• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 
22 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
23 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
24 
25 struct btrfs_trim_range {
26 	u64 start;
27 	u64 bytes;
28 	struct list_head list;
29 };
30 
31 static int link_free_space(struct btrfs_free_space_ctl *ctl,
32 			   struct btrfs_free_space *info);
33 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
34 			      struct btrfs_free_space *info);
35 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
36 			     struct btrfs_trans_handle *trans,
37 			     struct btrfs_io_ctl *io_ctl,
38 			     struct btrfs_path *path);
39 
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)40 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
41 					       struct btrfs_path *path,
42 					       u64 offset)
43 {
44 	struct btrfs_fs_info *fs_info = root->fs_info;
45 	struct btrfs_key key;
46 	struct btrfs_key location;
47 	struct btrfs_disk_key disk_key;
48 	struct btrfs_free_space_header *header;
49 	struct extent_buffer *leaf;
50 	struct inode *inode = NULL;
51 	unsigned nofs_flag;
52 	int ret;
53 
54 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
55 	key.offset = offset;
56 	key.type = 0;
57 
58 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
59 	if (ret < 0)
60 		return ERR_PTR(ret);
61 	if (ret > 0) {
62 		btrfs_release_path(path);
63 		return ERR_PTR(-ENOENT);
64 	}
65 
66 	leaf = path->nodes[0];
67 	header = btrfs_item_ptr(leaf, path->slots[0],
68 				struct btrfs_free_space_header);
69 	btrfs_free_space_key(leaf, header, &disk_key);
70 	btrfs_disk_key_to_cpu(&location, &disk_key);
71 	btrfs_release_path(path);
72 
73 	/*
74 	 * We are often under a trans handle at this point, so we need to make
75 	 * sure NOFS is set to keep us from deadlocking.
76 	 */
77 	nofs_flag = memalloc_nofs_save();
78 	inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
79 	btrfs_release_path(path);
80 	memalloc_nofs_restore(nofs_flag);
81 	if (IS_ERR(inode))
82 		return inode;
83 
84 	mapping_set_gfp_mask(inode->i_mapping,
85 			mapping_gfp_constraint(inode->i_mapping,
86 			~(__GFP_FS | __GFP_HIGHMEM)));
87 
88 	return inode;
89 }
90 
lookup_free_space_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)91 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
92 				      struct btrfs_block_group_cache
93 				      *block_group, struct btrfs_path *path)
94 {
95 	struct inode *inode = NULL;
96 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
97 
98 	spin_lock(&block_group->lock);
99 	if (block_group->inode)
100 		inode = igrab(block_group->inode);
101 	spin_unlock(&block_group->lock);
102 	if (inode)
103 		return inode;
104 
105 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
106 					  block_group->key.objectid);
107 	if (IS_ERR(inode))
108 		return inode;
109 
110 	spin_lock(&block_group->lock);
111 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
112 		btrfs_info(fs_info, "Old style space inode found, converting.");
113 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
114 			BTRFS_INODE_NODATACOW;
115 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
116 	}
117 
118 	if (!block_group->iref) {
119 		block_group->inode = igrab(inode);
120 		block_group->iref = 1;
121 	}
122 	spin_unlock(&block_group->lock);
123 
124 	return inode;
125 }
126 
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)127 static int __create_free_space_inode(struct btrfs_root *root,
128 				     struct btrfs_trans_handle *trans,
129 				     struct btrfs_path *path,
130 				     u64 ino, u64 offset)
131 {
132 	struct btrfs_key key;
133 	struct btrfs_disk_key disk_key;
134 	struct btrfs_free_space_header *header;
135 	struct btrfs_inode_item *inode_item;
136 	struct extent_buffer *leaf;
137 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
138 	int ret;
139 
140 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
141 	if (ret)
142 		return ret;
143 
144 	/* We inline crc's for the free disk space cache */
145 	if (ino != BTRFS_FREE_INO_OBJECTID)
146 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
147 
148 	leaf = path->nodes[0];
149 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
150 				    struct btrfs_inode_item);
151 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
152 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
153 			     sizeof(*inode_item));
154 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
155 	btrfs_set_inode_size(leaf, inode_item, 0);
156 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
157 	btrfs_set_inode_uid(leaf, inode_item, 0);
158 	btrfs_set_inode_gid(leaf, inode_item, 0);
159 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
160 	btrfs_set_inode_flags(leaf, inode_item, flags);
161 	btrfs_set_inode_nlink(leaf, inode_item, 1);
162 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
163 	btrfs_set_inode_block_group(leaf, inode_item, offset);
164 	btrfs_mark_buffer_dirty(leaf);
165 	btrfs_release_path(path);
166 
167 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
168 	key.offset = offset;
169 	key.type = 0;
170 	ret = btrfs_insert_empty_item(trans, root, path, &key,
171 				      sizeof(struct btrfs_free_space_header));
172 	if (ret < 0) {
173 		btrfs_release_path(path);
174 		return ret;
175 	}
176 
177 	leaf = path->nodes[0];
178 	header = btrfs_item_ptr(leaf, path->slots[0],
179 				struct btrfs_free_space_header);
180 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
181 	btrfs_set_free_space_key(leaf, header, &disk_key);
182 	btrfs_mark_buffer_dirty(leaf);
183 	btrfs_release_path(path);
184 
185 	return 0;
186 }
187 
create_free_space_inode(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)188 int create_free_space_inode(struct btrfs_fs_info *fs_info,
189 			    struct btrfs_trans_handle *trans,
190 			    struct btrfs_block_group_cache *block_group,
191 			    struct btrfs_path *path)
192 {
193 	int ret;
194 	u64 ino;
195 
196 	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
197 	if (ret < 0)
198 		return ret;
199 
200 	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
201 					 block_group->key.objectid);
202 }
203 
btrfs_check_trunc_cache_free_space(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)204 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
205 				       struct btrfs_block_rsv *rsv)
206 {
207 	u64 needed_bytes;
208 	int ret;
209 
210 	/* 1 for slack space, 1 for updating the inode */
211 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
212 		btrfs_calc_trans_metadata_size(fs_info, 1);
213 
214 	spin_lock(&rsv->lock);
215 	if (rsv->reserved < needed_bytes)
216 		ret = -ENOSPC;
217 	else
218 		ret = 0;
219 	spin_unlock(&rsv->lock);
220 	return ret;
221 }
222 
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct inode * inode)223 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
224 				    struct btrfs_block_group_cache *block_group,
225 				    struct inode *inode)
226 {
227 	struct btrfs_root *root = BTRFS_I(inode)->root;
228 	int ret = 0;
229 	bool locked = false;
230 
231 	if (block_group) {
232 		struct btrfs_path *path = btrfs_alloc_path();
233 
234 		if (!path) {
235 			ret = -ENOMEM;
236 			goto fail;
237 		}
238 		locked = true;
239 		mutex_lock(&trans->transaction->cache_write_mutex);
240 		if (!list_empty(&block_group->io_list)) {
241 			list_del_init(&block_group->io_list);
242 
243 			btrfs_wait_cache_io(trans, block_group, path);
244 			btrfs_put_block_group(block_group);
245 		}
246 
247 		/*
248 		 * now that we've truncated the cache away, its no longer
249 		 * setup or written
250 		 */
251 		spin_lock(&block_group->lock);
252 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
253 		spin_unlock(&block_group->lock);
254 		btrfs_free_path(path);
255 	}
256 
257 	btrfs_i_size_write(BTRFS_I(inode), 0);
258 	truncate_pagecache(inode, 0);
259 
260 	/*
261 	 * We skip the throttling logic for free space cache inodes, so we don't
262 	 * need to check for -EAGAIN.
263 	 */
264 	ret = btrfs_truncate_inode_items(trans, root, inode,
265 					 0, BTRFS_EXTENT_DATA_KEY);
266 	if (ret)
267 		goto fail;
268 
269 	ret = btrfs_update_inode(trans, root, inode);
270 
271 fail:
272 	if (locked)
273 		mutex_unlock(&trans->transaction->cache_write_mutex);
274 	if (ret)
275 		btrfs_abort_transaction(trans, ret);
276 
277 	return ret;
278 }
279 
readahead_cache(struct inode * inode)280 static void readahead_cache(struct inode *inode)
281 {
282 	struct file_ra_state *ra;
283 	unsigned long last_index;
284 
285 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
286 	if (!ra)
287 		return;
288 
289 	file_ra_state_init(ra, inode->i_mapping);
290 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
291 
292 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
293 
294 	kfree(ra);
295 }
296 
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)297 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
298 		       int write)
299 {
300 	int num_pages;
301 	int check_crcs = 0;
302 
303 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
304 
305 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
306 		check_crcs = 1;
307 
308 	/* Make sure we can fit our crcs and generation into the first page */
309 	if (write && check_crcs &&
310 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
311 		return -ENOSPC;
312 
313 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
314 
315 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
316 	if (!io_ctl->pages)
317 		return -ENOMEM;
318 
319 	io_ctl->num_pages = num_pages;
320 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
321 	io_ctl->check_crcs = check_crcs;
322 	io_ctl->inode = inode;
323 
324 	return 0;
325 }
326 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
327 
io_ctl_free(struct btrfs_io_ctl * io_ctl)328 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
329 {
330 	kfree(io_ctl->pages);
331 	io_ctl->pages = NULL;
332 }
333 
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)334 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
335 {
336 	if (io_ctl->cur) {
337 		io_ctl->cur = NULL;
338 		io_ctl->orig = NULL;
339 	}
340 }
341 
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)342 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
343 {
344 	ASSERT(io_ctl->index < io_ctl->num_pages);
345 	io_ctl->page = io_ctl->pages[io_ctl->index++];
346 	io_ctl->cur = page_address(io_ctl->page);
347 	io_ctl->orig = io_ctl->cur;
348 	io_ctl->size = PAGE_SIZE;
349 	if (clear)
350 		clear_page(io_ctl->cur);
351 }
352 
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)353 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
354 {
355 	int i;
356 
357 	io_ctl_unmap_page(io_ctl);
358 
359 	for (i = 0; i < io_ctl->num_pages; i++) {
360 		if (io_ctl->pages[i]) {
361 			ClearPageChecked(io_ctl->pages[i]);
362 			unlock_page(io_ctl->pages[i]);
363 			put_page(io_ctl->pages[i]);
364 		}
365 	}
366 }
367 
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,struct inode * inode,int uptodate)368 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
369 				int uptodate)
370 {
371 	struct page *page;
372 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
373 	int i;
374 
375 	for (i = 0; i < io_ctl->num_pages; i++) {
376 		page = find_or_create_page(inode->i_mapping, i, mask);
377 		if (!page) {
378 			io_ctl_drop_pages(io_ctl);
379 			return -ENOMEM;
380 		}
381 		io_ctl->pages[i] = page;
382 		if (uptodate && !PageUptodate(page)) {
383 			btrfs_readpage(NULL, page);
384 			lock_page(page);
385 			if (page->mapping != inode->i_mapping) {
386 				btrfs_err(BTRFS_I(inode)->root->fs_info,
387 					  "free space cache page truncated");
388 				io_ctl_drop_pages(io_ctl);
389 				return -EIO;
390 			}
391 			if (!PageUptodate(page)) {
392 				btrfs_err(BTRFS_I(inode)->root->fs_info,
393 					   "error reading free space cache");
394 				io_ctl_drop_pages(io_ctl);
395 				return -EIO;
396 			}
397 		}
398 	}
399 
400 	for (i = 0; i < io_ctl->num_pages; i++) {
401 		clear_page_dirty_for_io(io_ctl->pages[i]);
402 		set_page_extent_mapped(io_ctl->pages[i]);
403 	}
404 
405 	return 0;
406 }
407 
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)408 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
409 {
410 	__le64 *val;
411 
412 	io_ctl_map_page(io_ctl, 1);
413 
414 	/*
415 	 * Skip the csum areas.  If we don't check crcs then we just have a
416 	 * 64bit chunk at the front of the first page.
417 	 */
418 	if (io_ctl->check_crcs) {
419 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
420 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
421 	} else {
422 		io_ctl->cur += sizeof(u64);
423 		io_ctl->size -= sizeof(u64) * 2;
424 	}
425 
426 	val = io_ctl->cur;
427 	*val = cpu_to_le64(generation);
428 	io_ctl->cur += sizeof(u64);
429 }
430 
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)431 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
432 {
433 	__le64 *gen;
434 
435 	/*
436 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
437 	 * chunk at the front of the first page.
438 	 */
439 	if (io_ctl->check_crcs) {
440 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
441 		io_ctl->size -= sizeof(u64) +
442 			(sizeof(u32) * io_ctl->num_pages);
443 	} else {
444 		io_ctl->cur += sizeof(u64);
445 		io_ctl->size -= sizeof(u64) * 2;
446 	}
447 
448 	gen = io_ctl->cur;
449 	if (le64_to_cpu(*gen) != generation) {
450 		btrfs_err_rl(io_ctl->fs_info,
451 			"space cache generation (%llu) does not match inode (%llu)",
452 				*gen, generation);
453 		io_ctl_unmap_page(io_ctl);
454 		return -EIO;
455 	}
456 	io_ctl->cur += sizeof(u64);
457 	return 0;
458 }
459 
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)460 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
461 {
462 	u32 *tmp;
463 	u32 crc = ~(u32)0;
464 	unsigned offset = 0;
465 
466 	if (!io_ctl->check_crcs) {
467 		io_ctl_unmap_page(io_ctl);
468 		return;
469 	}
470 
471 	if (index == 0)
472 		offset = sizeof(u32) * io_ctl->num_pages;
473 
474 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
475 			      PAGE_SIZE - offset);
476 	btrfs_csum_final(crc, (u8 *)&crc);
477 	io_ctl_unmap_page(io_ctl);
478 	tmp = page_address(io_ctl->pages[0]);
479 	tmp += index;
480 	*tmp = crc;
481 }
482 
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)483 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
484 {
485 	u32 *tmp, val;
486 	u32 crc = ~(u32)0;
487 	unsigned offset = 0;
488 
489 	if (!io_ctl->check_crcs) {
490 		io_ctl_map_page(io_ctl, 0);
491 		return 0;
492 	}
493 
494 	if (index == 0)
495 		offset = sizeof(u32) * io_ctl->num_pages;
496 
497 	tmp = page_address(io_ctl->pages[0]);
498 	tmp += index;
499 	val = *tmp;
500 
501 	io_ctl_map_page(io_ctl, 0);
502 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
503 			      PAGE_SIZE - offset);
504 	btrfs_csum_final(crc, (u8 *)&crc);
505 	if (val != crc) {
506 		btrfs_err_rl(io_ctl->fs_info,
507 			"csum mismatch on free space cache");
508 		io_ctl_unmap_page(io_ctl);
509 		return -EIO;
510 	}
511 
512 	return 0;
513 }
514 
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)515 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
516 			    void *bitmap)
517 {
518 	struct btrfs_free_space_entry *entry;
519 
520 	if (!io_ctl->cur)
521 		return -ENOSPC;
522 
523 	entry = io_ctl->cur;
524 	entry->offset = cpu_to_le64(offset);
525 	entry->bytes = cpu_to_le64(bytes);
526 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
527 		BTRFS_FREE_SPACE_EXTENT;
528 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
529 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
530 
531 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
532 		return 0;
533 
534 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
535 
536 	/* No more pages to map */
537 	if (io_ctl->index >= io_ctl->num_pages)
538 		return 0;
539 
540 	/* map the next page */
541 	io_ctl_map_page(io_ctl, 1);
542 	return 0;
543 }
544 
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)545 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
546 {
547 	if (!io_ctl->cur)
548 		return -ENOSPC;
549 
550 	/*
551 	 * If we aren't at the start of the current page, unmap this one and
552 	 * map the next one if there is any left.
