• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * blk-mq scheduling framework
3  *
4  * Copyright (C) 2016 Jens Axboe
5  */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18 
blk_mq_sched_free_hctx_data(struct request_queue * q,void (* exit)(struct blk_mq_hw_ctx *))19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 				 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 	struct blk_mq_hw_ctx *hctx;
23 	int i;
24 
25 	queue_for_each_hw_ctx(q, hctx, i) {
26 		if (exit && hctx->sched_data)
27 			exit(hctx);
28 		kfree(hctx->sched_data);
29 		hctx->sched_data = NULL;
30 	}
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33 
blk_mq_sched_assign_ioc(struct request * rq,struct bio * bio)34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 	struct request_queue *q = rq->q;
37 	struct io_context *ioc = rq_ioc(bio);
38 	struct io_cq *icq;
39 
40 	spin_lock_irq(q->queue_lock);
41 	icq = ioc_lookup_icq(ioc, q);
42 	spin_unlock_irq(q->queue_lock);
43 
44 	if (!icq) {
45 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 		if (!icq)
47 			return;
48 	}
49 	get_io_context(icq->ioc);
50 	rq->elv.icq = icq;
51 }
52 
53 /*
54  * Mark a hardware queue as needing a restart. For shared queues, maintain
55  * a count of how many hardware queues are marked for restart.
56  */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)57 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 {
59 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 		return;
61 
62 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63 }
64 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
65 
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)66 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
67 {
68 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
69 		return;
70 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71 
72 	/*
73 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
74 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
75 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
76 	 * meantime new request added to hctx->dispatch is missed to check in
77 	 * blk_mq_run_hw_queue().
78 	 */
79 	smp_mb();
80 
81 	blk_mq_run_hw_queue(hctx, true);
82 }
83 
84 /*
85  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
86  * its queue by itself in its completion handler, so we don't need to
87  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
88  */
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)89 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
90 {
91 	struct request_queue *q = hctx->queue;
92 	struct elevator_queue *e = q->elevator;
93 	LIST_HEAD(rq_list);
94 
95 	do {
96 		struct request *rq;
97 
98 		if (e->type->ops.mq.has_work &&
99 				!e->type->ops.mq.has_work(hctx))
100 			break;
101 
102 		if (!blk_mq_get_dispatch_budget(hctx))
103 			break;
104 
105 		rq = e->type->ops.mq.dispatch_request(hctx);
106 		if (!rq) {
107 			blk_mq_put_dispatch_budget(hctx);
108 			break;
109 		}
110 
111 		/*
112 		 * Now this rq owns the budget which has to be released
113 		 * if this rq won't be queued to driver via .queue_rq()
114 		 * in blk_mq_dispatch_rq_list().
115 		 */
116 		list_add(&rq->queuelist, &rq_list);
117 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
118 }
119 
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)120 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
121 					  struct blk_mq_ctx *ctx)
122 {
123 	unsigned idx = ctx->index_hw;
124 
125 	if (++idx == hctx->nr_ctx)
126 		idx = 0;
127 
128 	return hctx->ctxs[idx];
129 }
130 
131 /*
132  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
133  * its queue by itself in its completion handler, so we don't need to
134  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
135  */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)136 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
137 {
138 	struct request_queue *q = hctx->queue;
139 	LIST_HEAD(rq_list);
140 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
141 
142 	do {
143 		struct request *rq;
144 
145 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
146 			break;
147 
148 		if (!blk_mq_get_dispatch_budget(hctx))
149 			break;
150 
151 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
152 		if (!rq) {
153 			blk_mq_put_dispatch_budget(hctx);
154 			break;
155 		}
156 
157 		/*
158 		 * Now this rq owns the budget which has to be released
159 		 * if this rq won't be queued to driver via .queue_rq()
160 		 * in blk_mq_dispatch_rq_list().
