• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Brad Volkin <bradley.d.volkin@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_ringbuffer.h"
30 
31 /**
32  * DOC: batch buffer command parser
33  *
34  * Motivation:
35  * Certain OpenGL features (e.g. transform feedback, performance monitoring)
36  * require userspace code to submit batches containing commands such as
37  * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
38  * generations of the hardware will noop these commands in "unsecure" batches
39  * (which includes all userspace batches submitted via i915) even though the
40  * commands may be safe and represent the intended programming model of the
41  * device.
42  *
43  * The software command parser is similar in operation to the command parsing
44  * done in hardware for unsecure batches. However, the software parser allows
45  * some operations that would be noop'd by hardware, if the parser determines
46  * the operation is safe, and submits the batch as "secure" to prevent hardware
47  * parsing.
48  *
49  * Threats:
50  * At a high level, the hardware (and software) checks attempt to prevent
51  * granting userspace undue privileges. There are three categories of privilege.
52  *
53  * First, commands which are explicitly defined as privileged or which should
54  * only be used by the kernel driver. The parser rejects such commands
55  *
56  * Second, commands which access registers. To support correct/enhanced
57  * userspace functionality, particularly certain OpenGL extensions, the parser
58  * provides a whitelist of registers which userspace may safely access
59  *
60  * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
61  * The parser always rejects such commands.
62  *
63  * The majority of the problematic commands fall in the MI_* range, with only a
64  * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
65  *
66  * Implementation:
67  * Each engine maintains tables of commands and registers which the parser
68  * uses in scanning batch buffers submitted to that engine.
69  *
70  * Since the set of commands that the parser must check for is significantly
71  * smaller than the number of commands supported, the parser tables contain only
72  * those commands required by the parser. This generally works because command
73  * opcode ranges have standard command length encodings. So for commands that
74  * the parser does not need to check, it can easily skip them. This is
75  * implemented via a per-engine length decoding vfunc.
76  *
77  * Unfortunately, there are a number of commands that do not follow the standard
78  * length encoding for their opcode range, primarily amongst the MI_* commands.
79  * To handle this, the parser provides a way to define explicit "skip" entries
80  * in the per-engine command tables.
81  *
82  * Other command table entries map fairly directly to high level categories
83  * mentioned above: rejected, register whitelist. The parser implements a number
84  * of checks, including the privileged memory checks, via a general bitmasking
85  * mechanism.
86  */
87 
88 /*
89  * A command that requires special handling by the command parser.
90  */
91 struct drm_i915_cmd_descriptor {
92 	/*
93 	 * Flags describing how the command parser processes the command.
94 	 *
95 	 * CMD_DESC_FIXED: The command has a fixed length if this is set,
96 	 *                 a length mask if not set
97 	 * CMD_DESC_SKIP: The command is allowed but does not follow the
98 	 *                standard length encoding for the opcode range in
99 	 *                which it falls
100 	 * CMD_DESC_REJECT: The command is never allowed
101 	 * CMD_DESC_REGISTER: The command should be checked against the
102 	 *                    register whitelist for the appropriate ring
103 	 */
104 	u32 flags;
105 #define CMD_DESC_FIXED    (1<<0)
106 #define CMD_DESC_SKIP     (1<<1)
107 #define CMD_DESC_REJECT   (1<<2)
108 #define CMD_DESC_REGISTER (1<<3)
109 #define CMD_DESC_BITMASK  (1<<4)
110 
111 	/*
112 	 * The command's unique identification bits and the bitmask to get them.
113 	 * This isn't strictly the opcode field as defined in the spec and may
114 	 * also include type, subtype, and/or subop fields.
115 	 */
116 	struct {
117 		u32 value;
118 		u32 mask;
119 	} cmd;
120 
121 	/*
122 	 * The command's length. The command is either fixed length (i.e. does
123 	 * not include a length field) or has a length field mask. The flag
124 	 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
125 	 * a length mask. All command entries in a command table must include
126 	 * length information.
127 	 */
128 	union {
129 		u32 fixed;
130 		u32 mask;
131 	} length;
132 
133 	/*
134 	 * Describes where to find a register address in the command to check
135 	 * against the ring's register whitelist. Only valid if flags has the
136 	 * CMD_DESC_REGISTER bit set.
137 	 *
138 	 * A non-zero step value implies that the command may access multiple
139 	 * registers in sequence (e.g. LRI), in that case step gives the
140 	 * distance in dwords between individual offset fields.
141 	 */
142 	struct {
143 		u32 offset;
144 		u32 mask;
145 		u32 step;
146 	} reg;
147 
148 #define MAX_CMD_DESC_BITMASKS 3
149 	/*
150 	 * Describes command checks where a particular dword is masked and
151 	 * compared against an expected value. If the command does not match
152 	 * the expected value, the parser rejects it. Only valid if flags has
153 	 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
154 	 * are valid.
155 	 *
156 	 * If the check specifies a non-zero condition_mask then the parser
157 	 * only performs the check when the bits specified by condition_mask
158 	 * are non-zero.
159 	 */
160 	struct {
161 		u32 offset;
162 		u32 mask;
163 		u32 expected;
164 		u32 condition_offset;
165 		u32 condition_mask;
166 	} bits[MAX_CMD_DESC_BITMASKS];
167 };
168 
169 /*
170  * A table of commands requiring special handling by the command parser.
171  *
172  * Each engine has an array of tables. Each table consists of an array of
173  * command descriptors, which must be sorted with command opcodes in
174  * ascending order.
175  */
176 struct drm_i915_cmd_table {
177 	const struct drm_i915_cmd_descriptor *table;
178 	int count;
179 };
180 
181 #define STD_MI_OPCODE_SHIFT  (32 - 9)
182 #define STD_3D_OPCODE_SHIFT  (32 - 16)
183 #define STD_2D_OPCODE_SHIFT  (32 - 10)
184 #define STD_MFX_OPCODE_SHIFT (32 - 16)
185 #define MIN_OPCODE_SHIFT 16
186 
187 #define CMD(op, opm, f, lm, fl, ...)				\
188 	{							\
189 		.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0),	\
190 		.cmd = { (op & ~0u << (opm)), ~0u << (opm) },	\
191 		.length = { (lm) },				\
192 		__VA_ARGS__					\
193 	}
194 
195 /* Convenience macros to compress the tables */
196 #define SMI STD_MI_OPCODE_SHIFT
197 #define S3D STD_3D_OPCODE_SHIFT
198 #define S2D STD_2D_OPCODE_SHIFT
199 #define SMFX STD_MFX_OPCODE_SHIFT
200 #define F true
201 #define S CMD_DESC_SKIP
202 #define R CMD_DESC_REJECT
203 #define W CMD_DESC_REGISTER
204 #define B CMD_DESC_BITMASK
205 
206 /*            Command                          Mask   Fixed Len   Action
207 	      ---------------------------------------------------------- */
208 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
209 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
210 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      R  ),
211 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      R  ),
212 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
213 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
214 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
215 	CMD(  MI_SEMAPHORE_MBOX,                SMI,   !F,  0xFF,   R  ),
216 	CMD(  MI_STORE_DWORD_INDEX,             SMI,   !F,  0xFF,   R  ),
217 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
218 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
219 	CMD(  MI_STORE_REGISTER_MEM,            SMI,    F,  3,     W | B,
220 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
221 	      .bits = {{
222 			.offset = 0,
223 			.mask = MI_GLOBAL_GTT,
224 			.expected = 0,
225 	      }},						       ),
226 	CMD(  MI_LOAD_REGISTER_MEM,             SMI,    F,  3,     W | B,
227 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
228 	      .bits = {{
229 			.offset = 0,
230 			.mask = MI_GLOBAL_GTT,
231 			.expected = 0,
232 	      }},						       ),
233 	/*
234 	 * MI_BATCH_BUFFER_START requires some special handling. It's not
235 	 * really a 'skip' action but it doesn't seem like it's worth adding
236 	 * a new action. See i915_parse_cmds().
