1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18
blk_mq_sched_free_hctx_data(struct request_queue * q,void (* exit)(struct blk_mq_hw_ctx *))19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 struct blk_mq_hw_ctx *hctx;
23 int i;
24
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
30 }
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33
blk_mq_sched_assign_ioc(struct request * rq,struct bio * bio)34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
39
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
43
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
48 }
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
51 }
52
53 /*
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
56 */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)57 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 {
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
61
62 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63 }
64 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
65
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)66 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
67 {
68 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
69 return;
70 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71
72 /*
73 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
74 * in blk_mq_run_hw_queue(). Its pair is the barrier in
75 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
76 * meantime new request added to hctx->dispatch is missed to check in
77 * blk_mq_run_hw_queue().
78 */
79 smp_mb();
80
81 blk_mq_run_hw_queue(hctx, true);
82 }
83
84 /*
85 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
86 * its queue by itself in its completion handler, so we don't need to
87 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
88 */
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)89 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
90 {
91 struct request_queue *q = hctx->queue;
92 struct elevator_queue *e = q->elevator;
93 LIST_HEAD(rq_list);
94
95 do {
96 struct request *rq;
97
98 if (e->type->ops.mq.has_work &&
99 !e->type->ops.mq.has_work(hctx))
100 break;
101
102 if (!blk_mq_get_dispatch_budget(hctx))
103 break;
104
105 rq = e->type->ops.mq.dispatch_request(hctx);
106 if (!rq) {
107 blk_mq_put_dispatch_budget(hctx);
108 break;
109 }
110
111 /*
112 * Now this rq owns the budget which has to be released
113 * if this rq won't be queued to driver via .queue_rq()
114 * in blk_mq_dispatch_rq_list().
115 */
116 list_add(&rq->queuelist, &rq_list);
117 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
118 }
119
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)120 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
121 struct blk_mq_ctx *ctx)
122 {
123 unsigned idx = ctx->index_hw;
124
125 if (++idx == hctx->nr_ctx)
126 idx = 0;
127
128 return hctx->ctxs[idx];
129 }
130
131 /*
132 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
133 * its queue by itself in its completion handler, so we don't need to
134 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
135 */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)136 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
137 {
138 struct request_queue *q = hctx->queue;
139 LIST_HEAD(rq_list);
140 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
141
142 do {
143 struct request *rq;
144
145 if (!sbitmap_any_bit_set(&hctx->ctx_map))
146 break;
147
148 if (!blk_mq_get_dispatch_budget(hctx))
149 break;
150
151 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
152 if (!rq) {
153 blk_mq_put_dispatch_budget(hctx);
154 break;
155 }
156
157 /*
158 * Now this rq owns the budget which has to be released
159 * if this rq won't be queued to driver via .queue_rq()
160 * in blk_mq_dispatch_rq_list().
161 */
162 list_add(&rq->queuelist, &rq_list);
163
164 /* round robin for fair dispatch */
165 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
166
167 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
168
169 WRITE_ONCE(hctx->dispatch_from, ctx);
170 }
171
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)172 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
173 {
174 struct request_queue *q = hctx->queue;
175 struct elevator_queue *e = q->elevator;
176 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
177 LIST_HEAD(rq_list);
178
179 /* RCU or SRCU read lock is needed before checking quiesced flag */
180 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
181 return;
182
183 hctx->run++;
184
185 /*
186 * If we have previous entries on our dispatch list, grab them first for
187 * more fair dispatch.
188 */
189 if (!list_empty_careful(&hctx->dispatch)) {
190 spin_lock(&hctx->lock);
191 if (!list_empty(&hctx->dispatch))
192 list_splice_init(&hctx->dispatch, &rq_list);
193 spin_unlock(&hctx->lock);
194 }
195
196 /*
197 * Only ask the scheduler for requests, if we didn't have residual
198 * requests from the dispatch list. This is to avoid the case where
199 * we only ever dispatch a fraction of the requests available because
200 * of low device queue depth. Once we pull requests out of the IO
201 * scheduler, we can no longer merge or sort them. So it's best to
202 * leave them there for as long as we can. Mark the hw queue as
203 * needing a restart in that case.
204 *
205 * We want to dispatch from the scheduler if there was nothing
206 * on the dispatch list or we were able to dispatch from the
207 * dispatch list.
