1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
btrfs_end_io_wq_init(void)83 int __init btrfs_end_io_wq_init(void)
84 {
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93 }
94
btrfs_end_io_wq_exit(void)95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
111 struct async_submit_bio {
112 void *private_data;
113 struct bio *bio;
114 extent_submit_bio_start_t *submit_bio_start;
115 int mirror_num;
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
121 struct btrfs_work work;
122 blk_status_t status;
123 };
124
125 /*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
135 *
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
139 *
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
143 *
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
147 */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 # error
151 # endif
152
153 static struct btrfs_lockdep_keyset {
154 u64 id; /* root objectid */
155 const char *name_stem; /* lock name stem */
156 char names[BTRFS_MAX_LEVEL + 1][20];
157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171 { .id = 0, .name_stem = "tree" },
172 };
173
btrfs_init_lockdep(void)174 void __init btrfs_init_lockdep(void)
175 {
176 int i, j;
177
178 /* initialize lockdep class names */
179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 snprintf(ks->names[j], sizeof(ks->names[j]),
184 "btrfs-%s-%02d", ks->name_stem, j);
185 }
186 }
187
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190 {
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207 * Compute the csum of a btree block and store the result to provided buffer.
208 */
csum_tree_block(struct extent_buffer * buf,u8 * result)209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 struct btrfs_fs_info *fs_info = buf->fs_info;
212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 char *kaddr;
215 int i;
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
219 kaddr = page_address(buf->pages[0]);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 PAGE_SIZE - BTRFS_CSUM_SIZE);
222
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 }
227 memset(result, 0, BTRFS_CSUM_SIZE);
228 crypto_shash_final(shash, result);
229 }
230
231 /*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
240 {
241 struct extent_state *cached_state = NULL;
242 int ret;
243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
248 if (atomic)
249 return -EAGAIN;
250
251 if (need_lock) {
252 btrfs_tree_read_lock(eb);
253 btrfs_set_lock_blocking_read(eb);
254 }
255
256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257 &cached_state);
258 if (extent_buffer_uptodate(eb) &&
259 btrfs_header_generation(eb) == parent_transid) {
260 ret = 0;
261 goto out;
262 }
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
265 eb->start,
266 parent_transid, btrfs_header_generation(eb));
267 ret = 1;
268
269 /*
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
272 * block that has been freed and re-allocated. So don't clear uptodate
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
276 */
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
279 out:
280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281 &cached_state);
282 if (need_lock)
283 btrfs_tree_read_unlock_blocking(eb);
284 return ret;
285 }
286
btrfs_supported_super_csum(u16 csum_type)287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289 switch (csum_type) {
290 case BTRFS_CSUM_TYPE_CRC32:
291 case BTRFS_CSUM_TYPE_XXHASH:
292 case BTRFS_CSUM_TYPE_SHA256:
293 case BTRFS_CSUM_TYPE_BLAKE2:
294 return true;
295 default:
296 return false;
297 }
298 }
299
300 /*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 char *raw_disk_sb)
306 {
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
309 char result[BTRFS_CSUM_SIZE];
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312 shash->tfm = fs_info->csum_shash;
313
314 /*
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
318 */
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323 return 1;
324
325 return 0;
326 }
327
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 struct btrfs_key *first_key, u64 parent_transid)
330 {
331 struct btrfs_fs_info *fs_info = eb->fs_info;
332 int found_level;
333 struct btrfs_key found_key;
334 int ret;
335
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
340 btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
343 return -EIO;
344 }
345
346 if (!first_key)
347 return 0;
348
349 /*
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
354 */
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 return 0;
357
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
360 btrfs_err(fs_info,
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 eb->start);
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 return -EUCLEAN;
365 }
366
367 if (found_level)
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
369 else
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373 if (ret) {
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
376 btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
381 found_key.offset);
382 }
383 return ret;
384 }
385
386 /*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
389 *
