• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
get_task_policy(struct task_struct * p)130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 	struct mempolicy *pol = p->mempolicy;
133 	int node;
134 
135 	if (pol)
136 		return pol;
137 
138 	node = numa_node_id();
139 	if (node != NUMA_NO_NODE) {
140 		pol = &preferred_node_policy[node];
141 		/* preferred_node_policy is not initialised early in boot */
142 		if (pol->mode)
143 			return pol;
144 	}
145 
146 	return &default_policy;
147 }
148 
149 static const struct mempolicy_operations {
150 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153 
mpol_store_user_nodemask(const struct mempolicy * pol)154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 	return pol->flags & MPOL_MODE_FLAGS;
157 }
158 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 				   const nodemask_t *rel)
161 {
162 	nodemask_t tmp;
163 	nodes_fold(tmp, *orig, nodes_weight(*rel));
164 	nodes_onto(*ret, tmp, *rel);
165 }
166 
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 	if (nodes_empty(*nodes))
170 		return -EINVAL;
171 	pol->v.nodes = *nodes;
172 	return 0;
173 }
174 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!nodes)
178 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
179 	else if (nodes_empty(*nodes))
180 		return -EINVAL;			/*  no allowed nodes */
181 	else
182 		pol->v.preferred_node = first_node(*nodes);
183 	return 0;
184 }
185 
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (nodes_empty(*nodes))
189 		return -EINVAL;
190 	pol->v.nodes = *nodes;
191 	return 0;
192 }
193 
194 /*
195  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196  * any, for the new policy.  mpol_new() has already validated the nodes
197  * parameter with respect to the policy mode and flags.  But, we need to
198  * handle an empty nodemask with MPOL_PREFERRED here.
199  *
200  * Must be called holding task's alloc_lock to protect task's mems_allowed
201  * and mempolicy.  May also be called holding the mmap_semaphore for write.
202  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)203 static int mpol_set_nodemask(struct mempolicy *pol,
204 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 	int ret;
207 
208 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 	if (pol == NULL)
210 		return 0;
211 	/* Check N_MEMORY */
212 	nodes_and(nsc->mask1,
213 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 
215 	VM_BUG_ON(!nodes);
216 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 		nodes = NULL;	/* explicit local allocation */
218 	else {
219 		if (pol->flags & MPOL_F_RELATIVE_NODES)
220 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 		else
222 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
223 
224 		if (mpol_store_user_nodemask(pol))
225 			pol->w.user_nodemask = *nodes;
226 		else
227 			pol->w.cpuset_mems_allowed =
228 						cpuset_current_mems_allowed;
229 	}
230 
231 	if (nodes)
232 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 	else
234 		ret = mpol_ops[pol->mode].create(pol, NULL);
235 	return ret;
236 }
237 
238 /*
239  * This function just creates a new policy, does some check and simple
240  * initialization. You must invoke mpol_set_nodemask() to set nodes.
241  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 				  nodemask_t *nodes)
244 {
245 	struct mempolicy *policy;
246 
247 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249 
250 	if (mode == MPOL_DEFAULT) {
251 		if (nodes && !nodes_empty(*nodes))
252 			return ERR_PTR(-EINVAL);
253 		return NULL;
254 	}
255 	VM_BUG_ON(!nodes);
256 
257 	/*
258 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 	 * All other modes require a valid pointer to a non-empty nodemask.
261 	 */
262 	if (mode == MPOL_PREFERRED) {
263 		if (nodes_empty(*nodes)) {
264 			if (((flags & MPOL_F_STATIC_NODES) ||
265 			     (flags & MPOL_F_RELATIVE_NODES)))
266 				return ERR_PTR(-EINVAL);
267 		}
268 	} else if (mode == MPOL_LOCAL) {
269 		if (!nodes_empty(*nodes) ||
270 		    (flags & MPOL_F_STATIC_NODES) ||
271 		    (flags & MPOL_F_RELATIVE_NODES))
272 			return ERR_PTR(-EINVAL);
273 		mode = MPOL_PREFERRED;
274 	} else if (nodes_empty(*nodes))
275 		return ERR_PTR(-EINVAL);
276 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 	if (!policy)
278 		return ERR_PTR(-ENOMEM);
279 	atomic_set(&policy->refcnt, 1);
280 	policy->mode = mode;
281 	policy->flags = flags;
282 
283 	return policy;
284 }
285 
286 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)287 void __mpol_put(struct mempolicy *p)
288 {
289 	if (!atomic_dec_and_test(&p->refcnt))
290 		return;
291 	kmem_cache_free(policy_cache, p);
292 }
293 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297 
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 	nodemask_t tmp;
301 
302 	if (pol->flags & MPOL_F_STATIC_NODES)
303 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 	else {
307 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 								*nodes);
309 		pol->w.cpuset_mems_allowed = *nodes;
310 	}
311 
312 	if (nodes_empty(tmp))
313 		tmp = *nodes;
314 
315 	pol->v.nodes = tmp;
316 }
317 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 						const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES) {
324 		int node = first_node(pol->w.user_nodemask);
325 
326 		if (node_isset(node, *nodes)) {
327 			pol->v.preferred_node = node;
328 			pol->flags &= ~MPOL_F_LOCAL;
329 		} else
330 			pol->flags |= MPOL_F_LOCAL;
331 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 		pol->v.preferred_node = first_node(tmp);
334 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
335 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 						   pol->w.cpuset_mems_allowed,
337 						   *nodes);
338 		pol->w.cpuset_mems_allowed = *nodes;
339 	}
340 }
341 
342 /*
343  * mpol_rebind_policy - Migrate a policy to a different set of nodes
344  *
345  * Per-vma policies are protected by mmap_sem. Allocations using per-task
346  * policies are protected by task->mems_allowed_seq to prevent a premature
347  * OOM/allocation failure due to parallel nodemask modification.
348  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 	if (!pol)
352 		return;
353 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 		return;
356 
357 	mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359 
360 /*
361  * Wrapper for mpol_rebind_policy() that just requires task
362  * pointer, and updates task mempolicy.
363  *
364  * Called with task's alloc_lock held.
365  */
366 
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 	mpol_rebind_policy(tsk->mempolicy, new);
370 }
371 
372 /*
373  * Rebind each vma in mm to new nodemask.
374  *
375  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
376  */
377 
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 	struct vm_area_struct *vma;
381 
382 	down_write(&mm->mmap_sem);
383 	for (vma = mm->mmap; vma; vma = vma->vm_next)
384 		mpol_rebind_policy(vma->vm_policy, new);
385 	up_write(&mm->mmap_sem);
386 }
387 
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 	[MPOL_DEFAULT] = {
390 		.rebind = mpol_rebind_default,
391 	},
392 	[MPOL_INTERLEAVE] = {
393 		.create = mpol_new_interleave,
394 		.rebind = mpol_rebind_nodemask,
395 	},
396 	[MPOL_PREFERRED] = {
397 		.create = mpol_new_preferred,
398 		.rebind = mpol_rebind_preferred,
399 	},
400 	[MPOL_BIND] = {
401 		.create = mpol_new_bind,
402 		.rebind = mpol_rebind_nodemask,
403 	},
404 };
405 
406 static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 				unsigned long flags);
408 
409 struct queue_pages {
410 	struct list_head *pagelist;
411 	unsigned long flags;
412 	nodemask_t *nmask;
413 	struct vm_area_struct *prev;
414 };
415 
416 /*
417  * Check if the page's nid is in qp->nmask.
418  *
419  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420  * in the invert of qp->nmask.
421  */
queue_pages_required(struct page * page,struct queue_pages * qp)422 static inline bool queue_pages_required(struct page *page,
423 					struct queue_pages *qp)
424 {
425 	int nid = page_to_nid(page);
426 	unsigned long flags = qp->flags;
427 
428 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430 
431 /*
432  * queue_pages_pmd() has four possible return values:
433  * 0 - pages are placed on the right node or queued successfully.
434  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
435  *     specified.
436  * 2 - THP was split.
437  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438  *        existing page was already on a node that does not follow the
439  *        policy.
440  */
queue_pages_pmd(pmd_t * pmd,spinlock_t * ptl,unsigned long addr,unsigned long end,struct mm_walk * walk)441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
442 				unsigned long end, struct mm_walk *walk)
443 {
444 	int ret = 0;
445 	struct page *page;
446 	struct queue_pages *qp = walk->private;
447 	unsigned long flags;
448 
449 	if (unlikely(is_pmd_migration_entry(*pmd))) {
450 		ret = -EIO;
451 		goto unlock;
452 	}
453 	page = pmd_page(*pmd);
454 	if (is_huge_zero_page(page)) {
455 		spin_unlock(ptl);
456 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
457 		ret = 2;
458 		goto out;
459 	}
460 	if (!queue_pages_required(page, qp))
461 		goto unlock;
462 
463 	flags = qp->flags;
464 	/* go to thp migration */
465 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
466 		if (!vma_migratable(walk->vma) ||
467 		    migrate_page_add(page, qp->pagelist, flags)) {
468 			ret = 1;
469 			goto unlock;
470 		}
471 	} else
472 		ret = -EIO;
473 unlock:
474 	spin_unlock(ptl);
475 out:
476 	return ret;
477 }
478 
479 /*
480  * Scan through pages checking if pages follow certain conditions,
481  * and move them to the pagelist if they do.
482  *
483  * queue_pages_pte_range() has three possible return values:
484  * 0 - pages are placed on the right node or queued successfully.
485  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
486  *     specified.
487  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
488  *        on a node that does not follow the policy.
489  */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)490 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
491 			unsigned long end, struct mm_walk *walk)
492 {
493 	struct vm_area_struct *vma = walk->vma;
494 	struct page *page;
495 	struct queue_pages *qp = walk->private;
496 	unsigned long flags = qp->flags;
497 	int ret;
498 	bool has_unmovable = false;
499 	pte_t *pte;
500 	spinlock_t *ptl;
501 
502 	ptl = pmd_trans_huge_lock(pmd, vma);
503 	if (ptl) {
504 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
505 		if (ret != 2)
506 			return ret;
507 	}
508 	/* THP was split, fall through to pte walk */
509 
510 	if (pmd_trans_unstable(pmd))
511 		return 0;
512 
513 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
514 	for (; addr != end; pte++, addr += PAGE_SIZE) {
515 		if (!pte_present(*pte))
516 			continue;
517 		page = vm_normal_page(vma, addr, *pte);
518 		if (!page)
519 			continue;
520 		/*
521 		 * vm_normal_page() filters out zero pages, but there might
522 		 * still be PageReserved pages to skip, perhaps in a VDSO.
