1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
46
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56
57 DEFINE_IDA(blk_queue_ida);
58
59 /*
60 * For the allocated request tables
61 */
62 struct kmem_cache *request_cachep;
63
64 /*
65 * For queue allocation
66 */
67 struct kmem_cache *blk_requestq_cachep;
68
69 /*
70 * Controlling structure to kblockd
71 */
72 static struct workqueue_struct *kblockd_workqueue;
73
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 unsigned long flags;
82
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88
89 /**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
93 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 unsigned long flags;
97
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103
104 /**
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
108 *
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
111 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 unsigned long flags;
115 bool res;
116
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
120
121 return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124
125 /**
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
129 *
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
132 */
blk_queue_flag_test_and_clear(unsigned int flag,struct request_queue * q)133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 unsigned long flags;
136 bool res;
137
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141
142 return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145
blk_clear_congested(struct request_list * rl,int sync)146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 /*
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
154 */
155 if (rl == &rl->q->root_rl)
156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159
blk_set_congested(struct request_list * rl,int sync)160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170
blk_queue_congestion_threshold(struct request_queue * q)171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 int nr;
174
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
179
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
184 }
185
blk_rq_init(struct request_queue * q,struct request * rq)186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 memset(rq, 0, sizeof(*rq));
189
190 INIT_LIST_HEAD(&rq->queuelist);
191 INIT_LIST_HEAD(&rq->timeout_list);
192 rq->cpu = -1;
193 rq->q = q;
194 rq->__sector = (sector_t) -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->tag = -1;
198 rq->internal_tag = -1;
199 rq->start_time_ns = ktime_get_ns();
200 rq->part = NULL;
201 refcount_set(&rq->ref, 1);
202 }
203 EXPORT_SYMBOL(blk_rq_init);
204
205 static const struct {
206 int errno;
207 const char *name;
208 } blk_errors[] = {
209 [BLK_STS_OK] = { 0, "" },
210 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
211 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
212 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
213 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
214 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
215 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
216 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
217 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
218 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
219 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
220 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
221
222 /* device mapper special case, should not leak out: */
223 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
224
225 /* everything else not covered above: */
226 [BLK_STS_IOERR] = { -EIO, "I/O" },
227 };
228
errno_to_blk_status(int errno)229 blk_status_t errno_to_blk_status(int errno)
230 {
231 int i;
232
233 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 if (blk_errors[i].errno == errno)
235 return (__force blk_status_t)i;
236 }
237
238 return BLK_STS_IOERR;
239 }
240 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241
blk_status_to_errno(blk_status_t status)242 int blk_status_to_errno(blk_status_t status)
243 {
244 int idx = (__force int)status;
245
246 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
247 return -EIO;
248 return blk_errors[idx].errno;
249 }
250 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251
print_req_error(struct request * req,blk_status_t status)252 static void print_req_error(struct request *req, blk_status_t status)
253 {
254 int idx = (__force int)status;
255
256 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
257 return;
258
259 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 __func__, blk_errors[idx].name, req->rq_disk ?
261 req->rq_disk->disk_name : "?",
262 (unsigned long long)blk_rq_pos(req));
263 }
264
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)265 static void req_bio_endio(struct request *rq, struct bio *bio,
266 unsigned int nbytes, blk_status_t error)
267 {
268 if (error)
269 bio->bi_status = error;
270
271 if (unlikely(rq->rq_flags & RQF_QUIET))
272 bio_set_flag(bio, BIO_QUIET);
273
274 bio_advance(bio, nbytes);
275
276 /* don't actually finish bio if it's part of flush sequence */
277 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
278 bio_endio(bio);
279 }
280
blk_dump_rq_flags(struct request * rq,char * msg)281 void blk_dump_rq_flags(struct request *rq, char *msg)
282 {
283 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 rq->rq_disk ? rq->rq_disk->disk_name : "?",
285 (unsigned long long) rq->cmd_flags);
286
287 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
288 (unsigned long long)blk_rq_pos(rq),
289 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
290 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
291 rq->bio, rq->biotail, blk_rq_bytes(rq));
292 }
293 EXPORT_SYMBOL(blk_dump_rq_flags);
294
blk_delay_work(struct work_struct * work)295 static void blk_delay_work(struct work_struct *work)
296 {
297 struct request_queue *q;
298
299 q = container_of(work, struct request_queue, delay_work.work);
300 spin_lock_irq(q->queue_lock);
301 __blk_run_queue(q);
302 spin_unlock_irq(q->queue_lock);
303 }
304
305 /**
306 * blk_delay_queue - restart queueing after defined interval
307 * @q: The &struct request_queue in question
308 * @msecs: Delay in msecs
309 *
310 * Description:
311 * Sometimes queueing needs to be postponed for a little while, to allow
312 * resources to come back. This function will make sure that queueing is
313 * restarted around the specified time.
314 */
blk_delay_queue(struct request_queue * q,unsigned long msecs)315 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
316 {
317 lockdep_assert_held(q->queue_lock);
318 WARN_ON_ONCE(q->mq_ops);
319
320 if (likely(!blk_queue_dead(q)))
321 queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 msecs_to_jiffies(msecs));
323 }
324 EXPORT_SYMBOL(blk_delay_queue);
325
326 /**
327 * blk_start_queue_async - asynchronously restart a previously stopped queue
328 * @q: The &struct request_queue in question
329 *
330 * Description:
331 * blk_start_queue_async() will clear the stop flag on the queue, and
332 * ensure that the request_fn for the queue is run from an async
333 * context.
334 **/
blk_start_queue_async(struct request_queue * q)335 void blk_start_queue_async(struct request_queue *q)
336 {
337 lockdep_assert_held(q->queue_lock);
338 WARN_ON_ONCE(q->mq_ops);
339
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 blk_run_queue_async(q);
342 }
343 EXPORT_SYMBOL(blk_start_queue_async);
344
345 /**
346 * blk_start_queue - restart a previously stopped queue
347 * @q: The &struct request_queue in question
348 *
349 * Description:
350 * blk_start_queue() will clear the stop flag on the queue, and call
351 * the request_fn for the queue if it was in a stopped state when
352 * entered. Also see blk_stop_queue().
353 **/
blk_start_queue(struct request_queue * q)354 void blk_start_queue(struct request_queue *q)
355 {
356 lockdep_assert_held(q->queue_lock);
357 WARN_ON_ONCE(q->mq_ops);
358
359 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
360 __blk_run_queue(q);
361 }
362 EXPORT_SYMBOL(blk_start_queue);
363
364 /**
365 * blk_stop_queue - stop a queue
366 * @q: The &struct request_queue in question
367 *
368 * Description:
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
376 * blk_start_queue() to restart queue operations.
377 **/
blk_stop_queue(struct request_queue * q)378 void blk_stop_queue(struct request_queue *q)
379 {
380 lockdep_assert_held(q->queue_lock);
381 WARN_ON_ONCE(q->mq_ops);
382
383 cancel_delayed_work(&q->delay_work);
384 queue_flag_set(QUEUE_FLAG_STOPPED, q);
385 }
386 EXPORT_SYMBOL(blk_stop_queue);
387
388 /**
389 * blk_sync_queue - cancel any pending callbacks on a queue
390 * @q: the queue
391 *
392 * Description:
393 * The block layer may perform asynchronous callback activity
394 * on a queue, such as calling the unplug function after a timeout.
395 * A block device may call blk_sync_queue to ensure that any
396 * such activity is cancelled, thus allowing it to release resources
397 * that the callbacks might use. The caller must already have made sure
398 * that its ->make_request_fn will not re-add plugging prior to calling
399 * this function.
400 *
401 * This function does not cancel any asynchronous activity arising
402 * out of elevator or throttling code. That would require elevator_exit()
403 * and blkcg_exit_queue() to be called with queue lock initialized.
404 *
405 */
blk_sync_queue(struct request_queue * q)406 void blk_sync_queue(struct request_queue *q)
407 {
408 del_timer_sync(&q->timeout);
409 cancel_work_sync(&q->timeout_work);
410
411 if (q->mq_ops) {
412 struct blk_mq_hw_ctx *hctx;
413 int i;
414
415 queue_for_each_hw_ctx(q, hctx, i)
416 cancel_delayed_work_sync(&hctx->run_work);
417 } else {
418 cancel_delayed_work_sync(&q->delay_work);
419 }
420 }
421 EXPORT_SYMBOL(blk_sync_queue);
422
423 /**
424 * blk_set_pm_only - increment pm_only counter
425 * @q: request queue pointer
426 */
blk_set_pm_only(struct request_queue * q)427 void blk_set_pm_only(struct request_queue *q)
428 {
429 atomic_inc(&q->pm_only);
430 }
431 EXPORT_SYMBOL_GPL(blk_set_pm_only);
432
blk_clear_pm_only(struct request_queue * q)433 void blk_clear_pm_only(struct request_queue *q)
434 {
435 int pm_only;
436
437 pm_only = atomic_dec_return(&q->pm_only);
438 WARN_ON_ONCE(pm_only < 0);
439 if (pm_only == 0)
440 wake_up_all(&q->mq_freeze_wq);
441 }
442 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
443
444 /**
445 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
446 * @q: The queue to run
447 *
448 * Description:
449 * Invoke request handling on a queue if there are any pending requests.
450 * May be used to restart request handling after a request has completed.
451 * This variant runs the queue whether or not the queue has been
452 * stopped. Must be called with the queue lock held and interrupts
453 * disabled. See also @blk_run_queue.
454 */
__blk_run_queue_uncond(struct request_queue * q)455 inline void __blk_run_queue_uncond(struct request_queue *q)
456 {
457 lockdep_assert_held(q->queue_lock);
458 WARN_ON_ONCE(q->mq_ops);
459
460 if (unlikely(blk_queue_dead(q)))
461 return;
462
463 /*
464 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
465 * the queue lock internally. As a result multiple threads may be
466 * running such a request function concurrently. Keep track of the
467 * number of active request_fn invocations such that blk_drain_queue()
468 * can wait until all these request_fn calls have finished.
469 */
470 q->request_fn_active++;
471 q->request_fn(q);
472 q->request_fn_active--;
473 }
474 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
475
476 /**
477 * __blk_run_queue - run a single device queue
478 * @q: The queue to run
479 *
480 * Description:
481 * See @blk_run_queue.
482 */
__blk_run_queue(struct request_queue * q)483 void __blk_run_queue(struct request_queue *q)
484 {
485 lockdep_assert_held(q->queue_lock);
486 WARN_ON_ONCE(q->mq_ops);
487
488 if (unlikely(blk_queue_stopped(q)))
489 return;
490
491 __blk_run_queue_uncond(q);
492 }
493 EXPORT_SYMBOL(__blk_run_queue);
494
495 /**
496 * blk_run_queue_async - run a single device queue in workqueue context
497 * @q: The queue to run
498 *
499 * Description:
500 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
501 * of us.
502 *
503 * Note:
504 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
505 * has canceled q->delay_work, callers must hold the queue lock to avoid
506 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
507 */
blk_run_queue_async(struct request_queue * q)508 void blk_run_queue_async(struct request_queue *q)
509 {
510 lockdep_assert_held(q->queue_lock);
511 WARN_ON_ONCE(q->mq_ops);
512
513 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
514 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
515 }
516 EXPORT_SYMBOL(blk_run_queue_async);
517
518 /**
519 * blk_run_queue - run a single device queue
520 * @q: The queue to run
521 *
522 * Description:
523 * Invoke request handling on this queue, if it has pending work to do.
524 * May be used to restart queueing when a request has completed.
525 */
blk_run_queue(struct request_queue * q)526 void blk_run_queue(struct request_queue *q)
527 {
528 unsigned long flags;
529
530 WARN_ON_ONCE(q->mq_ops);
531
532 spin_lock_irqsave(q->queue_lock, flags);
533 __blk_run_queue(q);
534 spin_unlock_irqrestore(q->queue_lock, flags);
535 }
536 EXPORT_SYMBOL(blk_run_queue);
537
blk_put_queue(struct request_queue * q)538 void blk_put_queue(struct request_queue *q)
539 {
540 kobject_put(&q->kobj);
541 }
542 EXPORT_SYMBOL(blk_put_queue);
543
544 /**
545 * __blk_drain_queue - drain requests from request_queue
546 * @q: queue to drain
547 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
548 *
549 * Drain requests from @q. If @drain_all is set, all requests are drained.
550 * If not, only ELVPRIV requests are drained. The caller is responsible
551 * for ensuring that no new requests which need to be drained are queued.
552 */
__blk_drain_queue(struct request_queue * q,bool drain_all)553 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
554 __releases(q->queue_lock)
555 __acquires(q->queue_lock)
556 {
557 int i;
558
559 lockdep_assert_held(q->queue_lock);
560 WARN_ON_ONCE(q->mq_ops);
561
562 while (true) {
563 bool drain = false;
564
565 /*
566 * The caller might be trying to drain @q before its
567 * elevator is initialized.
568 */
569 if (q->elevator)
570 elv_drain_elevator(q);
571
572 blkcg_drain_queue(q);
573
574 /*
575 * This function might be called on a queue which failed
576 * driver init after queue creation or is not yet fully
577 * active yet. Some drivers (e.g. fd and loop) get unhappy
578 * in such cases. Kick queue iff dispatch queue has
579 * something on it and @q has request_fn set.
580 */
581 if (!list_empty(&q->queue_head) && q->request_fn)
582 __blk_run_queue(q);
583
584 drain |= q->nr_rqs_elvpriv;
585 drain |= q->request_fn_active;
586
587 /*
588 * Unfortunately, requests are queued at and tracked from
589 * multiple places and there's no single counter which can
590 * be drained. Check all the queues and counters.
591 */
592 if (drain_all) {
593 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
594 drain |= !list_empty(&q->queue_head);
595 for (i = 0; i < 2; i++) {
596 drain |= q->nr_rqs[i];
597 drain |= q->in_flight[i];
598 if (fq)
599 drain |= !list_empty(&fq->flush_queue[i]);
600 }
601 }
602
603 if (!drain)
604 break;
605
606 spin_unlock_irq(q->queue_lock);
607
608 msleep(10);
609
610 spin_lock_irq(q->queue_lock);
611 }
612
613 /*
614 * With queue marked dead, any woken up waiter will fail the
615 * allocation path, so the wakeup chaining is lost and we're
616 * left with hung waiters. We need to wake up those waiters.
617 */
618 if (q->request_fn) {
619 struct request_list *rl;
620
621 blk_queue_for_each_rl(rl, q)
622 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
623 wake_up_all(&rl->wait[i]);
624 }
625 }
626
blk_drain_queue(struct request_queue * q)627 void blk_drain_queue(struct request_queue *q)
628 {
629 spin_lock_irq(q->queue_lock);
630 __blk_drain_queue(q, true);
631 spin_unlock_irq(q->queue_lock);
632 }
633
634 /**
635 * blk_queue_bypass_start - enter queue bypass mode
636 * @q: queue of interest
637 *
638 * In bypass mode, only the dispatch FIFO queue of @q is used. This
639 * function makes @q enter bypass mode and drains all requests which were
640 * throttled or issued before. On return, it's guaranteed that no request
641 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
642 * inside queue or RCU read lock.
643 */
blk_queue_bypass_start(struct request_queue * q)644 void blk_queue_bypass_start(struct request_queue *q)
645 {
646 WARN_ON_ONCE(q->mq_ops);
647
648 spin_lock_irq(q->queue_lock);
649 q->bypass_depth++;
650 queue_flag_set(QUEUE_FLAG_BYPASS, q);
651 spin_unlock_irq(q->queue_lock);
652
653 /*
654 * Queues start drained. Skip actual draining till init is
655 * complete. This avoids lenghty delays during queue init which
656 * can happen many times during boot.