237 	 */
238 	CMD(  MI_BATCH_BUFFER_START,            SMI,   !F,  0xFF,   S  ),
239 };
240 
241 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
242 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
243 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
244 	CMD(  MI_PREDICATE,                     SMI,    F,  1,      S  ),
245 	CMD(  MI_TOPOLOGY_FILTER,               SMI,    F,  1,      S  ),
246 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
247 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
248 	CMD(  MI_SET_CONTEXT,                   SMI,   !F,  0xFF,   R  ),
249 	CMD(  MI_URB_CLEAR,                     SMI,   !F,  0xFF,   S  ),
250 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3F,   B,
251 	      .bits = {{
252 			.offset = 0,
253 			.mask = MI_GLOBAL_GTT,
254 			.expected = 0,
255 	      }},						       ),
256 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0xFF,   R  ),
257 	CMD(  MI_CLFLUSH,                       SMI,   !F,  0x3FF,  B,
258 	      .bits = {{
259 			.offset = 0,
260 			.mask = MI_GLOBAL_GTT,
261 			.expected = 0,
262 	      }},						       ),
263 	CMD(  MI_REPORT_PERF_COUNT,             SMI,   !F,  0x3F,   B,
264 	      .bits = {{
265 			.offset = 1,
266 			.mask = MI_REPORT_PERF_COUNT_GGTT,
267 			.expected = 0,
268 	      }},						       ),
269 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
270 	      .bits = {{
271 			.offset = 0,
272 			.mask = MI_GLOBAL_GTT,
273 			.expected = 0,
274 	      }},						       ),
275 	CMD(  GFX_OP_3DSTATE_VF_STATISTICS,     S3D,    F,  1,      S  ),
276 	CMD(  PIPELINE_SELECT,                  S3D,    F,  1,      S  ),
277 	CMD(  MEDIA_VFE_STATE,			S3D,   !F,  0xFFFF, B,
278 	      .bits = {{
279 			.offset = 2,
280 			.mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
281 			.expected = 0,
282 	      }},						       ),
283 	CMD(  GPGPU_OBJECT,                     S3D,   !F,  0xFF,   S  ),
284 	CMD(  GPGPU_WALKER,                     S3D,   !F,  0xFF,   S  ),
285 	CMD(  GFX_OP_3DSTATE_SO_DECL_LIST,      S3D,   !F,  0x1FF,  S  ),
286 	CMD(  GFX_OP_PIPE_CONTROL(5),           S3D,   !F,  0xFF,   B,
287 	      .bits = {{
288 			.offset = 1,
289 			.mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
290 			.expected = 0,
291 	      },
292 	      {
293 			.offset = 1,
294 		        .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
295 				 PIPE_CONTROL_STORE_DATA_INDEX),
296 			.expected = 0,
297 			.condition_offset = 1,
298 			.condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
299 	      }},						       ),
300 };
301 
302 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
303 	CMD(  MI_SET_PREDICATE,                 SMI,    F,  1,      S  ),
304 	CMD(  MI_RS_CONTROL,                    SMI,    F,  1,      S  ),
305 	CMD(  MI_URB_ATOMIC_ALLOC,              SMI,    F,  1,      S  ),
306 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
307 	CMD(  MI_RS_CONTEXT,                    SMI,    F,  1,      S  ),
308 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
309 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
310 	CMD(  MI_LOAD_REGISTER_REG,             SMI,   !F,  0xFF,   W,
311 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
312 	CMD(  MI_RS_STORE_DATA_IMM,             SMI,   !F,  0xFF,   S  ),
313 	CMD(  MI_LOAD_URB_MEM,                  SMI,   !F,  0xFF,   S  ),
314 	CMD(  MI_STORE_URB_MEM,                 SMI,   !F,  0xFF,   S  ),
315 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_VS,  S3D,   !F,  0x7FF,  S  ),
316 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_PS,  S3D,   !F,  0x7FF,  S  ),
317 
318 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS,  S3D,   !F,  0x1FF,  S  ),
319 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS,  S3D,   !F,  0x1FF,  S  ),
320 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS,  S3D,   !F,  0x1FF,  S  ),
321 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS,  S3D,   !F,  0x1FF,  S  ),
322 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS,  S3D,   !F,  0x1FF,  S  ),
323 };
324 
325 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
326 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
327 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
328 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
329 	      .bits = {{
330 			.offset = 0,
331 			.mask = MI_GLOBAL_GTT,
332 			.expected = 0,
333 	      }},						       ),
334 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
335 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
336 	      .bits = {{
337 			.offset = 0,
338 			.mask = MI_FLUSH_DW_NOTIFY,
339 			.expected = 0,
340 	      },
341 	      {
342 			.offset = 1,
343 			.mask = MI_FLUSH_DW_USE_GTT,
344 			.expected = 0,
345 			.condition_offset = 0,
346 			.condition_mask = MI_FLUSH_DW_OP_MASK,
347 	      },
348 	      {
349 			.offset = 0,
350 			.mask = MI_FLUSH_DW_STORE_INDEX,
351 			.expected = 0,
352 			.condition_offset = 0,
353 			.condition_mask = MI_FLUSH_DW_OP_MASK,
354 	      }},						       ),
355 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
356 	      .bits = {{
357 			.offset = 0,
358 			.mask = MI_GLOBAL_GTT,
359 			.expected = 0,
360 	      }},						       ),
361 	/*
362 	 * MFX_WAIT doesn't fit the way we handle length for most commands.
363 	 * It has a length field but it uses a non-standard length bias.
364 	 * It is always 1 dword though, so just treat it as fixed length.