553 	 */
554 	if (io_ctl->cur != io_ctl->orig) {
555 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
556 		if (io_ctl->index >= io_ctl->num_pages)
557 			return -ENOSPC;
558 		io_ctl_map_page(io_ctl, 0);
559 	}
560 
561 	copy_page(io_ctl->cur, bitmap);
562 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
563 	if (io_ctl->index < io_ctl->num_pages)
564 		io_ctl_map_page(io_ctl, 0);
565 	return 0;
566 }
567 
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)568 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
569 {
570 	/*
571 	 * If we're not on the boundary we know we've modified the page and we
572 	 * need to crc the page.
573 	 */
574 	if (io_ctl->cur != io_ctl->orig)
575 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
576 	else
577 		io_ctl_unmap_page(io_ctl);
578 
579 	while (io_ctl->index < io_ctl->num_pages) {
580 		io_ctl_map_page(io_ctl, 1);
581 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
582 	}
583 }
584 
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)585 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
586 			    struct btrfs_free_space *entry, u8 *type)
587 {
588 	struct btrfs_free_space_entry *e;
589 	int ret;
590 
591 	if (!io_ctl->cur) {
592 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
593 		if (ret)
594 			return ret;
595 	}
596 
597 	e = io_ctl->cur;
598 	entry->offset = le64_to_cpu(e->offset);
599 	entry->bytes = le64_to_cpu(e->bytes);
600 	*type = e->type;
601 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
602 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
603 
604 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
605 		return 0;
606 
607 	io_ctl_unmap_page(io_ctl);
608 
609 	return 0;
610 }
611 
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)612 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
613 			      struct btrfs_free_space *entry)
614 {
615 	int ret;
616 
617 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
618 	if (ret)
619 		return ret;
620 
621 	copy_page(entry->bitmap, io_ctl->cur);
622 	io_ctl_unmap_page(io_ctl);
623 
624 	return 0;
625 }
626 
627 /*
628  * Since we attach pinned extents after the fact we can have contiguous sections
629  * of free space that are split up in entries.  This poses a problem with the
630  * tree logging stuff since it could have allocated across what appears to be 2
631  * entries since we would have merged the entries when adding the pinned extents
632  * back to the free space cache.  So run through the space cache that we just
633  * loaded and merge contiguous entries.  This will make the log replay stuff not
634  * blow up and it will make for nicer allocator behavior.
635  */
merge_space_tree(struct btrfs_free_space_ctl * ctl)636 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
637 {
638 	struct btrfs_free_space *e, *prev = NULL;
639 	struct rb_node *n;
640 
641 again:
642 	spin_lock(&ctl->tree_lock);
643 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
644 		e = rb_entry(n, struct btrfs_free_space, offset_index);
645 		if (!prev)
646 			goto next;
647 		if (e->bitmap || prev->bitmap)
648 			goto next;
649 		if (prev->offset + prev->bytes == e->offset) {
650 			unlink_free_space(ctl, prev);
651 			unlink_free_space(ctl, e);
652 			prev->bytes += e->bytes;
653 			kmem_cache_free(btrfs_free_space_cachep, e);
654 			link_free_space(ctl, prev);
655 			prev = NULL;
656 			spin_unlock(&ctl->tree_lock);
657 			goto again;
658 		}
659 next:
660 		prev = e;
661 	}
662 	spin_unlock(&ctl->tree_lock);
663 }
664 
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)665 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
666 				   struct btrfs_free_space_ctl *ctl,
667 				   struct btrfs_path *path, u64 offset)
668 {
669 	struct btrfs_fs_info *fs_info = root->fs_info;
670 	struct btrfs_free_space_header *header;
671 	struct extent_buffer *leaf;
672 	struct btrfs_io_ctl io_ctl;
673 	struct btrfs_key key;
674 	struct btrfs_free_space *e, *n;
675 	LIST_HEAD(bitmaps);
676 	u64 num_entries;
677 	u64 num_bitmaps;
678 	u64 generation;
679 	u8 type;
680 	int ret = 0;
681 
682 	/* Nothing in the space cache, goodbye */
683 	if (!i_size_read(inode))
684 		return 0;
685 
686 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
687 	key.offset = offset;
688 	key.type = 0;
689 
690 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
691 	if (ret < 0)
692 		return 0;
693 	else if (ret > 0) {
694 		btrfs_release_path(path);
695 		return 0;
696 	}
697 
698 	ret = -1;
699 
700 	leaf = path->nodes[0];
701 	header = btrfs_item_ptr(leaf, path->slots[0],
702 				struct btrfs_free_space_header);
703 	num_entries = btrfs_free_space_entries(leaf, header);
704 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
705 	generation = btrfs_free_space_generation(leaf, header);
706 	btrfs_release_path(path);
707 
708 	if (!BTRFS_I(inode)->generation) {
709 		btrfs_info(fs_info,
710 			   "the free space cache file (%llu) is invalid, skip it",
711 			   offset);
712 		return 0;
713 	}
714 
715 	if (BTRFS_I(inode)->generation != generation) {
716 		btrfs_err(fs_info,
717 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
718 			  BTRFS_I(inode)->generation, generation);
719 		return 0;
720 	}
721 
722 	if (!num_entries)
723 		return 0;
724 
725 	ret = io_ctl_init(&io_ctl, inode, 0);
726 	if (ret)
727 		return ret;
728 
729 	readahead_cache(inode);
730 
731 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
732 	if (ret)
733 		goto out;
734 
735 	ret = io_ctl_check_crc(&io_ctl, 0);
736 	if (ret)
737 		goto free_cache;
738 
739 	ret = io_ctl_check_generation(&io_ctl, generation);
740 	if (ret)
741 		goto free_cache;
742 
743 	while (num_entries) {
744 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
745 				      GFP_NOFS);
746 		if (!e)
747 			goto free_cache;
748 
749 		ret = io_ctl_read_entry(&io_ctl, e, &type);
750 		if (ret) {
751 			kmem_cache_free(btrfs_free_space_cachep, e);
752 			goto free_cache;
753 		}
754 
755 		if (!e->bytes) {
756 			kmem_cache_free(btrfs_free_space_cachep, e);
757 			goto free_cache;
758 		}
759 
760 		if (type == BTRFS_FREE_SPACE_EXTENT) {
761 			spin_lock(&ctl->tree_lock);
762 			ret = link_free_space(ctl, e);
763 			spin_unlock(&ctl->tree_lock);
764 			if (ret) {
765 				btrfs_err(fs_info,
766 					"Duplicate entries in free space cache, dumping");
767 				kmem_cache_free(btrfs_free_space_cachep, e);
768 				goto free_cache;
769 			}
770 		} else {
771 			ASSERT(num_bitmaps);
772 			num_bitmaps--;
773 			e->bitmap = kmem_cache_zalloc(
774 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
775 			if (!e->bitmap) {
776 				kmem_cache_free(
777 					btrfs_free_space_cachep, e);
778 				goto free_cache;
779 			}
780 			spin_lock(&ctl->tree_lock);
781 			ret = link_free_space(ctl, e);
782 			ctl->total_bitmaps++;
783 			ctl->op->recalc_thresholds(ctl);
784 			spin_unlock(&ctl->tree_lock);
785 			if (ret) {
786 				btrfs_err(fs_info,
787 					"Duplicate entries in free space cache, dumping");
788 				kmem_cache_free(btrfs_free_space_cachep, e);
789 				goto free_cache;
790 			}
791 			list_add_tail(&e->list, &bitmaps);
792 		}
793 
794 		num_entries--;
795 	}
796 
797 	io_ctl_unmap_page(&io_ctl);
798 
799 	/*
800 	 * We add the bitmaps at the end of the entries in order that
801 	 * the bitmap entries are added to the cache.
802 	 */
803 	list_for_each_entry_safe(e, n, &bitmaps, list) {
804 		list_del_init(&e->list);
805 		ret = io_ctl_read_bitmap(&io_ctl, e);
806 		if (ret)
807 			goto free_cache;
808 	}
809 
810 	io_ctl_drop_pages(&io_ctl);
811 	merge_space_tree(ctl);
812 	ret = 1;
813 out:
814 	io_ctl_free(&io_ctl);
815 	return ret;
816 free_cache:
817 	io_ctl_drop_pages(&io_ctl);
818 	__btrfs_remove_free_space_cache(ctl);
819 	goto out;
820 }
821 
load_free_space_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)822 int load_free_space_cache(struct btrfs_fs_info *fs_info,
823 			  struct btrfs_block_group_cache *block_group)
824 {
825 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
826 	struct inode *inode;
827 	struct btrfs_path *path;
828 	int ret = 0;
829 	bool matched;
830 	u64 used = btrfs_block_group_used(&block_group->item);
831 
832 	/*
833 	 * If this block group has been marked to be cleared for one reason or
834 	 * another then we can't trust the on disk cache, so just return.
835 	 */
836 	spin_lock(&block_group->lock);
837 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
838 		spin_unlock(&block_group->lock);
839 		return 0;
840 	}
841 	spin_unlock(&block_group->lock);
842 
843 	path = btrfs_alloc_path();
844 	if (!path)
845 		return 0;
846 	path->search_commit_root = 1;
847 	path->skip_locking = 1;
848 
849 	/*
850 	 * We must pass a path with search_commit_root set to btrfs_iget in
851 	 * order to avoid a deadlock when allocating extents for the tree root.
852 	 *
853 	 * When we are COWing an extent buffer from the tree root, when looking
854 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
855 	 * block group without its free space cache loaded. When we find one
856 	 * we must load its space cache which requires reading its free space
857 	 * cache's inode item from the root tree. If this inode item is located
858 	 * in the same leaf that we started COWing before, then we end up in
859 	 * deadlock on the extent buffer (trying to read lock it when we
860 	 * previously write locked it).
861 	 *
862 	 * It's safe to read the inode item using the commit root because
863 	 * block groups, once loaded, stay in memory forever (until they are
864 	 * removed) as well as their space caches once loaded. New block groups
865 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
866 	 * we will never try to read their inode item while the fs is mounted.
867 	 */
868 	inode = lookup_free_space_inode(fs_info, block_group, path);
869 	if (IS_ERR(inode)) {
870 		btrfs_free_path(path);
871 		return 0;
872 	}
873 
874 	/* We may have converted the inode and made the cache invalid. */
875 	spin_lock(&block_group->lock);
876 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
877 		spin_unlock(&block_group->lock);
878 		btrfs_free_path(path);
879 		goto out;
880 	}
881 	spin_unlock(&block_group->lock);
882 
883 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
884 				      path, block_group->key.objectid);
885 	btrfs_free_path(path);
886 	if (ret <= 0)
887 		goto out;
888 
889 	spin_lock(&ctl->tree_lock);
890 	matched = (ctl->free_space == (block_group->key.offset - used -
891 				       block_group->bytes_super));
892 	spin_unlock(&ctl->tree_lock);
893 
894 	if (!matched) {
895 		__btrfs_remove_free_space_cache(ctl);
896 		btrfs_warn(fs_info,
897 			   "block group %llu has wrong amount of free space",
898 			   block_group->key.objectid);
899 		ret = -1;
900 	}
901 out:
902 	if (ret < 0) {
903 		/* This cache is bogus, make sure it gets cleared */
904 		spin_lock(&block_group->lock);
905 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
906 		spin_unlock(&block_group->lock);
907 		ret = 0;
908 
909 		btrfs_warn(fs_info,
910 			   "failed to load free space cache for block group %llu, rebuilding it now",
911 			   block_group->key.objectid);
912 	}
913 
914 	iput(inode);
915 	return ret;
916 }
917 
918 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)919 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
920 			      struct btrfs_free_space_ctl *ctl,
921 			      struct btrfs_block_group_cache *block_group,
922 			      int *entries, int *bitmaps,
923 			      struct list_head *bitmap_list)
924 {
925 	int ret;
926 	struct btrfs_free_cluster *cluster = NULL;
927 	struct btrfs_free_cluster *cluster_locked = NULL;
928 	struct rb_node *node = rb_first(&ctl->free_space_offset);
929 	struct btrfs_trim_range *trim_entry;
930 
931 	/* Get the cluster for this block_group if it exists */
932 	if (block_group && !list_empty(&block_group->cluster_list)) {
933 		cluster = list_entry(block_group->cluster_list.next,
934 				     struct btrfs_free_cluster,
935 				     block_group_list);
936 	}
937 
938 	if (!node && cluster) {
939 		cluster_locked = cluster;
940 		spin_lock(&cluster_locked->lock);
941 		node = rb_first(&cluster->root);
942 		cluster = NULL;
943 	}
944 
945 	/* Write out the extent entries */
946 	while (node) {
947 		struct btrfs_free_space *e;
948 
949 		e = rb_entry(node, struct btrfs_free_space, offset_index);
950 		*entries += 1;
951 
952 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
953 				       e->bitmap);
954 		if (ret)
955 			goto fail;
956 
957 		if (e->bitmap) {
958 			list_add_tail(&e->list, bitmap_list);
959 			*bitmaps += 1;
960 		}
961 		node = rb_next(node);
962 		if (!node && cluster) {
963 			node = rb_first(&cluster->root);
964 			cluster_locked = cluster;
965 			spin_lock(&cluster_locked->lock);
966 			cluster = NULL;
967 		}
968 	}
969 	if (cluster_locked) {
970 		spin_unlock(&cluster_locked->lock);
971 		cluster_locked = NULL;
972 	}
973 
974 	/*
975 	 * Make sure we don't miss any range that was removed from our rbtree
976 	 * because trimming is running. Otherwise after a umount+mount (or crash
977 	 * after committing the transaction) we would leak free space and get
978 	 * an inconsistent free space cache report from fsck.