657 */
658 if (blk_queue_init_done(q)) {
659 spin_lock_irq(q->queue_lock);
660 __blk_drain_queue(q, false);
661 spin_unlock_irq(q->queue_lock);
662
663 /* ensure blk_queue_bypass() is %true inside RCU read lock */
664 synchronize_rcu();
665 }
666 }
667 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
668
669 /**
670 * blk_queue_bypass_end - leave queue bypass mode
671 * @q: queue of interest
672 *
673 * Leave bypass mode and restore the normal queueing behavior.
674 *
675 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
676 * this function is called for both blk-sq and blk-mq queues.
677 */
blk_queue_bypass_end(struct request_queue * q)678 void blk_queue_bypass_end(struct request_queue *q)
679 {
680 spin_lock_irq(q->queue_lock);
681 if (!--q->bypass_depth)
682 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
683 WARN_ON_ONCE(q->bypass_depth < 0);
684 spin_unlock_irq(q->queue_lock);
685 }
686 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
687
blk_set_queue_dying(struct request_queue * q)688 void blk_set_queue_dying(struct request_queue *q)
689 {
690 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
691
692 /*
693 * When queue DYING flag is set, we need to block new req
694 * entering queue, so we call blk_freeze_queue_start() to
695 * prevent I/O from crossing blk_queue_enter().
696 */
697 blk_freeze_queue_start(q);
698
699 if (q->mq_ops)
700 blk_mq_wake_waiters(q);
701 else {
702 struct request_list *rl;
703
704 spin_lock_irq(q->queue_lock);
705 blk_queue_for_each_rl(rl, q) {
706 if (rl->rq_pool) {
707 wake_up_all(&rl->wait[BLK_RW_SYNC]);
708 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
709 }
710 }
711 spin_unlock_irq(q->queue_lock);
712 }
713
714 /* Make blk_queue_enter() reexamine the DYING flag. */
715 wake_up_all(&q->mq_freeze_wq);
716 }
717 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
718
719 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
blk_exit_queue(struct request_queue * q)720 void blk_exit_queue(struct request_queue *q)
721 {
722 /*
723 * Since the I/O scheduler exit code may access cgroup information,
724 * perform I/O scheduler exit before disassociating from the block
725 * cgroup controller.
726 */
727 if (q->elevator) {
728 ioc_clear_queue(q);
729 elevator_exit(q, q->elevator);
730 q->elevator = NULL;
731 }
732
733 /*
734 * Remove all references to @q from the block cgroup controller before
735 * restoring @q->queue_lock to avoid that restoring this pointer causes
736 * e.g. blkcg_print_blkgs() to crash.
737 */
738 blkcg_exit_queue(q);
739
740 /*
741 * Since the cgroup code may dereference the @q->backing_dev_info
742 * pointer, only decrease its reference count after having removed the
743 * association with the block cgroup controller.
744 */
745 bdi_put(q->backing_dev_info);
746 }
747
748 /**
749 * blk_cleanup_queue - shutdown a request queue
750 * @q: request queue to shutdown
751 *
752 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
753 * put it. All future requests will be failed immediately with -ENODEV.
754 */
blk_cleanup_queue(struct request_queue * q)755 void blk_cleanup_queue(struct request_queue *q)
756 {
757 spinlock_t *lock = q->queue_lock;
758
759 /* mark @q DYING, no new request or merges will be allowed afterwards */
760 mutex_lock(&q->sysfs_lock);
761 blk_set_queue_dying(q);
762 spin_lock_irq(lock);
763
764 /*
765 * A dying queue is permanently in bypass mode till released. Note
766 * that, unlike blk_queue_bypass_start(), we aren't performing
767 * synchronize_rcu() after entering bypass mode to avoid the delay
768 * as some drivers create and destroy a lot of queues while
769 * probing. This is still safe because blk_release_queue() will be
770 * called only after the queue refcnt drops to zero and nothing,
771 * RCU or not, would be traversing the queue by then.
772 */
773 q->bypass_depth++;
774 queue_flag_set(QUEUE_FLAG_BYPASS, q);
775
776 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
777 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
778 queue_flag_set(QUEUE_FLAG_DYING, q);
779 spin_unlock_irq(lock);
780 mutex_unlock(&q->sysfs_lock);
781
782 /*
783 * Drain all requests queued before DYING marking. Set DEAD flag to
784 * prevent that q->request_fn() gets invoked after draining finished.
785 */
786 blk_freeze_queue(q);
787
788 rq_qos_exit(q);
789
790 spin_lock_irq(lock);
791 queue_flag_set(QUEUE_FLAG_DEAD, q);
792 spin_unlock_irq(lock);
793
794 /*
795 * make sure all in-progress dispatch are completed because
796 * blk_freeze_queue() can only complete all requests, and
797 * dispatch may still be in-progress since we dispatch requests
798 * from more than one contexts.
799 *
800 * We rely on driver to deal with the race in case that queue
801 * initialization isn't done.
802 */
803 if (q->mq_ops && blk_queue_init_done(q))
804 blk_mq_quiesce_queue(q);
805
806 /* for synchronous bio-based driver finish in-flight integrity i/o */
807 blk_flush_integrity();
808
809 /* @q won't process any more request, flush async actions */
810 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
811 blk_sync_queue(q);
812
813 /*
814 * I/O scheduler exit is only safe after the sysfs scheduler attribute
815 * has been removed.
816 */
817 WARN_ON_ONCE(q->kobj.state_in_sysfs);
818
819 blk_exit_queue(q);
820
821 if (q->mq_ops)
822 blk_mq_exit_queue(q);
823
824 percpu_ref_exit(&q->q_usage_counter);
825
826 spin_lock_irq(lock);
827 if (q->queue_lock != &q->__queue_lock)
828 q->queue_lock = &q->__queue_lock;
829 spin_unlock_irq(lock);
830
831 /* @q is and will stay empty, shutdown and put */
832 blk_put_queue(q);
833 }
834 EXPORT_SYMBOL(blk_cleanup_queue);
835
836 /* Allocate memory local to the request queue */
alloc_request_simple(gfp_t gfp_mask,void * data)837 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
838 {
839 struct request_queue *q = data;
840
841 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
842 }
843
free_request_simple(void * element,void * data)844 static void free_request_simple(void *element, void *data)
845 {
846 kmem_cache_free(request_cachep, element);
847 }
848
alloc_request_size(gfp_t gfp_mask,void * data)849 static void *alloc_request_size(gfp_t gfp_mask, void *data)
850 {
851 struct request_queue *q = data;
852 struct request *rq;
853
854 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
855 q->node);
856 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
857 kfree(rq);
858 rq = NULL;
859 }
860 return rq;
861 }
862
free_request_size(void * element,void * data)863 static void free_request_size(void *element, void *data)
864 {
865 struct request_queue *q = data;
866
867 if (q->exit_rq_fn)
868 q->exit_rq_fn(q, element);
869 kfree(element);
870 }
871
blk_init_rl(struct request_list * rl,struct request_queue * q,gfp_t gfp_mask)872 int blk_init_rl(struct request_list *rl, struct request_queue *q,
873 gfp_t gfp_mask)
874 {
875 if (unlikely(rl->rq_pool) || q->mq_ops)
876 return 0;
877
878 rl->q = q;
879 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
880 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
881 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
882 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
883
884 if (q->cmd_size) {
885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 alloc_request_size, free_request_size,
887 q, gfp_mask, q->node);
888 } else {
889 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
890 alloc_request_simple, free_request_simple,
891 q, gfp_mask, q->node);
892 }
893 if (!rl->rq_pool)
894 return -ENOMEM;
895
896 if (rl != &q->root_rl)
897 WARN_ON_ONCE(!blk_get_queue(q));
898
899 return 0;
900 }
901
blk_exit_rl(struct request_queue * q,struct request_list * rl)902 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
903 {
904 if (rl->rq_pool) {
905 mempool_destroy(rl->rq_pool);
906 if (rl != &q->root_rl)
907 blk_put_queue(q);
908 }
909 }
910
blk_alloc_queue(gfp_t gfp_mask)911 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
912 {
913 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
914 }
915 EXPORT_SYMBOL(blk_alloc_queue);
916
917 /**
918 * blk_queue_enter() - try to increase q->q_usage_counter
919 * @q: request queue pointer
920 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
921 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)922 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
923 {
924 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
925
926 while (true) {
927 bool success = false;
928
929 rcu_read_lock();
930 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
931 /*
932 * The code that increments the pm_only counter is
933 * responsible for ensuring that that counter is
934 * globally visible before the queue is unfrozen.
935 */
936 if (pm || !blk_queue_pm_only(q)) {
937 success = true;
938 } else {
939 percpu_ref_put(&q->q_usage_counter);
940 }
941 }
942 rcu_read_unlock();
943
944 if (success)
945 return 0;
946
947 if (flags & BLK_MQ_REQ_NOWAIT)
948 return -EBUSY;
949
950 /*
951 * read pair of barrier in blk_freeze_queue_start(),
952 * we need to order reading __PERCPU_REF_DEAD flag of
953 * .q_usage_counter and reading .mq_freeze_depth or
954 * queue dying flag, otherwise the following wait may
955 * never return if the two reads are reordered.
956 */
957 smp_rmb();
958
959 wait_event(q->mq_freeze_wq,
960 (atomic_read(&q->mq_freeze_depth) == 0 &&
961 (pm || !blk_queue_pm_only(q))) ||
962 blk_queue_dying(q));
963 if (blk_queue_dying(q))
964 return -ENODEV;
965 }
966 }
967
blk_queue_exit(struct request_queue * q)968 void blk_queue_exit(struct request_queue *q)
969 {
970 percpu_ref_put(&q->q_usage_counter);
971 }
972
blk_queue_usage_counter_release(struct percpu_ref * ref)973 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
974 {
975 struct request_queue *q =
976 container_of(ref, struct request_queue, q_usage_counter);
977
978 wake_up_all(&q->mq_freeze_wq);
979 }
980
blk_rq_timed_out_timer(struct timer_list * t)981 static void blk_rq_timed_out_timer(struct timer_list *t)
982 {
983 struct request_queue *q = from_timer(q, t, timeout);
984
985 kblockd_schedule_work(&q->timeout_work);
986 }
987
blk_timeout_work_dummy(struct work_struct * work)988 static void blk_timeout_work_dummy(struct work_struct *work)
989 {
990 }
991
992 /**
993 * blk_alloc_queue_node - allocate a request queue
994 * @gfp_mask: memory allocation flags
995 * @node_id: NUMA node to allocate memory from
996 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
997 * serialize calls to the legacy .request_fn() callback. Ignored for
998 * blk-mq request queues.
999 *
1000 * Note: pass the queue lock as the third argument to this function instead of
1001 * setting the queue lock pointer explicitly to avoid triggering a sporadic
1002 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
1003 * the queue lock pointer must be set before blkcg_init_queue() is called.
1004 */
blk_alloc_queue_node(gfp_t gfp_mask,int node_id,spinlock_t * lock)1005 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1006 spinlock_t *lock)
1007 {
1008 struct request_queue *q;
1009 int ret;
1010
1011 q = kmem_cache_alloc_node(blk_requestq_cachep,
1012 gfp_mask | __GFP_ZERO, node_id);
1013 if (!q)
1014 return NULL;
1015
1016 INIT_LIST_HEAD(&q->queue_head);
1017 q->last_merge = NULL;
1018 q->end_sector = 0;
1019 q->boundary_rq = NULL;
1020
1021 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1022 if (q->id < 0)
1023 goto fail_q;
1024
1025 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1026 if (ret)
1027 goto fail_id;
1028
1029 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1030 if (!q->backing_dev_info)
1031 goto fail_split;
1032
1033 q->stats = blk_alloc_queue_stats();
1034 if (!q->stats)
1035 goto fail_stats;
1036
1037 q->backing_dev_info->ra_pages =
1038 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1039 q->backing_dev_info->io_pages =
1040 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1041 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1042 q->backing_dev_info->name = "block";
1043 q->node = node_id;
1044
1045 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1046 laptop_mode_timer_fn, 0);
1047 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1048 INIT_WORK(&q->timeout_work, blk_timeout_work_dummy);
1049 INIT_LIST_HEAD(&q->timeout_list);
1050 INIT_LIST_HEAD(&q->icq_list);
1051 #ifdef CONFIG_BLK_CGROUP
1052 INIT_LIST_HEAD(&q->blkg_list);
1053 #endif
1054 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1055
1056 kobject_init(&q->kobj, &blk_queue_ktype);
1057
1058 #ifdef CONFIG_BLK_DEV_IO_TRACE
1059 mutex_init(&q->blk_trace_mutex);
1060 #endif
1061 mutex_init(&q->sysfs_lock);
1062 spin_lock_init(&q->__queue_lock);
1063
1064 if (!q->mq_ops)
1065 q->queue_lock = lock ? : &q->__queue_lock;
1066
1067 /*
1068 * A queue starts its life with bypass turned on to avoid
1069 * unnecessary bypass on/off overhead and nasty surprises during
1070 * init. The initial bypass will be finished when the queue is
1071 * registered by blk_register_queue().
1072 */
1073 q->bypass_depth = 1;
1074 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1075
1076 init_waitqueue_head(&q->mq_freeze_wq);
1077
1078 /*
1079 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1080 * See blk_register_queue() for details.
1081 */
1082 if (percpu_ref_init(&q->q_usage_counter,
1083 blk_queue_usage_counter_release,
1084 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1085 goto fail_bdi;
1086
1087 if (blkcg_init_queue(q))
1088 goto fail_ref;
1089
1090 return q;
1091
1092 fail_ref:
1093 percpu_ref_exit(&q->q_usage_counter);
1094 fail_bdi:
1095 blk_free_queue_stats(q->stats);
1096 fail_stats:
1097 bdi_put(q->backing_dev_info);
1098 fail_split:
1099 bioset_exit(&q->bio_split);
1100 fail_id:
1101 ida_simple_remove(&blk_queue_ida, q->id);
1102 fail_q:
1103 kmem_cache_free(blk_requestq_cachep, q);
1104 return NULL;
1105 }
1106 EXPORT_SYMBOL(blk_alloc_queue_node);
1107
1108 /**
1109 * blk_init_queue - prepare a request queue for use with a block device
1110 * @rfn: The function to be called to process requests that have been
1111 * placed on the queue.
1112 * @lock: Request queue spin lock
1113 *
1114 * Description:
1115 * If a block device wishes to use the standard request handling procedures,
1116 * which sorts requests and coalesces adjacent requests, then it must
1117 * call blk_init_queue(). The function @rfn will be called when there
1118 * are requests on the queue that need to be processed. If the device
1119 * supports plugging, then @rfn may not be called immediately when requests
1120 * are available on the queue, but may be called at some time later instead.
1121 * Plugged queues are generally unplugged when a buffer belonging to one
1122 * of the requests on the queue is needed, or due to memory pressure.
1123 *
1124 * @rfn is not required, or even expected, to remove all requests off the
1125 * queue, but only as many as it can handle at a time. If it does leave
1126 * requests on the queue, it is responsible for arranging that the requests
1127 * get dealt with eventually.
1128 *
1129 * The queue spin lock must be held while manipulating the requests on the
1130 * request queue; this lock will be taken also from interrupt context, so irq
1131 * disabling is needed for it.