365 	 */
366 	CMD(  MFX_WAIT,                         SMFX,   F,  1,      S  ),
367 };
368 
369 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
370 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
371 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
372 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
373 	      .bits = {{
374 			.offset = 0,
375 			.mask = MI_GLOBAL_GTT,
376 			.expected = 0,
377 	      }},						       ),
378 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
379 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
380 	      .bits = {{
381 			.offset = 0,
382 			.mask = MI_FLUSH_DW_NOTIFY,
383 			.expected = 0,
384 	      },
385 	      {
386 			.offset = 1,
387 			.mask = MI_FLUSH_DW_USE_GTT,
388 			.expected = 0,
389 			.condition_offset = 0,
390 			.condition_mask = MI_FLUSH_DW_OP_MASK,
391 	      },
392 	      {
393 			.offset = 0,
394 			.mask = MI_FLUSH_DW_STORE_INDEX,
395 			.expected = 0,
396 			.condition_offset = 0,
397 			.condition_mask = MI_FLUSH_DW_OP_MASK,
398 	      }},						       ),
399 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
400 	      .bits = {{
401 			.offset = 0,
402 			.mask = MI_GLOBAL_GTT,
403 			.expected = 0,
404 	      }},						       ),
405 };
406 
407 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
408 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
409 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  B,
410 	      .bits = {{
411 			.offset = 0,
412 			.mask = MI_GLOBAL_GTT,
413 			.expected = 0,
414 	      }},						       ),
415 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
416 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
417 	      .bits = {{
418 			.offset = 0,
419 			.mask = MI_FLUSH_DW_NOTIFY,
420 			.expected = 0,
421 	      },
422 	      {
423 			.offset = 1,
424 			.mask = MI_FLUSH_DW_USE_GTT,
425 			.expected = 0,
426 			.condition_offset = 0,
427 			.condition_mask = MI_FLUSH_DW_OP_MASK,
428 	      },
429 	      {
430 			.offset = 0,
431 			.mask = MI_FLUSH_DW_STORE_INDEX,
432 			.expected = 0,
433 			.condition_offset = 0,
434 			.condition_mask = MI_FLUSH_DW_OP_MASK,
435 	      }},						       ),
436 	CMD(  COLOR_BLT,                        S2D,   !F,  0x3F,   S  ),
437 	CMD(  SRC_COPY_BLT,                     S2D,   !F,  0x3F,   S  ),
438 };
439 
440 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
441 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
442 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
443 };
444 
445 /*
446  * For Gen9 we can still rely on the h/w to enforce cmd security, and only
447  * need to re-enforce the register access checks. We therefore only need to
448  * teach the cmdparser how to find the end of each command, and identify
449  * register accesses. The table doesn't need to reject any commands, and so
450  * the only commands listed here are:
451  *   1) Those that touch registers
452  *   2) Those that do not have the default 8-bit length
453  *
454  * Note that the default MI length mask chosen for this table is 0xFF, not
455  * the 0x3F used on older devices. This is because the vast majority of MI
456  * cmds on Gen9 use a standard 8-bit Length field.
457  * All the Gen9 blitter instructions are standard 0xFF length mask, and
458  * none allow access to non-general registers, so in fact no BLT cmds are
459  * included in the table at all.
460  *
461  */
462 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
463 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
464 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      S  ),
465 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      S  ),
466 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
467 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
468 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
469 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      S  ),
470 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
471 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   S  ),
472 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   S  ),
473 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  S  ),
474 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
475 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
476 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3FF,  S  ),
477 	CMD(  MI_STORE_REGISTER_MEM_GEN8,       SMI,    F,  4,      W,
478 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
479 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   S  ),
480 	CMD(  MI_LOAD_REGISTER_MEM_GEN8,        SMI,    F,  4,      W,
481 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
482 	CMD(  MI_LOAD_REGISTER_REG,             SMI,    !F,  0xFF,  W,
483 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
484 
485 	/*
486 	 * We allow BB_START but apply further checks. We just sanitize the
487 	 * basic fields here.
488 	 */
489 #define MI_BB_START_OPERAND_MASK   GENMASK(SMI-1, 0)
490 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
491 	CMD(  MI_BATCH_BUFFER_START_GEN8,       SMI,    !F,  0xFF,  B,
492 	      .bits = {{
493 			.offset = 0,
494 			.mask = MI_BB_START_OPERAND_MASK,
495 			.expected = MI_BB_START_OPERAND_EXPECT,
496 	      }},						       ),
497 };
498 
499 static const struct drm_i915_cmd_descriptor noop_desc =
500 	CMD(MI_NOOP, SMI, F, 1, S);
501 
502 #undef CMD
503 #undef SMI
504 #undef S3D
505 #undef S2D
506 #undef SMFX
507 #undef F
508 #undef S
509 #undef R
510 #undef W
511 #undef B
512 
513 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
514 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
515 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
516 };
517 
518 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
519 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
520 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
521 	{ hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
522 };
523 
524 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
525 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
526 	{ gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
527 };
528 
529 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
530 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
531 	{ gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
532 };
533 
534 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
535 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
536 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
537 };
538 
539 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
540 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
541 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
542 	{ hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
543 };
544 
545 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
546 	{ gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
547 };
548 
549 
550 /*
551  * Register whitelists, sorted by increasing register offset.
552  */
553 
554 /*
555  * An individual whitelist entry granting access to register addr.  If
556  * mask is non-zero the argument of immediate register writes will be
557  * AND-ed with mask, and the command will be rejected if the result
558  * doesn't match value.
559  *
560  * Registers with non-zero mask are only allowed to be written using
561  * LRI.
562  */
563 struct drm_i915_reg_descriptor {
564 	i915_reg_t addr;
565 	u32 mask;
566 	u32 value;
567 };
568 
569 /* Convenience macro for adding 32-bit registers. */
570 #define REG32(_reg, ...) \
571 	{ .addr = (_reg), __VA_ARGS__ }
572 
573 #define REG32_IDX(_reg, idx) \
574 	{ .addr = _reg(idx) }
575 
576 /*
577  * Convenience macro for adding 64-bit registers.
578  *
579  * Some registers that userspace accesses are 64 bits. The register
580  * access commands only allow 32-bit accesses. Hence, we have to include
581  * entries for both halves of the 64-bit registers.
