• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
disable_randmaps(char * s)137 static int __init disable_randmaps(char *s)
138 {
139 	randomize_va_space = 0;
140 	return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143 
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146 
147 unsigned long highest_memmap_pfn __read_mostly;
148 
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
init_zero_pfn(void)152 static int __init init_zero_pfn(void)
153 {
154 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 	return 0;
156 }
157 early_initcall(init_zero_pfn);
158 
mm_trace_rss_stat(struct mm_struct * mm,int member,long count)159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161 	trace_rss_stat(mm, member, count);
162 }
163 
164 #if defined(SPLIT_RSS_COUNTING)
165 
sync_mm_rss(struct mm_struct * mm)166 void sync_mm_rss(struct mm_struct *mm)
167 {
168 	int i;
169 
170 	for (i = 0; i < NR_MM_COUNTERS; i++) {
171 		if (current->rss_stat.count[i]) {
172 			add_mm_counter(mm, i, current->rss_stat.count[i]);
173 			current->rss_stat.count[i] = 0;
174 		}
175 	}
176 	current->rss_stat.events = 0;
177 }
178 
add_mm_counter_fast(struct mm_struct * mm,int member,int val)179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181 	struct task_struct *task = current;
182 
183 	if (likely(task->mm == mm))
184 		task->rss_stat.count[member] += val;
185 	else
186 		add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190 
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH	(64)
check_sync_rss_stat(struct task_struct * task)193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195 	if (unlikely(task != current))
196 		return;
197 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198 		sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201 
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204 
check_sync_rss_stat(struct task_struct * task)205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208 
209 #endif /* SPLIT_RSS_COUNTING */
210 
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 			   unsigned long addr)
217 {
218 	pgtable_t token = pmd_pgtable(*pmd);
219 	pmd_clear(pmd);
220 	pte_free_tlb(tlb, token, addr);
221 	mm_dec_nr_ptes(tlb->mm);
222 }
223 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 				unsigned long addr, unsigned long end,
226 				unsigned long floor, unsigned long ceiling)
227 {
228 	pmd_t *pmd;
229 	unsigned long next;
230 	unsigned long start;
231 
232 	start = addr;
233 	pmd = pmd_offset(pud, addr);
234 	do {
235 		next = pmd_addr_end(addr, end);
236 		if (pmd_none_or_clear_bad(pmd))
237 			continue;
238 		free_pte_range(tlb, pmd, addr);
239 	} while (pmd++, addr = next, addr != end);
240 
241 	start &= PUD_MASK;
242 	if (start < floor)
243 		return;
244 	if (ceiling) {
245 		ceiling &= PUD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		return;
251 
252 	pmd = pmd_offset(pud, start);
253 	pud_clear(pud);
254 	pmd_free_tlb(tlb, pmd, start);
255 	mm_dec_nr_pmds(tlb->mm);
256 }
257 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259 				unsigned long addr, unsigned long end,
260 				unsigned long floor, unsigned long ceiling)
261 {
262 	pud_t *pud;
263 	unsigned long next;
264 	unsigned long start;
265 
266 	start = addr;
267 	pud = pud_offset(p4d, addr);
268 	do {
269 		next = pud_addr_end(addr, end);
270 		if (pud_none_or_clear_bad(pud))
271 			continue;
272 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273 	} while (pud++, addr = next, addr != end);
274 
275 	start &= P4D_MASK;
276 	if (start < floor)
277 		return;
278 	if (ceiling) {
279 		ceiling &= P4D_MASK;
280 		if (!ceiling)
281 			return;
282 	}
283 	if (end - 1 > ceiling - 1)
284 		return;
285 
286 	pud = pud_offset(p4d, start);
287 	p4d_clear(p4d);
288 	pud_free_tlb(tlb, pud, start);
289 	mm_dec_nr_puds(tlb->mm);
290 }
291 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 				unsigned long addr, unsigned long end,
294 				unsigned long floor, unsigned long ceiling)
295 {
296 	p4d_t *p4d;
297 	unsigned long next;
298 	unsigned long start;
299 
300 	start = addr;
301 	p4d = p4d_offset(pgd, addr);
302 	do {
303 		next = p4d_addr_end(addr, end);
304 		if (p4d_none_or_clear_bad(p4d))
305 			continue;
306 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 	} while (p4d++, addr = next, addr != end);
308 
309 	start &= PGDIR_MASK;
310 	if (start < floor)
311 		return;
312 	if (ceiling) {
313 		ceiling &= PGDIR_MASK;
314 		if (!ceiling)
315 			return;
316 	}
317 	if (end - 1 > ceiling - 1)
318 		return;
319 
320 	p4d = p4d_offset(pgd, start);
321 	pgd_clear(pgd);
322 	p4d_free_tlb(tlb, p4d, start);
323 }
324 
325 /*
326  * This function frees user-level page tables of a process.
327  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)328 void free_pgd_range(struct mmu_gather *tlb,
329 			unsigned long addr, unsigned long end,
330 			unsigned long floor, unsigned long ceiling)
331 {
332 	pgd_t *pgd;
333 	unsigned long next;
334 
335 	/*
336 	 * The next few lines have given us lots of grief...
337 	 *
338 	 * Why are we testing PMD* at this top level?  Because often
339 	 * there will be no work to do at all, and we'd prefer not to
340 	 * go all the way down to the bottom just to discover that.
341 	 *
342 	 * Why all these "- 1"s?  Because 0 represents both the bottom
343 	 * of the address space and the top of it (using -1 for the
344 	 * top wouldn't help much: the masks would do the wrong thing).
345 	 * The rule is that addr 0 and floor 0 refer to the bottom of
346 	 * the address space, but end 0 and ceiling 0 refer to the top
347 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 	 * that end 0 case should be mythical).
349 	 *
350 	 * Wherever addr is brought up or ceiling brought down, we must
351 	 * be careful to reject "the opposite 0" before it confuses the
352 	 * subsequent tests.  But what about where end is brought down
353 	 * by PMD_SIZE below? no, end can't go down to 0 there.
354 	 *
355 	 * Whereas we round start (addr) and ceiling down, by different
356 	 * masks at different levels, in order to test whether a table
357 	 * now has no other vmas using it, so can be freed, we don't
358 	 * bother to round floor or end up - the tests don't need that.
359 	 */
360 
361 	addr &= PMD_MASK;
362 	if (addr < floor) {
363 		addr += PMD_SIZE;
364 		if (!addr)
365 			return;
366 	}
367 	if (ceiling) {
368 		ceiling &= PMD_MASK;
369 		if (!ceiling)
370 			return;
371 	}
372 	if (end - 1 > ceiling - 1)
373 		end -= PMD_SIZE;
374 	if (addr > end - 1)
375 		return;
376 	/*
377 	 * We add page table cache pages with PAGE_SIZE,
378 	 * (see pte_free_tlb()), flush the tlb if we need
379 	 */
380 	tlb_change_page_size(tlb, PAGE_SIZE);
381 	pgd = pgd_offset(tlb->mm, addr);
382 	do {
383 		next = pgd_addr_end(addr, end);
384 		if (pgd_none_or_clear_bad(pgd))
385 			continue;
386 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387 	} while (pgd++, addr = next, addr != end);
388 }
389 
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391 		unsigned long floor, unsigned long ceiling)
392 {
393 	while (vma) {
394 		struct vm_area_struct *next = vma->vm_next;
395 		unsigned long addr = vma->vm_start;
396 
397 		/*
398 		 * Hide vma from rmap and truncate_pagecache before freeing
399 		 * pgtables
400 		 */
401 		unlink_anon_vmas(vma);
402 		unlink_file_vma(vma);
403 
404 		if (is_vm_hugetlb_page(vma)) {
405 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		} else {
408 			/*
409 			 * Optimization: gather nearby vmas into one call down
410 			 */
411 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412 			       && !is_vm_hugetlb_page(next)) {
413 				vma = next;
414 				next = vma->vm_next;
415 				unlink_anon_vmas(vma);
416 				unlink_file_vma(vma);
417 			}
418 			free_pgd_range(tlb, addr, vma->vm_end,
419 				floor, next ? next->vm_start : ceiling);
420 		}
421 		vma = next;
422 	}
423 }
424 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427 	spinlock_t *ptl;
428 	pgtable_t new = pte_alloc_one(mm);
429 	if (!new)
430 		return -ENOMEM;
431 
432 	/*
433 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 	 * visible before the pte is made visible to other CPUs by being
435 	 * put into page tables.
436 	 *
437 	 * The other side of the story is the pointer chasing in the page
438 	 * table walking code (when walking the page table without locking;
439 	 * ie. most of the time). Fortunately, these data accesses consist
440 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 	 * being the notable exception) will already guarantee loads are
442 	 * seen in-order. See the alpha page table accessors for the
443 	 * smp_rmb() barriers in page table walking code.
444 	 */
445 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446 
447 	ptl = pmd_lock(mm, pmd);
448 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
449 		mm_inc_nr_ptes(mm);
450 		pmd_populate(mm, pmd, new);
451 		new = NULL;
452 	}
453 	spin_unlock(ptl);
454 	if (new)
455 		pte_free(mm, new);
456 	return 0;
457 }
458 
__pte_alloc_kernel(pmd_t * pmd)459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461 	pte_t *new = pte_alloc_one_kernel(&init_mm);
462 	if (!new)
463 		return -ENOMEM;
464 
465 	smp_wmb(); /* See comment in __pte_alloc */
466 
467 	spin_lock(&init_mm.page_table_lock);
468 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
469 		pmd_populate_kernel(&init_mm, pmd, new);
470 		new = NULL;
471 	}
472 	spin_unlock(&init_mm.page_table_lock);
473 	if (new)
474 		pte_free_kernel(&init_mm, new);
475 	return 0;
476 }
477 
init_rss_vec(int * rss)478 static inline void init_rss_vec(int *rss)
479 {
480 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482 
add_mm_rss_vec(struct mm_struct * mm,int * rss)483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485 	int i;
486 
487 	if (current->mm == mm)
488 		sync_mm_rss(mm);
489 	for (i = 0; i < NR_MM_COUNTERS; i++)
490 		if (rss[i])
491 			add_mm_counter(mm, i, rss[i]);
492 }
493 
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 			  pte_t pte, struct page *page)
503 {
504 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505 	p4d_t *p4d = p4d_offset(pgd, addr);
506 	pud_t *pud = pud_offset(p4d, addr);
507 	pmd_t *pmd = pmd_offset(pud, addr);
508 	struct address_space *mapping;
509 	pgoff_t index;
510 	static unsigned long resume;
511 	static unsigned long nr_shown;
512 	static unsigned long nr_unshown;
513 
514 	/*
515 	 * Allow a burst of 60 reports, then keep quiet for that minute;
516 	 * or allow a steady drip of one report per second.
517 	 */
518 	if (nr_shown == 60) {
519 		if (time_before(jiffies, resume)) {
520 			nr_unshown++;
521 			return;
522 		}
523 		if (nr_unshown) {
524 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 				 nr_unshown);
526 			nr_unshown = 0;
527 		}
528 		nr_shown = 0;
529 	}
530 	if (nr_shown++ == 0)
531 		resume = jiffies + 60 * HZ;
532 
533 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 	index = linear_page_index(vma, addr);
535 
536 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537 		 current->comm,
538 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 	if (page)
540 		dump_page(page, "bad pte");
541 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 		 vma->vm_file,
545 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 		 mapping ? mapping->a_ops->readpage : NULL);
548 	dump_stack();
549 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551 
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 			    pte_t pte)
596 {
597 	unsigned long pfn = pte_pfn(pte);
598 
599 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600 		if (likely(!pte_special(pte)))
601 			goto check_pfn;
602 		if (vma->vm_ops && vma->vm_ops->find_special_page)
603 			return vma->vm_ops->find_special_page(vma, addr);
604 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 			return NULL;
606 		if (is_zero_pfn(pfn))
607 			return NULL;
608 		if (pte_devmap(pte))
609 			return NULL;
610 
611 		print_bad_pte(vma, addr, pte, NULL);
612 		return NULL;
613 	}
614 
615 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616 
617 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 		if (vma->vm_flags & VM_MIXEDMAP) {
619 			if (!pfn_valid(pfn))
620 				return NULL;
621 			goto out;
622 		} else {
623 			unsigned long off;
624 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
625 			if (pfn == vma->vm_pgoff + off)
626 				return NULL;
627 			if (!is_cow_mapping(vma->vm_flags))
628 				return NULL;
629 		}
630 	}
631 
632 	if (is_zero_pfn(pfn))
633 		return NULL;
634 
635 check_pfn:
636 	if (unlikely(pfn > highest_memmap_pfn)) {
637 		print_bad_pte(vma, addr, pte, NULL);
638 		return NULL;
639 	}
640 
641 	/*
642 	 * NOTE! We still have PageReserved() pages in the page tables.
643 	 * eg. VDSO mappings can cause them to exist.
644 	 */
645 out:
646 	return pfn_to_page(pfn);
647 }
648 
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 				pmd_t pmd)
652 {
653 	unsigned long pfn = pmd_pfn(pmd);
654 
655 	/*
656 	 * There is no pmd_special() but there may be special pmds, e.g.
657 	 * in a direct-access (dax) mapping, so let's just replicate the
658 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 	 */
660 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 		if (vma->vm_flags & VM_MIXEDMAP) {
662 			if (!pfn_valid(pfn))
663 				return NULL;
664 			goto out;
665 		} else {
666 			unsigned long off;
667 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 			if (pfn == vma->vm_pgoff + off)
669 				return NULL;
670 			if (!is_cow_mapping(vma->vm_flags))
671 				return NULL;
672 		}
673 	}
674 
675 	if (pmd_devmap(pmd))
676 		return NULL;
677 	if (is_huge_zero_pmd(pmd))
678 		return NULL;
679 	if (unlikely(pfn > highest_memmap_pfn))
680 		return NULL;
681 
682 	/*
683 	 * NOTE! We still have PageReserved() pages in the page tables.
684 	 * eg. VDSO mappings can cause them to exist.
685 	 */
686 out:
687 	return pfn_to_page(pfn);
688 }
689 #endif
690 
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696 
697 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
700 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
701 {
702 	unsigned long vm_flags = dst_vma->vm_flags;
703 	pte_t pte = *src_pte;
704 	struct page *page;
705 	swp_entry_t entry = pte_to_swp_entry(pte);
706 
707 	if (likely(!non_swap_entry(entry))) {
708 		if (swap_duplicate(entry) < 0)
709 			return entry.val;
710 
711 		/* make sure dst_mm is on swapoff's mmlist. */
712 		if (unlikely(list_empty(&dst_mm->mmlist))) {
713 			spin_lock(&mmlist_lock);
714 			if (list_empty(&dst_mm->mmlist))
715 				list_add(&dst_mm->mmlist,
716 						&src_mm->mmlist);
717 			spin_unlock(&mmlist_lock);
718 		}
719 		rss[MM_SWAPENTS]++;
720 	} else if (is_migration_entry(entry)) {
721 		page = migration_entry_to_page(entry);
722 
723 		rss[mm_counter(page)]++;
724 
725 		if (is_write_migration_entry(entry) &&
726 				is_cow_mapping(vm_flags)) {
727 			/*
728 			 * COW mappings require pages in both
729 			 * parent and child to be set to read.
730 			 */
731 			make_migration_entry_read(&entry);
732 			pte = swp_entry_to_pte(entry);
733 			if (pte_swp_soft_dirty(*src_pte))
734 				pte = pte_swp_mksoft_dirty(pte);
735 			if (pte_swp_uffd_wp(*src_pte))
736 				pte = pte_swp_mkuffd_wp(pte);
737 			set_pte_at(src_mm, addr, src_pte, pte);
738 		}
739 	} else if (is_device_private_entry(entry)) {
740 		page = device_private_entry_to_page(entry);
741 
742 		/*
743 		 * Update rss count even for unaddressable pages, as
744 		 * they should treated just like normal pages in this
745 		 * respect.
746 		 *
747 		 * We will likely want to have some new rss counters
748 		 * for unaddressable pages, at some point. But for now
749 		 * keep things as they are.
750 		 */
751 		get_page(page);
752 		rss[mm_counter(page)]++;
753 		page_dup_rmap(page, false);
754 
755 		/*
756 		 * We do not preserve soft-dirty information, because so
757 		 * far, checkpoint/restore is the only feature that
758 		 * requires that. And checkpoint/restore does not work
759 		 * when a device driver is involved (you cannot easily
760 		 * save and restore device driver state).
761 		 */
762 		if (is_write_device_private_entry(entry) &&
763 		    is_cow_mapping(vm_flags)) {
764 			make_device_private_entry_read(&entry);
765 			pte = swp_entry_to_pte(entry);
766 			if (pte_swp_uffd_wp(*src_pte))
767 				pte = pte_swp_mkuffd_wp(pte);
768 			set_pte_at(src_mm, addr, src_pte, pte);
769 		}
770 	}
771 	if (!userfaultfd_wp(dst_vma))
772 		pte = pte_swp_clear_uffd_wp(pte);
773 	set_pte_at(dst_mm, addr, dst_pte, pte);
774 	return 0;
775 }
776 
777 /*
778  * Copy a present and normal page if necessary.
779  *
780  * NOTE! The usual case is that this doesn't need to do
781  * anything, and can just return a positive value. That
782  * will let the caller know that it can just increase
783  * the page refcount and re-use the pte the traditional
784  * way.
785  *
786  * But _if_ we need to copy it because it needs to be
787  * pinned in the parent (and the child should get its own
788  * copy rather than just a reference to the same page),
789  * we'll do that here and return zero to let the caller
790  * know we're done.
791  *
792  * And if we need a pre-allocated page but don't yet have
793  * one, return a negative error to let the preallocation
794  * code know so that it can do so outside the page table
795  * lock.
796  */
797 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,pte_t pte,struct page * page)798 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
799 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
800 		  struct page **prealloc, pte_t pte, struct page *page)
801 {
802 	struct mm_struct *src_mm = src_vma->vm_mm;
803 	struct page *new_page;
804 
805 	if (!is_cow_mapping(src_vma->vm_flags))
806 		return 1;
807 
808 	/*
809 	 * What we want to do is to check whether this page may
810 	 * have been pinned by the parent process.  If so,
811 	 * instead of wrprotect the pte on both sides, we copy
812 	 * the page immediately so that we'll always guarantee
813 	 * the pinned page won't be randomly replaced in the
814 	 * future.
815 	 *
816 	 * The page pinning checks are just "has this mm ever
817 	 * seen pinning", along with the (inexact) check of
818 	 * the page count. That might give false positives for
819 	 * for pinning, but it will work correctly.
820 	 */
821 	if (likely(!atomic_read(&src_mm->has_pinned)))
822 		return 1;
823 	if (likely(!page_maybe_dma_pinned(page)))
824 		return 1;
825 
826 	new_page = *prealloc;
827 	if (!new_page)
828 		return -EAGAIN;
829 
830 	/*
831 	 * We have a prealloc page, all good!  Take it
832 	 * over and copy the page & arm it.
833 	 */
834 	*prealloc = NULL;
835 	copy_user_highpage(new_page, page, addr, src_vma);
836 	__SetPageUptodate(new_page);
837 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
838 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
839 	rss[mm_counter(new_page)]++;
840 
841 	/* All done, just insert the new page copy in the child */
842 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
843 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
844 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
845 		/* Uffd-wp needs to be delivered to dest pte as well */
846 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
847 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
848 	return 0;
849 }
850 
851 /*
852  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
853  * is required to copy this pte.
