: the buffer
3027 * @f: the fragment offset
3028 *
3029 * Releases a reference on the @f'th paged fragment of @skb.
3030 */
skb_frag_unref(struct sk_buff * skb,int f)3031 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3032 {
3033 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3034 }
3035
3036 /**
3037 * skb_frag_address - gets the address of the data contained in a paged fragment
3038 * @frag: the paged fragment buffer
3039 *
3040 * Returns the address of the data within @frag. The page must already
3041 * be mapped.
3042 */
skb_frag_address(const skb_frag_t * frag)3043 static inline void *skb_frag_address(const skb_frag_t *frag)
3044 {
3045 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3046 }
3047
3048 /**
3049 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3050 * @frag: the paged fragment buffer
3051 *
3052 * Returns the address of the data within @frag. Checks that the page
3053 * is mapped and returns %NULL otherwise.
3054 */
skb_frag_address_safe(const skb_frag_t * frag)3055 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3056 {
3057 void *ptr = page_address(skb_frag_page(frag));
3058 if (unlikely(!ptr))
3059 return NULL;
3060
3061 return ptr + skb_frag_off(frag);
3062 }
3063
3064 /**
3065 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3066 * @fragto: skb fragment where page is set
3067 * @fragfrom: skb fragment page is copied from
3068 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3069 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3070 const skb_frag_t *fragfrom)
3071 {
3072 fragto->bv_page = fragfrom->bv_page;
3073 }
3074
3075 /**
3076 * __skb_frag_set_page - sets the page contained in a paged fragment
3077 * @frag: the paged fragment
3078 * @page: the page to set
3079 *
3080 * Sets the fragment @frag to contain @page.
3081 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3082 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3083 {
3084 frag->bv_page = page;
3085 }
3086
3087 /**
3088 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3089 * @skb: the buffer
3090 * @f: the fragment offset
3091 * @page: the page to set
3092 *
3093 * Sets the @f'th fragment of @skb to contain @page.
3094 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3095 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3096 struct page *page)
3097 {
3098 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3099 }
3100
3101 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3102
3103 /**
3104 * skb_frag_dma_map - maps a paged fragment via the DMA API
3105 * @dev: the device to map the fragment to
3106 * @frag: the paged fragment to map
3107 * @offset: the offset within the fragment (starting at the
3108 * fragment's own offset)
3109 * @size: the number of bytes to map
3110 * @dir: the direction of the mapping (``PCI_DMA_*``)
3111 *
3112 * Maps the page associated with @frag to @device.
3113 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3114 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3115 const skb_frag_t *frag,
3116 size_t offset, size_t size,
3117 enum dma_data_direction dir)
3118 {
3119 return dma_map_page(dev, skb_frag_page(frag),
3120 skb_frag_off(frag) + offset, size, dir);
3121 }
3122
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3123 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3124 gfp_t gfp_mask)
3125 {
3126 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3127 }
3128
3129
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3130 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3131 gfp_t gfp_mask)
3132 {
3133 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3134 }
3135
3136
3137 /**
3138 * skb_clone_writable - is the header of a clone writable
3139 * @skb: buffer to check
3140 * @len: length up to which to write
3141 *
3142 * Returns true if modifying the header part of the cloned buffer
3143 * does not requires the data to be copied.
3144 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3145 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3146 {
3147 return !skb_header_cloned(skb) &&
3148 skb_headroom(skb) + len <= skb->hdr_len;
3149 }
3150
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3151 static inline int skb_try_make_writable(struct sk_buff *skb,
3152 unsigned int write_len)
3153 {
3154 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3155 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3156 }
3157
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3158 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3159 int cloned)
3160 {
3161 int delta = 0;
3162
3163 if (headroom > skb_headroom(skb))
3164 delta = headroom - skb_headroom(skb);
3165
3166 if (delta || cloned)
3167 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3168 GFP_ATOMIC);
3169 return 0;
3170 }
3171
3172 /**
3173 * skb_cow - copy header of skb when it is required
3174 * @skb: buffer to cow
3175 * @headroom: needed headroom
3176 *
3177 * If the skb passed lacks sufficient headroom or its data part
3178 * is shared, data is reallocated. If reallocation fails, an error
3179 * is returned and original skb is not changed.
3180 *
3181 * The result is skb with writable area skb->head...skb->tail
3182 * and at least @headroom of space at head.
3183 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3184 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3185 {
3186 return __skb_cow(skb, headroom, skb_cloned(skb));
3187 }
3188
3189 /**
3190 * skb_cow_head - skb_cow but only making the head writable
3191 * @skb: buffer to cow
3192 * @headroom: needed headroom
3193 *
3194 * This function is identical to skb_cow except that we replace the
3195 * skb_cloned check by skb_header_cloned. It should be used when
3196 * you only need to push on some header and do not need to modify
3197 * the data.
3198 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3199 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3200 {
3201 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3202 }
3203
3204 /**
3205 * skb_padto - pad an skbuff up to a minimal size
3206 * @skb: buffer to pad
3207 * @len: minimal length
3208 *
3209 * Pads up a buffer to ensure the trailing bytes exist and are
3210 * blanked. If the buffer already contains sufficient data it
3211 * is untouched. Otherwise it is extended. Returns zero on
3212 * success. The skb is freed on error.
3213 */
skb_padto(struct sk_buff * skb,unsigned int len)3214 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3215 {
3216 unsigned int size = skb->len;
3217 if (likely(size >= len))
3218 return 0;
3219 return skb_pad(skb, len - size);
3220 }
3221
3222 /**
3223 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3224 * @skb: buffer to pad
3225 * @len: minimal length
3226 * @free_on_error: free buffer on error
3227 *
3228 * Pads up a buffer to ensure the trailing bytes exist and are
3229 * blanked. If the buffer already contains sufficient data it
3230 * is untouched. Otherwise it is extended. Returns zero on
3231 * success. The skb is freed on error if @free_on_error is true.