523 		 */
524 		if (PageReserved(page))
525 			continue;
526 		if (!queue_pages_required(page, qp))
527 			continue;
528 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
529 			/* MPOL_MF_STRICT must be specified if we get here */
530 			if (!vma_migratable(vma)) {
531 				has_unmovable = true;
532 				break;
533 			}
534 
535 			/*
536 			 * Do not abort immediately since there may be
537 			 * temporary off LRU pages in the range.  Still
538 			 * need migrate other LRU pages.
539 			 */
540 			if (migrate_page_add(page, qp->pagelist, flags))
541 				has_unmovable = true;
542 		} else
543 			break;
544 	}
545 	pte_unmap_unlock(pte - 1, ptl);
546 	cond_resched();
547 
548 	if (has_unmovable)
549 		return 1;
550 
551 	return addr != end ? -EIO : 0;
552 }
553 
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)554 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
555 			       unsigned long addr, unsigned long end,
556 			       struct mm_walk *walk)
557 {
558 #ifdef CONFIG_HUGETLB_PAGE
559 	struct queue_pages *qp = walk->private;
560 	unsigned long flags = qp->flags;
561 	struct page *page;
562 	spinlock_t *ptl;
563 	pte_t entry;
564 
565 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
566 	entry = huge_ptep_get(pte);
567 	if (!pte_present(entry))
568 		goto unlock;
569 	page = pte_page(entry);
570 	if (!queue_pages_required(page, qp))
571 		goto unlock;
572 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
573 	if (flags & (MPOL_MF_MOVE_ALL) ||
574 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
575 		isolate_huge_page(page, qp->pagelist);
576 unlock:
577 	spin_unlock(ptl);
578 #else
579 	BUG();
580 #endif
581 	return 0;
582 }
583 
584 #ifdef CONFIG_NUMA_BALANCING
585 /*
586  * This is used to mark a range of virtual addresses to be inaccessible.
587  * These are later cleared by a NUMA hinting fault. Depending on these
588  * faults, pages may be migrated for better NUMA placement.
589  *
590  * This is assuming that NUMA faults are handled using PROT_NONE. If
591  * an architecture makes a different choice, it will need further
592  * changes to the core.
593  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)594 unsigned long change_prot_numa(struct vm_area_struct *vma,
595 			unsigned long addr, unsigned long end)
596 {
597 	int nr_updated;
598 
599 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
600 	if (nr_updated)
601 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
602 
603 	return nr_updated;
604 }
605 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)606 static unsigned long change_prot_numa(struct vm_area_struct *vma,
607 			unsigned long addr, unsigned long end)
608 {
609 	return 0;
610 }
611 #endif /* CONFIG_NUMA_BALANCING */
612 
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)613 static int queue_pages_test_walk(unsigned long start, unsigned long end,
614 				struct mm_walk *walk)
615 {
616 	struct vm_area_struct *vma = walk->vma;
617 	struct queue_pages *qp = walk->private;
618 	unsigned long endvma = vma->vm_end;
619 	unsigned long flags = qp->flags;
620 
621 	/*
622 	 * Need check MPOL_MF_STRICT to return -EIO if possible
623 	 * regardless of vma_migratable
624 	 */
625 	if (!vma_migratable(vma) &&
626 	    !(flags & MPOL_MF_STRICT))
627 		return 1;
628 
629 	if (endvma > end)
630 		endvma = end;
631 	if (vma->vm_start > start)
632 		start = vma->vm_start;
633 
634 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
635 		if (!vma->vm_next && vma->vm_end < end)
636 			return -EFAULT;
637 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
638 			return -EFAULT;
639 	}
640 
641 	qp->prev = vma;
642 
643 	if (flags & MPOL_MF_LAZY) {
644 		/* Similar to task_numa_work, skip inaccessible VMAs */
645 		if (!is_vm_hugetlb_page(vma) &&
646 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
647 			!(vma->vm_flags & VM_MIXEDMAP))
648 			change_prot_numa(vma, start, endvma);
649 		return 1;
650 	}
651 
652 	/* queue pages from current vma */
653 	if (flags & MPOL_MF_VALID)
654 		return 0;
655 	return 1;
656 }
657 
658 /*
659  * Walk through page tables and collect pages to be migrated.
660  *
661  * If pages found in a given range are on a set of nodes (determined by
662  * @nodes and @flags,) it's isolated and queued to the pagelist which is
663  * passed via @private.
664  *
665  * queue_pages_range() has three possible return values:
666  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
667  *     specified.
668  * 0 - queue pages successfully or no misplaced page.
669  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
670  *         memory range specified by nodemask and maxnode points outside
671  *         your accessible address space (-EFAULT)
672  */
673 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)674 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
675 		nodemask_t *nodes, unsigned long flags,
676 		struct list_head *pagelist)
677 {
678 	struct queue_pages qp = {
679 		.pagelist = pagelist,
680 		.flags = flags,
681 		.nmask = nodes,
682 		.prev = NULL,
683 	};
684 	struct mm_walk queue_pages_walk = {
685 		.hugetlb_entry = queue_pages_hugetlb,
686 		.pmd_entry = queue_pages_pte_range,
687 		.test_walk = queue_pages_test_walk,
688 		.mm = mm,
689 		.private = &qp,
690 	};
691 
692 	return walk_page_range(start, end, &queue_pages_walk);
693 }
694 
695 /*
696  * Apply policy to a single VMA
697  * This must be called with the mmap_sem held for writing.
698  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)699 static int vma_replace_policy(struct vm_area_struct *vma,
700 						struct mempolicy *pol)
701 {
702 	int err;
703 	struct mempolicy *old;
704 	struct mempolicy *new;
705 
706 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
707 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
708 		 vma->vm_ops, vma->vm_file,
709 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
710 
711 	new = mpol_dup(pol);
712 	if (IS_ERR(new))
713 		return PTR_ERR(new);
714 
715 	if (vma->vm_ops && vma->vm_ops->set_policy) {
716 		err = vma->vm_ops->set_policy(vma, new);
717 		if (err)
718 			goto err_out;
719 	}
720 
721 	old = vma->vm_policy;
722 	vma->vm_policy = new; /* protected by mmap_sem */
723 	mpol_put(old);
724 
725 	return 0;
726  err_out:
727 	mpol_put(new);
728 	return err;
729 }
730 
731 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)732 static int mbind_range(struct mm_struct *mm, unsigned long start,
733 		       unsigned long end, struct mempolicy *new_pol)
734 {
735 	struct vm_area_struct *next;
736 	struct vm_area_struct *prev;
737 	struct vm_area_struct *vma;
738 	int err = 0;
739 	pgoff_t pgoff;
740 	unsigned long vmstart;
741 	unsigned long vmend;
742 
743 	vma = find_vma(mm, start);
744 	if (!vma || vma->vm_start > start)
745 		return -EFAULT;
746 
747 	prev = vma->vm_prev;
748 	if (start > vma->vm_start)
749 		prev = vma;
750 
751 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
752 		next = vma->vm_next;
753 		vmstart = max(start, vma->vm_start);
754 		vmend   = min(end, vma->vm_end);
755 
756 		if (mpol_equal(vma_policy(vma), new_pol))
757 			continue;
758 
759 		pgoff = vma->vm_pgoff +
760 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
761 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
762 				 vma->anon_vma, vma->vm_file, pgoff,
763 				 new_pol, vma->vm_userfaultfd_ctx);
764 		if (prev) {
765 			vma = prev;
766 			next = vma->vm_next;
767 			if (mpol_equal(vma_policy(vma), new_pol))
768 				continue;
769 			/* vma_merge() joined vma && vma->next, case 8 */
770 			goto replace;
771 		}
772 		if (vma->vm_start != vmstart) {
773 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
774 			if (err)
775 				goto out;
776 		}
777 		if (vma->vm_end != vmend) {
778 			err = split_vma(vma->vm_mm, vma, vmend, 0);
779 			if (err)
780 				goto out;
781 		}
782  replace:
783 		err = vma_replace_policy(vma, new_pol);
784 		if (err)
785 			goto out;
786 	}
787 
788  out:
789 	return err;
790 }
791 
792 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)793 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
794 			     nodemask_t *nodes)
795 {
796 	struct mempolicy *new, *old;
797 	NODEMASK_SCRATCH(scratch);
798 	int ret;
799 
800 	if (!scratch)
801 		return -ENOMEM;
802 
803 	new = mpol_new(mode, flags, nodes);
804 	if (IS_ERR(new)) {
805 		ret = PTR_ERR(new);
806 		goto out;
807 	}
808 
809 	task_lock(current);
810 	ret = mpol_set_nodemask(new, nodes, scratch);
811 	if (ret) {
812 		task_unlock(current);
813 		mpol_put(new);
814 		goto out;
815 	}
816 	old = current->mempolicy;
817 	current->mempolicy = new;
818 	if (new && new->mode == MPOL_INTERLEAVE)
819 		current->il_prev = MAX_NUMNODES-1;
820 	task_unlock(current);
821 	mpol_put(old);
822 	ret = 0;
823 out:
824 	NODEMASK_SCRATCH_FREE(scratch);
825 	return ret;
826 }
827 
828 /*
829  * Return nodemask for policy for get_mempolicy() query
830  *
831  * Called with task's alloc_lock held
832  */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)833 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
834 {
835 	nodes_clear(*nodes);
836 	if (p == &default_policy)
837 		return;
838 
839 	switch (p->mode) {
840 	case MPOL_BIND:
841 		/* Fall through */
842 	case MPOL_INTERLEAVE:
843 		*nodes = p->v.nodes;
844 		break;
845 	case MPOL_PREFERRED:
846 		if (!(p->flags & MPOL_F_LOCAL))
847 			node_set(p->v.preferred_node, *nodes);
848 		/* else return empty node mask for local allocation */
849 		break;
850 	default:
851 		BUG();
852 	}
853 }
854 
lookup_node(unsigned long addr)855 static int lookup_node(unsigned long addr)
856 {
857 	struct page *p;
858 	int err;
859 
860 	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
861 	if (err >= 0) {
862 		err = page_to_nid(p);
863 		put_page(p);
864 	}
865 	return err;
866 }
867 
868 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)869 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
870 			     unsigned long addr, unsigned long flags)
871 {
872 	int err;
873 	struct mm_struct *mm = current->mm;
874 	struct vm_area_struct *vma = NULL;
875 	struct mempolicy *pol = current->mempolicy;
876 
877 	if (flags &
878 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
879 		return -EINVAL;
880 
881 	if (flags & MPOL_F_MEMS_ALLOWED) {
882 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
883 			return -EINVAL;
884 		*policy = 0;	/* just so it's initialized */
885 		task_lock(current);
886 		*nmask  = cpuset_current_mems_allowed;
887 		task_unlock(current);
888 		return 0;
889 	}
890 
891 	if (flags & MPOL_F_ADDR) {
892 		/*
893 		 * Do NOT fall back to task policy if the
894 		 * vma/shared policy at addr is NULL.  We
895 		 * want to return MPOL_DEFAULT in this case.