979 	 */
980 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
981 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
982 				       trim_entry->bytes, NULL);
983 		if (ret)
984 			goto fail;
985 		*entries += 1;
986 	}
987 
988 	return 0;
989 fail:
990 	if (cluster_locked)
991 		spin_unlock(&cluster_locked->lock);
992 	return -ENOSPC;
993 }
994 
995 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)996 update_cache_item(struct btrfs_trans_handle *trans,
997 		  struct btrfs_root *root,
998 		  struct inode *inode,
999 		  struct btrfs_path *path, u64 offset,
1000 		  int entries, int bitmaps)
1001 {
1002 	struct btrfs_key key;
1003 	struct btrfs_free_space_header *header;
1004 	struct extent_buffer *leaf;
1005 	int ret;
1006 
1007 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1008 	key.offset = offset;
1009 	key.type = 0;
1010 
1011 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1012 	if (ret < 0) {
1013 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1014 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1015 		goto fail;
1016 	}
1017 	leaf = path->nodes[0];
1018 	if (ret > 0) {
1019 		struct btrfs_key found_key;
1020 		ASSERT(path->slots[0]);
1021 		path->slots[0]--;
1022 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1023 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1024 		    found_key.offset != offset) {
1025 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1026 					 inode->i_size - 1,
1027 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1028 					 NULL);
1029 			btrfs_release_path(path);
1030 			goto fail;
1031 		}
1032 	}
1033 
1034 	BTRFS_I(inode)->generation = trans->transid;
1035 	header = btrfs_item_ptr(leaf, path->slots[0],
1036 				struct btrfs_free_space_header);
1037 	btrfs_set_free_space_entries(leaf, header, entries);
1038 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1039 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1040 	btrfs_mark_buffer_dirty(leaf);
1041 	btrfs_release_path(path);
1042 
1043 	return 0;
1044 
1045 fail:
1046 	return -1;
1047 }
1048 
1049 static noinline_for_stack int
write_pinned_extent_entries(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1050 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1051 			    struct btrfs_block_group_cache *block_group,
1052 			    struct btrfs_io_ctl *io_ctl,
1053 			    int *entries)
1054 {
1055 	u64 start, extent_start, extent_end, len;
1056 	struct extent_io_tree *unpin = NULL;
1057 	int ret;
1058 
1059 	if (!block_group)
1060 		return 0;
1061 
1062 	/*
1063 	 * We want to add any pinned extents to our free space cache
1064 	 * so we don't leak the space
1065 	 *
1066 	 * We shouldn't have switched the pinned extents yet so this is the
1067 	 * right one
1068 	 */
1069 	unpin = fs_info->pinned_extents;
1070 
1071 	start = block_group->key.objectid;
1072 
1073 	while (start < block_group->key.objectid + block_group->key.offset) {
1074 		ret = find_first_extent_bit(unpin, start,
1075 					    &extent_start, &extent_end,
1076 					    EXTENT_DIRTY, NULL);
1077 		if (ret)
1078 			return 0;
1079 
1080 		/* This pinned extent is out of our range */
1081 		if (extent_start >= block_group->key.objectid +
1082 		    block_group->key.offset)
1083 			return 0;
1084 
1085 		extent_start = max(extent_start, start);
1086 		extent_end = min(block_group->key.objectid +
1087 				 block_group->key.offset, extent_end + 1);
1088 		len = extent_end - extent_start;
1089 
1090 		*entries += 1;
1091 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1092 		if (ret)
1093 			return -ENOSPC;
1094 
1095 		start = extent_end;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1102 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1103 {
1104 	struct btrfs_free_space *entry, *next;
1105 	int ret;
1106 
1107 	/* Write out the bitmaps */
1108 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1109 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1110 		if (ret)
1111 			return -ENOSPC;
1112 		list_del_init(&entry->list);
1113 	}
1114 
1115 	return 0;
1116 }
1117 
flush_dirty_cache(struct inode * inode)1118 static int flush_dirty_cache(struct inode *inode)
1119 {
1120 	int ret;
1121 
1122 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1123 	if (ret)
1124 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1125 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1126 
1127 	return ret;
1128 }
1129 
1130 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1131 cleanup_bitmap_list(struct list_head *bitmap_list)
1132 {
1133 	struct btrfs_free_space *entry, *next;
1134 
1135 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1136 		list_del_init(&entry->list);
1137 }
1138 
1139 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1140 cleanup_write_cache_enospc(struct inode *inode,
1141 			   struct btrfs_io_ctl *io_ctl,
1142 			   struct extent_state **cached_state)
1143 {
1144 	io_ctl_drop_pages(io_ctl);
1145 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1146 			     i_size_read(inode) - 1, cached_state);
1147 }
1148 
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1149 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1150 				 struct btrfs_trans_handle *trans,
1151 				 struct btrfs_block_group_cache *block_group,
1152 				 struct btrfs_io_ctl *io_ctl,
1153 				 struct btrfs_path *path, u64 offset)
1154 {
1155 	int ret;
1156 	struct inode *inode = io_ctl->inode;
1157 
1158 	if (!inode)
1159 		return 0;
1160 
1161 	/* Flush the dirty pages in the cache file. */
1162 	ret = flush_dirty_cache(inode);
1163 	if (ret)
1164 		goto out;
1165 
1166 	/* Update the cache item to tell everyone this cache file is valid. */
1167 	ret = update_cache_item(trans, root, inode, path, offset,
1168 				io_ctl->entries, io_ctl->bitmaps);
1169 out:
1170 	if (ret) {
1171 		invalidate_inode_pages2(inode->i_mapping);
1172 		BTRFS_I(inode)->generation = 0;
1173 		if (block_group) {
1174 #ifdef DEBUG
1175 			btrfs_err(root->fs_info,
1176 				  "failed to write free space cache for block group %llu",
1177 				  block_group->key.objectid);
1178 #endif
1179 		}
1180 	}
1181 	btrfs_update_inode(trans, root, inode);
1182 
1183 	if (block_group) {
1184 		/* the dirty list is protected by the dirty_bgs_lock */
1185 		spin_lock(&trans->transaction->dirty_bgs_lock);
1186 
1187 		/* the disk_cache_state is protected by the block group lock */
1188 		spin_lock(&block_group->lock);
1189 
1190 		/*
1191 		 * only mark this as written if we didn't get put back on
1192 		 * the dirty list while waiting for IO.   Otherwise our
1193 		 * cache state won't be right, and we won't get written again
1194 		 */
1195 		if (!ret && list_empty(&block_group->dirty_list))
1196 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1197 		else if (ret)
1198 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1199 
1200 		spin_unlock(&block_group->lock);
1201 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1202 		io_ctl->inode = NULL;
1203 		iput(inode);
1204 	}
1205 
1206 	return ret;
1207 
1208 }
1209 
btrfs_wait_cache_io_root(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path)1210 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1211 				    struct btrfs_trans_handle *trans,
1212 				    struct btrfs_io_ctl *io_ctl,
1213 				    struct btrfs_path *path)
1214 {
1215 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1216 }
1217 
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1218 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1219 			struct btrfs_block_group_cache *block_group,
1220 			struct btrfs_path *path)
1221 {
1222 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1223 				     block_group, &block_group->io_ctl,
1224 				     path, block_group->key.objectid);
1225 }
1226 
1227 /**
1228  * __btrfs_write_out_cache - write out cached info to an inode
1229  * @root - the root the inode belongs to
1230  * @ctl - the free space cache we are going to write out
1231  * @block_group - the block_group for this cache if it belongs to a block_group
1232  * @trans - the trans handle
1233  *
1234  * This function writes out a free space cache struct to disk for quick recovery
1235  * on mount.  This will return 0 if it was successful in writing the cache out,
1236  * or an errno if it was not.
1237  */
__btrfs_write_out_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1238 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1239 				   struct btrfs_free_space_ctl *ctl,
1240 				   struct btrfs_block_group_cache *block_group,
1241 				   struct btrfs_io_ctl *io_ctl,
1242 				   struct btrfs_trans_handle *trans)
1243 {
1244 	struct btrfs_fs_info *fs_info = root->fs_info;
1245 	struct extent_state *cached_state = NULL;
1246 	LIST_HEAD(bitmap_list);
1247 	int entries = 0;
1248 	int bitmaps = 0;
1249 	int ret;
1250 	int must_iput = 0;
1251 
1252 	if (!i_size_read(inode))
1253 		return -EIO;
1254 
1255 	WARN_ON(io_ctl->pages);
1256 	ret = io_ctl_init(io_ctl, inode, 1);
1257 	if (ret)
1258 		return ret;
1259 
1260 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1261 		down_write(&block_group->data_rwsem);
1262 		spin_lock(&block_group->lock);
1263 		if (block_group->delalloc_bytes) {
1264 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1265 			spin_unlock(&block_group->lock);
1266 			up_write(&block_group->data_rwsem);
1267 			BTRFS_I(inode)->generation = 0;
1268 			ret = 0;
1269 			must_iput = 1;
1270 			goto out;
1271 		}
1272 		spin_unlock(&block_group->lock);
1273 	}
1274 
1275 	/* Lock all pages first so we can lock the extent safely. */
1276 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1277 	if (ret)
1278 		goto out_unlock;
1279 
1280 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1281 			 &cached_state);
1282 
1283 	io_ctl_set_generation(io_ctl, trans->transid);
1284 
1285 	mutex_lock(&ctl->cache_writeout_mutex);
1286 	/* Write out the extent entries in the free space cache */
1287 	spin_lock(&ctl->tree_lock);
1288 	ret = write_cache_extent_entries(io_ctl, ctl,
1289 					 block_group, &entries, &bitmaps,
1290 					 &bitmap_list);
1291 	if (ret)
1292 		goto out_nospc_locked;
1293 
1294 	/*
1295 	 * Some spaces that are freed in the current transaction are pinned,
1296 	 * they will be added into free space cache after the transaction is
1297 	 * committed, we shouldn't lose them.
1298 	 *
1299 	 * If this changes while we are working we'll get added back to
1300 	 * the dirty list and redo it.  No locking needed
1301 	 */
1302 	ret = write_pinned_extent_entries(fs_info, block_group,
1303 					  io_ctl, &entries);
1304 	if (ret)
1305 		goto out_nospc_locked;
1306 
1307 	/*
1308 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1309 	 * locked while doing it because a concurrent trim can be manipulating
1310 	 * or freeing the bitmap.
1311 	 */
1312 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1313 	spin_unlock(&ctl->tree_lock);
1314 	mutex_unlock(&ctl->cache_writeout_mutex);
1315 	if (ret)
1316 		goto out_nospc;
1317 
1318 	/* Zero out the rest of the pages just to make sure */
1319 	io_ctl_zero_remaining_pages(io_ctl);
1320 
1321 	/* Everything is written out, now we dirty the pages in the file. */
1322 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1323 				i_size_read(inode), &cached_state);
1324 	if (ret)
1325 		goto out_nospc;
1326 
1327 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1328 		up_write(&block_group->data_rwsem);
1329 	/*
1330 	 * Release the pages and unlock the extent, we will flush
1331 	 * them out later
1332 	 */
1333 	io_ctl_drop_pages(io_ctl);
1334 	io_ctl_free(io_ctl);
1335 
1336 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1337 			     i_size_read(inode) - 1, &cached_state);
1338 
1339 	/*
1340 	 * at this point the pages are under IO and we're happy,
1341 	 * The caller is responsible for waiting on them and updating the
1342 	 * the cache and the inode
1343 	 */
1344 	io_ctl->entries = entries;
1345 	io_ctl->bitmaps = bitmaps;
1346 
1347 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1348 	if (ret)
1349 		goto out;
1350 
1351 	return 0;
1352 
1353 out:
1354 	io_ctl->inode = NULL;
1355 	io_ctl_free(io_ctl);
1356 	if (ret) {
1357 		invalidate_inode_pages2(inode->i_mapping);
1358 		BTRFS_I(inode)->generation = 0;
1359 	}
1360 	btrfs_update_inode(trans, root, inode);
1361 	if (must_iput)
1362 		iput(inode);
1363 	return ret;
1364 
1365 out_nospc_locked:
1366 	cleanup_bitmap_list(&bitmap_list);
1367 	spin_unlock(&ctl->tree_lock);
1368 	mutex_unlock(&ctl->cache_writeout_mutex);
1369 
1370 out_nospc:
1371 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1372 
1373 out_unlock:
1374 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1375 		up_write(&block_group->data_rwsem);
1376 
1377 	goto out;
1378 }
1379 
btrfs_write_out_cache(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1380 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1381 			  struct btrfs_trans_handle *trans,
1382 			  struct btrfs_block_group_cache *block_group,
1383 			  struct btrfs_path *path)
1384 {
1385 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1386 	struct inode *inode;
1387 	int ret = 0;
1388 
1389 	spin_lock(&block_group->lock);
1390 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1391 		spin_unlock(&block_group->lock);
1392 		return 0;
1393 	}
1394 	spin_unlock(&block_group->lock);
1395 
1396 	inode = lookup_free_space_inode(fs_info, block_group, path);
1397 	if (IS_ERR(inode))
1398 		return 0;
1399 
1400 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1401 				block_group, &block_group->io_ctl, trans);
1402 	if (ret) {
1403 #ifdef DEBUG
1404 		btrfs_err(fs_info,
1405 			  "failed to write free space cache for block group %llu",
1406 			  block_group->key.objectid);
1407 #endif
1408 		spin_lock(&block_group->lock);
1409 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1410 		spin_unlock(&block_group->lock);
1411 
1412 		block_group->io_ctl.inode = NULL;
1413 		iput(inode);
1414 	}
1415 
1416 	/*
1417 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1418 	 * to wait for IO and put the inode
1419 	 */
1420 
1421 	return ret;
1422 }
1423 
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1424 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1425 					  u64 offset)
1426 {
1427 	ASSERT(offset >= bitmap_start);
1428 	offset -= bitmap_start;
1429 	return (unsigned long)(div_u64(offset, unit));
1430 }
1431 
bytes_to_bits(u64 bytes,u32 unit)1432 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1433 {
1434 	return (unsigned long)(div_u64(bytes, unit));
1435 }
1436 
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1437 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1438 				   u64 offset)
1439 {
1440 	u64 bitmap_start;
1441 	u64 bytes_per_bitmap;
1442 
1443 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1444 	bitmap_start = offset - ctl->start;
1445 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1446 	bitmap_start *= bytes_per_bitmap;
1447 	bitmap_start += ctl->start;
1448 
1449 	return bitmap_start;
1450 }
1451 
tree_insert_offset(struct rb_root * root,u64 offset,struct rb_node * node,int bitmap)1452 static int tree_insert_offset(struct rb_root *root, u64 offset,
1453 			      struct rb_node *node, int bitmap)
1454 {
1455 	struct rb_node **p = &root->rb_node;
1456 	struct rb_node *parent = NULL;
1457 	struct btrfs_free_space *info;
1458 
1459 	while (*p) {
1460 		parent = *p;
1461 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1462 
1463 		if (offset < info->offset) {
1464 			p = &(*p)->rb_left;
1465 		} else if (offset > info->offset) {
1466 			p = &(*p)->rb_right;
1467 		} else {
1468 			/*
1469 			 * we could have a bitmap entry and an extent entry
1470 			 * share the same offset.  If this is the case, we want
1471 			 * the extent entry to always be found first if we do a
1472 			 * linear search through the tree, since we want to have
1473 			 * the quickest allocation time, and allocating from an
1474 			 * extent is faster than allocating from a bitmap.  So
1475 			 * if we're inserting a bitmap and we find an entry at
1476 			 * this offset, we want to go right, or after this entry
1477 			 * logically.  If we are inserting an extent and we've
1478 			 * found a bitmap, we want to go left, or before
1479 			 * logically.