3232 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3233 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3234 unsigned int len,
3235 bool free_on_error)
3236 {
3237 unsigned int size = skb->len;
3238
3239 if (unlikely(size < len)) {
3240 len -= size;
3241 if (__skb_pad(skb, len, free_on_error))
3242 return -ENOMEM;
3243 __skb_put(skb, len);
3244 }
3245 return 0;
3246 }
3247
3248 /**
3249 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3250 * @skb: buffer to pad
3251 * @len: minimal length
3252 *
3253 * Pads up a buffer to ensure the trailing bytes exist and are
3254 * blanked. If the buffer already contains sufficient data it
3255 * is untouched. Otherwise it is extended. Returns zero on
3256 * success. The skb is freed on error.
3257 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3258 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3259 {
3260 return __skb_put_padto(skb, len, true);
3261 }
3262
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3263 static inline int skb_add_data(struct sk_buff *skb,
3264 struct iov_iter *from, int copy)
3265 {
3266 const int off = skb->len;
3267
3268 if (skb->ip_summed == CHECKSUM_NONE) {
3269 __wsum csum = 0;
3270 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3271 &csum, from)) {
3272 skb->csum = csum_block_add(skb->csum, csum, off);
3273 return 0;
3274 }
3275 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3276 return 0;
3277
3278 __skb_trim(skb, off);
3279 return -EFAULT;
3280 }
3281
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3282 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3283 const struct page *page, int off)
3284 {
3285 if (skb_zcopy(skb))
3286 return false;
3287 if (i) {
3288 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3289
3290 return page == skb_frag_page(frag) &&
3291 off == skb_frag_off(frag) + skb_frag_size(frag);
3292 }
3293 return false;
3294 }
3295
__skb_linearize(struct sk_buff * skb)3296 static inline int __skb_linearize(struct sk_buff *skb)
3297 {
3298 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3299 }
3300
3301 /**
3302 * skb_linearize - convert paged skb to linear one
3303 * @skb: buffer to linarize
3304 *
3305 * If there is no free memory -ENOMEM is returned, otherwise zero
3306 * is returned and the old skb data released.
3307 */
skb_linearize(struct sk_buff * skb)3308 static inline int skb_linearize(struct sk_buff *skb)
3309 {
3310 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3311 }
3312
3313 /**
3314 * skb_has_shared_frag - can any frag be overwritten
3315 * @skb: buffer to test
3316 *
3317 * Return true if the skb has at least one frag that might be modified
3318 * by an external entity (as in vmsplice()/sendfile())
3319 */
skb_has_shared_frag(const struct sk_buff * skb)3320 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3321 {
3322 return skb_is_nonlinear(skb) &&
3323 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3324 }
3325
3326 /**
3327 * skb_linearize_cow - make sure skb is linear and writable
3328 * @skb: buffer to process
3329 *
3330 * If there is no free memory -ENOMEM is returned, otherwise zero
3331 * is returned and the old skb data released.
3332 */
skb_linearize_cow(struct sk_buff * skb)3333 static inline int skb_linearize_cow(struct sk_buff *skb)
3334 {
3335 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3336 __skb_linearize(skb) : 0;
3337 }
3338
3339 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3340 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3341 unsigned int off)
3342 {
3343 if (skb->ip_summed == CHECKSUM_COMPLETE)
3344 skb->csum = csum_block_sub(skb->csum,
3345 csum_partial(start, len, 0), off);
3346 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3347 skb_checksum_start_offset(skb) < 0)
3348 skb->ip_summed = CHECKSUM_NONE;
3349 }
3350
3351 /**
3352 * skb_postpull_rcsum - update checksum for received skb after pull
3353 * @skb: buffer to update
3354 * @start: start of data before pull
3355 * @len: length of data pulled
3356 *
3357 * After doing a pull on a received packet, you need to call this to
3358 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3359 * CHECKSUM_NONE so that it can be recomputed from scratch.
3360 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3361 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3362 const void *start, unsigned int len)
3363 {
3364 __skb_postpull_rcsum(skb, start, len, 0);
3365 }
3366
3367 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3368 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3369 unsigned int off)
3370 {
3371 if (skb->ip_summed == CHECKSUM_COMPLETE)
3372 skb->csum = csum_block_add(skb->csum,
3373 csum_partial(start, len, 0), off);
3374 }
3375
3376 /**
3377 * skb_postpush_rcsum - update checksum for received skb after push
3378 * @skb: buffer to update
3379 * @start: start of data after push
3380 * @len: length of data pushed
3381 *
3382 * After doing a push on a received packet, you need to call this to
3383 * update the CHECKSUM_COMPLETE checksum.
3384 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3385 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3386 const void *start, unsigned int len)
3387 {
3388 __skb_postpush_rcsum(skb, start, len, 0);
3389 }
3390
3391 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3392
3393 /**
3394 * skb_push_rcsum - push skb and update receive checksum
3395 * @skb: buffer to update
3396 * @len: length of data pulled
3397 *
3398 * This function performs an skb_push on the packet and updates
3399 * the CHECKSUM_COMPLETE checksum. It should be used on
3400 * receive path processing instead of skb_push unless you know
3401 * that the checksum difference is zero (e.g., a valid IP header)
3402 * or you are setting ip_summed to CHECKSUM_NONE.
3403 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3404 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3405 {
3406 skb_push(skb, len);
3407 skb_postpush_rcsum(skb, skb->data, len);
3408 return skb->data;
3409 }
3410
3411 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3412 /**
3413 * pskb_trim_rcsum - trim received skb and update checksum
3414 * @skb: buffer to trim
3415 * @len: new length
3416 *
3417 * This is exactly the same as pskb_trim except that it ensures the
3418 * checksum of received packets are still valid after the operation.
3419 * It can change skb pointers.