896 		 */
897 		down_read(&mm->mmap_sem);
898 		vma = find_vma_intersection(mm, addr, addr+1);
899 		if (!vma) {
900 			up_read(&mm->mmap_sem);
901 			return -EFAULT;
902 		}
903 		if (vma->vm_ops && vma->vm_ops->get_policy)
904 			pol = vma->vm_ops->get_policy(vma, addr);
905 		else
906 			pol = vma->vm_policy;
907 	} else if (addr)
908 		return -EINVAL;
909 
910 	if (!pol)
911 		pol = &default_policy;	/* indicates default behavior */
912 
913 	if (flags & MPOL_F_NODE) {
914 		if (flags & MPOL_F_ADDR) {
915 			err = lookup_node(addr);
916 			if (err < 0)
917 				goto out;
918 			*policy = err;
919 		} else if (pol == current->mempolicy &&
920 				pol->mode == MPOL_INTERLEAVE) {
921 			*policy = next_node_in(current->il_prev, pol->v.nodes);
922 		} else {
923 			err = -EINVAL;
924 			goto out;
925 		}
926 	} else {
927 		*policy = pol == &default_policy ? MPOL_DEFAULT :
928 						pol->mode;
929 		/*
930 		 * Internal mempolicy flags must be masked off before exposing
931 		 * the policy to userspace.
932 		 */
933 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
934 	}
935 
936 	err = 0;
937 	if (nmask) {
938 		if (mpol_store_user_nodemask(pol)) {
939 			*nmask = pol->w.user_nodemask;
940 		} else {
941 			task_lock(current);
942 			get_policy_nodemask(pol, nmask);
943 			task_unlock(current);
944 		}
945 	}
946 
947  out:
948 	mpol_cond_put(pol);
949 	if (vma)
950 		up_read(&current->mm->mmap_sem);
951 	return err;
952 }
953 
954 #ifdef CONFIG_MIGRATION
955 /*
956  * page migration, thp tail pages can be passed.
957  */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)958 static int migrate_page_add(struct page *page, struct list_head *pagelist,
959 				unsigned long flags)
960 {
961 	struct page *head = compound_head(page);
962 	/*
963 	 * Avoid migrating a page that is shared with others.
964 	 */
965 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
966 		if (!isolate_lru_page(head)) {
967 			list_add_tail(&head->lru, pagelist);
968 			mod_node_page_state(page_pgdat(head),
969 				NR_ISOLATED_ANON + page_is_file_cache(head),
970 				hpage_nr_pages(head));
971 		} else if (flags & MPOL_MF_STRICT) {
972 			/*
973 			 * Non-movable page may reach here.  And, there may be
974 			 * temporary off LRU pages or non-LRU movable pages.
975 			 * Treat them as unmovable pages since they can't be
976 			 * isolated, so they can't be moved at the moment.  It
977 			 * should return -EIO for this case too.
978 			 */
979 			return -EIO;
980 		}
981 	}
982 
983 	return 0;
984 }
985 
986 /* page allocation callback for NUMA node migration */
alloc_new_node_page(struct page * page,unsigned long node)987 struct page *alloc_new_node_page(struct page *page, unsigned long node)
988 {
989 	if (PageHuge(page))
990 		return alloc_huge_page_node(page_hstate(compound_head(page)),
991 					node);
992 	else if (PageTransHuge(page)) {
993 		struct page *thp;
994 
995 		thp = alloc_pages_node(node,
996 			(GFP_TRANSHUGE | __GFP_THISNODE),
997 			HPAGE_PMD_ORDER);
998 		if (!thp)
999 			return NULL;
1000 		prep_transhuge_page(thp);
1001 		return thp;
1002 	} else
1003 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1004 						    __GFP_THISNODE, 0);
1005 }
1006 
1007 /*
1008  * Migrate pages from one node to a target node.
1009  * Returns error or the number of pages not migrated.
1010  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1011 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1012 			   int flags)
1013 {
1014 	nodemask_t nmask;
1015 	LIST_HEAD(pagelist);
1016 	int err = 0;
1017 
1018 	nodes_clear(nmask);
1019 	node_set(source, nmask);
1020 
1021 	/*
1022 	 * This does not "check" the range but isolates all pages that
1023 	 * need migration.  Between passing in the full user address
1024 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1025 	 */
1026 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1027 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1028 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1029 
1030 	if (!list_empty(&pagelist)) {
1031 		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1032 					MIGRATE_SYNC, MR_SYSCALL);
1033 		if (err)
1034 			putback_movable_pages(&pagelist);
1035 	}
1036 
1037 	return err;
1038 }
1039 
1040 /*
1041  * Move pages between the two nodesets so as to preserve the physical
1042  * layout as much as possible.
1043  *
1044  * Returns the number of page that could not be moved.
1045  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1046 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1047 		     const nodemask_t *to, int flags)
1048 {
1049 	int busy = 0;
1050 	int err;
1051 	nodemask_t tmp;
1052 
1053 	err = migrate_prep();
1054 	if (err)
1055 		return err;
1056 
1057 	down_read(&mm->mmap_sem);
1058 
1059 	/*
1060 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1061 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1062 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1063 	 * The pair of nodemasks 'to' and 'from' define the map.
1064 	 *
1065 	 * If no pair of bits is found that way, fallback to picking some
1066 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1067 	 * 'source' and 'dest' bits are the same, this represents a node
1068 	 * that will be migrating to itself, so no pages need move.
1069 	 *
1070 	 * If no bits are left in 'tmp', or if all remaining bits left
1071 	 * in 'tmp' correspond to the same bit in 'to', return false
1072 	 * (nothing left to migrate).
1073 	 *
1074 	 * This lets us pick a pair of nodes to migrate between, such that
1075 	 * if possible the dest node is not already occupied by some other
1076 	 * source node, minimizing the risk of overloading the memory on a
1077 	 * node that would happen if we migrated incoming memory to a node
1078 	 * before migrating outgoing memory source that same node.
1079 	 *
1080 	 * A single scan of tmp is sufficient.  As we go, we remember the
1081 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1082 	 * that not only moved, but what's better, moved to an empty slot
1083 	 * (d is not set in tmp), then we break out then, with that pair.
1084 	 * Otherwise when we finish scanning from_tmp, we at least have the
1085 	 * most recent <s, d> pair that moved.  If we get all the way through
1086 	 * the scan of tmp without finding any node that moved, much less
1087 	 * moved to an empty node, then there is nothing left worth migrating.
1088 	 */
1089 
1090 	tmp = *from;
1091 	while (!nodes_empty(tmp)) {
1092 		int s,d;
1093 		int source = NUMA_NO_NODE;
1094 		int dest = 0;
1095 
1096 		for_each_node_mask(s, tmp) {
1097 
1098 			/*
1099 			 * do_migrate_pages() tries to maintain the relative
1100 			 * node relationship of the pages established between
1101 			 * threads and memory areas.
1102                          *
1103 			 * However if the number of source nodes is not equal to
1104 			 * the number of destination nodes we can not preserve
1105 			 * this node relative relationship.  In that case, skip
1106 			 * copying memory from a node that is in the destination
1107 			 * mask.
1108 			 *
1109 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1110 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1111 			 */
1112 
1113 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1114 						(node_isset(s, *to)))
1115 				continue;
1116 
1117 			d = node_remap(s, *from, *to);
1118 			if (s == d)
1119 				continue;
1120 
1121 			source = s;	/* Node moved. Memorize */
1122 			dest = d;
1123 
1124 			/* dest not in remaining from nodes? */
1125 			if (!node_isset(dest, tmp))
1126 				break;
1127 		}
1128 		if (source == NUMA_NO_NODE)
1129 			break;
1130 
1131 		node_clear(source, tmp);
1132 		err = migrate_to_node(mm, source, dest, flags);
1133 		if (err > 0)
1134 			busy += err;
1135 		if (err < 0)
1136 			break;
1137 	}
1138 	up_read(&mm->mmap_sem);
1139 	if (err < 0)
1140 		return err;
1141 	return busy;
1142 
1143 }
1144 
1145 /*
1146  * Allocate a new page for page migration based on vma policy.
1147  * Start by assuming the page is mapped by the same vma as contains @start.
1148  * Search forward from there, if not.  N.B., this assumes that the
1149  * list of pages handed to migrate_pages()--which is how we get here--
1150  * is in virtual address order.
1151  */
new_page(struct page * page,unsigned long start)1152 static struct page *new_page(struct page *page, unsigned long start)
1153 {
1154 	struct vm_area_struct *vma;
1155 	unsigned long uninitialized_var(address);
1156 
1157 	vma = find_vma(current->mm, start);
1158 	while (vma) {
1159 		address = page_address_in_vma(page, vma);
1160 		if (address != -EFAULT)
1161 			break;
1162 		vma = vma->vm_next;
1163 	}
1164 
1165 	if (PageHuge(page)) {
1166 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1167 				vma, address);
1168 	} else if (PageTransHuge(page)) {
1169 		struct page *thp;
1170 
1171 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1172 					 HPAGE_PMD_ORDER);
1173 		if (!thp)
1174 			return NULL;
1175 		prep_transhuge_page(thp);
1176 		return thp;
1177 	}
1178 	/*
1179 	 * if !vma, alloc_page_vma() will use task or system default policy
1180 	 */
1181 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1182 			vma, address);
1183 }
1184 #else
1185 
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1186 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1187 				unsigned long flags)
1188 {
1189 	return -EIO;
1190 }
1191 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1192 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1193 		     const nodemask_t *to, int flags)
1194 {
1195 	return -ENOSYS;
1196 }
1197 
new_page(struct page * page,unsigned long start)1198 static struct page *new_page(struct page *page, unsigned long start)
1199 {
1200 	return NULL;
1201 }
1202 #endif
1203 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1204 static long do_mbind(unsigned long start, unsigned long len,
1205 		     unsigned short mode, unsigned short mode_flags,
1206 		     nodemask_t *nmask, unsigned long flags)
1207 {
1208 	struct mm_struct *mm = current->mm;
1209 	struct mempolicy *new;
1210 	unsigned long end;
1211 	int err;
1212 	int ret;
1213 	LIST_HEAD(pagelist);
1214 
1215 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1216 		return -EINVAL;
1217 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1218 		return -EPERM;
1219 
1220 	if (start & ~PAGE_MASK)
1221 		return -EINVAL;
1222 
1223 	if (mode == MPOL_DEFAULT)
1224 		flags &= ~MPOL_MF_STRICT;
1225 
1226 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1227 	end = start + len;
1228 
1229 	if (end < start)
1230 		return -EINVAL;
1231 	if (end == start)
1232 		return 0;
1233 
1234 	new = mpol_new(mode, mode_flags, nmask);
1235 	if (IS_ERR(new))
1236 		return PTR_ERR(new);
1237 
1238 	if (flags & MPOL_MF_LAZY)
1239 		new->flags |= MPOL_F_MOF;
1240 
1241 	/*
1242 	 * If we are using the default policy then operation
1243 	 * on discontinuous address spaces is okay after all
1244 	 */
1245 	if (!new)
1246 		flags |= MPOL_MF_DISCONTIG_OK;
1247 
1248 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1249 		 start, start + len, mode, mode_flags,
1250 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1251 
1252 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1253 
1254 		err = migrate_prep();
1255 		if (err)
1256 			goto mpol_out;
1257 	}
1258 	{
1259 		NODEMASK_SCRATCH(scratch);
1260 		if (scratch) {
1261 			down_write(&mm->mmap_sem);
1262 			task_lock(current);
1263 			err = mpol_set_nodemask(new, nmask, scratch);
1264 			task_unlock(current);
1265 			if (err)
1266 				up_write(&mm->mmap_sem);
1267 		} else
1268 			err = -ENOMEM;
1269 		NODEMASK_SCRATCH_FREE(scratch);
1270 	}
1271 	if (err)
1272 		goto mpol_out;
1273 
1274 	ret = queue_pages_range(mm, start, end, nmask,
1275 			  flags | MPOL_MF_INVERT, &pagelist);
1276 
1277 	if (ret < 0) {
1278 		err = ret;
1279 		goto up_out;
1280 	}
1281 
1282 	err = mbind_range(mm, start, end, new);
1283 
1284 	if (!err) {
1285 		int nr_failed = 0;
1286 
1287 		if (!list_empty(&pagelist)) {
1288 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1289 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1290 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1291 			if (nr_failed)
1292 				putback_movable_pages(&pagelist);
1293 		}
1294 
1295 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1296 			err = -EIO;
1297 	} else {
1298 up_out:
1299 		if (!list_empty(&pagelist))
1300 			putback_movable_pages(&pagelist);
1301 	}
1302 
1303 	up_write(&mm->mmap_sem);
1304 mpol_out:
1305 	mpol_put(new);
1306 	return err;
1307 }
1308 
1309 /*
1310  * User space interface with variable sized bitmaps for nodelists.
