• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 
43 #ifdef CONFIG_X86
44 #include <asm/cpufeature.h>
45 #endif
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static const struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58 				      struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61 					struct extent_io_tree *dirty_pages,
62 					int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64 				       struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
67 
68 /*
69  * btrfs_end_io_wq structs are used to do processing in task context when an IO
70  * is complete.  This is used during reads to verify checksums, and it is used
71  * by writes to insert metadata for new file extents after IO is complete.
72  */
73 struct btrfs_end_io_wq {
74 	struct bio *bio;
75 	bio_end_io_t *end_io;
76 	void *private;
77 	struct btrfs_fs_info *info;
78 	blk_status_t status;
79 	enum btrfs_wq_endio_type metadata;
80 	struct btrfs_work work;
81 };
82 
83 static struct kmem_cache *btrfs_end_io_wq_cache;
84 
btrfs_end_io_wq_init(void)85 int __init btrfs_end_io_wq_init(void)
86 {
87 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 					sizeof(struct btrfs_end_io_wq),
89 					0,
90 					SLAB_MEM_SPREAD,
91 					NULL);
92 	if (!btrfs_end_io_wq_cache)
93 		return -ENOMEM;
94 	return 0;
95 }
96 
btrfs_end_io_wq_exit(void)97 void __cold btrfs_end_io_wq_exit(void)
98 {
99 	kmem_cache_destroy(btrfs_end_io_wq_cache);
100 }
101 
102 /*
103  * async submit bios are used to offload expensive checksumming
104  * onto the worker threads.  They checksum file and metadata bios
105  * just before they are sent down the IO stack.
106  */
107 struct async_submit_bio {
108 	void *private_data;
109 	struct bio *bio;
110 	extent_submit_bio_start_t *submit_bio_start;
111 	int mirror_num;
112 	/*
113 	 * bio_offset is optional, can be used if the pages in the bio
114 	 * can't tell us where in the file the bio should go
115 	 */
116 	u64 bio_offset;
117 	struct btrfs_work work;
118 	blk_status_t status;
119 };
120 
121 /*
122  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
123  * eb, the lockdep key is determined by the btrfs_root it belongs to and
124  * the level the eb occupies in the tree.
125  *
126  * Different roots are used for different purposes and may nest inside each
127  * other and they require separate keysets.  As lockdep keys should be
128  * static, assign keysets according to the purpose of the root as indicated
129  * by btrfs_root->objectid.  This ensures that all special purpose roots
130  * have separate keysets.
131  *
132  * Lock-nesting across peer nodes is always done with the immediate parent
133  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
134  * subclass to avoid triggering lockdep warning in such cases.
135  *
136  * The key is set by the readpage_end_io_hook after the buffer has passed
137  * csum validation but before the pages are unlocked.  It is also set by
138  * btrfs_init_new_buffer on freshly allocated blocks.
139  *
140  * We also add a check to make sure the highest level of the tree is the
141  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
142  * needs update as well.
143  */
144 #ifdef CONFIG_DEBUG_LOCK_ALLOC
145 # if BTRFS_MAX_LEVEL != 8
146 #  error
147 # endif
148 
149 static struct btrfs_lockdep_keyset {
150 	u64			id;		/* root objectid */
151 	const char		*name_stem;	/* lock name stem */
152 	char			names[BTRFS_MAX_LEVEL + 1][20];
153 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
154 } btrfs_lockdep_keysets[] = {
155 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
156 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
157 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
158 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
159 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
160 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
161 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
162 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
163 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
164 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
165 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
166 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
167 	{ .id = 0,				.name_stem = "tree"	},
168 };
169 
btrfs_init_lockdep(void)170 void __init btrfs_init_lockdep(void)
171 {
172 	int i, j;
173 
174 	/* initialize lockdep class names */
175 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177 
178 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 			snprintf(ks->names[j], sizeof(ks->names[j]),
180 				 "btrfs-%s-%02d", ks->name_stem, j);
181 	}
182 }
183 
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 				    int level)
186 {
187 	struct btrfs_lockdep_keyset *ks;
188 
189 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
190 
191 	/* find the matching keyset, id 0 is the default entry */
192 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 		if (ks->id == objectid)
194 			break;
195 
196 	lockdep_set_class_and_name(&eb->lock,
197 				   &ks->keys[level], ks->names[level]);
198 }
199 
200 #endif
201 
202 /*
203  * extents on the btree inode are pretty simple, there's one extent
204  * that covers the entire device
205  */
btree_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)206 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
207 		struct page *page, size_t pg_offset, u64 start, u64 len,
208 		int create)
209 {
210 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
211 	struct extent_map_tree *em_tree = &inode->extent_tree;
212 	struct extent_map *em;
213 	int ret;
214 
215 	read_lock(&em_tree->lock);
216 	em = lookup_extent_mapping(em_tree, start, len);
217 	if (em) {
218 		em->bdev = fs_info->fs_devices->latest_bdev;
219 		read_unlock(&em_tree->lock);
220 		goto out;
221 	}
222 	read_unlock(&em_tree->lock);
223 
224 	em = alloc_extent_map();
225 	if (!em) {
226 		em = ERR_PTR(-ENOMEM);
227 		goto out;
228 	}
229 	em->start = 0;
230 	em->len = (u64)-1;
231 	em->block_len = (u64)-1;
232 	em->block_start = 0;
233 	em->bdev = fs_info->fs_devices->latest_bdev;
234 
235 	write_lock(&em_tree->lock);
236 	ret = add_extent_mapping(em_tree, em, 0);
237 	if (ret == -EEXIST) {
238 		free_extent_map(em);
239 		em = lookup_extent_mapping(em_tree, start, len);
240 		if (!em)
241 			em = ERR_PTR(-EIO);
242 	} else if (ret) {
243 		free_extent_map(em);
244 		em = ERR_PTR(ret);
245 	}
246 	write_unlock(&em_tree->lock);
247 
248 out:
249 	return em;
250 }
251 
btrfs_csum_data(const char * data,u32 seed,size_t len)252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
253 {
254 	return crc32c(seed, data, len);
255 }
256 
btrfs_csum_final(u32 crc,u8 * result)257 void btrfs_csum_final(u32 crc, u8 *result)
258 {
259 	put_unaligned_le32(~crc, result);
260 }
261 
262 /*
263  * compute the csum for a btree block, and either verify it or write it
264  * into the csum field of the block.
265  */
csum_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf,int verify)266 static int csum_tree_block(struct btrfs_fs_info *fs_info,
267 			   struct extent_buffer *buf,
268 			   int verify)
269 {
270 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
271 	char result[BTRFS_CSUM_SIZE];
272 	unsigned long len;
273 	unsigned long cur_len;
274 	unsigned long offset = BTRFS_CSUM_SIZE;
275 	char *kaddr;
276 	unsigned long map_start;
277 	unsigned long map_len;
278 	int err;
279 	u32 crc = ~(u32)0;
280 
281 	len = buf->len - offset;
282 	while (len > 0) {
283 		err = map_private_extent_buffer(buf, offset, 32,
284 					&kaddr, &map_start, &map_len);
285 		if (err)
286 			return err;
287 		cur_len = min(len, map_len - (offset - map_start));
288 		crc = btrfs_csum_data(kaddr + offset - map_start,
289 				      crc, cur_len);
290 		len -= cur_len;
291 		offset += cur_len;
292 	}
293 	memset(result, 0, BTRFS_CSUM_SIZE);
294 
295 	btrfs_csum_final(crc, result);
296 
297 	if (verify) {
298 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299 			u32 val;
300 			u32 found = 0;
301 			memcpy(&found, result, csum_size);
302 
303 			read_extent_buffer(buf, &val, 0, csum_size);
304 			btrfs_warn_rl(fs_info,
305 				"%s checksum verify failed on %llu wanted %X found %X level %d",
306 				fs_info->sb->s_id, buf->start,
307 				val, found, btrfs_header_level(buf));
308 			return -EUCLEAN;
309 		}
310 	} else {
311 		write_extent_buffer(buf, result, 0, csum_size);
312 	}
313 
314 	return 0;
315 }
316 
317 /*
318  * we can't consider a given block up to date unless the transid of the
319  * block matches the transid in the parent node's pointer.  This is how we
320  * detect blocks that either didn't get written at all or got written
321  * in the wrong place.
322  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324 				 struct extent_buffer *eb, u64 parent_transid,
325 				 int atomic)
326 {
327 	struct extent_state *cached_state = NULL;
328 	int ret;
329 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
330 
331 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 		return 0;
333 
334 	if (atomic)
335 		return -EAGAIN;
336 
337 	if (need_lock) {
338 		btrfs_tree_read_lock(eb);
339 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
340 	}
341 
342 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
343 			 &cached_state);
344 	if (extent_buffer_uptodate(eb) &&
345 	    btrfs_header_generation(eb) == parent_transid) {
346 		ret = 0;
347 		goto out;
348 	}
349 	btrfs_err_rl(eb->fs_info,
350 		"parent transid verify failed on %llu wanted %llu found %llu",
351 			eb->start,
352 			parent_transid, btrfs_header_generation(eb));
353 	ret = 1;
354 
355 	/*
356 	 * Things reading via commit roots that don't have normal protection,
357 	 * like send, can have a really old block in cache that may point at a
358 	 * block that has been freed and re-allocated.  So don't clear uptodate
359 	 * if we find an eb that is under IO (dirty/writeback) because we could
360 	 * end up reading in the stale data and then writing it back out and
361 	 * making everybody very sad.
362 	 */
363 	if (!extent_buffer_under_io(eb))
364 		clear_extent_buffer_uptodate(eb);
365 out:
366 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
367 			     &cached_state);
368 	if (need_lock)
369 		btrfs_tree_read_unlock_blocking(eb);
370 	return ret;
371 }
372 
373 /*
374  * Return 0 if the superblock checksum type matches the checksum value of that
375  * algorithm. Pass the raw disk superblock data.
376  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)377 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
378 				  char *raw_disk_sb)
379 {
380 	struct btrfs_super_block *disk_sb =
381 		(struct btrfs_super_block *)raw_disk_sb;
382 	u16 csum_type = btrfs_super_csum_type(disk_sb);
383 	int ret = 0;
384 
385 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 		u32 crc = ~(u32)0;
387 		char result[sizeof(crc)];
388 
389 		/*
390 		 * The super_block structure does not span the whole
391 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
392 		 * is filled with zeros and is included in the checksum.
393 		 */
394 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
395 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
396 		btrfs_csum_final(crc, result);
397 
398 		if (memcmp(raw_disk_sb, result, sizeof(result)))
399 			ret = 1;
400 	}
401 
402 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
403 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
404 				csum_type);
405 		ret = 1;
406 	}
407 
408 	return ret;
409 }
410 
btrfs_verify_level_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)411 int btrfs_verify_level_key(struct btrfs_fs_info *fs_info,
412 			   struct extent_buffer *eb, int level,
413 			   struct btrfs_key *first_key, u64 parent_transid)
414 {
415 	int found_level;
416 	struct btrfs_key found_key;
417 	int ret;
418 
419 	found_level = btrfs_header_level(eb);
420 	if (found_level != level) {
421 #ifdef CONFIG_BTRFS_DEBUG
422 		WARN_ON(1);
423 		btrfs_err(fs_info,
424 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
425 			  eb->start, level, found_level);
426 #endif
427 		return -EIO;
428 	}
429 
430 	if (!first_key)
431 		return 0;
432 
433 	/*
434 	 * For live tree block (new tree blocks in current transaction),
435 	 * we need proper lock context to avoid race, which is impossible here.
436 	 * So we only checks tree blocks which is read from disk, whose
437 	 * generation <= fs_info->last_trans_committed.
438 	 */
439 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
440 		return 0;
441 
442 	/* We have @first_key, so this @eb must have at least one item */
443 	if (btrfs_header_nritems(eb) == 0) {
444 		btrfs_err(fs_info,
445 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
446 			  eb->start);
447 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
448 		return -EUCLEAN;
449 	}
450 
451 	if (found_level)
452 		btrfs_node_key_to_cpu(eb, &found_key, 0);
453 	else
454 		btrfs_item_key_to_cpu(eb, &found_key, 0);
455 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
456 
457 #ifdef CONFIG_BTRFS_DEBUG
458 	if (ret) {
459 		WARN_ON(1);
460 		btrfs_err(fs_info,
461 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
462 			  eb->start, parent_transid, first_key->objectid,
463 			  first_key->type, first_key->offset,
464 			  found_key.objectid, found_key.type,
465 			  found_key.offset);
466 	}
467 #endif
468 	return ret;
469 }
470 
471 /*
472  * helper to read a given tree block, doing retries as required when
473  * the checksums don't match and we have alternate mirrors to try.
474  *
475  * @parent_transid:	expected transid, skip check if 0
476  * @level:		expected level, mandatory check
477  * @first_key:		expected key of first slot, skip check if NULL
478  */
btree_read_extent_buffer_pages(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)479 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
480 					  struct extent_buffer *eb,
481 					  u64 parent_transid, int level,
482 					  struct btrfs_key *first_key)
483 {
484 	struct extent_io_tree *io_tree;
485 	int failed = 0;
486 	int ret;
487 	int num_copies = 0;
488 	int mirror_num = 0;
489 	int failed_mirror = 0;
490 
491 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
492 	while (1) {
493 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
494 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
495 					       mirror_num);
496 		if (!ret) {
497 			if (verify_parent_transid(io_tree, eb,
498 						   parent_transid, 0))
499 				ret = -EIO;
500 			else if (btrfs_verify_level_key(fs_info, eb, level,
501 						first_key, parent_transid))
502 				ret = -EUCLEAN;
503 			else
504 				break;
505 		}
506 
507 		num_copies = btrfs_num_copies(fs_info,
508 					      eb->start, eb->len);
509 		if (num_copies == 1)
510 			break;
511 
512 		if (!failed_mirror) {
513 			failed = 1;
514 			failed_mirror = eb->read_mirror;
515 		}
516 
517 		mirror_num++;
518 		if (mirror_num == failed_mirror)
519 			mirror_num++;
520 
521 		if (mirror_num > num_copies)
522 			break;
523 	}
524 
525 	if (failed && !ret && failed_mirror)
526 		repair_eb_io_failure(fs_info, eb, failed_mirror);
527 
528 	return ret;
529 }
530 
531 /*
532  * checksum a dirty tree block before IO.  This has extra checks to make sure
533  * we only fill in the checksum field in the first page of a multi-page block
534  */
535 
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)536 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
537 {
538 	u64 start = page_offset(page);
539 	u64 found_start;
540 	struct extent_buffer *eb;
541 
542 	eb = (struct extent_buffer *)page->private;
543 	if (page != eb->pages[0])
544 		return 0;
545 
546 	found_start = btrfs_header_bytenr(eb);
547 	/*
548 	 * Please do not consolidate these warnings into a single if.
549 	 * It is useful to know what went wrong.
550 	 */
551 	if (WARN_ON(found_start != start))
552 		return -EUCLEAN;
553 	if (WARN_ON(!PageUptodate(page)))
554 		return -EUCLEAN;
555 
556 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
557 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
558 
559 	return csum_tree_block(fs_info, eb, 0);
560 }
561 
check_tree_block_fsid(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)562 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
563 				 struct extent_buffer *eb)
564 {
565 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
566 	u8 fsid[BTRFS_FSID_SIZE];
567 	int ret = 1;
568 
569 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
570 	while (fs_devices) {
571 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
572 			ret = 0;
573 			break;
574 		}
575 		fs_devices = fs_devices->seed;
576 	}
577 	return ret;
578 }
579 
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)580 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
581 				      u64 phy_offset, struct page *page,
582 				      u64 start, u64 end, int mirror)
583 {
584 	u64 found_start;
585 	int found_level;
586 	struct extent_buffer *eb;
587 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
588 	struct btrfs_fs_info *fs_info = root->fs_info;
589 	int ret = 0;
590 	int reads_done;
591 
592 	if (!page->private)
593 		goto out;
594 
595 	eb = (struct extent_buffer *)page->private;
596 
597 	/* the pending IO might have been the only thing that kept this buffer
598 	 * in memory.  Make sure we have a ref for all this other checks
599 	 */
600 	extent_buffer_get(eb);
601 
602 	reads_done = atomic_dec_and_test(&eb->io_pages);
603 	if (!reads_done)
604 		goto err;
605 
606 	eb->read_mirror = mirror;
607 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 		ret = -EIO;
609 		goto err;
610 	}
611 
612 	found_start = btrfs_header_bytenr(eb);
613 	if (found_start != eb->start) {
614 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 			     eb->start, found_start);
616 		ret = -EIO;
617 		goto err;
618 	}
619 	if (check_tree_block_fsid(fs_info, eb)) {
620 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 			     eb->start);
622 		ret = -EIO;
623 		goto err;
624 	}
625 	found_level = btrfs_header_level(eb);
626 	if (found_level >= BTRFS_MAX_LEVEL) {
627 		btrfs_err(fs_info, "bad tree block level %d on %llu",
628 			  (int)btrfs_header_level(eb), eb->start);
629 		ret = -EIO;
630 		goto err;
631 	}
632 
633 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 				       eb, found_level);
635 
636 	ret = csum_tree_block(fs_info, eb, 1);
637 	if (ret)
638 		goto err;
639 
640 	/*
641 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
642 	 * that we don't try and read the other copies of this block, just
643 	 * return -EIO.