3420 */
3421
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3422 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3423 {
3424 if (likely(len >= skb->len))
3425 return 0;
3426 return pskb_trim_rcsum_slow(skb, len);
3427 }
3428
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3429 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3430 {
3431 if (skb->ip_summed == CHECKSUM_COMPLETE)
3432 skb->ip_summed = CHECKSUM_NONE;
3433 __skb_trim(skb, len);
3434 return 0;
3435 }
3436
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3437 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3438 {
3439 if (skb->ip_summed == CHECKSUM_COMPLETE)
3440 skb->ip_summed = CHECKSUM_NONE;
3441 return __skb_grow(skb, len);
3442 }
3443
3444 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3445 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3446 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3447 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3448 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3449
3450 #define skb_queue_walk(queue, skb) \
3451 for (skb = (queue)->next; \
3452 skb != (struct sk_buff *)(queue); \
3453 skb = skb->next)
3454
3455 #define skb_queue_walk_safe(queue, skb, tmp) \
3456 for (skb = (queue)->next, tmp = skb->next; \
3457 skb != (struct sk_buff *)(queue); \
3458 skb = tmp, tmp = skb->next)
3459
3460 #define skb_queue_walk_from(queue, skb) \
3461 for (; skb != (struct sk_buff *)(queue); \
3462 skb = skb->next)
3463
3464 #define skb_rbtree_walk(skb, root) \
3465 for (skb = skb_rb_first(root); skb != NULL; \
3466 skb = skb_rb_next(skb))
3467
3468 #define skb_rbtree_walk_from(skb) \
3469 for (; skb != NULL; \
3470 skb = skb_rb_next(skb))
3471
3472 #define skb_rbtree_walk_from_safe(skb, tmp) \
3473 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3474 skb = tmp)
3475
3476 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3477 for (tmp = skb->next; \
3478 skb != (struct sk_buff *)(queue); \
3479 skb = tmp, tmp = skb->next)
3480
3481 #define skb_queue_reverse_walk(queue, skb) \
3482 for (skb = (queue)->prev; \
3483 skb != (struct sk_buff *)(queue); \
3484 skb = skb->prev)
3485
3486 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3487 for (skb = (queue)->prev, tmp = skb->prev; \
3488 skb != (struct sk_buff *)(queue); \
3489 skb = tmp, tmp = skb->prev)
3490
3491 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3492 for (tmp = skb->prev; \
3493 skb != (struct sk_buff *)(queue); \
3494 skb = tmp, tmp = skb->prev)
3495
skb_has_frag_list(const struct sk_buff * skb)3496 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3497 {
3498 return skb_shinfo(skb)->frag_list != NULL;
3499 }
3500
skb_frag_list_init(struct sk_buff * skb)3501 static inline void skb_frag_list_init(struct sk_buff *skb)
3502 {
3503 skb_shinfo(skb)->frag_list = NULL;
3504 }
3505
3506 #define skb_walk_frags(skb, iter) \
3507 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3508
3509
3510 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3511 int *err, long *timeo_p,
3512 const struct sk_buff *skb);
3513 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3514 struct sk_buff_head *queue,
3515 unsigned int flags,
3516 int *off, int *err,
3517 struct sk_buff **last);
3518 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3519 struct sk_buff_head *queue,
3520 unsigned int flags, int *off, int *err,
3521 struct sk_buff **last);
3522 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3523 struct sk_buff_head *sk_queue,
3524 unsigned int flags, int *off, int *err);
3525 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3526 int *err);
3527 __poll_t datagram_poll(struct file *file, struct socket *sock,
3528 struct poll_table_struct *wait);
3529 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3530 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3531 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3532 struct msghdr *msg, int size)
3533 {
3534 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3535 }
3536 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3537 struct msghdr *msg);
3538 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3539 struct iov_iter *to, int len,
3540 struct ahash_request *hash);
3541 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3542 struct iov_iter *from, int len);
3543 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3544 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3545 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3546 static inline void skb_free_datagram_locked(struct sock *sk,
3547 struct sk_buff *skb)
3548 {
3549 __skb_free_datagram_locked(sk, skb, 0);
3550 }
3551 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3552 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3553 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3554 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3555 int len);
3556 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3557 struct pipe_inode_info *pipe, unsigned int len,
3558 unsigned int flags);
3559 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3560 int len);
3561 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3562 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3563 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3564 int len, int hlen);
3565 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3566 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3567 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3568 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3569 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3570 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3571 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3572 unsigned int offset);
3573 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3574 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3575 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3576 int skb_vlan_pop(struct sk_buff *skb);
3577 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3578 int skb_eth_pop(struct sk_buff *skb);
3579 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3580 const unsigned char *src);
3581 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3582 int mac_len, bool ethernet);
3583 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3584 bool ethernet);
3585 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3586 int skb_mpls_dec_ttl(struct sk_buff *skb);
3587 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3588 gfp_t gfp);
3589
memcpy_from_msg(void * data,struct msghdr * msg,int len)3590 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3591 {
3592 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3593 }
3594
memcpy_to_msg(struct msghdr * msg,void * data,int len)3595 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3596 {
3597 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3598 }
3599
3600 struct skb_checksum_ops {
3601 __wsum (*update)(const void *mem, int len, __wsum wsum);
3602 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3603 };
3604
3605 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3606
3607 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3608 __wsum csum, const struct skb_checksum_ops *ops);
3609 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3610 __wsum csum);
3611
3612 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3613 __skb_header_pointer(const struct sk_buff *skb, int offset,
3614 int len, void *data, int hlen, void *buffer)
3615 {
3616 if (hlen - offset >= len)
3617 return data + offset;
3618
3619 if (!skb ||
3620 skb_copy_bits(skb, offset, buffer, len) < 0)
3621 return NULL;
3622
3623 return buffer;
3624 }
3625
3626 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3627 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3628 {
3629 return __skb_header_pointer(skb, offset, len, skb->data,
3630 skb_headlen(skb), buffer);
3631 }
3632
3633 /**
3634 * skb_needs_linearize - check if we need to linearize a given skb
3635 * depending on the given device features.
