1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35
36 #include <asm/barrier.h>
37 #include <asm/unaligned.h>
38
39 /* Registers */
40 #define BPF_R0 regs[BPF_REG_0]
41 #define BPF_R1 regs[BPF_REG_1]
42 #define BPF_R2 regs[BPF_REG_2]
43 #define BPF_R3 regs[BPF_REG_3]
44 #define BPF_R4 regs[BPF_REG_4]
45 #define BPF_R5 regs[BPF_REG_5]
46 #define BPF_R6 regs[BPF_REG_6]
47 #define BPF_R7 regs[BPF_REG_7]
48 #define BPF_R8 regs[BPF_REG_8]
49 #define BPF_R9 regs[BPF_REG_9]
50 #define BPF_R10 regs[BPF_REG_10]
51
52 /* Named registers */
53 #define DST regs[insn->dst_reg]
54 #define SRC regs[insn->src_reg]
55 #define FP regs[BPF_REG_FP]
56 #define AX regs[BPF_REG_AX]
57 #define ARG1 regs[BPF_REG_ARG1]
58 #define CTX regs[BPF_REG_CTX]
59 #define IMM insn->imm
60
61 /* No hurry in this branch
62 *
63 * Exported for the bpf jit load helper.
64 */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)65 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
66 {
67 u8 *ptr = NULL;
68
69 if (k >= SKF_NET_OFF)
70 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
71 else if (k >= SKF_LL_OFF)
72 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
73
74 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
75 return ptr;
76
77 return NULL;
78 }
79
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)80 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
81 {
82 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
83 struct bpf_prog_aux *aux;
84 struct bpf_prog *fp;
85
86 size = round_up(size, PAGE_SIZE);
87 fp = __vmalloc(size, gfp_flags);
88 if (fp == NULL)
89 return NULL;
90
91 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
92 if (aux == NULL) {
93 vfree(fp);
94 return NULL;
95 }
96
97 fp->pages = size / PAGE_SIZE;
98 fp->aux = aux;
99 fp->aux->prog = fp;
100 fp->jit_requested = ebpf_jit_enabled();
101
102 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
103 mutex_init(&fp->aux->used_maps_mutex);
104 mutex_init(&fp->aux->dst_mutex);
105
106 return fp;
107 }
108
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)109 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
110 {
111 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
112 struct bpf_prog *prog;
113 int cpu;
114
115 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
116 if (!prog)
117 return NULL;
118
119 prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
120 if (!prog->aux->stats) {
121 kfree(prog->aux);
122 vfree(prog);
123 return NULL;
124 }
125
126 for_each_possible_cpu(cpu) {
127 struct bpf_prog_stats *pstats;
128
129 pstats = per_cpu_ptr(prog->aux->stats, cpu);
130 u64_stats_init(&pstats->syncp);
131 }
132 return prog;
133 }
134 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
135
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)136 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
137 {
138 if (!prog->aux->nr_linfo || !prog->jit_requested)
139 return 0;
140
141 prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
142 sizeof(*prog->aux->jited_linfo),
143 GFP_KERNEL | __GFP_NOWARN);
144 if (!prog->aux->jited_linfo)
145 return -ENOMEM;
146
147 return 0;
148 }
149
bpf_prog_free_jited_linfo(struct bpf_prog * prog)150 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
151 {
152 kfree(prog->aux->jited_linfo);
153 prog->aux->jited_linfo = NULL;
154 }
155
bpf_prog_free_unused_jited_linfo(struct bpf_prog * prog)156 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
157 {
158 if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
159 bpf_prog_free_jited_linfo(prog);
160 }
161
162 /* The jit engine is responsible to provide an array
163 * for insn_off to the jited_off mapping (insn_to_jit_off).
164 *
165 * The idx to this array is the insn_off. Hence, the insn_off
166 * here is relative to the prog itself instead of the main prog.
167 * This array has one entry for each xlated bpf insn.
168 *
169 * jited_off is the byte off to the last byte of the jited insn.
170 *
171 * Hence, with
172 * insn_start:
173 * The first bpf insn off of the prog. The insn off
174 * here is relative to the main prog.
175 * e.g. if prog is a subprog, insn_start > 0
176 * linfo_idx:
177 * The prog's idx to prog->aux->linfo and jited_linfo
178 *
179 * jited_linfo[linfo_idx] = prog->bpf_func
180 *
181 * For i > linfo_idx,
182 *
183 * jited_linfo[i] = prog->bpf_func +
184 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
185 */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)186 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
187 const u32 *insn_to_jit_off)
188 {
189 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
190 const struct bpf_line_info *linfo;
191 void **jited_linfo;
192
193 if (!prog->aux->jited_linfo)
194 /* Userspace did not provide linfo */
195 return;
196
197 linfo_idx = prog->aux->linfo_idx;
198 linfo = &prog->aux->linfo[linfo_idx];
199 insn_start = linfo[0].insn_off;
200 insn_end = insn_start + prog->len;
201
202 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
203 jited_linfo[0] = prog->bpf_func;
204
205 nr_linfo = prog->aux->nr_linfo - linfo_idx;
206
207 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
208 /* The verifier ensures that linfo[i].insn_off is
209 * strictly increasing
210 */
211 jited_linfo[i] = prog->bpf_func +
212 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
213 }
214
bpf_prog_free_linfo(struct bpf_prog * prog)215 void bpf_prog_free_linfo(struct bpf_prog *prog)
216 {
217 bpf_prog_free_jited_linfo(prog);
218 kvfree(prog->aux->linfo);
219 }
220
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)221 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
222 gfp_t gfp_extra_flags)
223 {
224 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
225 struct bpf_prog *fp;
226 u32 pages, delta;
227 int ret;
228
229 size = round_up(size, PAGE_SIZE);
230 pages = size / PAGE_SIZE;
231 if (pages <= fp_old->pages)
232 return fp_old;
233
234 delta = pages - fp_old->pages;
235 ret = __bpf_prog_charge(fp_old->aux->user, delta);
236 if (ret)
237 return NULL;
238
239 fp = __vmalloc(size, gfp_flags);
240 if (fp == NULL) {
241 __bpf_prog_uncharge(fp_old->aux->user, delta);
242 } else {
243 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
244 fp->pages = pages;
245 fp->aux->prog = fp;
246
247 /* We keep fp->aux from fp_old around in the new
248 * reallocated structure.
249 */
250 fp_old->aux = NULL;
251 __bpf_prog_free(fp_old);
252 }
253
254 return fp;
255 }
256
__bpf_prog_free(struct bpf_prog * fp)257 void __bpf_prog_free(struct bpf_prog *fp)
258 {
259 if (fp->aux) {
260 mutex_destroy(&fp->aux->used_maps_mutex);
261 mutex_destroy(&fp->aux->dst_mutex);
262 free_percpu(fp->aux->stats);
263 kfree(fp->aux->poke_tab);
264 kfree(fp->aux);
265 }
266 vfree(fp);
267 }
268
bpf_prog_calc_tag(struct bpf_prog * fp)269 int bpf_prog_calc_tag(struct bpf_prog *fp)
270 {
271 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
272 u32 raw_size = bpf_prog_tag_scratch_size(fp);
273 u32 digest[SHA1_DIGEST_WORDS];
274 u32 ws[SHA1_WORKSPACE_WORDS];
275 u32 i, bsize, psize, blocks;
276 struct bpf_insn *dst;
277 bool was_ld_map;
278 u8 *raw, *todo;
279 __be32 *result;
280 __be64 *bits;
281
282 raw = vmalloc(raw_size);
283 if (!raw)
284 return -ENOMEM;
285
286 sha1_init(digest);
287 memset(ws, 0, sizeof(ws));
288
289 /* We need to take out the map fd for the digest calculation
290 * since they are unstable from user space side.