644 	 */
645 	if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
646 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
647 		ret = -EIO;
648 	}
649 
650 	if (found_level > 0 && btrfs_check_node(fs_info, eb))
651 		ret = -EIO;
652 
653 	if (!ret)
654 		set_extent_buffer_uptodate(eb);
655 err:
656 	if (reads_done &&
657 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 		btree_readahead_hook(eb, ret);
659 
660 	if (ret) {
661 		/*
662 		 * our io error hook is going to dec the io pages
663 		 * again, we have to make sure it has something
664 		 * to decrement
665 		 */
666 		atomic_inc(&eb->io_pages);
667 		clear_extent_buffer_uptodate(eb);
668 	}
669 	free_extent_buffer(eb);
670 out:
671 	return ret;
672 }
673 
btree_io_failed_hook(struct page * page,int failed_mirror)674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676 	struct extent_buffer *eb;
677 
678 	eb = (struct extent_buffer *)page->private;
679 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
680 	eb->read_mirror = failed_mirror;
681 	atomic_dec(&eb->io_pages);
682 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
683 		btree_readahead_hook(eb, -EIO);
684 	return -EIO;	/* we fixed nothing */
685 }
686 
end_workqueue_bio(struct bio * bio)687 static void end_workqueue_bio(struct bio *bio)
688 {
689 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
690 	struct btrfs_fs_info *fs_info;
691 	struct btrfs_workqueue *wq;
692 	btrfs_work_func_t func;
693 
694 	fs_info = end_io_wq->info;
695 	end_io_wq->status = bio->bi_status;
696 
697 	if (bio_op(bio) == REQ_OP_WRITE) {
698 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
699 			wq = fs_info->endio_meta_write_workers;
700 			func = btrfs_endio_meta_write_helper;
701 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
702 			wq = fs_info->endio_freespace_worker;
703 			func = btrfs_freespace_write_helper;
704 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
705 			wq = fs_info->endio_raid56_workers;
706 			func = btrfs_endio_raid56_helper;
707 		} else {
708 			wq = fs_info->endio_write_workers;
709 			func = btrfs_endio_write_helper;
710 		}
711 	} else {
712 		if (unlikely(end_io_wq->metadata ==
713 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
714 			wq = fs_info->endio_repair_workers;
715 			func = btrfs_endio_repair_helper;
716 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
717 			wq = fs_info->endio_raid56_workers;
718 			func = btrfs_endio_raid56_helper;
719 		} else if (end_io_wq->metadata) {
720 			wq = fs_info->endio_meta_workers;
721 			func = btrfs_endio_meta_helper;
722 		} else {
723 			wq = fs_info->endio_workers;
724 			func = btrfs_endio_helper;
725 		}
726 	}
727 
728 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
729 	btrfs_queue_work(wq, &end_io_wq->work);
730 }
731 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)732 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 			enum btrfs_wq_endio_type metadata)
734 {
735 	struct btrfs_end_io_wq *end_io_wq;
736 
737 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
738 	if (!end_io_wq)
739 		return BLK_STS_RESOURCE;
740 
741 	end_io_wq->private = bio->bi_private;
742 	end_io_wq->end_io = bio->bi_end_io;
743 	end_io_wq->info = info;
744 	end_io_wq->status = 0;
745 	end_io_wq->bio = bio;
746 	end_io_wq->metadata = metadata;
747 
748 	bio->bi_private = end_io_wq;
749 	bio->bi_end_io = end_workqueue_bio;
750 	return 0;
751 }
752 
run_one_async_start(struct btrfs_work * work)753 static void run_one_async_start(struct btrfs_work *work)
754 {
755 	struct async_submit_bio *async;
756 	blk_status_t ret;
757 
758 	async = container_of(work, struct  async_submit_bio, work);
759 	ret = async->submit_bio_start(async->private_data, async->bio,
760 				      async->bio_offset);
761 	if (ret)
762 		async->status = ret;
763 }
764 
run_one_async_done(struct btrfs_work * work)765 static void run_one_async_done(struct btrfs_work *work)
766 {
767 	struct async_submit_bio *async;
768 
769 	async = container_of(work, struct  async_submit_bio, work);
770 
771 	/* If an error occurred we just want to clean up the bio and move on */
772 	if (async->status) {
773 		async->bio->bi_status = async->status;
774 		bio_endio(async->bio);
775 		return;
776 	}
777 
778 	btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
779 }
780 
run_one_async_free(struct btrfs_work * work)781 static void run_one_async_free(struct btrfs_work *work)
782 {
783 	struct async_submit_bio *async;
784 
785 	async = container_of(work, struct  async_submit_bio, work);
786 	kfree(async);
787 }
788 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)789 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
790 				 int mirror_num, unsigned long bio_flags,
791 				 u64 bio_offset, void *private_data,
792 				 extent_submit_bio_start_t *submit_bio_start)
793 {
794 	struct async_submit_bio *async;
795 
796 	async = kmalloc(sizeof(*async), GFP_NOFS);
797 	if (!async)
798 		return BLK_STS_RESOURCE;
799 
800 	async->private_data = private_data;
801 	async->bio = bio;
802 	async->mirror_num = mirror_num;
803 	async->submit_bio_start = submit_bio_start;
804 
805 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
806 			run_one_async_done, run_one_async_free);
807 
808 	async->bio_offset = bio_offset;
809 
810 	async->status = 0;
811 
812 	if (op_is_sync(bio->bi_opf))
813 		btrfs_set_work_high_priority(&async->work);
814 
815 	btrfs_queue_work(fs_info->workers, &async->work);
816 	return 0;
817 }
818 
btree_csum_one_bio(struct bio * bio)819 static blk_status_t btree_csum_one_bio(struct bio *bio)
820 {
821 	struct bio_vec *bvec;
822 	struct btrfs_root *root;
823 	int i, ret = 0;
824 
825 	ASSERT(!bio_flagged(bio, BIO_CLONED));
826 	bio_for_each_segment_all(bvec, bio, i) {
827 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
828 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
829 		if (ret)
830 			break;
831 	}
832 
833 	return errno_to_blk_status(ret);
834 }
835 
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)836 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
837 					     u64 bio_offset)
838 {
839 	/*
840 	 * when we're called for a write, we're already in the async
841 	 * submission context.  Just jump into btrfs_map_bio
842 	 */
843 	return btree_csum_one_bio(bio);
844 }
845 
check_async_write(struct btrfs_inode * bi)846 static int check_async_write(struct btrfs_inode *bi)
847 {
848 	if (atomic_read(&bi->sync_writers))
849 		return 0;
850 #ifdef CONFIG_X86
851 	if (static_cpu_has(X86_FEATURE_XMM4_2))
852 		return 0;
853 #endif
854 	return 1;
855 }
856 
btree_submit_bio_hook(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)857 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
858 					  int mirror_num, unsigned long bio_flags,
859 					  u64 bio_offset)
860 {
861 	struct inode *inode = private_data;
862 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
863 	int async = check_async_write(BTRFS_I(inode));
864 	blk_status_t ret;
865 
866 	if (bio_op(bio) != REQ_OP_WRITE) {
867 		/*
868 		 * called for a read, do the setup so that checksum validation
869 		 * can happen in the async kernel threads
870 		 */
871 		ret = btrfs_bio_wq_end_io(fs_info, bio,
872 					  BTRFS_WQ_ENDIO_METADATA);
873 		if (ret)
874 			goto out_w_error;
875 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
876 	} else if (!async) {
877 		ret = btree_csum_one_bio(bio);
878 		if (ret)
879 			goto out_w_error;
880 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
881 	} else {
882 		/*
883 		 * kthread helpers are used to submit writes so that
884 		 * checksumming can happen in parallel across all CPUs
885 		 */
886 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
887 					  bio_offset, private_data,
888 					  btree_submit_bio_start);
889 	}
890 
891 	if (ret)
892 		goto out_w_error;
893 	return 0;
894 
895 out_w_error:
896 	bio->bi_status = ret;
897 	bio_endio(bio);
898 	return ret;
899 }
900 
901 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)902 static int btree_migratepage(struct address_space *mapping,
903 			struct page *newpage, struct page *page,
904 			enum migrate_mode mode)
905 {
906 	/*
907 	 * we can't safely write a btree page from here,
908 	 * we haven't done the locking hook
909 	 */
910 	if (PageDirty(page))
911 		return -EAGAIN;
912 	/*
913 	 * Buffers may be managed in a filesystem specific way.
914 	 * We must have no buffers or drop them.
915 	 */
916 	if (page_has_private(page) &&
917 	    !try_to_release_page(page, GFP_KERNEL))
918 		return -EAGAIN;
919 	return migrate_page(mapping, newpage, page, mode);
920 }
921 #endif
922 
923 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)924 static int btree_writepages(struct address_space *mapping,
925 			    struct writeback_control *wbc)
926 {
927 	struct btrfs_fs_info *fs_info;
928 	int ret;
929 
930 	if (wbc->sync_mode == WB_SYNC_NONE) {
931 
932 		if (wbc->for_kupdate)
933 			return 0;
934 
935 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
936 		/* this is a bit racy, but that's ok */
937 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
938 					     BTRFS_DIRTY_METADATA_THRESH,
939 					     fs_info->dirty_metadata_batch);
940 		if (ret < 0)
941 			return 0;
942 	}
943 	return btree_write_cache_pages(mapping, wbc);
944 }
945 
btree_readpage(struct file * file,struct page * page)946 static int btree_readpage(struct file *file, struct page *page)
947 {
948 	struct extent_io_tree *tree;
949 	tree = &BTRFS_I(page->mapping->host)->io_tree;
950 	return extent_read_full_page(tree, page, btree_get_extent, 0);
951 }
952 
btree_releasepage(struct page * page,gfp_t gfp_flags)953 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
954 {
955 	if (PageWriteback(page) || PageDirty(page))
956 		return 0;
957 
958 	return try_release_extent_buffer(page);
959 }
960 
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)961 static void btree_invalidatepage(struct page *page, unsigned int offset,
962 				 unsigned int length)
963 {
964 	struct extent_io_tree *tree;
965 	tree = &BTRFS_I(page->mapping->host)->io_tree;
966 	extent_invalidatepage(tree, page, offset);
967 	btree_releasepage(page, GFP_NOFS);
968 	if (PagePrivate(page)) {
969 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
970 			   "page private not zero on page %llu",
971 			   (unsigned long long)page_offset(page));
972 		ClearPagePrivate(page);
973 		set_page_private(page, 0);
974 		put_page(page);
975 	}
976 }
977 
btree_set_page_dirty(struct page * page)978 static int btree_set_page_dirty(struct page *page)
979 {
980 #ifdef DEBUG
981 	struct extent_buffer *eb;
982 
983 	BUG_ON(!PagePrivate(page));
984 	eb = (struct extent_buffer *)page->private;
985 	BUG_ON(!eb);
986 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
987 	BUG_ON(!atomic_read(&eb->refs));
988 	btrfs_assert_tree_locked(eb);
989 #endif
990 	return __set_page_dirty_nobuffers(page);
991 }
992 
993 static const struct address_space_operations btree_aops = {
994 	.readpage	= btree_readpage,
995 	.writepages	= btree_writepages,
996 	.releasepage	= btree_releasepage,
997 	.invalidatepage = btree_invalidatepage,
998 #ifdef CONFIG_MIGRATION
999 	.migratepage	= btree_migratepage,
1000 #endif
1001 	.set_page_dirty = btree_set_page_dirty,
1002 };
1003 
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1004 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1005 {
1006 	struct extent_buffer *buf = NULL;
1007 	struct inode *btree_inode = fs_info->btree_inode;
1008 	int ret;
1009 
1010 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1011 	if (IS_ERR(buf))
1012 		return;
1013 
1014 	ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf,
1015 			WAIT_NONE, 0);
1016 	if (ret < 0)
1017 		free_extent_buffer_stale(buf);
1018 	else
1019 		free_extent_buffer(buf);
1020 }
1021 
reada_tree_block_flagged(struct btrfs_fs_info * fs_info,u64 bytenr,int mirror_num,struct extent_buffer ** eb)1022 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1023 			 int mirror_num, struct extent_buffer **eb)
1024 {
1025 	struct extent_buffer *buf = NULL;
1026 	struct inode *btree_inode = fs_info->btree_inode;
1027 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1028 	int ret;
1029 
1030 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1031 	if (IS_ERR(buf))
1032 		return 0;
1033 
1034 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1035 
1036 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1037 				       mirror_num);
1038 	if (ret) {
1039 		free_extent_buffer_stale(buf);
1040 		return ret;
1041 	}
1042 
1043 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1044 		free_extent_buffer_stale(buf);
1045 		return -EIO;
1046 	} else if (extent_buffer_uptodate(buf)) {
1047 		*eb = buf;
1048 	} else {
1049 		free_extent_buffer(buf);
1050 	}
1051 	return 0;
1052 }
1053 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1054 struct extent_buffer *btrfs_find_create_tree_block(
1055 						struct btrfs_fs_info *fs_info,
1056 						u64 bytenr)
1057 {
1058 	if (btrfs_is_testing(fs_info))
1059 		return alloc_test_extent_buffer(fs_info, bytenr);
1060 	return alloc_extent_buffer(fs_info, bytenr);
1061 }
1062 
1063 
btrfs_write_tree_block(struct extent_buffer * buf)1064 int btrfs_write_tree_block(struct extent_buffer *buf)
1065 {
1066 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1067 					buf->start + buf->len - 1);
1068 }
1069 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)1070 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1071 {
1072 	filemap_fdatawait_range(buf->pages[0]->mapping,
1073 			        buf->start, buf->start + buf->len - 1);
1074 }
1075 
1076 /*
1077  * Read tree block at logical address @bytenr and do variant basic but critical
1078  * verification.
1079  *
1080  * @parent_transid:	expected transid of this tree block, skip check if 0
1081  * @level:		expected level, mandatory check
1082  * @first_key:		expected key in slot 0, skip check if NULL
1083  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)1084 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1085 				      u64 parent_transid, int level,
1086 				      struct btrfs_key *first_key)
1087 {
1088 	struct extent_buffer *buf = NULL;
1089 	int ret;
1090 
1091 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1092 	if (IS_ERR(buf))
1093 		return buf;
1094 
1095 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1096 					     level, first_key);
1097 	if (ret) {
1098 		free_extent_buffer_stale(buf);
1099 		return ERR_PTR(ret);
1100 	}
1101 	return buf;
1102 
1103 }
1104 
clean_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf)1105 void clean_tree_block(struct btrfs_fs_info *fs_info,
1106 		      struct extent_buffer *buf)
1107 {
1108 	if (btrfs_header_generation(buf) ==
1109 	    fs_info->running_transaction->transid) {
1110 		btrfs_assert_tree_locked(buf);
1111 
1112 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1113 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1114 						 -buf->len,
1115 						 fs_info->dirty_metadata_batch);
1116 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1117 			btrfs_set_lock_blocking(buf);
1118 			clear_extent_buffer_dirty(buf);
1119 		}
1120 	}
1121 }
1122 
btrfs_alloc_subvolume_writers(void)1123 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1124 {
1125 	struct btrfs_subvolume_writers *writers;
1126 	int ret;
1127 
1128 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1129 	if (!writers)
1130 		return ERR_PTR(-ENOMEM);
1131 
1132 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1133 	if (ret < 0) {
1134 		kfree(writers);
1135 		return ERR_PTR(ret);
1136 	}
1137 
1138 	init_waitqueue_head(&writers->wait);
1139 	return writers;
1140 }
1141 
1142 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1143 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1144 {
1145 	percpu_counter_destroy(&writers->counter);
1146 	kfree(writers);
1147 }
1148 
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1149 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1150 			 u64 objectid)
1151 {
1152 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1153 	root->node = NULL;
1154 	root->commit_root = NULL;
1155 	root->state = 0;
1156 	root->orphan_cleanup_state = 0;
1157 
1158 	root->objectid = objectid;
1159 	root->last_trans = 0;
1160 	root->highest_objectid = 0;
1161 	root->nr_delalloc_inodes = 0;
1162 	root->nr_ordered_extents = 0;
1163 	root->inode_tree = RB_ROOT;
1164 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1165 	root->block_rsv = NULL;
1166 
1167 	INIT_LIST_HEAD(&root->dirty_list);
1168 	INIT_LIST_HEAD(&root->root_list);
1169 	INIT_LIST_HEAD(&root->delalloc_inodes);
1170 	INIT_LIST_HEAD(&root->delalloc_root);
1171 	INIT_LIST_HEAD(&root->ordered_extents);
1172 	INIT_LIST_HEAD(&root->ordered_root);
1173 	INIT_LIST_HEAD(&root->logged_list[0]);
1174 	INIT_LIST_HEAD(&root->logged_list[1]);
1175 	spin_lock_init(&root->inode_lock);
1176 	spin_lock_init(&root->delalloc_lock);
1177 	spin_lock_init(&root->ordered_extent_lock);
1178 	spin_lock_init(&root->accounting_lock);
1179 	spin_lock_init(&root->log_extents_lock[0]);
1180 	spin_lock_init(&root->log_extents_lock[1]);
1181 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1182 	mutex_init(&root->objectid_mutex);
1183 	mutex_init(&root->log_mutex);
1184 	mutex_init(&root->ordered_extent_mutex);
1185 	mutex_init(&root->delalloc_mutex);
1186 	init_waitqueue_head(&root->log_writer_wait);
1187 	init_waitqueue_head(&root->log_commit_wait[0]);
1188 	init_waitqueue_head(&root->log_commit_wait[1]);
1189 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1190 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1191 	atomic_set(&root->log_commit[0], 0);
1192 	atomic_set(&root->log_commit[1], 0);
1193 	atomic_set(&root->log_writers, 0);
1194 	atomic_set(&root->log_batch, 0);
1195 	refcount_set(&root->refs, 1);
1196 	atomic_set(&root->will_be_snapshotted, 0);
1197 	atomic_set(&root->snapshot_force_cow, 0);
1198 	root->log_transid = 0;
1199 	root->log_transid_committed = -1;
1200 	root->last_log_commit = 0;
1201 	if (!dummy)
1202 		extent_io_tree_init(&root->dirty_log_pages, NULL);
1203 
1204 	memset(&root->root_key, 0, sizeof(root->root_key));
1205 	memset(&root->root_item, 0, sizeof(root->root_item));
1206 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1207 	if (!dummy)
1208 		root->defrag_trans_start = fs_info->generation;
1209 	else
1210 		root->defrag_trans_start = 0;
1211 	root->root_key.objectid = objectid;
1212 	root->anon_dev = 0;
1213 
1214 	spin_lock_init(&root->root_item_lock);
1215 }
1216 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,gfp_t flags)1217 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1218 		gfp_t flags)
1219 {
1220 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1221 	if (root)
1222 		root->fs_info = fs_info;
1223 	return root;
1224 }
1225 
1226 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1227 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1228 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1229 {
1230 	struct btrfs_root *root;
1231 
1232 	if (!fs_info)
1233 		return ERR_PTR(-EINVAL);
1234 
1235 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1236 	if (!root)
1237 		return ERR_PTR(-ENOMEM);
1238 
1239 	/* We don't use the stripesize in selftest, set it as sectorsize */
1240 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1241 	root->alloc_bytenr = 0;
1242 
1243 	return root;
1244 }
1245 #endif
1246 
btrfs_create_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 objectid)1247 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1248 				     struct btrfs_fs_info *fs_info,
1249 				     u64 objectid)
1250 {
1251 	struct extent_buffer *leaf;
1252 	struct btrfs_root *tree_root = fs_info->tree_root;
1253 	struct btrfs_root *root;
1254 	struct btrfs_key key;
1255 	unsigned int nofs_flag;
1256 	int ret = 0;
1257 	uuid_le uuid = NULL_UUID_LE;
1258 
1259 	/*
1260 	 * We're holding a transaction handle, so use a NOFS memory allocation
1261 	 * context to avoid deadlock if reclaim happens.