3636 * @skb: socket buffer to check
3637 * @features: net device features
3638 *
3639 * Returns true if either:
3640 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3641 * 2. skb is fragmented and the device does not support SG.
3642 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3643 static inline bool skb_needs_linearize(struct sk_buff *skb,
3644 netdev_features_t features)
3645 {
3646 return skb_is_nonlinear(skb) &&
3647 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3648 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3649 }
3650
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3651 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3652 void *to,
3653 const unsigned int len)
3654 {
3655 memcpy(to, skb->data, len);
3656 }
3657
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3658 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3659 const int offset, void *to,
3660 const unsigned int len)
3661 {
3662 memcpy(to, skb->data + offset, len);
3663 }
3664
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3665 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3666 const void *from,
3667 const unsigned int len)
3668 {
3669 memcpy(skb->data, from, len);
3670 }
3671
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3672 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3673 const int offset,
3674 const void *from,
3675 const unsigned int len)
3676 {
3677 memcpy(skb->data + offset, from, len);
3678 }
3679
3680 void skb_init(void);
3681
skb_get_ktime(const struct sk_buff * skb)3682 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3683 {
3684 return skb->tstamp;
3685 }
3686
3687 /**
3688 * skb_get_timestamp - get timestamp from a skb
3689 * @skb: skb to get stamp from
3690 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3691 *
3692 * Timestamps are stored in the skb as offsets to a base timestamp.
3693 * This function converts the offset back to a struct timeval and stores
3694 * it in stamp.
3695 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3696 static inline void skb_get_timestamp(const struct sk_buff *skb,
3697 struct __kernel_old_timeval *stamp)
3698 {
3699 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3700 }
3701
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3702 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3703 struct __kernel_sock_timeval *stamp)
3704 {
3705 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3706
3707 stamp->tv_sec = ts.tv_sec;
3708 stamp->tv_usec = ts.tv_nsec / 1000;
3709 }
3710
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3711 static inline void skb_get_timestampns(const struct sk_buff *skb,
3712 struct __kernel_old_timespec *stamp)
3713 {
3714 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3715
3716 stamp->tv_sec = ts.tv_sec;
3717 stamp->tv_nsec = ts.tv_nsec;
3718 }
3719
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3720 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3721 struct __kernel_timespec *stamp)
3722 {
3723 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3724
3725 stamp->tv_sec = ts.tv_sec;
3726 stamp->tv_nsec = ts.tv_nsec;
3727 }
3728
__net_timestamp(struct sk_buff * skb)3729 static inline void __net_timestamp(struct sk_buff *skb)
3730 {
3731 skb->tstamp = ktime_get_real();
3732 }
3733
net_timedelta(ktime_t t)3734 static inline ktime_t net_timedelta(ktime_t t)
3735 {
3736 return ktime_sub(ktime_get_real(), t);
3737 }
3738
net_invalid_timestamp(void)3739 static inline ktime_t net_invalid_timestamp(void)
3740 {
3741 return 0;
3742 }
3743
skb_metadata_len(const struct sk_buff * skb)3744 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3745 {
3746 return skb_shinfo(skb)->meta_len;
3747 }
3748
skb_metadata_end(const struct sk_buff * skb)3749 static inline void *skb_metadata_end(const struct sk_buff *skb)
3750 {
3751 return skb_mac_header(skb);
3752 }
3753
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3754 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3755 const struct sk_buff *skb_b,
3756 u8 meta_len)
3757 {
3758 const void *a = skb_metadata_end(skb_a);
3759 const void *b = skb_metadata_end(skb_b);
3760 /* Using more efficient varaiant than plain call to memcmp(). */
3761 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3762 u64 diffs = 0;
3763
3764 switch (meta_len) {
3765 #define __it(x, op) (x -= sizeof(u##op))
3766 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3767 case 32: diffs |= __it_diff(a, b, 64);
3768 fallthrough;
3769 case 24: diffs |= __it_diff(a, b, 64);
3770 fallthrough;
3771 case 16: diffs |= __it_diff(a, b, 64);
3772 fallthrough;
3773 case 8: diffs |= __it_diff(a, b, 64);
3774 break;
3775 case 28: diffs |= __it_diff(a, b, 64);
3776 fallthrough;
3777 case 20: diffs |= __it_diff(a, b, 64);
3778 fallthrough;
3779 case 12: diffs |= __it_diff(a, b, 64);
3780 fallthrough;
3781 case 4: diffs |= __it_diff(a, b, 32);
3782 break;
3783 }
3784 return diffs;
3785 #else
3786 return memcmp(a - meta_len, b - meta_len, meta_len);
3787 #endif
3788 }
3789
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3790 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3791 const struct sk_buff *skb_b)
3792 {
3793 u8 len_a = skb_metadata_len(skb_a);
3794 u8 len_b = skb_metadata_len(skb_b);
3795
3796 if (!(len_a | len_b))
3797 return false;
3798
3799 return len_a != len_b ?
3800 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3801 }
3802
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3803 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3804 {
3805 skb_shinfo(skb)->meta_len = meta_len;
3806 }
3807
skb_metadata_clear(struct sk_buff * skb)3808 static inline void skb_metadata_clear(struct sk_buff *skb)
3809 {
3810 skb_metadata_set(skb, 0);
3811 }
3812
3813 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3814
3815 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3816
3817 void skb_clone_tx_timestamp(struct sk_buff *skb);
3818 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3819
3820 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3821
skb_clone_tx_timestamp(struct sk_buff * skb)3822 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3823 {
3824 }
3825
skb_defer_rx_timestamp(struct sk_buff * skb)3826 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3827 {
3828 return false;
3829 }
3830
3831 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3832
3833 /**
3834 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3835 *
3836 * PHY drivers may accept clones of transmitted packets for
3837 * timestamping via their phy_driver.txtstamp method. These drivers
3838 * must call this function to return the skb back to the stack with a
3839 * timestamp.