1132 *
1133 * Function returns a pointer to the initialized request queue, or %NULL if
1134 * it didn't succeed.
1135 *
1136 * Note:
1137 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1138 * when the block device is deactivated (such as at module unload).
1139 **/
1140
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)1141 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1142 {
1143 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1144 }
1145 EXPORT_SYMBOL(blk_init_queue);
1146
1147 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)1148 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1149 {
1150 struct request_queue *q;
1151
1152 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1153 if (!q)
1154 return NULL;
1155
1156 q->request_fn = rfn;
1157 if (blk_init_allocated_queue(q) < 0) {
1158 blk_cleanup_queue(q);
1159 return NULL;
1160 }
1161
1162 return q;
1163 }
1164 EXPORT_SYMBOL(blk_init_queue_node);
1165
1166 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1167
1168
blk_init_allocated_queue(struct request_queue * q)1169 int blk_init_allocated_queue(struct request_queue *q)
1170 {
1171 WARN_ON_ONCE(q->mq_ops);
1172
1173 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
1174 if (!q->fq)
1175 return -ENOMEM;
1176
1177 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1178 goto out_free_flush_queue;
1179
1180 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1181 goto out_exit_flush_rq;
1182
1183 INIT_WORK(&q->timeout_work, blk_timeout_work);
1184 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1185
1186 /*
1187 * This also sets hw/phys segments, boundary and size
1188 */
1189 blk_queue_make_request(q, blk_queue_bio);
1190
1191 q->sg_reserved_size = INT_MAX;
1192
1193 if (elevator_init(q))
1194 goto out_exit_flush_rq;
1195 return 0;
1196
1197 out_exit_flush_rq:
1198 if (q->exit_rq_fn)
1199 q->exit_rq_fn(q, q->fq->flush_rq);
1200 out_free_flush_queue:
1201 blk_free_flush_queue(q->fq);
1202 q->fq = NULL;
1203 return -ENOMEM;
1204 }
1205 EXPORT_SYMBOL(blk_init_allocated_queue);
1206
blk_get_queue(struct request_queue * q)1207 bool blk_get_queue(struct request_queue *q)
1208 {
1209 if (likely(!blk_queue_dying(q))) {
1210 __blk_get_queue(q);
1211 return true;
1212 }
1213
1214 return false;
1215 }
1216 EXPORT_SYMBOL(blk_get_queue);
1217
blk_free_request(struct request_list * rl,struct request * rq)1218 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1219 {
1220 if (rq->rq_flags & RQF_ELVPRIV) {
1221 elv_put_request(rl->q, rq);
1222 if (rq->elv.icq)
1223 put_io_context(rq->elv.icq->ioc);
1224 }
1225
1226 mempool_free(rq, rl->rq_pool);
1227 }
1228
1229 /*
1230 * ioc_batching returns true if the ioc is a valid batching request and
1231 * should be given priority access to a request.
1232 */
ioc_batching(struct request_queue * q,struct io_context * ioc)1233 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1234 {
1235 if (!ioc)
1236 return 0;
1237
1238 /*
1239 * Make sure the process is able to allocate at least 1 request
1240 * even if the batch times out, otherwise we could theoretically
1241 * lose wakeups.
1242 */
1243 return ioc->nr_batch_requests == q->nr_batching ||
1244 (ioc->nr_batch_requests > 0
1245 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1246 }
1247
1248 /*
1249 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1250 * will cause the process to be a "batcher" on all queues in the system. This
1251 * is the behaviour we want though - once it gets a wakeup it should be given
1252 * a nice run.
1253 */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)1254 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1255 {
1256 if (!ioc || ioc_batching(q, ioc))
1257 return;
1258
1259 ioc->nr_batch_requests = q->nr_batching;
1260 ioc->last_waited = jiffies;
1261 }
1262
__freed_request(struct request_list * rl,int sync)1263 static void __freed_request(struct request_list *rl, int sync)
1264 {
1265 struct request_queue *q = rl->q;
1266
1267 if (rl->count[sync] < queue_congestion_off_threshold(q))
1268 blk_clear_congested(rl, sync);
1269
1270 if (rl->count[sync] + 1 <= q->nr_requests) {
1271 if (waitqueue_active(&rl->wait[sync]))
1272 wake_up(&rl->wait[sync]);
1273
1274 blk_clear_rl_full(rl, sync);
1275 }
1276 }
1277
1278 /*
1279 * A request has just been released. Account for it, update the full and
1280 * congestion status, wake up any waiters. Called under q->queue_lock.
1281 */
freed_request(struct request_list * rl,bool sync,req_flags_t rq_flags)1282 static void freed_request(struct request_list *rl, bool sync,
1283 req_flags_t rq_flags)
1284 {
1285 struct request_queue *q = rl->q;
1286
1287 q->nr_rqs[sync]--;
1288 rl->count[sync]--;
1289 if (rq_flags & RQF_ELVPRIV)
1290 q->nr_rqs_elvpriv--;
1291
1292 __freed_request(rl, sync);
1293
1294 if (unlikely(rl->starved[sync ^ 1]))
1295 __freed_request(rl, sync ^ 1);
1296 }
1297
blk_update_nr_requests(struct request_queue * q,unsigned int nr)1298 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1299 {
1300 struct request_list *rl;
1301 int on_thresh, off_thresh;
1302
1303 WARN_ON_ONCE(q->mq_ops);
1304
1305 spin_lock_irq(q->queue_lock);
1306 q->nr_requests = nr;
1307 blk_queue_congestion_threshold(q);
1308 on_thresh = queue_congestion_on_threshold(q);
1309 off_thresh = queue_congestion_off_threshold(q);
1310
1311 blk_queue_for_each_rl(rl, q) {
1312 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1313 blk_set_congested(rl, BLK_RW_SYNC);
1314 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1315 blk_clear_congested(rl, BLK_RW_SYNC);
1316
1317 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1318 blk_set_congested(rl, BLK_RW_ASYNC);
1319 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1320 blk_clear_congested(rl, BLK_RW_ASYNC);
1321
1322 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1323 blk_set_rl_full(rl, BLK_RW_SYNC);
1324 } else {
1325 blk_clear_rl_full(rl, BLK_RW_SYNC);
1326 wake_up(&rl->wait[BLK_RW_SYNC]);
1327 }
1328
1329 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1330 blk_set_rl_full(rl, BLK_RW_ASYNC);
1331 } else {
1332 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1333 wake_up(&rl->wait[BLK_RW_ASYNC]);
1334 }
1335 }
1336
1337 spin_unlock_irq(q->queue_lock);
1338 return 0;
1339 }
1340
1341 /**
1342 * __get_request - get a free request
1343 * @rl: request list to allocate from
1344 * @op: operation and flags
1345 * @bio: bio to allocate request for (can be %NULL)
1346 * @flags: BLQ_MQ_REQ_* flags
1347 * @gfp_mask: allocator flags
1348 *
1349 * Get a free request from @q. This function may fail under memory
1350 * pressure or if @q is dead.
1351 *
1352 * Must be called with @q->queue_lock held and,
1353 * Returns ERR_PTR on failure, with @q->queue_lock held.
1354 * Returns request pointer on success, with @q->queue_lock *not held*.
1355 */
__get_request(struct request_list * rl,unsigned int op,struct bio * bio,blk_mq_req_flags_t flags,gfp_t gfp_mask)1356 static struct request *__get_request(struct request_list *rl, unsigned int op,
1357 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1358 {
1359 struct request_queue *q = rl->q;
1360 struct request *rq;
1361 struct elevator_type *et = q->elevator->type;
1362 struct io_context *ioc = rq_ioc(bio);
1363 struct io_cq *icq = NULL;
1364 const bool is_sync = op_is_sync(op);
1365 int may_queue;
1366 req_flags_t rq_flags = RQF_ALLOCED;
1367
1368 lockdep_assert_held(q->queue_lock);
1369
1370 if (unlikely(blk_queue_dying(q)))
1371 return ERR_PTR(-ENODEV);
1372
1373 may_queue = elv_may_queue(q, op);
1374 if (may_queue == ELV_MQUEUE_NO)
1375 goto rq_starved;
1376
1377 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1378 if (rl->count[is_sync]+1 >= q->nr_requests) {
1379 /*
1380 * The queue will fill after this allocation, so set
1381 * it as full, and mark this process as "batching".
1382 * This process will be allowed to complete a batch of
1383 * requests, others will be blocked.
1384 */
1385 if (!blk_rl_full(rl, is_sync)) {
1386 ioc_set_batching(q, ioc);
1387 blk_set_rl_full(rl, is_sync);
1388 } else {
1389 if (may_queue != ELV_MQUEUE_MUST
1390 && !ioc_batching(q, ioc)) {
1391 /*
1392 * The queue is full and the allocating
1393 * process is not a "batcher", and not
1394 * exempted by the IO scheduler
1395 */
1396 return ERR_PTR(-ENOMEM);
1397 }
1398 }
1399 }
1400 blk_set_congested(rl, is_sync);
1401 }
1402
1403 /*
1404 * Only allow batching queuers to allocate up to 50% over the defined
1405 * limit of requests, otherwise we could have thousands of requests
1406 * allocated with any setting of ->nr_requests
1407 */
1408 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1409 return ERR_PTR(-ENOMEM);
1410
1411 q->nr_rqs[is_sync]++;
1412 rl->count[is_sync]++;
1413 rl->starved[is_sync] = 0;
1414
1415 /*
1416 * Decide whether the new request will be managed by elevator. If
1417 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1418 * prevent the current elevator from being destroyed until the new
1419 * request is freed. This guarantees icq's won't be destroyed and
1420 * makes creating new ones safe.
1421 *
1422 * Flush requests do not use the elevator so skip initialization.
1423 * This allows a request to share the flush and elevator data.
1424 *
1425 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1426 * it will be created after releasing queue_lock.
1427 */
1428 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1429 rq_flags |= RQF_ELVPRIV;
1430 q->nr_rqs_elvpriv++;
1431 if (et->icq_cache && ioc)
1432 icq = ioc_lookup_icq(ioc, q);
1433 }
1434
1435 if (blk_queue_io_stat(q))
1436 rq_flags |= RQF_IO_STAT;
1437 spin_unlock_irq(q->queue_lock);
1438
1439 /* allocate and init request */
1440 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1441 if (!rq)
1442 goto fail_alloc;
1443
1444 blk_rq_init(q, rq);
1445 blk_rq_set_rl(rq, rl);
1446 rq->cmd_flags = op;
1447 rq->rq_flags = rq_flags;
1448 if (flags & BLK_MQ_REQ_PREEMPT)
1449 rq->rq_flags |= RQF_PREEMPT;
1450
1451 /* init elvpriv */
1452 if (rq_flags & RQF_ELVPRIV) {
1453 if (unlikely(et->icq_cache && !icq)) {
1454 if (ioc)
1455 icq = ioc_create_icq(ioc, q, gfp_mask);
1456 if (!icq)
1457 goto fail_elvpriv;
1458 }
1459
1460 rq->elv.icq = icq;
1461 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1462 goto fail_elvpriv;
1463
1464 /* @rq->elv.icq holds io_context until @rq is freed */
1465 if (icq)
1466 get_io_context(icq->ioc);
1467 }
1468 out:
1469 /*
1470 * ioc may be NULL here, and ioc_batching will be false. That's
1471 * OK, if the queue is under the request limit then requests need
1472 * not count toward the nr_batch_requests limit. There will always
1473 * be some limit enforced by BLK_BATCH_TIME.
1474 */
1475 if (ioc_batching(q, ioc))
1476 ioc->nr_batch_requests--;
1477
1478 trace_block_getrq(q, bio, op);
1479 return rq;
1480
1481 fail_elvpriv:
1482 /*
1483 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1484 * and may fail indefinitely under memory pressure and thus
1485 * shouldn't stall IO. Treat this request as !elvpriv. This will
1486 * disturb iosched and blkcg but weird is bettern than dead.
1487 */
1488 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1489 __func__, dev_name(q->backing_dev_info->dev));
1490
1491 rq->rq_flags &= ~RQF_ELVPRIV;
1492 rq->elv.icq = NULL;
1493
1494 spin_lock_irq(q->queue_lock);
1495 q->nr_rqs_elvpriv--;
1496 spin_unlock_irq(q->queue_lock);
1497 goto out;
1498
1499 fail_alloc:
1500 /*
1501 * Allocation failed presumably due to memory. Undo anything we
1502 * might have messed up.
1503 *
1504 * Allocating task should really be put onto the front of the wait
1505 * queue, but this is pretty rare.
1506 */
1507 spin_lock_irq(q->queue_lock);
1508 freed_request(rl, is_sync, rq_flags);
1509
1510 /*
1511 * in the very unlikely event that allocation failed and no
1512 * requests for this direction was pending, mark us starved so that
1513 * freeing of a request in the other direction will notice
1514 * us. another possible fix would be to split the rq mempool into
1515 * READ and WRITE
1516 */
1517 rq_starved:
1518 if (unlikely(rl->count[is_sync] == 0))
1519 rl->starved[is_sync] = 1;
1520 return ERR_PTR(-ENOMEM);
1521 }
1522
1523 /**
1524 * get_request - get a free request
1525 * @q: request_queue to allocate request from
1526 * @op: operation and flags
1527 * @bio: bio to allocate request for (can be %NULL)
1528 * @flags: BLK_MQ_REQ_* flags.
1529 * @gfp: allocator flags
1530 *
1531 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1532 * this function keeps retrying under memory pressure and fails iff @q is dead.
1533 *
1534 * Must be called with @q->queue_lock held and,
1535 * Returns ERR_PTR on failure, with @q->queue_lock held.
1536 * Returns request pointer on success, with @q->queue_lock *not held*.