1262 	 */
1263 	nofs_flag = memalloc_nofs_save();
1264 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1265 	memalloc_nofs_restore(nofs_flag);
1266 	if (!root)
1267 		return ERR_PTR(-ENOMEM);
1268 
1269 	__setup_root(root, fs_info, objectid);
1270 	root->root_key.objectid = objectid;
1271 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 	root->root_key.offset = 0;
1273 
1274 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1275 	if (IS_ERR(leaf)) {
1276 		ret = PTR_ERR(leaf);
1277 		leaf = NULL;
1278 		goto fail;
1279 	}
1280 
1281 	root->node = leaf;
1282 	btrfs_mark_buffer_dirty(leaf);
1283 
1284 	root->commit_root = btrfs_root_node(root);
1285 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1286 
1287 	root->root_item.flags = 0;
1288 	root->root_item.byte_limit = 0;
1289 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1290 	btrfs_set_root_generation(&root->root_item, trans->transid);
1291 	btrfs_set_root_level(&root->root_item, 0);
1292 	btrfs_set_root_refs(&root->root_item, 1);
1293 	btrfs_set_root_used(&root->root_item, leaf->len);
1294 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1295 	btrfs_set_root_dirid(&root->root_item, 0);
1296 	if (is_fstree(objectid))
1297 		uuid_le_gen(&uuid);
1298 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1299 	root->root_item.drop_level = 0;
1300 
1301 	key.objectid = objectid;
1302 	key.type = BTRFS_ROOT_ITEM_KEY;
1303 	key.offset = 0;
1304 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305 	if (ret)
1306 		goto fail;
1307 
1308 	btrfs_tree_unlock(leaf);
1309 
1310 	return root;
1311 
1312 fail:
1313 	if (leaf) {
1314 		btrfs_tree_unlock(leaf);
1315 		free_extent_buffer(root->commit_root);
1316 		free_extent_buffer(leaf);
1317 	}
1318 	kfree(root);
1319 
1320 	return ERR_PTR(ret);
1321 }
1322 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1323 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1324 					 struct btrfs_fs_info *fs_info)
1325 {
1326 	struct btrfs_root *root;
1327 	struct extent_buffer *leaf;
1328 
1329 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1330 	if (!root)
1331 		return ERR_PTR(-ENOMEM);
1332 
1333 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1334 
1335 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1336 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1338 
1339 	/*
1340 	 * DON'T set REF_COWS for log trees
1341 	 *
1342 	 * log trees do not get reference counted because they go away
1343 	 * before a real commit is actually done.  They do store pointers
1344 	 * to file data extents, and those reference counts still get
1345 	 * updated (along with back refs to the log tree).
1346 	 */
1347 
1348 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1349 			NULL, 0, 0, 0);
1350 	if (IS_ERR(leaf)) {
1351 		kfree(root);
1352 		return ERR_CAST(leaf);
1353 	}
1354 
1355 	root->node = leaf;
1356 
1357 	btrfs_mark_buffer_dirty(root->node);
1358 	btrfs_tree_unlock(root->node);
1359 	return root;
1360 }
1361 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1362 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1363 			     struct btrfs_fs_info *fs_info)
1364 {
1365 	struct btrfs_root *log_root;
1366 
1367 	log_root = alloc_log_tree(trans, fs_info);
1368 	if (IS_ERR(log_root))
1369 		return PTR_ERR(log_root);
1370 	WARN_ON(fs_info->log_root_tree);
1371 	fs_info->log_root_tree = log_root;
1372 	return 0;
1373 }
1374 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1375 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1376 		       struct btrfs_root *root)
1377 {
1378 	struct btrfs_fs_info *fs_info = root->fs_info;
1379 	struct btrfs_root *log_root;
1380 	struct btrfs_inode_item *inode_item;
1381 
1382 	log_root = alloc_log_tree(trans, fs_info);
1383 	if (IS_ERR(log_root))
1384 		return PTR_ERR(log_root);
1385 
1386 	log_root->last_trans = trans->transid;
1387 	log_root->root_key.offset = root->root_key.objectid;
1388 
1389 	inode_item = &log_root->root_item.inode;
1390 	btrfs_set_stack_inode_generation(inode_item, 1);
1391 	btrfs_set_stack_inode_size(inode_item, 3);
1392 	btrfs_set_stack_inode_nlink(inode_item, 1);
1393 	btrfs_set_stack_inode_nbytes(inode_item,
1394 				     fs_info->nodesize);
1395 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1396 
1397 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1398 
1399 	WARN_ON(root->log_root);
1400 	root->log_root = log_root;
1401 	root->log_transid = 0;
1402 	root->log_transid_committed = -1;
1403 	root->last_log_commit = 0;
1404 	return 0;
1405 }
1406 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1407 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1408 					       struct btrfs_key *key)
1409 {
1410 	struct btrfs_root *root;
1411 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412 	struct btrfs_path *path;
1413 	u64 generation;
1414 	int ret;
1415 	int level;
1416 
1417 	path = btrfs_alloc_path();
1418 	if (!path)
1419 		return ERR_PTR(-ENOMEM);
1420 
1421 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1422 	if (!root) {
1423 		ret = -ENOMEM;
1424 		goto alloc_fail;
1425 	}
1426 
1427 	__setup_root(root, fs_info, key->objectid);
1428 
1429 	ret = btrfs_find_root(tree_root, key, path,
1430 			      &root->root_item, &root->root_key);
1431 	if (ret) {
1432 		if (ret > 0)
1433 			ret = -ENOENT;
1434 		goto find_fail;
1435 	}
1436 
1437 	generation = btrfs_root_generation(&root->root_item);
1438 	level = btrfs_root_level(&root->root_item);
1439 	root->node = read_tree_block(fs_info,
1440 				     btrfs_root_bytenr(&root->root_item),
1441 				     generation, level, NULL);
1442 	if (IS_ERR(root->node)) {
1443 		ret = PTR_ERR(root->node);
1444 		goto find_fail;
1445 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1446 		ret = -EIO;
1447 		free_extent_buffer(root->node);
1448 		goto find_fail;
1449 	}
1450 	root->commit_root = btrfs_root_node(root);
1451 out:
1452 	btrfs_free_path(path);
1453 	return root;
1454 
1455 find_fail:
1456 	kfree(root);
1457 alloc_fail:
1458 	root = ERR_PTR(ret);
1459 	goto out;
1460 }
1461 
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1462 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1463 				      struct btrfs_key *location)
1464 {
1465 	struct btrfs_root *root;
1466 
1467 	root = btrfs_read_tree_root(tree_root, location);
1468 	if (IS_ERR(root))
1469 		return root;
1470 
1471 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1472 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1473 		btrfs_check_and_init_root_item(&root->root_item);
1474 	}
1475 
1476 	return root;
1477 }
1478 
btrfs_init_fs_root(struct btrfs_root * root)1479 int btrfs_init_fs_root(struct btrfs_root *root)
1480 {
1481 	int ret;
1482 	struct btrfs_subvolume_writers *writers;
1483 
1484 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1485 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1486 					GFP_NOFS);
1487 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1488 		ret = -ENOMEM;
1489 		goto fail;
1490 	}
1491 
1492 	writers = btrfs_alloc_subvolume_writers();
1493 	if (IS_ERR(writers)) {
1494 		ret = PTR_ERR(writers);
1495 		goto fail;
1496 	}
1497 	root->subv_writers = writers;
1498 
1499 	btrfs_init_free_ino_ctl(root);
1500 	spin_lock_init(&root->ino_cache_lock);
1501 	init_waitqueue_head(&root->ino_cache_wait);
1502 
1503 	/*
1504 	 * Don't assign anonymous block device to roots that are not exposed to
1505 	 * userspace, the id pool is limited to 1M
1506 	 */
1507 	if (is_fstree(root->root_key.objectid) &&
1508 	    btrfs_root_refs(&root->root_item) > 0) {
1509 		ret = get_anon_bdev(&root->anon_dev);
1510 		if (ret)
1511 			goto fail;
1512 	}
1513 
1514 	mutex_lock(&root->objectid_mutex);
1515 	ret = btrfs_find_highest_objectid(root,
1516 					&root->highest_objectid);
1517 	if (ret) {
1518 		mutex_unlock(&root->objectid_mutex);
1519 		goto fail;
1520 	}
1521 
1522 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1523 
1524 	mutex_unlock(&root->objectid_mutex);
1525 
1526 	return 0;
1527 fail:
1528 	/* The caller is responsible to call btrfs_free_fs_root */
1529 	return ret;
1530 }
1531 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1532 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1533 					u64 root_id)
1534 {
1535 	struct btrfs_root *root;
1536 
1537 	spin_lock(&fs_info->fs_roots_radix_lock);
1538 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1539 				 (unsigned long)root_id);
1540 	spin_unlock(&fs_info->fs_roots_radix_lock);
1541 	return root;
1542 }
1543 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1544 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1545 			 struct btrfs_root *root)
1546 {
1547 	int ret;
1548 
1549 	ret = radix_tree_preload(GFP_NOFS);
1550 	if (ret)
1551 		return ret;
1552 
1553 	spin_lock(&fs_info->fs_roots_radix_lock);
1554 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1555 				(unsigned long)root->root_key.objectid,
1556 				root);
1557 	if (ret == 0)
1558 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1559 	spin_unlock(&fs_info->fs_roots_radix_lock);
1560 	radix_tree_preload_end();
1561 
1562 	return ret;
1563 }
1564 
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1565 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1566 				     struct btrfs_key *location,
1567 				     bool check_ref)
1568 {
1569 	struct btrfs_root *root;
1570 	struct btrfs_path *path;
1571 	struct btrfs_key key;
1572 	int ret;
1573 
1574 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1575 		return fs_info->tree_root;
1576 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1577 		return fs_info->extent_root;
1578 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1579 		return fs_info->chunk_root;
1580 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1581 		return fs_info->dev_root;
1582 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1583 		return fs_info->csum_root;
1584 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1585 		return fs_info->quota_root ? fs_info->quota_root :
1586 					     ERR_PTR(-ENOENT);
1587 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1588 		return fs_info->uuid_root ? fs_info->uuid_root :
1589 					    ERR_PTR(-ENOENT);
1590 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1591 		return fs_info->free_space_root ? fs_info->free_space_root :
1592 						  ERR_PTR(-ENOENT);
1593 again:
1594 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1595 	if (root) {
1596 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1597 			return ERR_PTR(-ENOENT);
1598 		return root;
1599 	}
1600 
1601 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1602 	if (IS_ERR(root))
1603 		return root;
1604 
1605 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1606 		ret = -ENOENT;
1607 		goto fail;
1608 	}
1609 
1610 	ret = btrfs_init_fs_root(root);
1611 	if (ret)
1612 		goto fail;
1613 
1614 	path = btrfs_alloc_path();
1615 	if (!path) {
1616 		ret = -ENOMEM;
1617 		goto fail;
1618 	}
1619 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1620 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1621 	key.offset = location->objectid;
1622 
1623 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1624 	btrfs_free_path(path);
1625 	if (ret < 0)
1626 		goto fail;
1627 	if (ret == 0)
1628 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1629 
1630 	ret = btrfs_insert_fs_root(fs_info, root);
1631 	if (ret) {
1632 		if (ret == -EEXIST) {
1633 			btrfs_free_fs_root(root);
1634 			goto again;
1635 		}
1636 		goto fail;
1637 	}
1638 	return root;
1639 fail:
1640 	btrfs_free_fs_root(root);
1641 	return ERR_PTR(ret);
1642 }
1643 
btrfs_congested_fn(void * congested_data,int bdi_bits)1644 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1645 {
1646 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1647 	int ret = 0;
1648 	struct btrfs_device *device;
1649 	struct backing_dev_info *bdi;
1650 
1651 	rcu_read_lock();
1652 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1653 		if (!device->bdev)
1654 			continue;
1655 		bdi = device->bdev->bd_bdi;
1656 		if (bdi_congested(bdi, bdi_bits)) {
1657 			ret = 1;
1658 			break;
1659 		}
1660 	}
1661 	rcu_read_unlock();
1662 	return ret;
1663 }
1664 
1665 /*
1666  * called by the kthread helper functions to finally call the bio end_io
1667  * functions.  This is where read checksum verification actually happens
1668  */
end_workqueue_fn(struct btrfs_work * work)1669 static void end_workqueue_fn(struct btrfs_work *work)
1670 {
1671 	struct bio *bio;
1672 	struct btrfs_end_io_wq *end_io_wq;
1673 
1674 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1675 	bio = end_io_wq->bio;
1676 
1677 	bio->bi_status = end_io_wq->status;
1678 	bio->bi_private = end_io_wq->private;
1679 	bio->bi_end_io = end_io_wq->end_io;
1680 	bio_endio(bio);
1681 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1682 }
1683 
cleaner_kthread(void * arg)1684 static int cleaner_kthread(void *arg)
1685 {
1686 	struct btrfs_root *root = arg;
1687 	struct btrfs_fs_info *fs_info = root->fs_info;
1688 	int again;
1689 
1690 	while (1) {
1691 		again = 0;
1692 
1693 		/* Make the cleaner go to sleep early. */
1694 		if (btrfs_need_cleaner_sleep(fs_info))
1695 			goto sleep;
1696 
1697 		/*
1698 		 * Do not do anything if we might cause open_ctree() to block
1699 		 * before we have finished mounting the filesystem.
1700 		 */
1701 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1702 			goto sleep;
1703 
1704 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1705 			goto sleep;
1706 
1707 		/*
1708 		 * Avoid the problem that we change the status of the fs
1709 		 * during the above check and trylock.
1710 		 */
1711 		if (btrfs_need_cleaner_sleep(fs_info)) {
1712 			mutex_unlock(&fs_info->cleaner_mutex);
1713 			goto sleep;
1714 		}
1715 
1716 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1717 		btrfs_run_delayed_iputs(fs_info);
1718 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1719 
1720 		again = btrfs_clean_one_deleted_snapshot(root);
1721 		mutex_unlock(&fs_info->cleaner_mutex);
1722 
1723 		/*
1724 		 * The defragger has dealt with the R/O remount and umount,
1725 		 * needn't do anything special here.
1726 		 */
1727 		btrfs_run_defrag_inodes(fs_info);
1728 
1729 		/*
1730 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1731 		 * with relocation (btrfs_relocate_chunk) and relocation
1732 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1733 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1734 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1735 		 * unused block groups.
1736 		 */
1737 		btrfs_delete_unused_bgs(fs_info);
1738 sleep:
1739 		if (kthread_should_park())
1740 			kthread_parkme();
1741 		if (kthread_should_stop())
1742 			return 0;
1743 		if (!again) {
1744 			set_current_state(TASK_INTERRUPTIBLE);
1745 			schedule();
1746 			__set_current_state(TASK_RUNNING);
1747 		}
1748 	}
1749 }
1750 
transaction_kthread(void * arg)1751 static int transaction_kthread(void *arg)
1752 {
1753 	struct btrfs_root *root = arg;
1754 	struct btrfs_fs_info *fs_info = root->fs_info;
1755 	struct btrfs_trans_handle *trans;
1756 	struct btrfs_transaction *cur;
1757 	u64 transid;
1758 	time64_t now;
1759 	unsigned long delay;
1760 	bool cannot_commit;
1761 
1762 	do {
1763 		cannot_commit = false;
1764 		delay = HZ * fs_info->commit_interval;
1765 		mutex_lock(&fs_info->transaction_kthread_mutex);
1766 
1767 		spin_lock(&fs_info->trans_lock);
1768 		cur = fs_info->running_transaction;
1769 		if (!cur) {
1770 			spin_unlock(&fs_info->trans_lock);
1771 			goto sleep;
1772 		}
1773 
1774 		now = ktime_get_seconds();
1775 		if (cur->state < TRANS_STATE_BLOCKED &&
1776 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1777 		    (now < cur->start_time ||
1778 		     now - cur->start_time < fs_info->commit_interval)) {
1779 			spin_unlock(&fs_info->trans_lock);
1780 			delay = HZ * 5;
1781 			goto sleep;
1782 		}
1783 		transid = cur->transid;
1784 		spin_unlock(&fs_info->trans_lock);
1785 
1786 		/* If the file system is aborted, this will always fail. */
1787 		trans = btrfs_attach_transaction(root);
1788 		if (IS_ERR(trans)) {
1789 			if (PTR_ERR(trans) != -ENOENT)
1790 				cannot_commit = true;
1791 			goto sleep;
1792 		}
1793 		if (transid == trans->transid) {
1794 			btrfs_commit_transaction(trans);
1795 		} else {
1796 			btrfs_end_transaction(trans);
1797 		}
1798 sleep:
1799 		wake_up_process(fs_info->cleaner_kthread);
1800 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1801 
1802 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1803 				      &fs_info->fs_state)))
1804 			btrfs_cleanup_transaction(fs_info);
1805 		if (!kthread_should_stop() &&
1806 				(!btrfs_transaction_blocked(fs_info) ||
1807 				 cannot_commit))
1808 			schedule_timeout_interruptible(delay);
1809 	} while (!kthread_should_stop());
1810 	return 0;
1811 }
1812 
1813 /*
1814  * this will find the highest generation in the array of
1815  * root backups.  The index of the highest array is returned,
1816  * or -1 if we can't find anything.