1311  */
1312 
1313 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1314 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1315 		     unsigned long maxnode)
1316 {
1317 	unsigned long k;
1318 	unsigned long t;
1319 	unsigned long nlongs;
1320 	unsigned long endmask;
1321 
1322 	--maxnode;
1323 	nodes_clear(*nodes);
1324 	if (maxnode == 0 || !nmask)
1325 		return 0;
1326 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1327 		return -EINVAL;
1328 
1329 	nlongs = BITS_TO_LONGS(maxnode);
1330 	if ((maxnode % BITS_PER_LONG) == 0)
1331 		endmask = ~0UL;
1332 	else
1333 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1334 
1335 	/*
1336 	 * When the user specified more nodes than supported just check
1337 	 * if the non supported part is all zero.
1338 	 *
1339 	 * If maxnode have more longs than MAX_NUMNODES, check
1340 	 * the bits in that area first. And then go through to
1341 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1342 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1343 	 */
1344 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1345 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1346 			if (get_user(t, nmask + k))
1347 				return -EFAULT;
1348 			if (k == nlongs - 1) {
1349 				if (t & endmask)
1350 					return -EINVAL;
1351 			} else if (t)
1352 				return -EINVAL;
1353 		}
1354 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1355 		endmask = ~0UL;
1356 	}
1357 
1358 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1359 		unsigned long valid_mask = endmask;
1360 
1361 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1362 		if (get_user(t, nmask + nlongs - 1))
1363 			return -EFAULT;
1364 		if (t & valid_mask)
1365 			return -EINVAL;
1366 	}
1367 
1368 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1369 		return -EFAULT;
1370 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1371 	return 0;
1372 }
1373 
1374 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1375 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1376 			      nodemask_t *nodes)
1377 {
1378 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1379 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1380 
1381 	if (copy > nbytes) {
1382 		if (copy > PAGE_SIZE)
1383 			return -EINVAL;
1384 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1385 			return -EFAULT;
1386 		copy = nbytes;
1387 	}
1388 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1389 }
1390 
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1391 static long kernel_mbind(unsigned long start, unsigned long len,
1392 			 unsigned long mode, const unsigned long __user *nmask,
1393 			 unsigned long maxnode, unsigned int flags)
1394 {
1395 	nodemask_t nodes;
1396 	int err;
1397 	unsigned short mode_flags;
1398 
1399 	mode_flags = mode & MPOL_MODE_FLAGS;
1400 	mode &= ~MPOL_MODE_FLAGS;
1401 	if (mode >= MPOL_MAX)
1402 		return -EINVAL;
1403 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1404 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1405 		return -EINVAL;
1406 	err = get_nodes(&nodes, nmask, maxnode);
1407 	if (err)
1408 		return err;
1409 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1410 }
1411 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1412 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1413 		unsigned long, mode, const unsigned long __user *, nmask,
1414 		unsigned long, maxnode, unsigned int, flags)
1415 {
1416 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1417 }
1418 
1419 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1420 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1421 				 unsigned long maxnode)
1422 {
1423 	int err;
1424 	nodemask_t nodes;
1425 	unsigned short flags;
1426 
1427 	flags = mode & MPOL_MODE_FLAGS;
1428 	mode &= ~MPOL_MODE_FLAGS;
1429 	if ((unsigned int)mode >= MPOL_MAX)
1430 		return -EINVAL;
1431 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1432 		return -EINVAL;
1433 	err = get_nodes(&nodes, nmask, maxnode);
1434 	if (err)
1435 		return err;
1436 	return do_set_mempolicy(mode, flags, &nodes);
1437 }
1438 
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1439 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1440 		unsigned long, maxnode)
1441 {
1442 	return kernel_set_mempolicy(mode, nmask, maxnode);
1443 }
1444 
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1445 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1446 				const unsigned long __user *old_nodes,
1447 				const unsigned long __user *new_nodes)
1448 {
1449 	struct mm_struct *mm = NULL;
1450 	struct task_struct *task;
1451 	nodemask_t task_nodes;
1452 	int err;
1453 	nodemask_t *old;
1454 	nodemask_t *new;
1455 	NODEMASK_SCRATCH(scratch);
1456 
1457 	if (!scratch)
1458 		return -ENOMEM;
1459 
1460 	old = &scratch->mask1;
1461 	new = &scratch->mask2;
1462 
1463 	err = get_nodes(old, old_nodes, maxnode);
1464 	if (err)
1465 		goto out;
1466 
1467 	err = get_nodes(new, new_nodes, maxnode);
1468 	if (err)
1469 		goto out;
1470 
1471 	/* Find the mm_struct */
1472 	rcu_read_lock();
1473 	task = pid ? find_task_by_vpid(pid) : current;
1474 	if (!task) {
1475 		rcu_read_unlock();
1476 		err = -ESRCH;
1477 		goto out;
1478 	}
1479 	get_task_struct(task);
1480 
1481 	err = -EINVAL;
1482 
1483 	/*
1484 	 * Check if this process has the right to modify the specified process.
1485 	 * Use the regular "ptrace_may_access()" checks.
1486 	 */
1487 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1488 		rcu_read_unlock();
1489 		err = -EPERM;
1490 		goto out_put;
1491 	}
1492 	rcu_read_unlock();
1493 
1494 	task_nodes = cpuset_mems_allowed(task);
1495 	/* Is the user allowed to access the target nodes? */
1496 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1497 		err = -EPERM;
1498 		goto out_put;
1499 	}
1500 
1501 	task_nodes = cpuset_mems_allowed(current);
1502 	nodes_and(*new, *new, task_nodes);
1503 	if (nodes_empty(*new))
1504 		goto out_put;
1505 
1506 	nodes_and(*new, *new, node_states[N_MEMORY]);
1507 	if (nodes_empty(*new))
1508 		goto out_put;
1509 
1510 	err = security_task_movememory(task);
1511 	if (err)
1512 		goto out_put;
1513 
1514 	mm = get_task_mm(task);
1515 	put_task_struct(task);
1516 
1517 	if (!mm) {
1518 		err = -EINVAL;
1519 		goto out;
1520 	}
1521 
1522 	err = do_migrate_pages(mm, old, new,
1523 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1524 
1525 	mmput(mm);
1526 out:
1527 	NODEMASK_SCRATCH_FREE(scratch);
1528 
1529 	return err;
1530 
1531 out_put:
1532 	put_task_struct(task);
1533 	goto out;
1534 
1535 }
1536 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1537 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1538 		const unsigned long __user *, old_nodes,
1539 		const unsigned long __user *, new_nodes)
1540 {
1541 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1542 }
1543 
1544 
1545 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1546 static int kernel_get_mempolicy(int __user *policy,
1547 				unsigned long __user *nmask,
1548 				unsigned long maxnode,
1549 				unsigned long addr,
1550 				unsigned long flags)
1551 {
1552 	int err;
1553 	int uninitialized_var(pval);
1554 	nodemask_t nodes;
1555 
1556 	if (nmask != NULL && maxnode < nr_node_ids)
1557 		return -EINVAL;
1558 
1559 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1560 
1561 	if (err)
1562 		return err;
1563 
1564 	if (policy && put_user(pval, policy))
1565 		return -EFAULT;
1566 
1567 	if (nmask)
1568 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1569 
1570 	return err;
1571 }
1572 
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1573 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1574 		unsigned long __user *, nmask, unsigned long, maxnode,
1575 		unsigned long, addr, unsigned long, flags)
1576 {
1577 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1578 }
1579 
1580 #ifdef CONFIG_COMPAT
1581 
COMPAT_SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,addr,compat_ulong_t,flags)1582 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1583 		       compat_ulong_t __user *, nmask,
1584 		       compat_ulong_t, maxnode,
1585 		       compat_ulong_t, addr, compat_ulong_t, flags)
1586 {
1587 	long err;
1588 	unsigned long __user *nm = NULL;
1589 	unsigned long nr_bits, alloc_size;
1590 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1591 
1592 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1593 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1594 
1595 	if (nmask)
1596 		nm = compat_alloc_user_space(alloc_size);
1597 
1598 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1599 
1600 	if (!err && nmask) {
1601 		unsigned long copy_size;
1602 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1603 		err = copy_from_user(bm, nm, copy_size);
1604 		/* ensure entire bitmap is zeroed */
1605 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1606 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1607 	}
1608 
1609 	return err;
1610 }
1611 
COMPAT_SYSCALL_DEFINE3(set_mempolicy,int,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode)1612 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1613 		       compat_ulong_t, maxnode)
1614 {
1615 	unsigned long __user *nm = NULL;
1616 	unsigned long nr_bits, alloc_size;
1617 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1618 
1619 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1620 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1621 
1622 	if (nmask) {
1623 		if (compat_get_bitmap(bm, nmask, nr_bits))
1624 			return -EFAULT;
1625 		nm = compat_alloc_user_space(alloc_size);
1626 		if (copy_to_user(nm, bm, alloc_size))
1627 			return -EFAULT;
1628 	}
1629 
1630 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1631 }
1632 
COMPAT_SYSCALL_DEFINE6(mbind,compat_ulong_t,start,compat_ulong_t,len,compat_ulong_t,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,flags)1633 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1634 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1635 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1636 {
1637 	unsigned long __user *nm = NULL;
1638 	unsigned long nr_bits, alloc_size;
1639 	nodemask_t bm;
1640 
1641 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1642 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1643 
1644 	if (nmask) {
1645 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1646 			return -EFAULT;
1647 		nm = compat_alloc_user_space(alloc_size);
1648 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1649 			return -EFAULT;
1650 	}
1651 
1652 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1653 }
1654 
COMPAT_SYSCALL_DEFINE4(migrate_pages,compat_pid_t,pid,compat_ulong_t,maxnode,const compat_ulong_t __user *,old_nodes,const compat_ulong_t __user *,new_nodes)1655 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1656 		       compat_ulong_t, maxnode,
1657 		       const compat_ulong_t __user *, old_nodes,
1658 		       const compat_ulong_t __user *, new_nodes)
1659 {
1660 	unsigned long __user *old = NULL;
1661 	unsigned long __user *new = NULL;
1662 	nodemask_t tmp_mask;
1663 	unsigned long nr_bits;
1664 	unsigned long size;
1665 
1666 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1667 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1668 	if (old_nodes) {
1669 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1670 			return -EFAULT;
1671 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1672 		if (new_nodes)
1673 			new = old + size / sizeof(unsigned long);
1674 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1675 			return -EFAULT;
1676 	}
1677 	if (new_nodes) {
1678 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1679 			return -EFAULT;
1680 		if (new == NULL)
1681 			new = compat_alloc_user_space(size);
1682 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1683 			return -EFAULT;
1684 	}
1685 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1686 }
1687 
1688 #endif /* CONFIG_COMPAT */
1689 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1690 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1691 						unsigned long addr)
1692 {
1693 	struct mempolicy *pol = NULL;
1694 
1695 	if (vma) {
1696 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1697 			pol = vma->vm_ops->get_policy(vma, addr);
1698 		} else if (vma->vm_policy) {
1699 			pol = vma->vm_policy;
1700 
1701 			/*
1702 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1703 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1704 			 * count on these policies which will be dropped by
1705 			 * mpol_cond_put() later
1706 			 */
1707 			if (mpol_needs_cond_ref(pol))
1708 				mpol_get(pol);
1709 		}
1710 	}
1711 
1712 	return pol;
1713 }
1714 
1715 /*
1716  * get_vma_policy(@vma, @addr)
1717  * @vma: virtual memory area whose policy is sought
1718  * @addr: address in @vma for shared policy lookup
1719  *
1720  * Returns effective policy for a VMA at specified address.