854  */
855 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)856 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
857 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
858 		 struct page **prealloc)
859 {
860 	struct mm_struct *src_mm = src_vma->vm_mm;
861 	unsigned long vm_flags = src_vma->vm_flags;
862 	pte_t pte = *src_pte;
863 	struct page *page;
864 
865 	page = vm_normal_page(src_vma, addr, pte);
866 	if (page) {
867 		int retval;
868 
869 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
870 					   addr, rss, prealloc, pte, page);
871 		if (retval <= 0)
872 			return retval;
873 
874 		get_page(page);
875 		page_dup_rmap(page, false);
876 		rss[mm_counter(page)]++;
877 	}
878 
879 	/*
880 	 * If it's a COW mapping, write protect it both
881 	 * in the parent and the child
882 	 */
883 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
884 		ptep_set_wrprotect(src_mm, addr, src_pte);
885 		pte = pte_wrprotect(pte);
886 	}
887 
888 	/*
889 	 * If it's a shared mapping, mark it clean in
890 	 * the child
891 	 */
892 	if (vm_flags & VM_SHARED)
893 		pte = pte_mkclean(pte);
894 	pte = pte_mkold(pte);
895 
896 	if (!userfaultfd_wp(dst_vma))
897 		pte = pte_clear_uffd_wp(pte);
898 
899 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900 	return 0;
901 }
902 
903 static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 		   unsigned long addr)
906 {
907 	struct page *new_page;
908 
909 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 	if (!new_page)
911 		return NULL;
912 
913 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 		put_page(new_page);
915 		return NULL;
916 	}
917 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918 
919 	return new_page;
920 }
921 
922 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 	       unsigned long end)
926 {
927 	struct mm_struct *dst_mm = dst_vma->vm_mm;
928 	struct mm_struct *src_mm = src_vma->vm_mm;
929 	pte_t *orig_src_pte, *orig_dst_pte;
930 	pte_t *src_pte, *dst_pte;
931 	spinlock_t *src_ptl, *dst_ptl;
932 	int progress, ret = 0;
933 	int rss[NR_MM_COUNTERS];
934 	swp_entry_t entry = (swp_entry_t){0};
935 	struct page *prealloc = NULL;
936 
937 again:
938 	progress = 0;
939 	init_rss_vec(rss);
940 
941 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 	if (!dst_pte) {
943 		ret = -ENOMEM;
944 		goto out;
945 	}
946 	src_pte = pte_offset_map(src_pmd, addr);
947 	src_ptl = pte_lockptr(src_mm, src_pmd);
948 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949 	orig_src_pte = src_pte;
950 	orig_dst_pte = dst_pte;
951 	arch_enter_lazy_mmu_mode();
952 
953 	do {
954 		/*
955 		 * We are holding two locks at this point - either of them
956 		 * could generate latencies in another task on another CPU.
957 		 */
958 		if (progress >= 32) {
959 			progress = 0;
960 			if (need_resched() ||
961 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962 				break;
963 		}
964 		if (pte_none(*src_pte)) {
965 			progress++;
966 			continue;
967 		}
968 		if (unlikely(!pte_present(*src_pte))) {
969 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 							dst_pte, src_pte,
971 							dst_vma, src_vma,
972 							addr, rss);
973 			if (entry.val)
974 				break;
975 			progress += 8;
976 			continue;
977 		}
978 		/* copy_present_pte() will clear `*prealloc' if consumed */
979 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
980 				       addr, rss, &prealloc);
981 		/*
982 		 * If we need a pre-allocated page for this pte, drop the
983 		 * locks, allocate, and try again.
984 		 */
985 		if (unlikely(ret == -EAGAIN))
986 			break;
987 		if (unlikely(prealloc)) {
988 			/*
989 			 * pre-alloc page cannot be reused by next time so as
990 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
991 			 * will allocate page according to address).  This
992 			 * could only happen if one pinned pte changed.
993 			 */
994 			put_page(prealloc);
995 			prealloc = NULL;
996 		}
997 		progress += 8;
998 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
999 
1000 	arch_leave_lazy_mmu_mode();
1001 	spin_unlock(src_ptl);
1002 	pte_unmap(orig_src_pte);
1003 	add_mm_rss_vec(dst_mm, rss);
1004 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1005 	cond_resched();
1006 
1007 	if (entry.val) {
1008 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1009 			ret = -ENOMEM;
1010 			goto out;
1011 		}
1012 		entry.val = 0;
1013 	} else if (ret) {
1014 		WARN_ON_ONCE(ret != -EAGAIN);
1015 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1016 		if (!prealloc)
1017 			return -ENOMEM;
1018 		/* We've captured and resolved the error. Reset, try again. */
1019 		ret = 0;
1020 	}
1021 	if (addr != end)
1022 		goto again;
1023 out:
1024 	if (unlikely(prealloc))
1025 		put_page(prealloc);
1026 	return ret;
1027 }
1028 
1029 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1030 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1031 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1032 	       unsigned long end)
1033 {
1034 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1035 	struct mm_struct *src_mm = src_vma->vm_mm;
1036 	pmd_t *src_pmd, *dst_pmd;
1037 	unsigned long next;
1038 
1039 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040 	if (!dst_pmd)
1041 		return -ENOMEM;
1042 	src_pmd = pmd_offset(src_pud, addr);
1043 	do {
1044 		next = pmd_addr_end(addr, end);
1045 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046 			|| pmd_devmap(*src_pmd)) {
1047 			int err;
1048 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1049 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1050 					    addr, dst_vma, src_vma);
1051 			if (err == -ENOMEM)
1052 				return -ENOMEM;
1053 			if (!err)
1054 				continue;
1055 			/* fall through */
1056 		}
1057 		if (pmd_none_or_clear_bad(src_pmd))
1058 			continue;
1059 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1060 				   addr, next))
1061 			return -ENOMEM;
1062 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063 	return 0;
1064 }
1065 
1066 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1067 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1068 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1069 	       unsigned long end)
1070 {
1071 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1072 	struct mm_struct *src_mm = src_vma->vm_mm;
1073 	pud_t *src_pud, *dst_pud;
1074 	unsigned long next;
1075 
1076 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1077 	if (!dst_pud)
1078 		return -ENOMEM;
1079 	src_pud = pud_offset(src_p4d, addr);
1080 	do {
1081 		next = pud_addr_end(addr, end);
1082 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1083 			int err;
1084 
1085 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1086 			err = copy_huge_pud(dst_mm, src_mm,
1087 					    dst_pud, src_pud, addr, src_vma);
1088 			if (err == -ENOMEM)
1089 				return -ENOMEM;
1090 			if (!err)
1091 				continue;
1092 			/* fall through */
1093 		}
1094 		if (pud_none_or_clear_bad(src_pud))
1095 			continue;
1096 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1097 				   addr, next))
1098 			return -ENOMEM;
1099 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1100 	return 0;
1101 }
1102 
1103 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1104 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1105 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1106 	       unsigned long end)
1107 {
1108 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1109 	p4d_t *src_p4d, *dst_p4d;
1110 	unsigned long next;
1111 
1112 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1113 	if (!dst_p4d)
1114 		return -ENOMEM;
1115 	src_p4d = p4d_offset(src_pgd, addr);
1116 	do {
1117 		next = p4d_addr_end(addr, end);
1118 		if (p4d_none_or_clear_bad(src_p4d))
1119 			continue;
1120 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1121 				   addr, next))
1122 			return -ENOMEM;
1123 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1124 	return 0;
1125 }
1126 
1127 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1128 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1129 {
1130 	pgd_t *src_pgd, *dst_pgd;
1131 	unsigned long next;
1132 	unsigned long addr = src_vma->vm_start;
1133 	unsigned long end = src_vma->vm_end;
1134 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1135 	struct mm_struct *src_mm = src_vma->vm_mm;
1136 	struct mmu_notifier_range range;
1137 	bool is_cow;
1138 	int ret;
1139 
1140 	/*
1141 	 * Don't copy ptes where a page fault will fill them correctly.
1142 	 * Fork becomes much lighter when there are big shared or private
1143 	 * readonly mappings. The tradeoff is that copy_page_range is more
1144 	 * efficient than faulting.
1145 	 */
1146 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1147 	    !src_vma->anon_vma)
1148 		return 0;
1149 
1150 	if (is_vm_hugetlb_page(src_vma))
1151 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1152 
1153 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1154 		/*
1155 		 * We do not free on error cases below as remove_vma
1156 		 * gets called on error from higher level routine
1157 		 */
1158 		ret = track_pfn_copy(src_vma);
1159 		if (ret)
1160 			return ret;
1161 	}
1162 
1163 	/*
1164 	 * We need to invalidate the secondary MMU mappings only when
1165 	 * there could be a permission downgrade on the ptes of the
1166 	 * parent mm. And a permission downgrade will only happen if
1167 	 * is_cow_mapping() returns true.
1168 	 */
1169 	is_cow = is_cow_mapping(src_vma->vm_flags);
1170 
1171 	if (is_cow) {
1172 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1173 					0, src_vma, src_mm, addr, end);
1174 		mmu_notifier_invalidate_range_start(&range);
1175 		/*
1176 		 * Disabling preemption is not needed for the write side, as
1177 		 * the read side doesn't spin, but goes to the mmap_lock.
1178 		 *
1179 		 * Use the raw variant of the seqcount_t write API to avoid
1180 		 * lockdep complaining about preemptibility.
1181 		 */
1182 		mmap_assert_write_locked(src_mm);
1183 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1184 	}
1185 
1186 	ret = 0;
1187 	dst_pgd = pgd_offset(dst_mm, addr);
1188 	src_pgd = pgd_offset(src_mm, addr);
1189 	do {
1190 		next = pgd_addr_end(addr, end);
1191 		if (pgd_none_or_clear_bad(src_pgd))
1192 			continue;
1193 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1194 					    addr, next))) {
1195 			ret = -ENOMEM;
1196 			break;
1197 		}
1198 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1199 
1200 	if (is_cow) {
1201 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1202 		mmu_notifier_invalidate_range_end(&range);
1203 	}
1204 	return ret;
1205 }
1206 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1207 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1208 				struct vm_area_struct *vma, pmd_t *pmd,
1209 				unsigned long addr, unsigned long end,
1210 				struct zap_details *details)
1211 {
1212 	struct mm_struct *mm = tlb->mm;
1213 	int force_flush = 0;
1214 	int rss[NR_MM_COUNTERS];
1215 	spinlock_t *ptl;
1216 	pte_t *start_pte;
1217 	pte_t *pte;
1218 	swp_entry_t entry;
1219 
1220 	tlb_change_page_size(tlb, PAGE_SIZE);
1221 again:
1222 	init_rss_vec(rss);
1223 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1224 	pte = start_pte;
1225 	flush_tlb_batched_pending(mm);
1226 	arch_enter_lazy_mmu_mode();
1227 	do {
1228 		pte_t ptent = *pte;
1229 		if (pte_none(ptent))
1230 			continue;
1231 
1232 		if (need_resched())
1233 			break;
1234 
1235 		if (pte_present(ptent)) {
1236 			struct page *page;
1237 
1238 			page = vm_normal_page(vma, addr, ptent);
1239 			if (unlikely(details) && page) {
1240 				/*
1241 				 * unmap_shared_mapping_pages() wants to
1242 				 * invalidate cache without truncating:
1243 				 * unmap shared but keep private pages.
1244 				 */
1245 				if (details->check_mapping &&
1246 				    details->check_mapping != page_rmapping(page))
1247 					continue;
1248 			}
1249 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1250 							tlb->fullmm);
1251 			tlb_remove_tlb_entry(tlb, pte, addr);
1252 			if (unlikely(!page))
1253 				continue;
1254 
1255 			if (!PageAnon(page)) {
1256 				if (pte_dirty(ptent)) {
1257 					force_flush = 1;
1258 					set_page_dirty(page);
1259 				}
1260 				if (pte_young(ptent) &&
1261 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1262 					mark_page_accessed(page);
1263 			}
1264 			rss[mm_counter(page)]--;
1265 			page_remove_rmap(page, false);
1266 			if (unlikely(page_mapcount(page) < 0))
1267 				print_bad_pte(vma, addr, ptent, page);
1268 			if (unlikely(__tlb_remove_page(tlb, page))) {
1269 				force_flush = 1;
1270 				addr += PAGE_SIZE;
1271 				break;
1272 			}
1273 			continue;
1274 		}
1275 
1276 		entry = pte_to_swp_entry(ptent);
1277 		if (is_device_private_entry(entry)) {
1278 			struct page *page = device_private_entry_to_page(entry);
1279 
1280 			if (unlikely(details && details->check_mapping)) {
1281 				/*
1282 				 * unmap_shared_mapping_pages() wants to
1283 				 * invalidate cache without truncating:
1284 				 * unmap shared but keep private pages.
1285 				 */
1286 				if (details->check_mapping !=
1287 				    page_rmapping(page))
1288 					continue;
1289 			}
1290 
1291 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1292 			rss[mm_counter(page)]--;
1293 			page_remove_rmap(page, false);
1294 			put_page(page);
1295 			continue;
1296 		}
1297 
1298 		/* If details->check_mapping, we leave swap entries. */
1299 		if (unlikely(details))
1300 			continue;
1301 
1302 		if (!non_swap_entry(entry))
1303 			rss[MM_SWAPENTS]--;
1304 		else if (is_migration_entry(entry)) {
1305 			struct page *page;
1306 
1307 			page = migration_entry_to_page(entry);
1308 			rss[mm_counter(page)]--;
1309 		}
1310 		if (unlikely(!free_swap_and_cache(entry)))
1311 			print_bad_pte(vma, addr, ptent, NULL);
1312 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1313 	} while (pte++, addr += PAGE_SIZE, addr != end);
1314 
1315 	add_mm_rss_vec(mm, rss);
1316 	arch_leave_lazy_mmu_mode();
1317 
1318 	/* Do the actual TLB flush before dropping ptl */
1319 	if (force_flush)
1320 		tlb_flush_mmu_tlbonly(tlb);
1321 	pte_unmap_unlock(start_pte, ptl);
1322 
1323 	/*
1324 	 * If we forced a TLB flush (either due to running out of
1325 	 * batch buffers or because we needed to flush dirty TLB
1326 	 * entries before releasing the ptl), free the batched
1327 	 * memory too. Restart if we didn't do everything.
1328 	 */
1329 	if (force_flush) {
1330 		force_flush = 0;
1331 		tlb_flush_mmu(tlb);
1332 	}
1333 
1334 	if (addr != end) {
1335 		cond_resched();
1336 		goto again;
1337 	}
1338 
1339 	return addr;
1340 }
1341 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1342 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1343 				struct vm_area_struct *vma, pud_t *pud,
1344 				unsigned long addr, unsigned long end,
1345 				struct zap_details *details)
1346 {
1347 	pmd_t *pmd;
1348 	unsigned long next;
1349 
1350 	pmd = pmd_offset(pud, addr);
1351 	do {
1352 		next = pmd_addr_end(addr, end);
1353 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1354 			if (next - addr != HPAGE_PMD_SIZE)
1355 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1356 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1357 				goto next;
1358 			/* fall through */
1359 		} else if (details && details->single_page &&
1360 			   PageTransCompound(details->single_page) &&
1361 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1362 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1363 			/*
1364 			 * Take and drop THP pmd lock so that we cannot return
1365 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1366 			 * but not yet decremented compound_mapcount().
1367 			 */
1368 			spin_unlock(ptl);
1369 		}
1370 
1371 		/*
1372 		 * Here there can be other concurrent MADV_DONTNEED or
1373 		 * trans huge page faults running, and if the pmd is
1374 		 * none or trans huge it can change under us. This is
1375 		 * because MADV_DONTNEED holds the mmap_lock in read
1376 		 * mode.
1377 		 */
1378 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1379 			goto next;
1380 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1381 next:
1382 		cond_resched();
1383 	} while (pmd++, addr = next, addr != end);
1384 
1385 	return addr;
1386 }
1387 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1388 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1389 				struct vm_area_struct *vma, p4d_t *p4d,
1390 				unsigned long addr, unsigned long end,
1391 				struct zap_details *details)
1392 {
1393 	pud_t *pud;
1394 	unsigned long next;
1395 
1396 	pud = pud_offset(p4d, addr);
1397 	do {
1398 		next = pud_addr_end(addr, end);
1399 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1400 			if (next - addr != HPAGE_PUD_SIZE) {
1401 				mmap_assert_locked(tlb->mm);
1402 				split_huge_pud(vma, pud, addr);
1403 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1404 				goto next;
1405 			/* fall through */
1406 		}
1407 		if (pud_none_or_clear_bad(pud))
1408 			continue;
1409 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1410 next:
1411 		cond_resched();
1412 	} while (pud++, addr = next, addr != end);
1413 
1414 	return addr;
1415 }
1416 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1417 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1418 				struct vm_area_struct *vma, pgd_t *pgd,
1419 				unsigned long addr, unsigned long end,
1420 				struct zap_details *details)
1421 {
1422 	p4d_t *p4d;
1423 	unsigned long next;
1424 
1425 	p4d = p4d_offset(pgd, addr);
1426 	do {
1427 		next = p4d_addr_end(addr, end);
1428 		if (p4d_none_or_clear_bad(p4d))
1429 			continue;
1430 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1431 	} while (p4d++, addr = next, addr != end);
1432 
1433 	return addr;
1434 }
1435 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1436 void unmap_page_range(struct mmu_gather *tlb,
1437 			     struct vm_area_struct *vma,
1438 			     unsigned long addr, unsigned long end,
1439 			     struct zap_details *details)
1440 {
1441 	pgd_t *pgd;
1442 	unsigned long next;
1443 
1444 	BUG_ON(addr >= end);
1445 	tlb_start_vma(tlb, vma);
1446 	pgd = pgd_offset(vma->vm_mm, addr);
1447 	do {
1448 		next = pgd_addr_end(addr, end);
1449 		if (pgd_none_or_clear_bad(pgd))
1450 			continue;
1451 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1452 	} while (pgd++, addr = next, addr != end);
1453 	tlb_end_vma(tlb, vma);
1454 }
1455 
1456 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1457 static void unmap_single_vma(struct mmu_gather *tlb,
1458 		struct vm_area_struct *vma, unsigned long start_addr,
1459 		unsigned long end_addr,
1460 		struct zap_details *details)
1461 {
1462 	unsigned long start = max(vma->vm_start, start_addr);
1463 	unsigned long end;
1464 
1465 	if (start >= vma->vm_end)
1466 		return;
1467 	end = min(vma->vm_end, end_addr);
1468 	if (end <= vma->vm_start)
1469 		return;
1470 
1471 	if (vma->vm_file)
1472 		uprobe_munmap(vma, start, end);
1473 
1474 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1475 		untrack_pfn(vma, 0, 0);
1476 
1477 	if (start != end) {
1478 		if (unlikely(is_vm_hugetlb_page(vma))) {
1479 			/*
1480 			 * It is undesirable to test vma->vm_file as it
1481 			 * should be non-null for valid hugetlb area.
1482 			 * However, vm_file will be NULL in the error
1483 			 * cleanup path of mmap_region. When
1484 			 * hugetlbfs ->mmap method fails,
1485 			 * mmap_region() nullifies vma->vm_file
1486 			 * before calling this function to clean up.
1487 			 * Since no pte has actually been setup, it is
1488 			 * safe to do nothing in this case.
1489 			 */
1490 			if (vma->vm_file) {
1491 				i_mmap_lock_write(vma->vm_file->f_mapping);
1492 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1493 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1494 			}
1495 		} else
1496 			unmap_page_range(tlb, vma, start, end, details);
1497 	}
1498 }
1499 
1500 /**
1501  * unmap_vmas - unmap a range of memory covered by a list of vma's
1502  * @tlb: address of the caller's struct mmu_gather
1503  * @vma: the starting vma
1504  * @start_addr: virtual address at which to start unmapping
1505  * @end_addr: virtual address at which to end unmapping
1506  *
1507  * Unmap all pages in the vma list.
1508  *
1509  * Only addresses between `start' and `end' will be unmapped.
1510  *
1511  * The VMA list must be sorted in ascending virtual address order.
1512  *
1513  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1514  * range after unmap_vmas() returns.  So the only responsibility here is to
1515  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1516  * drops the lock and schedules.