1817  *
1818  * We check to make sure the array is valid by comparing the
1819  * generation of the latest  root in the array with the generation
1820  * in the super block.  If they don't match we pitch it.
1821  */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1822 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1823 {
1824 	u64 cur;
1825 	int newest_index = -1;
1826 	struct btrfs_root_backup *root_backup;
1827 	int i;
1828 
1829 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1830 		root_backup = info->super_copy->super_roots + i;
1831 		cur = btrfs_backup_tree_root_gen(root_backup);
1832 		if (cur == newest_gen)
1833 			newest_index = i;
1834 	}
1835 
1836 	/* check to see if we actually wrapped around */
1837 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1838 		root_backup = info->super_copy->super_roots;
1839 		cur = btrfs_backup_tree_root_gen(root_backup);
1840 		if (cur == newest_gen)
1841 			newest_index = 0;
1842 	}
1843 	return newest_index;
1844 }
1845 
1846 
1847 /*
1848  * find the oldest backup so we know where to store new entries
1849  * in the backup array.  This will set the backup_root_index
1850  * field in the fs_info struct
1851  */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1852 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1853 				     u64 newest_gen)
1854 {
1855 	int newest_index = -1;
1856 
1857 	newest_index = find_newest_super_backup(info, newest_gen);
1858 	/* if there was garbage in there, just move along */
1859 	if (newest_index == -1) {
1860 		info->backup_root_index = 0;
1861 	} else {
1862 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1863 	}
1864 }
1865 
1866 /*
1867  * copy all the root pointers into the super backup array.
1868  * this will bump the backup pointer by one when it is
1869  * done
1870  */
backup_super_roots(struct btrfs_fs_info * info)1871 static void backup_super_roots(struct btrfs_fs_info *info)
1872 {
1873 	int next_backup;
1874 	struct btrfs_root_backup *root_backup;
1875 	int last_backup;
1876 
1877 	next_backup = info->backup_root_index;
1878 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1879 		BTRFS_NUM_BACKUP_ROOTS;
1880 
1881 	/*
1882 	 * just overwrite the last backup if we're at the same generation
1883 	 * this happens only at umount
1884 	 */
1885 	root_backup = info->super_for_commit->super_roots + last_backup;
1886 	if (btrfs_backup_tree_root_gen(root_backup) ==
1887 	    btrfs_header_generation(info->tree_root->node))
1888 		next_backup = last_backup;
1889 
1890 	root_backup = info->super_for_commit->super_roots + next_backup;
1891 
1892 	/*
1893 	 * make sure all of our padding and empty slots get zero filled
1894 	 * regardless of which ones we use today
1895 	 */
1896 	memset(root_backup, 0, sizeof(*root_backup));
1897 
1898 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1899 
1900 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1901 	btrfs_set_backup_tree_root_gen(root_backup,
1902 			       btrfs_header_generation(info->tree_root->node));
1903 
1904 	btrfs_set_backup_tree_root_level(root_backup,
1905 			       btrfs_header_level(info->tree_root->node));
1906 
1907 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1908 	btrfs_set_backup_chunk_root_gen(root_backup,
1909 			       btrfs_header_generation(info->chunk_root->node));
1910 	btrfs_set_backup_chunk_root_level(root_backup,
1911 			       btrfs_header_level(info->chunk_root->node));
1912 
1913 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1914 	btrfs_set_backup_extent_root_gen(root_backup,
1915 			       btrfs_header_generation(info->extent_root->node));
1916 	btrfs_set_backup_extent_root_level(root_backup,
1917 			       btrfs_header_level(info->extent_root->node));
1918 
1919 	/*
1920 	 * we might commit during log recovery, which happens before we set
1921 	 * the fs_root.  Make sure it is valid before we fill it in.
1922 	 */
1923 	if (info->fs_root && info->fs_root->node) {
1924 		btrfs_set_backup_fs_root(root_backup,
1925 					 info->fs_root->node->start);
1926 		btrfs_set_backup_fs_root_gen(root_backup,
1927 			       btrfs_header_generation(info->fs_root->node));
1928 		btrfs_set_backup_fs_root_level(root_backup,
1929 			       btrfs_header_level(info->fs_root->node));
1930 	}
1931 
1932 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1933 	btrfs_set_backup_dev_root_gen(root_backup,
1934 			       btrfs_header_generation(info->dev_root->node));
1935 	btrfs_set_backup_dev_root_level(root_backup,
1936 				       btrfs_header_level(info->dev_root->node));
1937 
1938 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1939 	btrfs_set_backup_csum_root_gen(root_backup,
1940 			       btrfs_header_generation(info->csum_root->node));
1941 	btrfs_set_backup_csum_root_level(root_backup,
1942 			       btrfs_header_level(info->csum_root->node));
1943 
1944 	btrfs_set_backup_total_bytes(root_backup,
1945 			     btrfs_super_total_bytes(info->super_copy));
1946 	btrfs_set_backup_bytes_used(root_backup,
1947 			     btrfs_super_bytes_used(info->super_copy));
1948 	btrfs_set_backup_num_devices(root_backup,
1949 			     btrfs_super_num_devices(info->super_copy));
1950 
1951 	/*
1952 	 * if we don't copy this out to the super_copy, it won't get remembered
1953 	 * for the next commit
1954 	 */
1955 	memcpy(&info->super_copy->super_roots,
1956 	       &info->super_for_commit->super_roots,
1957 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1958 }
1959 
1960 /*
1961  * this copies info out of the root backup array and back into
1962  * the in-memory super block.  It is meant to help iterate through
1963  * the array, so you send it the number of backups you've already
1964  * tried and the last backup index you used.
1965  *
1966  * this returns -1 when it has tried all the backups
1967  */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)1968 static noinline int next_root_backup(struct btrfs_fs_info *info,
1969 				     struct btrfs_super_block *super,
1970 				     int *num_backups_tried, int *backup_index)
1971 {
1972 	struct btrfs_root_backup *root_backup;
1973 	int newest = *backup_index;
1974 
1975 	if (*num_backups_tried == 0) {
1976 		u64 gen = btrfs_super_generation(super);
1977 
1978 		newest = find_newest_super_backup(info, gen);
1979 		if (newest == -1)
1980 			return -1;
1981 
1982 		*backup_index = newest;
1983 		*num_backups_tried = 1;
1984 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1985 		/* we've tried all the backups, all done */
1986 		return -1;
1987 	} else {
1988 		/* jump to the next oldest backup */
1989 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1990 			BTRFS_NUM_BACKUP_ROOTS;
1991 		*backup_index = newest;
1992 		*num_backups_tried += 1;
1993 	}
1994 	root_backup = super->super_roots + newest;
1995 
1996 	btrfs_set_super_generation(super,
1997 				   btrfs_backup_tree_root_gen(root_backup));
1998 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1999 	btrfs_set_super_root_level(super,
2000 				   btrfs_backup_tree_root_level(root_backup));
2001 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2002 
2003 	/*
2004 	 * fixme: the total bytes and num_devices need to match or we should
2005 	 * need a fsck
2006 	 */
2007 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2008 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2009 	return 0;
2010 }
2011 
2012 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2013 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2014 {
2015 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2016 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2017 	btrfs_destroy_workqueue(fs_info->workers);
2018 	btrfs_destroy_workqueue(fs_info->endio_workers);
2019 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2020 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2021 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2022 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2023 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2024 	btrfs_destroy_workqueue(fs_info->submit_workers);
2025 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2026 	btrfs_destroy_workqueue(fs_info->caching_workers);
2027 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2028 	btrfs_destroy_workqueue(fs_info->flush_workers);
2029 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2030 	btrfs_destroy_workqueue(fs_info->extent_workers);
2031 	/*
2032 	 * Now that all other work queues are destroyed, we can safely destroy
2033 	 * the queues used for metadata I/O, since tasks from those other work
2034 	 * queues can do metadata I/O operations.
2035 	 */
2036 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2037 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2038 }
2039 
free_root_extent_buffers(struct btrfs_root * root)2040 static void free_root_extent_buffers(struct btrfs_root *root)
2041 {
2042 	if (root) {
2043 		free_extent_buffer(root->node);
2044 		free_extent_buffer(root->commit_root);
2045 		root->node = NULL;
2046 		root->commit_root = NULL;
2047 	}
2048 }
2049 
2050 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2051 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2052 {
2053 	free_root_extent_buffers(info->tree_root);
2054 
2055 	free_root_extent_buffers(info->dev_root);
2056 	free_root_extent_buffers(info->extent_root);
2057 	free_root_extent_buffers(info->csum_root);
2058 	free_root_extent_buffers(info->quota_root);
2059 	free_root_extent_buffers(info->uuid_root);
2060 	if (free_chunk_root)
2061 		free_root_extent_buffers(info->chunk_root);
2062 	free_root_extent_buffers(info->free_space_root);
2063 }
2064 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2065 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2066 {
2067 	int ret;
2068 	struct btrfs_root *gang[8];
2069 	int i;
2070 
2071 	while (!list_empty(&fs_info->dead_roots)) {
2072 		gang[0] = list_entry(fs_info->dead_roots.next,
2073 				     struct btrfs_root, root_list);
2074 		list_del(&gang[0]->root_list);
2075 
2076 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2077 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2078 		} else {
2079 			free_extent_buffer(gang[0]->node);
2080 			free_extent_buffer(gang[0]->commit_root);
2081 			btrfs_put_fs_root(gang[0]);
2082 		}
2083 	}
2084 
2085 	while (1) {
2086 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2087 					     (void **)gang, 0,
2088 					     ARRAY_SIZE(gang));
2089 		if (!ret)
2090 			break;
2091 		for (i = 0; i < ret; i++)
2092 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2093 	}
2094 
2095 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2096 		btrfs_free_log_root_tree(NULL, fs_info);
2097 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2098 	}
2099 }
2100 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2101 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2102 {
2103 	mutex_init(&fs_info->scrub_lock);
2104 	atomic_set(&fs_info->scrubs_running, 0);
2105 	atomic_set(&fs_info->scrub_pause_req, 0);
2106 	atomic_set(&fs_info->scrubs_paused, 0);
2107 	atomic_set(&fs_info->scrub_cancel_req, 0);
2108 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2109 	fs_info->scrub_workers_refcnt = 0;
2110 }
2111 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2112 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2113 {
2114 	spin_lock_init(&fs_info->balance_lock);
2115 	mutex_init(&fs_info->balance_mutex);
2116 	atomic_set(&fs_info->balance_pause_req, 0);
2117 	atomic_set(&fs_info->balance_cancel_req, 0);
2118 	fs_info->balance_ctl = NULL;
2119 	init_waitqueue_head(&fs_info->balance_wait_q);
2120 }
2121 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2122 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2123 {
2124 	struct inode *inode = fs_info->btree_inode;
2125 
2126 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2127 	set_nlink(inode, 1);
2128 	/*
2129 	 * we set the i_size on the btree inode to the max possible int.
2130 	 * the real end of the address space is determined by all of
2131 	 * the devices in the system
2132 	 */
2133 	inode->i_size = OFFSET_MAX;
2134 	inode->i_mapping->a_ops = &btree_aops;
2135 
2136 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2137 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2138 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2139 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2140 
2141 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2142 
2143 	BTRFS_I(inode)->root = fs_info->tree_root;
2144 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2145 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2146 	btrfs_insert_inode_hash(inode);
2147 }
2148 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2149 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2150 {
2151 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2152 	rwlock_init(&fs_info->dev_replace.lock);
2153 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2154 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2155 	init_waitqueue_head(&fs_info->replace_wait);
2156 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2157 }
2158 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2159 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2160 {
2161 	spin_lock_init(&fs_info->qgroup_lock);
2162 	mutex_init(&fs_info->qgroup_ioctl_lock);
2163 	fs_info->qgroup_tree = RB_ROOT;
2164 	fs_info->qgroup_op_tree = RB_ROOT;
2165 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2166 	fs_info->qgroup_seq = 1;
2167 	fs_info->qgroup_ulist = NULL;
2168 	fs_info->qgroup_rescan_running = false;
2169 	mutex_init(&fs_info->qgroup_rescan_lock);
2170 }
2171 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2172 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2173 		struct btrfs_fs_devices *fs_devices)
2174 {
2175 	u32 max_active = fs_info->thread_pool_size;
2176 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2177 
2178 	fs_info->workers =
2179 		btrfs_alloc_workqueue(fs_info, "worker",
2180 				      flags | WQ_HIGHPRI, max_active, 16);
2181 
2182 	fs_info->delalloc_workers =
2183 		btrfs_alloc_workqueue(fs_info, "delalloc",
2184 				      flags, max_active, 2);
2185 
2186 	fs_info->flush_workers =
2187 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2188 				      flags, max_active, 0);
2189 
2190 	fs_info->caching_workers =
2191 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2192 
2193 	/*
2194 	 * a higher idle thresh on the submit workers makes it much more
2195 	 * likely that bios will be send down in a sane order to the
2196 	 * devices
2197 	 */
2198 	fs_info->submit_workers =
2199 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2200 				      min_t(u64, fs_devices->num_devices,
2201 					    max_active), 64);
2202 
2203 	fs_info->fixup_workers =
2204 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2205 
2206 	/*
2207 	 * endios are largely parallel and should have a very
2208 	 * low idle thresh
2209 	 */
2210 	fs_info->endio_workers =
2211 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2212 	fs_info->endio_meta_workers =
2213 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2214 				      max_active, 4);
2215 	fs_info->endio_meta_write_workers =
2216 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2217 				      max_active, 2);
2218 	fs_info->endio_raid56_workers =
2219 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2220 				      max_active, 4);
2221 	fs_info->endio_repair_workers =
2222 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2223 	fs_info->rmw_workers =
2224 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2225 	fs_info->endio_write_workers =
2226 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2227 				      max_active, 2);
2228 	fs_info->endio_freespace_worker =
2229 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2230 				      max_active, 0);
2231 	fs_info->delayed_workers =
2232 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2233 				      max_active, 0);
2234 	fs_info->readahead_workers =
2235 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2236 				      max_active, 2);
2237 	fs_info->qgroup_rescan_workers =
2238 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2239 	fs_info->extent_workers =
2240 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2241 				      min_t(u64, fs_devices->num_devices,
2242 					    max_active), 8);
2243 
2244 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2245 	      fs_info->submit_workers && fs_info->flush_workers &&
2246 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2247 	      fs_info->endio_meta_write_workers &&
2248 	      fs_info->endio_repair_workers &&
2249 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2250 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2251 	      fs_info->caching_workers && fs_info->readahead_workers &&
2252 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2253 	      fs_info->extent_workers &&
2254 	      fs_info->qgroup_rescan_workers)) {
2255 		return -ENOMEM;
2256 	}
2257 
2258 	return 0;
2259 }
2260 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2261 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2262 			    struct btrfs_fs_devices *fs_devices)
2263 {
2264 	int ret;
2265 	struct btrfs_root *log_tree_root;
2266 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2267 	u64 bytenr = btrfs_super_log_root(disk_super);
2268 	int level = btrfs_super_log_root_level(disk_super);
2269 
2270 	if (fs_devices->rw_devices == 0) {
2271 		btrfs_warn(fs_info, "log replay required on RO media");
2272 		return -EIO;
2273 	}
2274 
2275 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2276 	if (!log_tree_root)
2277 		return -ENOMEM;
2278 
2279 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2280 
2281 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2282 					      fs_info->generation + 1,
2283 					      level, NULL);
2284 	if (IS_ERR(log_tree_root->node)) {
2285 		btrfs_warn(fs_info, "failed to read log tree");
2286 		ret = PTR_ERR(log_tree_root->node);
2287 		kfree(log_tree_root);
2288 		return ret;
2289 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2290 		btrfs_err(fs_info, "failed to read log tree");
2291 		free_extent_buffer(log_tree_root->node);
2292 		kfree(log_tree_root);
2293 		return -EIO;
2294 	}
2295 	/* returns with log_tree_root freed on success */
2296 	ret = btrfs_recover_log_trees(log_tree_root);
2297 	if (ret) {
2298 		btrfs_handle_fs_error(fs_info, ret,
2299 				      "Failed to recover log tree");
2300 		free_extent_buffer(log_tree_root->node);
2301 		kfree(log_tree_root);
2302 		return ret;
2303 	}
2304 
2305 	if (sb_rdonly(fs_info->sb)) {
2306 		ret = btrfs_commit_super(fs_info);
2307 		if (ret)
2308 			return ret;
2309 	}
2310 
2311 	return 0;
2312 }
2313 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2314 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2315 {
2316 	struct btrfs_root *tree_root = fs_info->tree_root;
2317 	struct btrfs_root *root;
2318 	struct btrfs_key location;
2319 	int ret;
2320 
2321 	BUG_ON(!fs_info->tree_root);
2322 
2323 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2324 	location.type = BTRFS_ROOT_ITEM_KEY;
2325 	location.offset = 0;
2326 
2327 	root = btrfs_read_tree_root(tree_root, &location);
2328 	if (IS_ERR(root)) {
2329 		ret = PTR_ERR(root);
2330 		goto out;
2331 	}
2332 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2333 	fs_info->extent_root = root;
2334 
2335 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2336 	root = btrfs_read_tree_root(tree_root, &location);
2337 	if (IS_ERR(root)) {
2338 		ret = PTR_ERR(root);
2339 		goto out;
2340 	}
2341 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 	fs_info->dev_root = root;
2343 	btrfs_init_devices_late(fs_info);
2344 
2345 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2346 	root = btrfs_read_tree_root(tree_root, &location);
2347 	if (IS_ERR(root)) {
2348 		ret = PTR_ERR(root);
2349 		goto out;
2350 	}
2351 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 	fs_info->csum_root = root;
2353 
2354 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2355 	root = btrfs_read_tree_root(tree_root, &location);
2356 	if (!IS_ERR(root)) {
2357 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2359 		fs_info->quota_root = root;
2360 	}
2361 
2362 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2363 	root = btrfs_read_tree_root(tree_root, &location);
2364 	if (IS_ERR(root)) {
2365 		ret = PTR_ERR(root);
2366 		if (ret != -ENOENT)
2367 			goto out;
2368 	} else {
2369 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 		fs_info->uuid_root = root;
2371 	}
2372 
2373 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2374 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2375 		root = btrfs_read_tree_root(tree_root, &location);
2376 		if (IS_ERR(root)) {
2377 			ret = PTR_ERR(root);
2378 			goto out;
2379 		}
2380 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 		fs_info->free_space_root = root;
2382 	}
2383 
2384 	return 0;
2385 out:
2386 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2387 		   location.objectid, ret);
2388 	return ret;
2389 }
2390 
2391 /*
2392  * Real super block validation
2393  * NOTE: super csum type and incompat features will not be checked here.