582  */
583 #define REG64(_reg) \
584 	{ .addr = _reg }, \
585 	{ .addr = _reg ## _UDW }
586 
587 #define REG64_IDX(_reg, idx) \
588 	{ .addr = _reg(idx) }, \
589 	{ .addr = _reg ## _UDW(idx) }
590 
591 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
592 	REG64(GPGPU_THREADS_DISPATCHED),
593 	REG64(HS_INVOCATION_COUNT),
594 	REG64(DS_INVOCATION_COUNT),
595 	REG64(IA_VERTICES_COUNT),
596 	REG64(IA_PRIMITIVES_COUNT),
597 	REG64(VS_INVOCATION_COUNT),
598 	REG64(GS_INVOCATION_COUNT),
599 	REG64(GS_PRIMITIVES_COUNT),
600 	REG64(CL_INVOCATION_COUNT),
601 	REG64(CL_PRIMITIVES_COUNT),
602 	REG64(PS_INVOCATION_COUNT),
603 	REG64(PS_DEPTH_COUNT),
604 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
605 	REG64(MI_PREDICATE_SRC0),
606 	REG64(MI_PREDICATE_SRC1),
607 	REG32(GEN7_3DPRIM_END_OFFSET),
608 	REG32(GEN7_3DPRIM_START_VERTEX),
609 	REG32(GEN7_3DPRIM_VERTEX_COUNT),
610 	REG32(GEN7_3DPRIM_INSTANCE_COUNT),
611 	REG32(GEN7_3DPRIM_START_INSTANCE),
612 	REG32(GEN7_3DPRIM_BASE_VERTEX),
613 	REG32(GEN7_GPGPU_DISPATCHDIMX),
614 	REG32(GEN7_GPGPU_DISPATCHDIMY),
615 	REG32(GEN7_GPGPU_DISPATCHDIMZ),
616 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
617 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
618 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
619 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
620 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
621 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
622 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
623 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
624 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
625 	REG32(GEN7_SO_WRITE_OFFSET(0)),
626 	REG32(GEN7_SO_WRITE_OFFSET(1)),
627 	REG32(GEN7_SO_WRITE_OFFSET(2)),
628 	REG32(GEN7_SO_WRITE_OFFSET(3)),
629 	REG32(GEN7_L3SQCREG1),
630 	REG32(GEN7_L3CNTLREG2),
631 	REG32(GEN7_L3CNTLREG3),
632 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
633 };
634 
635 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
636 	REG64_IDX(HSW_CS_GPR, 0),
637 	REG64_IDX(HSW_CS_GPR, 1),
638 	REG64_IDX(HSW_CS_GPR, 2),
639 	REG64_IDX(HSW_CS_GPR, 3),
640 	REG64_IDX(HSW_CS_GPR, 4),
641 	REG64_IDX(HSW_CS_GPR, 5),
642 	REG64_IDX(HSW_CS_GPR, 6),
643 	REG64_IDX(HSW_CS_GPR, 7),
644 	REG64_IDX(HSW_CS_GPR, 8),
645 	REG64_IDX(HSW_CS_GPR, 9),
646 	REG64_IDX(HSW_CS_GPR, 10),
647 	REG64_IDX(HSW_CS_GPR, 11),
648 	REG64_IDX(HSW_CS_GPR, 12),
649 	REG64_IDX(HSW_CS_GPR, 13),
650 	REG64_IDX(HSW_CS_GPR, 14),
651 	REG64_IDX(HSW_CS_GPR, 15),
652 	REG32(HSW_SCRATCH1,
653 	      .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
654 	      .value = 0),
655 	REG32(HSW_ROW_CHICKEN3,
656 	      .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
657                         HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
658 	      .value = 0),
659 };
660 
661 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
662 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
663 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
664 	REG32(BCS_SWCTRL),
665 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
666 };
667 
668 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
669 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
670 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
671 	REG32(BCS_SWCTRL),
672 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
673 	REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
674 	REG64_IDX(BCS_GPR, 0),
675 	REG64_IDX(BCS_GPR, 1),
676 	REG64_IDX(BCS_GPR, 2),
677 	REG64_IDX(BCS_GPR, 3),
678 	REG64_IDX(BCS_GPR, 4),
679 	REG64_IDX(BCS_GPR, 5),
680 	REG64_IDX(BCS_GPR, 6),
681 	REG64_IDX(BCS_GPR, 7),
682 	REG64_IDX(BCS_GPR, 8),
683 	REG64_IDX(BCS_GPR, 9),
684 	REG64_IDX(BCS_GPR, 10),
685 	REG64_IDX(BCS_GPR, 11),
686 	REG64_IDX(BCS_GPR, 12),
687 	REG64_IDX(BCS_GPR, 13),
688 	REG64_IDX(BCS_GPR, 14),
689 	REG64_IDX(BCS_GPR, 15),
690 };
691 
692 #undef REG64
693 #undef REG32
694 
695 struct drm_i915_reg_table {
696 	const struct drm_i915_reg_descriptor *regs;
697 	int num_regs;
698 };
699 
700 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
701 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
702 };
703 
704 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
705 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
706 };
707 
708 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
709 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
710 	{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
711 };
712 
713 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
714 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
715 };
716 
717 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
718 	{ gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
719 };
720 
gen7_render_get_cmd_length_mask(u32 cmd_header)721 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
722 {
723 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
724 	u32 subclient =
725 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
726 
727 	if (client == INSTR_MI_CLIENT)
728 		return 0x3F;
729 	else if (client == INSTR_RC_CLIENT) {
730 		if (subclient == INSTR_MEDIA_SUBCLIENT)
731 			return 0xFFFF;
732 		else
733 			return 0xFF;
734 	}
735 
736 	DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
737 	return 0;
738 }
739 
gen7_bsd_get_cmd_length_mask(u32 cmd_header)740 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
741 {
742 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
743 	u32 subclient =
744 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
745 	u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
746 
747 	if (client == INSTR_MI_CLIENT)
748 		return 0x3F;
749 	else if (client == INSTR_RC_CLIENT) {
750 		if (subclient == INSTR_MEDIA_SUBCLIENT) {
751 			if (op == 6)
752 				return 0xFFFF;
753 			else
754 				return 0xFFF;
755 		} else
756 			return 0xFF;
757 	}
758 
759 	DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
760 	return 0;
761 }
762 
gen7_blt_get_cmd_length_mask(u32 cmd_header)763 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
764 {
765 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
766 
767 	if (client == INSTR_MI_CLIENT)
768 		return 0x3F;
769 	else if (client == INSTR_BC_CLIENT)
770 		return 0xFF;
771 
772 	DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
773 	return 0;
774 }
775 
gen9_blt_get_cmd_length_mask(u32 cmd_header)776 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
777 {
778 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
779 
780 	if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
781 		return 0xFF;
782 
783 	DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
784 	return 0;
785 }
786 
validate_cmds_sorted(const struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)787 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
788 				 const struct drm_i915_cmd_table *cmd_tables,
789 				 int cmd_table_count)
790 {
791 	int i;
792 	bool ret = true;
793 
794 	if (!cmd_tables || cmd_table_count == 0)
795 		return true;
796 
797 	for (i = 0; i < cmd_table_count; i++) {
798 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
799 		u32 previous = 0;
800 		int j;
801 
802 		for (j = 0; j < table->count; j++) {
803 			const struct drm_i915_cmd_descriptor *desc =
804 				&table->table[j];
805 			u32 curr = desc->cmd.value & desc->cmd.mask;
806 
807 			if (curr < previous) {
808 				DRM_ERROR("CMD: %s [%d] command table not sorted: "
809 					  "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
810 					  engine->name, engine->id,
811 					  i, j, curr, previous);
812 				ret = false;
813 			}
814 
815 			previous = curr;
816 		}
817 	}
818 
819 	return ret;
820 }
821 
check_sorted(const struct intel_engine_cs * engine,const struct drm_i915_reg_descriptor * reg_table,int reg_count)822 static bool check_sorted(const struct intel_engine_cs *engine,
823 			 const struct drm_i915_reg_descriptor *reg_table,
824 			 int reg_count)
825 {
826 	int i;
827 	u32 previous = 0;
828 	bool ret = true;
829 
830 	for (i = 0; i < reg_count; i++) {
831 		u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
832 
833 		if (curr < previous) {
834 			DRM_ERROR("CMD: %s [%d] register table not sorted: "
835 				  "entry=%d reg=0x%08X prev=0x%08X\n",
836 				  engine->name, engine->id,
837 				  i, curr, previous);
838 			ret = false;
839 		}
840 
841 		previous = curr;
842 	}
843 
844 	return ret;
845 }
846 
validate_regs_sorted(struct intel_engine_cs * engine)847 static bool validate_regs_sorted(struct intel_engine_cs *engine)
848 {
849 	int i;
850 	const struct drm_i915_reg_table *table;
851 
852 	for (i = 0; i < engine->reg_table_count; i++) {
853 		table = &engine->reg_tables[i];
854 		if (!check_sorted(engine, table->regs, table->num_regs))
855 			return false;
856 	}
857 
858 	return true;
859 }
860 
861 struct cmd_node {
862 	const struct drm_i915_cmd_descriptor *desc;
863 	struct hlist_node node;
864 };
865 
866 /*
867  * Different command ranges have different numbers of bits for the opcode. For
868  * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
869  * problem is that, for example, MI commands use bits 22:16 for other fields
870  * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
871  * we mask a command from a batch it could hash to the wrong bucket due to
872  * non-opcode bits being set. But if we don't include those bits, some 3D
873  * commands may hash to the same bucket due to not including opcode bits that
874  * make the command unique. For now, we will risk hashing to the same bucket.