291 */
292 dst = (void *)raw;
293 for (i = 0, was_ld_map = false; i < fp->len; i++) {
294 dst[i] = fp->insnsi[i];
295 if (!was_ld_map &&
296 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
297 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
298 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
299 was_ld_map = true;
300 dst[i].imm = 0;
301 } else if (was_ld_map &&
302 dst[i].code == 0 &&
303 dst[i].dst_reg == 0 &&
304 dst[i].src_reg == 0 &&
305 dst[i].off == 0) {
306 was_ld_map = false;
307 dst[i].imm = 0;
308 } else {
309 was_ld_map = false;
310 }
311 }
312
313 psize = bpf_prog_insn_size(fp);
314 memset(&raw[psize], 0, raw_size - psize);
315 raw[psize++] = 0x80;
316
317 bsize = round_up(psize, SHA1_BLOCK_SIZE);
318 blocks = bsize / SHA1_BLOCK_SIZE;
319 todo = raw;
320 if (bsize - psize >= sizeof(__be64)) {
321 bits = (__be64 *)(todo + bsize - sizeof(__be64));
322 } else {
323 bits = (__be64 *)(todo + bsize + bits_offset);
324 blocks++;
325 }
326 *bits = cpu_to_be64((psize - 1) << 3);
327
328 while (blocks--) {
329 sha1_transform(digest, todo, ws);
330 todo += SHA1_BLOCK_SIZE;
331 }
332
333 result = (__force __be32 *)digest;
334 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
335 result[i] = cpu_to_be32(digest[i]);
336 memcpy(fp->tag, result, sizeof(fp->tag));
337
338 vfree(raw);
339 return 0;
340 }
341
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)342 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
343 s32 end_new, s32 curr, const bool probe_pass)
344 {
345 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
346 s32 delta = end_new - end_old;
347 s64 imm = insn->imm;
348
349 if (curr < pos && curr + imm + 1 >= end_old)
350 imm += delta;
351 else if (curr >= end_new && curr + imm + 1 < end_new)
352 imm -= delta;
353 if (imm < imm_min || imm > imm_max)
354 return -ERANGE;
355 if (!probe_pass)
356 insn->imm = imm;
357 return 0;
358 }
359
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)360 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
361 s32 end_new, s32 curr, const bool probe_pass)
362 {
363 const s32 off_min = S16_MIN, off_max = S16_MAX;
364 s32 delta = end_new - end_old;
365 s32 off = insn->off;
366
367 if (curr < pos && curr + off + 1 >= end_old)
368 off += delta;
369 else if (curr >= end_new && curr + off + 1 < end_new)
370 off -= delta;
371 if (off < off_min || off > off_max)
372 return -ERANGE;
373 if (!probe_pass)
374 insn->off = off;
375 return 0;
376 }
377
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)378 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
379 s32 end_new, const bool probe_pass)
380 {
381 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
382 struct bpf_insn *insn = prog->insnsi;
383 int ret = 0;
384
385 for (i = 0; i < insn_cnt; i++, insn++) {
386 u8 code;
387
388 /* In the probing pass we still operate on the original,
389 * unpatched image in order to check overflows before we
390 * do any other adjustments. Therefore skip the patchlet.
391 */
392 if (probe_pass && i == pos) {
393 i = end_new;
394 insn = prog->insnsi + end_old;
395 }
396 code = insn->code;
397 if ((BPF_CLASS(code) != BPF_JMP &&
398 BPF_CLASS(code) != BPF_JMP32) ||
399 BPF_OP(code) == BPF_EXIT)
400 continue;
401 /* Adjust offset of jmps if we cross patch boundaries. */
402 if (BPF_OP(code) == BPF_CALL) {
403 if (insn->src_reg != BPF_PSEUDO_CALL)
404 continue;
405 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
406 end_new, i, probe_pass);
407 } else {
408 ret = bpf_adj_delta_to_off(insn, pos, end_old,
409 end_new, i, probe_pass);
410 }
411 if (ret)
412 break;
413 }
414
415 return ret;
416 }
417
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)418 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
419 {
420 struct bpf_line_info *linfo;
421 u32 i, nr_linfo;
422
423 nr_linfo = prog->aux->nr_linfo;
424 if (!nr_linfo || !delta)
425 return;
426
427 linfo = prog->aux->linfo;
428
429 for (i = 0; i < nr_linfo; i++)
430 if (off < linfo[i].insn_off)
431 break;
432
433 /* Push all off < linfo[i].insn_off by delta */
434 for (; i < nr_linfo; i++)
435 linfo[i].insn_off += delta;
436 }
437
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)438 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
439 const struct bpf_insn *patch, u32 len)
440 {
441 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
442 const u32 cnt_max = S16_MAX;
443 struct bpf_prog *prog_adj;
444 int err;
445
446 /* Since our patchlet doesn't expand the image, we're done. */
447 if (insn_delta == 0) {
448 memcpy(prog->insnsi + off, patch, sizeof(*patch));
449 return prog;
450 }
451
452 insn_adj_cnt = prog->len + insn_delta;
453
454 /* Reject anything that would potentially let the insn->off
455 * target overflow when we have excessive program expansions.
456 * We need to probe here before we do any reallocation where
457 * we afterwards may not fail anymore.
458 */
459 if (insn_adj_cnt > cnt_max &&
460 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
461 return ERR_PTR(err);
462
463 /* Several new instructions need to be inserted. Make room
464 * for them. Likely, there's no need for a new allocation as
465 * last page could have large enough tailroom.
466 */
467 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
468 GFP_USER);
469 if (!prog_adj)
470 return ERR_PTR(-ENOMEM);
471
472 prog_adj->len = insn_adj_cnt;
473
474 /* Patching happens in 3 steps:
475 *
476 * 1) Move over tail of insnsi from next instruction onwards,
477 * so we can patch the single target insn with one or more
478 * new ones (patching is always from 1 to n insns, n > 0).
479 * 2) Inject new instructions at the target location.
480 * 3) Adjust branch offsets if necessary.
481 */
482 insn_rest = insn_adj_cnt - off - len;
483
484 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
485 sizeof(*patch) * insn_rest);
486 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
487
488 /* We are guaranteed to not fail at this point, otherwise
489 * the ship has sailed to reverse to the original state. An
490 * overflow cannot happen at this point.
491 */
492 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
493
494 bpf_adj_linfo(prog_adj, off, insn_delta);
495
496 return prog_adj;
497 }
498
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)499 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
500 {
501 /* Branch offsets can't overflow when program is shrinking, no need
502 * to call bpf_adj_branches(..., true) here
503 */
504 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
505 sizeof(struct bpf_insn) * (prog->len - off - cnt));
506 prog->len -= cnt;
507
508 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
509 }
510
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)511 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
512 {
513 int i;
514
515 for (i = 0; i < fp->aux->func_cnt; i++)
516 bpf_prog_kallsyms_del(fp->aux->func[i]);
517 }
518
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)519 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
520 {
521 bpf_prog_kallsyms_del_subprogs(fp);
522 bpf_prog_kallsyms_del(fp);
523 }
524
525 #ifdef CONFIG_BPF_JIT
526 /* All BPF JIT sysctl knobs here. */
527 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
528 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
529 int bpf_jit_harden __read_mostly;
530 long bpf_jit_limit __read_mostly;
531
532 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)533 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
534 {
535 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
536 unsigned long addr = (unsigned long)hdr;
537
538 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
539
540 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
541 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE;
542 }
543
544 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)545 bpf_prog_ksym_set_name(struct bpf_prog *prog)
546 {
547 char *sym = prog->aux->ksym.name;
548 const char *end = sym + KSYM_NAME_LEN;
549 const struct btf_type *type;
550 const char *func_name;
551
552 BUILD_BUG_ON(sizeof("bpf_prog_") +
553 sizeof(prog->tag) * 2 +
554 /* name has been null terminated.
555 * We should need +1 for the '_' preceding
556 * the name. However, the null character
557 * is double counted between the name and the
558 * sizeof("bpf_prog_") above, so we omit
559 * the +1 here.
560 */
561 sizeof(prog->aux->name) > KSYM_NAME_LEN);
562
563 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
564 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
565
566 /* prog->aux->name will be ignored if full btf name is available */
567 if (prog->aux->func_info_cnt) {
568 type = btf_type_by_id(prog->aux->btf,
569 prog->aux->func_info[prog->aux->func_idx].type_id);
570 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
571 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
572 return;
573 }
574
575 if (prog->aux->name[0])
576 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
577 else
578 *sym = 0;
579 }
580
bpf_get_ksym_start(struct latch_tree_node * n)581 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
582 {
583 return container_of(n, struct bpf_ksym, tnode)->start;
584 }
585
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)586 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
587 struct latch_tree_node *b)
588 {
589 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
590 }
591
bpf_tree_comp(void * key,struct latch_tree_node * n)592 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
593 {
594 unsigned long val = (unsigned long)key;
595 const struct bpf_ksym *ksym;
596
597 ksym = container_of(n, struct bpf_ksym, tnode);
598
599 if (val < ksym->start)
600 return -1;
601 if (val >= ksym->end)
602 return 1;
603
604 return 0;
605 }
606
607 static const struct latch_tree_ops bpf_tree_ops = {
608 .less = bpf_tree_less,
609 .comp = bpf_tree_comp,
610 };
611
612 static DEFINE_SPINLOCK(bpf_lock);
613 static LIST_HEAD(bpf_kallsyms);
614 static struct latch_tree_root bpf_tree __cacheline_aligned;
615
bpf_ksym_add(struct bpf_ksym * ksym)616 void bpf_ksym_add(struct bpf_ksym *ksym)
617 {
618 spin_lock_bh(&bpf_lock);
619 WARN_ON_ONCE(!list_empty(&ksym->lnode));
620 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
621 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
622 spin_unlock_bh(&bpf_lock);
623 }
624
__bpf_ksym_del(struct bpf_ksym * ksym)625 static void __bpf_ksym_del(struct bpf_ksym *ksym)
626 {
627 if (list_empty(&ksym->lnode))
628 return;
629
630 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
631 list_del_rcu(&ksym->lnode);
632 }
633
bpf_ksym_del(struct bpf_ksym * ksym)634 void bpf_ksym_del(struct bpf_ksym *ksym)
635 {
636 spin_lock_bh(&bpf_lock);
637 __bpf_ksym_del(ksym);
638 spin_unlock_bh(&bpf_lock);
639 }
640
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)641 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
642 {
643 return fp->jited && !bpf_prog_was_classic(fp);
644 }
645
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)646 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
647 {
648 return list_empty(&fp->aux->ksym.lnode) ||
649 fp->aux->ksym.lnode.prev == LIST_POISON2;
650 }
651
bpf_prog_kallsyms_add(struct bpf_prog * fp)652 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
653 {
654 if (!bpf_prog_kallsyms_candidate(fp) ||
655 !bpf_capable())
656 return;
657
658 bpf_prog_ksym_set_addr(fp);
659 bpf_prog_ksym_set_name(fp);
660 fp->aux->ksym.prog = true;
661
662 bpf_ksym_add(&fp->aux->ksym);
663 }
664
bpf_prog_kallsyms_del(struct bpf_prog * fp)665 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
666 {
667 if (!bpf_prog_kallsyms_candidate(fp))
668 return;
669
670 bpf_ksym_del(&fp->aux->ksym);
671 }
672
bpf_ksym_find(unsigned long addr)673 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
674 {
675 struct latch_tree_node *n;
676
677 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
678 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
679 }
680
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)681 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
682 unsigned long *off, char *sym)
683 {
684 struct bpf_ksym *ksym;
685 char *ret = NULL;
686
687 rcu_read_lock();
688 ksym = bpf_ksym_find(addr);
689 if (ksym) {
690 unsigned long symbol_start = ksym->start;
691 unsigned long symbol_end = ksym->end;
692
693 strncpy(sym, ksym->name, KSYM_NAME_LEN);
694
695 ret = sym;
696 if (size)
697 *size = symbol_end - symbol_start;
698 if (off)
699 *off = addr - symbol_start;
700 }
701 rcu_read_unlock();
702
703 return ret;
704 }
705
is_bpf_text_address(unsigned long addr)706 bool is_bpf_text_address(unsigned long addr)
707 {
708 bool ret;
709
710 rcu_read_lock();
711 ret = bpf_ksym_find(addr) != NULL;
712 rcu_read_unlock();
713
714 return ret;
715 }
716
bpf_prog_ksym_find(unsigned long addr)717 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
718 {
719 struct bpf_ksym *ksym = bpf_ksym_find(addr);
720
721 return ksym && ksym->prog ?