3840 *
3841 * @skb: clone of the original outgoing packet
3842 * @hwtstamps: hardware time stamps
3843 *
3844 */
3845 void skb_complete_tx_timestamp(struct sk_buff *skb,
3846 struct skb_shared_hwtstamps *hwtstamps);
3847
3848 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3849 struct skb_shared_hwtstamps *hwtstamps,
3850 struct sock *sk, int tstype);
3851
3852 /**
3853 * skb_tstamp_tx - queue clone of skb with send time stamps
3854 * @orig_skb: the original outgoing packet
3855 * @hwtstamps: hardware time stamps, may be NULL if not available
3856 *
3857 * If the skb has a socket associated, then this function clones the
3858 * skb (thus sharing the actual data and optional structures), stores
3859 * the optional hardware time stamping information (if non NULL) or
3860 * generates a software time stamp (otherwise), then queues the clone
3861 * to the error queue of the socket. Errors are silently ignored.
3862 */
3863 void skb_tstamp_tx(struct sk_buff *orig_skb,
3864 struct skb_shared_hwtstamps *hwtstamps);
3865
3866 /**
3867 * skb_tx_timestamp() - Driver hook for transmit timestamping
3868 *
3869 * Ethernet MAC Drivers should call this function in their hard_xmit()
3870 * function immediately before giving the sk_buff to the MAC hardware.
3871 *
3872 * Specifically, one should make absolutely sure that this function is
3873 * called before TX completion of this packet can trigger. Otherwise
3874 * the packet could potentially already be freed.
3875 *
3876 * @skb: A socket buffer.
3877 */
skb_tx_timestamp(struct sk_buff * skb)3878 static inline void skb_tx_timestamp(struct sk_buff *skb)
3879 {
3880 skb_clone_tx_timestamp(skb);
3881 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3882 skb_tstamp_tx(skb, NULL);
3883 }
3884
3885 /**
3886 * skb_complete_wifi_ack - deliver skb with wifi status
3887 *
3888 * @skb: the original outgoing packet
3889 * @acked: ack status
3890 *
3891 */
3892 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3893
3894 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3895 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3896
skb_csum_unnecessary(const struct sk_buff * skb)3897 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3898 {
3899 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3900 skb->csum_valid ||
3901 (skb->ip_summed == CHECKSUM_PARTIAL &&
3902 skb_checksum_start_offset(skb) >= 0));
3903 }
3904
3905 /**
3906 * skb_checksum_complete - Calculate checksum of an entire packet
3907 * @skb: packet to process
3908 *
3909 * This function calculates the checksum over the entire packet plus
3910 * the value of skb->csum. The latter can be used to supply the
3911 * checksum of a pseudo header as used by TCP/UDP. It returns the
3912 * checksum.
3913 *
3914 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3915 * this function can be used to verify that checksum on received
3916 * packets. In that case the function should return zero if the
3917 * checksum is correct. In particular, this function will return zero
3918 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3919 * hardware has already verified the correctness of the checksum.
3920 */
skb_checksum_complete(struct sk_buff * skb)3921 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3922 {
3923 return skb_csum_unnecessary(skb) ?
3924 0 : __skb_checksum_complete(skb);
3925 }
3926
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3927 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3928 {
3929 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3930 if (skb->csum_level == 0)
3931 skb->ip_summed = CHECKSUM_NONE;
3932 else
3933 skb->csum_level--;
3934 }
3935 }
3936
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3937 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3938 {
3939 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3940 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3941 skb->csum_level++;
3942 } else if (skb->ip_summed == CHECKSUM_NONE) {
3943 skb->ip_summed = CHECKSUM_UNNECESSARY;
3944 skb->csum_level = 0;
3945 }
3946 }
3947
__skb_reset_checksum_unnecessary(struct sk_buff * skb)3948 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3949 {
3950 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3951 skb->ip_summed = CHECKSUM_NONE;
3952 skb->csum_level = 0;
3953 }
3954 }
3955
3956 /* Check if we need to perform checksum complete validation.
3957 *
3958 * Returns true if checksum complete is needed, false otherwise
3959 * (either checksum is unnecessary or zero checksum is allowed).
3960 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3961 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3962 bool zero_okay,
3963 __sum16 check)
3964 {
3965 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3966 skb->csum_valid = 1;
3967 __skb_decr_checksum_unnecessary(skb);
3968 return false;
3969 }
3970
3971 return true;
3972 }
3973
3974 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3975 * in checksum_init.
3976 */
3977 #define CHECKSUM_BREAK 76
3978
3979 /* Unset checksum-complete
3980 *
3981 * Unset checksum complete can be done when packet is being modified
3982 * (uncompressed for instance) and checksum-complete value is
3983 * invalidated.
3984 */
skb_checksum_complete_unset(struct sk_buff * skb)3985 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3986 {
3987 if (skb->ip_summed == CHECKSUM_COMPLETE)
3988 skb->ip_summed = CHECKSUM_NONE;
3989 }
3990
3991 /* Validate (init) checksum based on checksum complete.
3992 *
3993 * Return values:
3994 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3995 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3996 * checksum is stored in skb->csum for use in __skb_checksum_complete
3997 * non-zero: value of invalid checksum
3998 *
3999 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4000 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4001 bool complete,
4002 __wsum psum)
4003 {
4004 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4005 if (!csum_fold(csum_add(psum, skb->csum))) {
4006 skb->csum_valid = 1;
4007 return 0;
4008 }
4009 }
4010
4011 skb->csum = psum;
4012
4013 if (complete || skb->len <= CHECKSUM_BREAK) {
4014 __sum16 csum;
4015
4016 csum = __skb_checksum_complete(skb);
4017 skb->csum_valid = !csum;
4018 return csum;
4019 }
4020
4021 return 0;
4022 }
4023
null_compute_pseudo(struct sk_buff * skb,int proto)4024 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4025 {
4026 return 0;
4027 }
4028
4029 /* Perform checksum validate (init). Note that this is a macro since we only
4030 * want to calculate the pseudo header which is an input function if necessary.
