1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
blk_mq_poll_stats_bkt(const struct request * rq)49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct hd_struct *part;
99 unsigned int inflight[2];
100 };
101
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if ((!mi->part->partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
111
112 return true;
113 }
114
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)115 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
116 {
117 struct mq_inflight mi = { .part = part };
118
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120
121 return mi.inflight[0] + mi.inflight[1];
122 }
123
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])124 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
125 unsigned int inflight[2])
126 {
127 struct mq_inflight mi = { .part = part };
128
129 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
130 inflight[0] = mi.inflight[0];
131 inflight[1] = mi.inflight[1];
132 }
133
blk_freeze_queue_start(struct request_queue * q)134 void blk_freeze_queue_start(struct request_queue *q)
135 {
136 mutex_lock(&q->mq_freeze_lock);
137 if (++q->mq_freeze_depth == 1) {
138 percpu_ref_kill(&q->q_usage_counter);
139 mutex_unlock(&q->mq_freeze_lock);
140 if (queue_is_mq(q))
141 blk_mq_run_hw_queues(q, false);
142 } else {
143 mutex_unlock(&q->mq_freeze_lock);
144 }
145 }
146 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
147
blk_mq_freeze_queue_wait(struct request_queue * q)148 void blk_mq_freeze_queue_wait(struct request_queue *q)
149 {
150 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
151 }
152 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
153
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)154 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
155 unsigned long timeout)
156 {
157 return wait_event_timeout(q->mq_freeze_wq,
158 percpu_ref_is_zero(&q->q_usage_counter),
159 timeout);
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
162
163 /*
164 * Guarantee no request is in use, so we can change any data structure of
165 * the queue afterward.
166 */
blk_freeze_queue(struct request_queue * q)167 void blk_freeze_queue(struct request_queue *q)
168 {
169 /*
170 * In the !blk_mq case we are only calling this to kill the
171 * q_usage_counter, otherwise this increases the freeze depth
172 * and waits for it to return to zero. For this reason there is
173 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
174 * exported to drivers as the only user for unfreeze is blk_mq.
175 */
176 blk_freeze_queue_start(q);
177 blk_mq_freeze_queue_wait(q);
178 }
179
blk_mq_freeze_queue(struct request_queue * q)180 void blk_mq_freeze_queue(struct request_queue *q)
181 {
182 /*
183 * ...just an alias to keep freeze and unfreeze actions balanced
184 * in the blk_mq_* namespace
185 */
186 blk_freeze_queue(q);
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
189
blk_mq_unfreeze_queue(struct request_queue * q)190 void blk_mq_unfreeze_queue(struct request_queue *q)
191 {
192 mutex_lock(&q->mq_freeze_lock);
193 q->mq_freeze_depth--;
194 WARN_ON_ONCE(q->mq_freeze_depth < 0);
195 if (!q->mq_freeze_depth) {
196 percpu_ref_resurrect(&q->q_usage_counter);
197 wake_up_all(&q->mq_freeze_wq);
198 }
199 mutex_unlock(&q->mq_freeze_lock);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
202
203 /*
204 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
205 * mpt3sas driver such that this function can be removed.
206 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)207 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
208 {
209 unsigned long flags;
210
211 spin_lock_irqsave(&q->queue_lock, flags);
212 if (!q->quiesce_depth++)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 spin_unlock_irqrestore(&q->queue_lock, flags);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217
218 /**
219 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220 * @q: request queue.
221 *
222 * Note: this function does not prevent that the struct request end_io()
223 * callback function is invoked. Once this function is returned, we make
224 * sure no dispatch can happen until the queue is unquiesced via
225 * blk_mq_unquiesce_queue().
226 */
blk_mq_quiesce_queue(struct request_queue * q)227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 struct blk_mq_hw_ctx *hctx;
230 unsigned int i;
231 bool rcu = false;
232
233 blk_mq_quiesce_queue_nowait(q);
234
235 queue_for_each_hw_ctx(q, hctx, i) {
236 if (hctx->flags & BLK_MQ_F_BLOCKING)
237 synchronize_srcu(hctx->srcu);
238 else
239 rcu = true;
240 }
241 if (rcu)
242 synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245
246 /*
247 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248 * @q: request queue.
249 *
250 * This function recovers queue into the state before quiescing
251 * which is done by blk_mq_quiesce_queue.
252 */
blk_mq_unquiesce_queue(struct request_queue * q)253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 unsigned long flags;
256 bool run_queue = false;
257
258 spin_lock_irqsave(&q->queue_lock, flags);
259 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
260 ;
261 } else if (!--q->quiesce_depth) {
262 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263 run_queue = true;
264 }
265 spin_unlock_irqrestore(&q->queue_lock, flags);
266
267 /* dispatch requests which are inserted during quiescing */
268 if (run_queue)
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
blk_mq_wake_waiters(struct request_queue * q)273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 /*
284 * Only need start/end time stamping if we have iostat or
285 * blk stats enabled, or using an IO scheduler.
286 */
blk_mq_need_time_stamp(struct request * rq)287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
290 }
291
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 unsigned int tag, u64 alloc_time_ns)
294 {
295 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 struct request *rq = tags->static_rqs[tag];
297
298 if (data->q->elevator) {
299 rq->tag = BLK_MQ_NO_TAG;
300 rq->internal_tag = tag;
301 } else {
302 rq->tag = tag;
303 rq->internal_tag = BLK_MQ_NO_TAG;
304 }
305
306 /* csd/requeue_work/fifo_time is initialized before use */
307 rq->q = data->q;
308 rq->mq_ctx = data->ctx;
309 rq->mq_hctx = data->hctx;
310 rq->rq_flags = 0;
311 rq->cmd_flags = data->cmd_flags;
312 if (data->flags & BLK_MQ_REQ_PM)
313 rq->rq_flags |= RQF_PM;
314 if (blk_queue_io_stat(data->q))
315 rq->rq_flags |= RQF_IO_STAT;
316 INIT_LIST_HEAD(&rq->queuelist);
317 INIT_HLIST_NODE(&rq->hash);
318 RB_CLEAR_NODE(&rq->rb_node);
319 rq->rq_disk = NULL;
320 rq->part = NULL;
321 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
322 rq->alloc_time_ns = alloc_time_ns;
323 #endif
324 if (blk_mq_need_time_stamp(rq))
325 rq->start_time_ns = ktime_get_ns();
326 else
327 rq->start_time_ns = 0;
328 rq->io_start_time_ns = 0;
329 rq->stats_sectors = 0;
330 rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 rq->nr_integrity_segments = 0;
333 #endif
334 blk_crypto_rq_set_defaults(rq);
335 /* tag was already set */
336 WRITE_ONCE(rq->deadline, 0);
337
338 rq->timeout = 0;
339
340 rq->end_io = NULL;
341 rq->end_io_data = NULL;
342
343 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
344 refcount_set(&rq->ref, 1);
345
346 if (!op_is_flush(data->cmd_flags)) {
347 struct elevator_queue *e = data->q->elevator;
348
349 rq->elv.icq = NULL;
350 if (e && e->type->ops.prepare_request) {
351 if (e->type->icq_cache)
352 blk_mq_sched_assign_ioc(rq);
353
354 e->type->ops.prepare_request(rq);
355 rq->rq_flags |= RQF_ELVPRIV;
356 }
357 }
358
359 data->hctx->queued++;
360 return rq;
361 }
362
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)363 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
364 {
365 struct request_queue *q = data->q;
366 struct elevator_queue *e = q->elevator;
367 u64 alloc_time_ns = 0;
368 unsigned int tag;
369
370 /* alloc_time includes depth and tag waits */
371 if (blk_queue_rq_alloc_time(q))
372 alloc_time_ns = ktime_get_ns();
373
374 if (data->cmd_flags & REQ_NOWAIT)
375 data->flags |= BLK_MQ_REQ_NOWAIT;
376
377 if (e) {
378 /*
379 * Flush requests are special and go directly to the
380 * dispatch list. Don't include reserved tags in the
381 * limiting, as it isn't useful.
382 */
383 if (!op_is_flush(data->cmd_flags) &&
384 e->type->ops.limit_depth &&
385 !(data->flags & BLK_MQ_REQ_RESERVED))
386 e->type->ops.limit_depth(data->cmd_flags, data);
387 }
388
389 retry:
390 data->ctx = blk_mq_get_ctx(q);
391 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
392 if (!e)
393 blk_mq_tag_busy(data->hctx);
394
395 /*
396 * Waiting allocations only fail because of an inactive hctx. In that
397 * case just retry the hctx assignment and tag allocation as CPU hotplug
398 * should have migrated us to an online CPU by now.
399 */
400 tag = blk_mq_get_tag(data);
401 if (tag == BLK_MQ_NO_TAG) {
402 if (data->flags & BLK_MQ_REQ_NOWAIT)
403 return NULL;
404
405 /*
406 * Give up the CPU and sleep for a random short time to ensure
407 * that thread using a realtime scheduling class are migrated
408 * off the CPU, and thus off the hctx that is going away.
409 */
410 msleep(3);
411 goto retry;
412 }
413 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
414 }
415
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)416 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
417 blk_mq_req_flags_t flags)
418 {
419 struct blk_mq_alloc_data data = {
420 .q = q,
421 .flags = flags,
422 .cmd_flags = op,
423 };
424 struct request *rq;
425 int ret;
426
427 ret = blk_queue_enter(q, flags);
428 if (ret)
429 return ERR_PTR(ret);
430
431 rq = __blk_mq_alloc_request(&data);
432 if (!rq)
433 goto out_queue_exit;
434 rq->__data_len = 0;
435 rq->__sector = (sector_t) -1;
436 rq->bio = rq->biotail = NULL;
437 return rq;
438 out_queue_exit:
439 blk_queue_exit(q);
440 return ERR_PTR(-EWOULDBLOCK);
441 }
442 EXPORT_SYMBOL(blk_mq_alloc_request);
443
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)444 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
445 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
446 {
447 struct blk_mq_alloc_data data = {
448 .q = q,
449 .flags = flags,
450 .cmd_flags = op,
451 };
452 u64 alloc_time_ns = 0;
453 unsigned int cpu;
454 unsigned int tag;
455 int ret;
456
457 /* alloc_time includes depth and tag waits */
458 if (blk_queue_rq_alloc_time(q))
459 alloc_time_ns = ktime_get_ns();
460
461 /*
462 * If the tag allocator sleeps we could get an allocation for a
463 * different hardware context. No need to complicate the low level
464 * allocator for this for the rare use case of a command tied to
465 * a specific queue.
466 */
467 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
468 return ERR_PTR(-EINVAL);
469
470 if (hctx_idx >= q->nr_hw_queues)
471 return ERR_PTR(-EIO);
472
473 ret = blk_queue_enter(q, flags);
474 if (ret)
475 return ERR_PTR(ret);
476
477 /*
478 * Check if the hardware context is actually mapped to anything.
479 * If not tell the caller that it should skip this queue.
480 */
481 ret = -EXDEV;
482 data.hctx = q->queue_hw_ctx[hctx_idx];
483 if (!blk_mq_hw_queue_mapped(data.hctx))
484 goto out_queue_exit;
485 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
486 data.ctx = __blk_mq_get_ctx(q, cpu);
487
488 if (!q->elevator)
489 blk_mq_tag_busy(data.hctx);
490
491 ret = -EWOULDBLOCK;
492 tag = blk_mq_get_tag(&data);
493 if (tag == BLK_MQ_NO_TAG)
494 goto out_queue_exit;
495 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
496
497 out_queue_exit:
498 blk_queue_exit(q);
499 return ERR_PTR(ret);
500 }
501 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
502
__blk_mq_free_request(struct request * rq)503 static void __blk_mq_free_request(struct request *rq)
504 {
505 struct request_queue *q = rq->q;
506 struct blk_mq_ctx *ctx = rq->mq_ctx;
507 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
508 const int sched_tag = rq->internal_tag;
509
510 blk_crypto_free_request(rq);
511 blk_pm_mark_last_busy(rq);
512 rq->mq_hctx = NULL;
513 if (rq->tag != BLK_MQ_NO_TAG)
514 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
515 if (sched_tag != BLK_MQ_NO_TAG)
516 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
517 blk_mq_sched_restart(hctx);
518 blk_queue_exit(q);
519 }
520
blk_mq_free_request(struct request * rq)521 void blk_mq_free_request(struct request *rq)
522 {
523 struct request_queue *q = rq->q;
524 struct elevator_queue *e = q->elevator;
525 struct blk_mq_ctx *ctx = rq->mq_ctx;
526 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
527
528 if (rq->rq_flags & RQF_ELVPRIV) {
529 if (e && e->type->ops.finish_request)
530 e->type->ops.finish_request(rq);
531 if (rq->elv.icq) {
532 put_io_context(rq->elv.icq->ioc);
533 rq->elv.icq = NULL;
534 }
535 }
536
537 ctx->rq_completed[rq_is_sync(rq)]++;
538 if (rq->rq_flags & RQF_MQ_INFLIGHT)
539 __blk_mq_dec_active_requests(hctx);
540
541 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
542 laptop_io_completion(q->backing_dev_info);
543
544 rq_qos_done(q, rq);
545
546 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
547 if (refcount_dec_and_test(&rq->ref))
548 __blk_mq_free_request(rq);
549 }
550 EXPORT_SYMBOL_GPL(blk_mq_free_request);
551
__blk_mq_end_request(struct request * rq,blk_status_t error)552 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
553 {
554 u64 now = 0;
555
556 if (blk_mq_need_time_stamp(rq))
557 now = ktime_get_ns();
558
559 if (rq->rq_flags & RQF_STATS) {
560 blk_mq_poll_stats_start(rq->q);
561 blk_stat_add(rq, now);
562 }
563
564 blk_mq_sched_completed_request(rq, now);
565
566 blk_account_io_done(rq, now);
567
568 if (rq->end_io) {
569 rq_qos_done(rq->q, rq);
570 rq->end_io(rq, error);
571 } else {
572 blk_mq_free_request(rq);
573 }
574 }
575 EXPORT_SYMBOL(__blk_mq_end_request);
576
blk_mq_end_request(struct request * rq,blk_status_t error)577 void blk_mq_end_request(struct request *rq, blk_status_t error)
578 {
579 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
580 BUG();
581 __blk_mq_end_request(rq, error);
582 }
583 EXPORT_SYMBOL(blk_mq_end_request);
584
585 /*
586 * Softirq action handler - move entries to local list and loop over them
587 * while passing them to the queue registered handler.