1537 */
get_request(struct request_queue * q,unsigned int op,struct bio * bio,blk_mq_req_flags_t flags,gfp_t gfp)1538 static struct request *get_request(struct request_queue *q, unsigned int op,
1539 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1540 {
1541 const bool is_sync = op_is_sync(op);
1542 DEFINE_WAIT(wait);
1543 struct request_list *rl;
1544 struct request *rq;
1545
1546 lockdep_assert_held(q->queue_lock);
1547 WARN_ON_ONCE(q->mq_ops);
1548
1549 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1550 retry:
1551 rq = __get_request(rl, op, bio, flags, gfp);
1552 if (!IS_ERR(rq))
1553 return rq;
1554
1555 if (op & REQ_NOWAIT) {
1556 blk_put_rl(rl);
1557 return ERR_PTR(-EAGAIN);
1558 }
1559
1560 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1561 blk_put_rl(rl);
1562 return rq;
1563 }
1564
1565 /* wait on @rl and retry */
1566 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1567 TASK_UNINTERRUPTIBLE);
1568
1569 trace_block_sleeprq(q, bio, op);
1570
1571 spin_unlock_irq(q->queue_lock);
1572 io_schedule();
1573
1574 /*
1575 * After sleeping, we become a "batching" process and will be able
1576 * to allocate at least one request, and up to a big batch of them
1577 * for a small period time. See ioc_batching, ioc_set_batching
1578 */
1579 ioc_set_batching(q, current->io_context);
1580
1581 spin_lock_irq(q->queue_lock);
1582 finish_wait(&rl->wait[is_sync], &wait);
1583
1584 goto retry;
1585 }
1586
1587 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
blk_old_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)1588 static struct request *blk_old_get_request(struct request_queue *q,
1589 unsigned int op, blk_mq_req_flags_t flags)
1590 {
1591 struct request *rq;
1592 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1593 int ret = 0;
1594
1595 WARN_ON_ONCE(q->mq_ops);
1596
1597 /* create ioc upfront */
1598 create_io_context(gfp_mask, q->node);
1599
1600 ret = blk_queue_enter(q, flags);
1601 if (ret)
1602 return ERR_PTR(ret);
1603 spin_lock_irq(q->queue_lock);
1604 rq = get_request(q, op, NULL, flags, gfp_mask);
1605 if (IS_ERR(rq)) {
1606 spin_unlock_irq(q->queue_lock);
1607 blk_queue_exit(q);
1608 return rq;
1609 }
1610
1611 /* q->queue_lock is unlocked at this point */
1612 rq->__data_len = 0;
1613 rq->__sector = (sector_t) -1;
1614 rq->bio = rq->biotail = NULL;
1615 return rq;
1616 }
1617
1618 /**
1619 * blk_get_request - allocate a request
1620 * @q: request queue to allocate a request for
1621 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1622 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1623 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)1624 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1625 blk_mq_req_flags_t flags)
1626 {
1627 struct request *req;
1628
1629 WARN_ON_ONCE(op & REQ_NOWAIT);
1630 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1631
1632 if (q->mq_ops) {
1633 req = blk_mq_alloc_request(q, op, flags);
1634 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1635 q->mq_ops->initialize_rq_fn(req);
1636 } else {
1637 req = blk_old_get_request(q, op, flags);
1638 if (!IS_ERR(req) && q->initialize_rq_fn)
1639 q->initialize_rq_fn(req);
1640 }
1641
1642 return req;
1643 }
1644 EXPORT_SYMBOL(blk_get_request);
1645
1646 /**
1647 * blk_requeue_request - put a request back on queue
1648 * @q: request queue where request should be inserted
1649 * @rq: request to be inserted
1650 *
1651 * Description:
1652 * Drivers often keep queueing requests until the hardware cannot accept
1653 * more, when that condition happens we need to put the request back
1654 * on the queue. Must be called with queue lock held.
1655 */
blk_requeue_request(struct request_queue * q,struct request * rq)1656 void blk_requeue_request(struct request_queue *q, struct request *rq)
1657 {
1658 lockdep_assert_held(q->queue_lock);
1659 WARN_ON_ONCE(q->mq_ops);
1660
1661 blk_delete_timer(rq);
1662 blk_clear_rq_complete(rq);
1663 trace_block_rq_requeue(q, rq);
1664 rq_qos_requeue(q, rq);
1665
1666 if (rq->rq_flags & RQF_QUEUED)
1667 blk_queue_end_tag(q, rq);
1668
1669 BUG_ON(blk_queued_rq(rq));
1670
1671 elv_requeue_request(q, rq);
1672 }
1673 EXPORT_SYMBOL(blk_requeue_request);
1674
add_acct_request(struct request_queue * q,struct request * rq,int where)1675 static void add_acct_request(struct request_queue *q, struct request *rq,
1676 int where)
1677 {
1678 blk_account_io_start(rq, true);
1679 __elv_add_request(q, rq, where);
1680 }
1681
part_round_stats_single(struct request_queue * q,int cpu,struct hd_struct * part,unsigned long now,unsigned int inflight)1682 static void part_round_stats_single(struct request_queue *q, int cpu,
1683 struct hd_struct *part, unsigned long now,
1684 unsigned int inflight)
1685 {
1686 if (inflight) {
1687 __part_stat_add(cpu, part, time_in_queue,
1688 inflight * (now - part->stamp));
1689 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1690 }
1691 part->stamp = now;
1692 }
1693
1694 /**
1695 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1696 * @q: target block queue
1697 * @cpu: cpu number for stats access
1698 * @part: target partition
1699 *
1700 * The average IO queue length and utilisation statistics are maintained
1701 * by observing the current state of the queue length and the amount of
1702 * time it has been in this state for.
1703 *
1704 * Normally, that accounting is done on IO completion, but that can result
1705 * in more than a second's worth of IO being accounted for within any one
1706 * second, leading to >100% utilisation. To deal with that, we call this
1707 * function to do a round-off before returning the results when reading
1708 * /proc/diskstats. This accounts immediately for all queue usage up to
1709 * the current jiffies and restarts the counters again.
1710 */
part_round_stats(struct request_queue * q,int cpu,struct hd_struct * part)1711 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1712 {
1713 struct hd_struct *part2 = NULL;
1714 unsigned long now = jiffies;
1715 unsigned int inflight[2];
1716 int stats = 0;
1717
1718 if (part->stamp != now)
1719 stats |= 1;
1720
1721 if (part->partno) {
1722 part2 = &part_to_disk(part)->part0;
1723 if (part2->stamp != now)
1724 stats |= 2;
1725 }
1726
1727 if (!stats)
1728 return;
1729
1730 part_in_flight(q, part, inflight);
1731
1732 if (stats & 2)
1733 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1734 if (stats & 1)
1735 part_round_stats_single(q, cpu, part, now, inflight[0]);
1736 }
1737 EXPORT_SYMBOL_GPL(part_round_stats);
1738
1739 #ifdef CONFIG_PM
blk_pm_put_request(struct request * rq)1740 static void blk_pm_put_request(struct request *rq)
1741 {
1742 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1743 pm_runtime_mark_last_busy(rq->q->dev);
1744 }
1745 #else
blk_pm_put_request(struct request * rq)1746 static inline void blk_pm_put_request(struct request *rq) {}
1747 #endif
1748
__blk_put_request(struct request_queue * q,struct request * req)1749 void __blk_put_request(struct request_queue *q, struct request *req)
1750 {
1751 req_flags_t rq_flags = req->rq_flags;
1752
1753 if (unlikely(!q))
1754 return;
1755
1756 if (q->mq_ops) {
1757 blk_mq_free_request(req);
1758 return;
1759 }
1760
1761 lockdep_assert_held(q->queue_lock);
1762
1763 blk_req_zone_write_unlock(req);
1764 blk_pm_put_request(req);
1765
1766 elv_completed_request(q, req);
1767
1768 /* this is a bio leak */
1769 WARN_ON(req->bio != NULL);
1770
1771 rq_qos_done(q, req);
1772
1773 /*
1774 * Request may not have originated from ll_rw_blk. if not,
1775 * it didn't come out of our reserved rq pools
1776 */
1777 if (rq_flags & RQF_ALLOCED) {
1778 struct request_list *rl = blk_rq_rl(req);
1779 bool sync = op_is_sync(req->cmd_flags);
1780
1781 BUG_ON(!list_empty(&req->queuelist));
1782 BUG_ON(ELV_ON_HASH(req));
1783
1784 blk_free_request(rl, req);
1785 freed_request(rl, sync, rq_flags);
1786 blk_put_rl(rl);
1787 blk_queue_exit(q);
1788 }
1789 }
1790 EXPORT_SYMBOL_GPL(__blk_put_request);
1791
blk_put_request(struct request * req)1792 void blk_put_request(struct request *req)
1793 {
1794 struct request_queue *q = req->q;
1795
1796 if (q->mq_ops)
1797 blk_mq_free_request(req);
1798 else {
1799 unsigned long flags;
1800
1801 spin_lock_irqsave(q->queue_lock, flags);
1802 __blk_put_request(q, req);
1803 spin_unlock_irqrestore(q->queue_lock, flags);
1804 }
1805 }
1806 EXPORT_SYMBOL(blk_put_request);
1807
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1808 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1809 struct bio *bio)
1810 {
1811 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1812
1813 if (!ll_back_merge_fn(q, req, bio))
1814 return false;
1815
1816 trace_block_bio_backmerge(q, req, bio);
1817
1818 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1819 blk_rq_set_mixed_merge(req);
1820
1821 req->biotail->bi_next = bio;
1822 req->biotail = bio;
1823 req->__data_len += bio->bi_iter.bi_size;
1824 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1825
1826 blk_account_io_start(req, false);
1827 return true;
1828 }
1829
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1830 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1831 struct bio *bio)
1832 {
1833 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1834
1835 if (!ll_front_merge_fn(q, req, bio))
1836 return false;
1837
1838 trace_block_bio_frontmerge(q, req, bio);
1839
1840 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1841 blk_rq_set_mixed_merge(req);
1842
1843 bio->bi_next = req->bio;
1844 req->bio = bio;
1845
1846 req->__sector = bio->bi_iter.bi_sector;
1847 req->__data_len += bio->bi_iter.bi_size;
1848 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1849
1850 blk_account_io_start(req, false);
1851 return true;
1852 }
1853
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1854 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1855 struct bio *bio)
1856 {
1857 unsigned short segments = blk_rq_nr_discard_segments(req);
1858
1859 if (segments >= queue_max_discard_segments(q))
1860 goto no_merge;
1861 if (blk_rq_sectors(req) + bio_sectors(bio) >
1862 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1863 goto no_merge;
1864
1865 req->biotail->bi_next = bio;
1866 req->biotail = bio;
1867 req->__data_len += bio->bi_iter.bi_size;
1868 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1869 req->nr_phys_segments = segments + 1;
1870
1871 blk_account_io_start(req, false);
1872 return true;
1873 no_merge:
1874 req_set_nomerge(q, req);
1875 return false;
1876 }
1877
1878 /**
1879 * blk_attempt_plug_merge - try to merge with %current's plugged list
1880 * @q: request_queue new bio is being queued at
1881 * @bio: new bio being queued
1882 * @request_count: out parameter for number of traversed plugged requests
1883 * @same_queue_rq: pointer to &struct request that gets filled in when
1884 * another request associated with @q is found on the plug list
1885 * (optional, may be %NULL)
1886 *
1887 * Determine whether @bio being queued on @q can be merged with a request
1888 * on %current's plugged list. Returns %true if merge was successful,
1889 * otherwise %false.
1890 *
1891 * Plugging coalesces IOs from the same issuer for the same purpose without
1892 * going through @q->queue_lock. As such it's more of an issuing mechanism
1893 * than scheduling, and the request, while may have elvpriv data, is not
1894 * added on the elevator at this point. In addition, we don't have
1895 * reliable access to the elevator outside queue lock. Only check basic
1896 * merging parameters without querying the elevator.
1897 *
1898 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1899 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int * request_count,struct request ** same_queue_rq)1900 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1901 unsigned int *request_count,
1902 struct request **same_queue_rq)
1903 {
1904 struct blk_plug *plug;
1905 struct request *rq;
1906 struct list_head *plug_list;
1907
1908 plug = current->plug;
1909 if (!plug)
1910 return false;
1911 *request_count = 0;
1912
1913 if (q->mq_ops)
1914 plug_list = &plug->mq_list;
1915 else
1916 plug_list = &plug->list;
1917
1918 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1919 bool merged = false;
1920
1921 if (rq->q == q) {
1922 (*request_count)++;
1923 /*
1924 * Only blk-mq multiple hardware queues case checks the
1925 * rq in the same queue, there should be only one such
1926 * rq in a queue
1927 **/
1928 if (same_queue_rq)
1929 *same_queue_rq = rq;
1930 }
1931
1932 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1933 continue;
1934
1935 switch (blk_try_merge(rq, bio)) {
1936 case ELEVATOR_BACK_MERGE:
1937 merged = bio_attempt_back_merge(q, rq, bio);
1938 break;
1939 case ELEVATOR_FRONT_MERGE:
1940 merged = bio_attempt_front_merge(q, rq, bio);
1941 break;
1942 case ELEVATOR_DISCARD_MERGE:
1943 merged = bio_attempt_discard_merge(q, rq, bio);
1944 break;
1945 default:
1946 break;
1947 }
1948
1949 if (merged)
1950 return true;
1951 }
1952
1953 return false;
1954 }
1955
blk_plug_queued_count(struct request_queue * q)1956 unsigned int blk_plug_queued_count(struct request_queue *q)
1957 {
1958 struct blk_plug *plug;
1959 struct request *rq;
1960 struct list_head *plug_list;
1961 unsigned int ret = 0;
1962
1963 plug = current->plug;
1964 if (!plug)
1965 goto out;
1966
1967 if (q->mq_ops)
1968 plug_list = &plug->mq_list;
1969 else
1970 plug_list = &plug->list;
1971
1972 list_for_each_entry(rq, plug_list, queuelist) {
1973 if (rq->q == q)
1974 ret++;
1975 }
1976 out:
1977 return ret;
1978 }
1979
blk_init_request_from_bio(struct request * req,struct bio * bio)1980 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1981 {
1982 struct io_context *ioc = rq_ioc(bio);
1983
1984 if (bio->bi_opf & REQ_RAHEAD)
1985 req->cmd_flags |= REQ_FAILFAST_MASK;
1986
1987 req->__sector = bio->bi_iter.bi_sector;
1988 if (ioprio_valid(bio_prio(bio)))
1989 req->ioprio = bio_prio(bio);
1990 else if (ioc)
1991 req->ioprio = ioc->ioprio;
1992 else
1993 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1994 req->write_hint = bio->bi_write_hint;
1995 blk_rq_bio_prep(req->q, req, bio);
1996 }
1997 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1998
blk_queue_bio(struct request_queue * q,struct bio * bio)1999 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
2000 {
2001 struct blk_plug *plug;
2002 int where = ELEVATOR_INSERT_SORT;
2003 struct request *req, *free;
2004 unsigned int request_count = 0;
2005
2006 /*
2007 * low level driver can indicate that it wants pages above a
2008 * certain limit bounced to low memory (ie for highmem, or even
2009 * ISA dma in theory)
2010 */
2011 blk_queue_bounce(q, &bio);
2012
2013 blk_queue_split(q, &bio);
2014
2015 if (!bio_integrity_prep(bio))
2016 return BLK_QC_T_NONE;
2017
2018 if (op_is_flush(bio->bi_opf)) {
2019 spin_lock_irq(q->queue_lock);
2020 where = ELEVATOR_INSERT_FLUSH;
2021 goto get_rq;
2022 }
2023
2024 /*
2025 * Check if we can merge with the plugged list before grabbing
2026 * any locks.
2027 */
2028 if (!blk_queue_nomerges(q)) {
2029 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2030 return BLK_QC_T_NONE;
2031 } else
2032 request_count = blk_plug_queued_count(q);
2033
2034 spin_lock_irq(q->queue_lock);
2035
2036 switch (elv_merge(q, &req, bio)) {
2037 case ELEVATOR_BACK_MERGE:
2038 if (!bio_attempt_back_merge(q, req, bio))
2039 break;
2040 elv_bio_merged(q, req, bio);
2041 free = attempt_back_merge(q, req);
2042 if (free)
2043 __blk_put_request(q, free);
2044 else
2045 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2046 goto out_unlock;
2047 case ELEVATOR_FRONT_MERGE:
2048 if (!bio_attempt_front_merge(q, req, bio))
2049 break;
2050 elv_bio_merged(q, req, bio);
2051 free = attempt_front_merge(q, req);
2052 if (free)
2053 __blk_put_request(q, free);
2054 else
2055 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2056 goto out_unlock;
2057 default:
2058 break;
2059 }
2060
2061 get_rq:
2062 rq_qos_throttle(q, bio, q->queue_lock);
2063
2064 /*
2065 * Grab a free request. This is might sleep but can not fail.
2066 * Returns with the queue unlocked.
2067 */
2068 blk_queue_enter_live(q);
2069 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2070 if (IS_ERR(req)) {
2071 blk_queue_exit(q);
2072 rq_qos_cleanup(q, bio);
2073 if (PTR_ERR(req) == -ENOMEM)
2074 bio->bi_status = BLK_STS_RESOURCE;
2075 else
2076 bio->bi_status = BLK_STS_IOERR;
2077 bio_endio(bio);
2078 goto out_unlock;
2079 }
2080
2081 rq_qos_track(q, req, bio);
2082
2083 /*
2084 * After dropping the lock and possibly sleeping here, our request
2085 * may now be mergeable after it had proven unmergeable (above).