1480 			 */
1481 			if (bitmap) {
1482 				if (info->bitmap) {
1483 					WARN_ON_ONCE(1);
1484 					return -EEXIST;
1485 				}
1486 				p = &(*p)->rb_right;
1487 			} else {
1488 				if (!info->bitmap) {
1489 					WARN_ON_ONCE(1);
1490 					return -EEXIST;
1491 				}
1492 				p = &(*p)->rb_left;
1493 			}
1494 		}
1495 	}
1496 
1497 	rb_link_node(node, parent, p);
1498 	rb_insert_color(node, root);
1499 
1500 	return 0;
1501 }
1502 
1503 /*
1504  * searches the tree for the given offset.
1505  *
1506  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1507  * want a section that has at least bytes size and comes at or after the given
1508  * offset.
1509  */
1510 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1511 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1512 		   u64 offset, int bitmap_only, int fuzzy)
1513 {
1514 	struct rb_node *n = ctl->free_space_offset.rb_node;
1515 	struct btrfs_free_space *entry, *prev = NULL;
1516 
1517 	/* find entry that is closest to the 'offset' */
1518 	while (1) {
1519 		if (!n) {
1520 			entry = NULL;
1521 			break;
1522 		}
1523 
1524 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1525 		prev = entry;
1526 
1527 		if (offset < entry->offset)
1528 			n = n->rb_left;
1529 		else if (offset > entry->offset)
1530 			n = n->rb_right;
1531 		else
1532 			break;
1533 	}
1534 
1535 	if (bitmap_only) {
1536 		if (!entry)
1537 			return NULL;
1538 		if (entry->bitmap)
1539 			return entry;
1540 
1541 		/*
1542 		 * bitmap entry and extent entry may share same offset,
1543 		 * in that case, bitmap entry comes after extent entry.
1544 		 */
1545 		n = rb_next(n);
1546 		if (!n)
1547 			return NULL;
1548 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1549 		if (entry->offset != offset)
1550 			return NULL;
1551 
1552 		WARN_ON(!entry->bitmap);
1553 		return entry;
1554 	} else if (entry) {
1555 		if (entry->bitmap) {
1556 			/*
1557 			 * if previous extent entry covers the offset,
1558 			 * we should return it instead of the bitmap entry
1559 			 */
1560 			n = rb_prev(&entry->offset_index);
1561 			if (n) {
1562 				prev = rb_entry(n, struct btrfs_free_space,
1563 						offset_index);
1564 				if (!prev->bitmap &&
1565 				    prev->offset + prev->bytes > offset)
1566 					entry = prev;
1567 			}
1568 		}
1569 		return entry;
1570 	}
1571 
1572 	if (!prev)
1573 		return NULL;
1574 
1575 	/* find last entry before the 'offset' */
1576 	entry = prev;
1577 	if (entry->offset > offset) {
1578 		n = rb_prev(&entry->offset_index);
1579 		if (n) {
1580 			entry = rb_entry(n, struct btrfs_free_space,
1581 					offset_index);
1582 			ASSERT(entry->offset <= offset);
1583 		} else {
1584 			if (fuzzy)
1585 				return entry;
1586 			else
1587 				return NULL;
1588 		}
1589 	}
1590 
1591 	if (entry->bitmap) {
1592 		n = rb_prev(&entry->offset_index);
1593 		if (n) {
1594 			prev = rb_entry(n, struct btrfs_free_space,
1595 					offset_index);
1596 			if (!prev->bitmap &&
1597 			    prev->offset + prev->bytes > offset)
1598 				return prev;
1599 		}
1600 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1601 			return entry;
1602 	} else if (entry->offset + entry->bytes > offset)
1603 		return entry;
1604 
1605 	if (!fuzzy)
1606 		return NULL;
1607 
1608 	while (1) {
1609 		if (entry->bitmap) {
1610 			if (entry->offset + BITS_PER_BITMAP *
1611 			    ctl->unit > offset)
1612 				break;
1613 		} else {
1614 			if (entry->offset + entry->bytes > offset)
1615 				break;
1616 		}
1617 
1618 		n = rb_next(&entry->offset_index);
1619 		if (!n)
1620 			return NULL;
1621 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1622 	}
1623 	return entry;
1624 }
1625 
1626 static inline void
__unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1627 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1628 		    struct btrfs_free_space *info)
1629 {
1630 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1631 	ctl->free_extents--;
1632 }
1633 
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1634 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1635 			      struct btrfs_free_space *info)
1636 {
1637 	__unlink_free_space(ctl, info);
1638 	ctl->free_space -= info->bytes;
1639 }
1640 
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1641 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1642 			   struct btrfs_free_space *info)
1643 {
1644 	int ret = 0;
1645 
1646 	ASSERT(info->bytes || info->bitmap);
1647 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1648 				 &info->offset_index, (info->bitmap != NULL));
1649 	if (ret)
1650 		return ret;
1651 
1652 	ctl->free_space += info->bytes;
1653 	ctl->free_extents++;
1654 	return ret;
1655 }
1656 
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)1657 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1658 {
1659 	struct btrfs_block_group_cache *block_group = ctl->private;
1660 	u64 max_bytes;
1661 	u64 bitmap_bytes;
1662 	u64 extent_bytes;
1663 	u64 size = block_group->key.offset;
1664 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1665 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1666 
1667 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1668 
1669 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1670 
1671 	/*
1672 	 * The goal is to keep the total amount of memory used per 1gb of space
1673 	 * at or below 32k, so we need to adjust how much memory we allow to be
1674 	 * used by extent based free space tracking
1675 	 */
1676 	if (size < SZ_1G)
1677 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1678 	else
1679 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1680 
1681 	/*
1682 	 * we want to account for 1 more bitmap than what we have so we can make
1683 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1684 	 * we add more bitmaps.
1685 	 */
1686 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1687 
1688 	if (bitmap_bytes >= max_bytes) {
1689 		ctl->extents_thresh = 0;
1690 		return;
1691 	}
1692 
1693 	/*
1694 	 * we want the extent entry threshold to always be at most 1/2 the max
1695 	 * bytes we can have, or whatever is less than that.
1696 	 */
1697 	extent_bytes = max_bytes - bitmap_bytes;
1698 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1699 
1700 	ctl->extents_thresh =
1701 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1702 }
1703 
__bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1704 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1705 				       struct btrfs_free_space *info,
1706 				       u64 offset, u64 bytes)
1707 {
1708 	unsigned long start, count;
1709 
1710 	start = offset_to_bit(info->offset, ctl->unit, offset);
1711 	count = bytes_to_bits(bytes, ctl->unit);
1712 	ASSERT(start + count <= BITS_PER_BITMAP);
1713 
1714 	bitmap_clear(info->bitmap, start, count);
1715 
1716 	info->bytes -= bytes;
1717 	if (info->max_extent_size > ctl->unit)
1718 		info->max_extent_size = 0;
1719 }
1720 
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1721 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1722 			      struct btrfs_free_space *info, u64 offset,
1723 			      u64 bytes)
1724 {
1725 	__bitmap_clear_bits(ctl, info, offset, bytes);
1726 	ctl->free_space -= bytes;
1727 }
1728 
bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1729 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1730 			    struct btrfs_free_space *info, u64 offset,
1731 			    u64 bytes)
1732 {
1733 	unsigned long start, count;
1734 
1735 	start = offset_to_bit(info->offset, ctl->unit, offset);
1736 	count = bytes_to_bits(bytes, ctl->unit);
1737 	ASSERT(start + count <= BITS_PER_BITMAP);
1738 
1739 	bitmap_set(info->bitmap, start, count);
1740 
1741 	info->bytes += bytes;
1742 	ctl->free_space += bytes;
1743 }
1744 
1745 /*
1746  * If we can not find suitable extent, we will use bytes to record
1747  * the size of the max extent.
1748  */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1749 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1750 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1751 			 u64 *bytes, bool for_alloc)
1752 {
1753 	unsigned long found_bits = 0;
1754 	unsigned long max_bits = 0;
1755 	unsigned long bits, i;
1756 	unsigned long next_zero;
1757 	unsigned long extent_bits;
1758 
1759 	/*
1760 	 * Skip searching the bitmap if we don't have a contiguous section that
1761 	 * is large enough for this allocation.
1762 	 */
1763 	if (for_alloc &&
1764 	    bitmap_info->max_extent_size &&
1765 	    bitmap_info->max_extent_size < *bytes) {
1766 		*bytes = bitmap_info->max_extent_size;
1767 		return -1;
1768 	}
1769 
1770 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1771 			  max_t(u64, *offset, bitmap_info->offset));
1772 	bits = bytes_to_bits(*bytes, ctl->unit);
1773 
1774 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1775 		if (for_alloc && bits == 1) {
1776 			found_bits = 1;
1777 			break;
1778 		}
1779 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1780 					       BITS_PER_BITMAP, i);
1781 		extent_bits = next_zero - i;
1782 		if (extent_bits >= bits) {
1783 			found_bits = extent_bits;
1784 			break;
1785 		} else if (extent_bits > max_bits) {
1786 			max_bits = extent_bits;
1787 		}
1788 		i = next_zero;
1789 	}
1790 
1791 	if (found_bits) {
1792 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1793 		*bytes = (u64)(found_bits) * ctl->unit;
1794 		return 0;
1795 	}
1796 
1797 	*bytes = (u64)(max_bits) * ctl->unit;
1798 	bitmap_info->max_extent_size = *bytes;
1799 	return -1;
1800 }
1801 
get_max_extent_size(struct btrfs_free_space * entry)1802 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1803 {
1804 	if (entry->bitmap)
1805 		return entry->max_extent_size;
1806 	return entry->bytes;
1807 }
1808 
1809 /* Cache the size of the max extent in bytes */
1810 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size)1811 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1812 		unsigned long align, u64 *max_extent_size)
1813 {
1814 	struct btrfs_free_space *entry;
1815 	struct rb_node *node;
1816 	u64 tmp;
1817 	u64 align_off;
1818 	int ret;
1819 
1820 	if (!ctl->free_space_offset.rb_node)
1821 		goto out;
1822 
1823 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1824 	if (!entry)
1825 		goto out;
1826 
1827 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1828 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1829 		if (entry->bytes < *bytes) {
1830 			*max_extent_size = max(get_max_extent_size(entry),
1831 					       *max_extent_size);
1832 			continue;
1833 		}
1834 
1835 		/* make sure the space returned is big enough
1836 		 * to match our requested alignment
1837 		 */
1838 		if (*bytes >= align) {
1839 			tmp = entry->offset - ctl->start + align - 1;
1840 			tmp = div64_u64(tmp, align);
1841 			tmp = tmp * align + ctl->start;
1842 			align_off = tmp - entry->offset;
1843 		} else {
1844 			align_off = 0;
1845 			tmp = entry->offset;
1846 		}
1847 
1848 		if (entry->bytes < *bytes + align_off) {
1849 			*max_extent_size = max(get_max_extent_size(entry),
1850 					       *max_extent_size);
1851 			continue;
1852 		}
1853 
1854 		if (entry->bitmap) {
1855 			u64 size = *bytes;
1856 
1857 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1858 			if (!ret) {
1859 				*offset = tmp;
1860 				*bytes = size;
1861 				return entry;
1862 			} else {
1863 				*max_extent_size =
1864 					max(get_max_extent_size(entry),
1865 					    *max_extent_size);
1866 			}
1867 			continue;
1868 		}
1869 
1870 		*offset = tmp;
1871 		*bytes = entry->bytes - align_off;
1872 		return entry;
1873 	}
1874 out:
1875 	return NULL;
1876 }
1877 
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)1878 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1879 			   struct btrfs_free_space *info, u64 offset)
1880 {
1881 	info->offset = offset_to_bitmap(ctl, offset);
1882 	info->bytes = 0;
1883 	INIT_LIST_HEAD(&info->list);
1884 	link_free_space(ctl, info);
1885 	ctl->total_bitmaps++;
1886 
1887 	ctl->op->recalc_thresholds(ctl);
1888 }
1889 
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)1890 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1891 			struct btrfs_free_space *bitmap_info)
1892 {
1893 	unlink_free_space(ctl, bitmap_info);
1894 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1895 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1896 	ctl->total_bitmaps--;
1897 	ctl->op->recalc_thresholds(ctl);
1898 }
1899 
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)1900 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1901 			      struct btrfs_free_space *bitmap_info,
1902 			      u64 *offset, u64 *bytes)
1903 {
1904 	u64 end;
1905 	u64 search_start, search_bytes;
1906 	int ret;
1907 
1908 again:
1909 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1910 
1911 	/*
1912 	 * We need to search for bits in this bitmap.  We could only cover some
1913 	 * of the extent in this bitmap thanks to how we add space, so we need
1914 	 * to search for as much as it as we can and clear that amount, and then
1915 	 * go searching for the next bit.