2394  *
2395  * @sb:		super block to check
2396  * @mirror_num:	the super block number to check its bytenr:
2397  * 		0	the primary (1st) sb
2398  * 		1, 2	2nd and 3rd backup copy
2399  * 	       -1	skip bytenr check
2400  */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2401 static int validate_super(struct btrfs_fs_info *fs_info,
2402 			    struct btrfs_super_block *sb, int mirror_num)
2403 {
2404 	u64 nodesize = btrfs_super_nodesize(sb);
2405 	u64 sectorsize = btrfs_super_sectorsize(sb);
2406 	int ret = 0;
2407 
2408 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2409 		btrfs_err(fs_info, "no valid FS found");
2410 		ret = -EINVAL;
2411 	}
2412 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2413 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2414 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2415 		ret = -EINVAL;
2416 	}
2417 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2419 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2420 		ret = -EINVAL;
2421 	}
2422 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2424 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2425 		ret = -EINVAL;
2426 	}
2427 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2428 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2429 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2430 		ret = -EINVAL;
2431 	}
2432 
2433 	/*
2434 	 * Check sectorsize and nodesize first, other check will need it.
2435 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2436 	 */
2437 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2438 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2439 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2440 		ret = -EINVAL;
2441 	}
2442 	/* Only PAGE SIZE is supported yet */
2443 	if (sectorsize != PAGE_SIZE) {
2444 		btrfs_err(fs_info,
2445 			"sectorsize %llu not supported yet, only support %lu",
2446 			sectorsize, PAGE_SIZE);
2447 		ret = -EINVAL;
2448 	}
2449 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2450 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2452 		ret = -EINVAL;
2453 	}
2454 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2455 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2456 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2457 		ret = -EINVAL;
2458 	}
2459 
2460 	/* Root alignment check */
2461 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2462 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2463 			   btrfs_super_root(sb));
2464 		ret = -EINVAL;
2465 	}
2466 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2467 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2468 			   btrfs_super_chunk_root(sb));
2469 		ret = -EINVAL;
2470 	}
2471 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2472 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2473 			   btrfs_super_log_root(sb));
2474 		ret = -EINVAL;
2475 	}
2476 
2477 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2478 		btrfs_err(fs_info,
2479 			   "dev_item UUID does not match fsid: %pU != %pU",
2480 			   fs_info->fsid, sb->dev_item.fsid);
2481 		ret = -EINVAL;
2482 	}
2483 
2484 	/*
2485 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2486 	 * done later
2487 	 */
2488 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2489 		btrfs_err(fs_info, "bytes_used is too small %llu",
2490 			  btrfs_super_bytes_used(sb));
2491 		ret = -EINVAL;
2492 	}
2493 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2494 		btrfs_err(fs_info, "invalid stripesize %u",
2495 			  btrfs_super_stripesize(sb));
2496 		ret = -EINVAL;
2497 	}
2498 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2499 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2500 			   btrfs_super_num_devices(sb));
2501 	if (btrfs_super_num_devices(sb) == 0) {
2502 		btrfs_err(fs_info, "number of devices is 0");
2503 		ret = -EINVAL;
2504 	}
2505 
2506 	if (mirror_num >= 0 &&
2507 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2508 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2509 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2510 		ret = -EINVAL;
2511 	}
2512 
2513 	/*
2514 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2515 	 * and one chunk
2516 	 */
2517 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2518 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2519 			  btrfs_super_sys_array_size(sb),
2520 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2521 		ret = -EINVAL;
2522 	}
2523 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2524 			+ sizeof(struct btrfs_chunk)) {
2525 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2526 			  btrfs_super_sys_array_size(sb),
2527 			  sizeof(struct btrfs_disk_key)
2528 			  + sizeof(struct btrfs_chunk));
2529 		ret = -EINVAL;
2530 	}
2531 
2532 	/*
2533 	 * The generation is a global counter, we'll trust it more than the others
2534 	 * but it's still possible that it's the one that's wrong.
2535 	 */
2536 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2537 		btrfs_warn(fs_info,
2538 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2539 			btrfs_super_generation(sb),
2540 			btrfs_super_chunk_root_generation(sb));
2541 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2542 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2543 		btrfs_warn(fs_info,
2544 			"suspicious: generation < cache_generation: %llu < %llu",
2545 			btrfs_super_generation(sb),
2546 			btrfs_super_cache_generation(sb));
2547 
2548 	return ret;
2549 }
2550 
2551 /*
2552  * Validation of super block at mount time.
2553  * Some checks already done early at mount time, like csum type and incompat
2554  * flags will be skipped.
2555  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2556 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2557 {
2558 	return validate_super(fs_info, fs_info->super_copy, 0);
2559 }
2560 
2561 /*
2562  * Validation of super block at write time.
2563  * Some checks like bytenr check will be skipped as their values will be
2564  * overwritten soon.
2565  * Extra checks like csum type and incompat flags will be done here.
2566  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2567 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2568 				      struct btrfs_super_block *sb)
2569 {
2570 	int ret;
2571 
2572 	ret = validate_super(fs_info, sb, -1);
2573 	if (ret < 0)
2574 		goto out;
2575 	if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2576 		ret = -EUCLEAN;
2577 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2578 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2579 		goto out;
2580 	}
2581 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2582 		ret = -EUCLEAN;
2583 		btrfs_err(fs_info,
2584 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2585 			  btrfs_super_incompat_flags(sb),
2586 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2587 		goto out;
2588 	}
2589 out:
2590 	if (ret < 0)
2591 		btrfs_err(fs_info,
2592 		"super block corruption detected before writing it to disk");
2593 	return ret;
2594 }
2595 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2596 int open_ctree(struct super_block *sb,
2597 	       struct btrfs_fs_devices *fs_devices,
2598 	       char *options)
2599 {
2600 	u32 sectorsize;
2601 	u32 nodesize;
2602 	u32 stripesize;
2603 	u64 generation;
2604 	u64 features;
2605 	struct btrfs_key location;
2606 	struct buffer_head *bh;
2607 	struct btrfs_super_block *disk_super;
2608 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2609 	struct btrfs_root *tree_root;
2610 	struct btrfs_root *chunk_root;
2611 	int ret;
2612 	int err = -EINVAL;
2613 	int num_backups_tried = 0;
2614 	int backup_index = 0;
2615 	int clear_free_space_tree = 0;
2616 	int level;
2617 
2618 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2619 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2620 	if (!tree_root || !chunk_root) {
2621 		err = -ENOMEM;
2622 		goto fail;
2623 	}
2624 
2625 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2626 	if (ret) {
2627 		err = ret;
2628 		goto fail;
2629 	}
2630 
2631 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2632 	if (ret) {
2633 		err = ret;
2634 		goto fail_srcu;
2635 	}
2636 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2637 					(1 + ilog2(nr_cpu_ids));
2638 
2639 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2640 	if (ret) {
2641 		err = ret;
2642 		goto fail_dirty_metadata_bytes;
2643 	}
2644 
2645 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2646 	if (ret) {
2647 		err = ret;
2648 		goto fail_delalloc_bytes;
2649 	}
2650 
2651 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2652 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2653 	INIT_LIST_HEAD(&fs_info->trans_list);
2654 	INIT_LIST_HEAD(&fs_info->dead_roots);
2655 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2656 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2657 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2658 	INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2659 	spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2660 	spin_lock_init(&fs_info->delalloc_root_lock);
2661 	spin_lock_init(&fs_info->trans_lock);
2662 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2663 	spin_lock_init(&fs_info->delayed_iput_lock);
2664 	spin_lock_init(&fs_info->defrag_inodes_lock);
2665 	spin_lock_init(&fs_info->super_lock);
2666 	spin_lock_init(&fs_info->qgroup_op_lock);
2667 	spin_lock_init(&fs_info->buffer_lock);
2668 	spin_lock_init(&fs_info->unused_bgs_lock);
2669 	rwlock_init(&fs_info->tree_mod_log_lock);
2670 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2671 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2672 	mutex_init(&fs_info->reloc_mutex);
2673 	mutex_init(&fs_info->delalloc_root_mutex);
2674 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2675 	seqlock_init(&fs_info->profiles_lock);
2676 
2677 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2678 	INIT_LIST_HEAD(&fs_info->space_info);
2679 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2680 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2681 	btrfs_mapping_init(&fs_info->mapping_tree);
2682 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2683 			     BTRFS_BLOCK_RSV_GLOBAL);
2684 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2685 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2686 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2687 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2688 			     BTRFS_BLOCK_RSV_DELOPS);
2689 	atomic_set(&fs_info->async_delalloc_pages, 0);
2690 	atomic_set(&fs_info->defrag_running, 0);
2691 	atomic_set(&fs_info->qgroup_op_seq, 0);
2692 	atomic_set(&fs_info->reada_works_cnt, 0);
2693 	atomic64_set(&fs_info->tree_mod_seq, 0);
2694 	fs_info->sb = sb;
2695 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2696 	fs_info->metadata_ratio = 0;
2697 	fs_info->defrag_inodes = RB_ROOT;
2698 	atomic64_set(&fs_info->free_chunk_space, 0);
2699 	fs_info->tree_mod_log = RB_ROOT;
2700 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2701 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2702 	/* readahead state */
2703 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2704 	spin_lock_init(&fs_info->reada_lock);
2705 	btrfs_init_ref_verify(fs_info);
2706 
2707 	fs_info->thread_pool_size = min_t(unsigned long,
2708 					  num_online_cpus() + 2, 8);
2709 
2710 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2711 	spin_lock_init(&fs_info->ordered_root_lock);
2712 
2713 	fs_info->btree_inode = new_inode(sb);
2714 	if (!fs_info->btree_inode) {
2715 		err = -ENOMEM;
2716 		goto fail_bio_counter;
2717 	}
2718 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2719 
2720 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2721 					GFP_KERNEL);
2722 	if (!fs_info->delayed_root) {
2723 		err = -ENOMEM;
2724 		goto fail_iput;
2725 	}
2726 	btrfs_init_delayed_root(fs_info->delayed_root);
2727 
2728 	btrfs_init_scrub(fs_info);
2729 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2730 	fs_info->check_integrity_print_mask = 0;
2731 #endif
2732 	btrfs_init_balance(fs_info);
2733 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2734 
2735 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2736 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2737 
2738 	btrfs_init_btree_inode(fs_info);
2739 
2740 	spin_lock_init(&fs_info->block_group_cache_lock);
2741 	fs_info->block_group_cache_tree = RB_ROOT;
2742 	fs_info->first_logical_byte = (u64)-1;
2743 
2744 	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2745 	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2746 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2747 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2748 
2749 	mutex_init(&fs_info->ordered_operations_mutex);
2750 	mutex_init(&fs_info->tree_log_mutex);
2751 	mutex_init(&fs_info->chunk_mutex);
2752 	mutex_init(&fs_info->transaction_kthread_mutex);
2753 	mutex_init(&fs_info->cleaner_mutex);
2754 	mutex_init(&fs_info->ro_block_group_mutex);
2755 	init_rwsem(&fs_info->commit_root_sem);
2756 	init_rwsem(&fs_info->cleanup_work_sem);
2757 	init_rwsem(&fs_info->subvol_sem);
2758 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2759 
2760 	btrfs_init_dev_replace_locks(fs_info);
2761 	btrfs_init_qgroup(fs_info);
2762 
2763 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2764 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2765 
2766 	init_waitqueue_head(&fs_info->transaction_throttle);
2767 	init_waitqueue_head(&fs_info->transaction_wait);
2768 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2769 	init_waitqueue_head(&fs_info->async_submit_wait);
2770 
2771 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2772 
2773 	/* Usable values until the real ones are cached from the superblock */
2774 	fs_info->nodesize = 4096;
2775 	fs_info->sectorsize = 4096;
2776 	fs_info->stripesize = 4096;
2777 
2778 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2779 	if (ret) {
2780 		err = ret;
2781 		goto fail_alloc;
2782 	}
2783 
2784 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2785 
2786 	invalidate_bdev(fs_devices->latest_bdev);
2787 
2788 	/*
2789 	 * Read super block and check the signature bytes only
2790 	 */
2791 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2792 	if (IS_ERR(bh)) {
2793 		err = PTR_ERR(bh);
2794 		goto fail_alloc;
2795 	}
2796 
2797 	/*
2798 	 * We want to check superblock checksum, the type is stored inside.
2799 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2800 	 */
2801 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2802 		btrfs_err(fs_info, "superblock checksum mismatch");
2803 		err = -EINVAL;
2804 		brelse(bh);
2805 		goto fail_alloc;
2806 	}
2807 
2808 	/*
2809 	 * super_copy is zeroed at allocation time and we never touch the
2810 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2811 	 * the whole block of INFO_SIZE
2812 	 */
2813 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2814 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2815 	       sizeof(*fs_info->super_for_commit));
2816 	brelse(bh);
2817 
2818 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2819 
2820 	ret = btrfs_validate_mount_super(fs_info);
2821 	if (ret) {
2822 		btrfs_err(fs_info, "superblock contains fatal errors");
2823 		err = -EINVAL;
2824 		goto fail_alloc;
2825 	}
2826 
2827 	disk_super = fs_info->super_copy;
2828 	if (!btrfs_super_root(disk_super))
2829 		goto fail_alloc;
2830 
2831 	/* check FS state, whether FS is broken. */
2832 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2833 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2834 
2835 	/*
2836 	 * run through our array of backup supers and setup
2837 	 * our ring pointer to the oldest one
2838 	 */
2839 	generation = btrfs_super_generation(disk_super);
2840 	find_oldest_super_backup(fs_info, generation);
2841 
2842 	/*
2843 	 * In the long term, we'll store the compression type in the super
2844 	 * block, and it'll be used for per file compression control.
2845 	 */
2846 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2847 
2848 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2849 	if (ret) {
2850 		err = ret;
2851 		goto fail_alloc;
2852 	}
2853 
2854 	features = btrfs_super_incompat_flags(disk_super) &
2855 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2856 	if (features) {
2857 		btrfs_err(fs_info,
2858 		    "cannot mount because of unsupported optional features (%llx)",
2859 		    features);
2860 		err = -EINVAL;
2861 		goto fail_alloc;
2862 	}
2863 
2864 	features = btrfs_super_incompat_flags(disk_super);
2865 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2866 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2867 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2868 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2869 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2870 
2871 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2872 		btrfs_info(fs_info, "has skinny extents");
2873 
2874 	/*
2875 	 * flag our filesystem as having big metadata blocks if
2876 	 * they are bigger than the page size
2877 	 */
2878 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2879 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2880 			btrfs_info(fs_info,
2881 				"flagging fs with big metadata feature");
2882 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2883 	}
2884 
2885 	nodesize = btrfs_super_nodesize(disk_super);
2886 	sectorsize = btrfs_super_sectorsize(disk_super);
2887 	stripesize = sectorsize;
2888 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2889 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2890 
2891 	/* Cache block sizes */
2892 	fs_info->nodesize = nodesize;
2893 	fs_info->sectorsize = sectorsize;
2894 	fs_info->stripesize = stripesize;
2895 
2896 	/*
2897 	 * mixed block groups end up with duplicate but slightly offset
2898 	 * extent buffers for the same range.  It leads to corruptions
2899 	 */
2900 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2901 	    (sectorsize != nodesize)) {
2902 		btrfs_err(fs_info,
2903 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2904 			nodesize, sectorsize);
2905 		goto fail_alloc;
2906 	}
2907 
2908 	/*
2909 	 * Needn't use the lock because there is no other task which will
2910 	 * update the flag.