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
393 */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
397 {
398 struct btrfs_fs_info *fs_info = eb->fs_info;
399 struct extent_io_tree *io_tree;
400 int failed = 0;
401 int ret;
402 int num_copies = 0;
403 int mirror_num = 0;
404 int failed_mirror = 0;
405
406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407 while (1) {
408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410 if (!ret) {
411 if (verify_parent_transid(io_tree, eb,
412 parent_transid, 0))
413 ret = -EIO;
414 else if (btrfs_verify_level_key(eb, level,
415 first_key, parent_transid))
416 ret = -EUCLEAN;
417 else
418 break;
419 }
420
421 num_copies = btrfs_num_copies(fs_info,
422 eb->start, eb->len);
423 if (num_copies == 1)
424 break;
425
426 if (!failed_mirror) {
427 failed = 1;
428 failed_mirror = eb->read_mirror;
429 }
430
431 mirror_num++;
432 if (mirror_num == failed_mirror)
433 mirror_num++;
434
435 if (mirror_num > num_copies)
436 break;
437 }
438
439 if (failed && !ret && failed_mirror)
440 btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442 return ret;
443 }
444
445 /*
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
448 */
449
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452 u64 start = page_offset(page);
453 u64 found_start;
454 u8 result[BTRFS_CSUM_SIZE];
455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456 struct extent_buffer *eb;
457 int ret;
458
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
462
463 found_start = btrfs_header_bytenr(eb);
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
476
477 csum_tree_block(eb, result);
478
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
485 btrfs_print_tree(eb, 0);
486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490 return ret;
491 }
492 write_extent_buffer(eb, result, 0, csum_size);
493
494 return 0;
495 }
496
check_tree_block_fsid(struct extent_buffer * eb)497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499 struct btrfs_fs_info *fs_info = eb->fs_info;
500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501 u8 fsid[BTRFS_FSID_SIZE];
502 u8 *metadata_uuid;
503
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
515
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
518
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
524 }
525
btrfs_validate_metadata_buffer(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
528 int mirror)
529 {
530 u64 found_start;
531 int found_level;
532 struct extent_buffer *eb;
533 struct btrfs_fs_info *fs_info;
534 u16 csum_size;
535 int ret = 0;
536 u8 result[BTRFS_CSUM_SIZE];
537 int reads_done;
538
539 if (!page->private)
540 goto out;
541
542 eb = (struct extent_buffer *)page->private;
543 fs_info = eb->fs_info;
544 csum_size = btrfs_super_csum_size(fs_info->super_copy);
545
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
548 */
549 atomic_inc(&eb->refs);
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
552 if (!reads_done)
553 goto err;
554
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 ret = -EIO;
558 goto err;
559 }
560
561 found_start = btrfs_header_bytenr(eb);
562 if (found_start != eb->start) {
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
565 ret = -EIO;
566 goto err;
567 }
568 if (check_tree_block_fsid(eb)) {
569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 eb->start);
571 ret = -EIO;
572 goto err;
573 }
574 found_level = btrfs_header_level(eb);
575 if (found_level >= BTRFS_MAX_LEVEL) {
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
578 ret = -EIO;
579 goto err;
580 }
581
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 eb, found_level);
584
585 csum_tree_block(eb, result);
586
587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
589
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593 fs_info->sb->s_id, eb->start,
594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
597 ret = -EUCLEAN;
598 goto err;
599 }
600
601 /*
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
604 * return -EIO.
605 */
606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 ret = -EIO;
609 }
610
611 if (found_level > 0 && btrfs_check_node(eb))
612 ret = -EIO;
613
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
616 else
617 btrfs_err(fs_info,
618 "block=%llu read time tree block corruption detected",
619 eb->start);
620 err:
621 if (reads_done &&
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 btree_readahead_hook(eb, ret);
624
625 if (ret) {
626 /*
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
629 * to decrement
630 */
631 atomic_inc(&eb->io_pages);
632 clear_extent_buffer_uptodate(eb);
633 }
634 free_extent_buffer(eb);
635 out:
636 return ret;
637 }
638
end_workqueue_bio(struct bio * bio)639 static void end_workqueue_bio(struct bio *bio)
640 {
641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 struct btrfs_fs_info *fs_info;
643 struct btrfs_workqueue *wq;
644
645 fs_info = end_io_wq->info;
646 end_io_wq->status = bio->bi_status;
647
648 if (bio_op(bio) == REQ_OP_WRITE) {
649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650 wq = fs_info->endio_meta_write_workers;
651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652 wq = fs_info->endio_freespace_worker;