722 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
723 NULL;
724 }
725
search_bpf_extables(unsigned long addr)726 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
727 {
728 const struct exception_table_entry *e = NULL;
729 struct bpf_prog *prog;
730
731 rcu_read_lock();
732 prog = bpf_prog_ksym_find(addr);
733 if (!prog)
734 goto out;
735 if (!prog->aux->num_exentries)
736 goto out;
737
738 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
739 out:
740 rcu_read_unlock();
741 return e;
742 }
743
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)744 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
745 char *sym)
746 {
747 struct bpf_ksym *ksym;
748 unsigned int it = 0;
749 int ret = -ERANGE;
750
751 if (!bpf_jit_kallsyms_enabled())
752 return ret;
753
754 rcu_read_lock();
755 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
756 if (it++ != symnum)
757 continue;
758
759 strncpy(sym, ksym->name, KSYM_NAME_LEN);
760
761 *value = ksym->start;
762 *type = BPF_SYM_ELF_TYPE;
763
764 ret = 0;
765 break;
766 }
767 rcu_read_unlock();
768
769 return ret;
770 }
771
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)772 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
773 struct bpf_jit_poke_descriptor *poke)
774 {
775 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
776 static const u32 poke_tab_max = 1024;
777 u32 slot = prog->aux->size_poke_tab;
778 u32 size = slot + 1;
779
780 if (size > poke_tab_max)
781 return -ENOSPC;
782 if (poke->tailcall_target || poke->tailcall_target_stable ||
783 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
784 return -EINVAL;
785
786 switch (poke->reason) {
787 case BPF_POKE_REASON_TAIL_CALL:
788 if (!poke->tail_call.map)
789 return -EINVAL;
790 break;
791 default:
792 return -EINVAL;
793 }
794
795 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
796 if (!tab)
797 return -ENOMEM;
798
799 memcpy(&tab[slot], poke, sizeof(*poke));
800 prog->aux->size_poke_tab = size;
801 prog->aux->poke_tab = tab;
802
803 return slot;
804 }
805
806 static atomic_long_t bpf_jit_current;
807
808 /* Can be overridden by an arch's JIT compiler if it has a custom,
809 * dedicated BPF backend memory area, or if neither of the two
810 * below apply.
811 */
bpf_jit_alloc_exec_limit(void)812 u64 __weak bpf_jit_alloc_exec_limit(void)
813 {
814 #if defined(MODULES_VADDR)
815 return MODULES_END - MODULES_VADDR;
816 #else
817 return VMALLOC_END - VMALLOC_START;
818 #endif
819 }
820
bpf_jit_charge_init(void)821 static int __init bpf_jit_charge_init(void)
822 {
823 /* Only used as heuristic here to derive limit. */
824 bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
825 PAGE_SIZE), LONG_MAX);
826 return 0;
827 }
828 pure_initcall(bpf_jit_charge_init);
829
bpf_jit_charge_modmem(u32 pages)830 int bpf_jit_charge_modmem(u32 pages)
831 {
832 if (atomic_long_add_return(pages, &bpf_jit_current) >
833 (bpf_jit_limit >> PAGE_SHIFT)) {
834 if (!bpf_capable()) {
835 atomic_long_sub(pages, &bpf_jit_current);
836 return -EPERM;
837 }
838 }
839
840 return 0;
841 }
842
bpf_jit_uncharge_modmem(u32 pages)843 void bpf_jit_uncharge_modmem(u32 pages)
844 {
845 atomic_long_sub(pages, &bpf_jit_current);
846 }
847
bpf_jit_alloc_exec(unsigned long size)848 void *__weak bpf_jit_alloc_exec(unsigned long size)
849 {
850 return module_alloc(size);
851 }
852
bpf_jit_free_exec(void * addr)853 void __weak bpf_jit_free_exec(void *addr)
854 {
855 module_memfree(addr);
856 }
857
858 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)859 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
860 unsigned int alignment,
861 bpf_jit_fill_hole_t bpf_fill_ill_insns)
862 {
863 struct bpf_binary_header *hdr;
864 u32 size, hole, start, pages;
865
866 WARN_ON_ONCE(!is_power_of_2(alignment) ||
867 alignment > BPF_IMAGE_ALIGNMENT);
868
869 /* Most of BPF filters are really small, but if some of them
870 * fill a page, allow at least 128 extra bytes to insert a
871 * random section of illegal instructions.
872 */
873 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
874 pages = size / PAGE_SIZE;
875
876 if (bpf_jit_charge_modmem(pages))
877 return NULL;
878 hdr = bpf_jit_alloc_exec(size);
879 if (!hdr) {
880 bpf_jit_uncharge_modmem(pages);
881 return NULL;
882 }
883
884 /* Fill space with illegal/arch-dep instructions. */
885 bpf_fill_ill_insns(hdr, size);
886
887 hdr->pages = pages;
888 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
889 PAGE_SIZE - sizeof(*hdr));
890 start = (get_random_int() % hole) & ~(alignment - 1);
891
892 /* Leave a random number of instructions before BPF code. */
893 *image_ptr = &hdr->image[start];
894
895 return hdr;
896 }
897
bpf_jit_binary_free(struct bpf_binary_header * hdr)898 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
899 {
900 u32 pages = hdr->pages;
901
902 bpf_jit_free_exec(hdr);
903 bpf_jit_uncharge_modmem(pages);
904 }
905
906 /* This symbol is only overridden by archs that have different
907 * requirements than the usual eBPF JITs, f.e. when they only
908 * implement cBPF JIT, do not set images read-only, etc.
909 */
bpf_jit_free(struct bpf_prog * fp)910 void __weak bpf_jit_free(struct bpf_prog *fp)
911 {
912 if (fp->jited) {
913 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
914
915 bpf_jit_binary_free(hdr);
916
917 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
918 }
919
920 bpf_prog_unlock_free(fp);
921 }
922
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)923 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
924 const struct bpf_insn *insn, bool extra_pass,
925 u64 *func_addr, bool *func_addr_fixed)
926 {
927 s16 off = insn->off;
928 s32 imm = insn->imm;
929 u8 *addr;
930
931 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
932 if (!*func_addr_fixed) {
933 /* Place-holder address till the last pass has collected
934 * all addresses for JITed subprograms in which case we
935 * can pick them up from prog->aux.
936 */
937 if (!extra_pass)
938 addr = NULL;
939 else if (prog->aux->func &&
940 off >= 0 && off < prog->aux->func_cnt)
941 addr = (u8 *)prog->aux->func[off]->bpf_func;
942 else
943 return -EINVAL;
944 } else {
945 /* Address of a BPF helper call. Since part of the core
946 * kernel, it's always at a fixed location. __bpf_call_base
947 * and the helper with imm relative to it are both in core
948 * kernel.
949 */
950 addr = (u8 *)__bpf_call_base + imm;
951 }
952
953 *func_addr = (unsigned long)addr;
954 return 0;
955 }
956
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)957 static int bpf_jit_blind_insn(const struct bpf_insn *from,
958 const struct bpf_insn *aux,
959 struct bpf_insn *to_buff,
960 bool emit_zext)
961 {
962 struct bpf_insn *to = to_buff;
963 u32 imm_rnd = get_random_int();
964 s16 off;
965
966 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
967 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
968
969 /* Constraints on AX register:
970 *
971 * AX register is inaccessible from user space. It is mapped in
972 * all JITs, and used here for constant blinding rewrites. It is
973 * typically "stateless" meaning its contents are only valid within
974 * the executed instruction, but not across several instructions.
