• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /*
54  * Maximum number of blkcg policies allowed to be registered concurrently.
55  * Defined here to simplify include dependency.
56  */
57 #define BLKCG_MAX_POLS		5
58 
59 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
60 
61 #define BLK_RL_SYNCFULL		(1U << 0)
62 #define BLK_RL_ASYNCFULL	(1U << 1)
63 
64 struct request_list {
65 	struct request_queue	*q;	/* the queue this rl belongs to */
66 #ifdef CONFIG_BLK_CGROUP
67 	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
68 #endif
69 	/*
70 	 * count[], starved[], and wait[] are indexed by
71 	 * BLK_RW_SYNC/BLK_RW_ASYNC
72 	 */
73 	int			count[2];
74 	int			starved[2];
75 	mempool_t		*rq_pool;
76 	wait_queue_head_t	wait[2];
77 	unsigned int		flags;
78 };
79 
80 /*
81  * request flags */
82 typedef __u32 __bitwise req_flags_t;
83 
84 /* elevator knows about this request */
85 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
86 /* drive already may have started this one */
87 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
88 /* uses tagged queueing */
89 #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
90 /* may not be passed by ioscheduler */
91 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
92 /* request for flush sequence */
93 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
94 /* merge of different types, fail separately */
95 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
96 /* track inflight for MQ */
97 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
98 /* don't call prep for this one */
99 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
100 /* set for "ide_preempt" requests and also for requests for which the SCSI
101    "quiesce" state must be ignored. */
102 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
103 /* contains copies of user pages */
104 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
105 /* vaguely specified driver internal error.  Ignored by the block layer */
106 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
107 /* don't warn about errors */
108 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
109 /* elevator private data attached */
110 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
111 /* account I/O stat */
112 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
113 /* request came from our alloc pool */
114 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
115 /* runtime pm request */
116 #define RQF_PM			((__force req_flags_t)(1 << 15))
117 /* on IO scheduler merge hash */
118 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
119 /* IO stats tracking on */
120 #define RQF_STATS		((__force req_flags_t)(1 << 17))
121 /* Look at ->special_vec for the actual data payload instead of the
122    bio chain. */
123 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
124 /* The per-zone write lock is held for this request */
125 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
126 /* already slept for hybrid poll */
127 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
128 /* ->timeout has been called, don't expire again */
129 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
130 
131 /* flags that prevent us from merging requests: */
132 #define RQF_NOMERGE_FLAGS \
133 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
134 
135 /*
136  * Request state for blk-mq.
137  */
138 enum mq_rq_state {
139 	MQ_RQ_IDLE		= 0,
140 	MQ_RQ_IN_FLIGHT		= 1,
141 	MQ_RQ_COMPLETE		= 2,
142 };
143 
144 /*
145  * Try to put the fields that are referenced together in the same cacheline.
146  *
147  * If you modify this structure, make sure to update blk_rq_init() and
148  * especially blk_mq_rq_ctx_init() to take care of the added fields.
149  */
150 struct request {
151 	struct request_queue *q;
152 	struct blk_mq_ctx *mq_ctx;
153 
154 	int cpu;
155 	unsigned int cmd_flags;		/* op and common flags */
156 	req_flags_t rq_flags;
157 
158 	int internal_tag;
159 
160 	/* the following two fields are internal, NEVER access directly */
161 	unsigned int __data_len;	/* total data len */
162 	int tag;
163 	sector_t __sector;		/* sector cursor */
164 
165 	struct bio *bio;
166 	struct bio *biotail;
167 
168 	struct list_head queuelist;
169 
170 	/*
171 	 * The hash is used inside the scheduler, and killed once the
172 	 * request reaches the dispatch list. The ipi_list is only used
173 	 * to queue the request for softirq completion, which is long
174 	 * after the request has been unhashed (and even removed from
175 	 * the dispatch list).
176 	 */
177 	union {
178 		struct hlist_node hash;	/* merge hash */
179 		struct list_head ipi_list;
180 	};
181 
182 	/*
183 	 * The rb_node is only used inside the io scheduler, requests
184 	 * are pruned when moved to the dispatch queue. So let the
185 	 * completion_data share space with the rb_node.
186 	 */
187 	union {
188 		struct rb_node rb_node;	/* sort/lookup */
189 		struct bio_vec special_vec;
190 		void *completion_data;
191 		int error_count; /* for legacy drivers, don't use */
192 	};
193 
194 	/*
195 	 * Three pointers are available for the IO schedulers, if they need
196 	 * more they have to dynamically allocate it.  Flush requests are
197 	 * never put on the IO scheduler. So let the flush fields share
198 	 * space with the elevator data.
199 	 */
200 	union {
201 		struct {
202 			struct io_cq		*icq;
203 			void			*priv[2];
204 		} elv;
205 
206 		struct {
207 			unsigned int		seq;
208 			struct list_head	list;
209 			rq_end_io_fn		*saved_end_io;
210 		} flush;
211 	};
212 
213 	struct gendisk *rq_disk;
214 	struct hd_struct *part;
215 	/* Time that I/O was submitted to the kernel. */
216 	u64 start_time_ns;
217 	/* Time that I/O was submitted to the device. */
218 	u64 io_start_time_ns;
219 
220 #ifdef CONFIG_BLK_WBT
221 	unsigned short wbt_flags;
222 #endif
223 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
224 	unsigned short throtl_size;
225 #endif
226 
227 	/*
228 	 * Number of scatter-gather DMA addr+len pairs after
229 	 * physical address coalescing is performed.
230 	 */
231 	unsigned short nr_phys_segments;
232 
233 #if defined(CONFIG_BLK_DEV_INTEGRITY)
234 	unsigned short nr_integrity_segments;
235 #endif
236 
237 	unsigned short write_hint;
238 	unsigned short ioprio;
239 
240 	void *special;		/* opaque pointer available for LLD use */
241 
242 	unsigned int extra_len;	/* length of alignment and padding */
243 
244 	enum mq_rq_state state;
245 	refcount_t ref;
246 
247 	unsigned int timeout;
248 
249 	/* access through blk_rq_set_deadline, blk_rq_deadline */
250 	unsigned long __deadline;
251 
252 	struct list_head timeout_list;
253 
254 	union {
255 		struct __call_single_data csd;
256 		u64 fifo_time;
257 	};
258 
259 	/*
260 	 * completion callback.
261 	 */
262 	rq_end_io_fn *end_io;
263 	void *end_io_data;
264 
265 	/* for bidi */
266 	struct request *next_rq;
267 
268 #ifdef CONFIG_BLK_CGROUP
269 	struct request_list *rl;		/* rl this rq is alloced from */
270 #endif
271 };
272 
blk_op_is_scsi(unsigned int op)273 static inline bool blk_op_is_scsi(unsigned int op)
274 {
275 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
276 }
277 
blk_op_is_private(unsigned int op)278 static inline bool blk_op_is_private(unsigned int op)
279 {
280 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
281 }
282 
blk_rq_is_scsi(struct request * rq)283 static inline bool blk_rq_is_scsi(struct request *rq)
284 {
285 	return blk_op_is_scsi(req_op(rq));
286 }
287 
blk_rq_is_private(struct request * rq)288 static inline bool blk_rq_is_private(struct request *rq)
289 {
290 	return blk_op_is_private(req_op(rq));
291 }
292 
blk_rq_is_passthrough(struct request * rq)293 static inline bool blk_rq_is_passthrough(struct request *rq)
294 {
295 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
296 }
297 
bio_is_passthrough(struct bio * bio)298 static inline bool bio_is_passthrough(struct bio *bio)
299 {
300 	unsigned op = bio_op(bio);
301 
302 	return blk_op_is_scsi(op) || blk_op_is_private(op);
303 }
304 
req_get_ioprio(struct request * req)305 static inline unsigned short req_get_ioprio(struct request *req)
306 {
307 	return req->ioprio;
308 }
309 
310 #include <linux/elevator.h>
311 
312 struct blk_queue_ctx;
313 
314 typedef void (request_fn_proc) (struct request_queue *q);
315 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
316 typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t);
317 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
318 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
319 
320 struct bio_vec;
321 typedef void (softirq_done_fn)(struct request *);
322 typedef int (dma_drain_needed_fn)(struct request *);
323 typedef int (lld_busy_fn) (struct request_queue *q);
324 typedef int (bsg_job_fn) (struct bsg_job *);
325 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
326 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
327 
328 enum blk_eh_timer_return {
329 	BLK_EH_DONE,		/* drivers has completed the command */
330 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
331 };
332 
333 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
334 
335 enum blk_queue_state {
336 	Queue_down,
337 	Queue_up,
338 };
339 
340 struct blk_queue_tag {
341 	struct request **tag_index;	/* map of busy tags */
342 	unsigned long *tag_map;		/* bit map of free/busy tags */
343 	int max_depth;			/* what we will send to device */
344 	int real_max_depth;		/* what the array can hold */
345 	atomic_t refcnt;		/* map can be shared */
346 	int alloc_policy;		/* tag allocation policy */
347 	int next_tag;			/* next tag */
348 };
349 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
350 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
351 
352 #define BLK_SCSI_MAX_CMDS	(256)
353 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
354 
355 /*
356  * Zoned block device models (zoned limit).