653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654 wq = fs_info->endio_raid56_workers;
655 else
656 wq = fs_info->endio_write_workers;
657 } else {
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659 wq = fs_info->endio_raid56_workers;
660 else if (end_io_wq->metadata)
661 wq = fs_info->endio_meta_workers;
662 else
663 wq = fs_info->endio_workers;
664 }
665
666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667 btrfs_queue_work(wq, &end_io_wq->work);
668 }
669
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 enum btrfs_wq_endio_type metadata)
672 {
673 struct btrfs_end_io_wq *end_io_wq;
674
675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676 if (!end_io_wq)
677 return BLK_STS_RESOURCE;
678
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
681 end_io_wq->info = info;
682 end_io_wq->status = 0;
683 end_io_wq->bio = bio;
684 end_io_wq->metadata = metadata;
685
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
688 return 0;
689 }
690
run_one_async_start(struct btrfs_work * work)691 static void run_one_async_start(struct btrfs_work *work)
692 {
693 struct async_submit_bio *async;
694 blk_status_t ret;
695
696 async = container_of(work, struct async_submit_bio, work);
697 ret = async->submit_bio_start(async->private_data, async->bio,
698 async->bio_offset);
699 if (ret)
700 async->status = ret;
701 }
702
703 /*
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time. All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
707 *
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
710 */
run_one_async_done(struct btrfs_work * work)711 static void run_one_async_done(struct btrfs_work *work)
712 {
713 struct async_submit_bio *async;
714 struct inode *inode;
715 blk_status_t ret;
716
717 async = container_of(work, struct async_submit_bio, work);
718 inode = async->private_data;
719
720 /* If an error occurred we just want to clean up the bio and move on */
721 if (async->status) {
722 async->bio->bi_status = async->status;
723 bio_endio(async->bio);
724 return;
725 }
726
727 /*
728 * All of the bios that pass through here are from async helpers.
729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 * This changes nothing when cgroups aren't in use.
731 */
732 async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734 if (ret) {
735 async->bio->bi_status = ret;
736 bio_endio(async->bio);
737 }
738 }
739
run_one_async_free(struct btrfs_work * work)740 static void run_one_async_free(struct btrfs_work *work)
741 {
742 struct async_submit_bio *async;
743
744 async = container_of(work, struct async_submit_bio, work);
745 kfree(async);
746 }
747
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 int mirror_num, unsigned long bio_flags,
750 u64 bio_offset, void *private_data,
751 extent_submit_bio_start_t *submit_bio_start)
752 {
753 struct async_submit_bio *async;
754
755 async = kmalloc(sizeof(*async), GFP_NOFS);
756 if (!async)
757 return BLK_STS_RESOURCE;
758
759 async->private_data = private_data;
760 async->bio = bio;
761 async->mirror_num = mirror_num;
762 async->submit_bio_start = submit_bio_start;
763
764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 run_one_async_free);
766
767 async->bio_offset = bio_offset;
768
769 async->status = 0;
770
771 if (op_is_sync(bio->bi_opf))
772 btrfs_set_work_high_priority(&async->work);
773
774 btrfs_queue_work(fs_info->workers, &async->work);
775 return 0;
776 }
777
btree_csum_one_bio(struct bio * bio)778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780 struct bio_vec *bvec;
781 struct btrfs_root *root;
782 int ret = 0;
783 struct bvec_iter_all iter_all;
784
785 ASSERT(!bio_flagged(bio, BIO_CLONED));
786 bio_for_each_segment_all(bvec, bio, iter_all) {
787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789 if (ret)
790 break;
791 }
792
793 return errno_to_blk_status(ret);
794 }
795
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797 u64 bio_offset)
798 {
799 /*
800 * when we're called for a write, we're already in the async
801 * submission context. Just jump into btrfs_map_bio
802 */
803 return btree_csum_one_bio(bio);
804 }
805
check_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)806 static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
808 {
809 if (atomic_read(&bi->sync_writers))
810 return 0;
811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812 return 0;
813 return 1;
814 }
815
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
818 {
819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820 int async = check_async_write(fs_info, BTRFS_I(inode));
821 blk_status_t ret;
822
823 if (bio_op(bio) != REQ_OP_WRITE) {
824 /*
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
827 */
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
830 if (ret)
831 goto out_w_error;
832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
833 } else if (!async) {
834 ret = btree_csum_one_bio(bio);
835 if (ret)
836 goto out_w_error;
837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
838 } else {
839 /*
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
842 */
843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844 0, inode, btree_submit_bio_start);