161 		 */
162 		list_add(&rq->queuelist, &rq_list);
163 
164 		/* round robin for fair dispatch */
165 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
166 
167 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
168 
169 	WRITE_ONCE(hctx->dispatch_from, ctx);
170 }
171 
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)172 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
173 {
174 	struct request_queue *q = hctx->queue;
175 	struct elevator_queue *e = q->elevator;
176 	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
177 	LIST_HEAD(rq_list);
178 
179 	/* RCU or SRCU read lock is needed before checking quiesced flag */
180 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
181 		return;
182 
183 	hctx->run++;
184 
185 	/*
186 	 * If we have previous entries on our dispatch list, grab them first for
187 	 * more fair dispatch.
188 	 */
189 	if (!list_empty_careful(&hctx->dispatch)) {
190 		spin_lock(&hctx->lock);
191 		if (!list_empty(&hctx->dispatch))
192 			list_splice_init(&hctx->dispatch, &rq_list);
193 		spin_unlock(&hctx->lock);
194 	}
195 
196 	/*
197 	 * Only ask the scheduler for requests, if we didn't have residual
198 	 * requests from the dispatch list. This is to avoid the case where
199 	 * we only ever dispatch a fraction of the requests available because
200 	 * of low device queue depth. Once we pull requests out of the IO
201 	 * scheduler, we can no longer merge or sort them. So it's best to
202 	 * leave them there for as long as we can. Mark the hw queue as
203 	 * needing a restart in that case.
204 	 *
205 	 * We want to dispatch from the scheduler if there was nothing
206 	 * on the dispatch list or we were able to dispatch from the
207 	 * dispatch list.
208 	 */
209 	if (!list_empty(&rq_list)) {
210 		blk_mq_sched_mark_restart_hctx(hctx);
211 		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
212 			if (has_sched_dispatch)
213 				blk_mq_do_dispatch_sched(hctx);
214 			else
215 				blk_mq_do_dispatch_ctx(hctx);
216 		}
217 	} else if (has_sched_dispatch) {
218 		blk_mq_do_dispatch_sched(hctx);
219 	} else if (hctx->dispatch_busy) {
220 		/* dequeue request one by one from sw queue if queue is busy */
221 		blk_mq_do_dispatch_ctx(hctx);
222 	} else {
223 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
224 		blk_mq_dispatch_rq_list(q, &rq_list, false);
225 	}
226 }
227 
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,struct request ** merged_request)228 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
229 			    struct request **merged_request)
230 {
231 	struct request *rq;
232 
233 	switch (elv_merge(q, &rq, bio)) {
234 	case ELEVATOR_BACK_MERGE:
235 		if (!blk_mq_sched_allow_merge(q, rq, bio))
236 			return false;
237 		if (!bio_attempt_back_merge(q, rq, bio))
238 			return false;
239 		*merged_request = attempt_back_merge(q, rq);
240 		if (!*merged_request)
241 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
242 		return true;
243 	case ELEVATOR_FRONT_MERGE:
244 		if (!blk_mq_sched_allow_merge(q, rq, bio))
245 			return false;
246 		if (!bio_attempt_front_merge(q, rq, bio))
247 			return false;
248 		*merged_request = attempt_front_merge(q, rq);
249 		if (!*merged_request)
250 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
251 		return true;
252 	case ELEVATOR_DISCARD_MERGE:
253 		return bio_attempt_discard_merge(q, rq, bio);
254 	default:
255 		return false;
256 	}
257 }
258 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
259 
260 /*
261  * Iterate list of requests and see if we can merge this bio with any
262  * of them.
263  */
blk_mq_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio)264 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
265 			   struct bio *bio)
266 {
267 	struct request *rq;
268 	int checked = 8;
269 
270 	list_for_each_entry_reverse(rq, list, queuelist) {
271 		bool merged = false;
272 
273 		if (!checked--)
274 			break;
275 
276 		if (!blk_rq_merge_ok(rq, bio))
277 			continue;
278 
279 		switch (blk_try_merge(rq, bio)) {
280 		case ELEVATOR_BACK_MERGE:
281 			if (blk_mq_sched_allow_merge(q, rq, bio))
282 				merged = bio_attempt_back_merge(q, rq, bio);
283 			break;
284 		case ELEVATOR_FRONT_MERGE:
285 			if (blk_mq_sched_allow_merge(q, rq, bio))
286 				merged = bio_attempt_front_merge(q, rq, bio);
287 			break;
288 		case ELEVATOR_DISCARD_MERGE:
289 			merged = bio_attempt_discard_merge(q, rq, bio);
290 			break;
291 		default:
292 			continue;
293 		}
294 
295 		return merged;
296 	}
297 
298 	return false;
299 }
300 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
301 
302 /*
303  * Reverse check our software queue for entries that we could potentially
304  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
305  * too much time checking for merges.