1721  * Falls back to current->mempolicy or system default policy, as necessary.
1722  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1723  * count--added by the get_policy() vm_op, as appropriate--to protect against
1724  * freeing by another task.  It is the caller's responsibility to free the
1725  * extra reference for shared policies.
1726  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1727 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1728 						unsigned long addr)
1729 {
1730 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1731 
1732 	if (!pol)
1733 		pol = get_task_policy(current);
1734 
1735 	return pol;
1736 }
1737 
vma_policy_mof(struct vm_area_struct * vma)1738 bool vma_policy_mof(struct vm_area_struct *vma)
1739 {
1740 	struct mempolicy *pol;
1741 
1742 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1743 		bool ret = false;
1744 
1745 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1746 		if (pol && (pol->flags & MPOL_F_MOF))
1747 			ret = true;
1748 		mpol_cond_put(pol);
1749 
1750 		return ret;
1751 	}
1752 
1753 	pol = vma->vm_policy;
1754 	if (!pol)
1755 		pol = get_task_policy(current);
1756 
1757 	return pol->flags & MPOL_F_MOF;
1758 }
1759 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1760 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1761 {
1762 	enum zone_type dynamic_policy_zone = policy_zone;
1763 
1764 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1765 
1766 	/*
1767 	 * if policy->v.nodes has movable memory only,
1768 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1769 	 *
1770 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1771 	 * so if the following test faile, it implies
1772 	 * policy->v.nodes has movable memory only.
1773 	 */
1774 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1775 		dynamic_policy_zone = ZONE_MOVABLE;
1776 
1777 	return zone >= dynamic_policy_zone;
1778 }
1779 
1780 /*
1781  * Return a nodemask representing a mempolicy for filtering nodes for
1782  * page allocation
1783  */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1784 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1785 {
1786 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1787 	if (unlikely(policy->mode == MPOL_BIND) &&
1788 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1789 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1790 		return &policy->v.nodes;
1791 
1792 	return NULL;
1793 }
1794 
1795 /* Return the node id preferred by the given mempolicy, or the given id */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1796 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1797 								int nd)
1798 {
1799 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1800 		nd = policy->v.preferred_node;
1801 	else {
1802 		/*
1803 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1804 		 * because we might easily break the expectation to stay on the
1805 		 * requested node and not break the policy.
1806 		 */
1807 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1808 	}
1809 
1810 	return nd;
1811 }
1812 
1813 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1814 static unsigned interleave_nodes(struct mempolicy *policy)
1815 {
1816 	unsigned next;
1817 	struct task_struct *me = current;
1818 
1819 	next = next_node_in(me->il_prev, policy->v.nodes);
1820 	if (next < MAX_NUMNODES)
1821 		me->il_prev = next;
1822 	return next;
1823 }
1824 
1825 /*
1826  * Depending on the memory policy provide a node from which to allocate the
1827  * next slab entry.
1828  */
mempolicy_slab_node(void)1829 unsigned int mempolicy_slab_node(void)
1830 {
1831 	struct mempolicy *policy;
1832 	int node = numa_mem_id();
1833 
1834 	if (in_interrupt())
1835 		return node;
1836 
1837 	policy = current->mempolicy;
1838 	if (!policy || policy->flags & MPOL_F_LOCAL)
1839 		return node;
1840 
1841 	switch (policy->mode) {
1842 	case MPOL_PREFERRED:
1843 		/*
1844 		 * handled MPOL_F_LOCAL above
1845 		 */
1846 		return policy->v.preferred_node;
1847 
1848 	case MPOL_INTERLEAVE:
1849 		return interleave_nodes(policy);
1850 
1851 	case MPOL_BIND: {
1852 		struct zoneref *z;
1853 
1854 		/*
1855 		 * Follow bind policy behavior and start allocation at the
1856 		 * first node.
1857 		 */
1858 		struct zonelist *zonelist;
1859 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1860 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1861 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1862 							&policy->v.nodes);
1863 		return z->zone ? zone_to_nid(z->zone) : node;
1864 	}
1865 
1866 	default:
1867 		BUG();
1868 	}
1869 }
1870 
1871 /*
1872  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1873  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1874  * number of present nodes.
1875  */
offset_il_node(struct mempolicy * pol,unsigned long n)1876 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1877 {
1878 	unsigned nnodes = nodes_weight(pol->v.nodes);
1879 	unsigned target;
1880 	int i;
1881 	int nid;
1882 
1883 	if (!nnodes)
1884 		return numa_node_id();
1885 	target = (unsigned int)n % nnodes;
1886 	nid = first_node(pol->v.nodes);
1887 	for (i = 0; i < target; i++)
1888 		nid = next_node(nid, pol->v.nodes);
1889 	return nid;
1890 }
1891 
1892 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1893 static inline unsigned interleave_nid(struct mempolicy *pol,
1894 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1895 {
1896 	if (vma) {
1897 		unsigned long off;
1898 
1899 		/*
1900 		 * for small pages, there is no difference between
1901 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1902 		 * for huge pages, since vm_pgoff is in units of small
1903 		 * pages, we need to shift off the always 0 bits to get
1904 		 * a useful offset.
1905 		 */
1906 		BUG_ON(shift < PAGE_SHIFT);
1907 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1908 		off += (addr - vma->vm_start) >> shift;
1909 		return offset_il_node(pol, off);
1910 	} else
1911 		return interleave_nodes(pol);
1912 }
1913 
1914 #ifdef CONFIG_HUGETLBFS
1915 /*
1916  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1917  * @vma: virtual memory area whose policy is sought
1918  * @addr: address in @vma for shared policy lookup and interleave policy
1919  * @gfp_flags: for requested zone
1920  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1921  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1922  *
1923  * Returns a nid suitable for a huge page allocation and a pointer
1924  * to the struct mempolicy for conditional unref after allocation.
1925  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1926  * @nodemask for filtering the zonelist.
1927  *
1928  * Must be protected by read_mems_allowed_begin()
1929  */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)1930 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1931 				struct mempolicy **mpol, nodemask_t **nodemask)
1932 {
1933 	int nid;
1934 
1935 	*mpol = get_vma_policy(vma, addr);
1936 	*nodemask = NULL;	/* assume !MPOL_BIND */
1937 
1938 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1939 		nid = interleave_nid(*mpol, vma, addr,
1940 					huge_page_shift(hstate_vma(vma)));
1941 	} else {
1942 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1943 		if ((*mpol)->mode == MPOL_BIND)
1944 			*nodemask = &(*mpol)->v.nodes;
1945 	}
1946 	return nid;
1947 }
1948 
1949 /*
1950  * init_nodemask_of_mempolicy
1951  *
1952  * If the current task's mempolicy is "default" [NULL], return 'false'
1953  * to indicate default policy.  Otherwise, extract the policy nodemask
1954  * for 'bind' or 'interleave' policy into the argument nodemask, or
1955  * initialize the argument nodemask to contain the single node for
1956  * 'preferred' or 'local' policy and return 'true' to indicate presence
1957  * of non-default mempolicy.
1958  *
1959  * We don't bother with reference counting the mempolicy [mpol_get/put]
1960  * because the current task is examining it's own mempolicy and a task's
1961  * mempolicy is only ever changed by the task itself.
1962  *
1963  * N.B., it is the caller's responsibility to free a returned nodemask.