2086 * We don't worry about that case for efficiency. It won't happen
2087 * often, and the elevators are able to handle it.
2088 */
2089 blk_init_request_from_bio(req, bio);
2090
2091 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2092 req->cpu = raw_smp_processor_id();
2093
2094 plug = current->plug;
2095 if (plug) {
2096 /*
2097 * If this is the first request added after a plug, fire
2098 * of a plug trace.
2099 *
2100 * @request_count may become stale because of schedule
2101 * out, so check plug list again.
2102 */
2103 if (!request_count || list_empty(&plug->list))
2104 trace_block_plug(q);
2105 else {
2106 struct request *last = list_entry_rq(plug->list.prev);
2107 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2108 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2109 blk_flush_plug_list(plug, false);
2110 trace_block_plug(q);
2111 }
2112 }
2113 list_add_tail(&req->queuelist, &plug->list);
2114 blk_account_io_start(req, true);
2115 } else {
2116 spin_lock_irq(q->queue_lock);
2117 add_acct_request(q, req, where);
2118 __blk_run_queue(q);
2119 out_unlock:
2120 spin_unlock_irq(q->queue_lock);
2121 }
2122
2123 return BLK_QC_T_NONE;
2124 }
2125
handle_bad_sector(struct bio * bio,sector_t maxsector)2126 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2127 {
2128 char b[BDEVNAME_SIZE];
2129
2130 printk(KERN_INFO "attempt to access beyond end of device\n");
2131 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2132 bio_devname(bio, b), bio->bi_opf,
2133 (unsigned long long)bio_end_sector(bio),
2134 (long long)maxsector);
2135 }
2136
2137 #ifdef CONFIG_FAIL_MAKE_REQUEST
2138
2139 static DECLARE_FAULT_ATTR(fail_make_request);
2140
setup_fail_make_request(char * str)2141 static int __init setup_fail_make_request(char *str)
2142 {
2143 return setup_fault_attr(&fail_make_request, str);
2144 }
2145 __setup("fail_make_request=", setup_fail_make_request);
2146
should_fail_request(struct hd_struct * part,unsigned int bytes)2147 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2148 {
2149 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2150 }
2151
fail_make_request_debugfs(void)2152 static int __init fail_make_request_debugfs(void)
2153 {
2154 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2155 NULL, &fail_make_request);
2156
2157 return PTR_ERR_OR_ZERO(dir);
2158 }
2159
2160 late_initcall(fail_make_request_debugfs);
2161
2162 #else /* CONFIG_FAIL_MAKE_REQUEST */
2163
should_fail_request(struct hd_struct * part,unsigned int bytes)2164 static inline bool should_fail_request(struct hd_struct *part,
2165 unsigned int bytes)
2166 {
2167 return false;
2168 }
2169
2170 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2171
bio_check_ro(struct bio * bio,struct hd_struct * part)2172 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2173 {
2174 const int op = bio_op(bio);
2175
2176 if (part->policy && op_is_write(op)) {
2177 char b[BDEVNAME_SIZE];
2178
2179 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2180 return false;
2181
2182 WARN_ONCE(1,
2183 "generic_make_request: Trying to write "
2184 "to read-only block-device %s (partno %d)\n",
2185 bio_devname(bio, b), part->partno);
2186 /* Older lvm-tools actually trigger this */
2187 return false;
2188 }
2189
2190 return false;
2191 }
2192
should_fail_bio(struct bio * bio)2193 static noinline int should_fail_bio(struct bio *bio)
2194 {
2195 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2196 return -EIO;
2197 return 0;
2198 }
2199 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2200
2201 /*
2202 * Check whether this bio extends beyond the end of the device or partition.
2203 * This may well happen - the kernel calls bread() without checking the size of
2204 * the device, e.g., when mounting a file system.
2205 */
bio_check_eod(struct bio * bio,sector_t maxsector)2206 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2207 {
2208 unsigned int nr_sectors = bio_sectors(bio);
2209
2210 if (nr_sectors && maxsector &&
2211 (nr_sectors > maxsector ||
2212 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2213 handle_bad_sector(bio, maxsector);
2214 return -EIO;
2215 }
2216 return 0;
2217 }
2218
2219 /*
2220 * Remap block n of partition p to block n+start(p) of the disk.
2221 */
blk_partition_remap(struct bio * bio)2222 static inline int blk_partition_remap(struct bio *bio)
2223 {
2224 struct hd_struct *p;
2225 int ret = -EIO;
2226
2227 rcu_read_lock();
2228 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2229 if (unlikely(!p))
2230 goto out;
2231 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2232 goto out;
2233 if (unlikely(bio_check_ro(bio, p)))
2234 goto out;
2235
2236 /*
2237 * Zone reset does not include bi_size so bio_sectors() is always 0.
2238 * Include a test for the reset op code and perform the remap if needed.
2239 */
2240 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2241 if (bio_check_eod(bio, part_nr_sects_read(p)))
2242 goto out;
2243 bio->bi_iter.bi_sector += p->start_sect;
2244 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2245 bio->bi_iter.bi_sector - p->start_sect);
2246 }
2247 bio->bi_partno = 0;
2248 ret = 0;
2249 out:
2250 rcu_read_unlock();
2251 return ret;
2252 }
2253
2254 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)2255 generic_make_request_checks(struct bio *bio)
2256 {
2257 struct request_queue *q;
2258 int nr_sectors = bio_sectors(bio);
2259 blk_status_t status = BLK_STS_IOERR;
2260 char b[BDEVNAME_SIZE];
2261
2262 might_sleep();
2263
2264 q = bio->bi_disk->queue;
2265 if (unlikely(!q)) {
2266 printk(KERN_ERR
2267 "generic_make_request: Trying to access "
2268 "nonexistent block-device %s (%Lu)\n",
2269 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2270 goto end_io;
2271 }
2272
2273 /*
2274 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2275 * if queue is not a request based queue.
2276 */
2277 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2278 goto not_supported;
2279
2280 if (should_fail_bio(bio))
2281 goto end_io;
2282
2283 if (bio->bi_partno) {
2284 if (unlikely(blk_partition_remap(bio)))
2285 goto end_io;
2286 } else {
2287 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2288 goto end_io;
2289 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2290 goto end_io;
2291 }
2292
2293 /*
2294 * Filter flush bio's early so that make_request based
2295 * drivers without flush support don't have to worry
2296 * about them.
2297 */
2298 if (op_is_flush(bio->bi_opf) &&
2299 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2300 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2301 if (!nr_sectors) {
2302 status = BLK_STS_OK;
2303 goto end_io;
2304 }
2305 }
2306
2307 switch (bio_op(bio)) {
2308 case REQ_OP_DISCARD:
2309 if (!blk_queue_discard(q))
2310 goto not_supported;
2311 break;
2312 case REQ_OP_SECURE_ERASE:
2313 if (!blk_queue_secure_erase(q))
2314 goto not_supported;
2315 break;
2316 case REQ_OP_WRITE_SAME:
2317 if (!q->limits.max_write_same_sectors)
2318 goto not_supported;
2319 break;
2320 case REQ_OP_ZONE_REPORT:
2321 case REQ_OP_ZONE_RESET:
2322 if (!blk_queue_is_zoned(q))
2323 goto not_supported;
2324 break;
2325 case REQ_OP_WRITE_ZEROES:
2326 if (!q->limits.max_write_zeroes_sectors)
2327 goto not_supported;
2328 break;
2329 default:
2330 break;
2331 }
2332
2333 /*
2334 * Various block parts want %current->io_context and lazy ioc
2335 * allocation ends up trading a lot of pain for a small amount of
2336 * memory. Just allocate it upfront. This may fail and block
2337 * layer knows how to live with it.
2338 */
2339 create_io_context(GFP_ATOMIC, q->node);
2340
2341 if (!blkcg_bio_issue_check(q, bio))
2342 return false;
2343
2344 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2345 trace_block_bio_queue(q, bio);
2346 /* Now that enqueuing has been traced, we need to trace
2347 * completion as well.
2348 */
2349 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2350 }
2351 return true;
2352
2353 not_supported:
2354 status = BLK_STS_NOTSUPP;
2355 end_io:
2356 bio->bi_status = status;
2357 bio_endio(bio);
2358 return false;
2359 }
2360
2361 /**
2362 * generic_make_request - hand a buffer to its device driver for I/O
2363 * @bio: The bio describing the location in memory and on the device.
2364 *
2365 * generic_make_request() is used to make I/O requests of block
2366 * devices. It is passed a &struct bio, which describes the I/O that needs
2367 * to be done.
2368 *
2369 * generic_make_request() does not return any status. The
2370 * success/failure status of the request, along with notification of
2371 * completion, is delivered asynchronously through the bio->bi_end_io
2372 * function described (one day) else where.
2373 *
2374 * The caller of generic_make_request must make sure that bi_io_vec
2375 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2376 * set to describe the device address, and the
2377 * bi_end_io and optionally bi_private are set to describe how
2378 * completion notification should be signaled.
2379 *
2380 * generic_make_request and the drivers it calls may use bi_next if this
2381 * bio happens to be merged with someone else, and may resubmit the bio to
2382 * a lower device by calling into generic_make_request recursively, which
2383 * means the bio should NOT be touched after the call to ->make_request_fn.
2384 */
generic_make_request(struct bio * bio)2385 blk_qc_t generic_make_request(struct bio *bio)
2386 {
2387 /*
2388 * bio_list_on_stack[0] contains bios submitted by the current
2389 * make_request_fn.
2390 * bio_list_on_stack[1] contains bios that were submitted before
2391 * the current make_request_fn, but that haven't been processed
2392 * yet.
2393 */
2394 struct bio_list bio_list_on_stack[2];
2395 blk_mq_req_flags_t flags = 0;
2396 struct request_queue *q = bio->bi_disk->queue;
2397 blk_qc_t ret = BLK_QC_T_NONE;
2398
2399 if (bio->bi_opf & REQ_NOWAIT)
2400 flags = BLK_MQ_REQ_NOWAIT;
2401 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2402 blk_queue_enter_live(q);
2403 else if (blk_queue_enter(q, flags) < 0) {
2404 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2405 bio_wouldblock_error(bio);
2406 else
2407 bio_io_error(bio);
2408 return ret;
2409 }
2410
2411 if (!generic_make_request_checks(bio))
2412 goto out;
2413
2414 /*
2415 * We only want one ->make_request_fn to be active at a time, else
2416 * stack usage with stacked devices could be a problem. So use
2417 * current->bio_list to keep a list of requests submited by a
2418 * make_request_fn function. current->bio_list is also used as a
2419 * flag to say if generic_make_request is currently active in this
2420 * task or not. If it is NULL, then no make_request is active. If
2421 * it is non-NULL, then a make_request is active, and new requests
2422 * should be added at the tail
2423 */
2424 if (current->bio_list) {
2425 bio_list_add(¤t->bio_list[0], bio);
2426 goto out;
2427 }
2428
2429 /* following loop may be a bit non-obvious, and so deserves some
2430 * explanation.
2431 * Before entering the loop, bio->bi_next is NULL (as all callers
2432 * ensure that) so we have a list with a single bio.
2433 * We pretend that we have just taken it off a longer list, so
2434 * we assign bio_list to a pointer to the bio_list_on_stack,
2435 * thus initialising the bio_list of new bios to be
2436 * added. ->make_request() may indeed add some more bios
2437 * through a recursive call to generic_make_request. If it
2438 * did, we find a non-NULL value in bio_list and re-enter the loop
2439 * from the top. In this case we really did just take the bio
2440 * of the top of the list (no pretending) and so remove it from
2441 * bio_list, and call into ->make_request() again.
2442 */
2443 BUG_ON(bio->bi_next);
2444 bio_list_init(&bio_list_on_stack[0]);
2445 current->bio_list = bio_list_on_stack;
2446 do {
2447 bool enter_succeeded = true;
2448
2449 if (unlikely(q != bio->bi_disk->queue)) {
2450 if (q)
2451 blk_queue_exit(q);
2452 q = bio->bi_disk->queue;
2453 flags = 0;
2454 if (bio->bi_opf & REQ_NOWAIT)
2455 flags = BLK_MQ_REQ_NOWAIT;
2456 if (blk_queue_enter(q, flags) < 0)
2457 enter_succeeded = false;
2458 }
2459
2460 if (enter_succeeded) {
2461 struct bio_list lower, same;
2462
2463 /* Create a fresh bio_list for all subordinate requests */
2464 bio_list_on_stack[1] = bio_list_on_stack[0];
2465 bio_list_init(&bio_list_on_stack[0]);
2466 ret = q->make_request_fn(q, bio);
2467
2468 /* sort new bios into those for a lower level
2469 * and those for the same level
2470 */
2471 bio_list_init(&lower);
2472 bio_list_init(&same);
2473 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2474 if (q == bio->bi_disk->queue)
2475 bio_list_add(&same, bio);
2476 else
2477 bio_list_add(&lower, bio);
2478 /* now assemble so we handle the lowest level first */
2479 bio_list_merge(&bio_list_on_stack[0], &lower);
2480 bio_list_merge(&bio_list_on_stack[0], &same);
2481 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2482 } else {
2483 if (unlikely(!blk_queue_dying(q) &&
2484 (bio->bi_opf & REQ_NOWAIT)))
2485 bio_wouldblock_error(bio);
2486 else
2487 bio_io_error(bio);
2488 q = NULL;
2489 }
2490 bio = bio_list_pop(&bio_list_on_stack[0]);
2491 } while (bio);
2492 current->bio_list = NULL; /* deactivate */
2493
2494 out:
2495 if (q)
2496 blk_queue_exit(q);
2497 return ret;
2498 }
2499 EXPORT_SYMBOL(generic_make_request);
2500
2501 /**
2502 * direct_make_request - hand a buffer directly to its device driver for I/O
2503 * @bio: The bio describing the location in memory and on the device.
2504 *
2505 * This function behaves like generic_make_request(), but does not protect
2506 * against recursion. Must only be used if the called driver is known
2507 * to not call generic_make_request (or direct_make_request) again from
2508 * its make_request function. (Calling direct_make_request again from
2509 * a workqueue is perfectly fine as that doesn't recurse).
2510 */
direct_make_request(struct bio * bio)2511 blk_qc_t direct_make_request(struct bio *bio)
2512 {
2513 struct request_queue *q = bio->bi_disk->queue;
2514 bool nowait = bio->bi_opf & REQ_NOWAIT;
2515 blk_qc_t ret;
2516
2517 if (!generic_make_request_checks(bio))
2518 return BLK_QC_T_NONE;
2519
2520 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2521 if (nowait && !blk_queue_dying(q))
2522 bio->bi_status = BLK_STS_AGAIN;
2523 else
2524 bio->bi_status = BLK_STS_IOERR;
2525 bio_endio(bio);
2526 return BLK_QC_T_NONE;
2527 }
2528
2529 ret = q->make_request_fn(q, bio);
2530 blk_queue_exit(q);
2531 return ret;
2532 }
2533 EXPORT_SYMBOL_GPL(direct_make_request);
2534
2535 /**
2536 * submit_bio - submit a bio to the block device layer for I/O
2537 * @bio: The &struct bio which describes the I/O
2538 *
2539 * submit_bio() is very similar in purpose to generic_make_request(), and
2540 * uses that function to do most of the work. Both are fairly rough
2541 * interfaces; @bio must be presetup and ready for I/O.