208 */
209 if (!list_empty(&rq_list)) {
210 blk_mq_sched_mark_restart_hctx(hctx);
211 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
212 if (has_sched_dispatch)
213 blk_mq_do_dispatch_sched(hctx);
214 else
215 blk_mq_do_dispatch_ctx(hctx);
216 }
217 } else if (has_sched_dispatch) {
218 blk_mq_do_dispatch_sched(hctx);
219 } else if (hctx->dispatch_busy) {
220 /* dequeue request one by one from sw queue if queue is busy */
221 blk_mq_do_dispatch_ctx(hctx);
222 } else {
223 blk_mq_flush_busy_ctxs(hctx, &rq_list);
224 blk_mq_dispatch_rq_list(q, &rq_list, false);
225 }
226 }
227
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,struct request ** merged_request)228 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
229 struct request **merged_request)
230 {
231 struct request *rq;
232
233 switch (elv_merge(q, &rq, bio)) {
234 case ELEVATOR_BACK_MERGE:
235 if (!blk_mq_sched_allow_merge(q, rq, bio))
236 return false;
237 if (!bio_attempt_back_merge(q, rq, bio))
238 return false;
239 *merged_request = attempt_back_merge(q, rq);
240 if (!*merged_request)
241 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
242 return true;
243 case ELEVATOR_FRONT_MERGE:
244 if (!blk_mq_sched_allow_merge(q, rq, bio))
245 return false;
246 if (!bio_attempt_front_merge(q, rq, bio))
247 return false;
248 *merged_request = attempt_front_merge(q, rq);
249 if (!*merged_request)
250 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
251 return true;
252 case ELEVATOR_DISCARD_MERGE:
253 return bio_attempt_discard_merge(q, rq, bio);
254 default:
255 return false;
256 }
257 }
258 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
259
260 /*
261 * Iterate list of requests and see if we can merge this bio with any
262 * of them.
263 */
blk_mq_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio)264 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
265 struct bio *bio)
266 {
267 struct request *rq;
268 int checked = 8;
269
270 list_for_each_entry_reverse(rq, list, queuelist) {
271 bool merged = false;
272
273 if (!checked--)
274 break;
275
276 if (!blk_rq_merge_ok(rq, bio))
277 continue;
278
279 switch (blk_try_merge(rq, bio)) {
280 case ELEVATOR_BACK_MERGE:
281 if (blk_mq_sched_allow_merge(q, rq, bio))
282 merged = bio_attempt_back_merge(q, rq, bio);
283 break;
284 case ELEVATOR_FRONT_MERGE:
285 if (blk_mq_sched_allow_merge(q, rq, bio))
286 merged = bio_attempt_front_merge(q, rq, bio);
287 break;
288 case ELEVATOR_DISCARD_MERGE:
289 merged = bio_attempt_discard_merge(q, rq, bio);
290 break;
291 default:
292 continue;
293 }
294
295 return merged;
296 }
297
298 return false;
299 }
300 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
301
302 /*
303 * Reverse check our software queue for entries that we could potentially
304 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
305 * too much time checking for merges.
306 */
blk_mq_attempt_merge(struct request_queue * q,struct blk_mq_ctx * ctx,struct bio * bio)307 static bool blk_mq_attempt_merge(struct request_queue *q,
308 struct blk_mq_ctx *ctx, struct bio *bio)
309 {
310 lockdep_assert_held(&ctx->lock);
311
312 if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
313 ctx->rq_merged++;
314 return true;
315 }
316
317 return false;
318 }
319
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio)320 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
321 {
322 struct elevator_queue *e = q->elevator;
323 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
324 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
325 bool ret = false;
326
327 if (e && e->type->ops.mq.bio_merge) {
328 blk_mq_put_ctx(ctx);
329 return e->type->ops.mq.bio_merge(hctx, bio);
330 }
331
332 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
333 !list_empty_careful(&ctx->rq_list)) {
334 /* default per sw-queue merge */
335 spin_lock(&ctx->lock);
336 ret = blk_mq_attempt_merge(q, ctx, bio);
337 spin_unlock(&ctx->lock);
338 }
339
340 blk_mq_put_ctx(ctx);
341 return ret;
342 }
343
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq)344 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
345 {
346 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
347 }
348 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
349
blk_mq_sched_request_inserted(struct request * rq)350 void blk_mq_sched_request_inserted(struct request *rq)
351 {
352 trace_block_rq_insert(rq->q, rq);
353 }
354 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
355
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,bool has_sched,struct request * rq)356 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
357 bool has_sched,
358 struct request *rq)
359 {
360 /* dispatch flush rq directly */
361 if (rq->rq_flags & RQF_FLUSH_SEQ) {
362 spin_lock(&hctx->lock);
363 list_add(&rq->queuelist, &hctx->dispatch);
364 spin_unlock(&hctx->lock);
365 return true;
366 }
367
368 if (has_sched)
369 rq->rq_flags |= RQF_SORTED;
370
371 return false;
372 }
373
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)374 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
375 bool run_queue, bool async)
376 {
377 struct request_queue *q = rq->q;
378 struct elevator_queue *e = q->elevator;
379 struct blk_mq_ctx *ctx = rq->mq_ctx;
380 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
381
382 /* flush rq in flush machinery need to be dispatched directly */
383 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
384 blk_insert_flush(rq);
385 goto run;
386 }
387
388 WARN_ON(e && (rq->tag != -1));
389
390 if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
391 goto run;
392
393 if (e && e->type->ops.mq.insert_requests) {
394 LIST_HEAD(list);
395
396 list_add(&rq->queuelist, &list);
397 e->type->ops.mq.insert_requests(hctx, &list, at_head);
398 } else {
399 spin_lock(&ctx->lock);
400 __blk_mq_insert_request(hctx, rq, at_head);
401 spin_unlock(&ctx->lock);
402 }
403
404 run:
405 if (run_queue)
406 blk_mq_run_hw_queue(hctx, async);
407 }
408
blk_mq_sched_insert_requests(struct request_queue * q,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)409 void blk_mq_sched_insert_requests(struct request_queue *q,
410 struct blk_mq_ctx *ctx,
411 struct list_head *list, bool run_queue_async)
412 {
413 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
414 struct elevator_queue *e = hctx->queue->elevator;
415
416 if (e && e->type->ops.mq.insert_requests)
417 e->type->ops.mq.insert_requests(hctx, list, false);
418 else {
419 /*
420 * try to issue requests directly if the hw queue isn't
421 * busy in case of 'none' scheduler, and this way may save
422 * us one extra enqueue & dequeue to sw queue.