1916 	 */
1917 	search_start = *offset;
1918 	search_bytes = ctl->unit;
1919 	search_bytes = min(search_bytes, end - search_start + 1);
1920 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1921 			    false);
1922 	if (ret < 0 || search_start != *offset)
1923 		return -EINVAL;
1924 
1925 	/* We may have found more bits than what we need */
1926 	search_bytes = min(search_bytes, *bytes);
1927 
1928 	/* Cannot clear past the end of the bitmap */
1929 	search_bytes = min(search_bytes, end - search_start + 1);
1930 
1931 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1932 	*offset += search_bytes;
1933 	*bytes -= search_bytes;
1934 
1935 	if (*bytes) {
1936 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1937 		if (!bitmap_info->bytes)
1938 			free_bitmap(ctl, bitmap_info);
1939 
1940 		/*
1941 		 * no entry after this bitmap, but we still have bytes to
1942 		 * remove, so something has gone wrong.
1943 		 */
1944 		if (!next)
1945 			return -EINVAL;
1946 
1947 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1948 				       offset_index);
1949 
1950 		/*
1951 		 * if the next entry isn't a bitmap we need to return to let the
1952 		 * extent stuff do its work.
1953 		 */
1954 		if (!bitmap_info->bitmap)
1955 			return -EAGAIN;
1956 
1957 		/*
1958 		 * Ok the next item is a bitmap, but it may not actually hold
1959 		 * the information for the rest of this free space stuff, so
1960 		 * look for it, and if we don't find it return so we can try
1961 		 * everything over again.
1962 		 */
1963 		search_start = *offset;
1964 		search_bytes = ctl->unit;
1965 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1966 				    &search_bytes, false);
1967 		if (ret < 0 || search_start != *offset)
1968 			return -EAGAIN;
1969 
1970 		goto again;
1971 	} else if (!bitmap_info->bytes)
1972 		free_bitmap(ctl, bitmap_info);
1973 
1974 	return 0;
1975 }
1976 
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1977 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1978 			       struct btrfs_free_space *info, u64 offset,
1979 			       u64 bytes)
1980 {
1981 	u64 bytes_to_set = 0;
1982 	u64 end;
1983 
1984 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1985 
1986 	bytes_to_set = min(end - offset, bytes);
1987 
1988 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1989 
1990 	/*
1991 	 * We set some bytes, we have no idea what the max extent size is
1992 	 * anymore.
1993 	 */
1994 	info->max_extent_size = 0;
1995 
1996 	return bytes_to_set;
1997 
1998 }
1999 
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2000 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2001 		      struct btrfs_free_space *info)
2002 {
2003 	struct btrfs_block_group_cache *block_group = ctl->private;
2004 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2005 	bool forced = false;
2006 
2007 #ifdef CONFIG_BTRFS_DEBUG
2008 	if (btrfs_should_fragment_free_space(block_group))
2009 		forced = true;
2010 #endif
2011 
2012 	/*
2013 	 * If we are below the extents threshold then we can add this as an
2014 	 * extent, and don't have to deal with the bitmap
2015 	 */
2016 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2017 		/*
2018 		 * If this block group has some small extents we don't want to
2019 		 * use up all of our free slots in the cache with them, we want
2020 		 * to reserve them to larger extents, however if we have plenty
2021 		 * of cache left then go ahead an dadd them, no sense in adding
2022 		 * the overhead of a bitmap if we don't have to.
2023 		 */
2024 		if (info->bytes <= fs_info->sectorsize * 4) {
2025 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2026 				return false;
2027 		} else {
2028 			return false;
2029 		}
2030 	}
2031 
2032 	/*
2033 	 * The original block groups from mkfs can be really small, like 8
2034 	 * megabytes, so don't bother with a bitmap for those entries.  However
2035 	 * some block groups can be smaller than what a bitmap would cover but
2036 	 * are still large enough that they could overflow the 32k memory limit,
2037 	 * so allow those block groups to still be allowed to have a bitmap
2038 	 * entry.
2039 	 */
2040 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2041 		return false;
2042 
2043 	return true;
2044 }
2045 
2046 static const struct btrfs_free_space_op free_space_op = {
2047 	.recalc_thresholds	= recalculate_thresholds,
2048 	.use_bitmap		= use_bitmap,
2049 };
2050 
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2051 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2052 			      struct btrfs_free_space *info)
2053 {
2054 	struct btrfs_free_space *bitmap_info;
2055 	struct btrfs_block_group_cache *block_group = NULL;
2056 	int added = 0;
2057 	u64 bytes, offset, bytes_added;
2058 	int ret;
2059 
2060 	bytes = info->bytes;
2061 	offset = info->offset;
2062 
2063 	if (!ctl->op->use_bitmap(ctl, info))
2064 		return 0;
2065 
2066 	if (ctl->op == &free_space_op)
2067 		block_group = ctl->private;
2068 again:
2069 	/*
2070 	 * Since we link bitmaps right into the cluster we need to see if we
2071 	 * have a cluster here, and if so and it has our bitmap we need to add
2072 	 * the free space to that bitmap.
2073 	 */
2074 	if (block_group && !list_empty(&block_group->cluster_list)) {
2075 		struct btrfs_free_cluster *cluster;
2076 		struct rb_node *node;
2077 		struct btrfs_free_space *entry;
2078 
2079 		cluster = list_entry(block_group->cluster_list.next,
2080 				     struct btrfs_free_cluster,
2081 				     block_group_list);
2082 		spin_lock(&cluster->lock);
2083 		node = rb_first(&cluster->root);
2084 		if (!node) {
2085 			spin_unlock(&cluster->lock);
2086 			goto no_cluster_bitmap;
2087 		}
2088 
2089 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2090 		if (!entry->bitmap) {
2091 			spin_unlock(&cluster->lock);
2092 			goto no_cluster_bitmap;
2093 		}
2094 
2095 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2096 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2097 							  offset, bytes);
2098 			bytes -= bytes_added;
2099 			offset += bytes_added;
2100 		}
2101 		spin_unlock(&cluster->lock);
2102 		if (!bytes) {
2103 			ret = 1;
2104 			goto out;
2105 		}
2106 	}
2107 
2108 no_cluster_bitmap:
2109 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2110 					 1, 0);
2111 	if (!bitmap_info) {
2112 		ASSERT(added == 0);
2113 		goto new_bitmap;
2114 	}
2115 
2116 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2117 	bytes -= bytes_added;
2118 	offset += bytes_added;
2119 	added = 0;
2120 
2121 	if (!bytes) {
2122 		ret = 1;
2123 		goto out;
2124 	} else
2125 		goto again;
2126 
2127 new_bitmap:
2128 	if (info && info->bitmap) {
2129 		add_new_bitmap(ctl, info, offset);
2130 		added = 1;
2131 		info = NULL;
2132 		goto again;
2133 	} else {
2134 		spin_unlock(&ctl->tree_lock);
2135 
2136 		/* no pre-allocated info, allocate a new one */
2137 		if (!info) {
2138 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2139 						 GFP_NOFS);
2140 			if (!info) {
2141 				spin_lock(&ctl->tree_lock);
2142 				ret = -ENOMEM;
2143 				goto out;
2144 			}
2145 		}
2146 
2147 		/* allocate the bitmap */
2148 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2149 						 GFP_NOFS);
2150 		spin_lock(&ctl->tree_lock);
2151 		if (!info->bitmap) {
2152 			ret = -ENOMEM;
2153 			goto out;
2154 		}
2155 		goto again;
2156 	}
2157 
2158 out:
2159 	if (info) {
2160 		if (info->bitmap)
2161 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2162 					info->bitmap);
2163 		kmem_cache_free(btrfs_free_space_cachep, info);
2164 	}
2165 
2166 	return ret;
2167 }
2168 
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2169 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2170 			  struct btrfs_free_space *info, bool update_stat)
2171 {
2172 	struct btrfs_free_space *left_info = NULL;
2173 	struct btrfs_free_space *right_info;
2174 	bool merged = false;
2175 	u64 offset = info->offset;
2176 	u64 bytes = info->bytes;
2177 
2178 	/*
2179 	 * first we want to see if there is free space adjacent to the range we
2180 	 * are adding, if there is remove that struct and add a new one to
2181 	 * cover the entire range
2182 	 */
2183 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2184 	if (right_info && rb_prev(&right_info->offset_index))
2185 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2186 				     struct btrfs_free_space, offset_index);
2187 	else if (!right_info)
2188 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2189 
2190 	if (right_info && !right_info->bitmap) {
2191 		if (update_stat)
2192 			unlink_free_space(ctl, right_info);
2193 		else
2194 			__unlink_free_space(ctl, right_info);
2195 		info->bytes += right_info->bytes;
2196 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2197 		merged = true;
2198 	}
2199 
2200 	if (left_info && !left_info->bitmap &&
2201 	    left_info->offset + left_info->bytes == offset) {
2202 		if (update_stat)
2203 			unlink_free_space(ctl, left_info);
2204 		else
2205 			__unlink_free_space(ctl, left_info);
2206 		info->offset = left_info->offset;
2207 		info->bytes += left_info->bytes;
2208 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2209 		merged = true;
2210 	}
2211 
2212 	return merged;
2213 }
2214 
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2215 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2216 				     struct btrfs_free_space *info,
2217 				     bool update_stat)
2218 {
2219 	struct btrfs_free_space *bitmap;
2220 	unsigned long i;
2221 	unsigned long j;
2222 	const u64 end = info->offset + info->bytes;
2223 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2224 	u64 bytes;
2225 
2226 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2227 	if (!bitmap)
2228 		return false;
2229 
2230 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2231 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2232 	if (j == i)
2233 		return false;
2234 	bytes = (j - i) * ctl->unit;
2235 	info->bytes += bytes;
2236 
2237 	if (update_stat)
2238 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2239 	else
2240 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2241 
2242 	if (!bitmap->bytes)
2243 		free_bitmap(ctl, bitmap);
2244 
2245 	return true;
2246 }
2247 
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2248 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2249 				       struct btrfs_free_space *info,
2250 				       bool update_stat)
2251 {
2252 	struct btrfs_free_space *bitmap;
2253 	u64 bitmap_offset;
2254 	unsigned long i;
2255 	unsigned long j;
2256 	unsigned long prev_j;
2257 	u64 bytes;
2258 
2259 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2260 	/* If we're on a boundary, try the previous logical bitmap. */
2261 	if (bitmap_offset == info->offset) {
2262 		if (info->offset == 0)
2263 			return false;
2264 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2265 	}
2266 
2267 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2268 	if (!bitmap)
2269 		return false;
2270 
2271 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2272 	j = 0;
2273 	prev_j = (unsigned long)-1;
2274 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2275 		if (j > i)
2276 			break;
2277 		prev_j = j;
2278 	}
2279 	if (prev_j == i)
2280 		return false;
2281 
2282 	if (prev_j == (unsigned long)-1)
2283 		bytes = (i + 1) * ctl->unit;
2284 	else
2285 		bytes = (i - prev_j) * ctl->unit;
2286 
2287 	info->offset -= bytes;
2288 	info->bytes += bytes;
2289 
2290 	if (update_stat)
2291 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2292 	else
2293 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2294 
2295 	if (!bitmap->bytes)
2296 		free_bitmap(ctl, bitmap);
2297 
2298 	return true;
2299 }
2300 
2301 /*
2302  * We prefer always to allocate from extent entries, both for clustered and
2303  * non-clustered allocation requests. So when attempting to add a new extent
2304  * entry, try to see if there's adjacent free space in bitmap entries, and if
2305  * there is, migrate that space from the bitmaps to the extent.
2306  * Like this we get better chances of satisfying space allocation requests
2307  * because we attempt to satisfy them based on a single cache entry, and never
2308  * on 2 or more entries - even if the entries represent a contiguous free space
2309  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2310  * ends).
2311  */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2312 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2313 			      struct btrfs_free_space *info,
2314 			      bool update_stat)
2315 {
2316 	/*
2317 	 * Only work with disconnected entries, as we can change their offset,
2318 	 * and must be extent entries.
2319 	 */
2320 	ASSERT(!info->bitmap);
2321 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2322 
2323 	if (ctl->total_bitmaps > 0) {
2324 		bool stole_end;
2325 		bool stole_front = false;
2326 
2327 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2328 		if (ctl->total_bitmaps > 0)
2329 			stole_front = steal_from_bitmap_to_front(ctl, info,
2330 								 update_stat);
2331 
2332 		if (stole_end || stole_front)
2333 			try_merge_free_space(ctl, info, update_stat);
2334 	}
2335 }
2336 
__btrfs_add_free_space(struct btrfs_fs_info * fs_info,struct btrfs_free_space_ctl * ctl,u64 offset,u64 bytes)2337 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2338 			   struct btrfs_free_space_ctl *ctl,
2339 			   u64 offset, u64 bytes)
2340 {
2341 	struct btrfs_free_space *info;
2342 	int ret = 0;
2343 
2344 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2345 	if (!info)
2346 		return -ENOMEM;
2347 
2348 	info->offset = offset;
2349 	info->bytes = bytes;
2350 	RB_CLEAR_NODE(&info->offset_index);
2351 
2352 	spin_lock(&ctl->tree_lock);
2353 
2354 	if (try_merge_free_space(ctl, info, true))
2355 		goto link;
2356 
2357 	/*
2358 	 * There was no extent directly to the left or right of this new
2359 	 * extent then we know we're going to have to allocate a new extent, so
2360 	 * before we do that see if we need to drop this into a bitmap
2361 	 */
2362 	ret = insert_into_bitmap(ctl, info);
2363 	if (ret < 0) {
2364 		goto out;
2365 	} else if (ret) {
2366 		ret = 0;
2367 		goto out;
2368 	}
2369 link:
2370 	/*
2371 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2372 	 * going to add the new free space to existing bitmap entries - because
2373 	 * that would mean unnecessary work that would be reverted. Therefore
2374 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2375 	 */
2376 	steal_from_bitmap(ctl, info, true);
2377 
2378 	ret = link_free_space(ctl, info);
2379 	if (ret)
2380 		kmem_cache_free(btrfs_free_space_cachep, info);
2381 out:
2382 	spin_unlock(&ctl->tree_lock);
2383 
2384 	if (ret) {
2385 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2386 		ASSERT(ret != -EEXIST);
2387 	}
2388 
2389 	return ret;
2390 }
2391 
btrfs_remove_free_space(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes)2392 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2393 			    u64 offset, u64 bytes)
2394 {
2395 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2396 	struct btrfs_free_space *info;
2397 	int ret;
2398 	bool re_search = false;
2399 
2400 	spin_lock(&ctl->tree_lock);
2401 
2402 again:
2403 	ret = 0;
2404 	if (!bytes)
2405 		goto out_lock;
2406 
2407 	info = tree_search_offset(ctl, offset, 0, 0);
2408 	if (!info) {
2409 		/*
2410 		 * oops didn't find an extent that matched the space we wanted
2411 		 * to remove, look for a bitmap instead
2412 		 */
2413 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2414 					  1, 0);
2415 		if (!info) {
2416 			/*
2417 			 * If we found a partial bit of our free space in a
2418 			 * bitmap but then couldn't find the other part this may
2419 			 * be a problem, so WARN about it.