2542 *
2543 */
submit_bio(struct bio * bio)2544 blk_qc_t submit_bio(struct bio *bio)
2545 {
2546 /*
2547 * If it's a regular read/write or a barrier with data attached,
2548 * go through the normal accounting stuff before submission.
2549 */
2550 if (bio_has_data(bio)) {
2551 unsigned int count;
2552
2553 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2554 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2555 else
2556 count = bio_sectors(bio);
2557
2558 if (op_is_write(bio_op(bio))) {
2559 count_vm_events(PGPGOUT, count);
2560 } else {
2561 task_io_account_read(bio->bi_iter.bi_size);
2562 count_vm_events(PGPGIN, count);
2563 }
2564
2565 if (unlikely(block_dump)) {
2566 char b[BDEVNAME_SIZE];
2567 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2568 current->comm, task_pid_nr(current),
2569 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2570 (unsigned long long)bio->bi_iter.bi_sector,
2571 bio_devname(bio, b), count);
2572 }
2573 }
2574
2575 return generic_make_request(bio);
2576 }
2577 EXPORT_SYMBOL(submit_bio);
2578
blk_poll(struct request_queue * q,blk_qc_t cookie)2579 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2580 {
2581 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2582 return false;
2583
2584 if (current->plug)
2585 blk_flush_plug_list(current->plug, false);
2586 return q->poll_fn(q, cookie);
2587 }
2588 EXPORT_SYMBOL_GPL(blk_poll);
2589
2590 /**
2591 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2592 * for new the queue limits
2593 * @q: the queue
2594 * @rq: the request being checked
2595 *
2596 * Description:
2597 * @rq may have been made based on weaker limitations of upper-level queues
2598 * in request stacking drivers, and it may violate the limitation of @q.
2599 * Since the block layer and the underlying device driver trust @rq
2600 * after it is inserted to @q, it should be checked against @q before
2601 * the insertion using this generic function.
2602 *
2603 * Request stacking drivers like request-based dm may change the queue
2604 * limits when retrying requests on other queues. Those requests need
2605 * to be checked against the new queue limits again during dispatch.
2606 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)2607 static int blk_cloned_rq_check_limits(struct request_queue *q,
2608 struct request *rq)
2609 {
2610 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2611 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2612 return -EIO;
2613 }
2614
2615 /*
2616 * queue's settings related to segment counting like q->bounce_pfn
2617 * may differ from that of other stacking queues.
2618 * Recalculate it to check the request correctly on this queue's
2619 * limitation.
2620 */
2621 blk_recalc_rq_segments(rq);
2622 if (rq->nr_phys_segments > queue_max_segments(q)) {
2623 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2624 return -EIO;
2625 }
2626
2627 return 0;
2628 }
2629
2630 /**
2631 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2632 * @q: the queue to submit the request
2633 * @rq: the request being queued
2634 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)2635 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2636 {
2637 unsigned long flags;
2638 int where = ELEVATOR_INSERT_BACK;
2639
2640 if (blk_cloned_rq_check_limits(q, rq))
2641 return BLK_STS_IOERR;
2642
2643 if (rq->rq_disk &&
2644 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2645 return BLK_STS_IOERR;
2646
2647 if (q->mq_ops) {
2648 if (blk_queue_io_stat(q))
2649 blk_account_io_start(rq, true);
2650 /*
2651 * Since we have a scheduler attached on the top device,
2652 * bypass a potential scheduler on the bottom device for
2653 * insert.
2654 */
2655 return blk_mq_request_issue_directly(rq);
2656 }
2657
2658 spin_lock_irqsave(q->queue_lock, flags);
2659 if (unlikely(blk_queue_dying(q))) {
2660 spin_unlock_irqrestore(q->queue_lock, flags);
2661 return BLK_STS_IOERR;
2662 }
2663
2664 /*
2665 * Submitting request must be dequeued before calling this function
2666 * because it will be linked to another request_queue
2667 */
2668 BUG_ON(blk_queued_rq(rq));
2669
2670 if (op_is_flush(rq->cmd_flags))
2671 where = ELEVATOR_INSERT_FLUSH;
2672
2673 add_acct_request(q, rq, where);
2674 if (where == ELEVATOR_INSERT_FLUSH)
2675 __blk_run_queue(q);
2676 spin_unlock_irqrestore(q->queue_lock, flags);
2677
2678 return BLK_STS_OK;
2679 }
2680 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2681
2682 /**
2683 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2684 * @rq: request to examine
2685 *
2686 * Description:
2687 * A request could be merge of IOs which require different failure
2688 * handling. This function determines the number of bytes which
2689 * can be failed from the beginning of the request without
2690 * crossing into area which need to be retried further.
2691 *
2692 * Return:
2693 * The number of bytes to fail.
2694 */
blk_rq_err_bytes(const struct request * rq)2695 unsigned int blk_rq_err_bytes(const struct request *rq)
2696 {
2697 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2698 unsigned int bytes = 0;
2699 struct bio *bio;
2700
2701 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2702 return blk_rq_bytes(rq);
2703
2704 /*
2705 * Currently the only 'mixing' which can happen is between
2706 * different fastfail types. We can safely fail portions
2707 * which have all the failfast bits that the first one has -
2708 * the ones which are at least as eager to fail as the first
2709 * one.
2710 */
2711 for (bio = rq->bio; bio; bio = bio->bi_next) {
2712 if ((bio->bi_opf & ff) != ff)
2713 break;
2714 bytes += bio->bi_iter.bi_size;
2715 }
2716
2717 /* this could lead to infinite loop */
2718 BUG_ON(blk_rq_bytes(rq) && !bytes);
2719 return bytes;
2720 }
2721 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2722
blk_account_io_completion(struct request * req,unsigned int bytes)2723 void blk_account_io_completion(struct request *req, unsigned int bytes)
2724 {
2725 if (blk_do_io_stat(req)) {
2726 const int sgrp = op_stat_group(req_op(req));
2727 struct hd_struct *part;
2728 int cpu;
2729
2730 cpu = part_stat_lock();
2731 part = req->part;
2732 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2733 part_stat_unlock();
2734 }
2735 }
2736
blk_account_io_done(struct request * req,u64 now)2737 void blk_account_io_done(struct request *req, u64 now)
2738 {
2739 /*
2740 * Account IO completion. flush_rq isn't accounted as a
2741 * normal IO on queueing nor completion. Accounting the
2742 * containing request is enough.
2743 */
2744 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2745 const int sgrp = op_stat_group(req_op(req));
2746 struct hd_struct *part;
2747 int cpu;
2748
2749 cpu = part_stat_lock();
2750 part = req->part;
2751
2752 part_stat_inc(cpu, part, ios[sgrp]);
2753 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2754 part_round_stats(req->q, cpu, part);
2755 part_dec_in_flight(req->q, part, rq_data_dir(req));
2756
2757 hd_struct_put(part);
2758 part_stat_unlock();
2759 }
2760 }
2761
2762 #ifdef CONFIG_PM
2763 /*
2764 * Don't process normal requests when queue is suspended
2765 * or in the process of suspending/resuming
2766 */
blk_pm_allow_request(struct request * rq)2767 static bool blk_pm_allow_request(struct request *rq)
2768 {
2769 switch (rq->q->rpm_status) {
2770 case RPM_RESUMING:
2771 case RPM_SUSPENDING:
2772 return rq->rq_flags & RQF_PM;
2773 case RPM_SUSPENDED:
2774 return false;
2775 default:
2776 return true;
2777 }
2778 }
2779 #else
blk_pm_allow_request(struct request * rq)2780 static bool blk_pm_allow_request(struct request *rq)
2781 {
2782 return true;
2783 }
2784 #endif
2785
blk_account_io_start(struct request * rq,bool new_io)2786 void blk_account_io_start(struct request *rq, bool new_io)
2787 {
2788 struct hd_struct *part;
2789 int rw = rq_data_dir(rq);
2790 int cpu;
2791
2792 if (!blk_do_io_stat(rq))
2793 return;
2794
2795 cpu = part_stat_lock();
2796
2797 if (!new_io) {
2798 part = rq->part;
2799 part_stat_inc(cpu, part, merges[rw]);
2800 } else {
2801 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2802 if (!hd_struct_try_get(part)) {
2803 /*
2804 * The partition is already being removed,
2805 * the request will be accounted on the disk only
2806 *
2807 * We take a reference on disk->part0 although that
2808 * partition will never be deleted, so we can treat
2809 * it as any other partition.
2810 */
2811 part = &rq->rq_disk->part0;
2812 hd_struct_get(part);
2813 }
2814 part_round_stats(rq->q, cpu, part);
2815 part_inc_in_flight(rq->q, part, rw);
2816 rq->part = part;
2817 }
2818
2819 part_stat_unlock();
2820 }
2821
elv_next_request(struct request_queue * q)2822 static struct request *elv_next_request(struct request_queue *q)
2823 {
2824 struct request *rq;
2825 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2826
2827 WARN_ON_ONCE(q->mq_ops);
2828
2829 while (1) {
2830 list_for_each_entry(rq, &q->queue_head, queuelist) {
2831 if (blk_pm_allow_request(rq))
2832 return rq;
2833
2834 if (rq->rq_flags & RQF_SOFTBARRIER)
2835 break;
2836 }
2837
2838 /*
2839 * Flush request is running and flush request isn't queueable
2840 * in the drive, we can hold the queue till flush request is
2841 * finished. Even we don't do this, driver can't dispatch next
2842 * requests and will requeue them. And this can improve
2843 * throughput too. For example, we have request flush1, write1,
2844 * flush 2. flush1 is dispatched, then queue is hold, write1
2845 * isn't inserted to queue. After flush1 is finished, flush2
2846 * will be dispatched. Since disk cache is already clean,
2847 * flush2 will be finished very soon, so looks like flush2 is
2848 * folded to flush1.
2849 * Since the queue is hold, a flag is set to indicate the queue
2850 * should be restarted later. Please see flush_end_io() for
2851 * details.
2852 */
2853 if (fq->flush_pending_idx != fq->flush_running_idx &&
2854 !queue_flush_queueable(q)) {
2855 fq->flush_queue_delayed = 1;
2856 return NULL;
2857 }
2858 if (unlikely(blk_queue_bypass(q)) ||
2859 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2860 return NULL;
2861 }
2862 }
2863
2864 /**
2865 * blk_peek_request - peek at the top of a request queue
2866 * @q: request queue to peek at
2867 *
2868 * Description:
2869 * Return the request at the top of @q. The returned request
2870 * should be started using blk_start_request() before LLD starts
2871 * processing it.
2872 *
2873 * Return:
2874 * Pointer to the request at the top of @q if available. Null
2875 * otherwise.
2876 */
blk_peek_request(struct request_queue * q)2877 struct request *blk_peek_request(struct request_queue *q)
2878 {
2879 struct request *rq;
2880 int ret;
2881
2882 lockdep_assert_held(q->queue_lock);
2883 WARN_ON_ONCE(q->mq_ops);
2884
2885 while ((rq = elv_next_request(q)) != NULL) {
2886 if (!(rq->rq_flags & RQF_STARTED)) {
2887 /*
2888 * This is the first time the device driver
2889 * sees this request (possibly after
2890 * requeueing). Notify IO scheduler.
2891 */
2892 if (rq->rq_flags & RQF_SORTED)
2893 elv_activate_rq(q, rq);
2894
2895 /*
2896 * just mark as started even if we don't start
2897 * it, a request that has been delayed should
2898 * not be passed by new incoming requests
2899 */
2900 rq->rq_flags |= RQF_STARTED;
2901 trace_block_rq_issue(q, rq);
2902 }
2903
2904 if (!q->boundary_rq || q->boundary_rq == rq) {
2905 q->end_sector = rq_end_sector(rq);
2906 q->boundary_rq = NULL;
2907 }
2908
2909 if (rq->rq_flags & RQF_DONTPREP)
2910 break;
2911
2912 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2913 /*
2914 * make sure space for the drain appears we
2915 * know we can do this because max_hw_segments
2916 * has been adjusted to be one fewer than the
2917 * device can handle
2918 */
2919 rq->nr_phys_segments++;
2920 }
2921
2922 if (!q->prep_rq_fn)
2923 break;
2924
2925 ret = q->prep_rq_fn(q, rq);
2926 if (ret == BLKPREP_OK) {
2927 break;
2928 } else if (ret == BLKPREP_DEFER) {
2929 /*
2930 * the request may have been (partially) prepped.
2931 * we need to keep this request in the front to
2932 * avoid resource deadlock. RQF_STARTED will
2933 * prevent other fs requests from passing this one.
2934 */
2935 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2936 !(rq->rq_flags & RQF_DONTPREP)) {
2937 /*
2938 * remove the space for the drain we added
2939 * so that we don't add it again
2940 */
2941 --rq->nr_phys_segments;
2942 }
2943
2944 rq = NULL;
2945 break;
2946 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2947 rq->rq_flags |= RQF_QUIET;
2948 /*
2949 * Mark this request as started so we don't trigger
2950 * any debug logic in the end I/O path.
2951 */
2952 blk_start_request(rq);
2953 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2954 BLK_STS_TARGET : BLK_STS_IOERR);
2955 } else {
2956 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2957 break;
2958 }
2959 }
2960
2961 return rq;
2962 }
2963 EXPORT_SYMBOL(blk_peek_request);
2964
blk_dequeue_request(struct request * rq)2965 static void blk_dequeue_request(struct request *rq)
2966 {
2967 struct request_queue *q = rq->q;
2968
2969 BUG_ON(list_empty(&rq->queuelist));
2970 BUG_ON(ELV_ON_HASH(rq));
2971
2972 list_del_init(&rq->queuelist);
2973
2974 /*
2975 * the time frame between a request being removed from the lists
2976 * and to it is freed is accounted as io that is in progress at
2977 * the driver side.
2978 */
2979 if (blk_account_rq(rq))
2980 q->in_flight[rq_is_sync(rq)]++;
2981 }
2982
2983 /**
2984 * blk_start_request - start request processing on the driver
2985 * @req: request to dequeue
2986 *
2987 * Description:
2988 * Dequeue @req and start timeout timer on it. This hands off the
2989 * request to the driver.
2990 */
blk_start_request(struct request * req)2991 void blk_start_request(struct request *req)
2992 {
2993 lockdep_assert_held(req->q->queue_lock);
2994 WARN_ON_ONCE(req->q->mq_ops);
2995
2996 blk_dequeue_request(req);
2997
2998 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2999 req->io_start_time_ns = ktime_get_ns();
3000 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
3001 req->throtl_size = blk_rq_sectors(req);
3002 #endif
3003 req->rq_flags |= RQF_STATS;
3004 rq_qos_issue(req->q, req);
3005 }
3006
3007 BUG_ON(blk_rq_is_complete(req));
3008 blk_add_timer(req);
3009 }
3010 EXPORT_SYMBOL(blk_start_request);
3011
3012 /**
3013 * blk_fetch_request - fetch a request from a request queue
3014 * @q: request queue to fetch a request from
3015 *
3016 * Description:
3017 * Return the request at the top of @q. The request is started on
3018 * return and LLD can start processing it immediately.
3019 *
3020 * Return:
3021 * Pointer to the request at the top of @q if available. Null
3022 * otherwise.