357  */
358 enum blk_zoned_model {
359 	BLK_ZONED_NONE,	/* Regular block device */
360 	BLK_ZONED_HA,	/* Host-aware zoned block device */
361 	BLK_ZONED_HM,	/* Host-managed zoned block device */
362 };
363 
364 struct queue_limits {
365 	unsigned long		bounce_pfn;
366 	unsigned long		seg_boundary_mask;
367 	unsigned long		virt_boundary_mask;
368 
369 	unsigned int		max_hw_sectors;
370 	unsigned int		max_dev_sectors;
371 	unsigned int		chunk_sectors;
372 	unsigned int		max_sectors;
373 	unsigned int		max_segment_size;
374 	unsigned int		physical_block_size;
375 	unsigned int		logical_block_size;
376 	unsigned int		alignment_offset;
377 	unsigned int		io_min;
378 	unsigned int		io_opt;
379 	unsigned int		max_discard_sectors;
380 	unsigned int		max_hw_discard_sectors;
381 	unsigned int		max_write_same_sectors;
382 	unsigned int		max_write_zeroes_sectors;
383 	unsigned int		discard_granularity;
384 	unsigned int		discard_alignment;
385 
386 	unsigned short		max_segments;
387 	unsigned short		max_integrity_segments;
388 	unsigned short		max_discard_segments;
389 
390 	unsigned char		misaligned;
391 	unsigned char		discard_misaligned;
392 	unsigned char		cluster;
393 	unsigned char		raid_partial_stripes_expensive;
394 	enum blk_zoned_model	zoned;
395 };
396 
397 #ifdef CONFIG_BLK_DEV_ZONED
398 
399 struct blk_zone_report_hdr {
400 	unsigned int	nr_zones;
401 	u8		padding[60];
402 };
403 
404 extern int blkdev_report_zones(struct block_device *bdev,
405 			       sector_t sector, struct blk_zone *zones,
406 			       unsigned int *nr_zones, gfp_t gfp_mask);
407 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
408 			      sector_t nr_sectors, gfp_t gfp_mask);
409 
410 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
411 				     unsigned int cmd, unsigned long arg);
412 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
413 				    unsigned int cmd, unsigned long arg);
414 
415 #else /* CONFIG_BLK_DEV_ZONED */
416 
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)417 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
418 					    fmode_t mode, unsigned int cmd,
419 					    unsigned long arg)
420 {
421 	return -ENOTTY;
422 }
423 
blkdev_reset_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)424 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
425 					   fmode_t mode, unsigned int cmd,
426 					   unsigned long arg)
427 {
428 	return -ENOTTY;
429 }
430 
431 #endif /* CONFIG_BLK_DEV_ZONED */
432 
433 struct request_queue {
434 	/*
435 	 * Together with queue_head for cacheline sharing
436 	 */
437 	struct list_head	queue_head;
438 	struct request		*last_merge;
439 	struct elevator_queue	*elevator;
440 	int			nr_rqs[2];	/* # allocated [a]sync rqs */
441 	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
442 
443 	struct blk_queue_stats	*stats;
444 	struct rq_qos		*rq_qos;
445 
446 	/*
447 	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
448 	 * is used, root blkg allocates from @q->root_rl and all other
449 	 * blkgs from their own blkg->rl.  Which one to use should be
450 	 * determined using bio_request_list().
451 	 */
452 	struct request_list	root_rl;
453 
454 	request_fn_proc		*request_fn;
455 	make_request_fn		*make_request_fn;
456 	poll_q_fn		*poll_fn;
457 	prep_rq_fn		*prep_rq_fn;
458 	unprep_rq_fn		*unprep_rq_fn;
459 	softirq_done_fn		*softirq_done_fn;
460 	rq_timed_out_fn		*rq_timed_out_fn;
461 	dma_drain_needed_fn	*dma_drain_needed;
462 	lld_busy_fn		*lld_busy_fn;
463 	/* Called just after a request is allocated */
464 	init_rq_fn		*init_rq_fn;
465 	/* Called just before a request is freed */
466 	exit_rq_fn		*exit_rq_fn;
467 	/* Called from inside blk_get_request() */
468 	void (*initialize_rq_fn)(struct request *rq);
469 
470 	const struct blk_mq_ops	*mq_ops;
471 
472 	unsigned int		*mq_map;
473 
474 	/* sw queues */
475 	struct blk_mq_ctx __percpu	*queue_ctx;
476 	unsigned int		nr_queues;
477 
478 	unsigned int		queue_depth;
479 
480 	/* hw dispatch queues */
481 	struct blk_mq_hw_ctx	**queue_hw_ctx;
482 	unsigned int		nr_hw_queues;
483 
484 	/*
485 	 * Dispatch queue sorting
486 	 */
487 	sector_t		end_sector;
488 	struct request		*boundary_rq;
489 
490 	/*
491 	 * Delayed queue handling
492 	 */
493 	struct delayed_work	delay_work;
494 
495 	struct backing_dev_info	*backing_dev_info;
496 
497 	/*
498 	 * The queue owner gets to use this for whatever they like.
499 	 * ll_rw_blk doesn't touch it.
500 	 */
501 	void			*queuedata;
502 
503 	/*
504 	 * various queue flags, see QUEUE_* below
505 	 */
506 	unsigned long		queue_flags;
507 	/*
508 	 * Number of contexts that have called blk_set_pm_only(). If this
509 	 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
510 	 * processed.
511 	 */
512 	atomic_t		pm_only;
513 
514 	/*
515 	 * ida allocated id for this queue.  Used to index queues from
516 	 * ioctx.
517 	 */
518 	int			id;
519 
520 	/*
521 	 * queue needs bounce pages for pages above this limit
522 	 */
523 	gfp_t			bounce_gfp;
524 
525 	/*
526 	 * protects queue structures from reentrancy. ->__queue_lock should
527 	 * _never_ be used directly, it is queue private. always use
528 	 * ->queue_lock.
529 	 */
530 	spinlock_t		__queue_lock;
531 	spinlock_t		*queue_lock;
532 
533 	/*
534 	 * queue kobject
535 	 */
536 	struct kobject kobj;
537 
538 	/*
539 	 * mq queue kobject
540 	 */
541 	struct kobject mq_kobj;
542 
543 #ifdef  CONFIG_BLK_DEV_INTEGRITY
544 	struct blk_integrity integrity;
545 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
546 
547 #ifdef CONFIG_PM
548 	struct device		*dev;
549 	int			rpm_status;
550 	unsigned int		nr_pending;
551 #endif
552 
553 	/*
554 	 * queue settings
555 	 */
556 	unsigned long		nr_requests;	/* Max # of requests */
557 	unsigned int		nr_congestion_on;
558 	unsigned int		nr_congestion_off;
559 	unsigned int		nr_batching;
560 
561 	unsigned int		dma_drain_size;
562 	void			*dma_drain_buffer;
563 	unsigned int		dma_pad_mask;
564 	unsigned int		dma_alignment;
565 
566 	struct blk_queue_tag	*queue_tags;
567 
568 	unsigned int		nr_sorted;
569 	unsigned int		in_flight[2];
570 
571 	/*
572 	 * Number of active block driver functions for which blk_drain_queue()
573 	 * must wait. Must be incremented around functions that unlock the
574 	 * queue_lock internally, e.g. scsi_request_fn().