1517  */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1518 void unmap_vmas(struct mmu_gather *tlb,
1519 		struct vm_area_struct *vma, unsigned long start_addr,
1520 		unsigned long end_addr)
1521 {
1522 	struct mmu_notifier_range range;
1523 
1524 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1525 				start_addr, end_addr);
1526 	mmu_notifier_invalidate_range_start(&range);
1527 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1528 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1529 	mmu_notifier_invalidate_range_end(&range);
1530 }
1531 
1532 /**
1533  * zap_page_range - remove user pages in a given range
1534  * @vma: vm_area_struct holding the applicable pages
1535  * @start: starting address of pages to zap
1536  * @size: number of bytes to zap
1537  *
1538  * Caller must protect the VMA list
1539  */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1540 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1541 		unsigned long size)
1542 {
1543 	struct mmu_notifier_range range;
1544 	struct mmu_gather tlb;
1545 
1546 	lru_add_drain();
1547 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1548 				start, start + size);
1549 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1550 	update_hiwater_rss(vma->vm_mm);
1551 	mmu_notifier_invalidate_range_start(&range);
1552 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1553 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1554 	mmu_notifier_invalidate_range_end(&range);
1555 	tlb_finish_mmu(&tlb, start, range.end);
1556 }
1557 
1558 /**
1559  * zap_page_range_single - remove user pages in a given range
1560  * @vma: vm_area_struct holding the applicable pages
1561  * @address: starting address of pages to zap
1562  * @size: number of bytes to zap
1563  * @details: details of shared cache invalidation
1564  *
1565  * The range must fit into one VMA.
1566  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1567 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1568 		unsigned long size, struct zap_details *details)
1569 {
1570 	struct mmu_notifier_range range;
1571 	struct mmu_gather tlb;
1572 
1573 	lru_add_drain();
1574 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1575 				address, address + size);
1576 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1577 	update_hiwater_rss(vma->vm_mm);
1578 	mmu_notifier_invalidate_range_start(&range);
1579 	unmap_single_vma(&tlb, vma, address, range.end, details);
1580 	mmu_notifier_invalidate_range_end(&range);
1581 	tlb_finish_mmu(&tlb, address, range.end);
1582 }
1583 
1584 /**
1585  * zap_vma_ptes - remove ptes mapping the vma
1586  * @vma: vm_area_struct holding ptes to be zapped
1587  * @address: starting address of pages to zap
1588  * @size: number of bytes to zap
1589  *
1590  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1591  *
1592  * The entire address range must be fully contained within the vma.
1593  *
1594  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1595 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1596 		unsigned long size)
1597 {
1598 	if (address < vma->vm_start || address + size > vma->vm_end ||
1599 	    		!(vma->vm_flags & VM_PFNMAP))
1600 		return;
1601 
1602 	zap_page_range_single(vma, address, size, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1605 
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1606 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1607 {
1608 	pgd_t *pgd;
1609 	p4d_t *p4d;
1610 	pud_t *pud;
1611 	pmd_t *pmd;
1612 
1613 	pgd = pgd_offset(mm, addr);
1614 	p4d = p4d_alloc(mm, pgd, addr);
1615 	if (!p4d)
1616 		return NULL;
1617 	pud = pud_alloc(mm, p4d, addr);
1618 	if (!pud)
1619 		return NULL;
1620 	pmd = pmd_alloc(mm, pud, addr);
1621 	if (!pmd)
1622 		return NULL;
1623 
1624 	VM_BUG_ON(pmd_trans_huge(*pmd));
1625 	return pmd;
1626 }
1627 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1628 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1629 			spinlock_t **ptl)
1630 {
1631 	pmd_t *pmd = walk_to_pmd(mm, addr);
1632 
1633 	if (!pmd)
1634 		return NULL;
1635 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1636 }
1637 
validate_page_before_insert(struct page * page)1638 static int validate_page_before_insert(struct page *page)
1639 {
1640 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1641 		return -EINVAL;
1642 	flush_dcache_page(page);
1643 	return 0;
1644 }
1645 
insert_page_into_pte_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1646 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1647 			unsigned long addr, struct page *page, pgprot_t prot)
1648 {
1649 	if (!pte_none(*pte))
1650 		return -EBUSY;
1651 	/* Ok, finally just insert the thing.. */
1652 	get_page(page);
1653 	inc_mm_counter_fast(mm, mm_counter_file(page));
1654 	page_add_file_rmap(page, false);
1655 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1656 	return 0;
1657 }
1658 
1659 /*
1660  * This is the old fallback for page remapping.
1661  *
1662  * For historical reasons, it only allows reserved pages. Only
1663  * old drivers should use this, and they needed to mark their
1664  * pages reserved for the old functions anyway.
1665  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1666 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1667 			struct page *page, pgprot_t prot)
1668 {
1669 	struct mm_struct *mm = vma->vm_mm;
1670 	int retval;
1671 	pte_t *pte;
1672 	spinlock_t *ptl;
1673 
1674 	retval = validate_page_before_insert(page);
1675 	if (retval)
1676 		goto out;
1677 	retval = -ENOMEM;
1678 	pte = get_locked_pte(mm, addr, &ptl);
1679 	if (!pte)
1680 		goto out;
1681 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1682 	pte_unmap_unlock(pte, ptl);
1683 out:
1684 	return retval;
1685 }
1686 
1687 #ifdef pte_index
insert_page_in_batch_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1688 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1689 			unsigned long addr, struct page *page, pgprot_t prot)
1690 {
1691 	int err;
1692 
1693 	if (!page_count(page))
1694 		return -EINVAL;
1695 	err = validate_page_before_insert(page);
1696 	if (err)
1697 		return err;
1698 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1699 }
1700 
1701 /* insert_pages() amortizes the cost of spinlock operations
1702  * when inserting pages in a loop. Arch *must* define pte_index.
1703  */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1704 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1705 			struct page **pages, unsigned long *num, pgprot_t prot)
1706 {
1707 	pmd_t *pmd = NULL;
1708 	pte_t *start_pte, *pte;
1709 	spinlock_t *pte_lock;
1710 	struct mm_struct *const mm = vma->vm_mm;
1711 	unsigned long curr_page_idx = 0;
1712 	unsigned long remaining_pages_total = *num;
1713 	unsigned long pages_to_write_in_pmd;
1714 	int ret;
1715 more:
1716 	ret = -EFAULT;
1717 	pmd = walk_to_pmd(mm, addr);
1718 	if (!pmd)
1719 		goto out;
1720 
1721 	pages_to_write_in_pmd = min_t(unsigned long,
1722 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1723 
1724 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1725 	ret = -ENOMEM;
1726 	if (pte_alloc(mm, pmd))
1727 		goto out;
1728 
1729 	while (pages_to_write_in_pmd) {
1730 		int pte_idx = 0;
1731 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1732 
1733 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1734 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1735 			int err = insert_page_in_batch_locked(mm, pte,
1736 				addr, pages[curr_page_idx], prot);
1737 			if (unlikely(err)) {
1738 				pte_unmap_unlock(start_pte, pte_lock);
1739 				ret = err;
1740 				remaining_pages_total -= pte_idx;
1741 				goto out;
1742 			}
1743 			addr += PAGE_SIZE;
1744 			++curr_page_idx;
1745 		}
1746 		pte_unmap_unlock(start_pte, pte_lock);
1747 		pages_to_write_in_pmd -= batch_size;
1748 		remaining_pages_total -= batch_size;
1749 	}
1750 	if (remaining_pages_total)
1751 		goto more;
1752 	ret = 0;
1753 out:
1754 	*num = remaining_pages_total;
1755 	return ret;
1756 }
1757 #endif  /* ifdef pte_index */
1758 
1759 /**
1760  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1761  * @vma: user vma to map to
1762  * @addr: target start user address of these pages
1763  * @pages: source kernel pages
1764  * @num: in: number of pages to map. out: number of pages that were *not*
1765  * mapped. (0 means all pages were successfully mapped).
1766  *
1767  * Preferred over vm_insert_page() when inserting multiple pages.
1768  *
1769  * In case of error, we may have mapped a subset of the provided
1770  * pages. It is the caller's responsibility to account for this case.
1771  *
1772  * The same restrictions apply as in vm_insert_page().
1773  */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1774 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1775 			struct page **pages, unsigned long *num)
1776 {
1777 #ifdef pte_index
1778 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1779 
1780 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1781 		return -EFAULT;
1782 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1783 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1784 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1785 		vma->vm_flags |= VM_MIXEDMAP;
1786 	}
1787 	/* Defer page refcount checking till we're about to map that page. */
1788 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1789 #else
1790 	unsigned long idx = 0, pgcount = *num;
1791 	int err = -EINVAL;
1792 
1793 	for (; idx < pgcount; ++idx) {
1794 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1795 		if (err)
1796 			break;
1797 	}
1798 	*num = pgcount - idx;
1799 	return err;
1800 #endif  /* ifdef pte_index */
1801 }
1802 EXPORT_SYMBOL(vm_insert_pages);
1803 
1804 /**
1805  * vm_insert_page - insert single page into user vma
1806  * @vma: user vma to map to
1807  * @addr: target user address of this page
1808  * @page: source kernel page
1809  *
1810  * This allows drivers to insert individual pages they've allocated
1811  * into a user vma.
1812  *
1813  * The page has to be a nice clean _individual_ kernel allocation.
1814  * If you allocate a compound page, you need to have marked it as
1815  * such (__GFP_COMP), or manually just split the page up yourself
1816  * (see split_page()).
1817  *
1818  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1819  * took an arbitrary page protection parameter. This doesn't allow
1820  * that. Your vma protection will have to be set up correctly, which
1821  * means that if you want a shared writable mapping, you'd better
1822  * ask for a shared writable mapping!
1823  *
1824  * The page does not need to be reserved.
1825  *
1826  * Usually this function is called from f_op->mmap() handler
1827  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1828  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1829  * function from other places, for example from page-fault handler.
1830  *
1831  * Return: %0 on success, negative error code otherwise.
1832  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1833 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1834 			struct page *page)
1835 {
1836 	if (addr < vma->vm_start || addr >= vma->vm_end)
1837 		return -EFAULT;
1838 	if (!page_count(page))
1839 		return -EINVAL;
1840 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1841 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1842 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1843 		vma->vm_flags |= VM_MIXEDMAP;
1844 	}
1845 	return insert_page(vma, addr, page, vma->vm_page_prot);
1846 }
1847 EXPORT_SYMBOL(vm_insert_page);
1848 
1849 /*
1850  * __vm_map_pages - maps range of kernel pages into user vma
1851  * @vma: user vma to map to
1852  * @pages: pointer to array of source kernel pages
1853  * @num: number of pages in page array
1854  * @offset: user's requested vm_pgoff
1855  *
1856  * This allows drivers to map range of kernel pages into a user vma.
1857  *
1858  * Return: 0 on success and error code otherwise.
1859  */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1860 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1861 				unsigned long num, unsigned long offset)
1862 {
1863 	unsigned long count = vma_pages(vma);
1864 	unsigned long uaddr = vma->vm_start;
1865 	int ret, i;
1866 
1867 	/* Fail if the user requested offset is beyond the end of the object */
1868 	if (offset >= num)
1869 		return -ENXIO;
1870 
1871 	/* Fail if the user requested size exceeds available object size */
1872 	if (count > num - offset)
1873 		return -ENXIO;
1874 
1875 	for (i = 0; i < count; i++) {
1876 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1877 		if (ret < 0)
1878 			return ret;
1879 		uaddr += PAGE_SIZE;
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  * vm_map_pages - maps range of kernel pages starts with non zero offset
1887  * @vma: user vma to map to
1888  * @pages: pointer to array of source kernel pages
1889  * @num: number of pages in page array
1890  *
1891  * Maps an object consisting of @num pages, catering for the user's
1892  * requested vm_pgoff
1893  *
1894  * If we fail to insert any page into the vma, the function will return
1895  * immediately leaving any previously inserted pages present.  Callers
1896  * from the mmap handler may immediately return the error as their caller
1897  * will destroy the vma, removing any successfully inserted pages. Other
1898  * callers should make their own arrangements for calling unmap_region().
1899  *
1900  * Context: Process context. Called by mmap handlers.
1901  * Return: 0 on success and error code otherwise.
1902  */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1903 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1904 				unsigned long num)
1905 {
1906 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1907 }
1908 EXPORT_SYMBOL(vm_map_pages);
1909 
1910 /**
1911  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1912  * @vma: user vma to map to
1913  * @pages: pointer to array of source kernel pages
1914  * @num: number of pages in page array
1915  *
1916  * Similar to vm_map_pages(), except that it explicitly sets the offset
1917  * to 0. This function is intended for the drivers that did not consider
1918  * vm_pgoff.
1919  *
1920  * Context: Process context. Called by mmap handlers.
1921  * Return: 0 on success and error code otherwise.
1922  */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1923 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1924 				unsigned long num)
1925 {
1926 	return __vm_map_pages(vma, pages, num, 0);
1927 }
1928 EXPORT_SYMBOL(vm_map_pages_zero);
1929 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1930 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1931 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1932 {
1933 	struct mm_struct *mm = vma->vm_mm;
1934 	pte_t *pte, entry;
1935 	spinlock_t *ptl;
1936 
1937 	pte = get_locked_pte(mm, addr, &ptl);
1938 	if (!pte)
1939 		return VM_FAULT_OOM;
1940 	if (!pte_none(*pte)) {
1941 		if (mkwrite) {
1942 			/*
1943 			 * For read faults on private mappings the PFN passed
1944 			 * in may not match the PFN we have mapped if the
1945 			 * mapped PFN is a writeable COW page.  In the mkwrite
1946 			 * case we are creating a writable PTE for a shared
1947 			 * mapping and we expect the PFNs to match. If they
1948 			 * don't match, we are likely racing with block
1949 			 * allocation and mapping invalidation so just skip the
1950 			 * update.
1951 			 */
1952 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1953 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1954 				goto out_unlock;
1955 			}
1956 			entry = pte_mkyoung(*pte);
1957 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1958 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1959 				update_mmu_cache(vma, addr, pte);
1960 		}
1961 		goto out_unlock;
1962 	}
1963 
1964 	/* Ok, finally just insert the thing.. */
1965 	if (pfn_t_devmap(pfn))
1966 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1967 	else
1968 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1969 
1970 	if (mkwrite) {
1971 		entry = pte_mkyoung(entry);
1972 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1973 	}
1974 
1975 	set_pte_at(mm, addr, pte, entry);
1976 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1977 
1978 out_unlock:
1979 	pte_unmap_unlock(pte, ptl);
1980 	return VM_FAULT_NOPAGE;
1981 }
1982 
1983 /**
1984  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1985  * @vma: user vma to map to
1986  * @addr: target user address of this page
1987  * @pfn: source kernel pfn
1988  * @pgprot: pgprot flags for the inserted page
1989  *
1990  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1991  * to override pgprot on a per-page basis.
1992  *
1993  * This only makes sense for IO mappings, and it makes no sense for
1994  * COW mappings.  In general, using multiple vmas is preferable;
1995  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1996  * impractical.
1997  *
1998  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1999  * a value of @pgprot different from that of @vma->vm_page_prot.
2000  *
2001  * Context: Process context.  May allocate using %GFP_KERNEL.
2002  * Return: vm_fault_t value.
2003  */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2004 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2005 			unsigned long pfn, pgprot_t pgprot)
2006 {
2007 	/*
2008 	 * Technically, architectures with pte_special can avoid all these
2009 	 * restrictions (same for remap_pfn_range).  However we would like
2010 	 * consistency in testing and feature parity among all, so we should
2011 	 * try to keep these invariants in place for everybody.
2012 	 */
2013 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2014 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2015 						(VM_PFNMAP|VM_MIXEDMAP));
2016 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2017 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2018 
2019 	if (addr < vma->vm_start || addr >= vma->vm_end)
2020 		return VM_FAULT_SIGBUS;
2021 
2022 	if (!pfn_modify_allowed(pfn, pgprot))
2023 		return VM_FAULT_SIGBUS;
2024 
2025 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2026 
2027 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2028 			false);
2029 }
2030 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2031 
2032 /**
2033  * vmf_insert_pfn - insert single pfn into user vma
2034  * @vma: user vma to map to
2035  * @addr: target user address of this page
2036  * @pfn: source kernel pfn
2037  *
2038  * Similar to vm_insert_page, this allows drivers to insert individual pages
2039  * they've allocated into a user vma. Same comments apply.
2040  *
2041  * This function should only be called from a vm_ops->fault handler, and
2042  * in that case the handler should return the result of this function.
2043  *
2044  * vma cannot be a COW mapping.
2045  *
2046  * As this is called only for pages that do not currently exist, we
2047  * do not need to flush old virtual caches or the TLB.
2048  *
2049  * Context: Process context.  May allocate using %GFP_KERNEL.
2050  * Return: vm_fault_t value.
2051  */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2052 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2053 			unsigned long pfn)
2054 {
2055 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2056 }
2057 EXPORT_SYMBOL(vmf_insert_pfn);
2058 
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2059 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2060 {
2061 	/* these checks mirror the abort conditions in vm_normal_page */
2062 	if (vma->vm_flags & VM_MIXEDMAP)
2063 		return true;
2064 	if (pfn_t_devmap(pfn))
2065 		return true;
2066 	if (pfn_t_special(pfn))
2067 		return true;
2068 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2069 		return true;
2070 	return false;
2071 }
2072 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2073 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2074 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2075 		bool mkwrite)
2076 {
2077 	int err;
2078 
2079 	BUG_ON(!vm_mixed_ok(vma, pfn));
2080 
2081 	if (addr < vma->vm_start || addr >= vma->vm_end)
2082 		return VM_FAULT_SIGBUS;
2083 
2084 	track_pfn_insert(vma, &pgprot, pfn);
2085 
2086 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2087 		return VM_FAULT_SIGBUS;
2088 
2089 	/*
2090 	 * If we don't have pte special, then we have to use the pfn_valid()
2091 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2092 	 * refcount the page if pfn_valid is true (hence insert_page rather
2093 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2094 	 * without pte special, it would there be refcounted as a normal page.
2095 	 */
2096 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2097 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2098 		struct page *page;
2099 
2100 		/*
2101 		 * At this point we are committed to insert_page()
2102 		 * regardless of whether the caller specified flags that
2103 		 * result in pfn_t_has_page() == false.
2104 		 */
2105 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2106 		err = insert_page(vma, addr, page, pgprot);
2107 	} else {
2108 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2109 	}
2110 
2111 	if (err == -ENOMEM)
2112 		return VM_FAULT_OOM;
2113 	if (err < 0 && err != -EBUSY)
2114 		return VM_FAULT_SIGBUS;
2115 
2116 	return VM_FAULT_NOPAGE;
2117 }
2118 
2119 /**
2120  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2121  * @vma: user vma to map to
2122  * @addr: target user address of this page
2123  * @pfn: source kernel pfn
2124  * @pgprot: pgprot flags for the inserted page
2125  *
2126  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2127  * to override pgprot on a per-page basis.
2128  *
2129  * Typically this function should be used by drivers to set caching- and
2130  * encryption bits different than those of @vma->vm_page_prot, because
2131  * the caching- or encryption mode may not be known at mmap() time.
2132  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2133  * to set caching and encryption bits for those vmas (except for COW pages).
2134  * This is ensured by core vm only modifying these page table entries using
2135  * functions that don't touch caching- or encryption bits, using pte_modify()
2136  * if needed. (See for example mprotect()).
2137  * Also when new page-table entries are created, this is only done using the
2138  * fault() callback, and never using the value of vma->vm_page_prot,
2139  * except for page-table entries that point to anonymous pages as the result
2140  * of COW.
2141  *
2142  * Context: Process context.  May allocate using %GFP_KERNEL.
2143  * Return: vm_fault_t value.
2144  */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2145 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2146 				 pfn_t pfn, pgprot_t pgprot)
2147 {
2148 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2149 }
2150 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2151 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2152 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2153 		pfn_t pfn)
2154 {
2155 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2156 }
2157 EXPORT_SYMBOL(vmf_insert_mixed);
2158 
2159 /*
2160  *  If the insertion of PTE failed because someone else already added a
2161  *  different entry in the mean time, we treat that as success as we assume
2162  *  the same entry was actually inserted.