3023 */
blk_fetch_request(struct request_queue * q)3024 struct request *blk_fetch_request(struct request_queue *q)
3025 {
3026 struct request *rq;
3027
3028 lockdep_assert_held(q->queue_lock);
3029 WARN_ON_ONCE(q->mq_ops);
3030
3031 rq = blk_peek_request(q);
3032 if (rq)
3033 blk_start_request(rq);
3034 return rq;
3035 }
3036 EXPORT_SYMBOL(blk_fetch_request);
3037
3038 /*
3039 * Steal bios from a request and add them to a bio list.
3040 * The request must not have been partially completed before.
3041 */
blk_steal_bios(struct bio_list * list,struct request * rq)3042 void blk_steal_bios(struct bio_list *list, struct request *rq)
3043 {
3044 if (rq->bio) {
3045 if (list->tail)
3046 list->tail->bi_next = rq->bio;
3047 else
3048 list->head = rq->bio;
3049 list->tail = rq->biotail;
3050
3051 rq->bio = NULL;
3052 rq->biotail = NULL;
3053 }
3054
3055 rq->__data_len = 0;
3056 }
3057 EXPORT_SYMBOL_GPL(blk_steal_bios);
3058
3059 /**
3060 * blk_update_request - Special helper function for request stacking drivers
3061 * @req: the request being processed
3062 * @error: block status code
3063 * @nr_bytes: number of bytes to complete @req
3064 *
3065 * Description:
3066 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3067 * the request structure even if @req doesn't have leftover.
3068 * If @req has leftover, sets it up for the next range of segments.
3069 *
3070 * This special helper function is only for request stacking drivers
3071 * (e.g. request-based dm) so that they can handle partial completion.
3072 * Actual device drivers should use blk_end_request instead.
3073 *
3074 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3075 * %false return from this function.
3076 *
3077 * Note:
3078 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3079 * blk_rq_bytes() and in blk_update_request().
3080 *
3081 * Return:
3082 * %false - this request doesn't have any more data
3083 * %true - this request has more data
3084 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)3085 bool blk_update_request(struct request *req, blk_status_t error,
3086 unsigned int nr_bytes)
3087 {
3088 int total_bytes;
3089
3090 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3091
3092 if (!req->bio)
3093 return false;
3094
3095 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3096 !(req->rq_flags & RQF_QUIET)))
3097 print_req_error(req, error);
3098
3099 blk_account_io_completion(req, nr_bytes);
3100
3101 total_bytes = 0;
3102 while (req->bio) {
3103 struct bio *bio = req->bio;
3104 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3105
3106 if (bio_bytes == bio->bi_iter.bi_size)
3107 req->bio = bio->bi_next;
3108
3109 /* Completion has already been traced */
3110 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3111 req_bio_endio(req, bio, bio_bytes, error);
3112
3113 total_bytes += bio_bytes;
3114 nr_bytes -= bio_bytes;
3115
3116 if (!nr_bytes)
3117 break;
3118 }
3119
3120 /*
3121 * completely done
3122 */
3123 if (!req->bio) {
3124 /*
3125 * Reset counters so that the request stacking driver
3126 * can find how many bytes remain in the request
3127 * later.
3128 */
3129 req->__data_len = 0;
3130 return false;
3131 }
3132
3133 req->__data_len -= total_bytes;
3134
3135 /* update sector only for requests with clear definition of sector */
3136 if (!blk_rq_is_passthrough(req))
3137 req->__sector += total_bytes >> 9;
3138
3139 /* mixed attributes always follow the first bio */
3140 if (req->rq_flags & RQF_MIXED_MERGE) {
3141 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3142 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3143 }
3144
3145 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3146 /*
3147 * If total number of sectors is less than the first segment
3148 * size, something has gone terribly wrong.
3149 */
3150 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3151 blk_dump_rq_flags(req, "request botched");
3152 req->__data_len = blk_rq_cur_bytes(req);
3153 }
3154
3155 /* recalculate the number of segments */
3156 blk_recalc_rq_segments(req);
3157 }
3158
3159 return true;
3160 }
3161 EXPORT_SYMBOL_GPL(blk_update_request);
3162
blk_update_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3163 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3164 unsigned int nr_bytes,
3165 unsigned int bidi_bytes)
3166 {
3167 if (blk_update_request(rq, error, nr_bytes))
3168 return true;
3169
3170 /* Bidi request must be completed as a whole */
3171 if (unlikely(blk_bidi_rq(rq)) &&
3172 blk_update_request(rq->next_rq, error, bidi_bytes))
3173 return true;
3174
3175 if (blk_queue_add_random(rq->q))
3176 add_disk_randomness(rq->rq_disk);
3177
3178 return false;
3179 }
3180
3181 /**
3182 * blk_unprep_request - unprepare a request
3183 * @req: the request
3184 *
3185 * This function makes a request ready for complete resubmission (or
3186 * completion). It happens only after all error handling is complete,
3187 * so represents the appropriate moment to deallocate any resources
3188 * that were allocated to the request in the prep_rq_fn. The queue
3189 * lock is held when calling this.
3190 */
blk_unprep_request(struct request * req)3191 void blk_unprep_request(struct request *req)
3192 {
3193 struct request_queue *q = req->q;
3194
3195 req->rq_flags &= ~RQF_DONTPREP;
3196 if (q->unprep_rq_fn)
3197 q->unprep_rq_fn(q, req);
3198 }
3199 EXPORT_SYMBOL_GPL(blk_unprep_request);
3200
blk_finish_request(struct request * req,blk_status_t error)3201 void blk_finish_request(struct request *req, blk_status_t error)
3202 {
3203 struct request_queue *q = req->q;
3204 u64 now = ktime_get_ns();
3205
3206 lockdep_assert_held(req->q->queue_lock);
3207 WARN_ON_ONCE(q->mq_ops);
3208
3209 if (req->rq_flags & RQF_STATS)
3210 blk_stat_add(req, now);
3211
3212 if (req->rq_flags & RQF_QUEUED)
3213 blk_queue_end_tag(q, req);
3214
3215 BUG_ON(blk_queued_rq(req));
3216
3217 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3218 laptop_io_completion(req->q->backing_dev_info);
3219
3220 blk_delete_timer(req);
3221
3222 if (req->rq_flags & RQF_DONTPREP)
3223 blk_unprep_request(req);
3224
3225 blk_account_io_done(req, now);
3226
3227 if (req->end_io) {
3228 rq_qos_done(q, req);
3229 req->end_io(req, error);
3230 } else {
3231 if (blk_bidi_rq(req))
3232 __blk_put_request(req->next_rq->q, req->next_rq);
3233
3234 __blk_put_request(q, req);
3235 }
3236 }
3237 EXPORT_SYMBOL(blk_finish_request);
3238
3239 /**
3240 * blk_end_bidi_request - Complete a bidi request
3241 * @rq: the request to complete
3242 * @error: block status code
3243 * @nr_bytes: number of bytes to complete @rq
3244 * @bidi_bytes: number of bytes to complete @rq->next_rq
3245 *
3246 * Description:
3247 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3248 * Drivers that supports bidi can safely call this member for any
3249 * type of request, bidi or uni. In the later case @bidi_bytes is
3250 * just ignored.
3251 *
3252 * Return:
3253 * %false - we are done with this request
3254 * %true - still buffers pending for this request
3255 **/
blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3256 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3257 unsigned int nr_bytes, unsigned int bidi_bytes)
3258 {
3259 struct request_queue *q = rq->q;
3260 unsigned long flags;
3261
3262 WARN_ON_ONCE(q->mq_ops);
3263
3264 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3265 return true;
3266
3267 spin_lock_irqsave(q->queue_lock, flags);
3268 blk_finish_request(rq, error);
3269 spin_unlock_irqrestore(q->queue_lock, flags);
3270
3271 return false;
3272 }
3273
3274 /**
3275 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3276 * @rq: the request to complete
3277 * @error: block status code
3278 * @nr_bytes: number of bytes to complete @rq
3279 * @bidi_bytes: number of bytes to complete @rq->next_rq
3280 *
3281 * Description:
3282 * Identical to blk_end_bidi_request() except that queue lock is
3283 * assumed to be locked on entry and remains so on return.
3284 *
3285 * Return:
3286 * %false - we are done with this request
3287 * %true - still buffers pending for this request
3288 **/
__blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3289 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3290 unsigned int nr_bytes, unsigned int bidi_bytes)
3291 {
3292 lockdep_assert_held(rq->q->queue_lock);
3293 WARN_ON_ONCE(rq->q->mq_ops);
3294
3295 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3296 return true;
3297
3298 blk_finish_request(rq, error);
3299
3300 return false;
3301 }
3302
3303 /**
3304 * blk_end_request - Helper function for drivers to complete the request.
3305 * @rq: the request being processed
3306 * @error: block status code
3307 * @nr_bytes: number of bytes to complete
3308 *
3309 * Description:
3310 * Ends I/O on a number of bytes attached to @rq.
3311 * If @rq has leftover, sets it up for the next range of segments.
3312 *
3313 * Return:
3314 * %false - we are done with this request
3315 * %true - still buffers pending for this request
3316 **/
blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)3317 bool blk_end_request(struct request *rq, blk_status_t error,
3318 unsigned int nr_bytes)
3319 {
3320 WARN_ON_ONCE(rq->q->mq_ops);
3321 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3322 }
3323 EXPORT_SYMBOL(blk_end_request);
3324
3325 /**
3326 * blk_end_request_all - Helper function for drives to finish the request.
3327 * @rq: the request to finish
3328 * @error: block status code
3329 *
3330 * Description:
3331 * Completely finish @rq.
3332 */
blk_end_request_all(struct request * rq,blk_status_t error)3333 void blk_end_request_all(struct request *rq, blk_status_t error)
3334 {
3335 bool pending;
3336 unsigned int bidi_bytes = 0;
3337
3338 if (unlikely(blk_bidi_rq(rq)))
3339 bidi_bytes = blk_rq_bytes(rq->next_rq);
3340
3341 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3342 BUG_ON(pending);
3343 }
3344 EXPORT_SYMBOL(blk_end_request_all);
3345
3346 /**
3347 * __blk_end_request - Helper function for drivers to complete the request.
3348 * @rq: the request being processed
3349 * @error: block status code
3350 * @nr_bytes: number of bytes to complete
3351 *
3352 * Description:
3353 * Must be called with queue lock held unlike blk_end_request().
3354 *
3355 * Return:
3356 * %false - we are done with this request
3357 * %true - still buffers pending for this request
3358 **/
__blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)3359 bool __blk_end_request(struct request *rq, blk_status_t error,
3360 unsigned int nr_bytes)
3361 {
3362 lockdep_assert_held(rq->q->queue_lock);
3363 WARN_ON_ONCE(rq->q->mq_ops);
3364
3365 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3366 }
3367 EXPORT_SYMBOL(__blk_end_request);
3368
3369 /**
3370 * __blk_end_request_all - Helper function for drives to finish the request.
3371 * @rq: the request to finish
3372 * @error: block status code
3373 *
3374 * Description:
3375 * Completely finish @rq. Must be called with queue lock held.
3376 */
__blk_end_request_all(struct request * rq,blk_status_t error)3377 void __blk_end_request_all(struct request *rq, blk_status_t error)
3378 {
3379 bool pending;
3380 unsigned int bidi_bytes = 0;
3381
3382 lockdep_assert_held(rq->q->queue_lock);
3383 WARN_ON_ONCE(rq->q->mq_ops);
3384
3385 if (unlikely(blk_bidi_rq(rq)))
3386 bidi_bytes = blk_rq_bytes(rq->next_rq);
3387
3388 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3389 BUG_ON(pending);
3390 }
3391 EXPORT_SYMBOL(__blk_end_request_all);
3392
3393 /**
3394 * __blk_end_request_cur - Helper function to finish the current request chunk.
3395 * @rq: the request to finish the current chunk for
3396 * @error: block status code
3397 *
3398 * Description:
3399 * Complete the current consecutively mapped chunk from @rq. Must
3400 * be called with queue lock held.
3401 *
3402 * Return:
3403 * %false - we are done with this request
3404 * %true - still buffers pending for this request
3405 */
__blk_end_request_cur(struct request * rq,blk_status_t error)3406 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3407 {
3408 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3409 }
3410 EXPORT_SYMBOL(__blk_end_request_cur);
3411
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)3412 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3413 struct bio *bio)
3414 {
3415 if (bio_has_data(bio))
3416 rq->nr_phys_segments = bio_phys_segments(q, bio);
3417 else if (bio_op(bio) == REQ_OP_DISCARD)
3418 rq->nr_phys_segments = 1;
3419
3420 rq->__data_len = bio->bi_iter.bi_size;
3421 rq->bio = rq->biotail = bio;
3422
3423 if (bio->bi_disk)
3424 rq->rq_disk = bio->bi_disk;
3425 }
3426
3427 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3428 /**
3429 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3430 * @rq: the request to be flushed
3431 *
3432 * Description:
3433 * Flush all pages in @rq.
3434 */
rq_flush_dcache_pages(struct request * rq)3435 void rq_flush_dcache_pages(struct request *rq)
3436 {
3437 struct req_iterator iter;
3438 struct bio_vec bvec;
3439
3440 rq_for_each_segment(bvec, rq, iter)
3441 flush_dcache_page(bvec.bv_page);
3442 }
3443 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3444 #endif
3445
3446 /**
3447 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3448 * @q : the queue of the device being checked
3449 *
3450 * Description:
3451 * Check if underlying low-level drivers of a device are busy.
3452 * If the drivers want to export their busy state, they must set own
3453 * exporting function using blk_queue_lld_busy() first.
3454 *
3455 * Basically, this function is used only by request stacking drivers
3456 * to stop dispatching requests to underlying devices when underlying
3457 * devices are busy. This behavior helps more I/O merging on the queue
3458 * of the request stacking driver and prevents I/O throughput regression
3459 * on burst I/O load.
3460 *
3461 * Return:
3462 * 0 - Not busy (The request stacking driver should dispatch request)
3463 * 1 - Busy (The request stacking driver should stop dispatching request)
3464 */
blk_lld_busy(struct request_queue * q)3465 int blk_lld_busy(struct request_queue *q)
3466 {
3467 if (q->lld_busy_fn)
3468 return q->lld_busy_fn(q);
3469
3470 return 0;
3471 }
3472 EXPORT_SYMBOL_GPL(blk_lld_busy);
3473
3474 /**
3475 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3476 * @rq: the clone request to be cleaned up
3477 *
3478 * Description:
3479 * Free all bios in @rq for a cloned request.
3480 */
blk_rq_unprep_clone(struct request * rq)3481 void blk_rq_unprep_clone(struct request *rq)
3482 {
3483 struct bio *bio;
3484
3485 while ((bio = rq->bio) != NULL) {
3486 rq->bio = bio->bi_next;
3487
3488 bio_put(bio);
3489 }
3490 }
3491 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3492
3493 /*
3494 * Copy attributes of the original request to the clone request.
3495 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3496 */
__blk_rq_prep_clone(struct request * dst,struct request * src)3497 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3498 {
3499 dst->cpu = src->cpu;
3500 dst->__sector = blk_rq_pos(src);
3501 dst->__data_len = blk_rq_bytes(src);
3502 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3503 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3504 dst->special_vec = src->special_vec;
3505 }
3506 dst->nr_phys_segments = src->nr_phys_segments;
3507 dst->ioprio = src->ioprio;
3508 dst->extra_len = src->extra_len;
3509 }
3510
3511 /**
3512 * blk_rq_prep_clone - Helper function to setup clone request
3513 * @rq: the request to be setup
3514 * @rq_src: original request to be cloned
3515 * @bs: bio_set that bios for clone are allocated from
3516 * @gfp_mask: memory allocation mask for bio
3517 * @bio_ctr: setup function to be called for each clone bio.