423 */
424 if (!hctx->dispatch_busy && !e && !run_queue_async) {
425 blk_mq_try_issue_list_directly(hctx, list);
426 if (list_empty(list))
427 return;
428 }
429 blk_mq_insert_requests(hctx, ctx, list);
430 }
431
432 blk_mq_run_hw_queue(hctx, run_queue_async);
433 }
434
blk_mq_sched_free_tags(struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)435 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
436 struct blk_mq_hw_ctx *hctx,
437 unsigned int hctx_idx)
438 {
439 if (hctx->sched_tags) {
440 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
441 blk_mq_free_rq_map(hctx->sched_tags);
442 hctx->sched_tags = NULL;
443 }
444 }
445
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)446 static int blk_mq_sched_alloc_tags(struct request_queue *q,
447 struct blk_mq_hw_ctx *hctx,
448 unsigned int hctx_idx)
449 {
450 struct blk_mq_tag_set *set = q->tag_set;
451 int ret;
452
453 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
454 set->reserved_tags);
455 if (!hctx->sched_tags)
456 return -ENOMEM;
457
458 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
459 if (ret)
460 blk_mq_sched_free_tags(set, hctx, hctx_idx);
461
462 return ret;
463 }
464
blk_mq_sched_tags_teardown(struct request_queue * q)465 static void blk_mq_sched_tags_teardown(struct request_queue *q)
466 {
467 struct blk_mq_tag_set *set = q->tag_set;
468 struct blk_mq_hw_ctx *hctx;
469 int i;
470
471 queue_for_each_hw_ctx(q, hctx, i)
472 blk_mq_sched_free_tags(set, hctx, i);
473 }
474
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)475 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
476 {
477 struct blk_mq_hw_ctx *hctx;
478 struct elevator_queue *eq;
479 unsigned int i;
480 int ret;
481
482 if (!e) {
483 q->elevator = NULL;
484 q->nr_requests = q->tag_set->queue_depth;
485 return 0;
486 }
487
488 /*
489 * Default to double of smaller one between hw queue_depth and 128,
490 * since we don't split into sync/async like the old code did.
491 * Additionally, this is a per-hw queue depth.
492 */
493 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
494 BLKDEV_MAX_RQ);
495
496 queue_for_each_hw_ctx(q, hctx, i) {
497 ret = blk_mq_sched_alloc_tags(q, hctx, i);
498 if (ret)
499 goto err;
500 }
501
502 ret = e->ops.mq.init_sched(q, e);
503 if (ret)
504 goto err;
505
506 blk_mq_debugfs_register_sched(q);
507
508 queue_for_each_hw_ctx(q, hctx, i) {
509 if (e->ops.mq.init_hctx) {
510 ret = e->ops.mq.init_hctx(hctx, i);
511 if (ret) {
512 eq = q->elevator;
513 blk_mq_exit_sched(q, eq);
514 kobject_put(&eq->kobj);
515 return ret;
516 }
517 }
518 blk_mq_debugfs_register_sched_hctx(q, hctx);
519 }
520
521 return 0;
522
523 err:
524 blk_mq_sched_tags_teardown(q);
525 q->elevator = NULL;
526 return ret;
527 }
528
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)529 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
530 {
531 struct blk_mq_hw_ctx *hctx;
532 unsigned int i;
533
534 queue_for_each_hw_ctx(q, hctx, i) {
535 blk_mq_debugfs_unregister_sched_hctx(hctx);
536 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
537 e->type->ops.mq.exit_hctx(hctx, i);
538 hctx->sched_data = NULL;
539 }
540 }
541 blk_mq_debugfs_unregister_sched(q);
542 if (e->type->ops.mq.exit_sched)
543 e->type->ops.mq.exit_sched(e);
544 blk_mq_sched_tags_teardown(q);
545 q->elevator = NULL;
546 }
547