2163  */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2164 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2165 		unsigned long addr, pfn_t pfn)
2166 {
2167 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2168 }
2169 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2170 
2171 /*
2172  * maps a range of physical memory into the requested pages. the old
2173  * mappings are removed. any references to nonexistent pages results
2174  * in null mappings (currently treated as "copy-on-access")
2175  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2176 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2177 			unsigned long addr, unsigned long end,
2178 			unsigned long pfn, pgprot_t prot)
2179 {
2180 	pte_t *pte, *mapped_pte;
2181 	spinlock_t *ptl;
2182 	int err = 0;
2183 
2184 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2185 	if (!pte)
2186 		return -ENOMEM;
2187 	arch_enter_lazy_mmu_mode();
2188 	do {
2189 		BUG_ON(!pte_none(*pte));
2190 		if (!pfn_modify_allowed(pfn, prot)) {
2191 			err = -EACCES;
2192 			break;
2193 		}
2194 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2195 		pfn++;
2196 	} while (pte++, addr += PAGE_SIZE, addr != end);
2197 	arch_leave_lazy_mmu_mode();
2198 	pte_unmap_unlock(mapped_pte, ptl);
2199 	return err;
2200 }
2201 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2202 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2203 			unsigned long addr, unsigned long end,
2204 			unsigned long pfn, pgprot_t prot)
2205 {
2206 	pmd_t *pmd;
2207 	unsigned long next;
2208 	int err;
2209 
2210 	pfn -= addr >> PAGE_SHIFT;
2211 	pmd = pmd_alloc(mm, pud, addr);
2212 	if (!pmd)
2213 		return -ENOMEM;
2214 	VM_BUG_ON(pmd_trans_huge(*pmd));
2215 	do {
2216 		next = pmd_addr_end(addr, end);
2217 		err = remap_pte_range(mm, pmd, addr, next,
2218 				pfn + (addr >> PAGE_SHIFT), prot);
2219 		if (err)
2220 			return err;
2221 	} while (pmd++, addr = next, addr != end);
2222 	return 0;
2223 }
2224 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2225 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2226 			unsigned long addr, unsigned long end,
2227 			unsigned long pfn, pgprot_t prot)
2228 {
2229 	pud_t *pud;
2230 	unsigned long next;
2231 	int err;
2232 
2233 	pfn -= addr >> PAGE_SHIFT;
2234 	pud = pud_alloc(mm, p4d, addr);
2235 	if (!pud)
2236 		return -ENOMEM;
2237 	do {
2238 		next = pud_addr_end(addr, end);
2239 		err = remap_pmd_range(mm, pud, addr, next,
2240 				pfn + (addr >> PAGE_SHIFT), prot);
2241 		if (err)
2242 			return err;
2243 	} while (pud++, addr = next, addr != end);
2244 	return 0;
2245 }
2246 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2247 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2248 			unsigned long addr, unsigned long end,
2249 			unsigned long pfn, pgprot_t prot)
2250 {
2251 	p4d_t *p4d;
2252 	unsigned long next;
2253 	int err;
2254 
2255 	pfn -= addr >> PAGE_SHIFT;
2256 	p4d = p4d_alloc(mm, pgd, addr);
2257 	if (!p4d)
2258 		return -ENOMEM;
2259 	do {
2260 		next = p4d_addr_end(addr, end);
2261 		err = remap_pud_range(mm, p4d, addr, next,
2262 				pfn + (addr >> PAGE_SHIFT), prot);
2263 		if (err)
2264 			return err;
2265 	} while (p4d++, addr = next, addr != end);
2266 	return 0;
2267 }
2268 
2269 /**
2270  * remap_pfn_range - remap kernel memory to userspace
2271  * @vma: user vma to map to
2272  * @addr: target page aligned user address to start at
2273  * @pfn: page frame number of kernel physical memory address
2274  * @size: size of mapping area
2275  * @prot: page protection flags for this mapping
2276  *
2277  * Note: this is only safe if the mm semaphore is held when called.
2278  *
2279  * Return: %0 on success, negative error code otherwise.
2280  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2281 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2282 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2283 {
2284 	pgd_t *pgd;
2285 	unsigned long next;
2286 	unsigned long end = addr + PAGE_ALIGN(size);
2287 	struct mm_struct *mm = vma->vm_mm;
2288 	unsigned long remap_pfn = pfn;
2289 	int err;
2290 
2291 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2292 		return -EINVAL;
2293 
2294 	/*
2295 	 * Physically remapped pages are special. Tell the
2296 	 * rest of the world about it:
2297 	 *   VM_IO tells people not to look at these pages
2298 	 *	(accesses can have side effects).
2299 	 *   VM_PFNMAP tells the core MM that the base pages are just
2300 	 *	raw PFN mappings, and do not have a "struct page" associated
2301 	 *	with them.
2302 	 *   VM_DONTEXPAND
2303 	 *      Disable vma merging and expanding with mremap().
2304 	 *   VM_DONTDUMP
2305 	 *      Omit vma from core dump, even when VM_IO turned off.
2306 	 *
2307 	 * There's a horrible special case to handle copy-on-write
2308 	 * behaviour that some programs depend on. We mark the "original"
2309 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2310 	 * See vm_normal_page() for details.
2311 	 */
2312 	if (is_cow_mapping(vma->vm_flags)) {
2313 		if (addr != vma->vm_start || end != vma->vm_end)
2314 			return -EINVAL;
2315 		vma->vm_pgoff = pfn;
2316 	}
2317 
2318 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2319 	if (err)
2320 		return -EINVAL;
2321 
2322 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2323 
2324 	BUG_ON(addr >= end);
2325 	pfn -= addr >> PAGE_SHIFT;
2326 	pgd = pgd_offset(mm, addr);
2327 	flush_cache_range(vma, addr, end);
2328 	do {
2329 		next = pgd_addr_end(addr, end);
2330 		err = remap_p4d_range(mm, pgd, addr, next,
2331 				pfn + (addr >> PAGE_SHIFT), prot);
2332 		if (err)
2333 			break;
2334 	} while (pgd++, addr = next, addr != end);
2335 
2336 	if (err)
2337 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2338 
2339 	return err;
2340 }
2341 EXPORT_SYMBOL(remap_pfn_range);
2342 
2343 /**
2344  * vm_iomap_memory - remap memory to userspace
2345  * @vma: user vma to map to
2346  * @start: start of the physical memory to be mapped
2347  * @len: size of area
2348  *
2349  * This is a simplified io_remap_pfn_range() for common driver use. The
2350  * driver just needs to give us the physical memory range to be mapped,
2351  * we'll figure out the rest from the vma information.
2352  *
2353  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2354  * whatever write-combining details or similar.
2355  *
2356  * Return: %0 on success, negative error code otherwise.
2357  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2358 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2359 {
2360 	unsigned long vm_len, pfn, pages;
2361 
2362 	/* Check that the physical memory area passed in looks valid */
2363 	if (start + len < start)
2364 		return -EINVAL;
2365 	/*
2366 	 * You *really* shouldn't map things that aren't page-aligned,
2367 	 * but we've historically allowed it because IO memory might
2368 	 * just have smaller alignment.
2369 	 */
2370 	len += start & ~PAGE_MASK;
2371 	pfn = start >> PAGE_SHIFT;
2372 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2373 	if (pfn + pages < pfn)
2374 		return -EINVAL;
2375 
2376 	/* We start the mapping 'vm_pgoff' pages into the area */
2377 	if (vma->vm_pgoff > pages)
2378 		return -EINVAL;
2379 	pfn += vma->vm_pgoff;
2380 	pages -= vma->vm_pgoff;
2381 
2382 	/* Can we fit all of the mapping? */
2383 	vm_len = vma->vm_end - vma->vm_start;
2384 	if (vm_len >> PAGE_SHIFT > pages)
2385 		return -EINVAL;
2386 
2387 	/* Ok, let it rip */
2388 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2389 }
2390 EXPORT_SYMBOL(vm_iomap_memory);
2391 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2392 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2393 				     unsigned long addr, unsigned long end,
2394 				     pte_fn_t fn, void *data, bool create,
2395 				     pgtbl_mod_mask *mask)
2396 {
2397 	pte_t *pte;
2398 	int err = 0;
2399 	spinlock_t *ptl;
2400 
2401 	if (create) {
2402 		pte = (mm == &init_mm) ?
2403 			pte_alloc_kernel_track(pmd, addr, mask) :
2404 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2405 		if (!pte)
2406 			return -ENOMEM;
2407 	} else {
2408 		pte = (mm == &init_mm) ?
2409 			pte_offset_kernel(pmd, addr) :
2410 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2411 	}
2412 
2413 	BUG_ON(pmd_huge(*pmd));
2414 
2415 	arch_enter_lazy_mmu_mode();
2416 
2417 	if (fn) {
2418 		do {
2419 			if (create || !pte_none(*pte)) {
2420 				err = fn(pte++, addr, data);
2421 				if (err)
2422 					break;
2423 			}
2424 		} while (addr += PAGE_SIZE, addr != end);
2425 	}
2426 	*mask |= PGTBL_PTE_MODIFIED;
2427 
2428 	arch_leave_lazy_mmu_mode();
2429 
2430 	if (mm != &init_mm)
2431 		pte_unmap_unlock(pte-1, ptl);
2432 	return err;
2433 }
2434 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2435 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2436 				     unsigned long addr, unsigned long end,
2437 				     pte_fn_t fn, void *data, bool create,
2438 				     pgtbl_mod_mask *mask)
2439 {
2440 	pmd_t *pmd;
2441 	unsigned long next;
2442 	int err = 0;
2443 
2444 	BUG_ON(pud_huge(*pud));
2445 
2446 	if (create) {
2447 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2448 		if (!pmd)
2449 			return -ENOMEM;
2450 	} else {
2451 		pmd = pmd_offset(pud, addr);
2452 	}
2453 	do {
2454 		next = pmd_addr_end(addr, end);
2455 		if (create || !pmd_none_or_clear_bad(pmd)) {
2456 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2457 						 create, mask);
2458 			if (err)
2459 				break;
2460 		}
2461 	} while (pmd++, addr = next, addr != end);
2462 	return err;
2463 }
2464 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2465 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2466 				     unsigned long addr, unsigned long end,
2467 				     pte_fn_t fn, void *data, bool create,
2468 				     pgtbl_mod_mask *mask)
2469 {
2470 	pud_t *pud;
2471 	unsigned long next;
2472 	int err = 0;
2473 
2474 	if (create) {
2475 		pud = pud_alloc_track(mm, p4d, addr, mask);
2476 		if (!pud)
2477 			return -ENOMEM;
2478 	} else {
2479 		pud = pud_offset(p4d, addr);
2480 	}
2481 	do {
2482 		next = pud_addr_end(addr, end);
2483 		if (create || !pud_none_or_clear_bad(pud)) {
2484 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2485 						 create, mask);
2486 			if (err)
2487 				break;
2488 		}
2489 	} while (pud++, addr = next, addr != end);
2490 	return err;
2491 }
2492 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2493 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2494 				     unsigned long addr, unsigned long end,
2495 				     pte_fn_t fn, void *data, bool create,
2496 				     pgtbl_mod_mask *mask)
2497 {
2498 	p4d_t *p4d;
2499 	unsigned long next;
2500 	int err = 0;
2501 
2502 	if (create) {
2503 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2504 		if (!p4d)
2505 			return -ENOMEM;
2506 	} else {
2507 		p4d = p4d_offset(pgd, addr);
2508 	}
2509 	do {
2510 		next = p4d_addr_end(addr, end);
2511 		if (create || !p4d_none_or_clear_bad(p4d)) {
2512 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2513 						 create, mask);
2514 			if (err)
2515 				break;
2516 		}
2517 	} while (p4d++, addr = next, addr != end);
2518 	return err;
2519 }
2520 
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2521 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2522 				 unsigned long size, pte_fn_t fn,
2523 				 void *data, bool create)
2524 {
2525 	pgd_t *pgd;
2526 	unsigned long start = addr, next;
2527 	unsigned long end = addr + size;
2528 	pgtbl_mod_mask mask = 0;
2529 	int err = 0;
2530 
2531 	if (WARN_ON(addr >= end))
2532 		return -EINVAL;
2533 
2534 	pgd = pgd_offset(mm, addr);
2535 	do {
2536 		next = pgd_addr_end(addr, end);
2537 		if (!create && pgd_none_or_clear_bad(pgd))
2538 			continue;
2539 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2540 		if (err)
2541 			break;
2542 	} while (pgd++, addr = next, addr != end);
2543 
2544 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2545 		arch_sync_kernel_mappings(start, start + size);
2546 
2547 	return err;
2548 }
2549 
2550 /*
2551  * Scan a region of virtual memory, filling in page tables as necessary
2552  * and calling a provided function on each leaf page table.
2553  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2554 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2555 			unsigned long size, pte_fn_t fn, void *data)
2556 {
2557 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2558 }
2559 EXPORT_SYMBOL_GPL(apply_to_page_range);
2560 
2561 /*
2562  * Scan a region of virtual memory, calling a provided function on
2563  * each leaf page table where it exists.
2564  *
2565  * Unlike apply_to_page_range, this does _not_ fill in page tables
2566  * where they are absent.
2567  */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2568 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2569 				 unsigned long size, pte_fn_t fn, void *data)
2570 {
2571 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2572 }
2573 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2574 
2575 /*
2576  * handle_pte_fault chooses page fault handler according to an entry which was
2577  * read non-atomically.  Before making any commitment, on those architectures
2578  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2579  * parts, do_swap_page must check under lock before unmapping the pte and
2580  * proceeding (but do_wp_page is only called after already making such a check;
2581  * and do_anonymous_page can safely check later on).
2582  */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2583 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2584 				pte_t *page_table, pte_t orig_pte)
2585 {
2586 	int same = 1;
2587 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2588 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2589 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2590 		spin_lock(ptl);
2591 		same = pte_same(*page_table, orig_pte);
2592 		spin_unlock(ptl);
2593 	}
2594 #endif
2595 	pte_unmap(page_table);
2596 	return same;
2597 }
2598 
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2599 static inline bool cow_user_page(struct page *dst, struct page *src,
2600 				 struct vm_fault *vmf)
2601 {
2602 	bool ret;
2603 	void *kaddr;
2604 	void __user *uaddr;
2605 	bool locked = false;
2606 	struct vm_area_struct *vma = vmf->vma;
2607 	struct mm_struct *mm = vma->vm_mm;
2608 	unsigned long addr = vmf->address;
2609 
2610 	if (likely(src)) {
2611 		copy_user_highpage(dst, src, addr, vma);
2612 		return true;
2613 	}
2614 
2615 	/*
2616 	 * If the source page was a PFN mapping, we don't have
2617 	 * a "struct page" for it. We do a best-effort copy by
2618 	 * just copying from the original user address. If that
2619 	 * fails, we just zero-fill it. Live with it.
2620 	 */
2621 	kaddr = kmap_atomic(dst);
2622 	uaddr = (void __user *)(addr & PAGE_MASK);
2623 
2624 	/*
2625 	 * On architectures with software "accessed" bits, we would
2626 	 * take a double page fault, so mark it accessed here.
2627 	 */
2628 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2629 		pte_t entry;
2630 
2631 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2632 		locked = true;
2633 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2634 			/*
2635 			 * Other thread has already handled the fault
2636 			 * and update local tlb only
2637 			 */
2638 			update_mmu_tlb(vma, addr, vmf->pte);
2639 			ret = false;
2640 			goto pte_unlock;
2641 		}
2642 
2643 		entry = pte_mkyoung(vmf->orig_pte);
2644 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2645 			update_mmu_cache(vma, addr, vmf->pte);
2646 	}
2647 
2648 	/*
2649 	 * This really shouldn't fail, because the page is there
2650 	 * in the page tables. But it might just be unreadable,
2651 	 * in which case we just give up and fill the result with
2652 	 * zeroes.
2653 	 */
2654 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2655 		if (locked)
2656 			goto warn;
2657 
2658 		/* Re-validate under PTL if the page is still mapped */
2659 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2660 		locked = true;
2661 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2662 			/* The PTE changed under us, update local tlb */
2663 			update_mmu_tlb(vma, addr, vmf->pte);
2664 			ret = false;
2665 			goto pte_unlock;
2666 		}
2667 
2668 		/*
2669 		 * The same page can be mapped back since last copy attempt.
2670 		 * Try to copy again under PTL.
2671 		 */
2672 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2673 			/*
2674 			 * Give a warn in case there can be some obscure
2675 			 * use-case
2676 			 */
2677 warn:
2678 			WARN_ON_ONCE(1);
2679 			clear_page(kaddr);
2680 		}
2681 	}
2682 
2683 	ret = true;
2684 
2685 pte_unlock:
2686 	if (locked)
2687 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 	kunmap_atomic(kaddr);
2689 	flush_dcache_page(dst);
2690 
2691 	return ret;
2692 }
2693 
__get_fault_gfp_mask(struct vm_area_struct * vma)2694 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2695 {
2696 	struct file *vm_file = vma->vm_file;
2697 
2698 	if (vm_file)
2699 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2700 
2701 	/*
2702 	 * Special mappings (e.g. VDSO) do not have any file so fake
2703 	 * a default GFP_KERNEL for them.
2704 	 */
2705 	return GFP_KERNEL;
2706 }
2707 
2708 /*
2709  * Notify the address space that the page is about to become writable so that
2710  * it can prohibit this or wait for the page to get into an appropriate state.
2711  *
2712  * We do this without the lock held, so that it can sleep if it needs to.
2713  */
do_page_mkwrite(struct vm_fault * vmf)2714 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2715 {
2716 	vm_fault_t ret;
2717 	struct page *page = vmf->page;
2718 	unsigned int old_flags = vmf->flags;
2719 
2720 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2721 
2722 	if (vmf->vma->vm_file &&
2723 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2724 		return VM_FAULT_SIGBUS;
2725 
2726 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2727 	/* Restore original flags so that caller is not surprised */
2728 	vmf->flags = old_flags;
2729 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2730 		return ret;
2731 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2732 		lock_page(page);
2733 		if (!page->mapping) {
2734 			unlock_page(page);
2735 			return 0; /* retry */
2736 		}
2737 		ret |= VM_FAULT_LOCKED;
2738 	} else
2739 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2740 	return ret;
2741 }
2742 
2743 /*
2744  * Handle dirtying of a page in shared file mapping on a write fault.
2745  *
2746  * The function expects the page to be locked and unlocks it.
2747  */
fault_dirty_shared_page(struct vm_fault * vmf)2748 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2749 {
2750 	struct vm_area_struct *vma = vmf->vma;
2751 	struct address_space *mapping;
2752 	struct page *page = vmf->page;
2753 	bool dirtied;
2754 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2755 
2756 	dirtied = set_page_dirty(page);
2757 	VM_BUG_ON_PAGE(PageAnon(page), page);
2758 	/*
2759 	 * Take a local copy of the address_space - page.mapping may be zeroed
2760 	 * by truncate after unlock_page().   The address_space itself remains
2761 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2762 	 * release semantics to prevent the compiler from undoing this copying.
2763 	 */
2764 	mapping = page_rmapping(page);
2765 	unlock_page(page);
2766 
2767 	if (!page_mkwrite)
2768 		file_update_time(vma->vm_file);
2769 
2770 	/*
2771 	 * Throttle page dirtying rate down to writeback speed.
2772 	 *
2773 	 * mapping may be NULL here because some device drivers do not
2774 	 * set page.mapping but still dirty their pages
2775 	 *
2776 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2777 	 * is pinning the mapping, as per above.