575 	 */
576 	unsigned int		request_fn_active;
577 
578 	unsigned int		rq_timeout;
579 	int			poll_nsec;
580 
581 	struct blk_stat_callback	*poll_cb;
582 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
583 
584 	struct timer_list	timeout;
585 	struct work_struct	timeout_work;
586 	struct list_head	timeout_list;
587 
588 	struct list_head	icq_list;
589 #ifdef CONFIG_BLK_CGROUP
590 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
591 	struct blkcg_gq		*root_blkg;
592 	struct list_head	blkg_list;
593 #endif
594 
595 	struct queue_limits	limits;
596 
597 #ifdef CONFIG_BLK_DEV_ZONED
598 	/*
599 	 * Zoned block device information for request dispatch control.
600 	 * nr_zones is the total number of zones of the device. This is always
601 	 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
602 	 * bits which indicates if a zone is conventional (bit clear) or
603 	 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
604 	 * bits which indicates if a zone is write locked, that is, if a write
605 	 * request targeting the zone was dispatched. All three fields are
606 	 * initialized by the low level device driver (e.g. scsi/sd.c).
607 	 * Stacking drivers (device mappers) may or may not initialize
608 	 * these fields.
609 	 *
610 	 * Reads of this information must be protected with blk_queue_enter() /
611 	 * blk_queue_exit(). Modifying this information is only allowed while
612 	 * no requests are being processed. See also blk_mq_freeze_queue() and
613 	 * blk_mq_unfreeze_queue().
614 	 */
615 	unsigned int		nr_zones;
616 	unsigned long		*seq_zones_bitmap;
617 	unsigned long		*seq_zones_wlock;
618 #endif /* CONFIG_BLK_DEV_ZONED */
619 
620 	/*
621 	 * sg stuff
622 	 */
623 	unsigned int		sg_timeout;
624 	unsigned int		sg_reserved_size;
625 	int			node;
626 #ifdef CONFIG_BLK_DEV_IO_TRACE
627 	struct blk_trace __rcu	*blk_trace;
628 	struct mutex		blk_trace_mutex;
629 #endif
630 	/*
631 	 * for flush operations
632 	 */
633 	struct blk_flush_queue	*fq;
634 
635 	struct list_head	requeue_list;
636 	spinlock_t		requeue_lock;
637 	struct delayed_work	requeue_work;
638 
639 	struct mutex		sysfs_lock;
640 
641 	int			bypass_depth;
642 	atomic_t		mq_freeze_depth;
643 
644 #if defined(CONFIG_BLK_DEV_BSG)
645 	bsg_job_fn		*bsg_job_fn;
646 	struct bsg_class_device bsg_dev;
647 #endif
648 
649 #ifdef CONFIG_BLK_DEV_THROTTLING
650 	/* Throttle data */
651 	struct throtl_data *td;
652 #endif
653 	struct rcu_head		rcu_head;
654 	wait_queue_head_t	mq_freeze_wq;
655 	struct percpu_ref	q_usage_counter;
656 	struct list_head	all_q_node;
657 
658 	struct blk_mq_tag_set	*tag_set;
659 	struct list_head	tag_set_list;
660 	struct bio_set		bio_split;
661 
662 #ifdef CONFIG_BLK_DEBUG_FS
663 	struct dentry		*debugfs_dir;
664 	struct dentry		*sched_debugfs_dir;
665 #endif
666 
667 	bool			mq_sysfs_init_done;
668 
669 	size_t			cmd_size;
670 	void			*rq_alloc_data;
671 
672 	struct work_struct	release_work;
673 
674 #define BLK_MAX_WRITE_HINTS	5
675 	u64			write_hints[BLK_MAX_WRITE_HINTS];
676 };
677 
678 #define QUEUE_FLAG_QUEUED	0	/* uses generic tag queueing */
679 #define QUEUE_FLAG_STOPPED	1	/* queue is stopped */
680 #define QUEUE_FLAG_DYING	2	/* queue being torn down */
681 #define QUEUE_FLAG_BYPASS	3	/* act as dumb FIFO queue */
682 #define QUEUE_FLAG_BIDI		4	/* queue supports bidi requests */
683 #define QUEUE_FLAG_NOMERGES     5	/* disable merge attempts */
684 #define QUEUE_FLAG_SAME_COMP	6	/* complete on same CPU-group */
685 #define QUEUE_FLAG_FAIL_IO	7	/* fake timeout */
686 #define QUEUE_FLAG_NONROT	9	/* non-rotational device (SSD) */
687 #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
688 #define QUEUE_FLAG_IO_STAT     10	/* do IO stats */
689 #define QUEUE_FLAG_DISCARD     11	/* supports DISCARD */
690 #define QUEUE_FLAG_NOXMERGES   12	/* No extended merges */
691 #define QUEUE_FLAG_ADD_RANDOM  13	/* Contributes to random pool */
692 #define QUEUE_FLAG_SECERASE    14	/* supports secure erase */
693 #define QUEUE_FLAG_SAME_FORCE  15	/* force complete on same CPU */
694 #define QUEUE_FLAG_DEAD        16	/* queue tear-down finished */
695 #define QUEUE_FLAG_INIT_DONE   17	/* queue is initialized */
696 #define QUEUE_FLAG_NO_SG_MERGE 18	/* don't attempt to merge SG segments*/
697 #define QUEUE_FLAG_POLL	       19	/* IO polling enabled if set */
698 #define QUEUE_FLAG_WC	       20	/* Write back caching */
699 #define QUEUE_FLAG_FUA	       21	/* device supports FUA writes */
700 #define QUEUE_FLAG_FLUSH_NQ    22	/* flush not queueuable */
701 #define QUEUE_FLAG_DAX         23	/* device supports DAX */
702 #define QUEUE_FLAG_STATS       24	/* track rq completion times */
703 #define QUEUE_FLAG_POLL_STATS  25	/* collecting stats for hybrid polling */
704 #define QUEUE_FLAG_REGISTERED  26	/* queue has been registered to a disk */
705 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27	/* queue supports SCSI commands */
706 #define QUEUE_FLAG_QUIESCED    28	/* queue has been quiesced */
707 
708 #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
709 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
710 				 (1 << QUEUE_FLAG_ADD_RANDOM))
711 
712 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
713 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
714 				 (1 << QUEUE_FLAG_POLL))
715 
716 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
717 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
718 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
719 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q);
720 
721 #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
722 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
723 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
724 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
725 #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
726 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
727 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
728 #define blk_queue_noxmerges(q)	\
729 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
730 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
731 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
732 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
733 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
734 #define blk_queue_secure_erase(q) \
735 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
736 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
737 #define blk_queue_scsi_passthrough(q)	\
738 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
739 
740 #define blk_noretry_request(rq) \
741 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
742 			     REQ_FAILFAST_DRIVER))
743 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
744 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
745 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
746 
747 extern void blk_set_pm_only(struct request_queue *q);
748 extern void blk_clear_pm_only(struct request_queue *q);
749 
queue_in_flight(struct request_queue * q)750 static inline int queue_in_flight(struct request_queue *q)
751 {
752 	return q->in_flight[0] + q->in_flight[1];
753 }
754 
blk_account_rq(struct request * rq)755 static inline bool blk_account_rq(struct request *rq)
756 {
757 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
758 }
759 
760 #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
761 #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
762 /* rq->queuelist of dequeued request must be list_empty() */
763 #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
764 
765 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
766 
767 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
768 
769 /*
770  * Driver can handle struct request, if it either has an old style
771  * request_fn defined, or is blk-mq based.