3518 * Returns %0 for success, non %0 for failure.
3519 * @data: private data to be passed to @bio_ctr
3520 *
3521 * Description:
3522 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3523 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3524 * are not copied, and copying such parts is the caller's responsibility.
3525 * Also, pages which the original bios are pointing to are not copied
3526 * and the cloned bios just point same pages.
3527 * So cloned bios must be completed before original bios, which means
3528 * the caller must complete @rq before @rq_src.
3529 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3530 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3531 struct bio_set *bs, gfp_t gfp_mask,
3532 int (*bio_ctr)(struct bio *, struct bio *, void *),
3533 void *data)
3534 {
3535 struct bio *bio, *bio_src;
3536
3537 if (!bs)
3538 bs = &fs_bio_set;
3539
3540 __rq_for_each_bio(bio_src, rq_src) {
3541 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3542 if (!bio)
3543 goto free_and_out;
3544
3545 if (bio_ctr && bio_ctr(bio, bio_src, data))
3546 goto free_and_out;
3547
3548 if (rq->bio) {
3549 rq->biotail->bi_next = bio;
3550 rq->biotail = bio;
3551 } else
3552 rq->bio = rq->biotail = bio;
3553 }
3554
3555 __blk_rq_prep_clone(rq, rq_src);
3556
3557 return 0;
3558
3559 free_and_out:
3560 if (bio)
3561 bio_put(bio);
3562 blk_rq_unprep_clone(rq);
3563
3564 return -ENOMEM;
3565 }
3566 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3567
kblockd_schedule_work(struct work_struct * work)3568 int kblockd_schedule_work(struct work_struct *work)
3569 {
3570 return queue_work(kblockd_workqueue, work);
3571 }
3572 EXPORT_SYMBOL(kblockd_schedule_work);
3573
kblockd_schedule_work_on(int cpu,struct work_struct * work)3574 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3575 {
3576 return queue_work_on(cpu, kblockd_workqueue, work);
3577 }
3578 EXPORT_SYMBOL(kblockd_schedule_work_on);
3579
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)3580 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3581 unsigned long delay)
3582 {
3583 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3584 }
3585 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3586
3587 /**
3588 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3589 * @plug: The &struct blk_plug that needs to be initialized
3590 *
3591 * Description:
3592 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3593 * pending I/O should the task end up blocking between blk_start_plug() and
3594 * blk_finish_plug(). This is important from a performance perspective, but
3595 * also ensures that we don't deadlock. For instance, if the task is blocking
3596 * for a memory allocation, memory reclaim could end up wanting to free a
3597 * page belonging to that request that is currently residing in our private
3598 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3599 * this kind of deadlock.
3600 */
blk_start_plug(struct blk_plug * plug)3601 void blk_start_plug(struct blk_plug *plug)
3602 {
3603 struct task_struct *tsk = current;
3604
3605 /*
3606 * If this is a nested plug, don't actually assign it.
3607 */
3608 if (tsk->plug)
3609 return;
3610
3611 INIT_LIST_HEAD(&plug->list);
3612 INIT_LIST_HEAD(&plug->mq_list);
3613 INIT_LIST_HEAD(&plug->cb_list);
3614 /*
3615 * Store ordering should not be needed here, since a potential
3616 * preempt will imply a full memory barrier
3617 */
3618 tsk->plug = plug;
3619 }
3620 EXPORT_SYMBOL(blk_start_plug);
3621
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)3622 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3623 {
3624 struct request *rqa = container_of(a, struct request, queuelist);
3625 struct request *rqb = container_of(b, struct request, queuelist);
3626
3627 return !(rqa->q < rqb->q ||
3628 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3629 }
3630
3631 /*
3632 * If 'from_schedule' is true, then postpone the dispatch of requests
3633 * until a safe kblockd context. We due this to avoid accidental big
3634 * additional stack usage in driver dispatch, in places where the originally
3635 * plugger did not intend it.
3636 */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)3637 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3638 bool from_schedule)
3639 __releases(q->queue_lock)
3640 {
3641 lockdep_assert_held(q->queue_lock);
3642
3643 trace_block_unplug(q, depth, !from_schedule);
3644
3645 if (from_schedule)
3646 blk_run_queue_async(q);
3647 else
3648 __blk_run_queue(q);
3649 spin_unlock_irq(q->queue_lock);
3650 }
3651
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)3652 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3653 {
3654 LIST_HEAD(callbacks);
3655
3656 while (!list_empty(&plug->cb_list)) {
3657 list_splice_init(&plug->cb_list, &callbacks);
3658
3659 while (!list_empty(&callbacks)) {
3660 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3661 struct blk_plug_cb,
3662 list);
3663 list_del(&cb->list);
3664 cb->callback(cb, from_schedule);
3665 }
3666 }
3667 }
3668
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)3669 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3670 int size)
3671 {
3672 struct blk_plug *plug = current->plug;
3673 struct blk_plug_cb *cb;
3674
3675 if (!plug)
3676 return NULL;
3677
3678 list_for_each_entry(cb, &plug->cb_list, list)
3679 if (cb->callback == unplug && cb->data == data)
3680 return cb;
3681
3682 /* Not currently on the callback list */
3683 BUG_ON(size < sizeof(*cb));
3684 cb = kzalloc(size, GFP_ATOMIC);
3685 if (cb) {
3686 cb->data = data;
3687 cb->callback = unplug;
3688 list_add(&cb->list, &plug->cb_list);
3689 }
3690 return cb;
3691 }
3692 EXPORT_SYMBOL(blk_check_plugged);
3693
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)3694 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3695 {
3696 struct request_queue *q;
3697 struct request *rq;
3698 LIST_HEAD(list);
3699 unsigned int depth;
3700
3701 flush_plug_callbacks(plug, from_schedule);
3702
3703 if (!list_empty(&plug->mq_list))
3704 blk_mq_flush_plug_list(plug, from_schedule);
3705
3706 if (list_empty(&plug->list))
3707 return;
3708
3709 list_splice_init(&plug->list, &list);
3710
3711 list_sort(NULL, &list, plug_rq_cmp);
3712
3713 q = NULL;
3714 depth = 0;
3715
3716 while (!list_empty(&list)) {
3717 rq = list_entry_rq(list.next);
3718 list_del_init(&rq->queuelist);
3719 BUG_ON(!rq->q);
3720 if (rq->q != q) {
3721 /*
3722 * This drops the queue lock
3723 */
3724 if (q)
3725 queue_unplugged(q, depth, from_schedule);
3726 q = rq->q;
3727 depth = 0;
3728 spin_lock_irq(q->queue_lock);
3729 }
3730
3731 /*
3732 * Short-circuit if @q is dead
3733 */
3734 if (unlikely(blk_queue_dying(q))) {
3735 __blk_end_request_all(rq, BLK_STS_IOERR);
3736 continue;
3737 }
3738
3739 /*
3740 * rq is already accounted, so use raw insert
3741 */
3742 if (op_is_flush(rq->cmd_flags))
3743 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3744 else
3745 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3746
3747 depth++;
3748 }
3749
3750 /*
3751 * This drops the queue lock
3752 */
3753 if (q)
3754 queue_unplugged(q, depth, from_schedule);
3755 }
3756
blk_finish_plug(struct blk_plug * plug)3757 void blk_finish_plug(struct blk_plug *plug)
3758 {
3759 if (plug != current->plug)
3760 return;
3761 blk_flush_plug_list(plug, false);
3762
3763 current->plug = NULL;
3764 }
3765 EXPORT_SYMBOL(blk_finish_plug);
3766
3767 #ifdef CONFIG_PM
3768 /**
3769 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3770 * @q: the queue of the device
3771 * @dev: the device the queue belongs to
3772 *
3773 * Description:
3774 * Initialize runtime-PM-related fields for @q and start auto suspend for
3775 * @dev. Drivers that want to take advantage of request-based runtime PM
3776 * should call this function after @dev has been initialized, and its
3777 * request queue @q has been allocated, and runtime PM for it can not happen
3778 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3779 * cases, driver should call this function before any I/O has taken place.
3780 *
3781 * This function takes care of setting up using auto suspend for the device,
3782 * the autosuspend delay is set to -1 to make runtime suspend impossible
3783 * until an updated value is either set by user or by driver. Drivers do
3784 * not need to touch other autosuspend settings.
3785 *
3786 * The block layer runtime PM is request based, so only works for drivers
3787 * that use request as their IO unit instead of those directly use bio's.
3788 */
blk_pm_runtime_init(struct request_queue * q,struct device * dev)3789 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3790 {
3791 /* Don't enable runtime PM for blk-mq until it is ready */
3792 if (q->mq_ops) {
3793 pm_runtime_disable(dev);
3794 return;
3795 }
3796
3797 q->dev = dev;
3798 q->rpm_status = RPM_ACTIVE;
3799 pm_runtime_set_autosuspend_delay(q->dev, -1);
3800 pm_runtime_use_autosuspend(q->dev);
3801 }
3802 EXPORT_SYMBOL(blk_pm_runtime_init);
3803
3804 /**
3805 * blk_pre_runtime_suspend - Pre runtime suspend check
3806 * @q: the queue of the device
3807 *
3808 * Description:
3809 * This function will check if runtime suspend is allowed for the device
3810 * by examining if there are any requests pending in the queue. If there
3811 * are requests pending, the device can not be runtime suspended; otherwise,
3812 * the queue's status will be updated to SUSPENDING and the driver can
3813 * proceed to suspend the device.
3814 *
3815 * For the not allowed case, we mark last busy for the device so that
3816 * runtime PM core will try to autosuspend it some time later.
3817 *
3818 * This function should be called near the start of the device's
3819 * runtime_suspend callback.
3820 *
3821 * Return:
3822 * 0 - OK to runtime suspend the device
3823 * -EBUSY - Device should not be runtime suspended
3824 */
blk_pre_runtime_suspend(struct request_queue * q)3825 int blk_pre_runtime_suspend(struct request_queue *q)
3826 {
3827 int ret = 0;
3828
3829 if (!q->dev)
3830 return ret;
3831
3832 spin_lock_irq(q->queue_lock);
3833 if (q->nr_pending) {
3834 ret = -EBUSY;
3835 pm_runtime_mark_last_busy(q->dev);
3836 } else {
3837 q->rpm_status = RPM_SUSPENDING;
3838 }
3839 spin_unlock_irq(q->queue_lock);
3840 return ret;
3841 }
3842 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3843
3844 /**
3845 * blk_post_runtime_suspend - Post runtime suspend processing
3846 * @q: the queue of the device
3847 * @err: return value of the device's runtime_suspend function
3848 *
3849 * Description:
3850 * Update the queue's runtime status according to the return value of the
3851 * device's runtime suspend function and mark last busy for the device so
3852 * that PM core will try to auto suspend the device at a later time.
3853 *
3854 * This function should be called near the end of the device's
3855 * runtime_suspend callback.
3856 */
blk_post_runtime_suspend(struct request_queue * q,int err)3857 void blk_post_runtime_suspend(struct request_queue *q, int err)
3858 {
3859 if (!q->dev)
3860 return;
3861
3862 spin_lock_irq(q->queue_lock);
3863 if (!err) {
3864 q->rpm_status = RPM_SUSPENDED;
3865 } else {
3866 q->rpm_status = RPM_ACTIVE;
3867 pm_runtime_mark_last_busy(q->dev);
3868 }
3869 spin_unlock_irq(q->queue_lock);
3870 }
3871 EXPORT_SYMBOL(blk_post_runtime_suspend);
3872
3873 /**
3874 * blk_pre_runtime_resume - Pre runtime resume processing
3875 * @q: the queue of the device
3876 *
3877 * Description:
3878 * Update the queue's runtime status to RESUMING in preparation for the
3879 * runtime resume of the device.
3880 *
3881 * This function should be called near the start of the device's
3882 * runtime_resume callback.
3883 */
blk_pre_runtime_resume(struct request_queue * q)3884 void blk_pre_runtime_resume(struct request_queue *q)
3885 {
3886 if (!q->dev)
3887 return;
3888
3889 spin_lock_irq(q->queue_lock);
3890 q->rpm_status = RPM_RESUMING;
3891 spin_unlock_irq(q->queue_lock);
3892 }
3893 EXPORT_SYMBOL(blk_pre_runtime_resume);
3894
3895 /**
3896 * blk_post_runtime_resume - Post runtime resume processing
3897 * @q: the queue of the device
3898 * @err: return value of the device's runtime_resume function
3899 *
3900 * Description:
3901 * Update the queue's runtime status according to the return value of the
3902 * device's runtime_resume function. If it is successfully resumed, process
3903 * the requests that are queued into the device's queue when it is resuming
3904 * and then mark last busy and initiate autosuspend for it.
3905 *
3906 * This function should be called near the end of the device's
3907 * runtime_resume callback.
3908 */
blk_post_runtime_resume(struct request_queue * q,int err)3909 void blk_post_runtime_resume(struct request_queue *q, int err)
3910 {
3911 if (!q->dev)
3912 return;
3913
3914 spin_lock_irq(q->queue_lock);
3915 if (!err) {
3916 q->rpm_status = RPM_ACTIVE;
3917 __blk_run_queue(q);
3918 pm_runtime_mark_last_busy(q->dev);
3919 pm_request_autosuspend(q->dev);
3920 } else {
3921 q->rpm_status = RPM_SUSPENDED;
3922 }
3923 spin_unlock_irq(q->queue_lock);
3924 }
3925 EXPORT_SYMBOL(blk_post_runtime_resume);
3926
3927 /**
3928 * blk_set_runtime_active - Force runtime status of the queue to be active
3929 * @q: the queue of the device
3930 *
3931 * If the device is left runtime suspended during system suspend the resume
3932 * hook typically resumes the device and corrects runtime status
3933 * accordingly. However, that does not affect the queue runtime PM status
3934 * which is still "suspended". This prevents processing requests from the
3935 * queue.
3936 *
3937 * This function can be used in driver's resume hook to correct queue
3938 * runtime PM status and re-enable peeking requests from the queue. It
3939 * should be called before first request is added to the queue.
3940 */
blk_set_runtime_active(struct request_queue * q)3941 void blk_set_runtime_active(struct request_queue *q)
3942 {
3943 spin_lock_irq(q->queue_lock);
3944 q->rpm_status = RPM_ACTIVE;
3945 pm_runtime_mark_last_busy(q->dev);
3946 pm_request_autosuspend(q->dev);
3947 spin_unlock_irq(q->queue_lock);
3948 }
3949 EXPORT_SYMBOL(blk_set_runtime_active);
3950 #endif
3951
blk_dev_init(void)3952 int __init blk_dev_init(void)
3953 {
3954 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3955 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3956 FIELD_SIZEOF(struct request, cmd_flags));
3957 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3958 FIELD_SIZEOF(struct bio, bi_opf));
3959
3960 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3961 kblockd_workqueue = alloc_workqueue("kblockd",
3962 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3963 if (!kblockd_workqueue)
3964 panic("Failed to create kblockd\n");
3965
3966 request_cachep = kmem_cache_create("blkdev_requests",
3967 sizeof(struct request), 0, SLAB_PANIC, NULL);
3968
3969 blk_requestq_cachep = kmem_cache_create("request_queue",
3970 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3971
3972 #ifdef CONFIG_DEBUG_FS
3973 blk_debugfs_root = debugfs_create_dir("block", NULL);
3974 #endif
3975
3976 return 0;
3977 }
3978