2420 			 */
2421 			WARN_ON(re_search);
2422 			goto out_lock;
2423 		}
2424 	}
2425 
2426 	re_search = false;
2427 	if (!info->bitmap) {
2428 		unlink_free_space(ctl, info);
2429 		if (offset == info->offset) {
2430 			u64 to_free = min(bytes, info->bytes);
2431 
2432 			info->bytes -= to_free;
2433 			info->offset += to_free;
2434 			if (info->bytes) {
2435 				ret = link_free_space(ctl, info);
2436 				WARN_ON(ret);
2437 			} else {
2438 				kmem_cache_free(btrfs_free_space_cachep, info);
2439 			}
2440 
2441 			offset += to_free;
2442 			bytes -= to_free;
2443 			goto again;
2444 		} else {
2445 			u64 old_end = info->bytes + info->offset;
2446 
2447 			info->bytes = offset - info->offset;
2448 			ret = link_free_space(ctl, info);
2449 			WARN_ON(ret);
2450 			if (ret)
2451 				goto out_lock;
2452 
2453 			/* Not enough bytes in this entry to satisfy us */
2454 			if (old_end < offset + bytes) {
2455 				bytes -= old_end - offset;
2456 				offset = old_end;
2457 				goto again;
2458 			} else if (old_end == offset + bytes) {
2459 				/* all done */
2460 				goto out_lock;
2461 			}
2462 			spin_unlock(&ctl->tree_lock);
2463 
2464 			ret = btrfs_add_free_space(block_group, offset + bytes,
2465 						   old_end - (offset + bytes));
2466 			WARN_ON(ret);
2467 			goto out;
2468 		}
2469 	}
2470 
2471 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2472 	if (ret == -EAGAIN) {
2473 		re_search = true;
2474 		goto again;
2475 	}
2476 out_lock:
2477 	spin_unlock(&ctl->tree_lock);
2478 out:
2479 	return ret;
2480 }
2481 
btrfs_dump_free_space(struct btrfs_block_group_cache * block_group,u64 bytes)2482 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2483 			   u64 bytes)
2484 {
2485 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2486 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2487 	struct btrfs_free_space *info;
2488 	struct rb_node *n;
2489 	int count = 0;
2490 
2491 	spin_lock(&ctl->tree_lock);
2492 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2493 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2494 		if (info->bytes >= bytes && !block_group->ro)
2495 			count++;
2496 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2497 			   info->offset, info->bytes,
2498 		       (info->bitmap) ? "yes" : "no");
2499 	}
2500 	spin_unlock(&ctl->tree_lock);
2501 	btrfs_info(fs_info, "block group has cluster?: %s",
2502 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2503 	btrfs_info(fs_info,
2504 		   "%d blocks of free space at or bigger than bytes is", count);
2505 }
2506 
btrfs_init_free_space_ctl(struct btrfs_block_group_cache * block_group)2507 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2508 {
2509 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2510 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2511 
2512 	spin_lock_init(&ctl->tree_lock);
2513 	ctl->unit = fs_info->sectorsize;
2514 	ctl->start = block_group->key.objectid;
2515 	ctl->private = block_group;
2516 	ctl->op = &free_space_op;
2517 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2518 	mutex_init(&ctl->cache_writeout_mutex);
2519 
2520 	/*
2521 	 * we only want to have 32k of ram per block group for keeping
2522 	 * track of free space, and if we pass 1/2 of that we want to
2523 	 * start converting things over to using bitmaps
2524 	 */
2525 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2526 }
2527 
2528 /*
2529  * for a given cluster, put all of its extents back into the free
2530  * space cache.  If the block group passed doesn't match the block group
2531  * pointed to by the cluster, someone else raced in and freed the
2532  * cluster already.  In that case, we just return without changing anything
2533  */
2534 static int
__btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2535 __btrfs_return_cluster_to_free_space(
2536 			     struct btrfs_block_group_cache *block_group,
2537 			     struct btrfs_free_cluster *cluster)
2538 {
2539 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2540 	struct btrfs_free_space *entry;
2541 	struct rb_node *node;
2542 
2543 	spin_lock(&cluster->lock);
2544 	if (cluster->block_group != block_group)
2545 		goto out;
2546 
2547 	cluster->block_group = NULL;
2548 	cluster->window_start = 0;
2549 	list_del_init(&cluster->block_group_list);
2550 
2551 	node = rb_first(&cluster->root);
2552 	while (node) {
2553 		bool bitmap;
2554 
2555 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2556 		node = rb_next(&entry->offset_index);
2557 		rb_erase(&entry->offset_index, &cluster->root);
2558 		RB_CLEAR_NODE(&entry->offset_index);
2559 
2560 		bitmap = (entry->bitmap != NULL);
2561 		if (!bitmap) {
2562 			try_merge_free_space(ctl, entry, false);
2563 			steal_from_bitmap(ctl, entry, false);
2564 		}
2565 		tree_insert_offset(&ctl->free_space_offset,
2566 				   entry->offset, &entry->offset_index, bitmap);
2567 	}
2568 	cluster->root = RB_ROOT;
2569 
2570 out:
2571 	spin_unlock(&cluster->lock);
2572 	btrfs_put_block_group(block_group);
2573 	return 0;
2574 }
2575 
__btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl * ctl)2576 static void __btrfs_remove_free_space_cache_locked(
2577 				struct btrfs_free_space_ctl *ctl)
2578 {
2579 	struct btrfs_free_space *info;
2580 	struct rb_node *node;
2581 
2582 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2583 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2584 		if (!info->bitmap) {
2585 			unlink_free_space(ctl, info);
2586 			kmem_cache_free(btrfs_free_space_cachep, info);
2587 		} else {
2588 			free_bitmap(ctl, info);
2589 		}
2590 
2591 		cond_resched_lock(&ctl->tree_lock);
2592 	}
2593 }
2594 
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)2595 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2596 {
2597 	spin_lock(&ctl->tree_lock);
2598 	__btrfs_remove_free_space_cache_locked(ctl);
2599 	spin_unlock(&ctl->tree_lock);
2600 }
2601 
btrfs_remove_free_space_cache(struct btrfs_block_group_cache * block_group)2602 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2603 {
2604 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2605 	struct btrfs_free_cluster *cluster;
2606 	struct list_head *head;
2607 
2608 	spin_lock(&ctl->tree_lock);
2609 	while ((head = block_group->cluster_list.next) !=
2610 	       &block_group->cluster_list) {
2611 		cluster = list_entry(head, struct btrfs_free_cluster,
2612 				     block_group_list);
2613 
2614 		WARN_ON(cluster->block_group != block_group);
2615 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2616 
2617 		cond_resched_lock(&ctl->tree_lock);
2618 	}
2619 	__btrfs_remove_free_space_cache_locked(ctl);
2620 	spin_unlock(&ctl->tree_lock);
2621 
2622 }
2623 
btrfs_find_space_for_alloc(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)2624 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2625 			       u64 offset, u64 bytes, u64 empty_size,
2626 			       u64 *max_extent_size)
2627 {
2628 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2629 	struct btrfs_free_space *entry = NULL;
2630 	u64 bytes_search = bytes + empty_size;
2631 	u64 ret = 0;
2632 	u64 align_gap = 0;
2633 	u64 align_gap_len = 0;
2634 
2635 	spin_lock(&ctl->tree_lock);
2636 	entry = find_free_space(ctl, &offset, &bytes_search,
2637 				block_group->full_stripe_len, max_extent_size);
2638 	if (!entry)
2639 		goto out;
2640 
2641 	ret = offset;
2642 	if (entry->bitmap) {
2643 		bitmap_clear_bits(ctl, entry, offset, bytes);
2644 		if (!entry->bytes)
2645 			free_bitmap(ctl, entry);
2646 	} else {
2647 		unlink_free_space(ctl, entry);
2648 		align_gap_len = offset - entry->offset;
2649 		align_gap = entry->offset;
2650 
2651 		entry->offset = offset + bytes;
2652 		WARN_ON(entry->bytes < bytes + align_gap_len);
2653 
2654 		entry->bytes -= bytes + align_gap_len;
2655 		if (!entry->bytes)
2656 			kmem_cache_free(btrfs_free_space_cachep, entry);
2657 		else
2658 			link_free_space(ctl, entry);
2659 	}
2660 out:
2661 	spin_unlock(&ctl->tree_lock);
2662 
2663 	if (align_gap_len)
2664 		__btrfs_add_free_space(block_group->fs_info, ctl,
2665 				       align_gap, align_gap_len);
2666 	return ret;
2667 }
2668 
2669 /*
2670  * given a cluster, put all of its extents back into the free space
2671  * cache.  If a block group is passed, this function will only free
2672  * a cluster that belongs to the passed block group.
2673  *
2674  * Otherwise, it'll get a reference on the block group pointed to by the
2675  * cluster and remove the cluster from it.
2676  */
btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2677 int btrfs_return_cluster_to_free_space(
2678 			       struct btrfs_block_group_cache *block_group,
2679 			       struct btrfs_free_cluster *cluster)
2680 {
2681 	struct btrfs_free_space_ctl *ctl;
2682 	int ret;
2683 
2684 	/* first, get a safe pointer to the block group */
2685 	spin_lock(&cluster->lock);
2686 	if (!block_group) {
2687 		block_group = cluster->block_group;
2688 		if (!block_group) {
2689 			spin_unlock(&cluster->lock);
2690 			return 0;
2691 		}
2692 	} else if (cluster->block_group != block_group) {
2693 		/* someone else has already freed it don't redo their work */
2694 		spin_unlock(&cluster->lock);
2695 		return 0;
2696 	}
2697 	atomic_inc(&block_group->count);
2698 	spin_unlock(&cluster->lock);
2699 
2700 	ctl = block_group->free_space_ctl;
2701 
2702 	/* now return any extents the cluster had on it */
2703 	spin_lock(&ctl->tree_lock);
2704 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2705 	spin_unlock(&ctl->tree_lock);
2706 
2707 	/* finally drop our ref */
2708 	btrfs_put_block_group(block_group);
2709 	return ret;
2710 }
2711 
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)2712 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2713 				   struct btrfs_free_cluster *cluster,
2714 				   struct btrfs_free_space *entry,
2715 				   u64 bytes, u64 min_start,
2716 				   u64 *max_extent_size)
2717 {
2718 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2719 	int err;
2720 	u64 search_start = cluster->window_start;
2721 	u64 search_bytes = bytes;
2722 	u64 ret = 0;
2723 
2724 	search_start = min_start;
2725 	search_bytes = bytes;
2726 
2727 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2728 	if (err) {
2729 		*max_extent_size = max(get_max_extent_size(entry),
2730 				       *max_extent_size);
2731 		return 0;
2732 	}
2733 
2734 	ret = search_start;
2735 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2736 
2737 	return ret;
2738 }
2739 
2740 /*
2741  * given a cluster, try to allocate 'bytes' from it, returns 0
2742  * if it couldn't find anything suitably large, or a logical disk offset
2743  * if things worked out
2744  */
btrfs_alloc_from_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)2745 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2746 			     struct btrfs_free_cluster *cluster, u64 bytes,
2747 			     u64 min_start, u64 *max_extent_size)
2748 {
2749 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2750 	struct btrfs_free_space *entry = NULL;
2751 	struct rb_node *node;
2752 	u64 ret = 0;
2753 
2754 	spin_lock(&cluster->lock);
2755 	if (bytes > cluster->max_size)
2756 		goto out;
2757 
2758 	if (cluster->block_group != block_group)
2759 		goto out;
2760 
2761 	node = rb_first(&cluster->root);
2762 	if (!node)
2763 		goto out;
2764 
2765 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2766 	while (1) {
2767 		if (entry->bytes < bytes)
2768 			*max_extent_size = max(get_max_extent_size(entry),
2769 					       *max_extent_size);
2770 
2771 		if (entry->bytes < bytes ||
2772 		    (!entry->bitmap && entry->offset < min_start)) {
2773 			node = rb_next(&entry->offset_index);
2774 			if (!node)
2775 				break;
2776 			entry = rb_entry(node, struct btrfs_free_space,
2777 					 offset_index);
2778 			continue;
2779 		}
2780 
2781 		if (entry->bitmap) {
2782 			ret = btrfs_alloc_from_bitmap(block_group,
2783 						      cluster, entry, bytes,
2784 						      cluster->window_start,
2785 						      max_extent_size);
2786 			if (ret == 0) {
2787 				node = rb_next(&entry->offset_index);
2788 				if (!node)
2789 					break;
2790 				entry = rb_entry(node, struct btrfs_free_space,
2791 						 offset_index);
2792 				continue;
2793 			}
2794 			cluster->window_start += bytes;
2795 		} else {
2796 			ret = entry->offset;
2797 
2798 			entry->offset += bytes;
2799 			entry->bytes -= bytes;
2800 		}
2801 
2802 		if (entry->bytes == 0)
2803 			rb_erase(&entry->offset_index, &cluster->root);
2804 		break;
2805 	}
2806 out:
2807 	spin_unlock(&cluster->lock);
2808 
2809 	if (!ret)
2810 		return 0;
2811 
2812 	spin_lock(&ctl->tree_lock);
2813 
2814 	ctl->free_space -= bytes;
2815 	if (entry->bytes == 0) {
2816 		ctl->free_extents--;
2817 		if (entry->bitmap) {
2818 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2819 					entry->bitmap);
2820 			ctl->total_bitmaps--;
2821 			ctl->op->recalc_thresholds(ctl);
2822 		}
2823 		kmem_cache_free(btrfs_free_space_cachep, entry);
2824 	}
2825 
2826 	spin_unlock(&ctl->tree_lock);
2827 
2828 	return ret;
2829 }
2830 
btrfs_bitmap_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2831 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2832 				struct btrfs_free_space *entry,
2833 				struct btrfs_free_cluster *cluster,
2834 				u64 offset, u64 bytes,
2835 				u64 cont1_bytes, u64 min_bytes)
2836 {
2837 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2838 	unsigned long next_zero;
2839 	unsigned long i;
2840 	unsigned long want_bits;
2841 	unsigned long min_bits;
2842 	unsigned long found_bits;
2843 	unsigned long max_bits = 0;
2844 	unsigned long start = 0;
2845 	unsigned long total_found = 0;
2846 	int ret;
2847 
2848 	i = offset_to_bit(entry->offset, ctl->unit,
2849 			  max_t(u64, offset, entry->offset));
2850 	want_bits = bytes_to_bits(bytes, ctl->unit);
2851 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2852 
2853 	/*
2854 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2855 	 * fragmented.