772  */
queue_is_rq_based(struct request_queue * q)773 static inline bool queue_is_rq_based(struct request_queue *q)
774 {
775 	return q->request_fn || q->mq_ops;
776 }
777 
blk_queue_cluster(struct request_queue * q)778 static inline unsigned int blk_queue_cluster(struct request_queue *q)
779 {
780 	return q->limits.cluster;
781 }
782 
783 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)784 blk_queue_zoned_model(struct request_queue *q)
785 {
786 	return q->limits.zoned;
787 }
788 
blk_queue_is_zoned(struct request_queue * q)789 static inline bool blk_queue_is_zoned(struct request_queue *q)
790 {
791 	switch (blk_queue_zoned_model(q)) {
792 	case BLK_ZONED_HA:
793 	case BLK_ZONED_HM:
794 		return true;
795 	default:
796 		return false;
797 	}
798 }
799 
blk_queue_zone_sectors(struct request_queue * q)800 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
801 {
802 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
803 }
804 
805 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_zone_no(struct request_queue * q,sector_t sector)806 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
807 					     sector_t sector)
808 {
809 	if (!blk_queue_is_zoned(q))
810 		return 0;
811 	return sector >> ilog2(q->limits.chunk_sectors);
812 }
813 
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)814 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
815 					 sector_t sector)
816 {
817 	if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
818 		return false;
819 	return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
820 }
821 #endif /* CONFIG_BLK_DEV_ZONED */
822 
rq_is_sync(struct request * rq)823 static inline bool rq_is_sync(struct request *rq)
824 {
825 	return op_is_sync(rq->cmd_flags);
826 }
827 
blk_rl_full(struct request_list * rl,bool sync)828 static inline bool blk_rl_full(struct request_list *rl, bool sync)
829 {
830 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
831 
832 	return rl->flags & flag;
833 }
834 
blk_set_rl_full(struct request_list * rl,bool sync)835 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
836 {
837 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
838 
839 	rl->flags |= flag;
840 }
841 
blk_clear_rl_full(struct request_list * rl,bool sync)842 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
843 {
844 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
845 
846 	rl->flags &= ~flag;
847 }
848 
rq_mergeable(struct request * rq)849 static inline bool rq_mergeable(struct request *rq)
850 {
851 	if (blk_rq_is_passthrough(rq))
852 		return false;
853 
854 	if (req_op(rq) == REQ_OP_FLUSH)
855 		return false;
856 
857 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
858 		return false;
859 
860 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
861 		return false;
862 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
863 		return false;
864 
865 	return true;
866 }
867 
blk_write_same_mergeable(struct bio * a,struct bio * b)868 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
869 {
870 	if (bio_page(a) == bio_page(b) &&
871 	    bio_offset(a) == bio_offset(b))
872 		return true;
873 
874 	return false;
875 }
876 
blk_queue_depth(struct request_queue * q)877 static inline unsigned int blk_queue_depth(struct request_queue *q)
878 {
879 	if (q->queue_depth)
880 		return q->queue_depth;
881 
882 	return q->nr_requests;
883 }
884 
885 /*
886  * q->prep_rq_fn return values
887  */
888 enum {
889 	BLKPREP_OK,		/* serve it */
890 	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
891 	BLKPREP_DEFER,		/* leave on queue */
892 	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
893 };
894 
895 extern unsigned long blk_max_low_pfn, blk_max_pfn;
896 
897 /*
898  * standard bounce addresses:
899  *
900  * BLK_BOUNCE_HIGH	: bounce all highmem pages
901  * BLK_BOUNCE_ANY	: don't bounce anything
902  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
903  */
904 
905 #if BITS_PER_LONG == 32
906 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
907 #else
908 #define BLK_BOUNCE_HIGH		-1ULL
909 #endif
910 #define BLK_BOUNCE_ANY		(-1ULL)
911 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
912 
913 /*
914  * default timeout for SG_IO if none specified
915  */
916 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
917 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
918 
919 struct rq_map_data {
920 	struct page **pages;
921 	int page_order;
922 	int nr_entries;
923 	unsigned long offset;
924 	int null_mapped;
925 	int from_user;
926 };
927 
928 struct req_iterator {
929 	struct bvec_iter iter;
930 	struct bio *bio;
931 };
932 
933 /* This should not be used directly - use rq_for_each_segment */
934 #define for_each_bio(_bio)		\
935 	for (; _bio; _bio = _bio->bi_next)
936 #define __rq_for_each_bio(_bio, rq)	\
937 	if ((rq->bio))			\
938 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
939 
940 #define rq_for_each_segment(bvl, _rq, _iter)			\
941 	__rq_for_each_bio(_iter.bio, _rq)			\
942 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
943 
944 #define rq_iter_last(bvec, _iter)				\
945 		(_iter.bio->bi_next == NULL &&			\
946 		 bio_iter_last(bvec, _iter.iter))
947 
948 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
949 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
950 #endif
951 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
952 extern void rq_flush_dcache_pages(struct request *rq);
953 #else
rq_flush_dcache_pages(struct request * rq)954 static inline void rq_flush_dcache_pages(struct request *rq)
955 {
956 }
957 #endif
958 
959 extern int blk_register_queue(struct gendisk *disk);
960 extern void blk_unregister_queue(struct gendisk *disk);
961 extern blk_qc_t generic_make_request(struct bio *bio);
962 extern blk_qc_t direct_make_request(struct bio *bio);
963 extern void blk_rq_init(struct request_queue *q, struct request *rq);
964 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
965 extern void blk_put_request(struct request *);
966 extern void __blk_put_request(struct request_queue *, struct request *);
967 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
968 				       blk_mq_req_flags_t flags);
969 extern void blk_requeue_request(struct request_queue *, struct request *);
970 extern int blk_lld_busy(struct request_queue *q);
971 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
972 			     struct bio_set *bs, gfp_t gfp_mask,
973 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
974 			     void *data);
975 extern void blk_rq_unprep_clone(struct request *rq);
976 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
977 				     struct request *rq);
978 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
979 extern void blk_delay_queue(struct request_queue *, unsigned long);
980 extern void blk_queue_split(struct request_queue *, struct bio **);
981 extern void blk_recount_segments(struct request_queue *, struct bio *);
982 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
983 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
984 			      unsigned int, void __user *);
985 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
986 			  unsigned int, void __user *);
987 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
988 			 struct scsi_ioctl_command __user *);
989 
990 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
991 extern void blk_queue_exit(struct request_queue *q);
992 extern void blk_start_queue(struct request_queue *q);
993 extern void blk_start_queue_async(struct request_queue *q);
994 extern void blk_stop_queue(struct request_queue *q);
995 extern void blk_sync_queue(struct request_queue *q);
996 extern void __blk_stop_queue(struct request_queue *q);
997 extern void __blk_run_queue(struct request_queue *q);
998 extern void __blk_run_queue_uncond(struct request_queue *q);
999 extern void blk_run_queue(struct request_queue *);
1000 extern void blk_run_queue_async(struct request_queue *q);
1001 extern int blk_rq_map_user(struct request_queue *, struct request *,
1002 			   struct rq_map_data *, void __user *, unsigned long,
1003 			   gfp_t);
1004 extern int blk_rq_unmap_user(struct bio *);
1005 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
1006 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
1007 			       struct rq_map_data *, const struct iov_iter *,
1008 			       gfp_t);
1009 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
1010 			  struct request *, int);
1011 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
1012 				  struct request *, int, rq_end_io_fn *);
1013 
1014 int blk_status_to_errno(blk_status_t status);
1015 blk_status_t errno_to_blk_status(int errno);
1016 
1017 bool blk_poll(struct request_queue *q, blk_qc_t cookie);
1018 
bdev_get_queue(struct block_device * bdev)1019 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
1020 {
1021 	return bdev->bd_disk->queue;	/* this is never NULL */
1022 }
1023 
1024 /*
1025  * The basic unit of block I/O is a sector. It is used in a number of contexts
1026  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
1027  * bytes. Variables of type sector_t represent an offset or size that is a
1028  * multiple of 512 bytes. Hence these two constants.
1029  */
1030 #ifndef SECTOR_SHIFT
1031 #define SECTOR_SHIFT 9
1032 #endif
1033 #ifndef SECTOR_SIZE
1034 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
1035 #endif
1036 
1037 /*
1038  * blk_rq_pos()			: the current sector
1039  * blk_rq_bytes()		: bytes left in the entire request
1040  * blk_rq_cur_bytes()		: bytes left in the current segment
1041  * blk_rq_err_bytes()		: bytes left till the next error boundary
1042  * blk_rq_sectors()		: sectors left in the entire request
1043  * blk_rq_cur_sectors()		: sectors left in the current segment
1044  */
blk_rq_pos(const struct request * rq)1045 static inline sector_t blk_rq_pos(const struct request *rq)
1046 {
1047 	return rq->__sector;
1048 }
1049 
blk_rq_bytes(const struct request * rq)1050 static inline unsigned int blk_rq_bytes(const struct request *rq)
1051 {
1052 	return rq->__data_len;
1053 }
1054 
blk_rq_cur_bytes(const struct request * rq)1055 static inline int blk_rq_cur_bytes(const struct request *rq)
1056 {
1057 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1058 }
1059 
1060 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1061 
blk_rq_sectors(const struct request * rq)1062 static inline unsigned int blk_rq_sectors(const struct request *rq)
1063 {
1064 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1065 }
1066 
blk_rq_cur_sectors(const struct request * rq)1067 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1068 {
1069 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1070 }
1071 
1072 #ifdef CONFIG_BLK_DEV_ZONED
blk_rq_zone_no(struct request * rq)1073 static inline unsigned int blk_rq_zone_no(struct request *rq)
1074 {
1075 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1076 }
1077 
blk_rq_zone_is_seq(struct request * rq)1078 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1079 {
1080 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1081 }
1082 #endif /* CONFIG_BLK_DEV_ZONED */
1083 
1084 /*
1085  * Some commands like WRITE SAME have a payload or data transfer size which
1086  * is different from the size of the request.  Any driver that supports such
1087  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1088  * calculate the data transfer size.