1964  */
init_nodemask_of_mempolicy(nodemask_t * mask)1965 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1966 {
1967 	struct mempolicy *mempolicy;
1968 	int nid;
1969 
1970 	if (!(mask && current->mempolicy))
1971 		return false;
1972 
1973 	task_lock(current);
1974 	mempolicy = current->mempolicy;
1975 	switch (mempolicy->mode) {
1976 	case MPOL_PREFERRED:
1977 		if (mempolicy->flags & MPOL_F_LOCAL)
1978 			nid = numa_node_id();
1979 		else
1980 			nid = mempolicy->v.preferred_node;
1981 		init_nodemask_of_node(mask, nid);
1982 		break;
1983 
1984 	case MPOL_BIND:
1985 		/* Fall through */
1986 	case MPOL_INTERLEAVE:
1987 		*mask =  mempolicy->v.nodes;
1988 		break;
1989 
1990 	default:
1991 		BUG();
1992 	}
1993 	task_unlock(current);
1994 
1995 	return true;
1996 }
1997 #endif
1998 
1999 /*
2000  * mempolicy_nodemask_intersects
2001  *
2002  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2003  * policy.  Otherwise, check for intersection between mask and the policy
2004  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2005  * policy, always return true since it may allocate elsewhere on fallback.
2006  *
2007  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2008  */
mempolicy_nodemask_intersects(struct task_struct * tsk,const nodemask_t * mask)2009 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2010 					const nodemask_t *mask)
2011 {
2012 	struct mempolicy *mempolicy;
2013 	bool ret = true;
2014 
2015 	if (!mask)
2016 		return ret;
2017 	task_lock(tsk);
2018 	mempolicy = tsk->mempolicy;
2019 	if (!mempolicy)
2020 		goto out;
2021 
2022 	switch (mempolicy->mode) {
2023 	case MPOL_PREFERRED:
2024 		/*
2025 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2026 		 * allocate from, they may fallback to other nodes when oom.
2027 		 * Thus, it's possible for tsk to have allocated memory from
2028 		 * nodes in mask.
2029 		 */
2030 		break;
2031 	case MPOL_BIND:
2032 	case MPOL_INTERLEAVE:
2033 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2034 		break;
2035 	default:
2036 		BUG();
2037 	}
2038 out:
2039 	task_unlock(tsk);
2040 	return ret;
2041 }
2042 
2043 /* Allocate a page in interleaved policy.
2044    Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)2045 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2046 					unsigned nid)
2047 {
2048 	struct page *page;
2049 
2050 	page = __alloc_pages(gfp, order, nid);
2051 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2052 	if (!static_branch_likely(&vm_numa_stat_key))
2053 		return page;
2054 	if (page && page_to_nid(page) == nid) {
2055 		preempt_disable();
2056 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2057 		preempt_enable();
2058 	}
2059 	return page;
2060 }
2061 
2062 /**
2063  * 	alloc_pages_vma	- Allocate a page for a VMA.
2064  *
2065  * 	@gfp:
2066  *      %GFP_USER    user allocation.
2067  *      %GFP_KERNEL  kernel allocations,
2068  *      %GFP_HIGHMEM highmem/user allocations,
2069  *      %GFP_FS      allocation should not call back into a file system.
2070  *      %GFP_ATOMIC  don't sleep.
2071  *
2072  *	@order:Order of the GFP allocation.
2073  * 	@vma:  Pointer to VMA or NULL if not available.
2074  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2075  *	@node: Which node to prefer for allocation (modulo policy).
2076  *	@hugepage: for hugepages try only the preferred node if possible
2077  *
2078  * 	This function allocates a page from the kernel page pool and applies
2079  *	a NUMA policy associated with the VMA or the current process.
2080  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2081  *	mm_struct of the VMA to prevent it from going away. Should be used for
2082  *	all allocations for pages that will be mapped into user space. Returns
2083  *	NULL when no page can be allocated.
2084  */
2085 struct page *
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node,bool hugepage)2086 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2087 		unsigned long addr, int node, bool hugepage)
2088 {
2089 	struct mempolicy *pol;
2090 	struct page *page;
2091 	int preferred_nid;
2092 	nodemask_t *nmask;
2093 
2094 	pol = get_vma_policy(vma, addr);
2095 
2096 	if (pol->mode == MPOL_INTERLEAVE) {
2097 		unsigned nid;
2098 
2099 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2100 		mpol_cond_put(pol);
2101 		page = alloc_page_interleave(gfp, order, nid);
2102 		goto out;
2103 	}
2104 
2105 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2106 		int hpage_node = node;
2107 
2108 		/*
2109 		 * For hugepage allocation and non-interleave policy which
2110 		 * allows the current node (or other explicitly preferred
2111 		 * node) we only try to allocate from the current/preferred
2112 		 * node and don't fall back to other nodes, as the cost of
2113 		 * remote accesses would likely offset THP benefits.
2114 		 *
2115 		 * If the policy is interleave, or does not allow the current
2116 		 * node in its nodemask, we allocate the standard way.
2117 		 */
2118 		if (pol->mode == MPOL_PREFERRED &&
2119 						!(pol->flags & MPOL_F_LOCAL))
2120 			hpage_node = pol->v.preferred_node;
2121 
2122 		nmask = policy_nodemask(gfp, pol);
2123 		if (!nmask || node_isset(hpage_node, *nmask)) {
2124 			mpol_cond_put(pol);
2125 			/*
2126 			 * We cannot invoke reclaim if __GFP_THISNODE
2127 			 * is set. Invoking reclaim with
2128 			 * __GFP_THISNODE set, would cause THP
2129 			 * allocations to trigger heavy swapping
2130 			 * despite there may be tons of free memory
2131 			 * (including potentially plenty of THP
2132 			 * already available in the buddy) on all the
2133 			 * other NUMA nodes.
2134 			 *
2135 			 * At most we could invoke compaction when
2136 			 * __GFP_THISNODE is set (but we would need to
2137 			 * refrain from invoking reclaim even if
2138 			 * compaction returned COMPACT_SKIPPED because
2139 			 * there wasn't not enough memory to succeed
2140 			 * compaction). For now just avoid
2141 			 * __GFP_THISNODE instead of limiting the
2142 			 * allocation path to a strict and single
2143 			 * compaction invocation.
2144 			 *
2145 			 * Supposedly if direct reclaim was enabled by
2146 			 * the caller, the app prefers THP regardless
2147 			 * of the node it comes from so this would be
2148 			 * more desiderable behavior than only
2149 			 * providing THP originated from the local
2150 			 * node in such case.
2151 			 */
2152 			if (!(gfp & __GFP_DIRECT_RECLAIM))
2153 				gfp |= __GFP_THISNODE;
2154 			page = __alloc_pages_node(hpage_node, gfp, order);
2155 			goto out;
2156 		}
2157 	}
2158 
2159 	nmask = policy_nodemask(gfp, pol);
2160 	preferred_nid = policy_node(gfp, pol, node);
2161 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2162 	mpol_cond_put(pol);
2163 out:
2164 	return page;
2165 }
2166 
2167 /**
2168  * 	alloc_pages_current - Allocate pages.
2169  *
2170  *	@gfp:
2171  *		%GFP_USER   user allocation,
2172  *      	%GFP_KERNEL kernel allocation,
2173  *      	%GFP_HIGHMEM highmem allocation,
2174  *      	%GFP_FS     don't call back into a file system.
2175  *      	%GFP_ATOMIC don't sleep.
2176  *	@order: Power of two of allocation size in pages. 0 is a single page.
2177  *
2178  *	Allocate a page from the kernel page pool.  When not in
2179  *	interrupt context and apply the current process NUMA policy.
2180  *	Returns NULL when no page can be allocated.
2181  */
alloc_pages_current(gfp_t gfp,unsigned order)2182 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2183 {
2184 	struct mempolicy *pol = &default_policy;
2185 	struct page *page;
2186 
2187 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2188 		pol = get_task_policy(current);
2189 
2190 	/*
2191 	 * No reference counting needed for current->mempolicy
2192 	 * nor system default_policy
2193 	 */
2194 	if (pol->mode == MPOL_INTERLEAVE)
2195 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2196 	else
2197 		page = __alloc_pages_nodemask(gfp, order,
2198 				policy_node(gfp, pol, numa_node_id()),
2199 				policy_nodemask(gfp, pol));
2200 
2201 	return page;
2202 }
2203 EXPORT_SYMBOL(alloc_pages_current);
2204 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2205 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2206 {
2207 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2208 
2209 	if (IS_ERR(pol))
2210 		return PTR_ERR(pol);
2211 	dst->vm_policy = pol;
2212 	return 0;
2213 }
2214 
2215 /*
2216  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2217  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2218  * with the mems_allowed returned by cpuset_mems_allowed().  This
2219  * keeps mempolicies cpuset relative after its cpuset moves.  See
2220  * further kernel/cpuset.c update_nodemask().
2221  *
2222  * current's mempolicy may be rebinded by the other task(the task that changes
2223  * cpuset's mems), so we needn't do rebind work for current task.
2224  */
2225 
2226 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2227 struct mempolicy *__mpol_dup(struct mempolicy *old)
2228 {
2229 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2230 
2231 	if (!new)
2232 		return ERR_PTR(-ENOMEM);
2233 
2234 	/* task's mempolicy is protected by alloc_lock */
2235 	if (old == current->mempolicy) {
2236 		task_lock(current);
2237 		*new = *old;
2238 		task_unlock(current);
2239 	} else
2240 		*new = *old;
2241 
2242 	if (current_cpuset_is_being_rebound()) {
2243 		nodemask_t mems = cpuset_mems_allowed(current);
2244 		mpol_rebind_policy(new, &mems);
2245 	}
2246 	atomic_set(&new->refcnt, 1);
2247 	return new;
2248 }
2249 
2250 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2251 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2252 {
2253 	if (!a || !b)
2254 		return false;
2255 	if (a->mode != b->mode)
2256 		return false;
2257 	if (a->flags != b->flags)
2258 		return false;
2259 	if (mpol_store_user_nodemask(a))
2260 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2261 			return false;
2262 
2263 	switch (a->mode) {
2264 	case MPOL_BIND:
2265 		/* Fall through */
2266 	case MPOL_INTERLEAVE:
2267 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2268 	case MPOL_PREFERRED:
2269 		/* a's ->flags is the same as b's */
2270 		if (a->flags & MPOL_F_LOCAL)
2271 			return true;
2272 		return a->v.preferred_node == b->v.preferred_node;
2273 	default:
2274 		BUG();
2275 		return false;
2276 	}
2277 }
2278 
2279 /*
2280  * Shared memory backing store policy support.
2281  *
2282  * Remember policies even when nobody has shared memory mapped.
2283  * The policies are kept in Red-Black tree linked from the inode.
2284  * They are protected by the sp->lock rwlock, which should be held
2285  * for any accesses to the tree.