588 */
blk_done_softirq(struct softirq_action * h)589 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
590 {
591 struct list_head *cpu_list, local_list;
592
593 local_irq_disable();
594 cpu_list = this_cpu_ptr(&blk_cpu_done);
595 list_replace_init(cpu_list, &local_list);
596 local_irq_enable();
597
598 while (!list_empty(&local_list)) {
599 struct request *rq;
600
601 rq = list_entry(local_list.next, struct request, ipi_list);
602 list_del_init(&rq->ipi_list);
603 rq->q->mq_ops->complete(rq);
604 }
605 }
606
blk_mq_trigger_softirq(struct request * rq)607 static void blk_mq_trigger_softirq(struct request *rq)
608 {
609 struct list_head *list;
610 unsigned long flags;
611
612 local_irq_save(flags);
613 list = this_cpu_ptr(&blk_cpu_done);
614 list_add_tail(&rq->ipi_list, list);
615
616 /*
617 * If the list only contains our just added request, signal a raise of
618 * the softirq. If there are already entries there, someone already
619 * raised the irq but it hasn't run yet.
620 */
621 if (list->next == &rq->ipi_list)
622 raise_softirq_irqoff(BLOCK_SOFTIRQ);
623 local_irq_restore(flags);
624 }
625
blk_softirq_cpu_dead(unsigned int cpu)626 static int blk_softirq_cpu_dead(unsigned int cpu)
627 {
628 /*
629 * If a CPU goes away, splice its entries to the current CPU
630 * and trigger a run of the softirq
631 */
632 local_irq_disable();
633 list_splice_init(&per_cpu(blk_cpu_done, cpu),
634 this_cpu_ptr(&blk_cpu_done));
635 raise_softirq_irqoff(BLOCK_SOFTIRQ);
636 local_irq_enable();
637
638 return 0;
639 }
640
641
__blk_mq_complete_request_remote(void * data)642 static void __blk_mq_complete_request_remote(void *data)
643 {
644 struct request *rq = data;
645
646 /*
647 * For most of single queue controllers, there is only one irq vector
648 * for handling I/O completion, and the only irq's affinity is set
649 * to all possible CPUs. On most of ARCHs, this affinity means the irq
650 * is handled on one specific CPU.
651 *
652 * So complete I/O requests in softirq context in case of single queue
653 * devices to avoid degrading I/O performance due to irqsoff latency.
654 */
655 if (rq->q->nr_hw_queues == 1)
656 blk_mq_trigger_softirq(rq);
657 else
658 rq->q->mq_ops->complete(rq);
659 }
660
blk_mq_complete_need_ipi(struct request * rq)661 static inline bool blk_mq_complete_need_ipi(struct request *rq)
662 {
663 int cpu = raw_smp_processor_id();
664
665 if (!IS_ENABLED(CONFIG_SMP) ||
666 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
667 return false;
668
669 /* same CPU or cache domain? Complete locally */
670 if (cpu == rq->mq_ctx->cpu ||
671 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
672 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
673 return false;
674
675 /* don't try to IPI to an offline CPU */
676 return cpu_online(rq->mq_ctx->cpu);
677 }
678
blk_mq_complete_request_remote(struct request * rq)679 bool blk_mq_complete_request_remote(struct request *rq)
680 {
681 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
682
683 /*
684 * For a polled request, always complete locallly, it's pointless
685 * to redirect the completion.
686 */
687 if (rq->cmd_flags & REQ_HIPRI)
688 return false;
689
690 if (blk_mq_complete_need_ipi(rq)) {
691 rq->csd.func = __blk_mq_complete_request_remote;
692 rq->csd.info = rq;
693 rq->csd.flags = 0;
694 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
695 } else {
696 if (rq->q->nr_hw_queues > 1)
697 return false;
698 blk_mq_trigger_softirq(rq);
699 }
700
701 return true;
702 }
703 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
704
705 /**
706 * blk_mq_complete_request - end I/O on a request
707 * @rq: the request being processed
708 *
709 * Description:
710 * Complete a request by scheduling the ->complete_rq operation.
711 **/
blk_mq_complete_request(struct request * rq)712 void blk_mq_complete_request(struct request *rq)
713 {
714 if (!blk_mq_complete_request_remote(rq))
715 rq->q->mq_ops->complete(rq);
716 }
717 EXPORT_SYMBOL(blk_mq_complete_request);
718
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)719 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
720 __releases(hctx->srcu)
721 {
722 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
723 rcu_read_unlock();
724 else
725 srcu_read_unlock(hctx->srcu, srcu_idx);
726 }
727
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)728 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
729 __acquires(hctx->srcu)
730 {
731 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
732 /* shut up gcc false positive */
733 *srcu_idx = 0;
734 rcu_read_lock();
735 } else
736 *srcu_idx = srcu_read_lock(hctx->srcu);
737 }
738
739 /**
740 * blk_mq_start_request - Start processing a request
741 * @rq: Pointer to request to be started
742 *
743 * Function used by device drivers to notify the block layer that a request
744 * is going to be processed now, so blk layer can do proper initializations
745 * such as starting the timeout timer.
746 */
blk_mq_start_request(struct request * rq)747 void blk_mq_start_request(struct request *rq)
748 {
749 struct request_queue *q = rq->q;
750
751 trace_block_rq_issue(q, rq);
752
753 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
754 rq->io_start_time_ns = ktime_get_ns();
755 rq->stats_sectors = blk_rq_sectors(rq);
756 rq->rq_flags |= RQF_STATS;
757 rq_qos_issue(q, rq);
758 }
759
760 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
761
762 blk_add_timer(rq);
763 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
764
765 #ifdef CONFIG_BLK_DEV_INTEGRITY
766 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
767 q->integrity.profile->prepare_fn(rq);
768 #endif
769 }
770 EXPORT_SYMBOL(blk_mq_start_request);
771
__blk_mq_requeue_request(struct request * rq)772 static void __blk_mq_requeue_request(struct request *rq)
773 {
774 struct request_queue *q = rq->q;
775
776 blk_mq_put_driver_tag(rq);
777
778 trace_block_rq_requeue(q, rq);
779 rq_qos_requeue(q, rq);
780
781 if (blk_mq_request_started(rq)) {
782 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
783 rq->rq_flags &= ~RQF_TIMED_OUT;
784 }
785 }
786
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)787 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
788 {
789 __blk_mq_requeue_request(rq);
790
791 /* this request will be re-inserted to io scheduler queue */
792 blk_mq_sched_requeue_request(rq);
793
794 BUG_ON(!list_empty(&rq->queuelist));
795 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
796 }
797 EXPORT_SYMBOL(blk_mq_requeue_request);
798
blk_mq_requeue_work(struct work_struct * work)799 static void blk_mq_requeue_work(struct work_struct *work)
800 {
801 struct request_queue *q =
802 container_of(work, struct request_queue, requeue_work.work);
803 LIST_HEAD(rq_list);
804 struct request *rq, *next;
805
806 spin_lock_irq(&q->requeue_lock);
807 list_splice_init(&q->requeue_list, &rq_list);
808 spin_unlock_irq(&q->requeue_lock);
809
810 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
811 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
812 continue;
813
814 rq->rq_flags &= ~RQF_SOFTBARRIER;
815 list_del_init(&rq->queuelist);
816 /*
817 * If RQF_DONTPREP, rq has contained some driver specific
818 * data, so insert it to hctx dispatch list to avoid any
819 * merge.
820 */
821 if (rq->rq_flags & RQF_DONTPREP)
822 blk_mq_request_bypass_insert(rq, false, false);
823 else
824 blk_mq_sched_insert_request(rq, true, false, false);
825 }
826
827 while (!list_empty(&rq_list)) {
828 rq = list_entry(rq_list.next, struct request, queuelist);
829 list_del_init(&rq->queuelist);
830 blk_mq_sched_insert_request(rq, false, false, false);
831 }
832
833 blk_mq_run_hw_queues(q, false);
834 }
835
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)836 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
837 bool kick_requeue_list)
838 {
839 struct request_queue *q = rq->q;
840 unsigned long flags;
841
842 /*
843 * We abuse this flag that is otherwise used by the I/O scheduler to
844 * request head insertion from the workqueue.
845 */
846 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
847
848 spin_lock_irqsave(&q->requeue_lock, flags);
849 if (at_head) {
850 rq->rq_flags |= RQF_SOFTBARRIER;
851 list_add(&rq->queuelist, &q->requeue_list);
852 } else {
853 list_add_tail(&rq->queuelist, &q->requeue_list);
854 }
855 spin_unlock_irqrestore(&q->requeue_lock, flags);
856
857 if (kick_requeue_list)
858 blk_mq_kick_requeue_list(q);
859 }
860
blk_mq_kick_requeue_list(struct request_queue * q)861 void blk_mq_kick_requeue_list(struct request_queue *q)
862 {
863 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
864 }
865 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
866
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)867 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
868 unsigned long msecs)
869 {
870 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
871 msecs_to_jiffies(msecs));
872 }
873 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
874
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)875 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
876 {
877 if (tag < tags->nr_tags) {
878 prefetch(tags->rqs[tag]);
879 return tags->rqs[tag];
880 }
881
882 return NULL;
883 }
884 EXPORT_SYMBOL(blk_mq_tag_to_rq);
885
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)886 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
887 void *priv, bool reserved)
888 {
889 /*
890 * If we find a request that isn't idle and the queue matches,
891 * we know the queue is busy. Return false to stop the iteration.
892 */
893 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
894 bool *busy = priv;
895
896 *busy = true;
897 return false;
898 }
899
900 return true;
901 }
902
blk_mq_queue_inflight(struct request_queue * q)903 bool blk_mq_queue_inflight(struct request_queue *q)
904 {
905 bool busy = false;
906
907 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
908 return busy;
909 }
910 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
911
blk_mq_rq_timed_out(struct request * req,bool reserved)912 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
913 {
914 req->rq_flags |= RQF_TIMED_OUT;
915 if (req->q->mq_ops->timeout) {
916 enum blk_eh_timer_return ret;
917
918 ret = req->q->mq_ops->timeout(req, reserved);
919 if (ret == BLK_EH_DONE)
920 return;
921 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
922 }
923
924 blk_add_timer(req);
925 }
926
blk_mq_req_expired(struct request * rq,unsigned long * next)927 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
928 {
929 unsigned long deadline;
930
931 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
932 return false;
933 if (rq->rq_flags & RQF_TIMED_OUT)
934 return false;
935
936 deadline = READ_ONCE(rq->deadline);
937 if (time_after_eq(jiffies, deadline))
938 return true;
939
940 if (*next == 0)
941 *next = deadline;
942 else if (time_after(*next, deadline))
943 *next = deadline;
944 return false;
945 }
946
blk_mq_put_rq_ref(struct request * rq)947 void blk_mq_put_rq_ref(struct request *rq)
948 {
949 if (is_flush_rq(rq))
950 rq->end_io(rq, 0);
951 else if (refcount_dec_and_test(&rq->ref))
952 __blk_mq_free_request(rq);
953 }
954
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)955 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
956 struct request *rq, void *priv, bool reserved)
957 {
958 unsigned long *next = priv;
959
960 /*
961 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
962 * be reallocated underneath the timeout handler's processing, then
963 * the expire check is reliable. If the request is not expired, then
964 * it was completed and reallocated as a new request after returning
965 * from blk_mq_check_expired().
966 */
967 if (blk_mq_req_expired(rq, next))
968 blk_mq_rq_timed_out(rq, reserved);
969 return true;
970 }
971
blk_mq_timeout_work(struct work_struct * work)972 static void blk_mq_timeout_work(struct work_struct *work)
973 {
974 struct request_queue *q =
975 container_of(work, struct request_queue, timeout_work);
976 unsigned long next = 0;
977 struct blk_mq_hw_ctx *hctx;
978 int i;
979
980 /* A deadlock might occur if a request is stuck requiring a
981 * timeout at the same time a queue freeze is waiting
982 * completion, since the timeout code would not be able to
983 * acquire the queue reference here.
984 *
985 * That's why we don't use blk_queue_enter here; instead, we use
986 * percpu_ref_tryget directly, because we need to be able to
987 * obtain a reference even in the short window between the queue
988 * starting to freeze, by dropping the first reference in
989 * blk_freeze_queue_start, and the moment the last request is
990 * consumed, marked by the instant q_usage_counter reaches
991 * zero.
992 */
993 if (!percpu_ref_tryget(&q->q_usage_counter))
994 return;
995
996 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
997
998 if (next != 0) {
999 mod_timer(&q->timeout, next);
1000 } else {
1001 /*
1002 * Request timeouts are handled as a forward rolling timer. If
1003 * we end up here it means that no requests are pending and
1004 * also that no request has been pending for a while. Mark
1005 * each hctx as idle.