4031 * First we try to validate without any computation (checksum unnecessary) and
4032 * then calculate based on checksum complete calling the function to compute
4033 * pseudo header.
4034 *
4035 * Return values:
4036 * 0: checksum is validated or try to in skb_checksum_complete
4037 * non-zero: value of invalid checksum
4038 */
4039 #define __skb_checksum_validate(skb, proto, complete, \
4040 zero_okay, check, compute_pseudo) \
4041 ({ \
4042 __sum16 __ret = 0; \
4043 skb->csum_valid = 0; \
4044 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4045 __ret = __skb_checksum_validate_complete(skb, \
4046 complete, compute_pseudo(skb, proto)); \
4047 __ret; \
4048 })
4049
4050 #define skb_checksum_init(skb, proto, compute_pseudo) \
4051 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4052
4053 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4054 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4055
4056 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4057 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4058
4059 #define skb_checksum_validate_zero_check(skb, proto, check, \
4060 compute_pseudo) \
4061 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4062
4063 #define skb_checksum_simple_validate(skb) \
4064 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4065
__skb_checksum_convert_check(struct sk_buff * skb)4066 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4067 {
4068 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4069 }
4070
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4071 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4072 {
4073 skb->csum = ~pseudo;
4074 skb->ip_summed = CHECKSUM_COMPLETE;
4075 }
4076
4077 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4078 do { \
4079 if (__skb_checksum_convert_check(skb)) \
4080 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4081 } while (0)
4082
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4083 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4084 u16 start, u16 offset)
4085 {
4086 skb->ip_summed = CHECKSUM_PARTIAL;
4087 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4088 skb->csum_offset = offset - start;
4089 }
4090
4091 /* Update skbuf and packet to reflect the remote checksum offload operation.
4092 * When called, ptr indicates the starting point for skb->csum when
4093 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4094 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4095 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4096 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4097 int start, int offset, bool nopartial)
4098 {
4099 __wsum delta;
4100
4101 if (!nopartial) {
4102 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4103 return;
4104 }
4105
4106 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4107 __skb_checksum_complete(skb);
4108 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4109 }
4110
4111 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4112
4113 /* Adjust skb->csum since we changed the packet */
4114 skb->csum = csum_add(skb->csum, delta);
4115 }
4116
skb_nfct(const struct sk_buff * skb)4117 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4118 {
4119 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4120 return (void *)(skb->_nfct & NFCT_PTRMASK);
4121 #else
4122 return NULL;
4123 #endif
4124 }
4125
skb_get_nfct(const struct sk_buff * skb)4126 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4127 {
4128 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4129 return skb->_nfct;
4130 #else
4131 return 0UL;
4132 #endif
4133 }
4134
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4135 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4136 {
4137 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4138 skb->_nfct = nfct;
4139 #endif
4140 }
4141
4142 #ifdef CONFIG_SKB_EXTENSIONS
4143 enum skb_ext_id {
4144 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4145 SKB_EXT_BRIDGE_NF,
4146 #endif
4147 #ifdef CONFIG_XFRM
4148 SKB_EXT_SEC_PATH,
4149 #endif
4150 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4151 TC_SKB_EXT,
4152 #endif
4153 #if IS_ENABLED(CONFIG_MPTCP)
4154 SKB_EXT_MPTCP,
4155 #endif
4156 #if IS_ENABLED(CONFIG_KCOV)
4157 SKB_EXT_KCOV_HANDLE,
4158 #endif
4159 SKB_EXT_NUM, /* must be last */
4160 };
4161
4162 /**
4163 * struct skb_ext - sk_buff extensions
4164 * @refcnt: 1 on allocation, deallocated on 0
4165 * @offset: offset to add to @data to obtain extension address
4166 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4167 * @data: start of extension data, variable sized
4168 *
4169 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4170 * to use 'u8' types while allowing up to 2kb worth of extension data.
4171 */
4172 struct skb_ext {
4173 refcount_t refcnt;
4174 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4175 u8 chunks; /* same */
4176 char data[] __aligned(8);
4177 };
4178
4179 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4180 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4181 struct skb_ext *ext);
4182 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4183 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4184 void __skb_ext_put(struct skb_ext *ext);
4185
skb_ext_put(struct sk_buff * skb)4186 static inline void skb_ext_put(struct sk_buff *skb)
4187 {
4188 if (skb->active_extensions)
4189 __skb_ext_put(skb->extensions);
4190 }
4191
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4192 static inline void __skb_ext_copy(struct sk_buff *dst,
4193 const struct sk_buff *src)
4194 {
4195 dst->active_extensions = src->active_extensions;
4196
4197 if (src->active_extensions) {
4198 struct skb_ext *ext = src->extensions;
4199
4200 refcount_inc(&ext->refcnt);
4201 dst->extensions = ext;
4202 }
4203 }
4204
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4205 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4206 {
4207 skb_ext_put(dst);
4208 __skb_ext_copy(dst, src);
4209 }
4210
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4211 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4212 {
4213 return !!ext->offset[i];
4214 }
4215
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4216 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4217 {
4218 return skb->active_extensions & (1 << id);
4219 }
4220
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4221 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4222 {
4223 if (skb_ext_exist(skb, id))
4224 __skb_ext_del(skb, id);
4225 }
4226
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4227 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4228 {
4229 if (skb_ext_exist(skb, id)) {
4230 struct skb_ext *ext = skb->extensions;
4231
4232 return (void *)ext + (ext->offset[id] << 3);
4233 }
4234
4235 return NULL;
4236 }
4237