2778 	 */
2779 	if ((dirtied || page_mkwrite) && mapping) {
2780 		struct file *fpin;
2781 
2782 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2783 		balance_dirty_pages_ratelimited(mapping);
2784 		if (fpin) {
2785 			fput(fpin);
2786 			return VM_FAULT_RETRY;
2787 		}
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 /*
2794  * Handle write page faults for pages that can be reused in the current vma
2795  *
2796  * This can happen either due to the mapping being with the VM_SHARED flag,
2797  * or due to us being the last reference standing to the page. In either
2798  * case, all we need to do here is to mark the page as writable and update
2799  * any related book-keeping.
2800  */
wp_page_reuse(struct vm_fault * vmf)2801 static inline void wp_page_reuse(struct vm_fault *vmf)
2802 	__releases(vmf->ptl)
2803 {
2804 	struct vm_area_struct *vma = vmf->vma;
2805 	struct page *page = vmf->page;
2806 	pte_t entry;
2807 	/*
2808 	 * Clear the pages cpupid information as the existing
2809 	 * information potentially belongs to a now completely
2810 	 * unrelated process.
2811 	 */
2812 	if (page)
2813 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2814 
2815 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2816 	entry = pte_mkyoung(vmf->orig_pte);
2817 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2818 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2819 		update_mmu_cache(vma, vmf->address, vmf->pte);
2820 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2821 	count_vm_event(PGREUSE);
2822 }
2823 
2824 /*
2825  * Handle the case of a page which we actually need to copy to a new page.
2826  *
2827  * Called with mmap_lock locked and the old page referenced, but
2828  * without the ptl held.
2829  *
2830  * High level logic flow:
2831  *
2832  * - Allocate a page, copy the content of the old page to the new one.
2833  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2834  * - Take the PTL. If the pte changed, bail out and release the allocated page
2835  * - If the pte is still the way we remember it, update the page table and all
2836  *   relevant references. This includes dropping the reference the page-table
2837  *   held to the old page, as well as updating the rmap.
2838  * - In any case, unlock the PTL and drop the reference we took to the old page.
2839  */
wp_page_copy(struct vm_fault * vmf)2840 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2841 {
2842 	struct vm_area_struct *vma = vmf->vma;
2843 	struct mm_struct *mm = vma->vm_mm;
2844 	struct page *old_page = vmf->page;
2845 	struct page *new_page = NULL;
2846 	pte_t entry;
2847 	int page_copied = 0;
2848 	struct mmu_notifier_range range;
2849 
2850 	if (unlikely(anon_vma_prepare(vma)))
2851 		goto oom;
2852 
2853 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2854 		new_page = alloc_zeroed_user_highpage_movable(vma,
2855 							      vmf->address);
2856 		if (!new_page)
2857 			goto oom;
2858 	} else {
2859 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2860 				vmf->address);
2861 		if (!new_page)
2862 			goto oom;
2863 
2864 		if (!cow_user_page(new_page, old_page, vmf)) {
2865 			/*
2866 			 * COW failed, if the fault was solved by other,
2867 			 * it's fine. If not, userspace would re-fault on
2868 			 * the same address and we will handle the fault
2869 			 * from the second attempt.
2870 			 */
2871 			put_page(new_page);
2872 			if (old_page)
2873 				put_page(old_page);
2874 			return 0;
2875 		}
2876 	}
2877 
2878 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2879 		goto oom_free_new;
2880 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2881 
2882 	__SetPageUptodate(new_page);
2883 
2884 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2885 				vmf->address & PAGE_MASK,
2886 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2887 	mmu_notifier_invalidate_range_start(&range);
2888 
2889 	/*
2890 	 * Re-check the pte - we dropped the lock
2891 	 */
2892 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2893 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2894 		if (old_page) {
2895 			if (!PageAnon(old_page)) {
2896 				dec_mm_counter_fast(mm,
2897 						mm_counter_file(old_page));
2898 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2899 			}
2900 		} else {
2901 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2902 		}
2903 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2904 		entry = mk_pte(new_page, vma->vm_page_prot);
2905 		entry = pte_sw_mkyoung(entry);
2906 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2907 		/*
2908 		 * Clear the pte entry and flush it first, before updating the
2909 		 * pte with the new entry. This will avoid a race condition
2910 		 * seen in the presence of one thread doing SMC and another
2911 		 * thread doing COW.
2912 		 */
2913 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2914 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2915 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2916 		/*
2917 		 * We call the notify macro here because, when using secondary
2918 		 * mmu page tables (such as kvm shadow page tables), we want the
2919 		 * new page to be mapped directly into the secondary page table.
2920 		 */
2921 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2922 		update_mmu_cache(vma, vmf->address, vmf->pte);
2923 		if (old_page) {
2924 			/*
2925 			 * Only after switching the pte to the new page may
2926 			 * we remove the mapcount here. Otherwise another
2927 			 * process may come and find the rmap count decremented
2928 			 * before the pte is switched to the new page, and
2929 			 * "reuse" the old page writing into it while our pte
2930 			 * here still points into it and can be read by other
2931 			 * threads.
2932 			 *
2933 			 * The critical issue is to order this
2934 			 * page_remove_rmap with the ptp_clear_flush above.
2935 			 * Those stores are ordered by (if nothing else,)
2936 			 * the barrier present in the atomic_add_negative
2937 			 * in page_remove_rmap.
2938 			 *
2939 			 * Then the TLB flush in ptep_clear_flush ensures that
2940 			 * no process can access the old page before the
2941 			 * decremented mapcount is visible. And the old page
2942 			 * cannot be reused until after the decremented
2943 			 * mapcount is visible. So transitively, TLBs to
2944 			 * old page will be flushed before it can be reused.
2945 			 */
2946 			page_remove_rmap(old_page, false);
2947 		}
2948 
2949 		/* Free the old page.. */
2950 		new_page = old_page;
2951 		page_copied = 1;
2952 	} else {
2953 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2954 	}
2955 
2956 	if (new_page)
2957 		put_page(new_page);
2958 
2959 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2960 	/*
2961 	 * No need to double call mmu_notifier->invalidate_range() callback as
2962 	 * the above ptep_clear_flush_notify() did already call it.
2963 	 */
2964 	mmu_notifier_invalidate_range_only_end(&range);
2965 	if (old_page) {
2966 		/*
2967 		 * Don't let another task, with possibly unlocked vma,
2968 		 * keep the mlocked page.
2969 		 */
2970 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2971 			lock_page(old_page);	/* LRU manipulation */
2972 			if (PageMlocked(old_page))
2973 				munlock_vma_page(old_page);
2974 			unlock_page(old_page);
2975 		}
2976 		put_page(old_page);
2977 	}
2978 	return page_copied ? VM_FAULT_WRITE : 0;
2979 oom_free_new:
2980 	put_page(new_page);
2981 oom:
2982 	if (old_page)
2983 		put_page(old_page);
2984 	return VM_FAULT_OOM;
2985 }
2986 
2987 /**
2988  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2989  *			  writeable once the page is prepared
2990  *
2991  * @vmf: structure describing the fault
2992  *
2993  * This function handles all that is needed to finish a write page fault in a
2994  * shared mapping due to PTE being read-only once the mapped page is prepared.
2995  * It handles locking of PTE and modifying it.
2996  *
2997  * The function expects the page to be locked or other protection against
2998  * concurrent faults / writeback (such as DAX radix tree locks).
2999  *
3000  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3001  * we acquired PTE lock.
3002  */
finish_mkwrite_fault(struct vm_fault * vmf)3003 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3004 {
3005 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3006 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3007 				       &vmf->ptl);
3008 	/*
3009 	 * We might have raced with another page fault while we released the
3010 	 * pte_offset_map_lock.
3011 	 */
3012 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3013 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3014 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3015 		return VM_FAULT_NOPAGE;
3016 	}
3017 	wp_page_reuse(vmf);
3018 	return 0;
3019 }
3020 
3021 /*
3022  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3023  * mapping
3024  */
wp_pfn_shared(struct vm_fault * vmf)3025 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3026 {
3027 	struct vm_area_struct *vma = vmf->vma;
3028 
3029 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3030 		vm_fault_t ret;
3031 
3032 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3033 		vmf->flags |= FAULT_FLAG_MKWRITE;
3034 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3035 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3036 			return ret;
3037 		return finish_mkwrite_fault(vmf);
3038 	}
3039 	wp_page_reuse(vmf);
3040 	return VM_FAULT_WRITE;
3041 }
3042 
wp_page_shared(struct vm_fault * vmf)3043 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3044 	__releases(vmf->ptl)
3045 {
3046 	struct vm_area_struct *vma = vmf->vma;
3047 	vm_fault_t ret = VM_FAULT_WRITE;
3048 
3049 	get_page(vmf->page);
3050 
3051 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3052 		vm_fault_t tmp;
3053 
3054 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3055 		tmp = do_page_mkwrite(vmf);
3056 		if (unlikely(!tmp || (tmp &
3057 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3058 			put_page(vmf->page);
3059 			return tmp;
3060 		}
3061 		tmp = finish_mkwrite_fault(vmf);
3062 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3063 			unlock_page(vmf->page);
3064 			put_page(vmf->page);
3065 			return tmp;
3066 		}
3067 	} else {
3068 		wp_page_reuse(vmf);
3069 		lock_page(vmf->page);
3070 	}
3071 	ret |= fault_dirty_shared_page(vmf);
3072 	put_page(vmf->page);
3073 
3074 	return ret;
3075 }
3076 
3077 /*
3078  * This routine handles present pages, when users try to write
3079  * to a shared page. It is done by copying the page to a new address
3080  * and decrementing the shared-page counter for the old page.
3081  *
3082  * Note that this routine assumes that the protection checks have been
3083  * done by the caller (the low-level page fault routine in most cases).
3084  * Thus we can safely just mark it writable once we've done any necessary
3085  * COW.
3086  *
3087  * We also mark the page dirty at this point even though the page will
3088  * change only once the write actually happens. This avoids a few races,
3089  * and potentially makes it more efficient.
3090  *
3091  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3092  * but allow concurrent faults), with pte both mapped and locked.
3093  * We return with mmap_lock still held, but pte unmapped and unlocked.
3094  */
do_wp_page(struct vm_fault * vmf)3095 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3096 	__releases(vmf->ptl)
3097 {
3098 	struct vm_area_struct *vma = vmf->vma;
3099 
3100 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3101 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3102 		return handle_userfault(vmf, VM_UFFD_WP);
3103 	}
3104 
3105 	/*
3106 	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3107 	 * is flushed in this case before copying.
3108 	 */
3109 	if (unlikely(userfaultfd_wp(vmf->vma) &&
3110 		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3111 		flush_tlb_page(vmf->vma, vmf->address);
3112 
3113 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3114 	if (!vmf->page) {
3115 		/*
3116 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3117 		 * VM_PFNMAP VMA.
3118 		 *
3119 		 * We should not cow pages in a shared writeable mapping.
3120 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3121 		 */
3122 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3123 				     (VM_WRITE|VM_SHARED))
3124 			return wp_pfn_shared(vmf);
3125 
3126 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3127 		return wp_page_copy(vmf);
3128 	}
3129 
3130 	/*
3131 	 * Take out anonymous pages first, anonymous shared vmas are
3132 	 * not dirty accountable.
3133 	 */
3134 	if (PageAnon(vmf->page)) {
3135 		struct page *page = vmf->page;
3136 
3137 		/* PageKsm() doesn't necessarily raise the page refcount */
3138 		if (PageKsm(page) || page_count(page) != 1)
3139 			goto copy;
3140 		if (!trylock_page(page))
3141 			goto copy;
3142 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3143 			unlock_page(page);
3144 			goto copy;
3145 		}
3146 		/*
3147 		 * Ok, we've got the only map reference, and the only
3148 		 * page count reference, and the page is locked,
3149 		 * it's dark out, and we're wearing sunglasses. Hit it.
3150 		 */
3151 		unlock_page(page);
3152 		wp_page_reuse(vmf);
3153 		return VM_FAULT_WRITE;
3154 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3155 					(VM_WRITE|VM_SHARED))) {
3156 		return wp_page_shared(vmf);
3157 	}
3158 copy:
3159 	/*
3160 	 * Ok, we need to copy. Oh, well..
3161 	 */
3162 	get_page(vmf->page);
3163 
3164 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3165 	return wp_page_copy(vmf);
3166 }
3167 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3168 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3169 		unsigned long start_addr, unsigned long end_addr,
3170 		struct zap_details *details)
3171 {
3172 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3173 }
3174 
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)3175 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3176 					    struct zap_details *details)
3177 {
3178 	struct vm_area_struct *vma;
3179 	pgoff_t vba, vea, zba, zea;
3180 
3181 	vma_interval_tree_foreach(vma, root,
3182 			details->first_index, details->last_index) {
3183 
3184 		vba = vma->vm_pgoff;
3185 		vea = vba + vma_pages(vma) - 1;
3186 		zba = details->first_index;
3187 		if (zba < vba)
3188 			zba = vba;
3189 		zea = details->last_index;
3190 		if (zea > vea)
3191 			zea = vea;
3192 
3193 		unmap_mapping_range_vma(vma,
3194 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3195 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3196 				details);
3197 	}
3198 }
3199 
3200 /**
3201  * unmap_mapping_page() - Unmap single page from processes.
3202  * @page: The locked page to be unmapped.
3203  *
3204  * Unmap this page from any userspace process which still has it mmaped.
3205  * Typically, for efficiency, the range of nearby pages has already been
3206  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3207  * truncation or invalidation holds the lock on a page, it may find that
3208  * the page has been remapped again: and then uses unmap_mapping_page()
3209  * to unmap it finally.
3210  */
unmap_mapping_page(struct page * page)3211 void unmap_mapping_page(struct page *page)
3212 {
3213 	struct address_space *mapping = page->mapping;
3214 	struct zap_details details = { };
3215 
3216 	VM_BUG_ON(!PageLocked(page));
3217 	VM_BUG_ON(PageTail(page));
3218 
3219 	details.check_mapping = mapping;
3220 	details.first_index = page->index;
3221 	details.last_index = page->index + thp_nr_pages(page) - 1;
3222 	details.single_page = page;
3223 
3224 	i_mmap_lock_write(mapping);
3225 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3226 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3227 	i_mmap_unlock_write(mapping);
3228 }
3229 
3230 /**
3231  * unmap_mapping_pages() - Unmap pages from processes.
3232  * @mapping: The address space containing pages to be unmapped.
3233  * @start: Index of first page to be unmapped.
3234  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3235  * @even_cows: Whether to unmap even private COWed pages.
3236  *
3237  * Unmap the pages in this address space from any userspace process which
3238  * has them mmaped.  Generally, you want to remove COWed pages as well when
3239  * a file is being truncated, but not when invalidating pages from the page
3240  * cache.
3241  */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3242 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3243 		pgoff_t nr, bool even_cows)
3244 {
3245 	struct zap_details details = { };
3246 
3247 	details.check_mapping = even_cows ? NULL : mapping;
3248 	details.first_index = start;
3249 	details.last_index = start + nr - 1;
3250 	if (details.last_index < details.first_index)
3251 		details.last_index = ULONG_MAX;
3252 
3253 	i_mmap_lock_write(mapping);
3254 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3255 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3256 	i_mmap_unlock_write(mapping);
3257 }
3258 
3259 /**
3260  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3261  * address_space corresponding to the specified byte range in the underlying
3262  * file.
3263  *
3264  * @mapping: the address space containing mmaps to be unmapped.
3265  * @holebegin: byte in first page to unmap, relative to the start of
3266  * the underlying file.  This will be rounded down to a PAGE_SIZE
3267  * boundary.  Note that this is different from truncate_pagecache(), which
3268  * must keep the partial page.  In contrast, we must get rid of
3269  * partial pages.
3270  * @holelen: size of prospective hole in bytes.  This will be rounded
3271  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3272  * end of the file.
3273  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3274  * but 0 when invalidating pagecache, don't throw away private data.
3275  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3276 void unmap_mapping_range(struct address_space *mapping,
3277 		loff_t const holebegin, loff_t const holelen, int even_cows)
3278 {
3279 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3280 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3281 
3282 	/* Check for overflow. */
3283 	if (sizeof(holelen) > sizeof(hlen)) {
3284 		long long holeend =
3285 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3286 		if (holeend & ~(long long)ULONG_MAX)
3287 			hlen = ULONG_MAX - hba + 1;
3288 	}
3289 
3290 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3291 }
3292 EXPORT_SYMBOL(unmap_mapping_range);
3293 
3294 /*
3295  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3296  * but allow concurrent faults), and pte mapped but not yet locked.
3297  * We return with pte unmapped and unlocked.
3298  *
3299  * We return with the mmap_lock locked or unlocked in the same cases
3300  * as does filemap_fault().
3301  */
do_swap_page(struct vm_fault * vmf)3302 vm_fault_t do_swap_page(struct vm_fault *vmf)
3303 {
3304 	struct vm_area_struct *vma = vmf->vma;
3305 	struct page *page = NULL, *swapcache;
3306 	swp_entry_t entry;
3307 	pte_t pte;
3308 	int locked;
3309 	int exclusive = 0;
3310 	vm_fault_t ret = 0;
3311 	void *shadow = NULL;
3312 
3313 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3314 		goto out;
3315 
3316 	entry = pte_to_swp_entry(vmf->orig_pte);
3317 	if (unlikely(non_swap_entry(entry))) {
3318 		if (is_migration_entry(entry)) {
3319 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3320 					     vmf->address);
3321 		} else if (is_device_private_entry(entry)) {
3322 			vmf->page = device_private_entry_to_page(entry);
3323 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3324 					vmf->address, &vmf->ptl);
3325 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3326 				spin_unlock(vmf->ptl);
3327 				goto out;
3328 			}
3329 
3330 			/*
3331 			 * Get a page reference while we know the page can't be
3332 			 * freed.
3333 			 */
3334 			get_page(vmf->page);
3335 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3336 			vmf->page->pgmap->ops->migrate_to_ram(vmf);
3337 			put_page(vmf->page);
3338 		} else if (is_hwpoison_entry(entry)) {
3339 			ret = VM_FAULT_HWPOISON;
3340 		} else {
3341 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3342 			ret = VM_FAULT_SIGBUS;
3343 		}
3344 		goto out;
3345 	}
3346 
3347 
3348 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3349 	page = lookup_swap_cache(entry, vma, vmf->address);
3350 	swapcache = page;
3351 
3352 	if (!page) {
3353 		struct swap_info_struct *si = swp_swap_info(entry);
3354 
3355 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3356 		    __swap_count(entry) == 1) {
3357 			/* skip swapcache */
3358 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3359 							vmf->address);
3360 			if (page) {
3361 				int err;
3362 
3363 				__SetPageLocked(page);
3364 				__SetPageSwapBacked(page);
3365 				set_page_private(page, entry.val);
3366 
3367 				/* Tell memcg to use swap ownership records */
3368 				SetPageSwapCache(page);
3369 				err = mem_cgroup_charge(page, vma->vm_mm,
3370 							GFP_KERNEL);
3371 				ClearPageSwapCache(page);
3372 				if (err) {
3373 					ret = VM_FAULT_OOM;
3374 					goto out_page;
3375 				}
3376 
3377 				shadow = get_shadow_from_swap_cache(entry);
3378 				if (shadow)
3379 					workingset_refault(page, shadow);
3380 
3381 				lru_cache_add(page);
3382 				swap_readpage(page, true);
3383 			}
3384 		} else {
3385 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3386 						vmf);
3387 			swapcache = page;
3388 		}
3389 
3390 		if (!page) {
3391 			/*
3392 			 * Back out if somebody else faulted in this pte
3393 			 * while we released the pte lock.