1006 */
1007 queue_for_each_hw_ctx(q, hctx, i) {
1008 /* the hctx may be unmapped, so check it here */
1009 if (blk_mq_hw_queue_mapped(hctx))
1010 blk_mq_tag_idle(hctx);
1011 }
1012 }
1013 blk_queue_exit(q);
1014 }
1015
1016 struct flush_busy_ctx_data {
1017 struct blk_mq_hw_ctx *hctx;
1018 struct list_head *list;
1019 };
1020
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1021 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1022 {
1023 struct flush_busy_ctx_data *flush_data = data;
1024 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1025 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1026 enum hctx_type type = hctx->type;
1027
1028 spin_lock(&ctx->lock);
1029 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1030 sbitmap_clear_bit(sb, bitnr);
1031 spin_unlock(&ctx->lock);
1032 return true;
1033 }
1034
1035 /*
1036 * Process software queues that have been marked busy, splicing them
1037 * to the for-dispatch
1038 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1039 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1040 {
1041 struct flush_busy_ctx_data data = {
1042 .hctx = hctx,
1043 .list = list,
1044 };
1045
1046 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1047 }
1048 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1049
1050 struct dispatch_rq_data {
1051 struct blk_mq_hw_ctx *hctx;
1052 struct request *rq;
1053 };
1054
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1055 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1056 void *data)
1057 {
1058 struct dispatch_rq_data *dispatch_data = data;
1059 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1060 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1061 enum hctx_type type = hctx->type;
1062
1063 spin_lock(&ctx->lock);
1064 if (!list_empty(&ctx->rq_lists[type])) {
1065 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1066 list_del_init(&dispatch_data->rq->queuelist);
1067 if (list_empty(&ctx->rq_lists[type]))
1068 sbitmap_clear_bit(sb, bitnr);
1069 }
1070 spin_unlock(&ctx->lock);
1071
1072 return !dispatch_data->rq;
1073 }
1074
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1075 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1076 struct blk_mq_ctx *start)
1077 {
1078 unsigned off = start ? start->index_hw[hctx->type] : 0;
1079 struct dispatch_rq_data data = {
1080 .hctx = hctx,
1081 .rq = NULL,
1082 };
1083
1084 __sbitmap_for_each_set(&hctx->ctx_map, off,
1085 dispatch_rq_from_ctx, &data);
1086
1087 return data.rq;
1088 }
1089
queued_to_index(unsigned int queued)1090 static inline unsigned int queued_to_index(unsigned int queued)
1091 {
1092 if (!queued)
1093 return 0;
1094
1095 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1096 }
1097
__blk_mq_get_driver_tag(struct request * rq)1098 static bool __blk_mq_get_driver_tag(struct request *rq)
1099 {
1100 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1101 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1102 int tag;
1103
1104 blk_mq_tag_busy(rq->mq_hctx);
1105
1106 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1107 bt = rq->mq_hctx->tags->breserved_tags;
1108 tag_offset = 0;
1109 } else {
1110 if (!hctx_may_queue(rq->mq_hctx, bt))
1111 return false;
1112 }
1113
1114 tag = __sbitmap_queue_get(bt);
1115 if (tag == BLK_MQ_NO_TAG)
1116 return false;
1117
1118 rq->tag = tag + tag_offset;
1119 return true;
1120 }
1121
blk_mq_get_driver_tag(struct request * rq)1122 static bool blk_mq_get_driver_tag(struct request *rq)
1123 {
1124 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1125
1126 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1127 return false;
1128
1129 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1130 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1131 rq->rq_flags |= RQF_MQ_INFLIGHT;
1132 __blk_mq_inc_active_requests(hctx);
1133 }
1134 hctx->tags->rqs[rq->tag] = rq;
1135 return true;
1136 }
1137
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1138 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1139 int flags, void *key)
1140 {
1141 struct blk_mq_hw_ctx *hctx;
1142
1143 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1144
1145 spin_lock(&hctx->dispatch_wait_lock);
1146 if (!list_empty(&wait->entry)) {
1147 struct sbitmap_queue *sbq;
1148
1149 list_del_init(&wait->entry);
1150 sbq = hctx->tags->bitmap_tags;
1151 atomic_dec(&sbq->ws_active);
1152 }
1153 spin_unlock(&hctx->dispatch_wait_lock);
1154
1155 blk_mq_run_hw_queue(hctx, true);
1156 return 1;
1157 }
1158
1159 /*
1160 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1161 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1162 * restart. For both cases, take care to check the condition again after
1163 * marking us as waiting.
1164 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1165 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1166 struct request *rq)
1167 {
1168 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1169 struct wait_queue_head *wq;
1170 wait_queue_entry_t *wait;
1171 bool ret;
1172
1173 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1174 blk_mq_sched_mark_restart_hctx(hctx);
1175
1176 /*
1177 * It's possible that a tag was freed in the window between the
1178 * allocation failure and adding the hardware queue to the wait
1179 * queue.
1180 *
1181 * Don't clear RESTART here, someone else could have set it.
1182 * At most this will cost an extra queue run.
1183 */
1184 return blk_mq_get_driver_tag(rq);
1185 }
1186
1187 wait = &hctx->dispatch_wait;
1188 if (!list_empty_careful(&wait->entry))
1189 return false;
1190
1191 wq = &bt_wait_ptr(sbq, hctx)->wait;
1192
1193 spin_lock_irq(&wq->lock);
1194 spin_lock(&hctx->dispatch_wait_lock);
1195 if (!list_empty(&wait->entry)) {
1196 spin_unlock(&hctx->dispatch_wait_lock);
1197 spin_unlock_irq(&wq->lock);
1198 return false;
1199 }
1200
1201 atomic_inc(&sbq->ws_active);
1202 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1203 __add_wait_queue(wq, wait);
1204
1205 /*
1206 * It's possible that a tag was freed in the window between the
1207 * allocation failure and adding the hardware queue to the wait
1208 * queue.
1209 */
1210 ret = blk_mq_get_driver_tag(rq);
1211 if (!ret) {
1212 spin_unlock(&hctx->dispatch_wait_lock);
1213 spin_unlock_irq(&wq->lock);
1214 return false;
1215 }
1216
1217 /*
1218 * We got a tag, remove ourselves from the wait queue to ensure
1219 * someone else gets the wakeup.
1220 */
1221 list_del_init(&wait->entry);
1222 atomic_dec(&sbq->ws_active);
1223 spin_unlock(&hctx->dispatch_wait_lock);
1224 spin_unlock_irq(&wq->lock);
1225
1226 return true;
1227 }
1228
1229 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1230 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1231 /*
1232 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1233 * - EWMA is one simple way to compute running average value
1234 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1235 * - take 4 as factor for avoiding to get too small(0) result, and this
1236 * factor doesn't matter because EWMA decreases exponentially
1237 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1238 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1239 {
1240 unsigned int ewma;
1241
1242 ewma = hctx->dispatch_busy;
1243
1244 if (!ewma && !busy)
1245 return;
1246
1247 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1248 if (busy)
1249 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1250 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1251
1252 hctx->dispatch_busy = ewma;
1253 }
1254
1255 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1256
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1257 static void blk_mq_handle_dev_resource(struct request *rq,
1258 struct list_head *list)
1259 {
1260 struct request *next =
1261 list_first_entry_or_null(list, struct request, queuelist);
1262
1263 /*
1264 * If an I/O scheduler has been configured and we got a driver tag for
1265 * the next request already, free it.
1266 */
1267 if (next)
1268 blk_mq_put_driver_tag(next);
1269
1270 list_add(&rq->queuelist, list);
1271 __blk_mq_requeue_request(rq);
1272 }
1273
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1274 static void blk_mq_handle_zone_resource(struct request *rq,
1275 struct list_head *zone_list)
1276 {
1277 /*
1278 * If we end up here it is because we cannot dispatch a request to a
1279 * specific zone due to LLD level zone-write locking or other zone
1280 * related resource not being available. In this case, set the request
1281 * aside in zone_list for retrying it later.
1282 */
1283 list_add(&rq->queuelist, zone_list);
1284 __blk_mq_requeue_request(rq);
1285 }
1286
1287 enum prep_dispatch {
1288 PREP_DISPATCH_OK,
1289 PREP_DISPATCH_NO_TAG,
1290 PREP_DISPATCH_NO_BUDGET,
1291 };
1292
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1293 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1294 bool need_budget)
1295 {
1296 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1297
1298 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1299 blk_mq_put_driver_tag(rq);
1300 return PREP_DISPATCH_NO_BUDGET;
1301 }
1302
1303 if (!blk_mq_get_driver_tag(rq)) {
1304 /*
1305 * The initial allocation attempt failed, so we need to
1306 * rerun the hardware queue when a tag is freed. The
1307 * waitqueue takes care of that. If the queue is run
1308 * before we add this entry back on the dispatch list,
1309 * we'll re-run it below.
1310 */
1311 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1312 /*
1313 * All budgets not got from this function will be put
1314 * together during handling partial dispatch
1315 */
1316 if (need_budget)
1317 blk_mq_put_dispatch_budget(rq->q);
1318 return PREP_DISPATCH_NO_TAG;
1319 }
1320 }
1321
1322 return PREP_DISPATCH_OK;
1323 }
1324
1325 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1326 static void blk_mq_release_budgets(struct request_queue *q,
1327 unsigned int nr_budgets)
1328 {
1329 int i;
1330
1331 for (i = 0; i < nr_budgets; i++)
1332 blk_mq_put_dispatch_budget(q);
1333 }
1334
1335 /*
1336 * Returns true if we did some work AND can potentially do more.
1337 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1338 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1339 unsigned int nr_budgets)
1340 {
1341 enum prep_dispatch prep;
1342 struct request_queue *q = hctx->queue;
1343 struct request *rq, *nxt;
1344 int errors, queued;
1345 blk_status_t ret = BLK_STS_OK;
1346 LIST_HEAD(zone_list);
1347
1348 if (list_empty(list))
1349 return false;
1350
1351 /*
1352 * Now process all the entries, sending them to the driver.
1353 */
1354 errors = queued = 0;
1355 do {
1356 struct blk_mq_queue_data bd;
1357
1358 rq = list_first_entry(list, struct request, queuelist);
1359
1360 WARN_ON_ONCE(hctx != rq->mq_hctx);
1361 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1362 if (prep != PREP_DISPATCH_OK)
1363 break;
1364
1365 list_del_init(&rq->queuelist);
1366
1367 bd.rq = rq;
1368
1369 /*
1370 * Flag last if we have no more requests, or if we have more
1371 * but can't assign a driver tag to it.
1372 */
1373 if (list_empty(list))
1374 bd.last = true;
1375 else {
1376 nxt = list_first_entry(list, struct request, queuelist);
1377 bd.last = !blk_mq_get_driver_tag(nxt);
1378 }
1379
1380 /*
1381 * once the request is queued to lld, no need to cover the
1382 * budget any more
1383 */
1384 if (nr_budgets)
1385 nr_budgets--;
1386 ret = q->mq_ops->queue_rq(hctx, &bd);
1387 switch (ret) {
1388 case BLK_STS_OK:
1389 queued++;
1390 break;
1391 case BLK_STS_RESOURCE:
1392 case BLK_STS_DEV_RESOURCE:
1393 blk_mq_handle_dev_resource(rq, list);
1394 goto out;
1395 case BLK_STS_ZONE_RESOURCE:
1396 /*
1397 * Move the request to zone_list and keep going through
1398 * the dispatch list to find more requests the drive can
1399 * accept.
1400 */
1401 blk_mq_handle_zone_resource(rq, &zone_list);
1402 break;
1403 default:
1404 errors++;
1405 blk_mq_end_request(rq, BLK_STS_IOERR);
1406 }
1407 } while (!list_empty(list));
1408 out:
1409 if (!list_empty(&zone_list))
1410 list_splice_tail_init(&zone_list, list);
1411
1412 hctx->dispatched[queued_to_index(queued)]++;
1413
1414 /* If we didn't flush the entire list, we could have told the driver
1415 * there was more coming, but that turned out to be a lie.
1416 */
1417 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1418 q->mq_ops->commit_rqs(hctx);
1419 /*
1420 * Any items that need requeuing? Stuff them into hctx->dispatch,
1421 * that is where we will continue on next queue run.
1422 */
1423 if (!list_empty(list)) {
1424 bool needs_restart;
1425 /* For non-shared tags, the RESTART check will suffice */
1426 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1427 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1428 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1429
1430 blk_mq_release_budgets(q, nr_budgets);
1431
1432 spin_lock(&hctx->lock);
1433 list_splice_tail_init(list, &hctx->dispatch);
1434 spin_unlock(&hctx->lock);
1435
1436 /*
1437 * Order adding requests to hctx->dispatch and checking
1438 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1439 * in blk_mq_sched_restart(). Avoid restart code path to
1440 * miss the new added requests to hctx->dispatch, meantime
1441 * SCHED_RESTART is observed here.
1442 */
1443 smp_mb();
1444
1445 /*
1446 * If SCHED_RESTART was set by the caller of this function and
1447 * it is no longer set that means that it was cleared by another
1448 * thread and hence that a queue rerun is needed.
1449 *
1450 * If 'no_tag' is set, that means that we failed getting
1451 * a driver tag with an I/O scheduler attached. If our dispatch
1452 * waitqueue is no longer active, ensure that we run the queue
1453 * AFTER adding our entries back to the list.
1454 *
1455 * If no I/O scheduler has been configured it is possible that
1456 * the hardware queue got stopped and restarted before requests
1457 * were pushed back onto the dispatch list. Rerun the queue to
1458 * avoid starvation. Notes:
1459 * - blk_mq_run_hw_queue() checks whether or not a queue has
1460 * been stopped before rerunning a queue.
1461 * - Some but not all block drivers stop a queue before
1462 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1463 * and dm-rq.
1464 *
1465 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1466 * bit is set, run queue after a delay to avoid IO stalls
1467 * that could otherwise occur if the queue is idle. We'll do
1468 * similar if we couldn't get budget and SCHED_RESTART is set.
1469 */
1470 needs_restart = blk_mq_sched_needs_restart(hctx);
1471 if (!needs_restart ||
1472 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1473 blk_mq_run_hw_queue(hctx, true);
1474 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1475 no_budget_avail))
1476 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1477
1478 blk_mq_update_dispatch_busy(hctx, true);
1479 return false;
1480 } else
1481 blk_mq_update_dispatch_busy(hctx, false);
1482
1483 return (queued + errors) != 0;
1484 }
1485
1486 /**
1487 * __blk_mq_run_hw_queue - Run a hardware queue.
1488 * @hctx: Pointer to the hardware queue to run.
1489 *
1490 * Send pending requests to the hardware.
1491 */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1492 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1493 {
1494 int srcu_idx;
1495
1496 /*
1497 * We should be running this queue from one of the CPUs that
1498 * are mapped to it.
1499 *
1500 * There are at least two related races now between setting
1501 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1502 * __blk_mq_run_hw_queue():
1503 *
1504 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1505 * but later it becomes online, then this warning is harmless
1506 * at all
1507 *
1508 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1509 * but later it becomes offline, then the warning can't be
1510 * triggered, and we depend on blk-mq timeout handler to
1511 * handle dispatched requests to this hctx
1512 */
1513 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1514 cpu_online(hctx->next_cpu)) {
1515 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1516 raw_smp_processor_id(),
1517 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1518 dump_stack();
1519 }
1520
1521 /*
1522 * We can't run the queue inline with ints disabled. Ensure that
1523 * we catch bad users of this early.
1524 */
1525 WARN_ON_ONCE(in_interrupt());
1526
1527 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1528
1529 hctx_lock(hctx, &srcu_idx);
1530 blk_mq_sched_dispatch_requests(hctx);
1531 hctx_unlock(hctx, srcu_idx);
1532 }
1533
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1534 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1535 {
1536 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1537
1538 if (cpu >= nr_cpu_ids)
1539 cpu = cpumask_first(hctx->cpumask);
1540 return cpu;
1541 }
1542
1543 /*
1544 * It'd be great if the workqueue API had a way to pass
1545 * in a mask and had some smarts for more clever placement.
1546 * For now we just round-robin here, switching for every
1547 * BLK_MQ_CPU_WORK_BATCH queued items.