2911 	 */
2912 	btrfs_set_super_incompat_flags(disk_super, features);
2913 
2914 	features = btrfs_super_compat_ro_flags(disk_super) &
2915 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2916 	if (!sb_rdonly(sb) && features) {
2917 		btrfs_err(fs_info,
2918 	"cannot mount read-write because of unsupported optional features (%llx)",
2919 		       features);
2920 		err = -EINVAL;
2921 		goto fail_alloc;
2922 	}
2923 
2924 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2925 	if (ret) {
2926 		err = ret;
2927 		goto fail_sb_buffer;
2928 	}
2929 
2930 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2931 	sb->s_bdi->congested_data = fs_info;
2932 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2933 	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2934 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2935 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2936 
2937 	sb->s_blocksize = sectorsize;
2938 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2939 	memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2940 
2941 	mutex_lock(&fs_info->chunk_mutex);
2942 	ret = btrfs_read_sys_array(fs_info);
2943 	mutex_unlock(&fs_info->chunk_mutex);
2944 	if (ret) {
2945 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2946 		goto fail_sb_buffer;
2947 	}
2948 
2949 	generation = btrfs_super_chunk_root_generation(disk_super);
2950 	level = btrfs_super_chunk_root_level(disk_super);
2951 
2952 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2953 
2954 	chunk_root->node = read_tree_block(fs_info,
2955 					   btrfs_super_chunk_root(disk_super),
2956 					   generation, level, NULL);
2957 	if (IS_ERR(chunk_root->node) ||
2958 	    !extent_buffer_uptodate(chunk_root->node)) {
2959 		btrfs_err(fs_info, "failed to read chunk root");
2960 		if (!IS_ERR(chunk_root->node))
2961 			free_extent_buffer(chunk_root->node);
2962 		chunk_root->node = NULL;
2963 		goto fail_tree_roots;
2964 	}
2965 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2966 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2967 
2968 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2969 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2970 
2971 	ret = btrfs_read_chunk_tree(fs_info);
2972 	if (ret) {
2973 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2974 		goto fail_tree_roots;
2975 	}
2976 
2977 	/*
2978 	 * Keep the devid that is marked to be the target device for the
2979 	 * device replace procedure
2980 	 */
2981 	btrfs_free_extra_devids(fs_devices, 0);
2982 
2983 	if (!fs_devices->latest_bdev) {
2984 		btrfs_err(fs_info, "failed to read devices");
2985 		goto fail_tree_roots;
2986 	}
2987 
2988 retry_root_backup:
2989 	generation = btrfs_super_generation(disk_super);
2990 	level = btrfs_super_root_level(disk_super);
2991 
2992 	tree_root->node = read_tree_block(fs_info,
2993 					  btrfs_super_root(disk_super),
2994 					  generation, level, NULL);
2995 	if (IS_ERR(tree_root->node) ||
2996 	    !extent_buffer_uptodate(tree_root->node)) {
2997 		btrfs_warn(fs_info, "failed to read tree root");
2998 		if (!IS_ERR(tree_root->node))
2999 			free_extent_buffer(tree_root->node);
3000 		tree_root->node = NULL;
3001 		goto recovery_tree_root;
3002 	}
3003 
3004 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3005 	tree_root->commit_root = btrfs_root_node(tree_root);
3006 	btrfs_set_root_refs(&tree_root->root_item, 1);
3007 
3008 	mutex_lock(&tree_root->objectid_mutex);
3009 	ret = btrfs_find_highest_objectid(tree_root,
3010 					&tree_root->highest_objectid);
3011 	if (ret) {
3012 		mutex_unlock(&tree_root->objectid_mutex);
3013 		goto recovery_tree_root;
3014 	}
3015 
3016 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3017 
3018 	mutex_unlock(&tree_root->objectid_mutex);
3019 
3020 	ret = btrfs_read_roots(fs_info);
3021 	if (ret)
3022 		goto recovery_tree_root;
3023 
3024 	fs_info->generation = generation;
3025 	fs_info->last_trans_committed = generation;
3026 
3027 	/*
3028 	 * If we have a uuid root and we're not being told to rescan we need to
3029 	 * check the generation here so we can set the
3030 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3031 	 * transaction during a balance or the log replay without updating the
3032 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3033 	 * even though it was perfectly fine.
3034 	 */
3035 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3036 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3037 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3038 
3039 	ret = btrfs_verify_dev_extents(fs_info);
3040 	if (ret) {
3041 		btrfs_err(fs_info,
3042 			  "failed to verify dev extents against chunks: %d",
3043 			  ret);
3044 		goto fail_block_groups;
3045 	}
3046 	ret = btrfs_recover_balance(fs_info);
3047 	if (ret) {
3048 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3049 		goto fail_block_groups;
3050 	}
3051 
3052 	ret = btrfs_init_dev_stats(fs_info);
3053 	if (ret) {
3054 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3055 		goto fail_block_groups;
3056 	}
3057 
3058 	ret = btrfs_init_dev_replace(fs_info);
3059 	if (ret) {
3060 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3061 		goto fail_block_groups;
3062 	}
3063 
3064 	btrfs_free_extra_devids(fs_devices, 1);
3065 
3066 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3067 	if (ret) {
3068 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3069 				ret);
3070 		goto fail_block_groups;
3071 	}
3072 
3073 	ret = btrfs_sysfs_add_device(fs_devices);
3074 	if (ret) {
3075 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3076 				ret);
3077 		goto fail_fsdev_sysfs;
3078 	}
3079 
3080 	ret = btrfs_sysfs_add_mounted(fs_info);
3081 	if (ret) {
3082 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3083 		goto fail_fsdev_sysfs;
3084 	}
3085 
3086 	ret = btrfs_init_space_info(fs_info);
3087 	if (ret) {
3088 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3089 		goto fail_sysfs;
3090 	}
3091 
3092 	ret = btrfs_read_block_groups(fs_info);
3093 	if (ret) {
3094 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3095 		goto fail_sysfs;
3096 	}
3097 
3098 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3099 		btrfs_warn(fs_info,
3100 		"writeable mount is not allowed due to too many missing devices");
3101 		goto fail_sysfs;
3102 	}
3103 
3104 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3105 					       "btrfs-cleaner");
3106 	if (IS_ERR(fs_info->cleaner_kthread))
3107 		goto fail_sysfs;
3108 
3109 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3110 						   tree_root,
3111 						   "btrfs-transaction");
3112 	if (IS_ERR(fs_info->transaction_kthread))
3113 		goto fail_cleaner;
3114 
3115 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3116 	    !fs_info->fs_devices->rotating) {
3117 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3118 	}
3119 
3120 	/*
3121 	 * Mount does not set all options immediately, we can do it now and do
3122 	 * not have to wait for transaction commit
3123 	 */
3124 	btrfs_apply_pending_changes(fs_info);
3125 
3126 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3127 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3128 		ret = btrfsic_mount(fs_info, fs_devices,
3129 				    btrfs_test_opt(fs_info,
3130 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3131 				    1 : 0,
3132 				    fs_info->check_integrity_print_mask);
3133 		if (ret)
3134 			btrfs_warn(fs_info,
3135 				"failed to initialize integrity check module: %d",
3136 				ret);
3137 	}
3138 #endif
3139 	ret = btrfs_read_qgroup_config(fs_info);
3140 	if (ret)
3141 		goto fail_trans_kthread;
3142 
3143 	if (btrfs_build_ref_tree(fs_info))
3144 		btrfs_err(fs_info, "couldn't build ref tree");
3145 
3146 	/* do not make disk changes in broken FS or nologreplay is given */
3147 	if (btrfs_super_log_root(disk_super) != 0 &&
3148 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3149 		btrfs_info(fs_info, "start tree-log replay");
3150 		ret = btrfs_replay_log(fs_info, fs_devices);
3151 		if (ret) {
3152 			err = ret;
3153 			goto fail_qgroup;
3154 		}
3155 	}
3156 
3157 	ret = btrfs_find_orphan_roots(fs_info);
3158 	if (ret)
3159 		goto fail_qgroup;
3160 
3161 	if (!sb_rdonly(sb)) {
3162 		ret = btrfs_cleanup_fs_roots(fs_info);
3163 		if (ret)
3164 			goto fail_qgroup;
3165 
3166 		mutex_lock(&fs_info->cleaner_mutex);
3167 		ret = btrfs_recover_relocation(tree_root);
3168 		mutex_unlock(&fs_info->cleaner_mutex);
3169 		if (ret < 0) {
3170 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3171 					ret);
3172 			err = -EINVAL;
3173 			goto fail_qgroup;
3174 		}
3175 	}
3176 
3177 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3178 	location.type = BTRFS_ROOT_ITEM_KEY;
3179 	location.offset = 0;
3180 
3181 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3182 	if (IS_ERR(fs_info->fs_root)) {
3183 		err = PTR_ERR(fs_info->fs_root);
3184 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3185 		fs_info->fs_root = NULL;
3186 		goto fail_qgroup;
3187 	}
3188 
3189 	if (sb_rdonly(sb))
3190 		return 0;
3191 
3192 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3193 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3194 		clear_free_space_tree = 1;
3195 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3196 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3197 		btrfs_warn(fs_info, "free space tree is invalid");
3198 		clear_free_space_tree = 1;
3199 	}
3200 
3201 	if (clear_free_space_tree) {
3202 		btrfs_info(fs_info, "clearing free space tree");
3203 		ret = btrfs_clear_free_space_tree(fs_info);
3204 		if (ret) {
3205 			btrfs_warn(fs_info,
3206 				   "failed to clear free space tree: %d", ret);
3207 			close_ctree(fs_info);
3208 			return ret;
3209 		}
3210 	}
3211 
3212 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3213 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3214 		btrfs_info(fs_info, "creating free space tree");
3215 		ret = btrfs_create_free_space_tree(fs_info);
3216 		if (ret) {
3217 			btrfs_warn(fs_info,
3218 				"failed to create free space tree: %d", ret);
3219 			close_ctree(fs_info);
3220 			return ret;
3221 		}
3222 	}
3223 
3224 	down_read(&fs_info->cleanup_work_sem);
3225 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3226 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3227 		up_read(&fs_info->cleanup_work_sem);
3228 		close_ctree(fs_info);
3229 		return ret;
3230 	}
3231 	up_read(&fs_info->cleanup_work_sem);
3232 
3233 	ret = btrfs_resume_balance_async(fs_info);
3234 	if (ret) {
3235 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3236 		close_ctree(fs_info);
3237 		return ret;
3238 	}
3239 
3240 	ret = btrfs_resume_dev_replace_async(fs_info);
3241 	if (ret) {
3242 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3243 		close_ctree(fs_info);
3244 		return ret;
3245 	}
3246 
3247 	btrfs_qgroup_rescan_resume(fs_info);
3248 
3249 	if (!fs_info->uuid_root) {
3250 		btrfs_info(fs_info, "creating UUID tree");
3251 		ret = btrfs_create_uuid_tree(fs_info);
3252 		if (ret) {
3253 			btrfs_warn(fs_info,
3254 				"failed to create the UUID tree: %d", ret);
3255 			close_ctree(fs_info);
3256 			return ret;
3257 		}
3258 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3259 		   fs_info->generation !=
3260 				btrfs_super_uuid_tree_generation(disk_super)) {
3261 		btrfs_info(fs_info, "checking UUID tree");
3262 		ret = btrfs_check_uuid_tree(fs_info);
3263 		if (ret) {
3264 			btrfs_warn(fs_info,
3265 				"failed to check the UUID tree: %d", ret);
3266 			close_ctree(fs_info);
3267 			return ret;
3268 		}
3269 	}
3270 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3271 
3272 	/*
3273 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3274 	 * no need to keep the flag
3275 	 */
3276 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3277 
3278 	return 0;
3279 
3280 fail_qgroup:
3281 	btrfs_free_qgroup_config(fs_info);
3282 fail_trans_kthread:
3283 	kthread_stop(fs_info->transaction_kthread);
3284 	btrfs_cleanup_transaction(fs_info);
3285 	btrfs_free_fs_roots(fs_info);
3286 fail_cleaner:
3287 	kthread_stop(fs_info->cleaner_kthread);
3288 
3289 	/*
3290 	 * make sure we're done with the btree inode before we stop our
3291 	 * kthreads
3292 	 */
3293 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3294 
3295 fail_sysfs:
3296 	btrfs_sysfs_remove_mounted(fs_info);
3297 
3298 fail_fsdev_sysfs:
3299 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3300 
3301 fail_block_groups:
3302 	btrfs_put_block_group_cache(fs_info);
3303 
3304 fail_tree_roots:
3305 	free_root_pointers(fs_info, true);
3306 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3307 
3308 fail_sb_buffer:
3309 	btrfs_stop_all_workers(fs_info);
3310 	btrfs_free_block_groups(fs_info);
3311 fail_alloc:
3312 fail_iput:
3313 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3314 
3315 	iput(fs_info->btree_inode);
3316 fail_bio_counter:
3317 	percpu_counter_destroy(&fs_info->bio_counter);
3318 fail_delalloc_bytes:
3319 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3320 fail_dirty_metadata_bytes:
3321 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3322 fail_srcu:
3323 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3324 fail:
3325 	btrfs_free_stripe_hash_table(fs_info);
3326 	btrfs_close_devices(fs_info->fs_devices);
3327 	return err;
3328 
3329 recovery_tree_root:
3330 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3331 		goto fail_tree_roots;
3332 
3333 	free_root_pointers(fs_info, false);
3334 
3335 	/* don't use the log in recovery mode, it won't be valid */
3336 	btrfs_set_super_log_root(disk_super, 0);
3337 
3338 	/* we can't trust the free space cache either */
3339 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3340 
3341 	ret = next_root_backup(fs_info, fs_info->super_copy,
3342 			       &num_backups_tried, &backup_index);
3343 	if (ret == -1)
3344 		goto fail_block_groups;
3345 	goto retry_root_backup;
3346 }
3347 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3348 
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3349 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3350 {
3351 	if (uptodate) {
3352 		set_buffer_uptodate(bh);
3353 	} else {
3354 		struct btrfs_device *device = (struct btrfs_device *)
3355 			bh->b_private;
3356 
3357 		btrfs_warn_rl_in_rcu(device->fs_info,
3358 				"lost page write due to IO error on %s",
3359 					  rcu_str_deref(device->name));
3360 		/* note, we don't set_buffer_write_io_error because we have
3361 		 * our own ways of dealing with the IO errors
3362 		 */
3363 		clear_buffer_uptodate(bh);
3364 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3365 	}
3366 	unlock_buffer(bh);
3367 	put_bh(bh);
3368 }
3369 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3370 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3371 			struct buffer_head **bh_ret)
3372 {
3373 	struct buffer_head *bh;
3374 	struct btrfs_super_block *super;
3375 	u64 bytenr;
3376 
3377 	bytenr = btrfs_sb_offset(copy_num);
3378 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3379 		return -EINVAL;
3380 
3381 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3382 	/*
3383 	 * If we fail to read from the underlying devices, as of now
3384 	 * the best option we have is to mark it EIO.
3385 	 */
3386 	if (!bh)
3387 		return -EIO;
3388 
3389 	super = (struct btrfs_super_block *)bh->b_data;
3390 	if (btrfs_super_bytenr(super) != bytenr ||
3391 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3392 		brelse(bh);
3393 		return -EINVAL;
3394 	}
3395 
3396 	*bh_ret = bh;
3397 	return 0;
3398 }
3399 
3400 
btrfs_read_dev_super(struct block_device * bdev)3401 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3402 {
3403 	struct buffer_head *bh;
3404 	struct buffer_head *latest = NULL;
3405 	struct btrfs_super_block *super;
3406 	int i;
3407 	u64 transid = 0;
3408 	int ret = -EINVAL;
3409 
3410 	/* we would like to check all the supers, but that would make
3411 	 * a btrfs mount succeed after a mkfs from a different FS.
3412 	 * So, we need to add a special mount option to scan for
3413 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3414 	 */
3415 	for (i = 0; i < 1; i++) {
3416 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3417 		if (ret)
3418 			continue;
3419 
3420 		super = (struct btrfs_super_block *)bh->b_data;
3421 
3422 		if (!latest || btrfs_super_generation(super) > transid) {
3423 			brelse(latest);
3424 			latest = bh;
3425 			transid = btrfs_super_generation(super);
3426 		} else {
3427 			brelse(bh);
3428 		}
3429 	}
3430 
3431 	if (!latest)
3432 		return ERR_PTR(ret);
3433 
3434 	return latest;
3435 }
3436 
3437 /*
3438  * Write superblock @sb to the @device. Do not wait for completion, all the
3439  * buffer heads we write are pinned.
3440  *
3441  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3442  * the expected device size at commit time. Note that max_mirrors must be
3443  * same for write and wait phases.
3444  *
3445  * Return number of errors when buffer head is not found or submission fails.
3446  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3447 static int write_dev_supers(struct btrfs_device *device,
3448 			    struct btrfs_super_block *sb, int max_mirrors)
3449 {
3450 	struct buffer_head *bh;
3451 	int i;
3452 	int ret;
3453 	int errors = 0;
3454 	u32 crc;
3455 	u64 bytenr;
3456 	int op_flags;
3457 
3458 	if (max_mirrors == 0)
3459 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3460 
3461 	for (i = 0; i < max_mirrors; i++) {
3462 		bytenr = btrfs_sb_offset(i);
3463 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3464 		    device->commit_total_bytes)
3465 			break;
3466 
3467 		btrfs_set_super_bytenr(sb, bytenr);
3468 
3469 		crc = ~(u32)0;
3470 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3471 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3472 		btrfs_csum_final(crc, sb->csum);
3473 
3474 		/* One reference for us, and we leave it for the caller */
3475 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3476 			      BTRFS_SUPER_INFO_SIZE);
3477 		if (!bh) {
3478 			btrfs_err(device->fs_info,
3479 			    "couldn't get super buffer head for bytenr %llu",
3480 			    bytenr);
3481 			errors++;
3482 			continue;
3483 		}
3484 
3485 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3486 
3487 		/* one reference for submit_bh */
3488 		get_bh(bh);
3489 
3490 		set_buffer_uptodate(bh);
3491 		lock_buffer(bh);
3492 		bh->b_end_io = btrfs_end_buffer_write_sync;
3493 		bh->b_private = device;
3494 
3495 		/*
3496 		 * we fua the first super.  The others we allow
3497 		 * to go down lazy.