875  */
cmd_header_key(u32 x)876 static inline u32 cmd_header_key(u32 x)
877 {
878 	switch (x >> INSTR_CLIENT_SHIFT) {
879 	default:
880 	case INSTR_MI_CLIENT:
881 		return x >> STD_MI_OPCODE_SHIFT;
882 	case INSTR_RC_CLIENT:
883 		return x >> STD_3D_OPCODE_SHIFT;
884 	case INSTR_BC_CLIENT:
885 		return x >> STD_2D_OPCODE_SHIFT;
886 	}
887 }
888 
init_hash_table(struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)889 static int init_hash_table(struct intel_engine_cs *engine,
890 			   const struct drm_i915_cmd_table *cmd_tables,
891 			   int cmd_table_count)
892 {
893 	int i, j;
894 
895 	hash_init(engine->cmd_hash);
896 
897 	for (i = 0; i < cmd_table_count; i++) {
898 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
899 
900 		for (j = 0; j < table->count; j++) {
901 			const struct drm_i915_cmd_descriptor *desc =
902 				&table->table[j];
903 			struct cmd_node *desc_node =
904 				kmalloc(sizeof(*desc_node), GFP_KERNEL);
905 
906 			if (!desc_node)
907 				return -ENOMEM;
908 
909 			desc_node->desc = desc;
910 			hash_add(engine->cmd_hash, &desc_node->node,
911 				 cmd_header_key(desc->cmd.value));
912 		}
913 	}
914 
915 	return 0;
916 }
917 
fini_hash_table(struct intel_engine_cs * engine)918 static void fini_hash_table(struct intel_engine_cs *engine)
919 {
920 	struct hlist_node *tmp;
921 	struct cmd_node *desc_node;
922 	int i;
923 
924 	hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
925 		hash_del(&desc_node->node);
926 		kfree(desc_node);
927 	}
928 }
929 
930 /**
931  * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
932  * @engine: the engine to initialize
933  *
934  * Optionally initializes fields related to batch buffer command parsing in the
935  * struct intel_engine_cs based on whether the platform requires software
936  * command parsing.
937  */
intel_engine_init_cmd_parser(struct intel_engine_cs * engine)938 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
939 {
940 	const struct drm_i915_cmd_table *cmd_tables;
941 	int cmd_table_count;
942 	int ret;
943 
944 	if (!IS_GEN7(engine->i915) && !(IS_GEN9(engine->i915) &&
945 					engine->id == BCS))
946 		return;
947 
948 	switch (engine->id) {
949 	case RCS:
950 		if (IS_HASWELL(engine->i915)) {
951 			cmd_tables = hsw_render_ring_cmd_table;
952 			cmd_table_count =
953 				ARRAY_SIZE(hsw_render_ring_cmd_table);
954 		} else {
955 			cmd_tables = gen7_render_cmd_table;
956 			cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
957 		}
958 
959 		if (IS_HASWELL(engine->i915)) {
960 			engine->reg_tables = hsw_render_reg_tables;
961 			engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
962 		} else {
963 			engine->reg_tables = ivb_render_reg_tables;
964 			engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
965 		}
966 		engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
967 		break;
968 	case VCS:
969 		cmd_tables = gen7_video_cmd_table;
970 		cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
971 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
972 		break;
973 	case BCS:
974 		engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
975 		if (IS_GEN9(engine->i915)) {
976 			cmd_tables = gen9_blt_cmd_table;
977 			cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
978 			engine->get_cmd_length_mask =
979 				gen9_blt_get_cmd_length_mask;
980 
981 			/* BCS Engine unsafe without parser */
982 			engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
983 		} else if (IS_HASWELL(engine->i915)) {
984 			cmd_tables = hsw_blt_ring_cmd_table;
985 			cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
986 		} else {
987 			cmd_tables = gen7_blt_cmd_table;
988 			cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
989 		}
990 
991 		if (IS_GEN9(engine->i915)) {
992 			engine->reg_tables = gen9_blt_reg_tables;
993 			engine->reg_table_count =
994 				ARRAY_SIZE(gen9_blt_reg_tables);
995 		} else if (IS_HASWELL(engine->i915)) {
996 			engine->reg_tables = hsw_blt_reg_tables;
997 			engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
998 		} else {
999 			engine->reg_tables = ivb_blt_reg_tables;
1000 			engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1001 		}
1002 		break;
1003 	case VECS:
1004 		cmd_tables = hsw_vebox_cmd_table;
1005 		cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1006 		/* VECS can use the same length_mask function as VCS */
1007 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1008 		break;
1009 	default:
1010 		MISSING_CASE(engine->id);
1011 		return;
1012 	}
1013 
1014 	if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1015 		DRM_ERROR("%s: command descriptions are not sorted\n",
1016 			  engine->name);
1017 		return;
1018 	}
1019 	if (!validate_regs_sorted(engine)) {
1020 		DRM_ERROR("%s: registers are not sorted\n", engine->name);
1021 		return;
1022 	}
1023 
1024 	ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1025 	if (ret) {
1026 		DRM_ERROR("%s: initialised failed!\n", engine->name);
1027 		fini_hash_table(engine);
1028 		return;
1029 	}
1030 
1031 	engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1032 }
1033 
1034 /**
1035  * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1036  * @engine: the engine to clean up
1037  *
1038  * Releases any resources related to command parsing that may have been
1039  * initialized for the specified engine.