306  */
blk_mq_attempt_merge(struct request_queue * q,struct blk_mq_ctx * ctx,struct bio * bio)307 static bool blk_mq_attempt_merge(struct request_queue *q,
308 				 struct blk_mq_ctx *ctx, struct bio *bio)
309 {
310 	lockdep_assert_held(&ctx->lock);
311 
312 	if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
313 		ctx->rq_merged++;
314 		return true;
315 	}
316 
317 	return false;
318 }
319 
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio)320 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
321 {
322 	struct elevator_queue *e = q->elevator;
323 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
324 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
325 	bool ret = false;
326 
327 	if (e && e->type->ops.mq.bio_merge) {
328 		blk_mq_put_ctx(ctx);
329 		return e->type->ops.mq.bio_merge(hctx, bio);
330 	}
331 
332 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
333 			!list_empty_careful(&ctx->rq_list)) {
334 		/* default per sw-queue merge */
335 		spin_lock(&ctx->lock);
336 		ret = blk_mq_attempt_merge(q, ctx, bio);
337 		spin_unlock(&ctx->lock);
338 	}
339 
340 	blk_mq_put_ctx(ctx);
341 	return ret;
342 }
343 
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq)344 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
345 {
346 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
347 }
348 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
349 
blk_mq_sched_request_inserted(struct request * rq)350 void blk_mq_sched_request_inserted(struct request *rq)
351 {
352 	trace_block_rq_insert(rq->q, rq);
353 }
354 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
355 
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,bool has_sched,struct request * rq)356 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
357 				       bool has_sched,
358 				       struct request *rq)
359 {
360 	/* dispatch flush rq directly */
361 	if (rq->rq_flags & RQF_FLUSH_SEQ) {
362 		spin_lock(&hctx->lock);
363 		list_add(&rq->queuelist, &hctx->dispatch);
364 		spin_unlock(&hctx->lock);
365 		return true;
366 	}
367 
368 	if (has_sched)
369 		rq->rq_flags |= RQF_SORTED;
370 
371 	return false;
372 }
373 
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)374 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
375 				 bool run_queue, bool async)
376 {
377 	struct request_queue *q = rq->q;
378 	struct elevator_queue *e = q->elevator;
379 	struct blk_mq_ctx *ctx = rq->mq_ctx;
380 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
381 
382 	/* flush rq in flush machinery need to be dispatched directly */
383 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
384 		blk_insert_flush(rq);
385 		goto run;
386 	}
387 
388 	WARN_ON(e && (rq->tag != -1));
389 
390 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
391 		goto run;
392 
393 	if (e && e->type->ops.mq.insert_requests) {
394 		LIST_HEAD(list);
395 
396 		list_add(&rq->queuelist, &list);
397 		e->type->ops.mq.insert_requests(hctx, &list, at_head);
398 	} else {
399 		spin_lock(&ctx->lock);
400 		__blk_mq_insert_request(hctx, rq, at_head);
401 		spin_unlock(&ctx->lock);
402 	}
403 
404 run:
405 	if (run_queue)
406 		blk_mq_run_hw_queue(hctx, async);
407 }
408 
blk_mq_sched_insert_requests(struct request_queue * q,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)409 void blk_mq_sched_insert_requests(struct request_queue *q,
410 				  struct blk_mq_ctx *ctx,
411 				  struct list_head *list, bool run_queue_async)
412 {
413 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
414 	struct elevator_queue *e = hctx->queue->elevator;
415 
416 	if (e && e->type->ops.mq.insert_requests)
417 		e->type->ops.mq.insert_requests(hctx, list, false);
418 	else {
419 		/*
420 		 * try to issue requests directly if the hw queue isn't
421 		 * busy in case of 'none' scheduler, and this way may save
422 		 * us one extra enqueue & dequeue to sw queue.