975 * There are a few exceptions however which are further detailed
976 * below.
977 *
978 * Constant blinding is only used by JITs, not in the interpreter.
979 * The interpreter uses AX in some occasions as a local temporary
980 * register e.g. in DIV or MOD instructions.
981 *
982 * In restricted circumstances, the verifier can also use the AX
983 * register for rewrites as long as they do not interfere with
984 * the above cases!
985 */
986 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
987 goto out;
988
989 if (from->imm == 0 &&
990 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
991 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
992 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
993 goto out;
994 }
995
996 switch (from->code) {
997 case BPF_ALU | BPF_ADD | BPF_K:
998 case BPF_ALU | BPF_SUB | BPF_K:
999 case BPF_ALU | BPF_AND | BPF_K:
1000 case BPF_ALU | BPF_OR | BPF_K:
1001 case BPF_ALU | BPF_XOR | BPF_K:
1002 case BPF_ALU | BPF_MUL | BPF_K:
1003 case BPF_ALU | BPF_MOV | BPF_K:
1004 case BPF_ALU | BPF_DIV | BPF_K:
1005 case BPF_ALU | BPF_MOD | BPF_K:
1006 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1007 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1008 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1009 break;
1010
1011 case BPF_ALU64 | BPF_ADD | BPF_K:
1012 case BPF_ALU64 | BPF_SUB | BPF_K:
1013 case BPF_ALU64 | BPF_AND | BPF_K:
1014 case BPF_ALU64 | BPF_OR | BPF_K:
1015 case BPF_ALU64 | BPF_XOR | BPF_K:
1016 case BPF_ALU64 | BPF_MUL | BPF_K:
1017 case BPF_ALU64 | BPF_MOV | BPF_K:
1018 case BPF_ALU64 | BPF_DIV | BPF_K:
1019 case BPF_ALU64 | BPF_MOD | BPF_K:
1020 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1021 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1022 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1023 break;
1024
1025 case BPF_JMP | BPF_JEQ | BPF_K:
1026 case BPF_JMP | BPF_JNE | BPF_K:
1027 case BPF_JMP | BPF_JGT | BPF_K:
1028 case BPF_JMP | BPF_JLT | BPF_K:
1029 case BPF_JMP | BPF_JGE | BPF_K:
1030 case BPF_JMP | BPF_JLE | BPF_K:
1031 case BPF_JMP | BPF_JSGT | BPF_K:
1032 case BPF_JMP | BPF_JSLT | BPF_K:
1033 case BPF_JMP | BPF_JSGE | BPF_K:
1034 case BPF_JMP | BPF_JSLE | BPF_K:
1035 case BPF_JMP | BPF_JSET | BPF_K:
1036 /* Accommodate for extra offset in case of a backjump. */
1037 off = from->off;
1038 if (off < 0)
1039 off -= 2;
1040 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1041 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1042 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1043 break;
1044
1045 case BPF_JMP32 | BPF_JEQ | BPF_K:
1046 case BPF_JMP32 | BPF_JNE | BPF_K:
1047 case BPF_JMP32 | BPF_JGT | BPF_K:
1048 case BPF_JMP32 | BPF_JLT | BPF_K:
1049 case BPF_JMP32 | BPF_JGE | BPF_K:
1050 case BPF_JMP32 | BPF_JLE | BPF_K:
1051 case BPF_JMP32 | BPF_JSGT | BPF_K:
1052 case BPF_JMP32 | BPF_JSLT | BPF_K:
1053 case BPF_JMP32 | BPF_JSGE | BPF_K:
1054 case BPF_JMP32 | BPF_JSLE | BPF_K:
1055 case BPF_JMP32 | BPF_JSET | BPF_K:
1056 /* Accommodate for extra offset in case of a backjump. */
1057 off = from->off;
1058 if (off < 0)
1059 off -= 2;
1060 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1061 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1062 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1063 off);
1064 break;
1065
1066 case BPF_LD | BPF_IMM | BPF_DW:
1067 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1068 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1069 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1070 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1071 break;
1072 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1073 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1074 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1075 if (emit_zext)
1076 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1077 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1078 break;
1079
1080 case BPF_ST | BPF_MEM | BPF_DW:
1081 case BPF_ST | BPF_MEM | BPF_W:
1082 case BPF_ST | BPF_MEM | BPF_H:
1083 case BPF_ST | BPF_MEM | BPF_B:
1084 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1085 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1086 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1087 break;
1088 }
1089 out:
1090 return to - to_buff;
1091 }
1092
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1093 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1094 gfp_t gfp_extra_flags)
1095 {
1096 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1097 struct bpf_prog *fp;
1098
1099 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1100 if (fp != NULL) {
1101 /* aux->prog still points to the fp_other one, so
1102 * when promoting the clone to the real program,
1103 * this still needs to be adapted.
1104 */
1105 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1106 }
1107
1108 return fp;
1109 }
1110
bpf_prog_clone_free(struct bpf_prog * fp)1111 static void bpf_prog_clone_free(struct bpf_prog *fp)
1112 {
1113 /* aux was stolen by the other clone, so we cannot free
1114 * it from this path! It will be freed eventually by the
1115 * other program on release.
1116 *
1117 * At this point, we don't need a deferred release since
1118 * clone is guaranteed to not be locked.
1119 */
1120 fp->aux = NULL;
1121 __bpf_prog_free(fp);
1122 }
1123
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1124 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1125 {
1126 /* We have to repoint aux->prog to self, as we don't
1127 * know whether fp here is the clone or the original.
1128 */
1129 fp->aux->prog = fp;
1130 bpf_prog_clone_free(fp_other);
1131 }
1132
bpf_jit_blind_constants(struct bpf_prog * prog)1133 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1134 {
1135 struct bpf_insn insn_buff[16], aux[2];
1136 struct bpf_prog *clone, *tmp;
1137 int insn_delta, insn_cnt;
1138 struct bpf_insn *insn;
1139 int i, rewritten;
1140
1141 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1142 return prog;
1143
1144 clone = bpf_prog_clone_create(prog, GFP_USER);
1145 if (!clone)
1146 return ERR_PTR(-ENOMEM);
1147
1148 insn_cnt = clone->len;
1149 insn = clone->insnsi;
1150
1151 for (i = 0; i < insn_cnt; i++, insn++) {
1152 /* We temporarily need to hold the original ld64 insn
1153 * so that we can still access the first part in the
1154 * second blinding run.
1155 */
1156 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1157 insn[1].code == 0)
1158 memcpy(aux, insn, sizeof(aux));
1159
1160 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1161 clone->aux->verifier_zext);
1162 if (!rewritten)
1163 continue;
1164
1165 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1166 if (IS_ERR(tmp)) {
1167 /* Patching may have repointed aux->prog during
1168 * realloc from the original one, so we need to
1169 * fix it up here on error.
1170 */
1171 bpf_jit_prog_release_other(prog, clone);
1172 return tmp;
1173 }
1174
1175 clone = tmp;
1176 insn_delta = rewritten - 1;
1177
1178 /* Walk new program and skip insns we just inserted. */
1179 insn = clone->insnsi + i + insn_delta;
1180 insn_cnt += insn_delta;
1181 i += insn_delta;
1182 }
1183
1184 clone->blinded = 1;
1185 return clone;
1186 }
1187 #endif /* CONFIG_BPF_JIT */
1188
1189 /* Base function for offset calculation. Needs to go into .text section,
1190 * therefore keeping it non-static as well; will also be used by JITs
1191 * anyway later on, so do not let the compiler omit it. This also needs
1192 * to go into kallsyms for correlation from e.g. bpftool, so naming
1193 * must not change.