1548 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1549 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1550 {
1551 bool tried = false;
1552 int next_cpu = hctx->next_cpu;
1553
1554 if (hctx->queue->nr_hw_queues == 1)
1555 return WORK_CPU_UNBOUND;
1556
1557 if (--hctx->next_cpu_batch <= 0) {
1558 select_cpu:
1559 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1560 cpu_online_mask);
1561 if (next_cpu >= nr_cpu_ids)
1562 next_cpu = blk_mq_first_mapped_cpu(hctx);
1563 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1564 }
1565
1566 /*
1567 * Do unbound schedule if we can't find a online CPU for this hctx,
1568 * and it should only happen in the path of handling CPU DEAD.
1569 */
1570 if (!cpu_online(next_cpu)) {
1571 if (!tried) {
1572 tried = true;
1573 goto select_cpu;
1574 }
1575
1576 /*
1577 * Make sure to re-select CPU next time once after CPUs
1578 * in hctx->cpumask become online again.
1579 */
1580 hctx->next_cpu = next_cpu;
1581 hctx->next_cpu_batch = 1;
1582 return WORK_CPU_UNBOUND;
1583 }
1584
1585 hctx->next_cpu = next_cpu;
1586 return next_cpu;
1587 }
1588
1589 /**
1590 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1591 * @hctx: Pointer to the hardware queue to run.
1592 * @async: If we want to run the queue asynchronously.
1593 * @msecs: Microseconds of delay to wait before running the queue.
1594 *
1595 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1596 * with a delay of @msecs.
1597 */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1598 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1599 unsigned long msecs)
1600 {
1601 if (unlikely(blk_mq_hctx_stopped(hctx)))
1602 return;
1603
1604 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1605 int cpu = get_cpu();
1606 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1607 __blk_mq_run_hw_queue(hctx);
1608 put_cpu();
1609 return;
1610 }
1611
1612 put_cpu();
1613 }
1614
1615 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1616 msecs_to_jiffies(msecs));
1617 }
1618
1619 /**
1620 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1621 * @hctx: Pointer to the hardware queue to run.
1622 * @msecs: Microseconds of delay to wait before running the queue.
1623 *
1624 * Run a hardware queue asynchronously with a delay of @msecs.
1625 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1626 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1627 {
1628 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1629 }
1630 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1631
1632 /**
1633 * blk_mq_run_hw_queue - Start to run a hardware queue.
1634 * @hctx: Pointer to the hardware queue to run.
1635 * @async: If we want to run the queue asynchronously.
1636 *
1637 * Check if the request queue is not in a quiesced state and if there are
1638 * pending requests to be sent. If this is true, run the queue to send requests
1639 * to hardware.
1640 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1641 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1642 {
1643 int srcu_idx;
1644 bool need_run;
1645
1646 /*
1647 * When queue is quiesced, we may be switching io scheduler, or
1648 * updating nr_hw_queues, or other things, and we can't run queue
1649 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1650 *
1651 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1652 * quiesced.
1653 */
1654 hctx_lock(hctx, &srcu_idx);
1655 need_run = !blk_queue_quiesced(hctx->queue) &&
1656 blk_mq_hctx_has_pending(hctx);
1657 hctx_unlock(hctx, srcu_idx);
1658
1659 if (need_run)
1660 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1661 }
1662 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1663
1664 /**
1665 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1666 * @q: Pointer to the request queue to run.
1667 * @async: If we want to run the queue asynchronously.
1668 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1669 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1670 {
1671 struct blk_mq_hw_ctx *hctx;
1672 int i;
1673
1674 queue_for_each_hw_ctx(q, hctx, i) {
1675 if (blk_mq_hctx_stopped(hctx))
1676 continue;
1677
1678 blk_mq_run_hw_queue(hctx, async);
1679 }
1680 }
1681 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1682
1683 /**
1684 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1685 * @q: Pointer to the request queue to run.
1686 * @msecs: Microseconds of delay to wait before running the queues.
1687 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1688 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1689 {
1690 struct blk_mq_hw_ctx *hctx;
1691 int i;
1692
1693 queue_for_each_hw_ctx(q, hctx, i) {
1694 if (blk_mq_hctx_stopped(hctx))
1695 continue;
1696
1697 blk_mq_delay_run_hw_queue(hctx, msecs);
1698 }
1699 }
1700 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1701
1702 /**
1703 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1704 * @q: request queue.
1705 *
1706 * The caller is responsible for serializing this function against
1707 * blk_mq_{start,stop}_hw_queue().
1708 */
blk_mq_queue_stopped(struct request_queue * q)1709 bool blk_mq_queue_stopped(struct request_queue *q)
1710 {
1711 struct blk_mq_hw_ctx *hctx;
1712 int i;
1713
1714 queue_for_each_hw_ctx(q, hctx, i)
1715 if (blk_mq_hctx_stopped(hctx))
1716 return true;
1717
1718 return false;
1719 }
1720 EXPORT_SYMBOL(blk_mq_queue_stopped);
1721
1722 /*
1723 * This function is often used for pausing .queue_rq() by driver when
1724 * there isn't enough resource or some conditions aren't satisfied, and
1725 * BLK_STS_RESOURCE is usually returned.
1726 *
1727 * We do not guarantee that dispatch can be drained or blocked
1728 * after blk_mq_stop_hw_queue() returns. Please use
1729 * blk_mq_quiesce_queue() for that requirement.
1730 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1731 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1732 {
1733 cancel_delayed_work(&hctx->run_work);
1734
1735 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1736 }
1737 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1738
1739 /*
1740 * This function is often used for pausing .queue_rq() by driver when
1741 * there isn't enough resource or some conditions aren't satisfied, and
1742 * BLK_STS_RESOURCE is usually returned.
1743 *
1744 * We do not guarantee that dispatch can be drained or blocked
1745 * after blk_mq_stop_hw_queues() returns. Please use
1746 * blk_mq_quiesce_queue() for that requirement.
1747 */
blk_mq_stop_hw_queues(struct request_queue * q)1748 void blk_mq_stop_hw_queues(struct request_queue *q)
1749 {
1750 struct blk_mq_hw_ctx *hctx;
1751 int i;
1752
1753 queue_for_each_hw_ctx(q, hctx, i)
1754 blk_mq_stop_hw_queue(hctx);
1755 }
1756 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1757
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1758 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1759 {
1760 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1761
1762 blk_mq_run_hw_queue(hctx, false);
1763 }
1764 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1765
blk_mq_start_hw_queues(struct request_queue * q)1766 void blk_mq_start_hw_queues(struct request_queue *q)
1767 {
1768 struct blk_mq_hw_ctx *hctx;
1769 int i;
1770
1771 queue_for_each_hw_ctx(q, hctx, i)
1772 blk_mq_start_hw_queue(hctx);
1773 }
1774 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1775
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1776 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1777 {
1778 if (!blk_mq_hctx_stopped(hctx))
1779 return;
1780
1781 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1782 blk_mq_run_hw_queue(hctx, async);
1783 }
1784 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1785
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1786 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1787 {
1788 struct blk_mq_hw_ctx *hctx;
1789 int i;
1790
1791 queue_for_each_hw_ctx(q, hctx, i)
1792 blk_mq_start_stopped_hw_queue(hctx, async);
1793 }
1794 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1795
blk_mq_run_work_fn(struct work_struct * work)1796 static void blk_mq_run_work_fn(struct work_struct *work)
1797 {
1798 struct blk_mq_hw_ctx *hctx;
1799
1800 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1801
1802 /*
1803 * If we are stopped, don't run the queue.
1804 */
1805 if (blk_mq_hctx_stopped(hctx))
1806 return;
1807
1808 __blk_mq_run_hw_queue(hctx);
1809 }
1810
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1811 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1812 struct request *rq,
1813 bool at_head)
1814 {
1815 struct blk_mq_ctx *ctx = rq->mq_ctx;
1816 enum hctx_type type = hctx->type;
1817
1818 lockdep_assert_held(&ctx->lock);
1819
1820 trace_block_rq_insert(hctx->queue, rq);
1821
1822 if (at_head)
1823 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1824 else
1825 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1826 }
1827
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1828 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1829 bool at_head)
1830 {
1831 struct blk_mq_ctx *ctx = rq->mq_ctx;
1832
1833 lockdep_assert_held(&ctx->lock);
1834
1835 __blk_mq_insert_req_list(hctx, rq, at_head);
1836 blk_mq_hctx_mark_pending(hctx, ctx);
1837 }
1838
1839 /**
1840 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1841 * @rq: Pointer to request to be inserted.
1842 * @at_head: true if the request should be inserted at the head of the list.
1843 * @run_queue: If we should run the hardware queue after inserting the request.
1844 *
1845 * Should only be used carefully, when the caller knows we want to
1846 * bypass a potential IO scheduler on the target device.
1847 */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1848 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1849 bool run_queue)
1850 {
1851 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1852
1853 spin_lock(&hctx->lock);
1854 if (at_head)
1855 list_add(&rq->queuelist, &hctx->dispatch);
1856 else
1857 list_add_tail(&rq->queuelist, &hctx->dispatch);
1858 spin_unlock(&hctx->lock);
1859
1860 if (run_queue)
1861 blk_mq_run_hw_queue(hctx, false);
1862 }
1863
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1864 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1865 struct list_head *list)
1866
1867 {
1868 struct request *rq;
1869 enum hctx_type type = hctx->type;
1870
1871 /*
1872 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1873 * offline now
1874 */
1875 list_for_each_entry(rq, list, queuelist) {
1876 BUG_ON(rq->mq_ctx != ctx);
1877 trace_block_rq_insert(hctx->queue, rq);
1878 }
1879
1880 spin_lock(&ctx->lock);
1881 list_splice_tail_init(list, &ctx->rq_lists[type]);
1882 blk_mq_hctx_mark_pending(hctx, ctx);
1883 spin_unlock(&ctx->lock);
1884 }
1885
plug_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)1886 static int plug_rq_cmp(void *priv, const struct list_head *a,
1887 const struct list_head *b)
1888 {
1889 struct request *rqa = container_of(a, struct request, queuelist);
1890 struct request *rqb = container_of(b, struct request, queuelist);
1891
1892 if (rqa->mq_ctx != rqb->mq_ctx)
1893 return rqa->mq_ctx > rqb->mq_ctx;
1894 if (rqa->mq_hctx != rqb->mq_hctx)
1895 return rqa->mq_hctx > rqb->mq_hctx;
1896
1897 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1898 }
1899
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1900 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1901 {
1902 LIST_HEAD(list);
1903
1904 if (list_empty(&plug->mq_list))
1905 return;
1906 list_splice_init(&plug->mq_list, &list);
1907
1908 if (plug->rq_count > 2 && plug->multiple_queues)
1909 list_sort(NULL, &list, plug_rq_cmp);
1910
1911 plug->rq_count = 0;
1912
1913 do {
1914 struct list_head rq_list;
1915 struct request *rq, *head_rq = list_entry_rq(list.next);
1916 struct list_head *pos = &head_rq->queuelist; /* skip first */
1917 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1918 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1919 unsigned int depth = 1;
1920
1921 list_for_each_continue(pos, &list) {
1922 rq = list_entry_rq(pos);
1923 BUG_ON(!rq->q);
1924 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1925 break;
1926 depth++;
1927 }
1928
1929 list_cut_before(&rq_list, &list, pos);
1930 trace_block_unplug(head_rq->q, depth, !from_schedule);
1931 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1932 from_schedule);
1933 } while(!list_empty(&list));
1934 }
1935
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1936 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1937 unsigned int nr_segs)
1938 {
1939 int err;
1940
1941 if (bio->bi_opf & REQ_RAHEAD)
1942 rq->cmd_flags |= REQ_FAILFAST_MASK;
1943
1944 rq->__sector = bio->bi_iter.bi_sector;
1945 rq->write_hint = bio->bi_write_hint;
1946 blk_rq_bio_prep(rq, bio, nr_segs);
1947
1948 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1949 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1950 WARN_ON_ONCE(err);
1951
1952 blk_account_io_start(rq);
1953 }
1954
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1955 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1956 struct request *rq,
1957 blk_qc_t *cookie, bool last)
1958 {
1959 struct request_queue *q = rq->q;
1960 struct blk_mq_queue_data bd = {
1961 .rq = rq,
1962 .last = last,
1963 };
1964 blk_qc_t new_cookie;
1965 blk_status_t ret;
1966
1967 new_cookie = request_to_qc_t(hctx, rq);
1968
1969 /*
1970 * For OK queue, we are done. For error, caller may kill it.
1971 * Any other error (busy), just add it to our list as we
1972 * previously would have done.
1973 */
1974 ret = q->mq_ops->queue_rq(hctx, &bd);
1975 switch (ret) {
1976 case BLK_STS_OK:
1977 blk_mq_update_dispatch_busy(hctx, false);
1978 *cookie = new_cookie;
1979 break;
1980 case BLK_STS_RESOURCE:
1981 case BLK_STS_DEV_RESOURCE:
1982 blk_mq_update_dispatch_busy(hctx, true);
1983 __blk_mq_requeue_request(rq);
1984 break;
1985 default:
1986 blk_mq_update_dispatch_busy(hctx, false);
1987 *cookie = BLK_QC_T_NONE;
1988 break;
1989 }
1990
1991 return ret;
1992 }
1993
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)1994 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1995 struct request *rq,
1996 blk_qc_t *cookie,
1997 bool bypass_insert, bool last)
1998 {
1999 struct request_queue *q = rq->q;
2000 bool run_queue = true;
2001
2002 /*
2003 * RCU or SRCU read lock is needed before checking quiesced flag.
2004 *
2005 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2006 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2007 * and avoid driver to try to dispatch again.
2008 */
2009 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2010 run_queue = false;
2011 bypass_insert = false;
2012 goto insert;
2013 }
2014
2015 if (q->elevator && !bypass_insert)
2016 goto insert;
2017
2018 if (!blk_mq_get_dispatch_budget(q))
2019 goto insert;
2020
2021 if (!blk_mq_get_driver_tag(rq)) {
2022 blk_mq_put_dispatch_budget(q);
2023 goto insert;
2024 }
2025
2026 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2027 insert:
2028 if (bypass_insert)
2029 return BLK_STS_RESOURCE;
2030
2031 blk_mq_sched_insert_request(rq, false, run_queue, false);
2032
2033 return BLK_STS_OK;
2034 }
2035
2036 /**
2037 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2038 * @hctx: Pointer of the associated hardware queue.
2039 * @rq: Pointer to request to be sent.
2040 * @cookie: Request queue cookie.
2041 *
2042 * If the device has enough resources to accept a new request now, send the
2043 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2044 * we can try send it another time in the future. Requests inserted at this
2045 * queue have higher priority.