3394 			 */
3395 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3396 					vmf->address, &vmf->ptl);
3397 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3398 				ret = VM_FAULT_OOM;
3399 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3400 			goto unlock;
3401 		}
3402 
3403 		/* Had to read the page from swap area: Major fault */
3404 		ret = VM_FAULT_MAJOR;
3405 		count_vm_event(PGMAJFAULT);
3406 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3407 	} else if (PageHWPoison(page)) {
3408 		/*
3409 		 * hwpoisoned dirty swapcache pages are kept for killing
3410 		 * owner processes (which may be unknown at hwpoison time)
3411 		 */
3412 		ret = VM_FAULT_HWPOISON;
3413 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3414 		goto out_release;
3415 	}
3416 
3417 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3418 
3419 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3420 	if (!locked) {
3421 		ret |= VM_FAULT_RETRY;
3422 		goto out_release;
3423 	}
3424 
3425 	/*
3426 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3427 	 * release the swapcache from under us.  The page pin, and pte_same
3428 	 * test below, are not enough to exclude that.  Even if it is still
3429 	 * swapcache, we need to check that the page's swap has not changed.
3430 	 */
3431 	if (unlikely((!PageSwapCache(page) ||
3432 			page_private(page) != entry.val)) && swapcache)
3433 		goto out_page;
3434 
3435 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3436 	if (unlikely(!page)) {
3437 		ret = VM_FAULT_OOM;
3438 		page = swapcache;
3439 		goto out_page;
3440 	}
3441 
3442 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3443 
3444 	/*
3445 	 * Back out if somebody else already faulted in this pte.
3446 	 */
3447 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3448 			&vmf->ptl);
3449 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3450 		goto out_nomap;
3451 
3452 	if (unlikely(!PageUptodate(page))) {
3453 		ret = VM_FAULT_SIGBUS;
3454 		goto out_nomap;
3455 	}
3456 
3457 	/*
3458 	 * The page isn't present yet, go ahead with the fault.
3459 	 *
3460 	 * Be careful about the sequence of operations here.
3461 	 * To get its accounting right, reuse_swap_page() must be called
3462 	 * while the page is counted on swap but not yet in mapcount i.e.
3463 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3464 	 * must be called after the swap_free(), or it will never succeed.
3465 	 */
3466 
3467 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3468 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3469 	pte = mk_pte(page, vma->vm_page_prot);
3470 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3471 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3472 		vmf->flags &= ~FAULT_FLAG_WRITE;
3473 		ret |= VM_FAULT_WRITE;
3474 		exclusive = RMAP_EXCLUSIVE;
3475 	}
3476 	flush_icache_page(vma, page);
3477 	if (pte_swp_soft_dirty(vmf->orig_pte))
3478 		pte = pte_mksoft_dirty(pte);
3479 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3480 		pte = pte_mkuffd_wp(pte);
3481 		pte = pte_wrprotect(pte);
3482 	}
3483 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3484 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3485 	vmf->orig_pte = pte;
3486 
3487 	/* ksm created a completely new copy */
3488 	if (unlikely(page != swapcache && swapcache)) {
3489 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3490 		lru_cache_add_inactive_or_unevictable(page, vma);
3491 	} else {
3492 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3493 	}
3494 
3495 	swap_free(entry);
3496 	if (mem_cgroup_swap_full(page) ||
3497 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3498 		try_to_free_swap(page);
3499 	unlock_page(page);
3500 	if (page != swapcache && swapcache) {
3501 		/*
3502 		 * Hold the lock to avoid the swap entry to be reused
3503 		 * until we take the PT lock for the pte_same() check
3504 		 * (to avoid false positives from pte_same). For
3505 		 * further safety release the lock after the swap_free
3506 		 * so that the swap count won't change under a
3507 		 * parallel locked swapcache.
3508 		 */
3509 		unlock_page(swapcache);
3510 		put_page(swapcache);
3511 	}
3512 
3513 	if (vmf->flags & FAULT_FLAG_WRITE) {
3514 		ret |= do_wp_page(vmf);
3515 		if (ret & VM_FAULT_ERROR)
3516 			ret &= VM_FAULT_ERROR;
3517 		goto out;
3518 	}
3519 
3520 	/* No need to invalidate - it was non-present before */
3521 	update_mmu_cache(vma, vmf->address, vmf->pte);
3522 unlock:
3523 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3524 out:
3525 	return ret;
3526 out_nomap:
3527 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3528 out_page:
3529 	unlock_page(page);
3530 out_release:
3531 	put_page(page);
3532 	if (page != swapcache && swapcache) {
3533 		unlock_page(swapcache);
3534 		put_page(swapcache);
3535 	}
3536 	return ret;
3537 }
3538 
3539 /*
3540  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3541  * but allow concurrent faults), and pte mapped but not yet locked.
3542  * We return with mmap_lock still held, but pte unmapped and unlocked.
3543  */
do_anonymous_page(struct vm_fault * vmf)3544 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3545 {
3546 	struct vm_area_struct *vma = vmf->vma;
3547 	struct page *page;
3548 	vm_fault_t ret = 0;
3549 	pte_t entry;
3550 
3551 	/* File mapping without ->vm_ops ? */
3552 	if (vma->vm_flags & VM_SHARED)
3553 		return VM_FAULT_SIGBUS;
3554 
3555 	/*
3556 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3557 	 * pte_offset_map() on pmds where a huge pmd might be created
3558 	 * from a different thread.
3559 	 *
3560 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3561 	 * parallel threads are excluded by other means.
3562 	 *
3563 	 * Here we only have mmap_read_lock(mm).
3564 	 */
3565 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3566 		return VM_FAULT_OOM;
3567 
3568 	/* See the comment in pte_alloc_one_map() */
3569 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3570 		return 0;
3571 
3572 	/* Use the zero-page for reads */
3573 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3574 			!mm_forbids_zeropage(vma->vm_mm)) {
3575 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3576 						vma->vm_page_prot));
3577 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3578 				vmf->address, &vmf->ptl);
3579 		if (!pte_none(*vmf->pte)) {
3580 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3581 			goto unlock;
3582 		}
3583 		ret = check_stable_address_space(vma->vm_mm);
3584 		if (ret)
3585 			goto unlock;
3586 		/* Deliver the page fault to userland, check inside PT lock */
3587 		if (userfaultfd_missing(vma)) {
3588 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3589 			return handle_userfault(vmf, VM_UFFD_MISSING);
3590 		}
3591 		goto setpte;
3592 	}
3593 
3594 	/* Allocate our own private page. */
3595 	if (unlikely(anon_vma_prepare(vma)))
3596 		goto oom;
3597 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3598 	if (!page)
3599 		goto oom;
3600 
3601 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3602 		goto oom_free_page;
3603 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3604 
3605 	/*
3606 	 * The memory barrier inside __SetPageUptodate makes sure that
3607 	 * preceding stores to the page contents become visible before
3608 	 * the set_pte_at() write.
3609 	 */
3610 	__SetPageUptodate(page);
3611 
3612 	entry = mk_pte(page, vma->vm_page_prot);
3613 	entry = pte_sw_mkyoung(entry);
3614 	if (vma->vm_flags & VM_WRITE)
3615 		entry = pte_mkwrite(pte_mkdirty(entry));
3616 
3617 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3618 			&vmf->ptl);
3619 	if (!pte_none(*vmf->pte)) {
3620 		update_mmu_cache(vma, vmf->address, vmf->pte);
3621 		goto release;
3622 	}
3623 
3624 	ret = check_stable_address_space(vma->vm_mm);
3625 	if (ret)
3626 		goto release;
3627 
3628 	/* Deliver the page fault to userland, check inside PT lock */
3629 	if (userfaultfd_missing(vma)) {
3630 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3631 		put_page(page);
3632 		return handle_userfault(vmf, VM_UFFD_MISSING);
3633 	}
3634 
3635 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3636 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3637 	lru_cache_add_inactive_or_unevictable(page, vma);
3638 setpte:
3639 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3640 
3641 	/* No need to invalidate - it was non-present before */
3642 	update_mmu_cache(vma, vmf->address, vmf->pte);
3643 unlock:
3644 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3645 	return ret;
3646 release:
3647 	put_page(page);
3648 	goto unlock;
3649 oom_free_page:
3650 	put_page(page);
3651 oom:
3652 	return VM_FAULT_OOM;
3653 }
3654 
3655 /*
3656  * The mmap_lock must have been held on entry, and may have been
3657  * released depending on flags and vma->vm_ops->fault() return value.
3658  * See filemap_fault() and __lock_page_retry().
3659  */
__do_fault(struct vm_fault * vmf)3660 static vm_fault_t __do_fault(struct vm_fault *vmf)
3661 {
3662 	struct vm_area_struct *vma = vmf->vma;
3663 	vm_fault_t ret;
3664 
3665 	/*
3666 	 * Preallocate pte before we take page_lock because this might lead to
3667 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3668 	 *				lock_page(A)
3669 	 *				SetPageWriteback(A)
3670 	 *				unlock_page(A)
3671 	 * lock_page(B)
3672 	 *				lock_page(B)
3673 	 * pte_alloc_one
3674 	 *   shrink_page_list
3675 	 *     wait_on_page_writeback(A)
3676 	 *				SetPageWriteback(B)
3677 	 *				unlock_page(B)
3678 	 *				# flush A, B to clear the writeback
3679 	 */
3680 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3681 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3682 		if (!vmf->prealloc_pte)
3683 			return VM_FAULT_OOM;
3684 		smp_wmb(); /* See comment in __pte_alloc() */
3685 	}
3686 
3687 	ret = vma->vm_ops->fault(vmf);
3688 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3689 			    VM_FAULT_DONE_COW)))
3690 		return ret;
3691 
3692 	if (unlikely(PageHWPoison(vmf->page))) {
3693 		if (ret & VM_FAULT_LOCKED)
3694 			unlock_page(vmf->page);
3695 		put_page(vmf->page);
3696 		vmf->page = NULL;
3697 		return VM_FAULT_HWPOISON;
3698 	}
3699 
3700 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3701 		lock_page(vmf->page);
3702 	else
3703 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3704 
3705 	return ret;
3706 }
3707 
3708 /*
3709  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3710  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3711  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3712  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3713  */
pmd_devmap_trans_unstable(pmd_t * pmd)3714 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3715 {
3716 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3717 }
3718 
pte_alloc_one_map(struct vm_fault * vmf)3719 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3720 {
3721 	struct vm_area_struct *vma = vmf->vma;
3722 
3723 	if (!pmd_none(*vmf->pmd))
3724 		goto map_pte;
3725 	if (vmf->prealloc_pte) {
3726 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3727 		if (unlikely(!pmd_none(*vmf->pmd))) {
3728 			spin_unlock(vmf->ptl);
3729 			goto map_pte;
3730 		}
3731 
3732 		mm_inc_nr_ptes(vma->vm_mm);
3733 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3734 		spin_unlock(vmf->ptl);
3735 		vmf->prealloc_pte = NULL;
3736 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3737 		return VM_FAULT_OOM;
3738 	}
3739 map_pte:
3740 	/*
3741 	 * If a huge pmd materialized under us just retry later.  Use
3742 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3743 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3744 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3745 	 * running immediately after a huge pmd fault in a different thread of
3746 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3747 	 * All we have to ensure is that it is a regular pmd that we can walk
3748 	 * with pte_offset_map() and we can do that through an atomic read in
3749 	 * C, which is what pmd_trans_unstable() provides.
3750 	 */
3751 	if (pmd_devmap_trans_unstable(vmf->pmd))
3752 		return VM_FAULT_NOPAGE;
3753 
3754 	/*
3755 	 * At this point we know that our vmf->pmd points to a page of ptes
3756 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3757 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3758 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3759 	 * be valid and we will re-check to make sure the vmf->pte isn't
3760 	 * pte_none() under vmf->ptl protection when we return to
3761 	 * alloc_set_pte().
3762 	 */
3763 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3764 			&vmf->ptl);
3765 	return 0;
3766 }
3767 
3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)3769 static void deposit_prealloc_pte(struct vm_fault *vmf)
3770 {
3771 	struct vm_area_struct *vma = vmf->vma;
3772 
3773 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3774 	/*
3775 	 * We are going to consume the prealloc table,
3776 	 * count that as nr_ptes.
3777 	 */
3778 	mm_inc_nr_ptes(vma->vm_mm);
3779 	vmf->prealloc_pte = NULL;
3780 }
3781 
do_set_pmd(struct vm_fault * vmf,struct page * page)3782 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3783 {
3784 	struct vm_area_struct *vma = vmf->vma;
3785 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3786 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3787 	pmd_t entry;
3788 	int i;
3789 	vm_fault_t ret = VM_FAULT_FALLBACK;
3790 
3791 	if (!transhuge_vma_suitable(vma, haddr))
3792 		return ret;
3793 
3794 	page = compound_head(page);
3795 	if (compound_order(page) != HPAGE_PMD_ORDER)
3796 		return ret;
3797 
3798 	/*
3799 	 * Archs like ppc64 need additonal space to store information
3800 	 * related to pte entry. Use the preallocated table for that.
3801 	 */
3802 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3803 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3804 		if (!vmf->prealloc_pte)
3805 			return VM_FAULT_OOM;
3806 		smp_wmb(); /* See comment in __pte_alloc() */
3807 	}
3808 
3809 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3810 	if (unlikely(!pmd_none(*vmf->pmd)))
3811 		goto out;
3812 
3813 	for (i = 0; i < HPAGE_PMD_NR; i++)
3814 		flush_icache_page(vma, page + i);
3815 
3816 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3817 	if (write)
3818 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3819 
3820 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3821 	page_add_file_rmap(page, true);
3822 	/*
3823 	 * deposit and withdraw with pmd lock held
3824 	 */
3825 	if (arch_needs_pgtable_deposit())
3826 		deposit_prealloc_pte(vmf);
3827 
3828 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3829 
3830 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3831 
3832 	/* fault is handled */
3833 	ret = 0;
3834 	count_vm_event(THP_FILE_MAPPED);
3835 out:
3836 	spin_unlock(vmf->ptl);
3837 	return ret;
3838 }
3839 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3840 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3841 {
3842 	BUILD_BUG();
3843 	return 0;
3844 }
3845 #endif
3846 
3847 /**
3848  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3849  * mapping. If needed, the function allocates page table or use pre-allocated.
3850  *
3851  * @vmf: fault environment
3852  * @page: page to map
3853  *
3854  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3855  * return.
3856  *
3857  * Target users are page handler itself and implementations of
3858  * vm_ops->map_pages.
3859  *
3860  * Return: %0 on success, %VM_FAULT_ code in case of error.
3861  */
alloc_set_pte(struct vm_fault * vmf,struct page * page)3862 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3863 {
3864 	struct vm_area_struct *vma = vmf->vma;
3865 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3866 	pte_t entry;
3867 	vm_fault_t ret;
3868 
3869 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3870 		ret = do_set_pmd(vmf, page);
3871 		if (ret != VM_FAULT_FALLBACK)
3872 			return ret;
3873 	}
3874 
3875 	if (!vmf->pte) {
3876 		ret = pte_alloc_one_map(vmf);
3877 		if (ret)
3878 			return ret;
3879 	}
3880 
3881 	/* Re-check under ptl */
3882 	if (unlikely(!pte_none(*vmf->pte))) {
3883 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3884 		return VM_FAULT_NOPAGE;
3885 	}
3886 
3887 	flush_icache_page(vma, page);
3888 	entry = mk_pte(page, vma->vm_page_prot);
3889 	entry = pte_sw_mkyoung(entry);
3890 	if (write)
3891 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3892 	/* copy-on-write page */
3893 	if (write && !(vma->vm_flags & VM_SHARED)) {
3894 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3895 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3896 		lru_cache_add_inactive_or_unevictable(page, vma);
3897 	} else {
3898 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3899 		page_add_file_rmap(page, false);
3900 	}
3901 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3902 
3903 	/* no need to invalidate: a not-present page won't be cached */
3904 	update_mmu_cache(vma, vmf->address, vmf->pte);
3905 
3906 	return 0;
3907 }
3908 
3909 
3910 /**
3911  * finish_fault - finish page fault once we have prepared the page to fault
3912  *
3913  * @vmf: structure describing the fault
3914  *
3915  * This function handles all that is needed to finish a page fault once the
3916  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3917  * given page, adds reverse page mapping, handles memcg charges and LRU
3918  * addition.
3919  *
3920  * The function expects the page to be locked and on success it consumes a
3921  * reference of a page being mapped (for the PTE which maps it).
3922  *
3923  * Return: %0 on success, %VM_FAULT_ code in case of error.
3924  */
finish_fault(struct vm_fault * vmf)3925 vm_fault_t finish_fault(struct vm_fault *vmf)
3926 {
3927 	struct page *page;
3928 	vm_fault_t ret = 0;
3929 
3930 	/* Did we COW the page? */
3931 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3932 	    !(vmf->vma->vm_flags & VM_SHARED))
3933 		page = vmf->cow_page;
3934 	else
3935 		page = vmf->page;
3936 
3937 	/*
3938 	 * check even for read faults because we might have lost our CoWed
3939 	 * page
3940 	 */
3941 	if (!(vmf->vma->vm_flags & VM_SHARED))
3942 		ret = check_stable_address_space(vmf->vma->vm_mm);
3943 	if (!ret)
3944 		ret = alloc_set_pte(vmf, page);
3945 	if (vmf->pte)
3946 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3947 	return ret;
3948 }
3949 
3950 static unsigned long fault_around_bytes __read_mostly =
3951 	rounddown_pow_of_two(65536);
3952 
3953 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)3954 static int fault_around_bytes_get(void *data, u64 *val)
3955 {
3956 	*val = fault_around_bytes;
3957 	return 0;
3958 }
3959 
3960 /*
3961  * fault_around_bytes must be rounded down to the nearest page order as it's
3962  * what do_fault_around() expects to see.
3963  */
fault_around_bytes_set(void * data,u64 val)3964 static int fault_around_bytes_set(void *data, u64 val)
3965 {
3966 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3967 		return -EINVAL;
3968 	if (val > PAGE_SIZE)
3969 		fault_around_bytes = rounddown_pow_of_two(val);
3970 	else
3971 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3972 	return 0;
3973 }
3974 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3975 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3976 
fault_around_debugfs(void)3977 static int __init fault_around_debugfs(void)
3978 {
3979 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3980 				   &fault_around_bytes_fops);
3981 	return 0;
3982 }
3983 late_initcall(fault_around_debugfs);
3984 #endif
3985 
3986 /*
3987  * do_fault_around() tries to map few pages around the fault address. The hope
3988  * is that the pages will be needed soon and this will lower the number of
3989  * faults to handle.
3990  *
3991  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3992  * not ready to be mapped: not up-to-date, locked, etc.
3993  *
3994  * This function is called with the page table lock taken. In the split ptlock
3995  * case the page table lock only protects only those entries which belong to
3996  * the page table corresponding to the fault address.
3997  *
3998  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3999  * only once.
4000  *
4001  * fault_around_bytes defines how many bytes we'll try to map.
4002  * do_fault_around() expects it to be set to a power of two less than or equal
4003  * to PTRS_PER_PTE.
4004  *
4005  * The virtual address of the area that we map is naturally aligned to
4006  * fault_around_bytes rounded down to the machine page size
4007  * (and therefore to page order).  This way it's easier to guarantee
4008  * that we don't cross page table boundaries.
4009  */
do_fault_around(struct vm_fault * vmf)4010 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4011 {
4012 	unsigned long address = vmf->address, nr_pages, mask;
4013 	pgoff_t start_pgoff = vmf->pgoff;
4014 	pgoff_t end_pgoff;
4015 	int off;
4016 	vm_fault_t ret = 0;
4017 
4018 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4019 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4020 
4021 	vmf->address = max(address & mask, vmf->vma->vm_start);
4022 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4023 	start_pgoff -= off;
4024 
4025 	/*
4026 	 *  end_pgoff is either the end of the page table, the end of
4027 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4028 	 */
4029 	end_pgoff = start_pgoff -
4030 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4031 		PTRS_PER_PTE - 1;
4032 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4033 			start_pgoff + nr_pages - 1);
4034 
4035 	if (pmd_none(*vmf->pmd)) {
4036 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4037 		if (!vmf->prealloc_pte)
4038 			goto out;
4039 		smp_wmb(); /* See comment in __pte_alloc() */
4040 	}
4041 
4042 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4043 
4044 	/* Huge page is mapped? Page fault is solved */
4045 	if (pmd_trans_huge(*vmf->pmd)) {
4046 		ret = VM_FAULT_NOPAGE;
4047 		goto out;
4048 	}
4049 
4050 	/* ->map_pages() haven't done anything useful. Cold page cache? */
4051 	if (!vmf->pte)
4052 		goto out;
4053 
4054 	/* check if the page fault is solved */
4055 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4056 	if (!pte_none(*vmf->pte))
4057 		ret = VM_FAULT_NOPAGE;
4058 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4059 out:
4060 	vmf->address = address;
4061 	vmf->pte = NULL;
4062 	return ret;
4063 }
4064 
do_read_fault(struct vm_fault * vmf)4065 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4066 {
4067 	struct vm_area_struct *vma = vmf->vma;
4068 	vm_fault_t ret = 0;
4069 
4070 	/*
4071 	 * Let's call ->map_pages() first and use ->fault() as fallback
4072 	 * if page by the offset is not ready to be mapped (cold cache or
4073 	 * something).