423 		 */
424 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
425 			blk_mq_try_issue_list_directly(hctx, list);
426 			if (list_empty(list))
427 				return;
428 		}
429 		blk_mq_insert_requests(hctx, ctx, list);
430 	}
431 
432 	blk_mq_run_hw_queue(hctx, run_queue_async);
433 }
434 
blk_mq_sched_free_tags(struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)435 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
436 				   struct blk_mq_hw_ctx *hctx,
437 				   unsigned int hctx_idx)
438 {
439 	if (hctx->sched_tags) {
440 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
441 		blk_mq_free_rq_map(hctx->sched_tags);
442 		hctx->sched_tags = NULL;
443 	}
444 }
445 
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)446 static int blk_mq_sched_alloc_tags(struct request_queue *q,
447 				   struct blk_mq_hw_ctx *hctx,
448 				   unsigned int hctx_idx)
449 {
450 	struct blk_mq_tag_set *set = q->tag_set;
451 	int ret;
452 
453 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
454 					       set->reserved_tags);
455 	if (!hctx->sched_tags)
456 		return -ENOMEM;
457 
458 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
459 	if (ret)
460 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
461 
462 	return ret;
463 }
464 
blk_mq_sched_tags_teardown(struct request_queue * q)465 static void blk_mq_sched_tags_teardown(struct request_queue *q)
466 {
467 	struct blk_mq_tag_set *set = q->tag_set;
468 	struct blk_mq_hw_ctx *hctx;
469 	int i;
470 
471 	queue_for_each_hw_ctx(q, hctx, i)
472 		blk_mq_sched_free_tags(set, hctx, i);
473 }
474 
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)475 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
476 {
477 	struct blk_mq_hw_ctx *hctx;
478 	struct elevator_queue *eq;
479 	unsigned int i;
480 	int ret;
481 
482 	if (!e) {
483 		q->elevator = NULL;
484 		q->nr_requests = q->tag_set->queue_depth;
485 		return 0;
486 	}
487 
488 	/*
489 	 * Default to double of smaller one between hw queue_depth and 128,
490 	 * since we don't split into sync/async like the old code did.
491 	 * Additionally, this is a per-hw queue depth.
492 	 */
493 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
494 				   BLKDEV_MAX_RQ);
495 
496 	queue_for_each_hw_ctx(q, hctx, i) {
497 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
498 		if (ret)
499 			goto err;
500 	}
501 
502 	ret = e->ops.mq.init_sched(q, e);
503 	if (ret)
504 		goto err;
505 
506 	blk_mq_debugfs_register_sched(q);
507 
508 	queue_for_each_hw_ctx(q, hctx, i) {
509 		if (e->ops.mq.init_hctx) {
510 			ret = e->ops.mq.init_hctx(hctx, i);
511 			if (ret) {
512 				eq = q->elevator;
513 				blk_mq_exit_sched(q, eq);
514 				kobject_put(&eq->kobj);
515 				return ret;
516 			}
517 		}
518 		blk_mq_debugfs_register_sched_hctx(q, hctx);
519 	}
520 
521 	return 0;
522 
523 err:
524 	blk_mq_sched_tags_teardown(q);
525 	q->elevator = NULL;
526 	return ret;
527 }
528 
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)529 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
530 {
531 	struct blk_mq_hw_ctx *hctx;
532 	unsigned int i;
533 
534 	queue_for_each_hw_ctx(q, hctx, i) {
535 		blk_mq_debugfs_unregister_sched_hctx(hctx);
536 		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
537 			e->type->ops.mq.exit_hctx(hctx, i);
538 			hctx->sched_data = NULL;
539 		}
540 	}
541 	blk_mq_debugfs_unregister_sched(q);
542 	if (e->type->ops.mq.exit_sched)
543 		e->type->ops.mq.exit_sched(e);
544 	blk_mq_sched_tags_teardown(q);
545 	q->elevator = NULL;
546 }
547