skb_ext_reset(struct sk_buff * skb)4238 static inline void skb_ext_reset(struct sk_buff *skb)
4239 {
4240 if (unlikely(skb->active_extensions)) {
4241 __skb_ext_put(skb->extensions);
4242 skb->active_extensions = 0;
4243 }
4244 }
4245
skb_has_extensions(struct sk_buff * skb)4246 static inline bool skb_has_extensions(struct sk_buff *skb)
4247 {
4248 return unlikely(skb->active_extensions);
4249 }
4250 #else
skb_ext_put(struct sk_buff * skb)4251 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4252 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4253 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4254 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4255 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4256 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4257 #endif /* CONFIG_SKB_EXTENSIONS */
4258
nf_reset_ct(struct sk_buff * skb)4259 static inline void nf_reset_ct(struct sk_buff *skb)
4260 {
4261 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4262 nf_conntrack_put(skb_nfct(skb));
4263 skb->_nfct = 0;
4264 #endif
4265 }
4266
nf_reset_trace(struct sk_buff * skb)4267 static inline void nf_reset_trace(struct sk_buff *skb)
4268 {
4269 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4270 skb->nf_trace = 0;
4271 #endif
4272 }
4273
ipvs_reset(struct sk_buff * skb)4274 static inline void ipvs_reset(struct sk_buff *skb)
4275 {
4276 #if IS_ENABLED(CONFIG_IP_VS)
4277 skb->ipvs_property = 0;
4278 #endif
4279 }
4280
4281 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4282 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4283 bool copy)
4284 {
4285 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4286 dst->_nfct = src->_nfct;
4287 nf_conntrack_get(skb_nfct(src));
4288 #endif
4289 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4290 if (copy)
4291 dst->nf_trace = src->nf_trace;
4292 #endif
4293 }
4294
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4295 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4296 {
4297 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4298 nf_conntrack_put(skb_nfct(dst));
4299 #endif
4300 __nf_copy(dst, src, true);
4301 }
4302
4303 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4304 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4305 {
4306 to->secmark = from->secmark;
4307 }
4308
skb_init_secmark(struct sk_buff * skb)4309 static inline void skb_init_secmark(struct sk_buff *skb)
4310 {
4311 skb->secmark = 0;
4312 }
4313 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4314 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4315 { }
4316
skb_init_secmark(struct sk_buff * skb)4317 static inline void skb_init_secmark(struct sk_buff *skb)
4318 { }
4319 #endif
4320
secpath_exists(const struct sk_buff * skb)4321 static inline int secpath_exists(const struct sk_buff *skb)
4322 {
4323 #ifdef CONFIG_XFRM
4324 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4325 #else
4326 return 0;
4327 #endif
4328 }
4329
skb_irq_freeable(const struct sk_buff * skb)4330 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4331 {
4332 return !skb->destructor &&
4333 !secpath_exists(skb) &&
4334 !skb_nfct(skb) &&
4335 !skb->_skb_refdst &&
4336 !skb_has_frag_list(skb);
4337 }
4338
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4339 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4340 {
4341 skb->queue_mapping = queue_mapping;
4342 }
4343
skb_get_queue_mapping(const struct sk_buff * skb)4344 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4345 {
4346 return skb->queue_mapping;
4347 }
4348
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4349 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4350 {
4351 to->queue_mapping = from->queue_mapping;
4352 }
4353
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4354 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4355 {
4356 skb->queue_mapping = rx_queue + 1;
4357 }
4358
skb_get_rx_queue(const struct sk_buff * skb)4359 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4360 {
4361 return skb->queue_mapping - 1;
4362 }
4363
skb_rx_queue_recorded(const struct sk_buff * skb)4364 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4365 {
4366 return skb->queue_mapping != 0;
4367 }
4368
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4369 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4370 {
4371 skb->dst_pending_confirm = val;
4372 }
4373
skb_get_dst_pending_confirm(const struct sk_buff * skb)4374 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4375 {
4376 return skb->dst_pending_confirm != 0;
4377 }
4378
skb_sec_path(const struct sk_buff * skb)4379 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4380 {
4381 #ifdef CONFIG_XFRM
4382 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4383 #else
4384 return NULL;
4385 #endif
4386 }
4387
4388 /* Keeps track of mac header offset relative to skb->head.
4389 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4390 * For non-tunnel skb it points to skb_mac_header() and for
4391 * tunnel skb it points to outer mac header.
4392 * Keeps track of level of encapsulation of network headers.
4393 */
4394 struct skb_gso_cb {
4395 union {
4396 int mac_offset;
4397 int data_offset;
4398 };
4399 int encap_level;
4400 __wsum csum;
4401 __u16 csum_start;
4402 };
4403 #define SKB_GSO_CB_OFFSET 32
4404 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4405
skb_tnl_header_len(const struct sk_buff * inner_skb)4406 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4407 {
4408 return (skb_mac_header(inner_skb) - inner_skb->head) -
4409 SKB_GSO_CB(inner_skb)->mac_offset;
4410 }
4411
gso_pskb_expand_head(struct sk_buff * skb,int extra)4412 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4413 {
4414 int new_headroom, headroom;
4415 int ret;
4416
4417 headroom = skb_headroom(skb);
4418 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4419 if (ret)
4420 return ret;
4421
4422 new_headroom = skb_headroom(skb);
4423 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4424 return 0;
4425 }
4426
gso_reset_checksum(struct sk_buff * skb,__wsum res)4427 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4428 {
4429 /* Do not update partial checksums if remote checksum is enabled. */
4430 if (skb->remcsum_offload)
4431 return;
4432
4433 SKB_GSO_CB(skb)->csum = res;
4434 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4435 }
4436
4437 /* Compute the checksum for a gso segment. First compute the checksum value
4438 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4439 * then add in skb->csum (checksum from csum_start to end of packet).
4440 * skb->csum and csum_start are then updated to reflect the checksum of the
4441 * resultant packet starting from the transport header-- the resultant checksum
4442 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4443 * header.