1089  */
blk_rq_payload_bytes(struct request * rq)1090 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1091 {
1092 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1093 		return rq->special_vec.bv_len;
1094 	return blk_rq_bytes(rq);
1095 }
1096 
blk_queue_get_max_sectors(struct request_queue * q,int op)1097 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1098 						     int op)
1099 {
1100 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1101 		return min(q->limits.max_discard_sectors,
1102 			   UINT_MAX >> SECTOR_SHIFT);
1103 
1104 	if (unlikely(op == REQ_OP_WRITE_SAME))
1105 		return q->limits.max_write_same_sectors;
1106 
1107 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1108 		return q->limits.max_write_zeroes_sectors;
1109 
1110 	return q->limits.max_sectors;
1111 }
1112 
1113 /*
1114  * Return maximum size of a request at given offset. Only valid for
1115  * file system requests.
1116  */
blk_max_size_offset(struct request_queue * q,sector_t offset)1117 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1118 					       sector_t offset)
1119 {
1120 	if (!q->limits.chunk_sectors)
1121 		return q->limits.max_sectors;
1122 
1123 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1124 			(offset & (q->limits.chunk_sectors - 1))));
1125 }
1126 
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1127 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1128 						  sector_t offset)
1129 {
1130 	struct request_queue *q = rq->q;
1131 
1132 	if (blk_rq_is_passthrough(rq))
1133 		return q->limits.max_hw_sectors;
1134 
1135 	if (!q->limits.chunk_sectors ||
1136 	    req_op(rq) == REQ_OP_DISCARD ||
1137 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1138 		return blk_queue_get_max_sectors(q, req_op(rq));
1139 
1140 	return min(blk_max_size_offset(q, offset),
1141 			blk_queue_get_max_sectors(q, req_op(rq)));
1142 }
1143 
blk_rq_count_bios(struct request * rq)1144 static inline unsigned int blk_rq_count_bios(struct request *rq)
1145 {
1146 	unsigned int nr_bios = 0;
1147 	struct bio *bio;
1148 
1149 	__rq_for_each_bio(bio, rq)
1150 		nr_bios++;
1151 
1152 	return nr_bios;
1153 }
1154 
1155 /*
1156  * Request issue related functions.
1157  */
1158 extern struct request *blk_peek_request(struct request_queue *q);
1159 extern void blk_start_request(struct request *rq);
1160 extern struct request *blk_fetch_request(struct request_queue *q);
1161 
1162 void blk_steal_bios(struct bio_list *list, struct request *rq);
1163 
1164 /*
1165  * Request completion related functions.
1166  *
1167  * blk_update_request() completes given number of bytes and updates
1168  * the request without completing it.
1169  *
1170  * blk_end_request() and friends.  __blk_end_request() must be called
1171  * with the request queue spinlock acquired.
1172  *
1173  * Several drivers define their own end_request and call
1174  * blk_end_request() for parts of the original function.
1175  * This prevents code duplication in drivers.
1176  */
1177 extern bool blk_update_request(struct request *rq, blk_status_t error,
1178 			       unsigned int nr_bytes);
1179 extern void blk_finish_request(struct request *rq, blk_status_t error);
1180 extern bool blk_end_request(struct request *rq, blk_status_t error,
1181 			    unsigned int nr_bytes);
1182 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1183 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1184 			      unsigned int nr_bytes);
1185 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1186 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1187 
1188 extern void blk_complete_request(struct request *);
1189 extern void __blk_complete_request(struct request *);
1190 extern void blk_abort_request(struct request *);
1191 extern void blk_unprep_request(struct request *);
1192 
1193 /*
1194  * Access functions for manipulating queue properties
1195  */
1196 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1197 					spinlock_t *lock, int node_id);
1198 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1199 extern int blk_init_allocated_queue(struct request_queue *);
1200 extern void blk_cleanup_queue(struct request_queue *);
1201 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1202 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1203 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1204 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1205 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1206 extern void blk_queue_max_discard_segments(struct request_queue *,
1207 		unsigned short);
1208 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1209 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1210 		unsigned int max_discard_sectors);
1211 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1212 		unsigned int max_write_same_sectors);
1213 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1214 		unsigned int max_write_same_sectors);
1215 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1216 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1217 extern void blk_queue_alignment_offset(struct request_queue *q,
1218 				       unsigned int alignment);
1219 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1220 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1221 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1222 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1223 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1224 extern void blk_set_default_limits(struct queue_limits *lim);
1225 extern void blk_set_stacking_limits(struct queue_limits *lim);
1226 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1227 			    sector_t offset);
1228 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1229 			    sector_t offset);
1230 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1231 			      sector_t offset);
1232 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1233 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1234 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1235 extern int blk_queue_dma_drain(struct request_queue *q,
1236 			       dma_drain_needed_fn *dma_drain_needed,
1237 			       void *buf, unsigned int size);
1238 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1239 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1240 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1241 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1242 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1243 extern void blk_queue_dma_alignment(struct request_queue *, int);
1244 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1245 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1246 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1247 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1248 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1249 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1250 
1251 /*
1252  * Number of physical segments as sent to the device.
1253  *
1254  * Normally this is the number of discontiguous data segments sent by the
1255  * submitter.  But for data-less command like discard we might have no
1256  * actual data segments submitted, but the driver might have to add it's
1257  * own special payload.  In that case we still return 1 here so that this
1258  * special payload will be mapped.
1259  */
blk_rq_nr_phys_segments(struct request * rq)1260 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1261 {
1262 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1263 		return 1;
1264 	return rq->nr_phys_segments;
1265 }
1266 
1267 /*
1268  * Number of discard segments (or ranges) the driver needs to fill in.
1269  * Each discard bio merged into a request is counted as one segment.
1270  */
blk_rq_nr_discard_segments(struct request * rq)1271 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1272 {
1273 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1274 }
1275 
1276 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1277 extern void blk_dump_rq_flags(struct request *, char *);
1278 extern long nr_blockdev_pages(void);
1279 
1280 bool __must_check blk_get_queue(struct request_queue *);
1281 struct request_queue *blk_alloc_queue(gfp_t);
1282 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1283 					   spinlock_t *lock);
1284 extern void blk_put_queue(struct request_queue *);
1285 extern void blk_set_queue_dying(struct request_queue *);
1286 
1287 /*
1288  * block layer runtime pm functions
1289  */
1290 #ifdef CONFIG_PM
1291 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1292 extern int blk_pre_runtime_suspend(struct request_queue *q);
1293 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1294 extern void blk_pre_runtime_resume(struct request_queue *q);
1295 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1296 extern void blk_set_runtime_active(struct request_queue *q);
1297 #else
blk_pm_runtime_init(struct request_queue * q,struct device * dev)1298 static inline void blk_pm_runtime_init(struct request_queue *q,
1299 	struct device *dev) {}
blk_pre_runtime_suspend(struct request_queue * q)1300 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1301 {
1302 	return -ENOSYS;
1303 }
blk_post_runtime_suspend(struct request_queue * q,int err)1304 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
blk_pre_runtime_resume(struct request_queue * q)1305 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
blk_post_runtime_resume(struct request_queue * q,int err)1306 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
blk_set_runtime_active(struct request_queue * q)1307 static inline void blk_set_runtime_active(struct request_queue *q) {}
1308 #endif
1309 
1310 /*
1311  * blk_plug permits building a queue of related requests by holding the I/O
1312  * fragments for a short period. This allows merging of sequential requests
1313  * into single larger request. As the requests are moved from a per-task list to
1314  * the device's request_queue in a batch, this results in improved scalability
1315  * as the lock contention for request_queue lock is reduced.