1194 */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1195 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1196 {
1197 return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(__bpf_call_base);
1200
1201 /* All UAPI available opcodes. */
1202 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1203 /* 32 bit ALU operations. */ \
1204 /* Register based. */ \
1205 INSN_3(ALU, ADD, X), \
1206 INSN_3(ALU, SUB, X), \
1207 INSN_3(ALU, AND, X), \
1208 INSN_3(ALU, OR, X), \
1209 INSN_3(ALU, LSH, X), \
1210 INSN_3(ALU, RSH, X), \
1211 INSN_3(ALU, XOR, X), \
1212 INSN_3(ALU, MUL, X), \
1213 INSN_3(ALU, MOV, X), \
1214 INSN_3(ALU, ARSH, X), \
1215 INSN_3(ALU, DIV, X), \
1216 INSN_3(ALU, MOD, X), \
1217 INSN_2(ALU, NEG), \
1218 INSN_3(ALU, END, TO_BE), \
1219 INSN_3(ALU, END, TO_LE), \
1220 /* Immediate based. */ \
1221 INSN_3(ALU, ADD, K), \
1222 INSN_3(ALU, SUB, K), \
1223 INSN_3(ALU, AND, K), \
1224 INSN_3(ALU, OR, K), \
1225 INSN_3(ALU, LSH, K), \
1226 INSN_3(ALU, RSH, K), \
1227 INSN_3(ALU, XOR, K), \
1228 INSN_3(ALU, MUL, K), \
1229 INSN_3(ALU, MOV, K), \
1230 INSN_3(ALU, ARSH, K), \
1231 INSN_3(ALU, DIV, K), \
1232 INSN_3(ALU, MOD, K), \
1233 /* 64 bit ALU operations. */ \
1234 /* Register based. */ \
1235 INSN_3(ALU64, ADD, X), \
1236 INSN_3(ALU64, SUB, X), \
1237 INSN_3(ALU64, AND, X), \
1238 INSN_3(ALU64, OR, X), \
1239 INSN_3(ALU64, LSH, X), \
1240 INSN_3(ALU64, RSH, X), \
1241 INSN_3(ALU64, XOR, X), \
1242 INSN_3(ALU64, MUL, X), \
1243 INSN_3(ALU64, MOV, X), \
1244 INSN_3(ALU64, ARSH, X), \
1245 INSN_3(ALU64, DIV, X), \
1246 INSN_3(ALU64, MOD, X), \
1247 INSN_2(ALU64, NEG), \
1248 /* Immediate based. */ \
1249 INSN_3(ALU64, ADD, K), \
1250 INSN_3(ALU64, SUB, K), \
1251 INSN_3(ALU64, AND, K), \
1252 INSN_3(ALU64, OR, K), \
1253 INSN_3(ALU64, LSH, K), \
1254 INSN_3(ALU64, RSH, K), \
1255 INSN_3(ALU64, XOR, K), \
1256 INSN_3(ALU64, MUL, K), \
1257 INSN_3(ALU64, MOV, K), \
1258 INSN_3(ALU64, ARSH, K), \
1259 INSN_3(ALU64, DIV, K), \
1260 INSN_3(ALU64, MOD, K), \
1261 /* Call instruction. */ \
1262 INSN_2(JMP, CALL), \
1263 /* Exit instruction. */ \
1264 INSN_2(JMP, EXIT), \
1265 /* 32-bit Jump instructions. */ \
1266 /* Register based. */ \
1267 INSN_3(JMP32, JEQ, X), \
1268 INSN_3(JMP32, JNE, X), \
1269 INSN_3(JMP32, JGT, X), \
1270 INSN_3(JMP32, JLT, X), \
1271 INSN_3(JMP32, JGE, X), \
1272 INSN_3(JMP32, JLE, X), \
1273 INSN_3(JMP32, JSGT, X), \
1274 INSN_3(JMP32, JSLT, X), \
1275 INSN_3(JMP32, JSGE, X), \
1276 INSN_3(JMP32, JSLE, X), \
1277 INSN_3(JMP32, JSET, X), \
1278 /* Immediate based. */ \
1279 INSN_3(JMP32, JEQ, K), \
1280 INSN_3(JMP32, JNE, K), \
1281 INSN_3(JMP32, JGT, K), \
1282 INSN_3(JMP32, JLT, K), \
1283 INSN_3(JMP32, JGE, K), \
1284 INSN_3(JMP32, JLE, K), \
1285 INSN_3(JMP32, JSGT, K), \
1286 INSN_3(JMP32, JSLT, K), \
1287 INSN_3(JMP32, JSGE, K), \
1288 INSN_3(JMP32, JSLE, K), \
1289 INSN_3(JMP32, JSET, K), \
1290 /* Jump instructions. */ \
1291 /* Register based. */ \
1292 INSN_3(JMP, JEQ, X), \
1293 INSN_3(JMP, JNE, X), \
1294 INSN_3(JMP, JGT, X), \
1295 INSN_3(JMP, JLT, X), \
1296 INSN_3(JMP, JGE, X), \
1297 INSN_3(JMP, JLE, X), \
1298 INSN_3(JMP, JSGT, X), \
1299 INSN_3(JMP, JSLT, X), \
1300 INSN_3(JMP, JSGE, X), \
1301 INSN_3(JMP, JSLE, X), \
1302 INSN_3(JMP, JSET, X), \
1303 /* Immediate based. */ \
1304 INSN_3(JMP, JEQ, K), \
1305 INSN_3(JMP, JNE, K), \
1306 INSN_3(JMP, JGT, K), \
1307 INSN_3(JMP, JLT, K), \
1308 INSN_3(JMP, JGE, K), \
1309 INSN_3(JMP, JLE, K), \
1310 INSN_3(JMP, JSGT, K), \
1311 INSN_3(JMP, JSLT, K), \
1312 INSN_3(JMP, JSGE, K), \
1313 INSN_3(JMP, JSLE, K), \
1314 INSN_3(JMP, JSET, K), \
1315 INSN_2(JMP, JA), \
1316 /* Store instructions. */ \
1317 /* Register based. */ \
1318 INSN_3(STX, MEM, B), \
1319 INSN_3(STX, MEM, H), \
1320 INSN_3(STX, MEM, W), \
1321 INSN_3(STX, MEM, DW), \
1322 INSN_3(STX, XADD, W), \
1323 INSN_3(STX, XADD, DW), \
1324 /* Immediate based. */ \
1325 INSN_3(ST, MEM, B), \
1326 INSN_3(ST, MEM, H), \
1327 INSN_3(ST, MEM, W), \
1328 INSN_3(ST, MEM, DW), \
1329 /* Load instructions. */ \
1330 /* Register based. */ \
1331 INSN_3(LDX, MEM, B), \
1332 INSN_3(LDX, MEM, H), \
1333 INSN_3(LDX, MEM, W), \
1334 INSN_3(LDX, MEM, DW), \
1335 /* Immediate based. */ \
1336 INSN_3(LD, IMM, DW)
1337
bpf_opcode_in_insntable(u8 code)1338 bool bpf_opcode_in_insntable(u8 code)
1339 {
1340 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1341 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1342 static const bool public_insntable[256] = {
1343 [0 ... 255] = false,
1344 /* Now overwrite non-defaults ... */
1345 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1346 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1347 [BPF_LD | BPF_ABS | BPF_B] = true,
1348 [BPF_LD | BPF_ABS | BPF_H] = true,
1349 [BPF_LD | BPF_ABS | BPF_W] = true,
1350 [BPF_LD | BPF_IND | BPF_B] = true,
1351 [BPF_LD | BPF_IND | BPF_H] = true,
1352 [BPF_LD | BPF_IND | BPF_W] = true,
1353 };
1354 #undef BPF_INSN_3_TBL
1355 #undef BPF_INSN_2_TBL
1356 return public_insntable[code];
1357 }
1358
1359 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1360 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1361 {
1362 memset(dst, 0, size);
1363 return -EFAULT;
1364 }
1365
1366 /**
1367 * __bpf_prog_run - run eBPF program on a given context
1368 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1369 * @insn: is the array of eBPF instructions
1370 * @stack: is the eBPF storage stack
1371 *
1372 * Decode and execute eBPF instructions.