4444 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4445 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4446 {
4447 unsigned char *csum_start = skb_transport_header(skb);
4448 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4449 __wsum partial = SKB_GSO_CB(skb)->csum;
4450
4451 SKB_GSO_CB(skb)->csum = res;
4452 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4453
4454 return csum_fold(csum_partial(csum_start, plen, partial));
4455 }
4456
skb_is_gso(const struct sk_buff * skb)4457 static inline bool skb_is_gso(const struct sk_buff *skb)
4458 {
4459 return skb_shinfo(skb)->gso_size;
4460 }
4461
4462 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4463 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4464 {
4465 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4466 }
4467
4468 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4469 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4470 {
4471 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4472 }
4473
4474 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4475 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4476 {
4477 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4478 }
4479
skb_gso_reset(struct sk_buff * skb)4480 static inline void skb_gso_reset(struct sk_buff *skb)
4481 {
4482 skb_shinfo(skb)->gso_size = 0;
4483 skb_shinfo(skb)->gso_segs = 0;
4484 skb_shinfo(skb)->gso_type = 0;
4485 }
4486
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4487 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4488 u16 increment)
4489 {
4490 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4491 return;
4492 shinfo->gso_size += increment;
4493 }
4494
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4495 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4496 u16 decrement)
4497 {
4498 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4499 return;
4500 shinfo->gso_size -= decrement;
4501 }
4502
4503 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4504
skb_warn_if_lro(const struct sk_buff * skb)4505 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4506 {
4507 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4508 * wanted then gso_type will be set. */
4509 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4510
4511 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4512 unlikely(shinfo->gso_type == 0)) {
4513 __skb_warn_lro_forwarding(skb);
4514 return true;
4515 }
4516 return false;
4517 }
4518
skb_forward_csum(struct sk_buff * skb)4519 static inline void skb_forward_csum(struct sk_buff *skb)
4520 {
4521 /* Unfortunately we don't support this one. Any brave souls? */
4522 if (skb->ip_summed == CHECKSUM_COMPLETE)
4523 skb->ip_summed = CHECKSUM_NONE;
4524 }
4525
4526 /**
4527 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4528 * @skb: skb to check
4529 *
4530 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4531 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4532 * use this helper, to document places where we make this assertion.
4533 */
skb_checksum_none_assert(const struct sk_buff * skb)4534 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4535 {
4536 #ifdef DEBUG
4537 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4538 #endif
4539 }
4540
4541 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4542
4543 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4544 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4545 unsigned int transport_len,
4546 __sum16(*skb_chkf)(struct sk_buff *skb));
4547
4548 /**
4549 * skb_head_is_locked - Determine if the skb->head is locked down
4550 * @skb: skb to check
4551 *
4552 * The head on skbs build around a head frag can be removed if they are
4553 * not cloned. This function returns true if the skb head is locked down
4554 * due to either being allocated via kmalloc, or by being a clone with
4555 * multiple references to the head.
4556 */
skb_head_is_locked(const struct sk_buff * skb)4557 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4558 {
4559 return !skb->head_frag || skb_cloned(skb);
4560 }
4561
4562 /* Local Checksum Offload.
4563 * Compute outer checksum based on the assumption that the
4564 * inner checksum will be offloaded later.
4565 * See Documentation/networking/checksum-offloads.rst for
4566 * explanation of how this works.
4567 * Fill in outer checksum adjustment (e.g. with sum of outer
4568 * pseudo-header) before calling.
4569 * Also ensure that inner checksum is in linear data area.
4570 */
lco_csum(struct sk_buff * skb)4571 static inline __wsum lco_csum(struct sk_buff *skb)
4572 {
4573 unsigned char *csum_start = skb_checksum_start(skb);
4574 unsigned char *l4_hdr = skb_transport_header(skb);
4575 __wsum partial;
4576
4577 /* Start with complement of inner checksum adjustment */
4578 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4579 skb->csum_offset));
4580
4581 /* Add in checksum of our headers (incl. outer checksum
4582 * adjustment filled in by caller) and return result.
4583 */
4584 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4585 }
4586
skb_is_redirected(const struct sk_buff * skb)4587 static inline bool skb_is_redirected(const struct sk_buff *skb)
4588 {
4589 #ifdef CONFIG_NET_REDIRECT
4590 return skb->redirected;
4591 #else
4592 return false;
4593 #endif
4594 }
4595
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4596 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4597 {
4598 #ifdef CONFIG_NET_REDIRECT
4599 skb->redirected = 1;
4600 skb->from_ingress = from_ingress;
4601 if (skb->from_ingress)
4602 skb->tstamp = 0;
4603 #endif
4604 }
4605
skb_reset_redirect(struct sk_buff * skb)4606 static inline void skb_reset_redirect(struct sk_buff *skb)
4607 {
4608 #ifdef CONFIG_NET_REDIRECT
4609 skb->redirected = 0;
4610 #endif
4611 }
4612
4613 #if IS_ENABLED(CONFIG_KCOV) && IS_ENABLED(CONFIG_SKB_EXTENSIONS)
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4614 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4615 const u64 kcov_handle)
4616 {
4617 /* Do not allocate skb extensions only to set kcov_handle to zero
4618 * (as it is zero by default). However, if the extensions are
4619 * already allocated, update kcov_handle anyway since
4620 * skb_set_kcov_handle can be called to zero a previously set
4621 * value.
4622 */
4623 if (skb_has_extensions(skb) || kcov_handle) {
4624 u64 *kcov_handle_ptr = skb_ext_add(skb, SKB_EXT_KCOV_HANDLE);
4625
4626 if (kcov_handle_ptr)
4627 *kcov_handle_ptr = kcov_handle;
4628 }
4629 }
4630
skb_get_kcov_handle(struct sk_buff * skb)4631 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4632 {
4633 u64 *kcov_handle = skb_ext_find(skb, SKB_EXT_KCOV_HANDLE);
4634
4635 return kcov_handle ? *kcov_handle : 0;
4636 }
4637 #else
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4638 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4639 const u64 kcov_handle) { }
skb_get_kcov_handle(struct sk_buff * skb)4640 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) { return 0; }
4641 #endif /* CONFIG_KCOV && CONFIG_SKB_EXTENSIONS */
4642
4643 #endif /* __KERNEL__ */
4644 #endif /* _LINUX_SKBUFF_H */
4645