1040  */
intel_engine_cleanup_cmd_parser(struct intel_engine_cs * engine)1041 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1042 {
1043 	if (!intel_engine_using_cmd_parser(engine))
1044 		return;
1045 
1046 	fini_hash_table(engine);
1047 }
1048 
1049 static const struct drm_i915_cmd_descriptor*
find_cmd_in_table(struct intel_engine_cs * engine,u32 cmd_header)1050 find_cmd_in_table(struct intel_engine_cs *engine,
1051 		  u32 cmd_header)
1052 {
1053 	struct cmd_node *desc_node;
1054 
1055 	hash_for_each_possible(engine->cmd_hash, desc_node, node,
1056 			       cmd_header_key(cmd_header)) {
1057 		const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1058 		if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1059 			return desc;
1060 	}
1061 
1062 	return NULL;
1063 }
1064 
1065 /*
1066  * Returns a pointer to a descriptor for the command specified by cmd_header.
1067  *
1068  * The caller must supply space for a default descriptor via the default_desc
1069  * parameter. If no descriptor for the specified command exists in the engine's
1070  * command parser tables, this function fills in default_desc based on the
1071  * engine's default length encoding and returns default_desc.
1072  */
1073 static const struct drm_i915_cmd_descriptor*
find_cmd(struct intel_engine_cs * engine,u32 cmd_header,const struct drm_i915_cmd_descriptor * desc,struct drm_i915_cmd_descriptor * default_desc)1074 find_cmd(struct intel_engine_cs *engine,
1075 	 u32 cmd_header,
1076 	 const struct drm_i915_cmd_descriptor *desc,
1077 	 struct drm_i915_cmd_descriptor *default_desc)
1078 {
1079 	u32 mask;
1080 
1081 	if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1082 		return desc;
1083 
1084 	desc = find_cmd_in_table(engine, cmd_header);
1085 	if (desc)
1086 		return desc;
1087 
1088 	mask = engine->get_cmd_length_mask(cmd_header);
1089 	if (!mask)
1090 		return NULL;
1091 
1092 	default_desc->cmd.value = cmd_header;
1093 	default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1094 	default_desc->length.mask = mask;
1095 	default_desc->flags = CMD_DESC_SKIP;
1096 	return default_desc;
1097 }
1098 
1099 static const struct drm_i915_reg_descriptor *
__find_reg(const struct drm_i915_reg_descriptor * table,int count,u32 addr)1100 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1101 {
1102 	int start = 0, end = count;
1103 	while (start < end) {
1104 		int mid = start + (end - start) / 2;
1105 		int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1106 		if (ret < 0)
1107 			end = mid;
1108 		else if (ret > 0)
1109 			start = mid + 1;
1110 		else
1111 			return &table[mid];
1112 	}
1113 	return NULL;
1114 }
1115 
1116 static const struct drm_i915_reg_descriptor *
find_reg(const struct intel_engine_cs * engine,u32 addr)1117 find_reg(const struct intel_engine_cs *engine, u32 addr)
1118 {
1119 	const struct drm_i915_reg_table *table = engine->reg_tables;
1120 	const struct drm_i915_reg_descriptor *reg = NULL;
1121 	int count = engine->reg_table_count;
1122 
1123 	for (; !reg && (count > 0); ++table, --count)
1124 		reg = __find_reg(table->regs, table->num_regs, addr);
1125 
1126 	return reg;
1127 }
1128 
1129 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
copy_batch(struct drm_i915_gem_object * dst_obj,struct drm_i915_gem_object * src_obj,u32 batch_start_offset,u32 batch_len,bool * needs_clflush_after)1130 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1131 		       struct drm_i915_gem_object *src_obj,
1132 		       u32 batch_start_offset,
1133 		       u32 batch_len,
1134 		       bool *needs_clflush_after)
1135 {
1136 	unsigned int src_needs_clflush;
1137 	unsigned int dst_needs_clflush;
1138 	void *dst, *src;
1139 	int ret;
1140 
1141 	ret = i915_gem_obj_prepare_shmem_read(src_obj, &src_needs_clflush);
1142 	if (ret)
1143 		return ERR_PTR(ret);
1144 
1145 	ret = i915_gem_obj_prepare_shmem_write(dst_obj, &dst_needs_clflush);
1146 	if (ret) {
1147 		dst = ERR_PTR(ret);
1148 		goto unpin_src;
1149 	}
1150 
1151 	dst = i915_gem_object_pin_map(dst_obj, I915_MAP_FORCE_WB);
1152 	if (IS_ERR(dst))
1153 		goto unpin_dst;
1154 
1155 	src = ERR_PTR(-ENODEV);
1156 	if (src_needs_clflush &&
1157 	    i915_can_memcpy_from_wc(NULL, batch_start_offset, 0)) {
1158 		src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1159 		if (!IS_ERR(src)) {
1160 			i915_memcpy_from_wc(dst,
1161 					    src + batch_start_offset,
1162 					    ALIGN(batch_len, 16));
1163 			i915_gem_object_unpin_map(src_obj);
1164 		}
1165 	}
1166 	if (IS_ERR(src)) {
1167 		void *ptr;
1168 		int offset, n;
1169 
1170 		offset = offset_in_page(batch_start_offset);
1171 
1172 		/* We can avoid clflushing partial cachelines before the write
1173 		 * if we only every write full cache-lines. Since we know that
1174 		 * both the source and destination are in multiples of
1175 		 * PAGE_SIZE, we can simply round up to the next cacheline.
1176 		 * We don't care about copying too much here as we only
1177 		 * validate up to the end of the batch.
1178 		 */
1179 		if (dst_needs_clflush & CLFLUSH_BEFORE)
1180 			batch_len = roundup(batch_len,
1181 					    boot_cpu_data.x86_clflush_size);
1182 
1183 		ptr = dst;
1184 		for (n = batch_start_offset >> PAGE_SHIFT; batch_len; n++) {
1185 			int len = min_t(int, batch_len, PAGE_SIZE - offset);
1186 
1187 			src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
1188 			if (src_needs_clflush)
1189 				drm_clflush_virt_range(src + offset, len);
1190 			memcpy(ptr, src + offset, len);
1191 			kunmap_atomic(src);
1192 
1193 			ptr += len;
1194 			batch_len -= len;
1195 			offset = 0;
1196 		}
1197 	}
1198 
1199 	/* dst_obj is returned with vmap pinned */
1200 	*needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1201 
1202 unpin_dst:
1203 	i915_gem_obj_finish_shmem_access(dst_obj);
1204 unpin_src:
1205 	i915_gem_obj_finish_shmem_access(src_obj);
1206 	return dst;
1207 }
1208 
check_cmd(const struct intel_engine_cs * engine,const struct drm_i915_cmd_descriptor * desc,const u32 * cmd,u32 length)1209 static bool check_cmd(const struct intel_engine_cs *engine,
1210 		      const struct drm_i915_cmd_descriptor *desc,
1211 		      const u32 *cmd, u32 length)
1212 {
1213 	if (desc->flags & CMD_DESC_SKIP)
1214 		return true;
1215 
1216 	if (desc->flags & CMD_DESC_REJECT) {
1217 		DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd);
1218 		return false;
1219 	}
1220 
1221 	if (desc->flags & CMD_DESC_REGISTER) {
1222 		/*
1223 		 * Get the distance between individual register offset
1224 		 * fields if the command can perform more than one
1225 		 * access at a time.