2286  */
2287 
2288 /*
2289  * lookup first element intersecting start-end.  Caller holds sp->lock for
2290  * reading or for writing
2291  */
2292 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2293 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2294 {
2295 	struct rb_node *n = sp->root.rb_node;
2296 
2297 	while (n) {
2298 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2299 
2300 		if (start >= p->end)
2301 			n = n->rb_right;
2302 		else if (end <= p->start)
2303 			n = n->rb_left;
2304 		else
2305 			break;
2306 	}
2307 	if (!n)
2308 		return NULL;
2309 	for (;;) {
2310 		struct sp_node *w = NULL;
2311 		struct rb_node *prev = rb_prev(n);
2312 		if (!prev)
2313 			break;
2314 		w = rb_entry(prev, struct sp_node, nd);
2315 		if (w->end <= start)
2316 			break;
2317 		n = prev;
2318 	}
2319 	return rb_entry(n, struct sp_node, nd);
2320 }
2321 
2322 /*
2323  * Insert a new shared policy into the list.  Caller holds sp->lock for
2324  * writing.
2325  */
sp_insert(struct shared_policy * sp,struct sp_node * new)2326 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2327 {
2328 	struct rb_node **p = &sp->root.rb_node;
2329 	struct rb_node *parent = NULL;
2330 	struct sp_node *nd;
2331 
2332 	while (*p) {
2333 		parent = *p;
2334 		nd = rb_entry(parent, struct sp_node, nd);
2335 		if (new->start < nd->start)
2336 			p = &(*p)->rb_left;
2337 		else if (new->end > nd->end)
2338 			p = &(*p)->rb_right;
2339 		else
2340 			BUG();
2341 	}
2342 	rb_link_node(&new->nd, parent, p);
2343 	rb_insert_color(&new->nd, &sp->root);
2344 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2345 		 new->policy ? new->policy->mode : 0);
2346 }
2347 
2348 /* Find shared policy intersecting idx */
2349 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2350 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2351 {
2352 	struct mempolicy *pol = NULL;
2353 	struct sp_node *sn;
2354 
2355 	if (!sp->root.rb_node)
2356 		return NULL;
2357 	read_lock(&sp->lock);
2358 	sn = sp_lookup(sp, idx, idx+1);
2359 	if (sn) {
2360 		mpol_get(sn->policy);
2361 		pol = sn->policy;
2362 	}
2363 	read_unlock(&sp->lock);
2364 	return pol;
2365 }
2366 
sp_free(struct sp_node * n)2367 static void sp_free(struct sp_node *n)
2368 {
2369 	mpol_put(n->policy);
2370 	kmem_cache_free(sn_cache, n);
2371 }
2372 
2373 /**
2374  * mpol_misplaced - check whether current page node is valid in policy
2375  *
2376  * @page: page to be checked
2377  * @vma: vm area where page mapped
2378  * @addr: virtual address where page mapped
2379  *
2380  * Lookup current policy node id for vma,addr and "compare to" page's
2381  * node id.
2382  *
2383  * Returns:
2384  *	-1	- not misplaced, page is in the right node
2385  *	node	- node id where the page should be
2386  *
2387  * Policy determination "mimics" alloc_page_vma().
2388  * Called from fault path where we know the vma and faulting address.
2389  */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2390 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2391 {
2392 	struct mempolicy *pol;
2393 	struct zoneref *z;
2394 	int curnid = page_to_nid(page);
2395 	unsigned long pgoff;
2396 	int thiscpu = raw_smp_processor_id();
2397 	int thisnid = cpu_to_node(thiscpu);
2398 	int polnid = -1;
2399 	int ret = -1;
2400 
2401 	pol = get_vma_policy(vma, addr);
2402 	if (!(pol->flags & MPOL_F_MOF))
2403 		goto out;
2404 
2405 	switch (pol->mode) {
2406 	case MPOL_INTERLEAVE:
2407 		pgoff = vma->vm_pgoff;
2408 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2409 		polnid = offset_il_node(pol, pgoff);
2410 		break;
2411 
2412 	case MPOL_PREFERRED:
2413 		if (pol->flags & MPOL_F_LOCAL)
2414 			polnid = numa_node_id();
2415 		else
2416 			polnid = pol->v.preferred_node;
2417 		break;
2418 
2419 	case MPOL_BIND:
2420 
2421 		/*
2422 		 * allows binding to multiple nodes.
2423 		 * use current page if in policy nodemask,
2424 		 * else select nearest allowed node, if any.
2425 		 * If no allowed nodes, use current [!misplaced].
2426 		 */
2427 		if (node_isset(curnid, pol->v.nodes))
2428 			goto out;
2429 		z = first_zones_zonelist(
2430 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2431 				gfp_zone(GFP_HIGHUSER),
2432 				&pol->v.nodes);
2433 		polnid = zone_to_nid(z->zone);
2434 		break;
2435 
2436 	default:
2437 		BUG();
2438 	}
2439 
2440 	/* Migrate the page towards the node whose CPU is referencing it */
2441 	if (pol->flags & MPOL_F_MORON) {
2442 		polnid = thisnid;
2443 
2444 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2445 			goto out;
2446 	}
2447 
2448 	if (curnid != polnid)
2449 		ret = polnid;
2450 out:
2451 	mpol_cond_put(pol);
2452 
2453 	return ret;
2454 }
2455 
2456 /*
2457  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2458  * dropped after task->mempolicy is set to NULL so that any allocation done as
2459  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2460  * policy.
2461  */
mpol_put_task_policy(struct task_struct * task)2462 void mpol_put_task_policy(struct task_struct *task)
2463 {
2464 	struct mempolicy *pol;
2465 
2466 	task_lock(task);
2467 	pol = task->mempolicy;
2468 	task->mempolicy = NULL;
2469 	task_unlock(task);
2470 	mpol_put(pol);
2471 }
2472 
sp_delete(struct shared_policy * sp,struct sp_node * n)2473 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2474 {
2475 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2476 	rb_erase(&n->nd, &sp->root);
2477 	sp_free(n);
2478 }
2479 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2480 static void sp_node_init(struct sp_node *node, unsigned long start,
2481 			unsigned long end, struct mempolicy *pol)
2482 {
2483 	node->start = start;
2484 	node->end = end;
2485 	node->policy = pol;
2486 }
2487 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2488 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2489 				struct mempolicy *pol)
2490 {
2491 	struct sp_node *n;
2492 	struct mempolicy *newpol;
2493 
2494 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2495 	if (!n)
2496 		return NULL;
2497 
2498 	newpol = mpol_dup(pol);
2499 	if (IS_ERR(newpol)) {
2500 		kmem_cache_free(sn_cache, n);
2501 		return NULL;
2502 	}
2503 	newpol->flags |= MPOL_F_SHARED;
2504 	sp_node_init(n, start, end, newpol);
2505 
2506 	return n;
2507 }
2508 
2509 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2510 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2511 				 unsigned long end, struct sp_node *new)
2512 {
2513 	struct sp_node *n;
2514 	struct sp_node *n_new = NULL;
2515 	struct mempolicy *mpol_new = NULL;
2516 	int ret = 0;
2517 
2518 restart:
2519 	write_lock(&sp->lock);
2520 	n = sp_lookup(sp, start, end);
2521 	/* Take care of old policies in the same range. */
2522 	while (n && n->start < end) {
2523 		struct rb_node *next = rb_next(&n->nd);
2524 		if (n->start >= start) {
2525 			if (n->end <= end)
2526 				sp_delete(sp, n);
2527 			else
2528 				n->start = end;
2529 		} else {
2530 			/* Old policy spanning whole new range. */
2531 			if (n->end > end) {
2532 				if (!n_new)
2533 					goto alloc_new;
2534 
2535 				*mpol_new = *n->policy;
2536 				atomic_set(&mpol_new->refcnt, 1);
2537 				sp_node_init(n_new, end, n->end, mpol_new);
2538 				n->end = start;
2539 				sp_insert(sp, n_new);
2540 				n_new = NULL;
2541 				mpol_new = NULL;
2542 				break;
2543 			} else
2544 				n->end = start;
2545 		}
2546 		if (!next)
2547 			break;
2548 		n = rb_entry(next, struct sp_node, nd);
2549 	}
2550 	if (new)
2551 		sp_insert(sp, new);
2552 	write_unlock(&sp->lock);
2553 	ret = 0;
2554 
2555 err_out:
2556 	if (mpol_new)
2557 		mpol_put(mpol_new);
2558 	if (n_new)
2559 		kmem_cache_free(sn_cache, n_new);
2560 
2561 	return ret;
2562 
2563 alloc_new:
2564 	write_unlock(&sp->lock);
2565 	ret = -ENOMEM;
2566 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2567 	if (!n_new)
2568 		goto err_out;
2569 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2570 	if (!mpol_new)
2571 		goto err_out;
2572 	goto restart;
2573 }
2574 
2575 /**
2576  * mpol_shared_policy_init - initialize shared policy for inode
2577  * @sp: pointer to inode shared policy
2578  * @mpol:  struct mempolicy to install
2579  *
2580  * Install non-NULL @mpol in inode's shared policy rb-tree.
2581  * On entry, the current task has a reference on a non-NULL @mpol.
2582  * This must be released on exit.
2583  * This is called at get_inode() calls and we can use GFP_KERNEL.