2046 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2047 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2048 struct request *rq, blk_qc_t *cookie)
2049 {
2050 blk_status_t ret;
2051 int srcu_idx;
2052
2053 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2054
2055 hctx_lock(hctx, &srcu_idx);
2056
2057 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2058 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2059 blk_mq_request_bypass_insert(rq, false, true);
2060 else if (ret != BLK_STS_OK)
2061 blk_mq_end_request(rq, ret);
2062
2063 hctx_unlock(hctx, srcu_idx);
2064 }
2065
blk_mq_request_issue_directly(struct request * rq,bool last)2066 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2067 {
2068 blk_status_t ret;
2069 int srcu_idx;
2070 blk_qc_t unused_cookie;
2071 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2072
2073 hctx_lock(hctx, &srcu_idx);
2074 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2075 hctx_unlock(hctx, srcu_idx);
2076
2077 return ret;
2078 }
2079
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2080 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2081 struct list_head *list)
2082 {
2083 int queued = 0;
2084 int errors = 0;
2085
2086 while (!list_empty(list)) {
2087 blk_status_t ret;
2088 struct request *rq = list_first_entry(list, struct request,
2089 queuelist);
2090
2091 list_del_init(&rq->queuelist);
2092 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2093 if (ret != BLK_STS_OK) {
2094 if (ret == BLK_STS_RESOURCE ||
2095 ret == BLK_STS_DEV_RESOURCE) {
2096 blk_mq_request_bypass_insert(rq, false,
2097 list_empty(list));
2098 break;
2099 }
2100 blk_mq_end_request(rq, ret);
2101 errors++;
2102 } else
2103 queued++;
2104 }
2105
2106 /*
2107 * If we didn't flush the entire list, we could have told
2108 * the driver there was more coming, but that turned out to
2109 * be a lie.
2110 */
2111 if ((!list_empty(list) || errors) &&
2112 hctx->queue->mq_ops->commit_rqs && queued)
2113 hctx->queue->mq_ops->commit_rqs(hctx);
2114 }
2115
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2116 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2117 {
2118 list_add_tail(&rq->queuelist, &plug->mq_list);
2119 plug->rq_count++;
2120 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2121 struct request *tmp;
2122
2123 tmp = list_first_entry(&plug->mq_list, struct request,
2124 queuelist);
2125 if (tmp->q != rq->q)
2126 plug->multiple_queues = true;
2127 }
2128 }
2129
2130 /*
2131 * Allow 4x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2132 * queues. This is important for md arrays to benefit from merging
2133 * requests.
2134 */
blk_plug_max_rq_count(struct blk_plug * plug)2135 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2136 {
2137 if (plug->multiple_queues)
2138 return BLK_MAX_REQUEST_COUNT * 4;
2139 return BLK_MAX_REQUEST_COUNT;
2140 }
2141
2142 /**
2143 * blk_mq_submit_bio - Create and send a request to block device.
2144 * @bio: Bio pointer.
2145 *
2146 * Builds up a request structure from @q and @bio and send to the device. The
2147 * request may not be queued directly to hardware if:
2148 * * This request can be merged with another one
2149 * * We want to place request at plug queue for possible future merging
2150 * * There is an IO scheduler active at this queue
2151 *
2152 * It will not queue the request if there is an error with the bio, or at the
2153 * request creation.
2154 *
2155 * Returns: Request queue cookie.
2156 */
blk_mq_submit_bio(struct bio * bio)2157 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2158 {
2159 struct request_queue *q = bio->bi_disk->queue;
2160 const int is_sync = op_is_sync(bio->bi_opf);
2161 const int is_flush_fua = op_is_flush(bio->bi_opf);
2162 struct blk_mq_alloc_data data = {
2163 .q = q,
2164 };
2165 struct request *rq;
2166 struct blk_plug *plug;
2167 struct request *same_queue_rq = NULL;
2168 unsigned int nr_segs;
2169 blk_qc_t cookie;
2170 blk_status_t ret;
2171
2172 blk_queue_bounce(q, &bio);
2173 __blk_queue_split(&bio, &nr_segs);
2174
2175 if (!bio_integrity_prep(bio))
2176 goto queue_exit;
2177
2178 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2179 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2180 goto queue_exit;
2181
2182 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2183 goto queue_exit;
2184
2185 rq_qos_throttle(q, bio);
2186
2187 data.cmd_flags = bio->bi_opf;
2188 rq = __blk_mq_alloc_request(&data);
2189 if (unlikely(!rq)) {
2190 rq_qos_cleanup(q, bio);
2191 if (bio->bi_opf & REQ_NOWAIT)
2192 bio_wouldblock_error(bio);
2193 goto queue_exit;
2194 }
2195
2196 trace_block_getrq(q, bio, bio->bi_opf);
2197
2198 rq_qos_track(q, rq, bio);
2199
2200 cookie = request_to_qc_t(data.hctx, rq);
2201
2202 blk_mq_bio_to_request(rq, bio, nr_segs);
2203
2204 ret = blk_crypto_init_request(rq);
2205 if (ret != BLK_STS_OK) {
2206 bio->bi_status = ret;
2207 bio_endio(bio);
2208 blk_mq_free_request(rq);
2209 return BLK_QC_T_NONE;
2210 }
2211
2212 plug = blk_mq_plug(q, bio);
2213 if (unlikely(is_flush_fua)) {
2214 /* Bypass scheduler for flush requests */
2215 blk_insert_flush(rq);
2216 blk_mq_run_hw_queue(data.hctx, true);
2217 } else if (plug && (q->nr_hw_queues == 1 ||
2218 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2219 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2220 /*
2221 * Use plugging if we have a ->commit_rqs() hook as well, as
2222 * we know the driver uses bd->last in a smart fashion.
2223 *
2224 * Use normal plugging if this disk is slow HDD, as sequential
2225 * IO may benefit a lot from plug merging.
2226 */
2227 unsigned int request_count = plug->rq_count;
2228 struct request *last = NULL;
2229
2230 if (!request_count)
2231 trace_block_plug(q);
2232 else
2233 last = list_entry_rq(plug->mq_list.prev);
2234
2235 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2236 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2237 blk_flush_plug_list(plug, false);
2238 trace_block_plug(q);
2239 }
2240
2241 blk_add_rq_to_plug(plug, rq);
2242 } else if (q->elevator) {
2243 /* Insert the request at the IO scheduler queue */
2244 blk_mq_sched_insert_request(rq, false, true, true);
2245 } else if (plug && !blk_queue_nomerges(q)) {
2246 /*
2247 * We do limited plugging. If the bio can be merged, do that.
2248 * Otherwise the existing request in the plug list will be
2249 * issued. So the plug list will have one request at most
2250 * The plug list might get flushed before this. If that happens,
2251 * the plug list is empty, and same_queue_rq is invalid.
2252 */
2253 if (list_empty(&plug->mq_list))
2254 same_queue_rq = NULL;
2255 if (same_queue_rq) {
2256 list_del_init(&same_queue_rq->queuelist);
2257 plug->rq_count--;
2258 }
2259 blk_add_rq_to_plug(plug, rq);
2260 trace_block_plug(q);
2261
2262 if (same_queue_rq) {
2263 data.hctx = same_queue_rq->mq_hctx;
2264 trace_block_unplug(q, 1, true);
2265 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2266 &cookie);
2267 }
2268 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2269 !data.hctx->dispatch_busy) {
2270 /*
2271 * There is no scheduler and we can try to send directly
2272 * to the hardware.
2273 */
2274 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2275 } else {
2276 /* Default case. */
2277 blk_mq_sched_insert_request(rq, false, true, true);
2278 }
2279
2280 return cookie;
2281 queue_exit:
2282 blk_queue_exit(q);
2283 return BLK_QC_T_NONE;
2284 }
2285
order_to_size(unsigned int order)2286 static size_t order_to_size(unsigned int order)
2287 {
2288 return (size_t)PAGE_SIZE << order;
2289 }
2290
2291 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2292 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2293 struct blk_mq_tags *tags, unsigned int hctx_idx)
2294 {
2295 struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2296 struct page *page;
2297 unsigned long flags;
2298
2299 list_for_each_entry(page, &tags->page_list, lru) {
2300 unsigned long start = (unsigned long)page_address(page);
2301 unsigned long end = start + order_to_size(page->private);
2302 int i;
2303
2304 for (i = 0; i < set->queue_depth; i++) {
2305 struct request *rq = drv_tags->rqs[i];
2306 unsigned long rq_addr = (unsigned long)rq;
2307
2308 if (rq_addr >= start && rq_addr < end) {
2309 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2310 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2311 }
2312 }
2313 }
2314
2315 /*
2316 * Wait until all pending iteration is done.
2317 *
2318 * Request reference is cleared and it is guaranteed to be observed
2319 * after the ->lock is released.
2320 */
2321 spin_lock_irqsave(&drv_tags->lock, flags);
2322 spin_unlock_irqrestore(&drv_tags->lock, flags);
2323 }
2324
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2325 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2326 unsigned int hctx_idx)
2327 {
2328 struct page *page;
2329
2330 if (tags->rqs && set->ops->exit_request) {
2331 int i;
2332
2333 for (i = 0; i < tags->nr_tags; i++) {
2334 struct request *rq = tags->static_rqs[i];
2335
2336 if (!rq)
2337 continue;
2338 set->ops->exit_request(set, rq, hctx_idx);
2339 tags->static_rqs[i] = NULL;
2340 }
2341 }
2342
2343 blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2344
2345 while (!list_empty(&tags->page_list)) {
2346 page = list_first_entry(&tags->page_list, struct page, lru);
2347 list_del_init(&page->lru);
2348 /*
2349 * Remove kmemleak object previously allocated in
2350 * blk_mq_alloc_rqs().
2351 */
2352 kmemleak_free(page_address(page));
2353 __free_pages(page, page->private);
2354 }
2355 }
2356
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2357 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2358 {
2359 kfree(tags->rqs);
2360 tags->rqs = NULL;
2361 kfree(tags->static_rqs);
2362 tags->static_rqs = NULL;
2363
2364 blk_mq_free_tags(tags, flags);
2365 }
2366
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2367 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2368 unsigned int hctx_idx,
2369 unsigned int nr_tags,
2370 unsigned int reserved_tags,
2371 unsigned int flags)
2372 {
2373 struct blk_mq_tags *tags;
2374 int node;
2375
2376 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2377 if (node == NUMA_NO_NODE)
2378 node = set->numa_node;
2379
2380 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2381 if (!tags)
2382 return NULL;
2383
2384 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2385 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2386 node);
2387 if (!tags->rqs) {
2388 blk_mq_free_tags(tags, flags);
2389 return NULL;
2390 }
2391
2392 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2393 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2394 node);
2395 if (!tags->static_rqs) {
2396 kfree(tags->rqs);
2397 blk_mq_free_tags(tags, flags);
2398 return NULL;
2399 }
2400
2401 return tags;
2402 }
2403
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2404 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2405 unsigned int hctx_idx, int node)
2406 {
2407 int ret;
2408
2409 if (set->ops->init_request) {
2410 ret = set->ops->init_request(set, rq, hctx_idx, node);
2411 if (ret)
2412 return ret;
2413 }
2414
2415 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2416 return 0;
2417 }
2418
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2419 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2420 unsigned int hctx_idx, unsigned int depth)
2421 {
2422 unsigned int i, j, entries_per_page, max_order = 4;
2423 size_t rq_size, left;
2424 int node;
2425
2426 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2427 if (node == NUMA_NO_NODE)
2428 node = set->numa_node;
2429
2430 INIT_LIST_HEAD(&tags->page_list);
2431
2432 /*
2433 * rq_size is the size of the request plus driver payload, rounded
2434 * to the cacheline size
2435 */
2436 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2437 cache_line_size());
2438 left = rq_size * depth;
2439
2440 for (i = 0; i < depth; ) {
2441 int this_order = max_order;
2442 struct page *page;
2443 int to_do;
2444 void *p;
2445
2446 while (this_order && left < order_to_size(this_order - 1))
2447 this_order--;
2448
2449 do {
2450 page = alloc_pages_node(node,
2451 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2452 this_order);
2453 if (page)
2454 break;
2455 if (!this_order--)
2456 break;
2457 if (order_to_size(this_order) < rq_size)
2458 break;
2459 } while (1);
2460
2461 if (!page)
2462 goto fail;
2463
2464 page->private = this_order;
2465 list_add_tail(&page->lru, &tags->page_list);
2466
2467 p = page_address(page);
2468 /*
2469 * Allow kmemleak to scan these pages as they contain pointers
2470 * to additional allocations like via ops->init_request().
2471 */
2472 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2473 entries_per_page = order_to_size(this_order) / rq_size;
2474 to_do = min(entries_per_page, depth - i);
2475 left -= to_do * rq_size;
2476 for (j = 0; j < to_do; j++) {
2477 struct request *rq = p;
2478
2479 tags->static_rqs[i] = rq;
2480 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2481 tags->static_rqs[i] = NULL;
2482 goto fail;
2483 }
2484
2485 p += rq_size;
2486 i++;
2487 }
2488 }
2489 return 0;
2490
2491 fail:
2492 blk_mq_free_rqs(set, tags, hctx_idx);
2493 return -ENOMEM;
2494 }
2495
2496 struct rq_iter_data {
2497 struct blk_mq_hw_ctx *hctx;
2498 bool has_rq;
2499 };
2500
blk_mq_has_request(struct request * rq,void * data,bool reserved)2501 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2502 {
2503 struct rq_iter_data *iter_data = data;
2504
2505 if (rq->mq_hctx != iter_data->hctx)
2506 return true;
2507 iter_data->has_rq = true;
2508 return false;
2509 }
2510
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2511 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2512 {
2513 struct blk_mq_tags *tags = hctx->sched_tags ?
2514 hctx->sched_tags : hctx->tags;
2515 struct rq_iter_data data = {
2516 .hctx = hctx,
2517 };
2518
2519 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2520 return data.has_rq;
2521 }
2522
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2523 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2524 struct blk_mq_hw_ctx *hctx)
2525 {
2526 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2527 return false;
2528 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2529 return false;
2530 return true;
2531 }
2532
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2533 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2534 {
2535 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2536 struct blk_mq_hw_ctx, cpuhp_online);
2537
2538 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2539 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2540 return 0;
2541
2542 /*
2543 * Prevent new request from being allocated on the current hctx.
2544 *
2545 * The smp_mb__after_atomic() Pairs with the implied barrier in
2546 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2547 * seen once we return from the tag allocator.