1373 */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)1374 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1375 {
1376 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1377 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1378 static const void * const jumptable[256] __annotate_jump_table = {
1379 [0 ... 255] = &&default_label,
1380 /* Now overwrite non-defaults ... */
1381 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1382 /* Non-UAPI available opcodes. */
1383 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1384 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1385 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1386 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1387 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1388 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1389 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1390 };
1391 #undef BPF_INSN_3_LBL
1392 #undef BPF_INSN_2_LBL
1393 u32 tail_call_cnt = 0;
1394
1395 #define CONT ({ insn++; goto select_insn; })
1396 #define CONT_JMP ({ insn++; goto select_insn; })
1397
1398 select_insn:
1399 goto *jumptable[insn->code];
1400
1401 /* Explicitly mask the register-based shift amounts with 63 or 31
1402 * to avoid undefined behavior. Normally this won't affect the
1403 * generated code, for example, in case of native 64 bit archs such
1404 * as x86-64 or arm64, the compiler is optimizing the AND away for
1405 * the interpreter. In case of JITs, each of the JIT backends compiles
1406 * the BPF shift operations to machine instructions which produce
1407 * implementation-defined results in such a case; the resulting
1408 * contents of the register may be arbitrary, but program behaviour
1409 * as a whole remains defined. In other words, in case of JIT backends,
1410 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1411 */
1412 /* ALU (shifts) */
1413 #define SHT(OPCODE, OP) \
1414 ALU64_##OPCODE##_X: \
1415 DST = DST OP (SRC & 63); \
1416 CONT; \
1417 ALU_##OPCODE##_X: \
1418 DST = (u32) DST OP ((u32) SRC & 31); \
1419 CONT; \
1420 ALU64_##OPCODE##_K: \
1421 DST = DST OP IMM; \
1422 CONT; \
1423 ALU_##OPCODE##_K: \
1424 DST = (u32) DST OP (u32) IMM; \
1425 CONT;
1426 /* ALU (rest) */
1427 #define ALU(OPCODE, OP) \
1428 ALU64_##OPCODE##_X: \
1429 DST = DST OP SRC; \
1430 CONT; \
1431 ALU_##OPCODE##_X: \
1432 DST = (u32) DST OP (u32) SRC; \
1433 CONT; \
1434 ALU64_##OPCODE##_K: \
1435 DST = DST OP IMM; \
1436 CONT; \
1437 ALU_##OPCODE##_K: \
1438 DST = (u32) DST OP (u32) IMM; \
1439 CONT;
1440 ALU(ADD, +)
1441 ALU(SUB, -)
1442 ALU(AND, &)
1443 ALU(OR, |)
1444 ALU(XOR, ^)
1445 ALU(MUL, *)
1446 SHT(LSH, <<)
1447 SHT(RSH, >>)
1448 #undef SHT
1449 #undef ALU
1450 ALU_NEG:
1451 DST = (u32) -DST;
1452 CONT;
1453 ALU64_NEG:
1454 DST = -DST;
1455 CONT;
1456 ALU_MOV_X:
1457 DST = (u32) SRC;
1458 CONT;
1459 ALU_MOV_K:
1460 DST = (u32) IMM;
1461 CONT;
1462 ALU64_MOV_X:
1463 DST = SRC;
1464 CONT;
1465 ALU64_MOV_K:
1466 DST = IMM;
1467 CONT;
1468 LD_IMM_DW:
1469 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1470 insn++;
1471 CONT;
1472 ALU_ARSH_X:
1473 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1474 CONT;
1475 ALU_ARSH_K:
1476 DST = (u64) (u32) (((s32) DST) >> IMM);
1477 CONT;
1478 ALU64_ARSH_X:
1479 (*(s64 *) &DST) >>= (SRC & 63);
1480 CONT;
1481 ALU64_ARSH_K:
1482 (*(s64 *) &DST) >>= IMM;
1483 CONT;
1484 ALU64_MOD_X:
1485 div64_u64_rem(DST, SRC, &AX);
1486 DST = AX;
1487 CONT;
1488 ALU_MOD_X:
1489 AX = (u32) DST;
1490 DST = do_div(AX, (u32) SRC);
1491 CONT;
1492 ALU64_MOD_K:
1493 div64_u64_rem(DST, IMM, &AX);
1494 DST = AX;
1495 CONT;
1496 ALU_MOD_K:
1497 AX = (u32) DST;
1498 DST = do_div(AX, (u32) IMM);
1499 CONT;
1500 ALU64_DIV_X:
1501 DST = div64_u64(DST, SRC);
1502 CONT;
1503 ALU_DIV_X:
1504 AX = (u32) DST;
1505 do_div(AX, (u32) SRC);
1506 DST = (u32) AX;
1507 CONT;
1508 ALU64_DIV_K:
1509 DST = div64_u64(DST, IMM);
1510 CONT;
1511 ALU_DIV_K:
1512 AX = (u32) DST;
1513 do_div(AX, (u32) IMM);
1514 DST = (u32) AX;
1515 CONT;
1516 ALU_END_TO_BE:
1517 switch (IMM) {
1518 case 16:
1519 DST = (__force u16) cpu_to_be16(DST);
1520 break;
1521 case 32:
1522 DST = (__force u32) cpu_to_be32(DST);
1523 break;
1524 case 64:
1525 DST = (__force u64) cpu_to_be64(DST);
1526 break;
1527 }
1528 CONT;
1529 ALU_END_TO_LE:
1530 switch (IMM) {
1531 case 16:
1532 DST = (__force u16) cpu_to_le16(DST);
1533 break;
1534 case 32:
1535 DST = (__force u32) cpu_to_le32(DST);
1536 break;
1537 case 64:
1538 DST = (__force u64) cpu_to_le64(DST);
1539 break;
1540 }
1541 CONT;
1542
1543 /* CALL */
1544 JMP_CALL:
1545 /* Function call scratches BPF_R1-BPF_R5 registers,
1546 * preserves BPF_R6-BPF_R9, and stores return value
1547 * into BPF_R0.
1548 */
1549 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1550 BPF_R4, BPF_R5);
1551 CONT;
1552
1553 JMP_CALL_ARGS:
1554 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1555 BPF_R3, BPF_R4,
1556 BPF_R5,
1557 insn + insn->off + 1);
1558 CONT;
1559
1560 JMP_TAIL_CALL: {
1561 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1562 struct bpf_array *array = container_of(map, struct bpf_array, map);
1563 struct bpf_prog *prog;
1564 u32 index = BPF_R3;
1565
1566 if (unlikely(index >= array->map.max_entries))
1567 goto out;
1568 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1569 goto out;
1570
1571 tail_call_cnt++;
1572
1573 prog = READ_ONCE(array->ptrs[index]);
1574 if (!prog)
1575 goto out;
1576
1577 /* ARG1 at this point is guaranteed to point to CTX from
1578 * the verifier side due to the fact that the tail call is
1579 * handled like a helper, that is, bpf_tail_call_proto,
1580 * where arg1_type is ARG_PTR_TO_CTX.
1581 */
1582 insn = prog->insnsi;
1583 goto select_insn;
1584 out:
1585 CONT;
1586 }
1587 JMP_JA:
1588 insn += insn->off;
1589 CONT;
1590 JMP_EXIT:
1591 return BPF_R0;
1592 /* JMP */
1593 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
1594 JMP_##OPCODE##_X: \
1595 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1596 insn += insn->off; \
1597 CONT_JMP; \
1598 } \
1599 CONT; \
1600 JMP32_##OPCODE##_X: \
1601 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1602 insn += insn->off; \
1603 CONT_JMP; \
1604 } \
1605 CONT; \
1606 JMP_##OPCODE##_K: \
1607 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1608 insn += insn->off; \
1609 CONT_JMP; \
1610 } \
1611 CONT; \
1612 JMP32_##OPCODE##_K: \
1613 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1614 insn += insn->off; \
1615 CONT_JMP; \
1616 } \
1617 CONT;
1618 COND_JMP(u, JEQ, ==)
1619 COND_JMP(u, JNE, !=)
1620 COND_JMP(u, JGT, >)
1621 COND_JMP(u, JLT, <)
1622 COND_JMP(u, JGE, >=)
1623 COND_JMP(u, JLE, <=)
1624 COND_JMP(u, JSET, &)
1625 COND_JMP(s, JSGT, >)
1626 COND_JMP(s, JSLT, <)
1627 COND_JMP(s, JSGE, >=)
1628 COND_JMP(s, JSLE, <=)
1629 #undef COND_JMP
1630 /* ST, STX and LDX*/
1631 ST_NOSPEC:
1632 /* Speculation barrier for mitigating Speculative Store Bypass.
1633 * In case of arm64, we rely on the firmware mitigation as
1634 * controlled via the ssbd kernel parameter. Whenever the
1635 * mitigation is enabled, it works for all of the kernel code
1636 * with no need to provide any additional instructions here.
1637 * In case of x86, we use 'lfence' insn for mitigation. We
1638 * reuse preexisting logic from Spectre v1 mitigation that
1639 * happens to produce the required code on x86 for v4 as well.
1640 */
1641 #ifdef CONFIG_X86
1642 barrier_nospec();
1643 #endif
1644 CONT;
1645 #define LDST(SIZEOP, SIZE) \
1646 STX_MEM_##SIZEOP: \
1647 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1648 CONT; \
1649 ST_MEM_##SIZEOP: \
1650 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1651 CONT; \
1652 LDX_MEM_##SIZEOP: \
1653 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1654 CONT;
1655
1656 LDST(B, u8)
1657 LDST(H, u16)
1658 LDST(W, u32)
1659 LDST(DW, u64)
1660 #undef LDST
1661 #define LDX_PROBE(SIZEOP, SIZE) \
1662 LDX_PROBE_MEM_##SIZEOP: \
1663 bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \
1664 CONT;
1665 LDX_PROBE(B, 1)
1666 LDX_PROBE(H, 2)
1667 LDX_PROBE(W, 4)
1668 LDX_PROBE(DW, 8)
1669 #undef LDX_PROBE
1670
1671 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1672 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1673 (DST + insn->off));
1674 CONT;
1675 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1676 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1677 (DST + insn->off));
1678 CONT;
1679
1680 default_label:
1681 /* If we ever reach this, we have a bug somewhere. Die hard here
1682 * instead of just returning 0; we could be somewhere in a subprog,
1683 * so execution could continue otherwise which we do /not/ want.
1684 *
1685 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1686 */
1687 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1688 BUG_ON(1);
1689 return 0;
1690 }
1691
1692 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1693 #define DEFINE_BPF_PROG_RUN(stack_size) \
1694 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1695 { \
1696 u64 stack[stack_size / sizeof(u64)]; \
1697 u64 regs[MAX_BPF_EXT_REG]; \
1698 \
1699 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1700 ARG1 = (u64) (unsigned long) ctx; \
1701 return ___bpf_prog_run(regs, insn, stack); \
1702 }
1703
1704 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1705 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1706 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1707 const struct bpf_insn *insn) \
1708 { \
1709 u64 stack[stack_size / sizeof(u64)]; \
1710 u64 regs[MAX_BPF_EXT_REG]; \
1711 \
1712 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1713 BPF_R1 = r1; \
1714 BPF_R2 = r2; \
1715 BPF_R3 = r3; \
1716 BPF_R4 = r4; \
1717 BPF_R5 = r5; \
1718 return ___bpf_prog_run(regs, insn, stack); \
1719 }
1720
1721 #define EVAL1(FN, X) FN(X)
1722 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1723 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1724 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1725 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1726 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1727
1728 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1729 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1730 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1731
1732 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1733 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1734 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1735
1736 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1737
1738 static unsigned int (*interpreters[])(const void *ctx,
1739 const struct bpf_insn *insn) = {
1740 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1741 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1742 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1743 };
1744 #undef PROG_NAME_LIST
1745 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1746 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1747 const struct bpf_insn *insn) = {
1748 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1749 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1750 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1751 };
1752 #undef PROG_NAME_LIST
1753
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1754 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1755 {
1756 stack_depth = max_t(u32, stack_depth, 1);
1757 insn->off = (s16) insn->imm;
1758 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1759 __bpf_call_base_args;
1760 insn->code = BPF_JMP | BPF_CALL_ARGS;
1761 }
1762
1763 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1764 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1765 const struct bpf_insn *insn)
1766 {
1767 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1768 * is not working properly, so warn about it!