1316  *
1317  * It is ok not to disable preemption when adding the request to the plug list
1318  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1319  * the plug list when the task sleeps by itself. For details, please see
1320  * schedule() where blk_schedule_flush_plug() is called.
1321  */
1322 struct blk_plug {
1323 	struct list_head list; /* requests */
1324 	struct list_head mq_list; /* blk-mq requests */
1325 	struct list_head cb_list; /* md requires an unplug callback */
1326 };
1327 #define BLK_MAX_REQUEST_COUNT 16
1328 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1329 
1330 struct blk_plug_cb;
1331 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1332 struct blk_plug_cb {
1333 	struct list_head list;
1334 	blk_plug_cb_fn callback;
1335 	void *data;
1336 };
1337 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1338 					     void *data, int size);
1339 extern void blk_start_plug(struct blk_plug *);
1340 extern void blk_finish_plug(struct blk_plug *);
1341 extern void blk_flush_plug_list(struct blk_plug *, bool);
1342 
blk_flush_plug(struct task_struct * tsk)1343 static inline void blk_flush_plug(struct task_struct *tsk)
1344 {
1345 	struct blk_plug *plug = tsk->plug;
1346 
1347 	if (plug)
1348 		blk_flush_plug_list(plug, false);
1349 }
1350 
blk_schedule_flush_plug(struct task_struct * tsk)1351 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1352 {
1353 	struct blk_plug *plug = tsk->plug;
1354 
1355 	if (plug)
1356 		blk_flush_plug_list(plug, true);
1357 }
1358 
blk_needs_flush_plug(struct task_struct * tsk)1359 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1360 {
1361 	struct blk_plug *plug = tsk->plug;
1362 
1363 	return plug &&
1364 		(!list_empty(&plug->list) ||
1365 		 !list_empty(&plug->mq_list) ||
1366 		 !list_empty(&plug->cb_list));
1367 }
1368 
1369 /*
1370  * tag stuff
1371  */
1372 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1373 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1374 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1375 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1376 extern void blk_queue_free_tags(struct request_queue *);
1377 extern int blk_queue_resize_tags(struct request_queue *, int);
1378 extern struct blk_queue_tag *blk_init_tags(int, int);
1379 extern void blk_free_tags(struct blk_queue_tag *);
1380 
blk_map_queue_find_tag(struct blk_queue_tag * bqt,int tag)1381 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1382 						int tag)
1383 {
1384 	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1385 		return NULL;
1386 	return bqt->tag_index[tag];
1387 }
1388 
1389 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1390 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1391 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1392 
1393 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1394 
1395 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1396 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1397 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1398 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1399 		struct bio **biop);
1400 
1401 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1402 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1403 
1404 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1405 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1406 		unsigned flags);
1407 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1408 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1409 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1410 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1411 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1412 {
1413 	return blkdev_issue_discard(sb->s_bdev,
1414 				    block << (sb->s_blocksize_bits -
1415 					      SECTOR_SHIFT),
1416 				    nr_blocks << (sb->s_blocksize_bits -
1417 						  SECTOR_SHIFT),
1418 				    gfp_mask, flags);
1419 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1420 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1421 		sector_t nr_blocks, gfp_t gfp_mask)
1422 {
1423 	return blkdev_issue_zeroout(sb->s_bdev,
1424 				    block << (sb->s_blocksize_bits -
1425 					      SECTOR_SHIFT),
1426 				    nr_blocks << (sb->s_blocksize_bits -
1427 						  SECTOR_SHIFT),
1428 				    gfp_mask, 0);
1429 }
1430 
1431 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1432 
1433 enum blk_default_limits {
1434 	BLK_MAX_SEGMENTS	= 128,
1435 	BLK_SAFE_MAX_SECTORS	= 255,
1436 	BLK_DEF_MAX_SECTORS	= 2560,
1437 	BLK_MAX_SEGMENT_SIZE	= 65536,
1438 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1439 };
1440 
queue_segment_boundary(struct request_queue * q)1441 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1442 {
1443 	return q->limits.seg_boundary_mask;
1444 }
1445 
queue_virt_boundary(struct request_queue * q)1446 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1447 {
1448 	return q->limits.virt_boundary_mask;
1449 }
1450 
queue_max_sectors(struct request_queue * q)1451 static inline unsigned int queue_max_sectors(struct request_queue *q)
1452 {
1453 	return q->limits.max_sectors;
1454 }
1455 
queue_max_hw_sectors(struct request_queue * q)1456 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1457 {
1458 	return q->limits.max_hw_sectors;
1459 }
1460 
queue_max_segments(struct request_queue * q)1461 static inline unsigned short queue_max_segments(struct request_queue *q)
1462 {
1463 	return q->limits.max_segments;
1464 }
1465 
queue_max_discard_segments(struct request_queue * q)1466 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1467 {
1468 	return q->limits.max_discard_segments;
1469 }
1470 
queue_max_segment_size(struct request_queue * q)1471 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1472 {
1473 	return q->limits.max_segment_size;
1474 }
1475 
queue_logical_block_size(struct request_queue * q)1476 static inline unsigned queue_logical_block_size(struct request_queue *q)
1477 {
1478 	int retval = 512;
1479 
1480 	if (q && q->limits.logical_block_size)
1481 		retval = q->limits.logical_block_size;
1482 
1483 	return retval;
1484 }
1485 
bdev_logical_block_size(struct block_device * bdev)1486 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1487 {
1488 	return queue_logical_block_size(bdev_get_queue(bdev));
1489 }
1490 
queue_physical_block_size(struct request_queue * q)1491 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1492 {
1493 	return q->limits.physical_block_size;
1494 }
1495 
bdev_physical_block_size(struct block_device * bdev)1496 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1497 {
1498 	return queue_physical_block_size(bdev_get_queue(bdev));
1499 }
1500 
queue_io_min(struct request_queue * q)1501 static inline unsigned int queue_io_min(struct request_queue *q)
1502 {
1503 	return q->limits.io_min;
1504 }
1505 
bdev_io_min(struct block_device * bdev)1506 static inline int bdev_io_min(struct block_device *bdev)
1507 {
1508 	return queue_io_min(bdev_get_queue(bdev));
1509 }
1510 
queue_io_opt(struct request_queue * q)1511 static inline unsigned int queue_io_opt(struct request_queue *q)
1512 {
1513 	return q->limits.io_opt;
1514 }
1515 
bdev_io_opt(struct block_device * bdev)1516 static inline int bdev_io_opt(struct block_device *bdev)
1517 {
1518 	return queue_io_opt(bdev_get_queue(bdev));
1519 }
1520 
queue_alignment_offset(struct request_queue * q)1521 static inline int queue_alignment_offset(struct request_queue *q)
1522 {
1523 	if (q->limits.misaligned)
1524 		return -1;
1525 
1526 	return q->limits.alignment_offset;
1527 }
1528 
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1529 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1530 {
1531 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1532 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1533 		<< SECTOR_SHIFT;
1534 
1535 	return (granularity + lim->alignment_offset - alignment) % granularity;
1536 }
1537 
bdev_alignment_offset(struct block_device * bdev)1538 static inline int bdev_alignment_offset(struct block_device *bdev)
1539 {
1540 	struct request_queue *q = bdev_get_queue(bdev);
1541 
1542 	if (q->limits.misaligned)
1543 		return -1;
1544 
1545 	if (bdev != bdev->bd_contains)
1546 		return bdev->bd_part->alignment_offset;
1547 
1548 	return q->limits.alignment_offset;
1549 }
1550 
queue_discard_alignment(struct request_queue * q)1551 static inline int queue_discard_alignment(struct request_queue *q)
1552 {
1553 	if (q->limits.discard_misaligned)
1554 		return -1;
1555 
1556 	return q->limits.discard_alignment;
1557 }
1558 
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1559 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1560 {
1561 	unsigned int alignment, granularity, offset;
1562 
1563 	if (!lim->max_discard_sectors)
1564 		return 0;
1565 
1566 	/* Why are these in bytes, not sectors? */
1567 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1568 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1569 	if (!granularity)
1570 		return 0;
1571 
1572 	/* Offset of the partition start in 'granularity' sectors */
1573 	offset = sector_div(sector, granularity);
1574 
1575 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1576 	offset = (granularity + alignment - offset) % granularity;
1577 
1578 	/* Turn it back into bytes, gaah */
1579 	return offset << SECTOR_SHIFT;
1580 }
1581 
bdev_discard_alignment(struct block_device * bdev)1582 static inline int bdev_discard_alignment(struct block_device *bdev)
1583 {
1584 	struct request_queue *q = bdev_get_queue(bdev);
1585 
1586 	if (bdev != bdev->bd_contains)
1587 		return bdev->bd_part->discard_alignment;
1588 
1589 	return q->limits.discard_alignment;
1590 }
1591 
bdev_write_same(struct block_device * bdev)1592 static inline unsigned int bdev_write_same(struct block_device *bdev)
1593 {
1594 	struct request_queue *q = bdev_get_queue(bdev);