1226 		 */
1227 		const u32 step = desc->reg.step ? desc->reg.step : length;
1228 		u32 offset;
1229 
1230 		for (offset = desc->reg.offset; offset < length;
1231 		     offset += step) {
1232 			const u32 reg_addr = cmd[offset] & desc->reg.mask;
1233 			const struct drm_i915_reg_descriptor *reg =
1234 				find_reg(engine, reg_addr);
1235 
1236 			if (!reg) {
1237 				DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1238 						 reg_addr, *cmd, engine->name);
1239 				return false;
1240 			}
1241 
1242 			/*
1243 			 * Check the value written to the register against the
1244 			 * allowed mask/value pair given in the whitelist entry.
1245 			 */
1246 			if (reg->mask) {
1247 				if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1248 					DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n",
1249 							 reg_addr);
1250 					return false;
1251 				}
1252 
1253 				if (desc->cmd.value == MI_LOAD_REGISTER_REG) {
1254 					DRM_DEBUG_DRIVER("CMD: Rejected LRR to masked register 0x%08X\n",
1255 							 reg_addr);
1256 					return false;
1257 				}
1258 
1259 				if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) &&
1260 				    (offset + 2 > length ||
1261 				     (cmd[offset + 1] & reg->mask) != reg->value)) {
1262 					DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n",
1263 							 reg_addr);
1264 					return false;
1265 				}
1266 			}
1267 		}
1268 	}
1269 
1270 	if (desc->flags & CMD_DESC_BITMASK) {
1271 		int i;
1272 
1273 		for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1274 			u32 dword;
1275 
1276 			if (desc->bits[i].mask == 0)
1277 				break;
1278 
1279 			if (desc->bits[i].condition_mask != 0) {
1280 				u32 offset =
1281 					desc->bits[i].condition_offset;
1282 				u32 condition = cmd[offset] &
1283 					desc->bits[i].condition_mask;
1284 
1285 				if (condition == 0)
1286 					continue;
1287 			}
1288 
1289 			if (desc->bits[i].offset >= length) {
1290 				DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1291 						 *cmd, engine->name);
1292 				return false;
1293 			}
1294 
1295 			dword = cmd[desc->bits[i].offset] &
1296 				desc->bits[i].mask;
1297 
1298 			if (dword != desc->bits[i].expected) {
1299 				DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1300 						 *cmd,
1301 						 desc->bits[i].mask,
1302 						 desc->bits[i].expected,
1303 						 dword, engine->name);
1304 				return false;
1305 			}
1306 		}
1307 	}
1308 
1309 	return true;
1310 }
1311 
check_bbstart(const struct i915_gem_context * ctx,u32 * cmd,u32 offset,u32 length,u32 batch_len,u64 batch_start,u64 shadow_batch_start)1312 static int check_bbstart(const struct i915_gem_context *ctx,
1313 			 u32 *cmd, u32 offset, u32 length,
1314 			 u32 batch_len,
1315 			 u64 batch_start,
1316 			 u64 shadow_batch_start)
1317 {
1318 	u64 jump_offset, jump_target;
1319 	u32 target_cmd_offset, target_cmd_index;
1320 
1321 	/* For igt compatibility on older platforms */
1322 	if (CMDPARSER_USES_GGTT(ctx->i915)) {
1323 		DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1324 		return -EACCES;
1325 	}
1326 
1327 	if (length != 3) {
1328 		DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1329 			  length);
1330 		return -EINVAL;
1331 	}
1332 
1333 	jump_target = *(u64*)(cmd+1);
1334 	jump_offset = jump_target - batch_start;
1335 
1336 	/*
1337 	 * Any underflow of jump_target is guaranteed to be outside the range
1338 	 * of a u32, so >= test catches both too large and too small
1339 	 */
1340 	if (jump_offset >= batch_len) {
1341 		DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1342 			  jump_target);
1343 		return -EINVAL;
1344 	}
1345 
1346 	/*
1347 	 * This cannot overflow a u32 because we already checked jump_offset
1348 	 * is within the BB, and the batch_len is a u32
1349 	 */
1350 	target_cmd_offset = lower_32_bits(jump_offset);
1351 	target_cmd_index = target_cmd_offset / sizeof(u32);
1352 
1353 	*(u64*)(cmd + 1) = shadow_batch_start + target_cmd_offset;
1354 
1355 	if (target_cmd_index == offset)
1356 		return 0;
1357 
1358 	if (ctx->jump_whitelist_cmds <= target_cmd_index) {
1359 		DRM_DEBUG("CMD: Rejecting BB_START - truncated whitelist array\n");
1360 		return -EINVAL;
1361 	} else if (!test_bit(target_cmd_index, ctx->jump_whitelist)) {
1362 		DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1363 			  jump_target);
1364 		return -EINVAL;
1365 	}
1366 
1367 	return 0;
1368 }
1369 
init_whitelist(struct i915_gem_context * ctx,u32 batch_len)1370 static void init_whitelist(struct i915_gem_context *ctx, u32 batch_len)
1371 {
1372 	const u32 batch_cmds = DIV_ROUND_UP(batch_len, sizeof(u32));
1373 	const u32 exact_size = BITS_TO_LONGS(batch_cmds);
1374 	u32 next_size = BITS_TO_LONGS(roundup_pow_of_two(batch_cmds));
1375 	unsigned long *next_whitelist;
1376 
1377 	if (CMDPARSER_USES_GGTT(ctx->i915))
1378 		return;
1379 
1380 	if (batch_cmds <= ctx->jump_whitelist_cmds) {
1381 		bitmap_zero(ctx->jump_whitelist, batch_cmds);
1382 		return;
1383 	}
1384 
1385 again:
1386 	next_whitelist = kcalloc(next_size, sizeof(long), GFP_KERNEL);
1387 	if (next_whitelist) {
1388 		kfree(ctx->jump_whitelist);
1389 		ctx->jump_whitelist = next_whitelist;
1390 		ctx->jump_whitelist_cmds =
1391 			next_size * BITS_PER_BYTE * sizeof(long);
1392 		return;
1393 	}
1394 
1395 	if (next_size > exact_size) {
1396 		next_size = exact_size;
1397 		goto again;
1398 	}
1399 
1400 	DRM_DEBUG("CMD: Failed to extend whitelist. BB_START may be disallowed\n");
1401 	bitmap_zero(ctx->jump_whitelist, ctx->jump_whitelist_cmds);
1402 
1403 	return;
1404 }
1405 
1406 #define LENGTH_BIAS 2
1407 
1408 /**
1409  * i915_parse_cmds() - parse a submitted batch buffer for privilege violations
1410  * @ctx: the context in which the batch is to execute
1411  * @engine: the engine on which the batch is to execute
1412  * @batch_obj: the batch buffer in question
1413  * @batch_start: Canonical base address of batch
1414  * @batch_start_offset: byte offset in the batch at which execution starts
1415  * @batch_len: length of the commands in batch_obj
1416  * @shadow_batch_obj: copy of the batch buffer in question
1417  * @shadow_batch_start: Canonical base address of shadow_batch_obj
1418  *
1419  * Parses the specified batch buffer looking for privilege violations as
1420  * described in the overview.