2856 	 */
2857 	if (entry->max_extent_size &&
2858 	    entry->max_extent_size < cont1_bytes)
2859 		return -ENOSPC;
2860 again:
2861 	found_bits = 0;
2862 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2863 		next_zero = find_next_zero_bit(entry->bitmap,
2864 					       BITS_PER_BITMAP, i);
2865 		if (next_zero - i >= min_bits) {
2866 			found_bits = next_zero - i;
2867 			if (found_bits > max_bits)
2868 				max_bits = found_bits;
2869 			break;
2870 		}
2871 		if (next_zero - i > max_bits)
2872 			max_bits = next_zero - i;
2873 		i = next_zero;
2874 	}
2875 
2876 	if (!found_bits) {
2877 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2878 		return -ENOSPC;
2879 	}
2880 
2881 	if (!total_found) {
2882 		start = i;
2883 		cluster->max_size = 0;
2884 	}
2885 
2886 	total_found += found_bits;
2887 
2888 	if (cluster->max_size < found_bits * ctl->unit)
2889 		cluster->max_size = found_bits * ctl->unit;
2890 
2891 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2892 		i = next_zero + 1;
2893 		goto again;
2894 	}
2895 
2896 	cluster->window_start = start * ctl->unit + entry->offset;
2897 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2898 	ret = tree_insert_offset(&cluster->root, entry->offset,
2899 				 &entry->offset_index, 1);
2900 	ASSERT(!ret); /* -EEXIST; Logic error */
2901 
2902 	trace_btrfs_setup_cluster(block_group, cluster,
2903 				  total_found * ctl->unit, 1);
2904 	return 0;
2905 }
2906 
2907 /*
2908  * This searches the block group for just extents to fill the cluster with.
2909  * Try to find a cluster with at least bytes total bytes, at least one
2910  * extent of cont1_bytes, and other clusters of at least min_bytes.
2911  */
2912 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2913 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2914 			struct btrfs_free_cluster *cluster,
2915 			struct list_head *bitmaps, u64 offset, u64 bytes,
2916 			u64 cont1_bytes, u64 min_bytes)
2917 {
2918 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2919 	struct btrfs_free_space *first = NULL;
2920 	struct btrfs_free_space *entry = NULL;
2921 	struct btrfs_free_space *last;
2922 	struct rb_node *node;
2923 	u64 window_free;
2924 	u64 max_extent;
2925 	u64 total_size = 0;
2926 
2927 	entry = tree_search_offset(ctl, offset, 0, 1);
2928 	if (!entry)
2929 		return -ENOSPC;
2930 
2931 	/*
2932 	 * We don't want bitmaps, so just move along until we find a normal
2933 	 * extent entry.
2934 	 */
2935 	while (entry->bitmap || entry->bytes < min_bytes) {
2936 		if (entry->bitmap && list_empty(&entry->list))
2937 			list_add_tail(&entry->list, bitmaps);
2938 		node = rb_next(&entry->offset_index);
2939 		if (!node)
2940 			return -ENOSPC;
2941 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2942 	}
2943 
2944 	window_free = entry->bytes;
2945 	max_extent = entry->bytes;
2946 	first = entry;
2947 	last = entry;
2948 
2949 	for (node = rb_next(&entry->offset_index); node;
2950 	     node = rb_next(&entry->offset_index)) {
2951 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2952 
2953 		if (entry->bitmap) {
2954 			if (list_empty(&entry->list))
2955 				list_add_tail(&entry->list, bitmaps);
2956 			continue;
2957 		}
2958 
2959 		if (entry->bytes < min_bytes)
2960 			continue;
2961 
2962 		last = entry;
2963 		window_free += entry->bytes;
2964 		if (entry->bytes > max_extent)
2965 			max_extent = entry->bytes;
2966 	}
2967 
2968 	if (window_free < bytes || max_extent < cont1_bytes)
2969 		return -ENOSPC;
2970 
2971 	cluster->window_start = first->offset;
2972 
2973 	node = &first->offset_index;
2974 
2975 	/*
2976 	 * now we've found our entries, pull them out of the free space
2977 	 * cache and put them into the cluster rbtree
2978 	 */
2979 	do {
2980 		int ret;
2981 
2982 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2983 		node = rb_next(&entry->offset_index);
2984 		if (entry->bitmap || entry->bytes < min_bytes)
2985 			continue;
2986 
2987 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2988 		ret = tree_insert_offset(&cluster->root, entry->offset,
2989 					 &entry->offset_index, 0);
2990 		total_size += entry->bytes;
2991 		ASSERT(!ret); /* -EEXIST; Logic error */
2992 	} while (node && entry != last);
2993 
2994 	cluster->max_size = max_extent;
2995 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2996 	return 0;
2997 }
2998 
2999 /*
3000  * This specifically looks for bitmaps that may work in the cluster, we assume
3001  * that we have already failed to find extents that will work.
3002  */
3003 static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3004 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3005 		     struct btrfs_free_cluster *cluster,
3006 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3007 		     u64 cont1_bytes, u64 min_bytes)
3008 {
3009 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3010 	struct btrfs_free_space *entry = NULL;
3011 	int ret = -ENOSPC;
3012 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3013 
3014 	if (ctl->total_bitmaps == 0)
3015 		return -ENOSPC;
3016 
3017 	/*
3018 	 * The bitmap that covers offset won't be in the list unless offset
3019 	 * is just its start offset.
3020 	 */
3021 	if (!list_empty(bitmaps))
3022 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3023 
3024 	if (!entry || entry->offset != bitmap_offset) {
3025 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3026 		if (entry && list_empty(&entry->list))
3027 			list_add(&entry->list, bitmaps);
3028 	}
3029 
3030 	list_for_each_entry(entry, bitmaps, list) {
3031 		if (entry->bytes < bytes)
3032 			continue;
3033 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3034 					   bytes, cont1_bytes, min_bytes);
3035 		if (!ret)
3036 			return 0;
3037 	}
3038 
3039 	/*
3040 	 * The bitmaps list has all the bitmaps that record free space
3041 	 * starting after offset, so no more search is required.
3042 	 */
3043 	return -ENOSPC;
3044 }
3045 
3046 /*
3047  * here we try to find a cluster of blocks in a block group.  The goal
3048  * is to find at least bytes+empty_size.
3049  * We might not find them all in one contiguous area.
3050  *
3051  * returns zero and sets up cluster if things worked out, otherwise
3052  * it returns -enospc
3053  */
btrfs_find_space_cluster(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3054 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3055 			     struct btrfs_block_group_cache *block_group,
3056 			     struct btrfs_free_cluster *cluster,
3057 			     u64 offset, u64 bytes, u64 empty_size)
3058 {
3059 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3060 	struct btrfs_free_space *entry, *tmp;
3061 	LIST_HEAD(bitmaps);
3062 	u64 min_bytes;
3063 	u64 cont1_bytes;
3064 	int ret;
3065 
3066 	/*
3067 	 * Choose the minimum extent size we'll require for this
3068 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3069 	 * For metadata, allow allocates with smaller extents.  For
3070 	 * data, keep it dense.
3071 	 */
3072 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3073 		cont1_bytes = min_bytes = bytes + empty_size;
3074 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3075 		cont1_bytes = bytes;
3076 		min_bytes = fs_info->sectorsize;
3077 	} else {
3078 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3079 		min_bytes = fs_info->sectorsize;
3080 	}
3081 
3082 	spin_lock(&ctl->tree_lock);
3083 
3084 	/*
3085 	 * If we know we don't have enough space to make a cluster don't even
3086 	 * bother doing all the work to try and find one.
3087 	 */
3088 	if (ctl->free_space < bytes) {
3089 		spin_unlock(&ctl->tree_lock);
3090 		return -ENOSPC;
3091 	}
3092 
3093 	spin_lock(&cluster->lock);
3094 
3095 	/* someone already found a cluster, hooray */
3096 	if (cluster->block_group) {
3097 		ret = 0;
3098 		goto out;
3099 	}
3100 
3101 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3102 				 min_bytes);
3103 
3104 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3105 				      bytes + empty_size,
3106 				      cont1_bytes, min_bytes);
3107 	if (ret)
3108 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3109 					   offset, bytes + empty_size,
3110 					   cont1_bytes, min_bytes);
3111 
3112 	/* Clear our temporary list */
3113 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3114 		list_del_init(&entry->list);
3115 
3116 	if (!ret) {
3117 		atomic_inc(&block_group->count);
3118 		list_add_tail(&cluster->block_group_list,
3119 			      &block_group->cluster_list);
3120 		cluster->block_group = block_group;
3121 	} else {
3122 		trace_btrfs_failed_cluster_setup(block_group);
3123 	}
3124 out:
3125 	spin_unlock(&cluster->lock);
3126 	spin_unlock(&ctl->tree_lock);
3127 
3128 	return ret;
3129 }
3130 
3131 /*
3132  * simple code to zero out a cluster
3133  */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3134 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3135 {
3136 	spin_lock_init(&cluster->lock);
3137 	spin_lock_init(&cluster->refill_lock);
3138 	cluster->root = RB_ROOT;
3139 	cluster->max_size = 0;
3140 	cluster->fragmented = false;
3141 	INIT_LIST_HEAD(&cluster->block_group_list);
3142 	cluster->block_group = NULL;
3143 }
3144 
do_trimming(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,struct btrfs_trim_range * trim_entry)3145 static int do_trimming(struct btrfs_block_group_cache *block_group,
3146 		       u64 *total_trimmed, u64 start, u64 bytes,
3147 		       u64 reserved_start, u64 reserved_bytes,
3148 		       struct btrfs_trim_range *trim_entry)
3149 {
3150 	struct btrfs_space_info *space_info = block_group->space_info;
3151 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3152 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3153 	int ret;
3154 	int update = 0;
3155 	u64 trimmed = 0;
3156 
3157 	spin_lock(&space_info->lock);
3158 	spin_lock(&block_group->lock);
3159 	if (!block_group->ro) {
3160 		block_group->reserved += reserved_bytes;
3161 		space_info->bytes_reserved += reserved_bytes;
3162 		update = 1;
3163 	}
3164 	spin_unlock(&block_group->lock);
3165 	spin_unlock(&space_info->lock);
3166 
3167 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3168 	if (!ret)
3169 		*total_trimmed += trimmed;
3170 
3171 	mutex_lock(&ctl->cache_writeout_mutex);
3172 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3173 	list_del(&trim_entry->list);
3174 	mutex_unlock(&ctl->cache_writeout_mutex);
3175 
3176 	if (update) {
3177 		spin_lock(&space_info->lock);
3178 		spin_lock(&block_group->lock);
3179 		if (block_group->ro)
3180 			space_info->bytes_readonly += reserved_bytes;
3181 		block_group->reserved -= reserved_bytes;
3182 		space_info->bytes_reserved -= reserved_bytes;
3183 		spin_unlock(&space_info->lock);
3184 		spin_unlock(&block_group->lock);
3185 	}
3186 
3187 	return ret;
3188 }
3189 
trim_no_bitmap(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3190 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3191 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3192 {
3193 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3194 	struct btrfs_free_space *entry;
3195 	struct rb_node *node;
3196 	int ret = 0;
3197 	u64 extent_start;
3198 	u64 extent_bytes;
3199 	u64 bytes;
3200 
3201 	while (start < end) {
3202 		struct btrfs_trim_range trim_entry;
3203 
3204 		mutex_lock(&ctl->cache_writeout_mutex);
3205 		spin_lock(&ctl->tree_lock);
3206 
3207 		if (ctl->free_space < minlen) {
3208 			spin_unlock(&ctl->tree_lock);
3209 			mutex_unlock(&ctl->cache_writeout_mutex);
3210 			break;
3211 		}
3212 
3213 		entry = tree_search_offset(ctl, start, 0, 1);
3214 		if (!entry) {
3215 			spin_unlock(&ctl->tree_lock);
3216 			mutex_unlock(&ctl->cache_writeout_mutex);
3217 			break;
3218 		}
3219 
3220 		/* skip bitmaps */
3221 		while (entry->bitmap) {
3222 			node = rb_next(&entry->offset_index);
3223 			if (!node) {
3224 				spin_unlock(&ctl->tree_lock);
3225 				mutex_unlock(&ctl->cache_writeout_mutex);
3226 				goto out;
3227 			}
3228 			entry = rb_entry(node, struct btrfs_free_space,
3229 					 offset_index);
3230 		}
3231 
3232 		if (entry->offset >= end) {
3233 			spin_unlock(&ctl->tree_lock);
3234 			mutex_unlock(&ctl->cache_writeout_mutex);
3235 			break;
3236 		}
3237 
3238 		extent_start = entry->offset;
3239 		extent_bytes = entry->bytes;
3240 		start = max(start, extent_start);
3241 		bytes = min(extent_start + extent_bytes, end) - start;
3242 		if (bytes < minlen) {
3243 			spin_unlock(&ctl->tree_lock);
3244 			mutex_unlock(&ctl->cache_writeout_mutex);
3245 			goto next;
3246 		}
3247 
3248 		unlink_free_space(ctl, entry);
3249 		kmem_cache_free(btrfs_free_space_cachep, entry);
3250 
3251 		spin_unlock(&ctl->tree_lock);
3252 		trim_entry.start = extent_start;
3253 		trim_entry.bytes = extent_bytes;
3254 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3255 		mutex_unlock(&ctl->cache_writeout_mutex);
3256 
3257 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3258 				  extent_start, extent_bytes, &trim_entry);
3259 		if (ret)
3260 			break;
3261 next:
3262 		start += bytes;
3263 
3264 		if (fatal_signal_pending(current)) {
3265 			ret = -ERESTARTSYS;
3266 			break;
3267 		}
3268 
3269 		cond_resched();
3270 	}
3271 out:
3272 	return ret;
3273 }
3274 
trim_bitmaps(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3275 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3276 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3277 {
3278 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3279 	struct btrfs_free_space *entry;
3280 	int ret = 0;
3281 	int ret2;
3282 	u64 bytes;
3283 	u64 offset = offset_to_bitmap(ctl, start);
3284 
3285 	while (offset < end) {
3286 		bool next_bitmap = false;
3287 		struct btrfs_trim_range trim_entry;
3288 
3289 		mutex_lock(&ctl->cache_writeout_mutex);
3290 		spin_lock(&ctl->tree_lock);
3291 
3292 		if (ctl->free_space < minlen) {
3293 			spin_unlock(&ctl->tree_lock);
3294 			mutex_unlock(&ctl->cache_writeout_mutex);
3295 			break;
3296 		}
3297 
3298 		entry = tree_search_offset(ctl, offset, 1, 0);
3299 		if (!entry) {
3300 			spin_unlock(&ctl->tree_lock);
3301 			mutex_unlock(&ctl->cache_writeout_mutex);
3302 			next_bitmap = true;
3303 			goto next;
3304 		}
3305 
3306 		bytes = minlen;
3307 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3308 		if (ret2 || start >= end) {
3309 			spin_unlock(&ctl->tree_lock);
3310 			mutex_unlock(&ctl->cache_writeout_mutex);
3311 			next_bitmap = true;
3312 			goto next;
3313 		}
3314 
3315 		bytes = min(bytes, end - start);
3316 		if (bytes < minlen) {
3317 			spin_unlock(&ctl->tree_lock);
3318 			mutex_unlock(&ctl->cache_writeout_mutex);
3319 			goto next;
3320 		}
3321 
3322 		bitmap_clear_bits(ctl, entry, start, bytes);
3323 		if (entry->bytes == 0)
3324 			free_bitmap(ctl, entry);
3325 
3326 		spin_unlock(&ctl->tree_lock);
3327 		trim_entry.start = start;
3328 		trim_entry.bytes = bytes;
3329 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3330 		mutex_unlock(&ctl->cache_writeout_mutex);
3331 
3332 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3333 				  start, bytes, &trim_entry);
3334 		if (ret)
3335 			break;
3336 next:
3337 		if (next_bitmap) {
3338 			offset += BITS_PER_BITMAP * ctl->unit;
3339 		} else {
3340 			start += bytes;
3341 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3342 				offset += BITS_PER_BITMAP * ctl->unit;
3343 		}
3344 
3345 		if (fatal_signal_pending(current)) {
3346 			ret = -ERESTARTSYS;
3347 			break;
3348 		}
3349 
3350 		cond_resched();
3351 	}
3352 
3353 	return ret;
3354 }
3355 
btrfs_get_block_group_trimming(struct btrfs_block_group_cache * cache)3356 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3357 {
3358 	atomic_inc(&cache->trimming);
3359 }
3360 
btrfs_put_block_group_trimming(struct btrfs_block_group_cache * block_group)3361 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3362 {
3363 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3364 	struct extent_map_tree *em_tree;
3365 	struct extent_map *em;
3366 	bool cleanup;
3367 
3368 	spin_lock(&block_group->lock);
3369 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3370 		   block_group->removed);
3371 	spin_unlock(&block_group->lock);
3372 
3373 	if (cleanup) {
3374 		mutex_lock(&fs_info->chunk_mutex);
3375 		em_tree = &fs_info->mapping_tree.map_tree;
3376 		write_lock(&em_tree->lock);
3377 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3378 					   1);
3379 		BUG_ON(!em); /* logic error, can't happen */
3380 		/*
3381 		 * remove_extent_mapping() will delete us from the pinned_chunks
3382 		 * list, which is protected by the chunk mutex.