1595 
1596 	if (q)
1597 		return q->limits.max_write_same_sectors;
1598 
1599 	return 0;
1600 }
1601 
bdev_write_zeroes_sectors(struct block_device * bdev)1602 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1603 {
1604 	struct request_queue *q = bdev_get_queue(bdev);
1605 
1606 	if (q)
1607 		return q->limits.max_write_zeroes_sectors;
1608 
1609 	return 0;
1610 }
1611 
bdev_zoned_model(struct block_device * bdev)1612 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1613 {
1614 	struct request_queue *q = bdev_get_queue(bdev);
1615 
1616 	if (q)
1617 		return blk_queue_zoned_model(q);
1618 
1619 	return BLK_ZONED_NONE;
1620 }
1621 
bdev_is_zoned(struct block_device * bdev)1622 static inline bool bdev_is_zoned(struct block_device *bdev)
1623 {
1624 	struct request_queue *q = bdev_get_queue(bdev);
1625 
1626 	if (q)
1627 		return blk_queue_is_zoned(q);
1628 
1629 	return false;
1630 }
1631 
bdev_zone_sectors(struct block_device * bdev)1632 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1633 {
1634 	struct request_queue *q = bdev_get_queue(bdev);
1635 
1636 	if (q)
1637 		return blk_queue_zone_sectors(q);
1638 	return 0;
1639 }
1640 
queue_dma_alignment(struct request_queue * q)1641 static inline int queue_dma_alignment(struct request_queue *q)
1642 {
1643 	return q ? q->dma_alignment : 511;
1644 }
1645 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1646 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1647 				 unsigned int len)
1648 {
1649 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1650 	return !(addr & alignment) && !(len & alignment);
1651 }
1652 
1653 /* assumes size > 256 */
blksize_bits(unsigned int size)1654 static inline unsigned int blksize_bits(unsigned int size)
1655 {
1656 	unsigned int bits = 8;
1657 	do {
1658 		bits++;
1659 		size >>= 1;
1660 	} while (size > 256);
1661 	return bits;
1662 }
1663 
block_size(struct block_device * bdev)1664 static inline unsigned int block_size(struct block_device *bdev)
1665 {
1666 	return bdev->bd_block_size;
1667 }
1668 
queue_flush_queueable(struct request_queue * q)1669 static inline bool queue_flush_queueable(struct request_queue *q)
1670 {
1671 	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1672 }
1673 
1674 typedef struct {struct page *v;} Sector;
1675 
1676 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1677 
put_dev_sector(Sector p)1678 static inline void put_dev_sector(Sector p)
1679 {
1680 	put_page(p.v);
1681 }
1682 
__bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)1683 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1684 				struct bio_vec *bprv, unsigned int offset)
1685 {
1686 	return offset ||
1687 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1688 }
1689 
1690 /*
1691  * Check if adding a bio_vec after bprv with offset would create a gap in
1692  * the SG list. Most drivers don't care about this, but some do.
1693  */
bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)1694 static inline bool bvec_gap_to_prev(struct request_queue *q,
1695 				struct bio_vec *bprv, unsigned int offset)
1696 {
1697 	if (!queue_virt_boundary(q))
1698 		return false;
1699 	return __bvec_gap_to_prev(q, bprv, offset);
1700 }
1701 
1702 /*
1703  * Check if the two bvecs from two bios can be merged to one segment.
1704  * If yes, no need to check gap between the two bios since the 1st bio
1705  * and the 1st bvec in the 2nd bio can be handled in one segment.
1706  */
bios_segs_mergeable(struct request_queue * q,struct bio * prev,struct bio_vec * prev_last_bv,struct bio_vec * next_first_bv)1707 static inline bool bios_segs_mergeable(struct request_queue *q,
1708 		struct bio *prev, struct bio_vec *prev_last_bv,
1709 		struct bio_vec *next_first_bv)
1710 {
1711 	if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1712 		return false;
1713 	if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1714 		return false;
1715 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
1716 			queue_max_segment_size(q))
1717 		return false;
1718 	return true;
1719 }
1720 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)1721 static inline bool bio_will_gap(struct request_queue *q,
1722 				struct request *prev_rq,
1723 				struct bio *prev,
1724 				struct bio *next)
1725 {
1726 	if (bio_has_data(prev) && queue_virt_boundary(q)) {
1727 		struct bio_vec pb, nb;
1728 
1729 		/*
1730 		 * don't merge if the 1st bio starts with non-zero
1731 		 * offset, otherwise it is quite difficult to respect
1732 		 * sg gap limit. We work hard to merge a huge number of small
1733 		 * single bios in case of mkfs.
1734 		 */
1735 		if (prev_rq)
1736 			bio_get_first_bvec(prev_rq->bio, &pb);
1737 		else
1738 			bio_get_first_bvec(prev, &pb);
1739 		if (pb.bv_offset)
1740 			return true;
1741 
1742 		/*
1743 		 * We don't need to worry about the situation that the
1744 		 * merged segment ends in unaligned virt boundary:
1745 		 *
1746 		 * - if 'pb' ends aligned, the merged segment ends aligned
1747 		 * - if 'pb' ends unaligned, the next bio must include
1748 		 *   one single bvec of 'nb', otherwise the 'nb' can't
1749 		 *   merge with 'pb'
1750 		 */
1751 		bio_get_last_bvec(prev, &pb);
1752 		bio_get_first_bvec(next, &nb);
1753 
1754 		if (!bios_segs_mergeable(q, prev, &pb, &nb))
1755 			return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1756 	}
1757 
1758 	return false;
1759 }
1760 
req_gap_back_merge(struct request * req,struct bio * bio)1761 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1762 {
1763 	return bio_will_gap(req->q, req, req->biotail, bio);
1764 }
1765 
req_gap_front_merge(struct request * req,struct bio * bio)1766 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1767 {
1768 	return bio_will_gap(req->q, NULL, bio, req->bio);
1769 }
1770 
1771 int kblockd_schedule_work(struct work_struct *work);
1772 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1773 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1774 
1775 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1776 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1777 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1778 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1779 
1780 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1781 
1782 enum blk_integrity_flags {
1783 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1784 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1785 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1786 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1787 };
1788 
1789 struct blk_integrity_iter {
1790 	void			*prot_buf;
1791 	void			*data_buf;
1792 	sector_t		seed;
1793 	unsigned int		data_size;
1794 	unsigned short		interval;
1795 	const char		*disk_name;
1796 };
1797 
1798 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1799 
1800 struct blk_integrity_profile {
1801 	integrity_processing_fn		*generate_fn;
1802 	integrity_processing_fn		*verify_fn;
1803 	const char			*name;
1804 };
1805 
1806 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1807 extern void blk_integrity_unregister(struct gendisk *);
1808 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1809 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1810 				   struct scatterlist *);
1811 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1812 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1813 				   struct request *);
1814 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1815 				    struct bio *);
1816 
blk_get_integrity(struct gendisk * disk)1817 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1818 {
1819 	struct blk_integrity *bi = &disk->queue->integrity;
1820 
1821 	if (!bi->profile)
1822 		return NULL;
1823 
1824 	return bi;
1825 }
1826 
1827 static inline
bdev_get_integrity(struct block_device * bdev)1828 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1829 {
1830 	return blk_get_integrity(bdev->bd_disk);
1831 }
1832 
blk_integrity_rq(struct request * rq)1833 static inline bool blk_integrity_rq(struct request *rq)
1834 {
1835 	return rq->cmd_flags & REQ_INTEGRITY;
1836 }
1837 
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1838 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1839 						    unsigned int segs)
1840 {
1841 	q->limits.max_integrity_segments = segs;
1842 }
1843 
1844 static inline unsigned short
queue_max_integrity_segments(struct request_queue * q)1845 queue_max_integrity_segments(struct request_queue *q)
1846 {
1847 	return q->limits.max_integrity_segments;
1848 }
1849 
integrity_req_gap_back_merge(struct request * req,struct bio * next)1850 static inline bool integrity_req_gap_back_merge(struct request *req,
1851 						struct bio *next)
1852 {
1853 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
1854 	struct bio_integrity_payload *bip_next = bio_integrity(next);
1855 
1856 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1857 				bip_next->bip_vec[0].bv_offset);
1858 }
1859 
integrity_req_gap_front_merge(struct request * req,struct bio * bio)1860 static inline bool integrity_req_gap_front_merge(struct request *req,
1861 						 struct bio *bio)
1862 {
1863 	struct bio_integrity_payload *bip = bio_integrity(bio);
1864 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1865 
1866 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1867 				bip_next->bip_vec[0].bv_offset);
1868 }
1869 
1870 /**
1871  * bio_integrity_intervals - Return number of integrity intervals for a bio
1872  * @bi:		blk_integrity profile for device
1873  * @sectors:	Size of the bio in 512-byte sectors
1874  *
1875  * Description: The block layer calculates everything in 512 byte
1876  * sectors but integrity metadata is done in terms of the data integrity
1877  * interval size of the storage device.  Convert the block layer sectors
1878  * to the appropriate number of integrity intervals.