1421  *
1422  * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1423  * if the batch appears legal but should use hardware parsing
1424  */
1425 
intel_engine_cmd_parser(struct i915_gem_context * ctx,struct intel_engine_cs * engine,struct drm_i915_gem_object * batch_obj,u64 batch_start,u32 batch_start_offset,u32 batch_len,struct drm_i915_gem_object * shadow_batch_obj,u64 shadow_batch_start)1426 int intel_engine_cmd_parser(struct i915_gem_context *ctx,
1427 			    struct intel_engine_cs *engine,
1428 			    struct drm_i915_gem_object *batch_obj,
1429 			    u64 batch_start,
1430 			    u32 batch_start_offset,
1431 			    u32 batch_len,
1432 			    struct drm_i915_gem_object *shadow_batch_obj,
1433 			    u64 shadow_batch_start)
1434 {
1435 	u32 *cmd, *batch_end, offset = 0;
1436 	struct drm_i915_cmd_descriptor default_desc = noop_desc;
1437 	const struct drm_i915_cmd_descriptor *desc = &default_desc;
1438 	bool needs_clflush_after = false;
1439 	int ret = 0;
1440 
1441 	cmd = copy_batch(shadow_batch_obj, batch_obj,
1442 			 batch_start_offset, batch_len,
1443 			 &needs_clflush_after);
1444 	if (IS_ERR(cmd)) {
1445 		DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n");
1446 		return PTR_ERR(cmd);
1447 	}
1448 
1449 	init_whitelist(ctx, batch_len);
1450 
1451 	/*
1452 	 * We use the batch length as size because the shadow object is as
1453 	 * large or larger and copy_batch() will write MI_NOPs to the extra
1454 	 * space. Parsing should be faster in some cases this way.
1455 	 */
1456 	batch_end = cmd + (batch_len / sizeof(*batch_end));
1457 	do {
1458 		u32 length;
1459 
1460 		if (*cmd == MI_BATCH_BUFFER_END)
1461 			break;
1462 
1463 		desc = find_cmd(engine, *cmd, desc, &default_desc);
1464 		if (!desc) {
1465 			DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n",
1466 					 *cmd);
1467 			ret = -EINVAL;
1468 			goto err;
1469 		}
1470 
1471 		if (desc->flags & CMD_DESC_FIXED)
1472 			length = desc->length.fixed;
1473 		else
1474 			length = ((*cmd & desc->length.mask) + LENGTH_BIAS);
1475 
1476 		if ((batch_end - cmd) < length) {
1477 			DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1478 					 *cmd,
1479 					 length,
1480 					 batch_end - cmd);
1481 			ret = -EINVAL;
1482 			goto err;
1483 		}
1484 
1485 		if (!check_cmd(engine, desc, cmd, length)) {
1486 			ret = -EACCES;
1487 			goto err;
1488 		}
1489 
1490 		if (desc->cmd.value == MI_BATCH_BUFFER_START) {
1491 			ret = check_bbstart(ctx, cmd, offset, length,
1492 					    batch_len, batch_start,
1493 					    shadow_batch_start);
1494 
1495 			if (ret)
1496 				goto err;
1497 			break;
1498 		}
1499 
1500 		if (ctx->jump_whitelist_cmds > offset)
1501 			set_bit(offset, ctx->jump_whitelist);
1502 
1503 		cmd += length;
1504 		offset += length;
1505 		if  (cmd >= batch_end) {
1506 			DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1507 			ret = -EINVAL;
1508 			goto err;
1509 		}
1510 	} while (1);
1511 
1512 	if (needs_clflush_after) {
1513 		void *ptr = page_mask_bits(shadow_batch_obj->mm.mapping);
1514 
1515 		drm_clflush_virt_range(ptr, (void *)(cmd + 1) - ptr);
1516 	}
1517 
1518 err:
1519 	i915_gem_object_unpin_map(shadow_batch_obj);
1520 	return ret;
1521 }
1522 
1523 /**
1524  * i915_cmd_parser_get_version() - get the cmd parser version number
1525  * @dev_priv: i915 device private
1526  *
1527  * The cmd parser maintains a simple increasing integer version number suitable
1528  * for passing to userspace clients to determine what operations are permitted.
1529  *
1530  * Return: the current version number of the cmd parser
1531  */
i915_cmd_parser_get_version(struct drm_i915_private * dev_priv)1532 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1533 {
1534 	struct intel_engine_cs *engine;
1535 	enum intel_engine_id id;
1536 	bool active = false;
1537 
1538 	/* If the command parser is not enabled, report 0 - unsupported */
1539 	for_each_engine(engine, dev_priv, id) {
1540 		if (intel_engine_using_cmd_parser(engine)) {
1541 			active = true;
1542 			break;
1543 		}
1544 	}
1545 	if (!active)
1546 		return 0;
1547 
1548 	/*
1549 	 * Command parser version history
1550 	 *
1551 	 * 1. Initial version. Checks batches and reports violations, but leaves
1552 	 *    hardware parsing enabled (so does not allow new use cases).
1553 	 * 2. Allow access to the MI_PREDICATE_SRC0 and
1554 	 *    MI_PREDICATE_SRC1 registers.
1555 	 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1556 	 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1557 	 * 5. GPGPU dispatch compute indirect registers.
1558 	 * 6. TIMESTAMP register and Haswell CS GPR registers
1559 	 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1560 	 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1561 	 *    rely on the HW to NOOP disallowed commands as it would without
1562 	 *    the parser enabled.
1563 	 * 9. Don't whitelist or handle oacontrol specially, as ownership
1564 	 *    for oacontrol state is moving to i915-perf.
1565 	 * 10. Support for Gen9 BCS Parsing
1566 	 */
1567 	return 10;
1568 }
1569