1769 */
1770 WARN_ON_ONCE(1);
1771 return 0;
1772 }
1773 #endif
1774
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1775 bool bpf_prog_array_compatible(struct bpf_array *array,
1776 const struct bpf_prog *fp)
1777 {
1778 bool ret;
1779
1780 if (fp->kprobe_override)
1781 return false;
1782
1783 spin_lock(&array->aux->owner.lock);
1784
1785 if (!array->aux->owner.type) {
1786 /* There's no owner yet where we could check for
1787 * compatibility.
1788 */
1789 array->aux->owner.type = fp->type;
1790 array->aux->owner.jited = fp->jited;
1791 ret = true;
1792 } else {
1793 ret = array->aux->owner.type == fp->type &&
1794 array->aux->owner.jited == fp->jited;
1795 }
1796 spin_unlock(&array->aux->owner.lock);
1797 return ret;
1798 }
1799
bpf_check_tail_call(const struct bpf_prog * fp)1800 static int bpf_check_tail_call(const struct bpf_prog *fp)
1801 {
1802 struct bpf_prog_aux *aux = fp->aux;
1803 int i, ret = 0;
1804
1805 mutex_lock(&aux->used_maps_mutex);
1806 for (i = 0; i < aux->used_map_cnt; i++) {
1807 struct bpf_map *map = aux->used_maps[i];
1808 struct bpf_array *array;
1809
1810 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1811 continue;
1812
1813 array = container_of(map, struct bpf_array, map);
1814 if (!bpf_prog_array_compatible(array, fp)) {
1815 ret = -EINVAL;
1816 goto out;
1817 }
1818 }
1819
1820 out:
1821 mutex_unlock(&aux->used_maps_mutex);
1822 return ret;
1823 }
1824
bpf_prog_select_func(struct bpf_prog * fp)1825 static void bpf_prog_select_func(struct bpf_prog *fp)
1826 {
1827 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1828 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1829
1830 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1831 #else
1832 fp->bpf_func = __bpf_prog_ret0_warn;
1833 #endif
1834 }
1835
1836 /**
1837 * bpf_prog_select_runtime - select exec runtime for BPF program
1838 * @fp: bpf_prog populated with internal BPF program
1839 * @err: pointer to error variable
1840 *
1841 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1842 * The BPF program will be executed via BPF_PROG_RUN() macro.
1843 */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1844 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1845 {
1846 /* In case of BPF to BPF calls, verifier did all the prep
1847 * work with regards to JITing, etc.
1848 */
1849 if (fp->bpf_func)
1850 goto finalize;
1851
1852 bpf_prog_select_func(fp);
1853
1854 /* eBPF JITs can rewrite the program in case constant
1855 * blinding is active. However, in case of error during
1856 * blinding, bpf_int_jit_compile() must always return a
1857 * valid program, which in this case would simply not
1858 * be JITed, but falls back to the interpreter.
1859 */
1860 if (!bpf_prog_is_dev_bound(fp->aux)) {
1861 *err = bpf_prog_alloc_jited_linfo(fp);
1862 if (*err)
1863 return fp;
1864
1865 fp = bpf_int_jit_compile(fp);
1866 if (!fp->jited) {
1867 bpf_prog_free_jited_linfo(fp);
1868 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1869 *err = -ENOTSUPP;
1870 return fp;
1871 #endif
1872 } else {
1873 bpf_prog_free_unused_jited_linfo(fp);
1874 }
1875 } else {
1876 *err = bpf_prog_offload_compile(fp);
1877 if (*err)
1878 return fp;
1879 }
1880
1881 finalize:
1882 bpf_prog_lock_ro(fp);
1883
1884 /* The tail call compatibility check can only be done at
1885 * this late stage as we need to determine, if we deal
1886 * with JITed or non JITed program concatenations and not
1887 * all eBPF JITs might immediately support all features.
1888 */
1889 *err = bpf_check_tail_call(fp);
1890
1891 return fp;
1892 }
1893 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1894
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1895 static unsigned int __bpf_prog_ret1(const void *ctx,
1896 const struct bpf_insn *insn)
1897 {
1898 return 1;
1899 }
1900
1901 static struct bpf_prog_dummy {
1902 struct bpf_prog prog;
1903 } dummy_bpf_prog = {
1904 .prog = {
1905 .bpf_func = __bpf_prog_ret1,
1906 },
1907 };
1908
1909 /* to avoid allocating empty bpf_prog_array for cgroups that
1910 * don't have bpf program attached use one global 'empty_prog_array'
1911 * It will not be modified the caller of bpf_prog_array_alloc()
1912 * (since caller requested prog_cnt == 0)
1913 * that pointer should be 'freed' by bpf_prog_array_free()
1914 */
1915 static struct {
1916 struct bpf_prog_array hdr;
1917 struct bpf_prog *null_prog;
1918 } empty_prog_array = {
1919 .null_prog = NULL,
1920 };
1921
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1922 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1923 {
1924 if (prog_cnt)
1925 return kzalloc(sizeof(struct bpf_prog_array) +
1926 sizeof(struct bpf_prog_array_item) *
1927 (prog_cnt + 1),
1928 flags);
1929
1930 return &empty_prog_array.hdr;
1931 }
1932
bpf_prog_array_free(struct bpf_prog_array * progs)1933 void bpf_prog_array_free(struct bpf_prog_array *progs)
1934 {
1935 if (!progs || progs == &empty_prog_array.hdr)
1936 return;
1937 kfree_rcu(progs, rcu);
1938 }
1939
bpf_prog_array_length(struct bpf_prog_array * array)1940 int bpf_prog_array_length(struct bpf_prog_array *array)
1941 {
1942 struct bpf_prog_array_item *item;
1943 u32 cnt = 0;
1944
1945 for (item = array->items; item->prog; item++)
1946 if (item->prog != &dummy_bpf_prog.prog)
1947 cnt++;
1948 return cnt;
1949 }
1950
bpf_prog_array_is_empty(struct bpf_prog_array * array)1951 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1952 {
1953 struct bpf_prog_array_item *item;
1954
1955 for (item = array->items; item->prog; item++)
1956 if (item->prog != &dummy_bpf_prog.prog)
1957 return false;
1958 return true;
1959 }
1960
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)1961 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1962 u32 *prog_ids,
1963 u32 request_cnt)
1964 {
1965 struct bpf_prog_array_item *item;
1966 int i = 0;
1967
1968 for (item = array->items; item->prog; item++) {
1969 if (item->prog == &dummy_bpf_prog.prog)
1970 continue;
1971 prog_ids[i] = item->prog->aux->id;
1972 if (++i == request_cnt) {
1973 item++;
1974 break;
1975 }
1976 }
1977
1978 return !!(item->prog);
1979 }
1980
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)1981 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1982 __u32 __user *prog_ids, u32 cnt)
1983 {
1984 unsigned long err = 0;
1985 bool nospc;
1986 u32 *ids;
1987
1988 /* users of this function are doing:
1989 * cnt = bpf_prog_array_length();
1990 * if (cnt > 0)
1991 * bpf_prog_array_copy_to_user(..., cnt);
1992 * so below kcalloc doesn't need extra cnt > 0 check.
1993 */
1994 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1995 if (!ids)
1996 return -ENOMEM;
1997 nospc = bpf_prog_array_copy_core(array, ids, cnt);
1998 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1999 kfree(ids);
2000 if (err)
2001 return -EFAULT;
2002 if (nospc)
2003 return -ENOSPC;
2004 return 0;
2005 }
2006
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2007 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2008 struct bpf_prog *old_prog)
2009 {
2010 struct bpf_prog_array_item *item;
2011
2012 for (item = array->items; item->prog; item++)
2013 if (item->prog == old_prog) {
2014 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2015 break;
2016 }
2017 }
2018
2019 /**
2020 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2021 * index into the program array with
2022 * a dummy no-op program.
2023 * @array: a bpf_prog_array
2024 * @index: the index of the program to replace
2025 *
2026 * Skips over dummy programs, by not counting them, when calculating
2027 * the position of the program to replace.
2028 *
2029 * Return:
2030 * * 0 - Success
2031 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2032 * * -ENOENT - Index out of range
2033 */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2034 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2035 {
2036 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2037 }
2038
2039 /**
2040 * bpf_prog_array_update_at() - Updates the program at the given index
2041 * into the program array.