2584  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2585 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2586 {
2587 	int ret;
2588 
2589 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2590 	rwlock_init(&sp->lock);
2591 
2592 	if (mpol) {
2593 		struct vm_area_struct pvma;
2594 		struct mempolicy *new;
2595 		NODEMASK_SCRATCH(scratch);
2596 
2597 		if (!scratch)
2598 			goto put_mpol;
2599 		/* contextualize the tmpfs mount point mempolicy */
2600 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2601 		if (IS_ERR(new))
2602 			goto free_scratch; /* no valid nodemask intersection */
2603 
2604 		task_lock(current);
2605 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2606 		task_unlock(current);
2607 		if (ret)
2608 			goto put_new;
2609 
2610 		/* Create pseudo-vma that contains just the policy */
2611 		vma_init(&pvma, NULL);
2612 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2613 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2614 
2615 put_new:
2616 		mpol_put(new);			/* drop initial ref */
2617 free_scratch:
2618 		NODEMASK_SCRATCH_FREE(scratch);
2619 put_mpol:
2620 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2621 	}
2622 }
2623 
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2624 int mpol_set_shared_policy(struct shared_policy *info,
2625 			struct vm_area_struct *vma, struct mempolicy *npol)
2626 {
2627 	int err;
2628 	struct sp_node *new = NULL;
2629 	unsigned long sz = vma_pages(vma);
2630 
2631 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2632 		 vma->vm_pgoff,
2633 		 sz, npol ? npol->mode : -1,
2634 		 npol ? npol->flags : -1,
2635 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2636 
2637 	if (npol) {
2638 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2639 		if (!new)
2640 			return -ENOMEM;
2641 	}
2642 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2643 	if (err && new)
2644 		sp_free(new);
2645 	return err;
2646 }
2647 
2648 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2649 void mpol_free_shared_policy(struct shared_policy *p)
2650 {
2651 	struct sp_node *n;
2652 	struct rb_node *next;
2653 
2654 	if (!p->root.rb_node)
2655 		return;
2656 	write_lock(&p->lock);
2657 	next = rb_first(&p->root);
2658 	while (next) {
2659 		n = rb_entry(next, struct sp_node, nd);
2660 		next = rb_next(&n->nd);
2661 		sp_delete(p, n);
2662 	}
2663 	write_unlock(&p->lock);
2664 }
2665 
2666 #ifdef CONFIG_NUMA_BALANCING
2667 static int __initdata numabalancing_override;
2668 
check_numabalancing_enable(void)2669 static void __init check_numabalancing_enable(void)
2670 {
2671 	bool numabalancing_default = false;
2672 
2673 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2674 		numabalancing_default = true;
2675 
2676 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2677 	if (numabalancing_override)
2678 		set_numabalancing_state(numabalancing_override == 1);
2679 
2680 	if (num_online_nodes() > 1 && !numabalancing_override) {
2681 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2682 			numabalancing_default ? "Enabling" : "Disabling");
2683 		set_numabalancing_state(numabalancing_default);
2684 	}
2685 }
2686 
setup_numabalancing(char * str)2687 static int __init setup_numabalancing(char *str)
2688 {
2689 	int ret = 0;
2690 	if (!str)
2691 		goto out;
2692 
2693 	if (!strcmp(str, "enable")) {
2694 		numabalancing_override = 1;
2695 		ret = 1;
2696 	} else if (!strcmp(str, "disable")) {
2697 		numabalancing_override = -1;
2698 		ret = 1;
2699 	}
2700 out:
2701 	if (!ret)
2702 		pr_warn("Unable to parse numa_balancing=\n");
2703 
2704 	return ret;
2705 }
2706 __setup("numa_balancing=", setup_numabalancing);
2707 #else
check_numabalancing_enable(void)2708 static inline void __init check_numabalancing_enable(void)
2709 {
2710 }
2711 #endif /* CONFIG_NUMA_BALANCING */
2712 
2713 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2714 void __init numa_policy_init(void)
2715 {
2716 	nodemask_t interleave_nodes;
2717 	unsigned long largest = 0;
2718 	int nid, prefer = 0;
2719 
2720 	policy_cache = kmem_cache_create("numa_policy",
2721 					 sizeof(struct mempolicy),
2722 					 0, SLAB_PANIC, NULL);
2723 
2724 	sn_cache = kmem_cache_create("shared_policy_node",
2725 				     sizeof(struct sp_node),
2726 				     0, SLAB_PANIC, NULL);
2727 
2728 	for_each_node(nid) {
2729 		preferred_node_policy[nid] = (struct mempolicy) {
2730 			.refcnt = ATOMIC_INIT(1),
2731 			.mode = MPOL_PREFERRED,
2732 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2733 			.v = { .preferred_node = nid, },
2734 		};
2735 	}
2736 
2737 	/*
2738 	 * Set interleaving policy for system init. Interleaving is only
2739 	 * enabled across suitably sized nodes (default is >= 16MB), or
2740 	 * fall back to the largest node if they're all smaller.
2741 	 */
2742 	nodes_clear(interleave_nodes);
2743 	for_each_node_state(nid, N_MEMORY) {
2744 		unsigned long total_pages = node_present_pages(nid);
2745 
2746 		/* Preserve the largest node */
2747 		if (largest < total_pages) {
2748 			largest = total_pages;
2749 			prefer = nid;
2750 		}
2751 
2752 		/* Interleave this node? */
2753 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2754 			node_set(nid, interleave_nodes);
2755 	}
2756 
2757 	/* All too small, use the largest */
2758 	if (unlikely(nodes_empty(interleave_nodes)))
2759 		node_set(prefer, interleave_nodes);
2760 
2761 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2762 		pr_err("%s: interleaving failed\n", __func__);
2763 
2764 	check_numabalancing_enable();
2765 }
2766 
2767 /* Reset policy of current process to default */
numa_default_policy(void)2768 void numa_default_policy(void)
2769 {
2770 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2771 }
2772 
2773 /*
2774  * Parse and format mempolicy from/to strings
2775  */
2776 
2777 /*
2778  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2779  */
2780 static const char * const policy_modes[] =
2781 {
2782 	[MPOL_DEFAULT]    = "default",
2783 	[MPOL_PREFERRED]  = "prefer",
2784 	[MPOL_BIND]       = "bind",
2785 	[MPOL_INTERLEAVE] = "interleave",
2786 	[MPOL_LOCAL]      = "local",
2787 };
2788 
2789 
2790 #ifdef CONFIG_TMPFS
2791 /**
2792  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2793  * @str:  string containing mempolicy to parse
2794  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2795  *
2796  * Format of input:
2797  *	<mode>[=<flags>][:<nodelist>]
2798  *
2799  * On success, returns 0, else 1
2800  */
mpol_parse_str(char * str,struct mempolicy ** mpol)2801 int mpol_parse_str(char *str, struct mempolicy **mpol)
2802 {
2803 	struct mempolicy *new = NULL;
2804 	unsigned short mode;
2805 	unsigned short mode_flags;
2806 	nodemask_t nodes;
2807 	char *nodelist = strchr(str, ':');
2808 	char *flags = strchr(str, '=');
2809 	int err = 1;
2810 
2811 	if (flags)
2812 		*flags++ = '\0';	/* terminate mode string */
2813 
2814 	if (nodelist) {
2815 		/* NUL-terminate mode or flags string */
2816 		*nodelist++ = '\0';
2817 		if (nodelist_parse(nodelist, nodes))
2818 			goto out;
2819 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2820 			goto out;
2821 	} else
2822 		nodes_clear(nodes);
2823 
2824 	for (mode = 0; mode < MPOL_MAX; mode++) {
2825 		if (!strcmp(str, policy_modes[mode])) {
2826 			break;
2827 		}
2828 	}
2829 	if (mode >= MPOL_MAX)
2830 		goto out;
2831 
2832 	switch (mode) {
2833 	case MPOL_PREFERRED:
2834 		/*
2835 		 * Insist on a nodelist of one node only, although later
2836 		 * we use first_node(nodes) to grab a single node, so here
2837 		 * nodelist (or nodes) cannot be empty.
2838 		 */
2839 		if (nodelist) {
2840 			char *rest = nodelist;
2841 			while (isdigit(*rest))
2842 				rest++;
2843 			if (*rest)
2844 				goto out;
2845 			if (nodes_empty(nodes))
2846 				goto out;
2847 		}
2848 		break;
2849 	case MPOL_INTERLEAVE:
2850 		/*
2851 		 * Default to online nodes with memory if no nodelist
2852 		 */
2853 		if (!nodelist)
2854 			nodes = node_states[N_MEMORY];
2855 		break;
2856 	case MPOL_LOCAL:
2857 		/*
2858 		 * Don't allow a nodelist;  mpol_new() checks flags
2859 		 */
2860 		if (nodelist)
2861 			goto out;
2862 		mode = MPOL_PREFERRED;
2863 		break;
2864 	case MPOL_DEFAULT:
2865 		/*
2866 		 * Insist on a empty nodelist
2867 		 */
2868 		if (!nodelist)
2869 			err = 0;
2870 		goto out;
2871 	case MPOL_BIND:
2872 		/*
2873 		 * Insist on a nodelist
2874 		 */
2875 		if (!nodelist)
2876 			goto out;
2877 	}
2878 
2879 	mode_flags = 0;
2880 	if (flags) {
2881 		/*
2882 		 * Currently, we only support two mutually exclusive
2883 		 * mode flags.
2884 		 */
2885 		if (!strcmp(flags, "static"))
2886 			mode_flags |= MPOL_F_STATIC_NODES;
2887 		else if (!strcmp(flags, "relative"))
2888 			mode_flags |= MPOL_F_RELATIVE_NODES;
2889 		else
2890 			goto out;
2891 	}
2892 
2893 	new = mpol_new(mode, mode_flags, &nodes);
2894 	if (IS_ERR(new))
2895 		goto out;
2896 
2897 	/*
2898 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2899 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2900 	 */
2901 	if (mode != MPOL_PREFERRED)
2902 		new->v.nodes = nodes;
2903 	else if (nodelist)
2904 		new->v.preferred_node = first_node(nodes);
2905 	else
2906 		new->flags |= MPOL_F_LOCAL;
2907 
2908 	/*
2909 	 * Save nodes for contextualization: this will be used to "clone"
2910 	 * the mempolicy in a specific context [cpuset] at a later time.
2911 	 */
2912 	new->w.user_nodemask = nodes;
2913 
2914 	err = 0;
2915 
2916 out:
2917 	/* Restore string for error message */
2918 	if (nodelist)
2919 		*--nodelist = ':';
2920 	if (flags)
2921 		*--flags = '=';
2922 	if (!err)
2923 		*mpol = new;
2924 	return err;
2925 }
2926 #endif /* CONFIG_TMPFS */
2927 
2928 /**
2929  * mpol_to_str - format a mempolicy structure for printing
2930  * @buffer:  to contain formatted mempolicy string
2931  * @maxlen:  length of @buffer
2932  * @pol:  pointer to mempolicy to be formatted
2933  *
2934  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2935  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2936  * longest flag, "relative", and to display at least a few node ids.
2937  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)2938 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2939 {
2940 	char *p = buffer;
2941 	nodemask_t nodes = NODE_MASK_NONE;
2942 	unsigned short mode = MPOL_DEFAULT;
2943 	unsigned short flags = 0;
2944 
2945 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2946 		mode = pol->mode;
2947 		flags = pol->flags;
2948 	}
2949 
2950 	switch (mode) {
2951 	case MPOL_DEFAULT:
2952 		break;
2953 	case MPOL_PREFERRED:
2954 		if (flags & MPOL_F_LOCAL)
2955 			mode = MPOL_LOCAL;
2956 		else
2957 			node_set(pol->v.preferred_node, nodes);
2958 		break;
2959 	case MPOL_BIND:
2960 	case MPOL_INTERLEAVE:
2961 		nodes = pol->v.nodes;
2962 		break;
2963 	default:
2964 		WARN_ON_ONCE(1);
2965 		snprintf(p, maxlen, "unknown");
2966 		return;
2967 	}
2968 
2969 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2970 
2971 	if (flags & MPOL_MODE_FLAGS) {
2972 		p += snprintf(p, buffer + maxlen - p, "=");
2973 
2974 		/*
2975 		 * Currently, the only defined flags are mutually exclusive
2976 		 */
2977 		if (flags & MPOL_F_STATIC_NODES)
2978 			p += snprintf(p, buffer + maxlen - p, "static");
2979 		else if (flags & MPOL_F_RELATIVE_NODES)
2980 			p += snprintf(p, buffer + maxlen - p, "relative");
2981 	}
2982 
2983 	if (!nodes_empty(nodes))
2984 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2985 			       nodemask_pr_args(&nodes));
2986 }
2987