4074 	 */
4075 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4076 		ret = do_fault_around(vmf);
4077 		if (ret)
4078 			return ret;
4079 	}
4080 
4081 	ret = __do_fault(vmf);
4082 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4083 		return ret;
4084 
4085 	ret |= finish_fault(vmf);
4086 	unlock_page(vmf->page);
4087 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4088 		put_page(vmf->page);
4089 	return ret;
4090 }
4091 
do_cow_fault(struct vm_fault * vmf)4092 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4093 {
4094 	struct vm_area_struct *vma = vmf->vma;
4095 	vm_fault_t ret;
4096 
4097 	if (unlikely(anon_vma_prepare(vma)))
4098 		return VM_FAULT_OOM;
4099 
4100 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4101 	if (!vmf->cow_page)
4102 		return VM_FAULT_OOM;
4103 
4104 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4105 		put_page(vmf->cow_page);
4106 		return VM_FAULT_OOM;
4107 	}
4108 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4109 
4110 	ret = __do_fault(vmf);
4111 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4112 		goto uncharge_out;
4113 	if (ret & VM_FAULT_DONE_COW)
4114 		return ret;
4115 
4116 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4117 	__SetPageUptodate(vmf->cow_page);
4118 
4119 	ret |= finish_fault(vmf);
4120 	unlock_page(vmf->page);
4121 	put_page(vmf->page);
4122 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4123 		goto uncharge_out;
4124 	return ret;
4125 uncharge_out:
4126 	put_page(vmf->cow_page);
4127 	return ret;
4128 }
4129 
do_shared_fault(struct vm_fault * vmf)4130 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4131 {
4132 	struct vm_area_struct *vma = vmf->vma;
4133 	vm_fault_t ret, tmp;
4134 
4135 	ret = __do_fault(vmf);
4136 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4137 		return ret;
4138 
4139 	/*
4140 	 * Check if the backing address space wants to know that the page is
4141 	 * about to become writable
4142 	 */
4143 	if (vma->vm_ops->page_mkwrite) {
4144 		unlock_page(vmf->page);
4145 		tmp = do_page_mkwrite(vmf);
4146 		if (unlikely(!tmp ||
4147 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4148 			put_page(vmf->page);
4149 			return tmp;
4150 		}
4151 	}
4152 
4153 	ret |= finish_fault(vmf);
4154 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4155 					VM_FAULT_RETRY))) {
4156 		unlock_page(vmf->page);
4157 		put_page(vmf->page);
4158 		return ret;
4159 	}
4160 
4161 	ret |= fault_dirty_shared_page(vmf);
4162 	return ret;
4163 }
4164 
4165 /*
4166  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4167  * but allow concurrent faults).
4168  * The mmap_lock may have been released depending on flags and our
4169  * return value.  See filemap_fault() and __lock_page_or_retry().
4170  * If mmap_lock is released, vma may become invalid (for example
4171  * by other thread calling munmap()).
4172  */
do_fault(struct vm_fault * vmf)4173 static vm_fault_t do_fault(struct vm_fault *vmf)
4174 {
4175 	struct vm_area_struct *vma = vmf->vma;
4176 	struct mm_struct *vm_mm = vma->vm_mm;
4177 	vm_fault_t ret;
4178 
4179 	/*
4180 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4181 	 */
4182 	if (!vma->vm_ops->fault) {
4183 		/*
4184 		 * If we find a migration pmd entry or a none pmd entry, which
4185 		 * should never happen, return SIGBUS
4186 		 */
4187 		if (unlikely(!pmd_present(*vmf->pmd)))
4188 			ret = VM_FAULT_SIGBUS;
4189 		else {
4190 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4191 						       vmf->pmd,
4192 						       vmf->address,
4193 						       &vmf->ptl);
4194 			/*
4195 			 * Make sure this is not a temporary clearing of pte
4196 			 * by holding ptl and checking again. A R/M/W update
4197 			 * of pte involves: take ptl, clearing the pte so that
4198 			 * we don't have concurrent modification by hardware
4199 			 * followed by an update.
4200 			 */
4201 			if (unlikely(pte_none(*vmf->pte)))
4202 				ret = VM_FAULT_SIGBUS;
4203 			else
4204 				ret = VM_FAULT_NOPAGE;
4205 
4206 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4207 		}
4208 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4209 		ret = do_read_fault(vmf);
4210 	else if (!(vma->vm_flags & VM_SHARED))
4211 		ret = do_cow_fault(vmf);
4212 	else
4213 		ret = do_shared_fault(vmf);
4214 
4215 	/* preallocated pagetable is unused: free it */
4216 	if (vmf->prealloc_pte) {
4217 		pte_free(vm_mm, vmf->prealloc_pte);
4218 		vmf->prealloc_pte = NULL;
4219 	}
4220 	return ret;
4221 }
4222 
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4223 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4224 				unsigned long addr, int page_nid,
4225 				int *flags)
4226 {
4227 	get_page(page);
4228 
4229 	count_vm_numa_event(NUMA_HINT_FAULTS);
4230 	if (page_nid == numa_node_id()) {
4231 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4232 		*flags |= TNF_FAULT_LOCAL;
4233 	}
4234 
4235 	return mpol_misplaced(page, vma, addr);
4236 }
4237 
do_numa_page(struct vm_fault * vmf)4238 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4239 {
4240 	struct vm_area_struct *vma = vmf->vma;
4241 	struct page *page = NULL;
4242 	int page_nid = NUMA_NO_NODE;
4243 	int last_cpupid;
4244 	int target_nid;
4245 	bool migrated = false;
4246 	pte_t pte, old_pte;
4247 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4248 	int flags = 0;
4249 
4250 	/*
4251 	 * The "pte" at this point cannot be used safely without
4252 	 * validation through pte_unmap_same(). It's of NUMA type but
4253 	 * the pfn may be screwed if the read is non atomic.
4254 	 */
4255 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4256 	spin_lock(vmf->ptl);
4257 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4258 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4259 		goto out;
4260 	}
4261 
4262 	/*
4263 	 * Make it present again, Depending on how arch implementes non
4264 	 * accessible ptes, some can allow access by kernel mode.
4265 	 */
4266 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4267 	pte = pte_modify(old_pte, vma->vm_page_prot);
4268 	pte = pte_mkyoung(pte);
4269 	if (was_writable)
4270 		pte = pte_mkwrite(pte);
4271 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4272 	update_mmu_cache(vma, vmf->address, vmf->pte);
4273 
4274 	page = vm_normal_page(vma, vmf->address, pte);
4275 	if (!page) {
4276 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4277 		return 0;
4278 	}
4279 
4280 	/* TODO: handle PTE-mapped THP */
4281 	if (PageCompound(page)) {
4282 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4283 		return 0;
4284 	}
4285 
4286 	/*
4287 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4288 	 * much anyway since they can be in shared cache state. This misses
4289 	 * the case where a mapping is writable but the process never writes
4290 	 * to it but pte_write gets cleared during protection updates and
4291 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4292 	 * background writeback, dirty balancing and application behaviour.
4293 	 */
4294 	if (!pte_write(pte))
4295 		flags |= TNF_NO_GROUP;
4296 
4297 	/*
4298 	 * Flag if the page is shared between multiple address spaces. This
4299 	 * is later used when determining whether to group tasks together
4300 	 */
4301 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4302 		flags |= TNF_SHARED;
4303 
4304 	last_cpupid = page_cpupid_last(page);
4305 	page_nid = page_to_nid(page);
4306 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4307 			&flags);
4308 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4309 	if (target_nid == NUMA_NO_NODE) {
4310 		put_page(page);
4311 		goto out;
4312 	}
4313 
4314 	/* Migrate to the requested node */
4315 	migrated = migrate_misplaced_page(page, vma, target_nid);
4316 	if (migrated) {
4317 		page_nid = target_nid;
4318 		flags |= TNF_MIGRATED;
4319 	} else
4320 		flags |= TNF_MIGRATE_FAIL;
4321 
4322 out:
4323 	if (page_nid != NUMA_NO_NODE)
4324 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4325 	return 0;
4326 }
4327 
create_huge_pmd(struct vm_fault * vmf)4328 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4329 {
4330 	if (vma_is_anonymous(vmf->vma))
4331 		return do_huge_pmd_anonymous_page(vmf);
4332 	if (vmf->vma->vm_ops->huge_fault)
4333 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4334 	return VM_FAULT_FALLBACK;
4335 }
4336 
4337 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)4338 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4339 {
4340 	if (vma_is_anonymous(vmf->vma)) {
4341 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4342 			return handle_userfault(vmf, VM_UFFD_WP);
4343 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4344 	}
4345 	if (vmf->vma->vm_ops->huge_fault) {
4346 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4347 
4348 		if (!(ret & VM_FAULT_FALLBACK))
4349 			return ret;
4350 	}
4351 
4352 	/* COW or write-notify handled on pte level: split pmd. */
4353 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4354 
4355 	return VM_FAULT_FALLBACK;
4356 }
4357 
create_huge_pud(struct vm_fault * vmf)4358 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4359 {
4360 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4361 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4362 	/* No support for anonymous transparent PUD pages yet */
4363 	if (vma_is_anonymous(vmf->vma))
4364 		goto split;
4365 	if (vmf->vma->vm_ops->huge_fault) {
4366 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4367 
4368 		if (!(ret & VM_FAULT_FALLBACK))
4369 			return ret;
4370 	}
4371 split:
4372 	/* COW or write-notify not handled on PUD level: split pud.*/
4373 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4374 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4375 	return VM_FAULT_FALLBACK;
4376 }
4377 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4378 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4379 {
4380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4381 	/* No support for anonymous transparent PUD pages yet */
4382 	if (vma_is_anonymous(vmf->vma))
4383 		return VM_FAULT_FALLBACK;
4384 	if (vmf->vma->vm_ops->huge_fault)
4385 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4387 	return VM_FAULT_FALLBACK;
4388 }
4389 
4390 /*
4391  * These routines also need to handle stuff like marking pages dirty
4392  * and/or accessed for architectures that don't do it in hardware (most
4393  * RISC architectures).  The early dirtying is also good on the i386.
4394  *
4395  * There is also a hook called "update_mmu_cache()" that architectures
4396  * with external mmu caches can use to update those (ie the Sparc or
4397  * PowerPC hashed page tables that act as extended TLBs).
4398  *
4399  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4400  * concurrent faults).
4401  *
4402  * The mmap_lock may have been released depending on flags and our return value.
4403  * See filemap_fault() and __lock_page_or_retry().
4404  */
handle_pte_fault(struct vm_fault * vmf)4405 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4406 {
4407 	pte_t entry;
4408 
4409 	if (unlikely(pmd_none(*vmf->pmd))) {
4410 		/*
4411 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4412 		 * want to allocate huge page, and if we expose page table
4413 		 * for an instant, it will be difficult to retract from
4414 		 * concurrent faults and from rmap lookups.
4415 		 */
4416 		vmf->pte = NULL;
4417 	} else {
4418 		/* See comment in pte_alloc_one_map() */
4419 		if (pmd_devmap_trans_unstable(vmf->pmd))
4420 			return 0;
4421 		/*
4422 		 * A regular pmd is established and it can't morph into a huge
4423 		 * pmd from under us anymore at this point because we hold the
4424 		 * mmap_lock read mode and khugepaged takes it in write mode.
4425 		 * So now it's safe to run pte_offset_map().
4426 		 */
4427 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4428 		vmf->orig_pte = *vmf->pte;
4429 
4430 		/*
4431 		 * some architectures can have larger ptes than wordsize,
4432 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4433 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4434 		 * accesses.  The code below just needs a consistent view
4435 		 * for the ifs and we later double check anyway with the
4436 		 * ptl lock held. So here a barrier will do.
4437 		 */
4438 		barrier();
4439 		if (pte_none(vmf->orig_pte)) {
4440 			pte_unmap(vmf->pte);
4441 			vmf->pte = NULL;
4442 		}
4443 	}
4444 
4445 	if (!vmf->pte) {
4446 		if (vma_is_anonymous(vmf->vma))
4447 			return do_anonymous_page(vmf);
4448 		else
4449 			return do_fault(vmf);
4450 	}
4451 
4452 	if (!pte_present(vmf->orig_pte))
4453 		return do_swap_page(vmf);
4454 
4455 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4456 		return do_numa_page(vmf);
4457 
4458 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4459 	spin_lock(vmf->ptl);
4460 	entry = vmf->orig_pte;
4461 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4462 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4463 		goto unlock;
4464 	}
4465 	if (vmf->flags & FAULT_FLAG_WRITE) {
4466 		if (!pte_write(entry))
4467 			return do_wp_page(vmf);
4468 		entry = pte_mkdirty(entry);
4469 	}
4470 	entry = pte_mkyoung(entry);
4471 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4472 				vmf->flags & FAULT_FLAG_WRITE)) {
4473 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4474 	} else {
4475 		/* Skip spurious TLB flush for retried page fault */
4476 		if (vmf->flags & FAULT_FLAG_TRIED)
4477 			goto unlock;
4478 		/*
4479 		 * This is needed only for protection faults but the arch code
4480 		 * is not yet telling us if this is a protection fault or not.
4481 		 * This still avoids useless tlb flushes for .text page faults
4482 		 * with threads.
4483 		 */
4484 		if (vmf->flags & FAULT_FLAG_WRITE)
4485 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4486 	}
4487 unlock:
4488 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4489 	return 0;
4490 }
4491 
4492 /*
4493  * By the time we get here, we already hold the mm semaphore
4494  *
4495  * The mmap_lock may have been released depending on flags and our
4496  * return value.  See filemap_fault() and __lock_page_or_retry().
4497  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4498 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4499 		unsigned long address, unsigned int flags)
4500 {
4501 	struct vm_fault vmf = {
4502 		.vma = vma,
4503 		.address = address & PAGE_MASK,
4504 		.flags = flags,
4505 		.pgoff = linear_page_index(vma, address),
4506 		.gfp_mask = __get_fault_gfp_mask(vma),
4507 	};
4508 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4509 	struct mm_struct *mm = vma->vm_mm;
4510 	pgd_t *pgd;
4511 	p4d_t *p4d;
4512 	vm_fault_t ret;
4513 
4514 	pgd = pgd_offset(mm, address);
4515 	p4d = p4d_alloc(mm, pgd, address);
4516 	if (!p4d)
4517 		return VM_FAULT_OOM;
4518 
4519 	vmf.pud = pud_alloc(mm, p4d, address);
4520 	if (!vmf.pud)
4521 		return VM_FAULT_OOM;
4522 retry_pud:
4523 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4524 		ret = create_huge_pud(&vmf);
4525 		if (!(ret & VM_FAULT_FALLBACK))
4526 			return ret;
4527 	} else {
4528 		pud_t orig_pud = *vmf.pud;
4529 
4530 		barrier();
4531 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4532 
4533 			/* NUMA case for anonymous PUDs would go here */
4534 
4535 			if (dirty && !pud_write(orig_pud)) {
4536 				ret = wp_huge_pud(&vmf, orig_pud);
4537 				if (!(ret & VM_FAULT_FALLBACK))
4538 					return ret;
4539 			} else {
4540 				huge_pud_set_accessed(&vmf, orig_pud);
4541 				return 0;
4542 			}
4543 		}
4544 	}
4545 
4546 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4547 	if (!vmf.pmd)
4548 		return VM_FAULT_OOM;
4549 
4550 	/* Huge pud page fault raced with pmd_alloc? */
4551 	if (pud_trans_unstable(vmf.pud))
4552 		goto retry_pud;
4553 
4554 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4555 		ret = create_huge_pmd(&vmf);
4556 		if (!(ret & VM_FAULT_FALLBACK))
4557 			return ret;
4558 	} else {
4559 		pmd_t orig_pmd = *vmf.pmd;
4560 
4561 		barrier();
4562 		if (unlikely(is_swap_pmd(orig_pmd))) {
4563 			VM_BUG_ON(thp_migration_supported() &&
4564 					  !is_pmd_migration_entry(orig_pmd));
4565 			if (is_pmd_migration_entry(orig_pmd))
4566 				pmd_migration_entry_wait(mm, vmf.pmd);
4567 			return 0;
4568 		}
4569 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4570 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4571 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4572 
4573 			if (dirty && !pmd_write(orig_pmd)) {
4574 				ret = wp_huge_pmd(&vmf, orig_pmd);
4575 				if (!(ret & VM_FAULT_FALLBACK))
4576 					return ret;
4577 			} else {
4578 				huge_pmd_set_accessed(&vmf, orig_pmd);
4579 				return 0;
4580 			}
4581 		}
4582 	}
4583 
4584 	return handle_pte_fault(&vmf);
4585 }
4586 
4587 /**
4588  * mm_account_fault - Do page fault accountings
4589  *
4590  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4591  *        of perf event counters, but we'll still do the per-task accounting to
4592  *        the task who triggered this page fault.
4593  * @address: the faulted address.
4594  * @flags: the fault flags.
4595  * @ret: the fault retcode.
4596  *
4597  * This will take care of most of the page fault accountings.  Meanwhile, it
4598  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4599  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4600  * still be in per-arch page fault handlers at the entry of page fault.
4601  */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)4602 static inline void mm_account_fault(struct pt_regs *regs,
4603 				    unsigned long address, unsigned int flags,
4604 				    vm_fault_t ret)
4605 {
4606 	bool major;
4607 
4608 	/*
4609 	 * We don't do accounting for some specific faults:
4610 	 *
4611 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4612 	 *   includes arch_vma_access_permitted() failing before reaching here.
4613 	 *   So this is not a "this many hardware page faults" counter.  We
4614 	 *   should use the hw profiling for that.
4615 	 *
4616 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4617 	 *   once they're completed.
4618 	 */
4619 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4620 		return;
4621 
4622 	/*
4623 	 * We define the fault as a major fault when the final successful fault
4624 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4625 	 * handle it immediately previously).
4626 	 */
4627 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4628 
4629 	if (major)
4630 		current->maj_flt++;
4631 	else
4632 		current->min_flt++;
4633 
4634 	/*
4635 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4636 	 * accounting for the per thread fault counters who triggered the
4637 	 * fault, and we skip the perf event updates.
4638 	 */
4639 	if (!regs)
4640 		return;
4641 
4642 	if (major)
4643 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4644 	else
4645 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4646 }
4647 
4648 /*
4649  * By the time we get here, we already hold the mm semaphore
4650  *
4651  * The mmap_lock may have been released depending on flags and our
4652  * return value.  See filemap_fault() and __lock_page_or_retry().
4653  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)4654 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4655 			   unsigned int flags, struct pt_regs *regs)
4656 {
4657 	vm_fault_t ret;
4658 
4659 	__set_current_state(TASK_RUNNING);
4660 
4661 	count_vm_event(PGFAULT);
4662 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4663 
4664 	/* do counter updates before entering really critical section. */
4665 	check_sync_rss_stat(current);
4666 
4667 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4668 					    flags & FAULT_FLAG_INSTRUCTION,
4669 					    flags & FAULT_FLAG_REMOTE))
4670 		return VM_FAULT_SIGSEGV;
4671 
4672 	/*
4673 	 * Enable the memcg OOM handling for faults triggered in user
4674 	 * space.  Kernel faults are handled more gracefully.