2548 */
2549 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2550 smp_mb__after_atomic();
2551
2552 /*
2553 * Try to grab a reference to the queue and wait for any outstanding
2554 * requests. If we could not grab a reference the queue has been
2555 * frozen and there are no requests.
2556 */
2557 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2558 while (blk_mq_hctx_has_requests(hctx))
2559 msleep(5);
2560 percpu_ref_put(&hctx->queue->q_usage_counter);
2561 }
2562
2563 return 0;
2564 }
2565
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2566 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2567 {
2568 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2569 struct blk_mq_hw_ctx, cpuhp_online);
2570
2571 if (cpumask_test_cpu(cpu, hctx->cpumask))
2572 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2573 return 0;
2574 }
2575
2576 /*
2577 * 'cpu' is going away. splice any existing rq_list entries from this
2578 * software queue to the hw queue dispatch list, and ensure that it
2579 * gets run.
2580 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2581 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2582 {
2583 struct blk_mq_hw_ctx *hctx;
2584 struct blk_mq_ctx *ctx;
2585 LIST_HEAD(tmp);
2586 enum hctx_type type;
2587
2588 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2589 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2590 return 0;
2591
2592 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2593 type = hctx->type;
2594
2595 spin_lock(&ctx->lock);
2596 if (!list_empty(&ctx->rq_lists[type])) {
2597 list_splice_init(&ctx->rq_lists[type], &tmp);
2598 blk_mq_hctx_clear_pending(hctx, ctx);
2599 }
2600 spin_unlock(&ctx->lock);
2601
2602 if (list_empty(&tmp))
2603 return 0;
2604
2605 spin_lock(&hctx->lock);
2606 list_splice_tail_init(&tmp, &hctx->dispatch);
2607 spin_unlock(&hctx->lock);
2608
2609 blk_mq_run_hw_queue(hctx, true);
2610 return 0;
2611 }
2612
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2613 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2614 {
2615 if (!(hctx->flags & BLK_MQ_F_STACKING))
2616 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2617 &hctx->cpuhp_online);
2618 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2619 &hctx->cpuhp_dead);
2620 }
2621
2622 /*
2623 * Before freeing hw queue, clearing the flush request reference in
2624 * tags->rqs[] for avoiding potential UAF.
2625 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2626 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2627 unsigned int queue_depth, struct request *flush_rq)
2628 {
2629 int i;
2630 unsigned long flags;
2631
2632 /* The hw queue may not be mapped yet */
2633 if (!tags)
2634 return;
2635
2636 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2637
2638 for (i = 0; i < queue_depth; i++)
2639 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2640
2641 /*
2642 * Wait until all pending iteration is done.
2643 *
2644 * Request reference is cleared and it is guaranteed to be observed
2645 * after the ->lock is released.
2646 */
2647 spin_lock_irqsave(&tags->lock, flags);
2648 spin_unlock_irqrestore(&tags->lock, flags);
2649 }
2650
2651 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2652 static void blk_mq_exit_hctx(struct request_queue *q,
2653 struct blk_mq_tag_set *set,
2654 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2655 {
2656 struct request *flush_rq = hctx->fq->flush_rq;
2657
2658 if (blk_mq_hw_queue_mapped(hctx))
2659 blk_mq_tag_idle(hctx);
2660
2661 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2662 set->queue_depth, flush_rq);
2663 if (set->ops->exit_request)
2664 set->ops->exit_request(set, flush_rq, hctx_idx);
2665
2666 if (set->ops->exit_hctx)
2667 set->ops->exit_hctx(hctx, hctx_idx);
2668
2669 blk_mq_remove_cpuhp(hctx);
2670
2671 spin_lock(&q->unused_hctx_lock);
2672 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2673 spin_unlock(&q->unused_hctx_lock);
2674 }
2675
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2676 static void blk_mq_exit_hw_queues(struct request_queue *q,
2677 struct blk_mq_tag_set *set, int nr_queue)
2678 {
2679 struct blk_mq_hw_ctx *hctx;
2680 unsigned int i;
2681
2682 queue_for_each_hw_ctx(q, hctx, i) {
2683 if (i == nr_queue)
2684 break;
2685 blk_mq_debugfs_unregister_hctx(hctx);
2686 blk_mq_exit_hctx(q, set, hctx, i);
2687 }
2688 }
2689
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2690 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2691 {
2692 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2693
2694 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2695 __alignof__(struct blk_mq_hw_ctx)) !=
2696 sizeof(struct blk_mq_hw_ctx));
2697
2698 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2699 hw_ctx_size += sizeof(struct srcu_struct);
2700
2701 return hw_ctx_size;
2702 }
2703
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2704 static int blk_mq_init_hctx(struct request_queue *q,
2705 struct blk_mq_tag_set *set,
2706 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2707 {
2708 hctx->queue_num = hctx_idx;
2709
2710 if (!(hctx->flags & BLK_MQ_F_STACKING))
2711 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2712 &hctx->cpuhp_online);
2713 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2714
2715 hctx->tags = set->tags[hctx_idx];
2716
2717 if (set->ops->init_hctx &&
2718 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2719 goto unregister_cpu_notifier;
2720
2721 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2722 hctx->numa_node))
2723 goto exit_hctx;
2724 return 0;
2725
2726 exit_hctx:
2727 if (set->ops->exit_hctx)
2728 set->ops->exit_hctx(hctx, hctx_idx);
2729 unregister_cpu_notifier:
2730 blk_mq_remove_cpuhp(hctx);
2731 return -1;
2732 }
2733
2734 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2735 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2736 int node)
2737 {
2738 struct blk_mq_hw_ctx *hctx;
2739 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2740
2741 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2742 if (!hctx)
2743 goto fail_alloc_hctx;
2744
2745 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2746 goto free_hctx;
2747
2748 atomic_set(&hctx->nr_active, 0);
2749 atomic_set(&hctx->elevator_queued, 0);
2750 if (node == NUMA_NO_NODE)
2751 node = set->numa_node;
2752 hctx->numa_node = node;
2753
2754 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2755 spin_lock_init(&hctx->lock);
2756 INIT_LIST_HEAD(&hctx->dispatch);
2757 hctx->queue = q;
2758 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2759
2760 INIT_LIST_HEAD(&hctx->hctx_list);
2761
2762 /*
2763 * Allocate space for all possible cpus to avoid allocation at
2764 * runtime
2765 */
2766 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2767 gfp, node);
2768 if (!hctx->ctxs)
2769 goto free_cpumask;
2770
2771 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2772 gfp, node))
2773 goto free_ctxs;
2774 hctx->nr_ctx = 0;
2775
2776 spin_lock_init(&hctx->dispatch_wait_lock);
2777 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2778 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2779
2780 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2781 if (!hctx->fq)
2782 goto free_bitmap;
2783
2784 if (hctx->flags & BLK_MQ_F_BLOCKING)
2785 init_srcu_struct(hctx->srcu);
2786 blk_mq_hctx_kobj_init(hctx);
2787
2788 return hctx;
2789
2790 free_bitmap:
2791 sbitmap_free(&hctx->ctx_map);
2792 free_ctxs:
2793 kfree(hctx->ctxs);
2794 free_cpumask:
2795 free_cpumask_var(hctx->cpumask);
2796 free_hctx:
2797 kfree(hctx);
2798 fail_alloc_hctx:
2799 return NULL;
2800 }
2801
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2802 static void blk_mq_init_cpu_queues(struct request_queue *q,
2803 unsigned int nr_hw_queues)
2804 {
2805 struct blk_mq_tag_set *set = q->tag_set;
2806 unsigned int i, j;
2807
2808 for_each_possible_cpu(i) {
2809 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2810 struct blk_mq_hw_ctx *hctx;
2811 int k;
2812
2813 __ctx->cpu = i;
2814 spin_lock_init(&__ctx->lock);
2815 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2816 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2817
2818 __ctx->queue = q;
2819
2820 /*
2821 * Set local node, IFF we have more than one hw queue. If
2822 * not, we remain on the home node of the device
2823 */
2824 for (j = 0; j < set->nr_maps; j++) {
2825 hctx = blk_mq_map_queue_type(q, j, i);
2826 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2827 hctx->numa_node = cpu_to_node(i);
2828 }
2829 }
2830 }
2831
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2832 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2833 int hctx_idx)
2834 {
2835 unsigned int flags = set->flags;
2836 int ret = 0;
2837
2838 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2839 set->queue_depth, set->reserved_tags, flags);
2840 if (!set->tags[hctx_idx])
2841 return false;
2842
2843 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2844 set->queue_depth);
2845 if (!ret)
2846 return true;
2847
2848 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2849 set->tags[hctx_idx] = NULL;
2850 return false;
2851 }
2852
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2853 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2854 unsigned int hctx_idx)
2855 {
2856 unsigned int flags = set->flags;
2857
2858 if (set->tags && set->tags[hctx_idx]) {
2859 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2860 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2861 set->tags[hctx_idx] = NULL;
2862 }
2863 }
2864
blk_mq_map_swqueue(struct request_queue * q)2865 static void blk_mq_map_swqueue(struct request_queue *q)
2866 {
2867 unsigned int i, j, hctx_idx;
2868 struct blk_mq_hw_ctx *hctx;
2869 struct blk_mq_ctx *ctx;
2870 struct blk_mq_tag_set *set = q->tag_set;
2871
2872 queue_for_each_hw_ctx(q, hctx, i) {
2873 cpumask_clear(hctx->cpumask);
2874 hctx->nr_ctx = 0;
2875 hctx->dispatch_from = NULL;
2876 }
2877
2878 /*
2879 * Map software to hardware queues.
2880 *
2881 * If the cpu isn't present, the cpu is mapped to first hctx.
2882 */
2883 for_each_possible_cpu(i) {
2884
2885 ctx = per_cpu_ptr(q->queue_ctx, i);
2886 for (j = 0; j < set->nr_maps; j++) {
2887 if (!set->map[j].nr_queues) {
2888 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2889 HCTX_TYPE_DEFAULT, i);
2890 continue;
2891 }
2892 hctx_idx = set->map[j].mq_map[i];
2893 /* unmapped hw queue can be remapped after CPU topo changed */
2894 if (!set->tags[hctx_idx] &&
2895 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2896 /*
2897 * If tags initialization fail for some hctx,
2898 * that hctx won't be brought online. In this
2899 * case, remap the current ctx to hctx[0] which
2900 * is guaranteed to always have tags allocated
2901 */
2902 set->map[j].mq_map[i] = 0;
2903 }
2904
2905 hctx = blk_mq_map_queue_type(q, j, i);
2906 ctx->hctxs[j] = hctx;
2907 /*
2908 * If the CPU is already set in the mask, then we've
2909 * mapped this one already. This can happen if
2910 * devices share queues across queue maps.
2911 */
2912 if (cpumask_test_cpu(i, hctx->cpumask))
2913 continue;
2914
2915 cpumask_set_cpu(i, hctx->cpumask);
2916 hctx->type = j;
2917 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2918 hctx->ctxs[hctx->nr_ctx++] = ctx;
2919
2920 /*
2921 * If the nr_ctx type overflows, we have exceeded the
2922 * amount of sw queues we can support.
2923 */
2924 BUG_ON(!hctx->nr_ctx);
2925 }
2926
2927 for (; j < HCTX_MAX_TYPES; j++)
2928 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2929 HCTX_TYPE_DEFAULT, i);
2930 }
2931
2932 queue_for_each_hw_ctx(q, hctx, i) {
2933 /*
2934 * If no software queues are mapped to this hardware queue,
2935 * disable it and free the request entries.
2936 */
2937 if (!hctx->nr_ctx) {
2938 /* Never unmap queue 0. We need it as a
2939 * fallback in case of a new remap fails
2940 * allocation
2941 */
2942 if (i && set->tags[i])
2943 blk_mq_free_map_and_requests(set, i);
2944
2945 hctx->tags = NULL;
2946 continue;
2947 }
2948
2949 hctx->tags = set->tags[i];
2950 WARN_ON(!hctx->tags);
2951
2952 /*
2953 * Set the map size to the number of mapped software queues.
2954 * This is more accurate and more efficient than looping
2955 * over all possibly mapped software queues.
2956 */
2957 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2958
2959 /*
2960 * Initialize batch roundrobin counts
2961 */
2962 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2963 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2964 }
2965 }
2966
2967 /*
2968 * Caller needs to ensure that we're either frozen/quiesced, or that
2969 * the queue isn't live yet.
2970 */
queue_set_hctx_shared(struct request_queue * q,bool shared)2971 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2972 {
2973 struct blk_mq_hw_ctx *hctx;
2974 int i;
2975
2976 queue_for_each_hw_ctx(q, hctx, i) {
2977 if (shared) {
2978 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2979 } else {
2980 blk_mq_tag_idle(hctx);
2981 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2982 }
2983 }
2984 }
2985
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)2986 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2987 bool shared)
2988 {
2989 struct request_queue *q;
2990
2991 lockdep_assert_held(&set->tag_list_lock);
2992
2993 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2994 blk_mq_freeze_queue(q);
2995 queue_set_hctx_shared(q, shared);
2996 blk_mq_unfreeze_queue(q);
2997 }
2998 }
2999
blk_mq_del_queue_tag_set(struct request_queue * q)3000 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3001 {
3002 struct blk_mq_tag_set *set = q->tag_set;
3003
3004 mutex_lock(&set->tag_list_lock);
3005 list_del(&q->tag_set_list);
3006 if (list_is_singular(&set->tag_list)) {
3007 /* just transitioned to unshared */
3008 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3009 /* update existing queue */
3010 blk_mq_update_tag_set_shared(set, false);
3011 }
3012 mutex_unlock(&set->tag_list_lock);
3013 INIT_LIST_HEAD(&q->tag_set_list);
3014 }
3015
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3016 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3017 struct request_queue *q)
3018 {
3019 mutex_lock(&set->tag_list_lock);
3020
3021 /*
3022 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3023 */
3024 if (!list_empty(&set->tag_list) &&
3025 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3026 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3027 /* update existing queue */
3028 blk_mq_update_tag_set_shared(set, true);
3029 }
3030 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3031 queue_set_hctx_shared(q, true);
3032 list_add_tail(&q->tag_set_list, &set->tag_list);
3033
3034 mutex_unlock(&set->tag_list_lock);
3035 }
3036
3037 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3038 static int blk_mq_alloc_ctxs(struct request_queue *q)
3039 {
3040 struct blk_mq_ctxs *ctxs;
3041 int cpu;
3042
3043 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3044 if (!ctxs)
3045 return -ENOMEM;
3046
3047 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3048 if (!ctxs->queue_ctx)
3049 goto fail;
3050
3051 for_each_possible_cpu(cpu) {
3052 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3053 ctx->ctxs = ctxs;
3054 }
3055
3056 q->mq_kobj = &ctxs->kobj;
3057 q->queue_ctx = ctxs->queue_ctx;
3058
3059 return 0;
3060 fail:
3061 kfree(ctxs);
3062 return -ENOMEM;
3063 }
3064
3065 /*
3066 * It is the actual release handler for mq, but we do it from
3067 * request queue's release handler for avoiding use-after-free
3068 * and headache because q->mq_kobj shouldn't have been introduced,
3069 * but we can't group ctx/kctx kobj without it.