1879  */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1880 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1881 						   unsigned int sectors)
1882 {
1883 	return sectors >> (bi->interval_exp - 9);
1884 }
1885 
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1886 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1887 					       unsigned int sectors)
1888 {
1889 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1890 }
1891 
1892 #else /* CONFIG_BLK_DEV_INTEGRITY */
1893 
1894 struct bio;
1895 struct block_device;
1896 struct gendisk;
1897 struct blk_integrity;
1898 
blk_integrity_rq(struct request * rq)1899 static inline int blk_integrity_rq(struct request *rq)
1900 {
1901 	return 0;
1902 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1903 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1904 					    struct bio *b)
1905 {
1906 	return 0;
1907 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1908 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1909 					  struct bio *b,
1910 					  struct scatterlist *s)
1911 {
1912 	return 0;
1913 }
bdev_get_integrity(struct block_device * b)1914 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1915 {
1916 	return NULL;
1917 }
blk_get_integrity(struct gendisk * disk)1918 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1919 {
1920 	return NULL;
1921 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1922 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1923 {
1924 	return 0;
1925 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1926 static inline void blk_integrity_register(struct gendisk *d,
1927 					 struct blk_integrity *b)
1928 {
1929 }
blk_integrity_unregister(struct gendisk * d)1930 static inline void blk_integrity_unregister(struct gendisk *d)
1931 {
1932 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1933 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1934 						    unsigned int segs)
1935 {
1936 }
queue_max_integrity_segments(struct request_queue * q)1937 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1938 {
1939 	return 0;
1940 }
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)1941 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1942 					  struct request *r1,
1943 					  struct request *r2)
1944 {
1945 	return true;
1946 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)1947 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1948 					   struct request *r,
1949 					   struct bio *b)
1950 {
1951 	return true;
1952 }
1953 
integrity_req_gap_back_merge(struct request * req,struct bio * next)1954 static inline bool integrity_req_gap_back_merge(struct request *req,
1955 						struct bio *next)
1956 {
1957 	return false;
1958 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)1959 static inline bool integrity_req_gap_front_merge(struct request *req,
1960 						 struct bio *bio)
1961 {
1962 	return false;
1963 }
1964 
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1965 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1966 						   unsigned int sectors)
1967 {
1968 	return 0;
1969 }
1970 
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1971 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1972 					       unsigned int sectors)
1973 {
1974 	return 0;
1975 }
1976 
1977 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1978 
1979 struct block_device_operations {
1980 	int (*open) (struct block_device *, fmode_t);
1981 	void (*release) (struct gendisk *, fmode_t);
1982 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1983 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1984 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1985 	unsigned int (*check_events) (struct gendisk *disk,
1986 				      unsigned int clearing);
1987 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1988 	int (*media_changed) (struct gendisk *);
1989 	void (*unlock_native_capacity) (struct gendisk *);
1990 	int (*revalidate_disk) (struct gendisk *);
1991 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1992 	/* this callback is with swap_lock and sometimes page table lock held */
1993 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1994 	struct module *owner;
1995 	const struct pr_ops *pr_ops;
1996 };
1997 
1998 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1999 				 unsigned long);
2000 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
2001 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
2002 						struct writeback_control *);
2003 
2004 #ifdef CONFIG_BLK_DEV_ZONED
2005 bool blk_req_needs_zone_write_lock(struct request *rq);
2006 void __blk_req_zone_write_lock(struct request *rq);
2007 void __blk_req_zone_write_unlock(struct request *rq);
2008 
blk_req_zone_write_lock(struct request * rq)2009 static inline void blk_req_zone_write_lock(struct request *rq)
2010 {
2011 	if (blk_req_needs_zone_write_lock(rq))
2012 		__blk_req_zone_write_lock(rq);
2013 }
2014 
blk_req_zone_write_unlock(struct request * rq)2015 static inline void blk_req_zone_write_unlock(struct request *rq)
2016 {
2017 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
2018 		__blk_req_zone_write_unlock(rq);
2019 }
2020 
blk_req_zone_is_write_locked(struct request * rq)2021 static inline bool blk_req_zone_is_write_locked(struct request *rq)
2022 {
2023 	return rq->q->seq_zones_wlock &&
2024 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
2025 }
2026 
blk_req_can_dispatch_to_zone(struct request * rq)2027 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2028 {
2029 	if (!blk_req_needs_zone_write_lock(rq))
2030 		return true;
2031 	return !blk_req_zone_is_write_locked(rq);
2032 }
2033 #else
blk_req_needs_zone_write_lock(struct request * rq)2034 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
2035 {
2036 	return false;
2037 }
2038 
blk_req_zone_write_lock(struct request * rq)2039 static inline void blk_req_zone_write_lock(struct request *rq)
2040 {
2041 }
2042 
blk_req_zone_write_unlock(struct request * rq)2043 static inline void blk_req_zone_write_unlock(struct request *rq)
2044 {
2045 }
blk_req_zone_is_write_locked(struct request * rq)2046 static inline bool blk_req_zone_is_write_locked(struct request *rq)
2047 {
2048 	return false;
2049 }
2050 
blk_req_can_dispatch_to_zone(struct request * rq)2051 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2052 {
2053 	return true;
2054 }
2055 #endif /* CONFIG_BLK_DEV_ZONED */
2056 
2057 #else /* CONFIG_BLOCK */
2058 
2059 struct block_device;
2060 
2061 /*
2062  * stubs for when the block layer is configured out
2063  */
2064 #define buffer_heads_over_limit 0
2065 
nr_blockdev_pages(void)2066 static inline long nr_blockdev_pages(void)
2067 {
2068 	return 0;
2069 }
2070 
2071 struct blk_plug {
2072 };
2073 
blk_start_plug(struct blk_plug * plug)2074 static inline void blk_start_plug(struct blk_plug *plug)
2075 {
2076 }
2077 
blk_finish_plug(struct blk_plug * plug)2078 static inline void blk_finish_plug(struct blk_plug *plug)
2079 {
2080 }
2081 
blk_flush_plug(struct task_struct * task)2082 static inline void blk_flush_plug(struct task_struct *task)
2083 {
2084 }
2085 
blk_schedule_flush_plug(struct task_struct * task)2086 static inline void blk_schedule_flush_plug(struct task_struct *task)
2087 {
2088 }
2089 
2090 
blk_needs_flush_plug(struct task_struct * tsk)2091 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
2092 {
2093 	return false;
2094 }
2095 
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask,sector_t * error_sector)2096 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2097 				     sector_t *error_sector)
2098 {
2099 	return 0;
2100 }
2101 
2102 #endif /* CONFIG_BLOCK */
2103 
2104 #endif
2105