3383 		 */
3384 		remove_extent_mapping(em_tree, em);
3385 		write_unlock(&em_tree->lock);
3386 		mutex_unlock(&fs_info->chunk_mutex);
3387 
3388 		/* once for us and once for the tree */
3389 		free_extent_map(em);
3390 		free_extent_map(em);
3391 
3392 		/*
3393 		 * We've left one free space entry and other tasks trimming
3394 		 * this block group have left 1 entry each one. Free them.
3395 		 */
3396 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3397 	}
3398 }
3399 
btrfs_trim_block_group(struct btrfs_block_group_cache * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)3400 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3401 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3402 {
3403 	int ret;
3404 
3405 	*trimmed = 0;
3406 
3407 	spin_lock(&block_group->lock);
3408 	if (block_group->removed) {
3409 		spin_unlock(&block_group->lock);
3410 		return 0;
3411 	}
3412 	btrfs_get_block_group_trimming(block_group);
3413 	spin_unlock(&block_group->lock);
3414 
3415 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3416 	if (ret)
3417 		goto out;
3418 
3419 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3420 out:
3421 	btrfs_put_block_group_trimming(block_group);
3422 	return ret;
3423 }
3424 
3425 /*
3426  * Find the left-most item in the cache tree, and then return the
3427  * smallest inode number in the item.
3428  *
3429  * Note: the returned inode number may not be the smallest one in
3430  * the tree, if the left-most item is a bitmap.
3431  */
btrfs_find_ino_for_alloc(struct btrfs_root * fs_root)3432 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3433 {
3434 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3435 	struct btrfs_free_space *entry = NULL;
3436 	u64 ino = 0;
3437 
3438 	spin_lock(&ctl->tree_lock);
3439 
3440 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3441 		goto out;
3442 
3443 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3444 			 struct btrfs_free_space, offset_index);
3445 
3446 	if (!entry->bitmap) {
3447 		ino = entry->offset;
3448 
3449 		unlink_free_space(ctl, entry);
3450 		entry->offset++;
3451 		entry->bytes--;
3452 		if (!entry->bytes)
3453 			kmem_cache_free(btrfs_free_space_cachep, entry);
3454 		else
3455 			link_free_space(ctl, entry);
3456 	} else {
3457 		u64 offset = 0;
3458 		u64 count = 1;
3459 		int ret;
3460 
3461 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3462 		/* Logic error; Should be empty if it can't find anything */
3463 		ASSERT(!ret);
3464 
3465 		ino = offset;
3466 		bitmap_clear_bits(ctl, entry, offset, 1);
3467 		if (entry->bytes == 0)
3468 			free_bitmap(ctl, entry);
3469 	}
3470 out:
3471 	spin_unlock(&ctl->tree_lock);
3472 
3473 	return ino;
3474 }
3475 
lookup_free_ino_inode(struct btrfs_root * root,struct btrfs_path * path)3476 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3477 				    struct btrfs_path *path)
3478 {
3479 	struct inode *inode = NULL;
3480 
3481 	spin_lock(&root->ino_cache_lock);
3482 	if (root->ino_cache_inode)
3483 		inode = igrab(root->ino_cache_inode);
3484 	spin_unlock(&root->ino_cache_lock);
3485 	if (inode)
3486 		return inode;
3487 
3488 	inode = __lookup_free_space_inode(root, path, 0);
3489 	if (IS_ERR(inode))
3490 		return inode;
3491 
3492 	spin_lock(&root->ino_cache_lock);
3493 	if (!btrfs_fs_closing(root->fs_info))
3494 		root->ino_cache_inode = igrab(inode);
3495 	spin_unlock(&root->ino_cache_lock);
3496 
3497 	return inode;
3498 }
3499 
create_free_ino_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path)3500 int create_free_ino_inode(struct btrfs_root *root,
3501 			  struct btrfs_trans_handle *trans,
3502 			  struct btrfs_path *path)
3503 {
3504 	return __create_free_space_inode(root, trans, path,
3505 					 BTRFS_FREE_INO_OBJECTID, 0);
3506 }
3507 
load_free_ino_cache(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3508 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3509 {
3510 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3511 	struct btrfs_path *path;
3512 	struct inode *inode;
3513 	int ret = 0;
3514 	u64 root_gen = btrfs_root_generation(&root->root_item);
3515 
3516 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3517 		return 0;
3518 
3519 	/*
3520 	 * If we're unmounting then just return, since this does a search on the
3521 	 * normal root and not the commit root and we could deadlock.
3522 	 */
3523 	if (btrfs_fs_closing(fs_info))
3524 		return 0;
3525 
3526 	path = btrfs_alloc_path();
3527 	if (!path)
3528 		return 0;
3529 
3530 	inode = lookup_free_ino_inode(root, path);
3531 	if (IS_ERR(inode))
3532 		goto out;
3533 
3534 	if (root_gen != BTRFS_I(inode)->generation)
3535 		goto out_put;
3536 
3537 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3538 
3539 	if (ret < 0)
3540 		btrfs_err(fs_info,
3541 			"failed to load free ino cache for root %llu",
3542 			root->root_key.objectid);
3543 out_put:
3544 	iput(inode);
3545 out:
3546 	btrfs_free_path(path);
3547 	return ret;
3548 }
3549 
btrfs_write_out_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct inode * inode)3550 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3551 			      struct btrfs_trans_handle *trans,
3552 			      struct btrfs_path *path,
3553 			      struct inode *inode)
3554 {
3555 	struct btrfs_fs_info *fs_info = root->fs_info;
3556 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3557 	int ret;
3558 	struct btrfs_io_ctl io_ctl;
3559 	bool release_metadata = true;
3560 
3561 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3562 		return 0;
3563 
3564 	memset(&io_ctl, 0, sizeof(io_ctl));
3565 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3566 	if (!ret) {
3567 		/*
3568 		 * At this point writepages() didn't error out, so our metadata
3569 		 * reservation is released when the writeback finishes, at
3570 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3571 		 * with or without an error.
3572 		 */
3573 		release_metadata = false;
3574 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3575 	}
3576 
3577 	if (ret) {
3578 		if (release_metadata)
3579 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3580 					inode->i_size, true);
3581 #ifdef DEBUG
3582 		btrfs_err(fs_info,
3583 			  "failed to write free ino cache for root %llu",
3584 			  root->root_key.objectid);
3585 #endif
3586 	}
3587 
3588 	return ret;
3589 }
3590 
3591 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3592 /*
3593  * Use this if you need to make a bitmap or extent entry specifically, it
3594  * doesn't do any of the merging that add_free_space does, this acts a lot like
3595  * how the free space cache loading stuff works, so you can get really weird
3596  * configurations.
3597  */
test_add_free_space_entry(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes,bool bitmap)3598 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3599 			      u64 offset, u64 bytes, bool bitmap)
3600 {
3601 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3602 	struct btrfs_free_space *info = NULL, *bitmap_info;
3603 	void *map = NULL;
3604 	u64 bytes_added;
3605 	int ret;
3606 
3607 again:
3608 	if (!info) {
3609 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3610 		if (!info)
3611 			return -ENOMEM;
3612 	}
3613 
3614 	if (!bitmap) {
3615 		spin_lock(&ctl->tree_lock);
3616 		info->offset = offset;
3617 		info->bytes = bytes;
3618 		info->max_extent_size = 0;
3619 		ret = link_free_space(ctl, info);
3620 		spin_unlock(&ctl->tree_lock);
3621 		if (ret)
3622 			kmem_cache_free(btrfs_free_space_cachep, info);
3623 		return ret;
3624 	}
3625 
3626 	if (!map) {
3627 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3628 		if (!map) {
3629 			kmem_cache_free(btrfs_free_space_cachep, info);
3630 			return -ENOMEM;
3631 		}
3632 	}
3633 
3634 	spin_lock(&ctl->tree_lock);
3635 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3636 					 1, 0);
3637 	if (!bitmap_info) {
3638 		info->bitmap = map;
3639 		map = NULL;
3640 		add_new_bitmap(ctl, info, offset);
3641 		bitmap_info = info;
3642 		info = NULL;
3643 	}
3644 
3645 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3646 
3647 	bytes -= bytes_added;
3648 	offset += bytes_added;
3649 	spin_unlock(&ctl->tree_lock);
3650 
3651 	if (bytes)
3652 		goto again;
3653 
3654 	if (info)
3655 		kmem_cache_free(btrfs_free_space_cachep, info);
3656 	if (map)
3657 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3658 	return 0;
3659 }
3660 
3661 /*
3662  * Checks to see if the given range is in the free space cache.  This is really
3663  * just used to check the absence of space, so if there is free space in the
3664  * range at all we will return 1.
3665  */
test_check_exists(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes)3666 int test_check_exists(struct btrfs_block_group_cache *cache,
3667 		      u64 offset, u64 bytes)
3668 {
3669 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3670 	struct btrfs_free_space *info;
3671 	int ret = 0;
3672 
3673 	spin_lock(&ctl->tree_lock);
3674 	info = tree_search_offset(ctl, offset, 0, 0);
3675 	if (!info) {
3676 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3677 					  1, 0);
3678 		if (!info)
3679 			goto out;
3680 	}
3681 
3682 have_info:
3683 	if (info->bitmap) {
3684 		u64 bit_off, bit_bytes;
3685 		struct rb_node *n;
3686 		struct btrfs_free_space *tmp;
3687 
3688 		bit_off = offset;
3689 		bit_bytes = ctl->unit;
3690 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3691 		if (!ret) {
3692 			if (bit_off == offset) {
3693 				ret = 1;
3694 				goto out;
3695 			} else if (bit_off > offset &&
3696 				   offset + bytes > bit_off) {
3697 				ret = 1;
3698 				goto out;
3699 			}
3700 		}
3701 
3702 		n = rb_prev(&info->offset_index);
3703 		while (n) {
3704 			tmp = rb_entry(n, struct btrfs_free_space,
3705 				       offset_index);
3706 			if (tmp->offset + tmp->bytes < offset)
3707 				break;
3708 			if (offset + bytes < tmp->offset) {
3709 				n = rb_prev(&tmp->offset_index);
3710 				continue;
3711 			}
3712 			info = tmp;
3713 			goto have_info;
3714 		}
3715 
3716 		n = rb_next(&info->offset_index);
3717 		while (n) {
3718 			tmp = rb_entry(n, struct btrfs_free_space,
3719 				       offset_index);
3720 			if (offset + bytes < tmp->offset)
3721 				break;
3722 			if (tmp->offset + tmp->bytes < offset) {
3723 				n = rb_next(&tmp->offset_index);
3724 				continue;
3725 			}
3726 			info = tmp;
3727 			goto have_info;
3728 		}
3729 
3730 		ret = 0;
3731 		goto out;
3732 	}
3733 
3734 	if (info->offset == offset) {
3735 		ret = 1;
3736 		goto out;
3737 	}
3738 
3739 	if (offset > info->offset && offset < info->offset + info->bytes)
3740 		ret = 1;
3741 out:
3742 	spin_unlock(&ctl->tree_lock);
3743 	return ret;
3744 }
3745 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3746