3070 */
blk_mq_release(struct request_queue * q)3071 void blk_mq_release(struct request_queue *q)
3072 {
3073 struct blk_mq_hw_ctx *hctx, *next;
3074 int i;
3075
3076 queue_for_each_hw_ctx(q, hctx, i)
3077 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3078
3079 /* all hctx are in .unused_hctx_list now */
3080 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3081 list_del_init(&hctx->hctx_list);
3082 kobject_put(&hctx->kobj);
3083 }
3084
3085 kfree(q->queue_hw_ctx);
3086
3087 /*
3088 * release .mq_kobj and sw queue's kobject now because
3089 * both share lifetime with request queue.
3090 */
3091 blk_mq_sysfs_deinit(q);
3092 }
3093
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3094 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3095 void *queuedata)
3096 {
3097 struct request_queue *uninit_q, *q;
3098
3099 uninit_q = blk_alloc_queue(set->numa_node);
3100 if (!uninit_q)
3101 return ERR_PTR(-ENOMEM);
3102 uninit_q->queuedata = queuedata;
3103
3104 /*
3105 * Initialize the queue without an elevator. device_add_disk() will do
3106 * the initialization.
3107 */
3108 q = blk_mq_init_allocated_queue(set, uninit_q, false);
3109 if (IS_ERR(q))
3110 blk_cleanup_queue(uninit_q);
3111
3112 return q;
3113 }
3114 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3115
blk_mq_init_queue(struct blk_mq_tag_set * set)3116 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3117 {
3118 return blk_mq_init_queue_data(set, NULL);
3119 }
3120 EXPORT_SYMBOL(blk_mq_init_queue);
3121
3122 /*
3123 * Helper for setting up a queue with mq ops, given queue depth, and
3124 * the passed in mq ops flags.
3125 */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3126 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3127 const struct blk_mq_ops *ops,
3128 unsigned int queue_depth,
3129 unsigned int set_flags)
3130 {
3131 struct request_queue *q;
3132 int ret;
3133
3134 memset(set, 0, sizeof(*set));
3135 set->ops = ops;
3136 set->nr_hw_queues = 1;
3137 set->nr_maps = 1;
3138 set->queue_depth = queue_depth;
3139 set->numa_node = NUMA_NO_NODE;
3140 set->flags = set_flags;
3141
3142 ret = blk_mq_alloc_tag_set(set);
3143 if (ret)
3144 return ERR_PTR(ret);
3145
3146 q = blk_mq_init_queue(set);
3147 if (IS_ERR(q)) {
3148 blk_mq_free_tag_set(set);
3149 return q;
3150 }
3151
3152 return q;
3153 }
3154 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3155
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3156 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3157 struct blk_mq_tag_set *set, struct request_queue *q,
3158 int hctx_idx, int node)
3159 {
3160 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3161
3162 /* reuse dead hctx first */
3163 spin_lock(&q->unused_hctx_lock);
3164 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3165 if (tmp->numa_node == node) {
3166 hctx = tmp;
3167 break;
3168 }
3169 }
3170 if (hctx)
3171 list_del_init(&hctx->hctx_list);
3172 spin_unlock(&q->unused_hctx_lock);
3173
3174 if (!hctx)
3175 hctx = blk_mq_alloc_hctx(q, set, node);
3176 if (!hctx)
3177 goto fail;
3178
3179 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3180 goto free_hctx;
3181
3182 return hctx;
3183
3184 free_hctx:
3185 kobject_put(&hctx->kobj);
3186 fail:
3187 return NULL;
3188 }
3189
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3190 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3191 struct request_queue *q)
3192 {
3193 int i, j, end;
3194 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3195
3196 if (q->nr_hw_queues < set->nr_hw_queues) {
3197 struct blk_mq_hw_ctx **new_hctxs;
3198
3199 new_hctxs = kcalloc_node(set->nr_hw_queues,
3200 sizeof(*new_hctxs), GFP_KERNEL,
3201 set->numa_node);
3202 if (!new_hctxs)
3203 return;
3204 if (hctxs)
3205 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3206 sizeof(*hctxs));
3207 q->queue_hw_ctx = new_hctxs;
3208 kfree(hctxs);
3209 hctxs = new_hctxs;
3210 }
3211
3212 /* protect against switching io scheduler */
3213 mutex_lock(&q->sysfs_lock);
3214 for (i = 0; i < set->nr_hw_queues; i++) {
3215 int node;
3216 struct blk_mq_hw_ctx *hctx;
3217
3218 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3219 /*
3220 * If the hw queue has been mapped to another numa node,
3221 * we need to realloc the hctx. If allocation fails, fallback
3222 * to use the previous one.
3223 */
3224 if (hctxs[i] && (hctxs[i]->numa_node == node))
3225 continue;
3226
3227 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3228 if (hctx) {
3229 if (hctxs[i])
3230 blk_mq_exit_hctx(q, set, hctxs[i], i);
3231 hctxs[i] = hctx;
3232 } else {
3233 if (hctxs[i])
3234 pr_warn("Allocate new hctx on node %d fails,\
3235 fallback to previous one on node %d\n",
3236 node, hctxs[i]->numa_node);
3237 else
3238 break;
3239 }
3240 }
3241 /*
3242 * Increasing nr_hw_queues fails. Free the newly allocated
3243 * hctxs and keep the previous q->nr_hw_queues.
3244 */
3245 if (i != set->nr_hw_queues) {
3246 j = q->nr_hw_queues;
3247 end = i;
3248 } else {
3249 j = i;
3250 end = q->nr_hw_queues;
3251 q->nr_hw_queues = set->nr_hw_queues;
3252 }
3253
3254 for (; j < end; j++) {
3255 struct blk_mq_hw_ctx *hctx = hctxs[j];
3256
3257 if (hctx) {
3258 blk_mq_exit_hctx(q, set, hctx, j);
3259 hctxs[j] = NULL;
3260 }
3261 }
3262 mutex_unlock(&q->sysfs_lock);
3263 }
3264
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3265 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3266 struct request_queue *q,
3267 bool elevator_init)
3268 {
3269 /* mark the queue as mq asap */
3270 q->mq_ops = set->ops;
3271
3272 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3273 blk_mq_poll_stats_bkt,
3274 BLK_MQ_POLL_STATS_BKTS, q);
3275 if (!q->poll_cb)
3276 goto err_exit;
3277
3278 if (blk_mq_alloc_ctxs(q))
3279 goto err_poll;
3280
3281 /* init q->mq_kobj and sw queues' kobjects */
3282 blk_mq_sysfs_init(q);
3283
3284 INIT_LIST_HEAD(&q->unused_hctx_list);
3285 spin_lock_init(&q->unused_hctx_lock);
3286
3287 blk_mq_realloc_hw_ctxs(set, q);
3288 if (!q->nr_hw_queues)
3289 goto err_hctxs;
3290
3291 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3292 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3293
3294 q->tag_set = set;
3295
3296 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3297 if (set->nr_maps > HCTX_TYPE_POLL &&
3298 set->map[HCTX_TYPE_POLL].nr_queues)
3299 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3300
3301 q->sg_reserved_size = INT_MAX;
3302
3303 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3304 INIT_LIST_HEAD(&q->requeue_list);
3305 spin_lock_init(&q->requeue_lock);
3306
3307 q->nr_requests = set->queue_depth;
3308
3309 /*
3310 * Default to classic polling
3311 */
3312 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3313
3314 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3315 blk_mq_add_queue_tag_set(set, q);
3316 blk_mq_map_swqueue(q);
3317
3318 if (elevator_init)
3319 elevator_init_mq(q);
3320
3321 return q;
3322
3323 err_hctxs:
3324 kfree(q->queue_hw_ctx);
3325 q->nr_hw_queues = 0;
3326 blk_mq_sysfs_deinit(q);
3327 err_poll:
3328 blk_stat_free_callback(q->poll_cb);
3329 q->poll_cb = NULL;
3330 err_exit:
3331 q->mq_ops = NULL;
3332 return ERR_PTR(-ENOMEM);
3333 }
3334 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3335
3336 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3337 void blk_mq_exit_queue(struct request_queue *q)
3338 {
3339 struct blk_mq_tag_set *set = q->tag_set;
3340
3341 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3342 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3343 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3344 blk_mq_del_queue_tag_set(q);
3345 }
3346
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3347 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3348 {
3349 int i;
3350
3351 for (i = 0; i < set->nr_hw_queues; i++) {
3352 if (!__blk_mq_alloc_map_and_request(set, i))
3353 goto out_unwind;
3354 cond_resched();
3355 }
3356
3357 return 0;
3358
3359 out_unwind:
3360 while (--i >= 0)
3361 blk_mq_free_map_and_requests(set, i);
3362
3363 return -ENOMEM;
3364 }
3365
3366 /*
3367 * Allocate the request maps associated with this tag_set. Note that this
3368 * may reduce the depth asked for, if memory is tight. set->queue_depth
3369 * will be updated to reflect the allocated depth.
3370 */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3371 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3372 {
3373 unsigned int depth;
3374 int err;
3375
3376 depth = set->queue_depth;
3377 do {
3378 err = __blk_mq_alloc_rq_maps(set);
3379 if (!err)
3380 break;
3381
3382 set->queue_depth >>= 1;
3383 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3384 err = -ENOMEM;
3385 break;
3386 }
3387 } while (set->queue_depth);
3388
3389 if (!set->queue_depth || err) {
3390 pr_err("blk-mq: failed to allocate request map\n");
3391 return -ENOMEM;
3392 }
3393
3394 if (depth != set->queue_depth)
3395 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3396 depth, set->queue_depth);
3397
3398 return 0;
3399 }
3400
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3401 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3402 {
3403 /*
3404 * blk_mq_map_queues() and multiple .map_queues() implementations
3405 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3406 * number of hardware queues.
3407 */
3408 if (set->nr_maps == 1)
3409 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3410
3411 if (set->ops->map_queues && !is_kdump_kernel()) {
3412 int i;
3413
3414 /*
3415 * transport .map_queues is usually done in the following
3416 * way:
3417 *
3418 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3419 * mask = get_cpu_mask(queue)
3420 * for_each_cpu(cpu, mask)
3421 * set->map[x].mq_map[cpu] = queue;
3422 * }
3423 *
3424 * When we need to remap, the table has to be cleared for
3425 * killing stale mapping since one CPU may not be mapped
3426 * to any hw queue.
3427 */
3428 for (i = 0; i < set->nr_maps; i++)
3429 blk_mq_clear_mq_map(&set->map[i]);
3430
3431 return set->ops->map_queues(set);
3432 } else {
3433 BUG_ON(set->nr_maps > 1);
3434 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3435 }
3436 }
3437
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3438 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3439 int cur_nr_hw_queues, int new_nr_hw_queues)
3440 {
3441 struct blk_mq_tags **new_tags;
3442
3443 if (cur_nr_hw_queues >= new_nr_hw_queues)
3444 return 0;
3445
3446 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3447 GFP_KERNEL, set->numa_node);
3448 if (!new_tags)
3449 return -ENOMEM;
3450
3451 if (set->tags)
3452 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3453 sizeof(*set->tags));
3454 kfree(set->tags);
3455 set->tags = new_tags;
3456 set->nr_hw_queues = new_nr_hw_queues;
3457
3458 return 0;
3459 }
3460
3461 /*
3462 * Alloc a tag set to be associated with one or more request queues.
3463 * May fail with EINVAL for various error conditions. May adjust the
3464 * requested depth down, if it's too large. In that case, the set
3465 * value will be stored in set->queue_depth.
3466 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3467 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3468 {
3469 int i, ret;
3470
3471 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3472
3473 if (!set->nr_hw_queues)
3474 return -EINVAL;
3475 if (!set->queue_depth)
3476 return -EINVAL;
3477 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3478 return -EINVAL;
3479
3480 if (!set->ops->queue_rq)
3481 return -EINVAL;
3482
3483 if (!set->ops->get_budget ^ !set->ops->put_budget)
3484 return -EINVAL;
3485
3486 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3487 pr_info("blk-mq: reduced tag depth to %u\n",
3488 BLK_MQ_MAX_DEPTH);
3489 set->queue_depth = BLK_MQ_MAX_DEPTH;
3490 }
3491
3492 if (!set->nr_maps)
3493 set->nr_maps = 1;
3494 else if (set->nr_maps > HCTX_MAX_TYPES)
3495 return -EINVAL;
3496
3497 /*
3498 * If a crashdump is active, then we are potentially in a very
3499 * memory constrained environment. Limit us to 1 queue and
3500 * 64 tags to prevent using too much memory.