3498 		 */
3499 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3500 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3501 			op_flags |= REQ_FUA;
3502 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3503 		if (ret)
3504 			errors++;
3505 	}
3506 	return errors < i ? 0 : -1;
3507 }
3508 
3509 /*
3510  * Wait for write completion of superblocks done by write_dev_supers,
3511  * @max_mirrors same for write and wait phases.
3512  *
3513  * Return number of errors when buffer head is not found or not marked up to
3514  * date.
3515  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3516 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3517 {
3518 	struct buffer_head *bh;
3519 	int i;
3520 	int errors = 0;
3521 	bool primary_failed = false;
3522 	u64 bytenr;
3523 
3524 	if (max_mirrors == 0)
3525 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3526 
3527 	for (i = 0; i < max_mirrors; i++) {
3528 		bytenr = btrfs_sb_offset(i);
3529 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3530 		    device->commit_total_bytes)
3531 			break;
3532 
3533 		bh = __find_get_block(device->bdev,
3534 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3535 				      BTRFS_SUPER_INFO_SIZE);
3536 		if (!bh) {
3537 			errors++;
3538 			if (i == 0)
3539 				primary_failed = true;
3540 			continue;
3541 		}
3542 		wait_on_buffer(bh);
3543 		if (!buffer_uptodate(bh)) {
3544 			errors++;
3545 			if (i == 0)
3546 				primary_failed = true;
3547 		}
3548 
3549 		/* drop our reference */
3550 		brelse(bh);
3551 
3552 		/* drop the reference from the writing run */
3553 		brelse(bh);
3554 	}
3555 
3556 	/* log error, force error return */
3557 	if (primary_failed) {
3558 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3559 			  device->devid);
3560 		return -1;
3561 	}
3562 
3563 	return errors < i ? 0 : -1;
3564 }
3565 
3566 /*
3567  * endio for the write_dev_flush, this will wake anyone waiting
3568  * for the barrier when it is done
3569  */
btrfs_end_empty_barrier(struct bio * bio)3570 static void btrfs_end_empty_barrier(struct bio *bio)
3571 {
3572 	complete(bio->bi_private);
3573 }
3574 
3575 /*
3576  * Submit a flush request to the device if it supports it. Error handling is
3577  * done in the waiting counterpart.
3578  */
write_dev_flush(struct btrfs_device * device)3579 static void write_dev_flush(struct btrfs_device *device)
3580 {
3581 	struct request_queue *q = bdev_get_queue(device->bdev);
3582 	struct bio *bio = device->flush_bio;
3583 
3584 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3585 		return;
3586 
3587 	bio_reset(bio);
3588 	bio->bi_end_io = btrfs_end_empty_barrier;
3589 	bio_set_dev(bio, device->bdev);
3590 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3591 	init_completion(&device->flush_wait);
3592 	bio->bi_private = &device->flush_wait;
3593 
3594 	btrfsic_submit_bio(bio);
3595 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3596 }
3597 
3598 /*
3599  * If the flush bio has been submitted by write_dev_flush, wait for it.
3600  */
wait_dev_flush(struct btrfs_device * device)3601 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3602 {
3603 	struct bio *bio = device->flush_bio;
3604 
3605 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3606 		return BLK_STS_OK;
3607 
3608 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3609 	wait_for_completion_io(&device->flush_wait);
3610 
3611 	return bio->bi_status;
3612 }
3613 
check_barrier_error(struct btrfs_fs_info * fs_info)3614 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3615 {
3616 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3617 		return -EIO;
3618 	return 0;
3619 }
3620 
3621 /*
3622  * send an empty flush down to each device in parallel,
3623  * then wait for them
3624  */
barrier_all_devices(struct btrfs_fs_info * info)3625 static int barrier_all_devices(struct btrfs_fs_info *info)
3626 {
3627 	struct list_head *head;
3628 	struct btrfs_device *dev;
3629 	int errors_wait = 0;
3630 	blk_status_t ret;
3631 
3632 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3633 	/* send down all the barriers */
3634 	head = &info->fs_devices->devices;
3635 	list_for_each_entry(dev, head, dev_list) {
3636 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3637 			continue;
3638 		if (!dev->bdev)
3639 			continue;
3640 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3641 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3642 			continue;
3643 
3644 		write_dev_flush(dev);
3645 		dev->last_flush_error = BLK_STS_OK;
3646 	}
3647 
3648 	/* wait for all the barriers */
3649 	list_for_each_entry(dev, head, dev_list) {
3650 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3651 			continue;
3652 		if (!dev->bdev) {
3653 			errors_wait++;
3654 			continue;
3655 		}
3656 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3657 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3658 			continue;
3659 
3660 		ret = wait_dev_flush(dev);
3661 		if (ret) {
3662 			dev->last_flush_error = ret;
3663 			btrfs_dev_stat_inc_and_print(dev,
3664 					BTRFS_DEV_STAT_FLUSH_ERRS);
3665 			errors_wait++;
3666 		}
3667 	}
3668 
3669 	if (errors_wait) {
3670 		/*
3671 		 * At some point we need the status of all disks
3672 		 * to arrive at the volume status. So error checking
3673 		 * is being pushed to a separate loop.
3674 		 */
3675 		return check_barrier_error(info);
3676 	}
3677 	return 0;
3678 }
3679 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3680 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3681 {
3682 	int raid_type;
3683 	int min_tolerated = INT_MAX;
3684 
3685 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3686 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3687 		min_tolerated = min(min_tolerated,
3688 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3689 				    tolerated_failures);
3690 
3691 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3692 		if (raid_type == BTRFS_RAID_SINGLE)
3693 			continue;
3694 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3695 			continue;
3696 		min_tolerated = min(min_tolerated,
3697 				    btrfs_raid_array[raid_type].
3698 				    tolerated_failures);
3699 	}
3700 
3701 	if (min_tolerated == INT_MAX) {
3702 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3703 		min_tolerated = 0;
3704 	}
3705 
3706 	return min_tolerated;
3707 }
3708 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3709 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3710 {
3711 	struct list_head *head;
3712 	struct btrfs_device *dev;
3713 	struct btrfs_super_block *sb;
3714 	struct btrfs_dev_item *dev_item;
3715 	int ret;
3716 	int do_barriers;
3717 	int max_errors;
3718 	int total_errors = 0;
3719 	u64 flags;
3720 
3721 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3722 
3723 	/*
3724 	 * max_mirrors == 0 indicates we're from commit_transaction,
3725 	 * not from fsync where the tree roots in fs_info have not
3726 	 * been consistent on disk.
3727 	 */
3728 	if (max_mirrors == 0)
3729 		backup_super_roots(fs_info);
3730 
3731 	sb = fs_info->super_for_commit;
3732 	dev_item = &sb->dev_item;
3733 
3734 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3735 	head = &fs_info->fs_devices->devices;
3736 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3737 
3738 	if (do_barriers) {
3739 		ret = barrier_all_devices(fs_info);
3740 		if (ret) {
3741 			mutex_unlock(
3742 				&fs_info->fs_devices->device_list_mutex);
3743 			btrfs_handle_fs_error(fs_info, ret,
3744 					      "errors while submitting device barriers.");
3745 			return ret;
3746 		}
3747 	}
3748 
3749 	list_for_each_entry(dev, head, dev_list) {
3750 		if (!dev->bdev) {
3751 			total_errors++;
3752 			continue;
3753 		}
3754 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3755 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3756 			continue;
3757 
3758 		btrfs_set_stack_device_generation(dev_item, 0);
3759 		btrfs_set_stack_device_type(dev_item, dev->type);
3760 		btrfs_set_stack_device_id(dev_item, dev->devid);
3761 		btrfs_set_stack_device_total_bytes(dev_item,
3762 						   dev->commit_total_bytes);
3763 		btrfs_set_stack_device_bytes_used(dev_item,
3764 						  dev->commit_bytes_used);
3765 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3766 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3767 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3768 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3769 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3770 
3771 		flags = btrfs_super_flags(sb);
3772 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3773 
3774 		ret = btrfs_validate_write_super(fs_info, sb);
3775 		if (ret < 0) {
3776 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3777 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3778 				"unexpected superblock corruption detected");
3779 			return -EUCLEAN;
3780 		}
3781 
3782 		ret = write_dev_supers(dev, sb, max_mirrors);
3783 		if (ret)
3784 			total_errors++;
3785 	}
3786 	if (total_errors > max_errors) {
3787 		btrfs_err(fs_info, "%d errors while writing supers",
3788 			  total_errors);
3789 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3790 
3791 		/* FUA is masked off if unsupported and can't be the reason */
3792 		btrfs_handle_fs_error(fs_info, -EIO,
3793 				      "%d errors while writing supers",
3794 				      total_errors);
3795 		return -EIO;
3796 	}
3797 
3798 	total_errors = 0;
3799 	list_for_each_entry(dev, head, dev_list) {
3800 		if (!dev->bdev)
3801 			continue;
3802 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3803 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3804 			continue;
3805 
3806 		ret = wait_dev_supers(dev, max_mirrors);
3807 		if (ret)
3808 			total_errors++;
3809 	}
3810 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3811 	if (total_errors > max_errors) {
3812 		btrfs_handle_fs_error(fs_info, -EIO,
3813 				      "%d errors while writing supers",
3814 				      total_errors);
3815 		return -EIO;
3816 	}
3817 	return 0;
3818 }
3819 
3820 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3821 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3822 				  struct btrfs_root *root)
3823 {
3824 	spin_lock(&fs_info->fs_roots_radix_lock);
3825 	radix_tree_delete(&fs_info->fs_roots_radix,
3826 			  (unsigned long)root->root_key.objectid);
3827 	spin_unlock(&fs_info->fs_roots_radix_lock);
3828 
3829 	if (btrfs_root_refs(&root->root_item) == 0)
3830 		synchronize_srcu(&fs_info->subvol_srcu);
3831 
3832 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3833 		btrfs_free_log(NULL, root);
3834 		if (root->reloc_root) {
3835 			free_extent_buffer(root->reloc_root->node);
3836 			free_extent_buffer(root->reloc_root->commit_root);
3837 			btrfs_put_fs_root(root->reloc_root);
3838 			root->reloc_root = NULL;
3839 		}
3840 	}
3841 
3842 	if (root->free_ino_pinned)
3843 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3844 	if (root->free_ino_ctl)
3845 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3846 	btrfs_free_fs_root(root);
3847 }
3848 
btrfs_free_fs_root(struct btrfs_root * root)3849 void btrfs_free_fs_root(struct btrfs_root *root)
3850 {
3851 	iput(root->ino_cache_inode);
3852 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3853 	if (root->anon_dev)
3854 		free_anon_bdev(root->anon_dev);
3855 	if (root->subv_writers)
3856 		btrfs_free_subvolume_writers(root->subv_writers);
3857 	free_extent_buffer(root->node);
3858 	free_extent_buffer(root->commit_root);
3859 	kfree(root->free_ino_ctl);
3860 	kfree(root->free_ino_pinned);
3861 	btrfs_put_fs_root(root);
3862 }
3863 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3864 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3865 {
3866 	u64 root_objectid = 0;
3867 	struct btrfs_root *gang[8];
3868 	int i = 0;
3869 	int err = 0;
3870 	unsigned int ret = 0;
3871 	int index;
3872 
3873 	while (1) {
3874 		index = srcu_read_lock(&fs_info->subvol_srcu);
3875 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3876 					     (void **)gang, root_objectid,
3877 					     ARRAY_SIZE(gang));
3878 		if (!ret) {
3879 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3880 			break;
3881 		}
3882 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3883 
3884 		for (i = 0; i < ret; i++) {
3885 			/* Avoid to grab roots in dead_roots */
3886 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3887 				gang[i] = NULL;
3888 				continue;
3889 			}
3890 			/* grab all the search result for later use */
3891 			gang[i] = btrfs_grab_fs_root(gang[i]);
3892 		}
3893 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3894 
3895 		for (i = 0; i < ret; i++) {
3896 			if (!gang[i])
3897 				continue;
3898 			root_objectid = gang[i]->root_key.objectid;
3899 			err = btrfs_orphan_cleanup(gang[i]);
3900 			if (err)
3901 				break;
3902 			btrfs_put_fs_root(gang[i]);
3903 		}
3904 		root_objectid++;
3905 	}
3906 
3907 	/* release the uncleaned roots due to error */
3908 	for (; i < ret; i++) {
3909 		if (gang[i])
3910 			btrfs_put_fs_root(gang[i]);
3911 	}
3912 	return err;
3913 }
3914 
btrfs_commit_super(struct btrfs_fs_info * fs_info)3915 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3916 {
3917 	struct btrfs_root *root = fs_info->tree_root;
3918 	struct btrfs_trans_handle *trans;
3919 
3920 	mutex_lock(&fs_info->cleaner_mutex);
3921 	btrfs_run_delayed_iputs(fs_info);
3922 	mutex_unlock(&fs_info->cleaner_mutex);
3923 	wake_up_process(fs_info->cleaner_kthread);
3924 
3925 	/* wait until ongoing cleanup work done */
3926 	down_write(&fs_info->cleanup_work_sem);
3927 	up_write(&fs_info->cleanup_work_sem);
3928 
3929 	trans = btrfs_join_transaction(root);
3930 	if (IS_ERR(trans))
3931 		return PTR_ERR(trans);
3932 	return btrfs_commit_transaction(trans);
3933 }
3934 
close_ctree(struct btrfs_fs_info * fs_info)3935 void close_ctree(struct btrfs_fs_info *fs_info)
3936 {
3937 	int ret;
3938 
3939 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3940 	/*
3941 	 * We don't want the cleaner to start new transactions, add more delayed
3942 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3943 	 * because that frees the task_struct, and the transaction kthread might
3944 	 * still try to wake up the cleaner.
3945 	 */
3946 	kthread_park(fs_info->cleaner_kthread);
3947 
3948 	/* wait for the qgroup rescan worker to stop */
3949 	btrfs_qgroup_wait_for_completion(fs_info, false);
3950 
3951 	/* wait for the uuid_scan task to finish */
3952 	down(&fs_info->uuid_tree_rescan_sem);
3953 	/* avoid complains from lockdep et al., set sem back to initial state */
3954 	up(&fs_info->uuid_tree_rescan_sem);
3955 
3956 	/* pause restriper - we want to resume on mount */
3957 	btrfs_pause_balance(fs_info);
3958 
3959 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3960 
3961 	btrfs_scrub_cancel(fs_info);
3962 
3963 	/* wait for any defraggers to finish */
3964 	wait_event(fs_info->transaction_wait,
3965 		   (atomic_read(&fs_info->defrag_running) == 0));
3966 
3967 	/* clear out the rbtree of defraggable inodes */
3968 	btrfs_cleanup_defrag_inodes(fs_info);
3969 
3970 	cancel_work_sync(&fs_info->async_reclaim_work);
3971 
3972 	if (!sb_rdonly(fs_info->sb)) {
3973 		/*
3974 		 * The cleaner kthread is stopped, so do one final pass over
3975 		 * unused block groups.
3976 		 */
3977 		btrfs_delete_unused_bgs(fs_info);
3978 
3979 		/*
3980 		 * There might be existing delayed inode workers still running
3981 		 * and holding an empty delayed inode item. We must wait for
3982 		 * them to complete first because they can create a transaction.
3983 		 * This happens when someone calls btrfs_balance_delayed_items()
3984 		 * and then a transaction commit runs the same delayed nodes
3985 		 * before any delayed worker has done something with the nodes.
3986 		 * We must wait for any worker here and not at transaction
3987 		 * commit time since that could cause a deadlock.
3988 		 * This is a very rare case.
3989 		 */
3990 		btrfs_flush_workqueue(fs_info->delayed_workers);
3991 
3992 		ret = btrfs_commit_super(fs_info);
3993 		if (ret)
3994 			btrfs_err(fs_info, "commit super ret %d", ret);
3995 	}
3996 
3997 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3998 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3999 		btrfs_error_commit_super(fs_info);
4000 
4001 	kthread_stop(fs_info->transaction_kthread);
4002 	kthread_stop(fs_info->cleaner_kthread);
4003 
4004 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4005 
4006 	btrfs_free_qgroup_config(fs_info);
4007 	ASSERT(list_empty(&fs_info->delalloc_roots));
4008 
4009 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4010 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4011 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4012 	}
4013 
4014 	btrfs_sysfs_remove_mounted(fs_info);
4015 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4016 
4017 	btrfs_free_fs_roots(fs_info);
4018 
4019 	btrfs_put_block_group_cache(fs_info);
4020 
4021 	/*
4022 	 * we must make sure there is not any read request to
4023 	 * submit after we stopping all workers.
4024 	 */
4025 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4026 	btrfs_stop_all_workers(fs_info);
4027 
4028 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4029 	free_root_pointers(fs_info, true);
4030 
4031 	/*
4032 	 * We must free the block groups after dropping the fs_roots as we could
4033 	 * have had an IO error and have left over tree log blocks that aren't
4034 	 * cleaned up until the fs roots are freed.  This makes the block group
4035 	 * accounting appear to be wrong because there's pending reserved bytes,
4036 	 * so make sure we do the block group cleanup afterwards.