2042 * @array: a bpf_prog_array
2043 * @index: the index of the program to update
2044 * @prog: the program to insert into the array
2045 *
2046 * Skips over dummy programs, by not counting them, when calculating
2047 * the position of the program to update.
2048 *
2049 * Return:
2050 * * 0 - Success
2051 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2052 * * -ENOENT - Index out of range
2053 */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2054 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2055 struct bpf_prog *prog)
2056 {
2057 struct bpf_prog_array_item *item;
2058
2059 if (unlikely(index < 0))
2060 return -EINVAL;
2061
2062 for (item = array->items; item->prog; item++) {
2063 if (item->prog == &dummy_bpf_prog.prog)
2064 continue;
2065 if (!index) {
2066 WRITE_ONCE(item->prog, prog);
2067 return 0;
2068 }
2069 index--;
2070 }
2071 return -ENOENT;
2072 }
2073
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,struct bpf_prog_array ** new_array)2074 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2075 struct bpf_prog *exclude_prog,
2076 struct bpf_prog *include_prog,
2077 struct bpf_prog_array **new_array)
2078 {
2079 int new_prog_cnt, carry_prog_cnt = 0;
2080 struct bpf_prog_array_item *existing;
2081 struct bpf_prog_array *array;
2082 bool found_exclude = false;
2083 int new_prog_idx = 0;
2084
2085 /* Figure out how many existing progs we need to carry over to
2086 * the new array.
2087 */
2088 if (old_array) {
2089 existing = old_array->items;
2090 for (; existing->prog; existing++) {
2091 if (existing->prog == exclude_prog) {
2092 found_exclude = true;
2093 continue;
2094 }
2095 if (existing->prog != &dummy_bpf_prog.prog)
2096 carry_prog_cnt++;
2097 if (existing->prog == include_prog)
2098 return -EEXIST;
2099 }
2100 }
2101
2102 if (exclude_prog && !found_exclude)
2103 return -ENOENT;
2104
2105 /* How many progs (not NULL) will be in the new array? */
2106 new_prog_cnt = carry_prog_cnt;
2107 if (include_prog)
2108 new_prog_cnt += 1;
2109
2110 /* Do we have any prog (not NULL) in the new array? */
2111 if (!new_prog_cnt) {
2112 *new_array = NULL;
2113 return 0;
2114 }
2115
2116 /* +1 as the end of prog_array is marked with NULL */
2117 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2118 if (!array)
2119 return -ENOMEM;
2120
2121 /* Fill in the new prog array */
2122 if (carry_prog_cnt) {
2123 existing = old_array->items;
2124 for (; existing->prog; existing++)
2125 if (existing->prog != exclude_prog &&
2126 existing->prog != &dummy_bpf_prog.prog) {
2127 array->items[new_prog_idx++].prog =
2128 existing->prog;
2129 }
2130 }
2131 if (include_prog)
2132 array->items[new_prog_idx++].prog = include_prog;
2133 array->items[new_prog_idx].prog = NULL;
2134 *new_array = array;
2135 return 0;
2136 }
2137
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2138 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2139 u32 *prog_ids, u32 request_cnt,
2140 u32 *prog_cnt)
2141 {
2142 u32 cnt = 0;
2143
2144 if (array)
2145 cnt = bpf_prog_array_length(array);
2146
2147 *prog_cnt = cnt;
2148
2149 /* return early if user requested only program count or nothing to copy */
2150 if (!request_cnt || !cnt)
2151 return 0;
2152
2153 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2154 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2155 : 0;
2156 }
2157
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2158 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2159 struct bpf_map **used_maps, u32 len)
2160 {
2161 struct bpf_map *map;
2162 u32 i;
2163
2164 for (i = 0; i < len; i++) {
2165 map = used_maps[i];
2166 if (map->ops->map_poke_untrack)
2167 map->ops->map_poke_untrack(map, aux);
2168 bpf_map_put(map);
2169 }
2170 }
2171
bpf_free_used_maps(struct bpf_prog_aux * aux)2172 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2173 {
2174 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2175 kfree(aux->used_maps);
2176 }
2177
bpf_prog_free_deferred(struct work_struct * work)2178 static void bpf_prog_free_deferred(struct work_struct *work)
2179 {
2180 struct bpf_prog_aux *aux;
2181 int i;
2182
2183 aux = container_of(work, struct bpf_prog_aux, work);
2184 bpf_free_used_maps(aux);
2185 if (bpf_prog_is_dev_bound(aux))
2186 bpf_prog_offload_destroy(aux->prog);
2187 #ifdef CONFIG_PERF_EVENTS
2188 if (aux->prog->has_callchain_buf)
2189 put_callchain_buffers();
2190 #endif
2191 if (aux->dst_trampoline)
2192 bpf_trampoline_put(aux->dst_trampoline);
2193 for (i = 0; i < aux->func_cnt; i++) {
2194 /* We can just unlink the subprog poke descriptor table as
2195 * it was originally linked to the main program and is also
2196 * released along with it.
2197 */
2198 aux->func[i]->aux->poke_tab = NULL;
2199 bpf_jit_free(aux->func[i]);
2200 }
2201 if (aux->func_cnt) {
2202 kfree(aux->func);
2203 bpf_prog_unlock_free(aux->prog);
2204 } else {
2205 bpf_jit_free(aux->prog);
2206 }
2207 }
2208
2209 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2210 void bpf_prog_free(struct bpf_prog *fp)
2211 {
2212 struct bpf_prog_aux *aux = fp->aux;
2213
2214 if (aux->dst_prog)
2215 bpf_prog_put(aux->dst_prog);
2216 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2217 schedule_work(&aux->work);
2218 }
2219 EXPORT_SYMBOL_GPL(bpf_prog_free);
2220
2221 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2222 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2223
bpf_user_rnd_init_once(void)2224 void bpf_user_rnd_init_once(void)
2225 {
2226 prandom_init_once(&bpf_user_rnd_state);
2227 }
2228
BPF_CALL_0(bpf_user_rnd_u32)2229 BPF_CALL_0(bpf_user_rnd_u32)
2230 {
2231 /* Should someone ever have the rather unwise idea to use some
2232 * of the registers passed into this function, then note that
2233 * this function is called from native eBPF and classic-to-eBPF
2234 * transformations. Register assignments from both sides are
2235 * different, f.e. classic always sets fn(ctx, A, X) here.
2236 */
2237 struct rnd_state *state;
2238 u32 res;
2239
2240 state = &get_cpu_var(bpf_user_rnd_state);
2241 res = prandom_u32_state(state);
2242 put_cpu_var(bpf_user_rnd_state);
2243
2244 return res;
2245 }
2246
BPF_CALL_0(bpf_get_raw_cpu_id)2247 BPF_CALL_0(bpf_get_raw_cpu_id)
2248 {
2249 return raw_smp_processor_id();
2250 }
2251
2252 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2253 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2254 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2255 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2256 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2257 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2258 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2259 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2260 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2261 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2262
2263 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2264 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2265 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2266 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2267 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2268
2269 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2270 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2271 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2272 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2273 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2274 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2275 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2276 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2277 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2278
bpf_get_trace_printk_proto(void)2279 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2280 {
2281 return NULL;
2282 }
2283
2284 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2285 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2286 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2287 {
2288 return -ENOTSUPP;
2289 }
2290 EXPORT_SYMBOL_GPL(bpf_event_output);
2291
2292 /* Always built-in helper functions. */
2293 const struct bpf_func_proto bpf_tail_call_proto = {
2294 .func = NULL,
2295 .gpl_only = false,
2296 .ret_type = RET_VOID,
2297 .arg1_type = ARG_PTR_TO_CTX,
2298 .arg2_type = ARG_CONST_MAP_PTR,
2299 .arg3_type = ARG_ANYTHING,
2300 };
2301
2302 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2303 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2304 * eBPF and implicitly also cBPF can get JITed!
2305 */
bpf_int_jit_compile(struct bpf_prog * prog)2306 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2307 {
2308 return prog;
2309 }
2310
2311 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2312 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2313 */
bpf_jit_compile(struct bpf_prog * prog)2314 void __weak bpf_jit_compile(struct bpf_prog *prog)
2315 {
2316 }
2317
bpf_helper_changes_pkt_data(void * func)2318 bool __weak bpf_helper_changes_pkt_data(void *func)
2319 {
2320 return false;
2321 }
2322
2323 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2324 * analysis code and wants explicit zero extension inserted by verifier.
2325 * Otherwise, return FALSE.
2326 */
bpf_jit_needs_zext(void)2327 bool __weak bpf_jit_needs_zext(void)
2328 {
2329 return false;
2330 }
2331
2332 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2333 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2334 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2335 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2336 int len)
2337 {
2338 return -EFAULT;
2339 }
2340
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2341 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2342 void *addr1, void *addr2)
2343 {
2344 return -ENOTSUPP;
2345 }
2346
2347 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2348 EXPORT_SYMBOL(bpf_stats_enabled_key);
2349
2350 /* All definitions of tracepoints related to BPF. */
2351 #define CREATE_TRACE_POINTS
2352 #include <linux/bpf_trace.h>
2353
2354 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2355 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2356