3501 */
3502 if (is_kdump_kernel()) {
3503 set->nr_hw_queues = 1;
3504 set->nr_maps = 1;
3505 set->queue_depth = min(64U, set->queue_depth);
3506 }
3507 /*
3508 * There is no use for more h/w queues than cpus if we just have
3509 * a single map
3510 */
3511 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3512 set->nr_hw_queues = nr_cpu_ids;
3513
3514 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3515 return -ENOMEM;
3516
3517 ret = -ENOMEM;
3518 for (i = 0; i < set->nr_maps; i++) {
3519 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3520 sizeof(set->map[i].mq_map[0]),
3521 GFP_KERNEL, set->numa_node);
3522 if (!set->map[i].mq_map)
3523 goto out_free_mq_map;
3524 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3525 }
3526
3527 ret = blk_mq_update_queue_map(set);
3528 if (ret)
3529 goto out_free_mq_map;
3530
3531 ret = blk_mq_alloc_map_and_requests(set);
3532 if (ret)
3533 goto out_free_mq_map;
3534
3535 if (blk_mq_is_sbitmap_shared(set->flags)) {
3536 atomic_set(&set->active_queues_shared_sbitmap, 0);
3537
3538 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3539 ret = -ENOMEM;
3540 goto out_free_mq_rq_maps;
3541 }
3542 }
3543
3544 mutex_init(&set->tag_list_lock);
3545 INIT_LIST_HEAD(&set->tag_list);
3546
3547 return 0;
3548
3549 out_free_mq_rq_maps:
3550 for (i = 0; i < set->nr_hw_queues; i++)
3551 blk_mq_free_map_and_requests(set, i);
3552 out_free_mq_map:
3553 for (i = 0; i < set->nr_maps; i++) {
3554 kfree(set->map[i].mq_map);
3555 set->map[i].mq_map = NULL;
3556 }
3557 kfree(set->tags);
3558 set->tags = NULL;
3559 return ret;
3560 }
3561 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3562
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3563 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3564 {
3565 int i, j;
3566
3567 for (i = 0; i < set->nr_hw_queues; i++)
3568 blk_mq_free_map_and_requests(set, i);
3569
3570 if (blk_mq_is_sbitmap_shared(set->flags))
3571 blk_mq_exit_shared_sbitmap(set);
3572
3573 for (j = 0; j < set->nr_maps; j++) {
3574 kfree(set->map[j].mq_map);
3575 set->map[j].mq_map = NULL;
3576 }
3577
3578 kfree(set->tags);
3579 set->tags = NULL;
3580 }
3581 EXPORT_SYMBOL(blk_mq_free_tag_set);
3582
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3583 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3584 {
3585 struct blk_mq_tag_set *set = q->tag_set;
3586 struct blk_mq_hw_ctx *hctx;
3587 int i, ret;
3588
3589 if (!set)
3590 return -EINVAL;
3591
3592 if (q->nr_requests == nr)
3593 return 0;
3594
3595 blk_mq_freeze_queue(q);
3596 blk_mq_quiesce_queue(q);
3597
3598 ret = 0;
3599 queue_for_each_hw_ctx(q, hctx, i) {
3600 if (!hctx->tags)
3601 continue;
3602 /*
3603 * If we're using an MQ scheduler, just update the scheduler
3604 * queue depth. This is similar to what the old code would do.
3605 */
3606 if (!hctx->sched_tags) {
3607 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3608 false);
3609 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3610 blk_mq_tag_resize_shared_sbitmap(set, nr);
3611 } else {
3612 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3613 nr, true);
3614 }
3615 if (ret)
3616 break;
3617 if (q->elevator && q->elevator->type->ops.depth_updated)
3618 q->elevator->type->ops.depth_updated(hctx);
3619 }
3620
3621 if (!ret)
3622 q->nr_requests = nr;
3623
3624 blk_mq_unquiesce_queue(q);
3625 blk_mq_unfreeze_queue(q);
3626
3627 return ret;
3628 }
3629
3630 /*
3631 * request_queue and elevator_type pair.
3632 * It is just used by __blk_mq_update_nr_hw_queues to cache
3633 * the elevator_type associated with a request_queue.
3634 */
3635 struct blk_mq_qe_pair {
3636 struct list_head node;
3637 struct request_queue *q;
3638 struct elevator_type *type;
3639 };
3640
3641 /*
3642 * Cache the elevator_type in qe pair list and switch the
3643 * io scheduler to 'none'
3644 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3645 static bool blk_mq_elv_switch_none(struct list_head *head,
3646 struct request_queue *q)
3647 {
3648 struct blk_mq_qe_pair *qe;
3649
3650 if (!q->elevator)
3651 return true;
3652
3653 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3654 if (!qe)
3655 return false;
3656
3657 INIT_LIST_HEAD(&qe->node);
3658 qe->q = q;
3659 qe->type = q->elevator->type;
3660 list_add(&qe->node, head);
3661
3662 mutex_lock(&q->sysfs_lock);
3663 /*
3664 * After elevator_switch_mq, the previous elevator_queue will be
3665 * released by elevator_release. The reference of the io scheduler
3666 * module get by elevator_get will also be put. So we need to get
3667 * a reference of the io scheduler module here to prevent it to be
3668 * removed.
3669 */
3670 __module_get(qe->type->elevator_owner);
3671 elevator_switch_mq(q, NULL);
3672 mutex_unlock(&q->sysfs_lock);
3673
3674 return true;
3675 }
3676
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3677 static void blk_mq_elv_switch_back(struct list_head *head,
3678 struct request_queue *q)
3679 {
3680 struct blk_mq_qe_pair *qe;
3681 struct elevator_type *t = NULL;
3682
3683 list_for_each_entry(qe, head, node)
3684 if (qe->q == q) {
3685 t = qe->type;
3686 break;
3687 }
3688
3689 if (!t)
3690 return;
3691
3692 list_del(&qe->node);
3693 kfree(qe);
3694
3695 mutex_lock(&q->sysfs_lock);
3696 elevator_switch_mq(q, t);
3697 mutex_unlock(&q->sysfs_lock);
3698 }
3699
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3700 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3701 int nr_hw_queues)
3702 {
3703 struct request_queue *q;
3704 LIST_HEAD(head);
3705 int prev_nr_hw_queues;
3706
3707 lockdep_assert_held(&set->tag_list_lock);
3708
3709 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3710 nr_hw_queues = nr_cpu_ids;
3711 if (nr_hw_queues < 1)
3712 return;
3713 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3714 return;
3715
3716 list_for_each_entry(q, &set->tag_list, tag_set_list)
3717 blk_mq_freeze_queue(q);
3718 /*
3719 * Switch IO scheduler to 'none', cleaning up the data associated
3720 * with the previous scheduler. We will switch back once we are done
3721 * updating the new sw to hw queue mappings.
3722 */
3723 list_for_each_entry(q, &set->tag_list, tag_set_list)
3724 if (!blk_mq_elv_switch_none(&head, q))
3725 goto switch_back;
3726
3727 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3728 blk_mq_debugfs_unregister_hctxs(q);
3729 blk_mq_sysfs_unregister(q);
3730 }
3731
3732 prev_nr_hw_queues = set->nr_hw_queues;
3733 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3734 0)
3735 goto reregister;
3736
3737 set->nr_hw_queues = nr_hw_queues;
3738 fallback:
3739 blk_mq_update_queue_map(set);
3740 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3741 blk_mq_realloc_hw_ctxs(set, q);
3742 if (q->nr_hw_queues != set->nr_hw_queues) {
3743 int i = prev_nr_hw_queues;
3744
3745 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3746 nr_hw_queues, prev_nr_hw_queues);
3747 for (; i < set->nr_hw_queues; i++)
3748 blk_mq_free_map_and_requests(set, i);
3749
3750 set->nr_hw_queues = prev_nr_hw_queues;
3751 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3752 goto fallback;
3753 }
3754 blk_mq_map_swqueue(q);
3755 }
3756
3757 reregister:
3758 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3759 blk_mq_sysfs_register(q);
3760 blk_mq_debugfs_register_hctxs(q);
3761 }
3762
3763 switch_back:
3764 list_for_each_entry(q, &set->tag_list, tag_set_list)
3765 blk_mq_elv_switch_back(&head, q);
3766
3767 list_for_each_entry(q, &set->tag_list, tag_set_list)
3768 blk_mq_unfreeze_queue(q);
3769 }
3770
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3771 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3772 {
3773 mutex_lock(&set->tag_list_lock);
3774 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3775 mutex_unlock(&set->tag_list_lock);
3776 }
3777 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3778
3779 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3780 static bool blk_poll_stats_enable(struct request_queue *q)
3781 {
3782 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3783 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3784 return true;
3785 blk_stat_add_callback(q, q->poll_cb);
3786 return false;
3787 }
3788
blk_mq_poll_stats_start(struct request_queue * q)3789 static void blk_mq_poll_stats_start(struct request_queue *q)
3790 {
3791 /*
3792 * We don't arm the callback if polling stats are not enabled or the
3793 * callback is already active.
3794 */
3795 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3796 blk_stat_is_active(q->poll_cb))
3797 return;
3798
3799 blk_stat_activate_msecs(q->poll_cb, 100);
3800 }
3801
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3802 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3803 {
3804 struct request_queue *q = cb->data;
3805 int bucket;
3806
3807 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3808 if (cb->stat[bucket].nr_samples)
3809 q->poll_stat[bucket] = cb->stat[bucket];
3810 }
3811 }
3812
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3813 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3814 struct request *rq)
3815 {
3816 unsigned long ret = 0;
3817 int bucket;
3818
3819 /*
3820 * If stats collection isn't on, don't sleep but turn it on for
3821 * future users
3822 */
3823 if (!blk_poll_stats_enable(q))
3824 return 0;
3825
3826 /*
3827 * As an optimistic guess, use half of the mean service time
3828 * for this type of request. We can (and should) make this smarter.
3829 * For instance, if the completion latencies are tight, we can
3830 * get closer than just half the mean. This is especially
3831 * important on devices where the completion latencies are longer
3832 * than ~10 usec. We do use the stats for the relevant IO size
3833 * if available which does lead to better estimates.
3834 */
3835 bucket = blk_mq_poll_stats_bkt(rq);
3836 if (bucket < 0)
3837 return ret;
3838
3839 if (q->poll_stat[bucket].nr_samples)
3840 ret = (q->poll_stat[bucket].mean + 1) / 2;
3841
3842 return ret;
3843 }
3844
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3845 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3846 struct request *rq)
3847 {
3848 struct hrtimer_sleeper hs;
3849 enum hrtimer_mode mode;
3850 unsigned int nsecs;
3851 ktime_t kt;
3852
3853 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3854 return false;
3855
3856 /*
3857 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3858 *
3859 * 0: use half of prev avg
3860 * >0: use this specific value
3861 */
3862 if (q->poll_nsec > 0)
3863 nsecs = q->poll_nsec;
3864 else
3865 nsecs = blk_mq_poll_nsecs(q, rq);
3866
3867 if (!nsecs)
3868 return false;
3869
3870 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3871
3872 /*
3873 * This will be replaced with the stats tracking code, using
3874 * 'avg_completion_time / 2' as the pre-sleep target.
3875 */
3876 kt = nsecs;
3877
3878 mode = HRTIMER_MODE_REL;
3879 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3880 hrtimer_set_expires(&hs.timer, kt);
3881
3882 do {
3883 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3884 break;
3885 set_current_state(TASK_UNINTERRUPTIBLE);
3886 hrtimer_sleeper_start_expires(&hs, mode);
3887 if (hs.task)
3888 io_schedule();
3889 hrtimer_cancel(&hs.timer);
3890 mode = HRTIMER_MODE_ABS;
3891 } while (hs.task && !signal_pending(current));
3892
3893 __set_current_state(TASK_RUNNING);
3894 destroy_hrtimer_on_stack(&hs.timer);
3895 return true;
3896 }
3897
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3898 static bool blk_mq_poll_hybrid(struct request_queue *q,
3899 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3900 {
3901 struct request *rq;
3902
3903 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3904 return false;
3905
3906 if (!blk_qc_t_is_internal(cookie))
3907 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3908 else {
3909 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3910 /*
3911 * With scheduling, if the request has completed, we'll
3912 * get a NULL return here, as we clear the sched tag when
3913 * that happens. The request still remains valid, like always,
3914 * so we should be safe with just the NULL check.
3915 */
3916 if (!rq)
3917 return false;
3918 }
3919
3920 return blk_mq_poll_hybrid_sleep(q, rq);
3921 }
3922
3923 /**
3924 * blk_poll - poll for IO completions
3925 * @q: the queue
3926 * @cookie: cookie passed back at IO submission time
3927 * @spin: whether to spin for completions
3928 *
3929 * Description:
3930 * Poll for completions on the passed in queue. Returns number of
3931 * completed entries found. If @spin is true, then blk_poll will continue
3932 * looping until at least one completion is found, unless the task is
3933 * otherwise marked running (or we need to reschedule).
3934 */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3935 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3936 {
3937 struct blk_mq_hw_ctx *hctx;
3938 long state;
3939
3940 if (!blk_qc_t_valid(cookie) ||
3941 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3942 return 0;
3943
3944 if (current->plug)
3945 blk_flush_plug_list(current->plug, false);
3946
3947 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3948
3949 /*
3950 * If we sleep, have the caller restart the poll loop to reset
3951 * the state. Like for the other success return cases, the
3952 * caller is responsible for checking if the IO completed. If
3953 * the IO isn't complete, we'll get called again and will go
3954 * straight to the busy poll loop.
3955 */
3956 if (blk_mq_poll_hybrid(q, hctx, cookie))
3957 return 1;
3958
3959 hctx->poll_considered++;
3960
3961 state = current->state;
3962 do {
3963 int ret;
3964
3965 hctx->poll_invoked++;
3966
3967 ret = q->mq_ops->poll(hctx);
3968 if (ret > 0) {
3969 hctx->poll_success++;
3970 __set_current_state(TASK_RUNNING);
3971 return ret;
3972 }
3973
3974 if (signal_pending_state(state, current))
3975 __set_current_state(TASK_RUNNING);
3976
3977 if (current->state == TASK_RUNNING)
3978 return 1;
3979 if (ret < 0 || !spin)
3980 break;
3981 cpu_relax();
3982 } while (!need_resched());
3983
3984 __set_current_state(TASK_RUNNING);
3985 return 0;
3986 }
3987 EXPORT_SYMBOL_GPL(blk_poll);
3988
blk_mq_rq_cpu(struct request * rq)3989 unsigned int blk_mq_rq_cpu(struct request *rq)
3990 {
3991 return rq->mq_ctx->cpu;
3992 }
3993 EXPORT_SYMBOL(blk_mq_rq_cpu);
3994
blk_mq_cancel_work_sync(struct request_queue * q)3995 void blk_mq_cancel_work_sync(struct request_queue *q)
3996 {
3997 if (queue_is_mq(q)) {
3998 struct blk_mq_hw_ctx *hctx;
3999 int i;
4000
4001 cancel_delayed_work_sync(&q->requeue_work);
4002
4003 queue_for_each_hw_ctx(q, hctx, i)
4004 cancel_delayed_work_sync(&hctx->run_work);
4005 }
4006 }
4007
blk_mq_init(void)4008 static int __init blk_mq_init(void)
4009 {
4010 int i;
4011
4012 for_each_possible_cpu(i)
4013 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4014 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4015
4016 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4017 "block/softirq:dead", NULL,
4018 blk_softirq_cpu_dead);
4019 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4020 blk_mq_hctx_notify_dead);
4021 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4022 blk_mq_hctx_notify_online,
4023 blk_mq_hctx_notify_offline);
4024 return 0;
4025 }
4026 subsys_initcall(blk_mq_init);
4027