4037 	 */
4038 	btrfs_free_block_groups(fs_info);
4039 
4040 	iput(fs_info->btree_inode);
4041 
4042 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4043 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4044 		btrfsic_unmount(fs_info->fs_devices);
4045 #endif
4046 
4047 	btrfs_close_devices(fs_info->fs_devices);
4048 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4049 
4050 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4051 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4052 	percpu_counter_destroy(&fs_info->bio_counter);
4053 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4054 
4055 	btrfs_free_stripe_hash_table(fs_info);
4056 	btrfs_free_ref_cache(fs_info);
4057 
4058 	while (!list_empty(&fs_info->pinned_chunks)) {
4059 		struct extent_map *em;
4060 
4061 		em = list_first_entry(&fs_info->pinned_chunks,
4062 				      struct extent_map, list);
4063 		list_del_init(&em->list);
4064 		free_extent_map(em);
4065 	}
4066 }
4067 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4068 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4069 			  int atomic)
4070 {
4071 	int ret;
4072 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4073 
4074 	ret = extent_buffer_uptodate(buf);
4075 	if (!ret)
4076 		return ret;
4077 
4078 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4079 				    parent_transid, atomic);
4080 	if (ret == -EAGAIN)
4081 		return ret;
4082 	return !ret;
4083 }
4084 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4085 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4086 {
4087 	struct btrfs_fs_info *fs_info;
4088 	struct btrfs_root *root;
4089 	u64 transid = btrfs_header_generation(buf);
4090 	int was_dirty;
4091 
4092 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4093 	/*
4094 	 * This is a fast path so only do this check if we have sanity tests
4095 	 * enabled.  Normal people shouldn't be using umapped buffers as dirty
4096 	 * outside of the sanity tests.
4097 	 */
4098 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4099 		return;
4100 #endif
4101 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4102 	fs_info = root->fs_info;
4103 	btrfs_assert_tree_locked(buf);
4104 	if (transid != fs_info->generation)
4105 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4106 			buf->start, transid, fs_info->generation);
4107 	was_dirty = set_extent_buffer_dirty(buf);
4108 	if (!was_dirty)
4109 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4110 					 buf->len,
4111 					 fs_info->dirty_metadata_batch);
4112 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4113 	/*
4114 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4115 	 * but item data not updated.
4116 	 * So here we should only check item pointers, not item data.
4117 	 */
4118 	if (btrfs_header_level(buf) == 0 &&
4119 	    btrfs_check_leaf_relaxed(fs_info, buf)) {
4120 		btrfs_print_leaf(buf);
4121 		ASSERT(0);
4122 	}
4123 #endif
4124 }
4125 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4126 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4127 					int flush_delayed)
4128 {
4129 	/*
4130 	 * looks as though older kernels can get into trouble with
4131 	 * this code, they end up stuck in balance_dirty_pages forever
4132 	 */
4133 	int ret;
4134 
4135 	if (current->flags & PF_MEMALLOC)
4136 		return;
4137 
4138 	if (flush_delayed)
4139 		btrfs_balance_delayed_items(fs_info);
4140 
4141 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4142 				     BTRFS_DIRTY_METADATA_THRESH,
4143 				     fs_info->dirty_metadata_batch);
4144 	if (ret > 0) {
4145 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4146 	}
4147 }
4148 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4149 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4150 {
4151 	__btrfs_btree_balance_dirty(fs_info, 1);
4152 }
4153 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4154 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4155 {
4156 	__btrfs_btree_balance_dirty(fs_info, 0);
4157 }
4158 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4159 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4160 		      struct btrfs_key *first_key)
4161 {
4162 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4163 	struct btrfs_fs_info *fs_info = root->fs_info;
4164 
4165 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4166 					      level, first_key);
4167 }
4168 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4169 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4170 {
4171 	/* cleanup FS via transaction */
4172 	btrfs_cleanup_transaction(fs_info);
4173 
4174 	mutex_lock(&fs_info->cleaner_mutex);
4175 	btrfs_run_delayed_iputs(fs_info);
4176 	mutex_unlock(&fs_info->cleaner_mutex);
4177 
4178 	down_write(&fs_info->cleanup_work_sem);
4179 	up_write(&fs_info->cleanup_work_sem);
4180 }
4181 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4182 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4183 {
4184 	struct btrfs_ordered_extent *ordered;
4185 
4186 	spin_lock(&root->ordered_extent_lock);
4187 	/*
4188 	 * This will just short circuit the ordered completion stuff which will
4189 	 * make sure the ordered extent gets properly cleaned up.
4190 	 */
4191 	list_for_each_entry(ordered, &root->ordered_extents,
4192 			    root_extent_list)
4193 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4194 	spin_unlock(&root->ordered_extent_lock);
4195 }
4196 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4197 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4198 {
4199 	struct btrfs_root *root;
4200 	struct list_head splice;
4201 
4202 	INIT_LIST_HEAD(&splice);
4203 
4204 	spin_lock(&fs_info->ordered_root_lock);
4205 	list_splice_init(&fs_info->ordered_roots, &splice);
4206 	while (!list_empty(&splice)) {
4207 		root = list_first_entry(&splice, struct btrfs_root,
4208 					ordered_root);
4209 		list_move_tail(&root->ordered_root,
4210 			       &fs_info->ordered_roots);
4211 
4212 		spin_unlock(&fs_info->ordered_root_lock);
4213 		btrfs_destroy_ordered_extents(root);
4214 
4215 		cond_resched();
4216 		spin_lock(&fs_info->ordered_root_lock);
4217 	}
4218 	spin_unlock(&fs_info->ordered_root_lock);
4219 
4220 	/*
4221 	 * We need this here because if we've been flipped read-only we won't
4222 	 * get sync() from the umount, so we need to make sure any ordered
4223 	 * extents that haven't had their dirty pages IO start writeout yet
4224 	 * actually get run and error out properly.
4225 	 */
4226 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4227 }
4228 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4229 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4230 				      struct btrfs_fs_info *fs_info)
4231 {
4232 	struct rb_node *node;
4233 	struct btrfs_delayed_ref_root *delayed_refs;
4234 	struct btrfs_delayed_ref_node *ref;
4235 	int ret = 0;
4236 
4237 	delayed_refs = &trans->delayed_refs;
4238 
4239 	spin_lock(&delayed_refs->lock);
4240 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4241 		spin_unlock(&delayed_refs->lock);
4242 		btrfs_info(fs_info, "delayed_refs has NO entry");
4243 		return ret;
4244 	}
4245 
4246 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4247 		struct btrfs_delayed_ref_head *head;
4248 		struct rb_node *n;
4249 		bool pin_bytes = false;
4250 
4251 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4252 				href_node);
4253 		if (!mutex_trylock(&head->mutex)) {
4254 			refcount_inc(&head->refs);
4255 			spin_unlock(&delayed_refs->lock);
4256 
4257 			mutex_lock(&head->mutex);
4258 			mutex_unlock(&head->mutex);
4259 			btrfs_put_delayed_ref_head(head);
4260 			spin_lock(&delayed_refs->lock);
4261 			continue;
4262 		}
4263 		spin_lock(&head->lock);
4264 		while ((n = rb_first(&head->ref_tree)) != NULL) {
4265 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4266 				       ref_node);
4267 			ref->in_tree = 0;
4268 			rb_erase(&ref->ref_node, &head->ref_tree);
4269 			RB_CLEAR_NODE(&ref->ref_node);
4270 			if (!list_empty(&ref->add_list))
4271 				list_del(&ref->add_list);
4272 			atomic_dec(&delayed_refs->num_entries);
4273 			btrfs_put_delayed_ref(ref);
4274 		}
4275 		if (head->must_insert_reserved)
4276 			pin_bytes = true;
4277 		btrfs_free_delayed_extent_op(head->extent_op);
4278 		delayed_refs->num_heads--;
4279 		if (head->processing == 0)
4280 			delayed_refs->num_heads_ready--;
4281 		atomic_dec(&delayed_refs->num_entries);
4282 		rb_erase(&head->href_node, &delayed_refs->href_root);
4283 		RB_CLEAR_NODE(&head->href_node);
4284 		spin_unlock(&head->lock);
4285 		spin_unlock(&delayed_refs->lock);
4286 		mutex_unlock(&head->mutex);
4287 
4288 		if (pin_bytes)
4289 			btrfs_pin_extent(fs_info, head->bytenr,
4290 					 head->num_bytes, 1);
4291 		btrfs_put_delayed_ref_head(head);
4292 		cond_resched();
4293 		spin_lock(&delayed_refs->lock);
4294 	}
4295 
4296 	spin_unlock(&delayed_refs->lock);
4297 
4298 	return ret;
4299 }
4300 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4301 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4302 {
4303 	struct btrfs_inode *btrfs_inode;
4304 	struct list_head splice;
4305 
4306 	INIT_LIST_HEAD(&splice);
4307 
4308 	spin_lock(&root->delalloc_lock);
4309 	list_splice_init(&root->delalloc_inodes, &splice);
4310 
4311 	while (!list_empty(&splice)) {
4312 		struct inode *inode = NULL;
4313 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4314 					       delalloc_inodes);
4315 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4316 		spin_unlock(&root->delalloc_lock);
4317 
4318 		/*
4319 		 * Make sure we get a live inode and that it'll not disappear
4320 		 * meanwhile.
4321 		 */
4322 		inode = igrab(&btrfs_inode->vfs_inode);
4323 		if (inode) {
4324 			invalidate_inode_pages2(inode->i_mapping);
4325 			iput(inode);
4326 		}
4327 		spin_lock(&root->delalloc_lock);
4328 	}
4329 	spin_unlock(&root->delalloc_lock);
4330 }
4331 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4332 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4333 {
4334 	struct btrfs_root *root;
4335 	struct list_head splice;
4336 
4337 	INIT_LIST_HEAD(&splice);
4338 
4339 	spin_lock(&fs_info->delalloc_root_lock);
4340 	list_splice_init(&fs_info->delalloc_roots, &splice);
4341 	while (!list_empty(&splice)) {
4342 		root = list_first_entry(&splice, struct btrfs_root,
4343 					 delalloc_root);
4344 		root = btrfs_grab_fs_root(root);
4345 		BUG_ON(!root);
4346 		spin_unlock(&fs_info->delalloc_root_lock);
4347 
4348 		btrfs_destroy_delalloc_inodes(root);
4349 		btrfs_put_fs_root(root);
4350 
4351 		spin_lock(&fs_info->delalloc_root_lock);
4352 	}
4353 	spin_unlock(&fs_info->delalloc_root_lock);
4354 }
4355 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4356 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4357 					struct extent_io_tree *dirty_pages,
4358 					int mark)
4359 {
4360 	int ret;
4361 	struct extent_buffer *eb;
4362 	u64 start = 0;
4363 	u64 end;
4364 
4365 	while (1) {
4366 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4367 					    mark, NULL);
4368 		if (ret)
4369 			break;
4370 
4371 		clear_extent_bits(dirty_pages, start, end, mark);
4372 		while (start <= end) {
4373 			eb = find_extent_buffer(fs_info, start);
4374 			start += fs_info->nodesize;
4375 			if (!eb)
4376 				continue;
4377 			wait_on_extent_buffer_writeback(eb);
4378 
4379 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4380 					       &eb->bflags))
4381 				clear_extent_buffer_dirty(eb);
4382 			free_extent_buffer_stale(eb);
4383 		}
4384 	}
4385 
4386 	return ret;
4387 }
4388 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * pinned_extents)4389 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4390 				       struct extent_io_tree *pinned_extents)
4391 {
4392 	struct extent_io_tree *unpin;
4393 	u64 start;
4394 	u64 end;
4395 	int ret;
4396 	bool loop = true;
4397 
4398 	unpin = pinned_extents;
4399 again:
4400 	while (1) {
4401 		struct extent_state *cached_state = NULL;
4402 
4403 		/*
4404 		 * The btrfs_finish_extent_commit() may get the same range as
4405 		 * ours between find_first_extent_bit and clear_extent_dirty.
4406 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4407 		 * the same extent range.
4408 		 */
4409 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4410 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4411 					    EXTENT_DIRTY, &cached_state);
4412 		if (ret) {
4413 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4414 			break;
4415 		}
4416 
4417 		clear_extent_dirty(unpin, start, end, &cached_state);
4418 		free_extent_state(cached_state);
4419 		btrfs_error_unpin_extent_range(fs_info, start, end);
4420 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4421 		cond_resched();
4422 	}
4423 
4424 	if (loop) {
4425 		if (unpin == &fs_info->freed_extents[0])
4426 			unpin = &fs_info->freed_extents[1];
4427 		else
4428 			unpin = &fs_info->freed_extents[0];
4429 		loop = false;
4430 		goto again;
4431 	}
4432 
4433 	return 0;
4434 }
4435 
btrfs_cleanup_bg_io(struct btrfs_block_group_cache * cache)4436 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4437 {
4438 	struct inode *inode;
4439 
4440 	inode = cache->io_ctl.inode;
4441 	if (inode) {
4442 		invalidate_inode_pages2(inode->i_mapping);
4443 		BTRFS_I(inode)->generation = 0;
4444 		cache->io_ctl.inode = NULL;
4445 		iput(inode);
4446 	}
4447 	ASSERT(cache->io_ctl.pages == NULL);
4448 	btrfs_put_block_group(cache);
4449 }
4450 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4451 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4452 			     struct btrfs_fs_info *fs_info)
4453 {
4454 	struct btrfs_block_group_cache *cache;
4455 
4456 	spin_lock(&cur_trans->dirty_bgs_lock);
4457 	while (!list_empty(&cur_trans->dirty_bgs)) {
4458 		cache = list_first_entry(&cur_trans->dirty_bgs,
4459 					 struct btrfs_block_group_cache,
4460 					 dirty_list);
4461 
4462 		if (!list_empty(&cache->io_list)) {
4463 			spin_unlock(&cur_trans->dirty_bgs_lock);
4464 			list_del_init(&cache->io_list);
4465 			btrfs_cleanup_bg_io(cache);
4466 			spin_lock(&cur_trans->dirty_bgs_lock);
4467 		}
4468 
4469 		list_del_init(&cache->dirty_list);
4470 		spin_lock(&cache->lock);
4471 		cache->disk_cache_state = BTRFS_DC_ERROR;
4472 		spin_unlock(&cache->lock);
4473 
4474 		spin_unlock(&cur_trans->dirty_bgs_lock);
4475 		btrfs_put_block_group(cache);
4476 		spin_lock(&cur_trans->dirty_bgs_lock);
4477 	}
4478 	spin_unlock(&cur_trans->dirty_bgs_lock);
4479 
4480 	/*
4481 	 * Refer to the definition of io_bgs member for details why it's safe
4482 	 * to use it without any locking
4483 	 */
4484 	while (!list_empty(&cur_trans->io_bgs)) {
4485 		cache = list_first_entry(&cur_trans->io_bgs,
4486 					 struct btrfs_block_group_cache,
4487 					 io_list);
4488 
4489 		list_del_init(&cache->io_list);
4490 		spin_lock(&cache->lock);
4491 		cache->disk_cache_state = BTRFS_DC_ERROR;
4492 		spin_unlock(&cache->lock);
4493 		btrfs_cleanup_bg_io(cache);
4494 	}
4495 }
4496 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4497 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4498 				   struct btrfs_fs_info *fs_info)
4499 {
4500 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4501 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4502 	ASSERT(list_empty(&cur_trans->io_bgs));
4503 
4504 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4505 
4506 	cur_trans->state = TRANS_STATE_COMMIT_START;
4507 	wake_up(&fs_info->transaction_blocked_wait);
4508 
4509 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4510 	wake_up(&fs_info->transaction_wait);
4511 
4512 	btrfs_destroy_delayed_inodes(fs_info);
4513 
4514 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4515 				     EXTENT_DIRTY);
4516 	btrfs_destroy_pinned_extent(fs_info,
4517 				    fs_info->pinned_extents);
4518 
4519 	cur_trans->state =TRANS_STATE_COMPLETED;
4520 	wake_up(&cur_trans->commit_wait);
4521 }
4522 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4523 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4524 {
4525 	struct btrfs_transaction *t;
4526 
4527 	mutex_lock(&fs_info->transaction_kthread_mutex);
4528 
4529 	spin_lock(&fs_info->trans_lock);
4530 	while (!list_empty(&fs_info->trans_list)) {
4531 		t = list_first_entry(&fs_info->trans_list,
4532 				     struct btrfs_transaction, list);
4533 		if (t->state >= TRANS_STATE_COMMIT_START) {
4534 			refcount_inc(&t->use_count);
4535 			spin_unlock(&fs_info->trans_lock);
4536 			btrfs_wait_for_commit(fs_info, t->transid);
4537 			btrfs_put_transaction(t);
4538 			spin_lock(&fs_info->trans_lock);
4539 			continue;
4540 		}
4541 		if (t == fs_info->running_transaction) {
4542 			t->state = TRANS_STATE_COMMIT_DOING;
4543 			spin_unlock(&fs_info->trans_lock);
4544 			/*
4545 			 * We wait for 0 num_writers since we don't hold a trans
4546 			 * handle open currently for this transaction.
4547 			 */
4548 			wait_event(t->writer_wait,
4549 				   atomic_read(&t->num_writers) == 0);
4550 		} else {
4551 			spin_unlock(&fs_info->trans_lock);
4552 		}
4553 		btrfs_cleanup_one_transaction(t, fs_info);
4554 
4555 		spin_lock(&fs_info->trans_lock);
4556 		if (t == fs_info->running_transaction)
4557 			fs_info->running_transaction = NULL;
4558 		list_del_init(&t->list);
4559 		spin_unlock(&fs_info->trans_lock);
4560 
4561 		btrfs_put_transaction(t);
4562 		trace_btrfs_transaction_commit(fs_info->tree_root);
4563 		spin_lock(&fs_info->trans_lock);
4564 	}
4565 	spin_unlock(&fs_info->trans_lock);
4566 	btrfs_destroy_all_ordered_extents(fs_info);
4567 	btrfs_destroy_delayed_inodes(fs_info);
4568 	btrfs_assert_delayed_root_empty(fs_info);
4569 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4570 	btrfs_destroy_all_delalloc_inodes(fs_info);
4571 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4572 
4573 	return 0;
4574 }
4575 
4576 static const struct extent_io_ops btree_extent_io_ops = {
4577 	/* mandatory callbacks */
4578 	.submit_bio_hook = btree_submit_bio_hook,
4579 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4580 	.readpage_io_failed_hook = btree_io_failed_hook,
4581 
4582 	/* optional callbacks */
4583 };
4584