4675 	 */
4676 	if (flags & FAULT_FLAG_USER)
4677 		mem_cgroup_enter_user_fault();
4678 
4679 	if (unlikely(is_vm_hugetlb_page(vma)))
4680 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4681 	else
4682 		ret = __handle_mm_fault(vma, address, flags);
4683 
4684 	if (flags & FAULT_FLAG_USER) {
4685 		mem_cgroup_exit_user_fault();
4686 		/*
4687 		 * The task may have entered a memcg OOM situation but
4688 		 * if the allocation error was handled gracefully (no
4689 		 * VM_FAULT_OOM), there is no need to kill anything.
4690 		 * Just clean up the OOM state peacefully.
4691 		 */
4692 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4693 			mem_cgroup_oom_synchronize(false);
4694 	}
4695 
4696 	mm_account_fault(regs, address, flags, ret);
4697 
4698 	return ret;
4699 }
4700 EXPORT_SYMBOL_GPL(handle_mm_fault);
4701 
4702 #ifndef __PAGETABLE_P4D_FOLDED
4703 /*
4704  * Allocate p4d page table.
4705  * We've already handled the fast-path in-line.
4706  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4707 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4708 {
4709 	p4d_t *new = p4d_alloc_one(mm, address);
4710 	if (!new)
4711 		return -ENOMEM;
4712 
4713 	smp_wmb(); /* See comment in __pte_alloc */
4714 
4715 	spin_lock(&mm->page_table_lock);
4716 	if (pgd_present(*pgd))		/* Another has populated it */
4717 		p4d_free(mm, new);
4718 	else
4719 		pgd_populate(mm, pgd, new);
4720 	spin_unlock(&mm->page_table_lock);
4721 	return 0;
4722 }
4723 #endif /* __PAGETABLE_P4D_FOLDED */
4724 
4725 #ifndef __PAGETABLE_PUD_FOLDED
4726 /*
4727  * Allocate page upper directory.
4728  * We've already handled the fast-path in-line.
4729  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4730 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4731 {
4732 	pud_t *new = pud_alloc_one(mm, address);
4733 	if (!new)
4734 		return -ENOMEM;
4735 
4736 	smp_wmb(); /* See comment in __pte_alloc */
4737 
4738 	spin_lock(&mm->page_table_lock);
4739 	if (!p4d_present(*p4d)) {
4740 		mm_inc_nr_puds(mm);
4741 		p4d_populate(mm, p4d, new);
4742 	} else	/* Another has populated it */
4743 		pud_free(mm, new);
4744 	spin_unlock(&mm->page_table_lock);
4745 	return 0;
4746 }
4747 #endif /* __PAGETABLE_PUD_FOLDED */
4748 
4749 #ifndef __PAGETABLE_PMD_FOLDED
4750 /*
4751  * Allocate page middle directory.
4752  * We've already handled the fast-path in-line.
4753  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4754 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4755 {
4756 	spinlock_t *ptl;
4757 	pmd_t *new = pmd_alloc_one(mm, address);
4758 	if (!new)
4759 		return -ENOMEM;
4760 
4761 	smp_wmb(); /* See comment in __pte_alloc */
4762 
4763 	ptl = pud_lock(mm, pud);
4764 	if (!pud_present(*pud)) {
4765 		mm_inc_nr_pmds(mm);
4766 		pud_populate(mm, pud, new);
4767 	} else	/* Another has populated it */
4768 		pmd_free(mm, new);
4769 	spin_unlock(ptl);
4770 	return 0;
4771 }
4772 #endif /* __PAGETABLE_PMD_FOLDED */
4773 
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4774 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4775 			  struct mmu_notifier_range *range, pte_t **ptepp,
4776 			  pmd_t **pmdpp, spinlock_t **ptlp)
4777 {
4778 	pgd_t *pgd;
4779 	p4d_t *p4d;
4780 	pud_t *pud;
4781 	pmd_t *pmd;
4782 	pte_t *ptep;
4783 
4784 	pgd = pgd_offset(mm, address);
4785 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4786 		goto out;
4787 
4788 	p4d = p4d_offset(pgd, address);
4789 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4790 		goto out;
4791 
4792 	pud = pud_offset(p4d, address);
4793 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4794 		goto out;
4795 
4796 	pmd = pmd_offset(pud, address);
4797 	VM_BUG_ON(pmd_trans_huge(*pmd));
4798 
4799 	if (pmd_huge(*pmd)) {
4800 		if (!pmdpp)
4801 			goto out;
4802 
4803 		if (range) {
4804 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4805 						NULL, mm, address & PMD_MASK,
4806 						(address & PMD_MASK) + PMD_SIZE);
4807 			mmu_notifier_invalidate_range_start(range);
4808 		}
4809 		*ptlp = pmd_lock(mm, pmd);
4810 		if (pmd_huge(*pmd)) {
4811 			*pmdpp = pmd;
4812 			return 0;
4813 		}
4814 		spin_unlock(*ptlp);
4815 		if (range)
4816 			mmu_notifier_invalidate_range_end(range);
4817 	}
4818 
4819 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4820 		goto out;
4821 
4822 	if (range) {
4823 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4824 					address & PAGE_MASK,
4825 					(address & PAGE_MASK) + PAGE_SIZE);
4826 		mmu_notifier_invalidate_range_start(range);
4827 	}
4828 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4829 	if (!pte_present(*ptep))
4830 		goto unlock;
4831 	*ptepp = ptep;
4832 	return 0;
4833 unlock:
4834 	pte_unmap_unlock(ptep, *ptlp);
4835 	if (range)
4836 		mmu_notifier_invalidate_range_end(range);
4837 out:
4838 	return -EINVAL;
4839 }
4840 
4841 /**
4842  * follow_pte - look up PTE at a user virtual address
4843  * @mm: the mm_struct of the target address space
4844  * @address: user virtual address
4845  * @ptepp: location to store found PTE
4846  * @ptlp: location to store the lock for the PTE
4847  *
4848  * On a successful return, the pointer to the PTE is stored in @ptepp;
4849  * the corresponding lock is taken and its location is stored in @ptlp.
4850  * The contents of the PTE are only stable until @ptlp is released;
4851  * any further use, if any, must be protected against invalidation
4852  * with MMU notifiers.
4853  *
4854  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4855  * should be taken for read.
4856  *
4857  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4858  * it is not a good general-purpose API.
4859  *
4860  * Return: zero on success, -ve otherwise.
4861  */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4862 int follow_pte(struct mm_struct *mm, unsigned long address,
4863 	       pte_t **ptepp, spinlock_t **ptlp)
4864 {
4865 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4866 }
4867 EXPORT_SYMBOL_GPL(follow_pte);
4868 
4869 /**
4870  * follow_pfn - look up PFN at a user virtual address
4871  * @vma: memory mapping
4872  * @address: user virtual address
4873  * @pfn: location to store found PFN
4874  *
4875  * Only IO mappings and raw PFN mappings are allowed.
4876  *
4877  * This function does not allow the caller to read the permissions
4878  * of the PTE.  Do not use it.
4879  *
4880  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4881  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4882 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4883 	unsigned long *pfn)
4884 {
4885 	int ret = -EINVAL;
4886 	spinlock_t *ptl;
4887 	pte_t *ptep;
4888 
4889 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4890 		return ret;
4891 
4892 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4893 	if (ret)
4894 		return ret;
4895 	*pfn = pte_pfn(*ptep);
4896 	pte_unmap_unlock(ptep, ptl);
4897 	return 0;
4898 }
4899 EXPORT_SYMBOL(follow_pfn);
4900 
4901 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)4902 int follow_phys(struct vm_area_struct *vma,
4903 		unsigned long address, unsigned int flags,
4904 		unsigned long *prot, resource_size_t *phys)
4905 {
4906 	int ret = -EINVAL;
4907 	pte_t *ptep, pte;
4908 	spinlock_t *ptl;
4909 
4910 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4911 		goto out;
4912 
4913 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4914 		goto out;
4915 	pte = *ptep;
4916 
4917 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4918 		goto unlock;
4919 
4920 	*prot = pgprot_val(pte_pgprot(pte));
4921 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4922 
4923 	ret = 0;
4924 unlock:
4925 	pte_unmap_unlock(ptep, ptl);
4926 out:
4927 	return ret;
4928 }
4929 
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)4930 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4931 			void *buf, int len, int write)
4932 {
4933 	resource_size_t phys_addr;
4934 	unsigned long prot = 0;
4935 	void __iomem *maddr;
4936 	int offset = addr & (PAGE_SIZE-1);
4937 
4938 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4939 		return -EINVAL;
4940 
4941 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4942 	if (!maddr)
4943 		return -ENOMEM;
4944 
4945 	if (write)
4946 		memcpy_toio(maddr + offset, buf, len);
4947 	else
4948 		memcpy_fromio(buf, maddr + offset, len);
4949 	iounmap(maddr);
4950 
4951 	return len;
4952 }
4953 EXPORT_SYMBOL_GPL(generic_access_phys);
4954 #endif
4955 
4956 /*
4957  * Access another process' address space as given in mm.  If non-NULL, use the
4958  * given task for page fault accounting.
4959  */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4960 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4961 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4962 {
4963 	struct vm_area_struct *vma;
4964 	void *old_buf = buf;
4965 	int write = gup_flags & FOLL_WRITE;
4966 
4967 	if (mmap_read_lock_killable(mm))
4968 		return 0;
4969 
4970 	/* ignore errors, just check how much was successfully transferred */
4971 	while (len) {
4972 		int bytes, ret, offset;
4973 		void *maddr;
4974 		struct page *page = NULL;
4975 
4976 		ret = get_user_pages_remote(mm, addr, 1,
4977 				gup_flags, &page, &vma, NULL);
4978 		if (ret <= 0) {
4979 #ifndef CONFIG_HAVE_IOREMAP_PROT
4980 			break;
4981 #else
4982 			/*
4983 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4984 			 * we can access using slightly different code.
4985 			 */
4986 			vma = find_vma(mm, addr);
4987 			if (!vma || vma->vm_start > addr)
4988 				break;
4989 			if (vma->vm_ops && vma->vm_ops->access)
4990 				ret = vma->vm_ops->access(vma, addr, buf,
4991 							  len, write);
4992 			if (ret <= 0)
4993 				break;
4994 			bytes = ret;
4995 #endif
4996 		} else {
4997 			bytes = len;
4998 			offset = addr & (PAGE_SIZE-1);
4999 			if (bytes > PAGE_SIZE-offset)
5000 				bytes = PAGE_SIZE-offset;
5001 
5002 			maddr = kmap(page);
5003 			if (write) {
5004 				copy_to_user_page(vma, page, addr,
5005 						  maddr + offset, buf, bytes);
5006 				set_page_dirty_lock(page);
5007 			} else {
5008 				copy_from_user_page(vma, page, addr,
5009 						    buf, maddr + offset, bytes);
5010 			}
5011 			kunmap(page);
5012 			put_page(page);
5013 		}
5014 		len -= bytes;
5015 		buf += bytes;
5016 		addr += bytes;
5017 	}
5018 	mmap_read_unlock(mm);
5019 
5020 	return buf - old_buf;
5021 }
5022 
5023 /**
5024  * access_remote_vm - access another process' address space
5025  * @mm:		the mm_struct of the target address space
5026  * @addr:	start address to access
5027  * @buf:	source or destination buffer
5028  * @len:	number of bytes to transfer
5029  * @gup_flags:	flags modifying lookup behaviour
5030  *
5031  * The caller must hold a reference on @mm.
5032  *
5033  * Return: number of bytes copied from source to destination.
5034  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5035 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5036 		void *buf, int len, unsigned int gup_flags)
5037 {
5038 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5039 }
5040 
5041 /*
5042  * Access another process' address space.
5043  * Source/target buffer must be kernel space,
5044  * Do not walk the page table directly, use get_user_pages
5045  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5046 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5047 		void *buf, int len, unsigned int gup_flags)
5048 {
5049 	struct mm_struct *mm;
5050 	int ret;
5051 
5052 	mm = get_task_mm(tsk);
5053 	if (!mm)
5054 		return 0;
5055 
5056 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5057 
5058 	mmput(mm);
5059 
5060 	return ret;
5061 }
5062 EXPORT_SYMBOL_GPL(access_process_vm);
5063 
5064 /*
5065  * Print the name of a VMA.
5066  */
print_vma_addr(char * prefix,unsigned long ip)5067 void print_vma_addr(char *prefix, unsigned long ip)
5068 {
5069 	struct mm_struct *mm = current->mm;
5070 	struct vm_area_struct *vma;
5071 
5072 	/*
5073 	 * we might be running from an atomic context so we cannot sleep
5074 	 */
5075 	if (!mmap_read_trylock(mm))
5076 		return;
5077 
5078 	vma = find_vma(mm, ip);
5079 	if (vma && vma->vm_file) {
5080 		struct file *f = vma->vm_file;
5081 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5082 		if (buf) {
5083 			char *p;
5084 
5085 			p = file_path(f, buf, PAGE_SIZE);
5086 			if (IS_ERR(p))
5087 				p = "?";
5088 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5089 					vma->vm_start,
5090 					vma->vm_end - vma->vm_start);
5091 			free_page((unsigned long)buf);
5092 		}
5093 	}
5094 	mmap_read_unlock(mm);
5095 }
5096 
5097 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5098 void __might_fault(const char *file, int line)
5099 {
5100 	/*
5101 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5102 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5103 	 * get paged out, therefore we'll never actually fault, and the
5104 	 * below annotations will generate false positives.
5105 	 */
5106 	if (uaccess_kernel())
5107 		return;
5108 	if (pagefault_disabled())
5109 		return;
5110 	__might_sleep(file, line, 0);
5111 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5112 	if (current->mm)
5113 		might_lock_read(&current->mm->mmap_lock);
5114 #endif
5115 }
5116 EXPORT_SYMBOL(__might_fault);
5117 #endif
5118 
5119 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5120 /*
5121  * Process all subpages of the specified huge page with the specified
5122  * operation.  The target subpage will be processed last to keep its
5123  * cache lines hot.
5124  */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5125 static inline void process_huge_page(
5126 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5127 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5128 	void *arg)
5129 {
5130 	int i, n, base, l;
5131 	unsigned long addr = addr_hint &
5132 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5133 
5134 	/* Process target subpage last to keep its cache lines hot */
5135 	might_sleep();
5136 	n = (addr_hint - addr) / PAGE_SIZE;
5137 	if (2 * n <= pages_per_huge_page) {
5138 		/* If target subpage in first half of huge page */
5139 		base = 0;
5140 		l = n;
5141 		/* Process subpages at the end of huge page */
5142 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5143 			cond_resched();
5144 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5145 		}
5146 	} else {
5147 		/* If target subpage in second half of huge page */
5148 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5149 		l = pages_per_huge_page - n;
5150 		/* Process subpages at the begin of huge page */
5151 		for (i = 0; i < base; i++) {
5152 			cond_resched();
5153 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5154 		}
5155 	}
5156 	/*
5157 	 * Process remaining subpages in left-right-left-right pattern
5158 	 * towards the target subpage
5159 	 */
5160 	for (i = 0; i < l; i++) {
5161 		int left_idx = base + i;
5162 		int right_idx = base + 2 * l - 1 - i;
5163 
5164 		cond_resched();
5165 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5166 		cond_resched();
5167 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5168 	}
5169 }
5170 
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5171 static void clear_gigantic_page(struct page *page,
5172 				unsigned long addr,
5173 				unsigned int pages_per_huge_page)
5174 {
5175 	int i;
5176 	struct page *p = page;
5177 
5178 	might_sleep();
5179 	for (i = 0; i < pages_per_huge_page;
5180 	     i++, p = mem_map_next(p, page, i)) {
5181 		cond_resched();
5182 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5183 	}
5184 }
5185 
clear_subpage(unsigned long addr,int idx,void * arg)5186 static void clear_subpage(unsigned long addr, int idx, void *arg)
5187 {
5188 	struct page *page = arg;
5189 
5190 	clear_user_highpage(page + idx, addr);
5191 }
5192 
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5193 void clear_huge_page(struct page *page,
5194 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5195 {
5196 	unsigned long addr = addr_hint &
5197 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5198 
5199 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5200 		clear_gigantic_page(page, addr, pages_per_huge_page);
5201 		return;
5202 	}
5203 
5204 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5205 }
5206 
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5207 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5208 				    unsigned long addr,
5209 				    struct vm_area_struct *vma,
5210 				    unsigned int pages_per_huge_page)
5211 {
5212 	int i;
5213 	struct page *dst_base = dst;
5214 	struct page *src_base = src;
5215 
5216 	for (i = 0; i < pages_per_huge_page; ) {
5217 		cond_resched();
5218 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5219 
5220 		i++;
5221 		dst = mem_map_next(dst, dst_base, i);
5222 		src = mem_map_next(src, src_base, i);
5223 	}
5224 }
5225 
5226 struct copy_subpage_arg {
5227 	struct page *dst;
5228 	struct page *src;
5229 	struct vm_area_struct *vma;
5230 };
5231 
copy_subpage(unsigned long addr,int idx,void * arg)5232 static void copy_subpage(unsigned long addr, int idx, void *arg)
5233 {
5234 	struct copy_subpage_arg *copy_arg = arg;
5235 
5236 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5237 			   addr, copy_arg->vma);
5238 }
5239 
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5240 void copy_user_huge_page(struct page *dst, struct page *src,
5241 			 unsigned long addr_hint, struct vm_area_struct *vma,
5242 			 unsigned int pages_per_huge_page)
5243 {
5244 	unsigned long addr = addr_hint &
5245 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5246 	struct copy_subpage_arg arg = {
5247 		.dst = dst,
5248 		.src = src,
5249 		.vma = vma,
5250 	};
5251 
5252 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5253 		copy_user_gigantic_page(dst, src, addr, vma,
5254 					pages_per_huge_page);
5255 		return;
5256 	}
5257 
5258 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5259 }
5260 
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5261 long copy_huge_page_from_user(struct page *dst_page,
5262 				const void __user *usr_src,
5263 				unsigned int pages_per_huge_page,
5264 				bool allow_pagefault)
5265 {
5266 	void *src = (void *)usr_src;
5267 	void *page_kaddr;
5268 	unsigned long i, rc = 0;
5269 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5270 	struct page *subpage = dst_page;
5271 
5272 	for (i = 0; i < pages_per_huge_page;
5273 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5274 		if (allow_pagefault)
5275 			page_kaddr = kmap(subpage);
5276 		else
5277 			page_kaddr = kmap_atomic(subpage);
5278 		rc = copy_from_user(page_kaddr,
5279 				(const void __user *)(src + i * PAGE_SIZE),
5280 				PAGE_SIZE);
5281 		if (allow_pagefault)
5282 			kunmap(subpage);
5283 		else
5284 			kunmap_atomic(page_kaddr);
5285 
5286 		ret_val -= (PAGE_SIZE - rc);
5287 		if (rc)
5288 			break;
5289 
5290 		cond_resched();
5291 	}
5292 	return ret_val;
5293 }
5294 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5295 
5296 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5297 
5298 static struct kmem_cache *page_ptl_cachep;
5299 
ptlock_cache_init(void)5300 void __init ptlock_cache_init(void)
5301 {
5302 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5303 			SLAB_PANIC, NULL);
5304 }
5305 
ptlock_alloc(struct page * page)5306 bool ptlock_alloc(struct page *page)
5307 {
5308 	spinlock_t *ptl;
5309 
5310 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5311 	if (!ptl)
5312 		return false;
5313 	page->ptl = ptl;
5314 	return true;
5315 }
5316 
ptlock_free(struct page * page)5317 void ptlock_free(struct page *page)
5318 {
5319 	kmem_cache_free(page_ptl_cachep, page->ptl);
5320 }
5321 #endif
5322