845 }
846
847 if (ret)
848 goto out_w_error;
849 return 0;
850
851 out_w_error:
852 bio->bi_status = ret;
853 bio_endio(bio);
854 return ret;
855 }
856
857 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)858 static int btree_migratepage(struct address_space *mapping,
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
861 {
862 /*
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
865 */
866 if (PageDirty(page))
867 return -EAGAIN;
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
875 return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878
879
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)880 static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
882 {
883 struct btrfs_fs_info *fs_info;
884 int ret;
885
886 if (wbc->sync_mode == WB_SYNC_NONE) {
887
888 if (wbc->for_kupdate)
889 return 0;
890
891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 /* this is a bit racy, but that's ok */
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
896 if (ret < 0)
897 return 0;
898 }
899 return btree_write_cache_pages(mapping, wbc);
900 }
901
btree_releasepage(struct page * page,gfp_t gfp_flags)902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904 if (PageWriteback(page) || PageDirty(page))
905 return 0;
906
907 return try_release_extent_buffer(page);
908 }
909
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911 unsigned int length)
912 {
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
917 if (PagePrivate(page)) {
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
921 detach_page_private(page);
922 }
923 }
924
btree_set_page_dirty(struct page * page)925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928 struct extent_buffer *eb;
929
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
932 BUG_ON(!eb);
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
936 #endif
937 return __set_page_dirty_nobuffers(page);
938 }
939
940 static const struct address_space_operations btree_aops = {
941 .writepages = btree_writepages,
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945 .migratepage = btree_migratepage,
946 #endif
947 .set_page_dirty = btree_set_page_dirty,
948 };
949
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952 struct extent_buffer *buf = NULL;
953 int ret;
954
955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
956 if (IS_ERR(buf))
957 return;
958
959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960 if (ret < 0)
961 free_extent_buffer_stale(buf);
962 else
963 free_extent_buffer(buf);
964 }
965
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)966 struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
968 u64 bytenr)
969 {
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
973 }
974
975 /*
976 * Read tree block at logical address @bytenr and do variant basic but critical
977 * verification.
978 *
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
982 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
986 {
987 struct extent_buffer *buf = NULL;
988 int ret;
989
990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
991 if (IS_ERR(buf))
992 return buf;
993
994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
995 level, first_key);
996 if (ret) {
997 free_extent_buffer_stale(buf);
998 return ERR_PTR(ret);
999 }
1000 return buf;
1001
1002 }
1003
btrfs_clean_tree_block(struct extent_buffer * buf)1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006 struct btrfs_fs_info *fs_info = buf->fs_info;
1007 if (btrfs_header_generation(buf) ==
1008 fs_info->running_transaction->transid) {
1009 btrfs_assert_tree_locked(buf);
1010
1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 -buf->len,
1014 fs_info->dirty_metadata_batch);
1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016 btrfs_set_lock_blocking_write(buf);
1017 clear_extent_buffer_dirty(buf);
1018 }
1019 }
1020 }
1021
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023 u64 objectid)
1024 {
1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026 root->fs_info = fs_info;
1027 root->node = NULL;
1028 root->commit_root = NULL;
1029 root->state = 0;
1030 root->orphan_cleanup_state = 0;
1031
1032 root->last_trans = 0;
1033 root->highest_objectid = 0;
1034 root->nr_delalloc_inodes = 0;
1035 root->nr_ordered_extents = 0;
1036 root->inode_tree = RB_ROOT;
1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 root->block_rsv = NULL;
1039
1040 INIT_LIST_HEAD(&root->dirty_list);
1041 INIT_LIST_HEAD(&root->root_list);
1042 INIT_LIST_HEAD(&root->delalloc_inodes);
1043 INIT_LIST_HEAD(&root->delalloc_root);
1044 INIT_LIST_HEAD(&root->ordered_extents);
1045 INIT_LIST_HEAD(&root->ordered_root);
1046 INIT_LIST_HEAD(&root->reloc_dirty_list);
1047 INIT_LIST_HEAD(&root->logged_list[0]);
1048 INIT_LIST_HEAD(&root->logged_list[1]);
1049 spin_lock_init(&root->inode_lock);
1050 spin_lock_init(&root->delalloc_lock);
1051 spin_lock_init(&root->ordered_extent_lock);
1052 spin_lock_init(&root->accounting_lock);
1053 spin_lock_init(&root->log_extents_lock[0]);
1054 spin_lock_init(&root->log_extents_lock[1]);
1055 spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 mutex_init(&root->objectid_mutex);
1057 mutex_init(&root->log_mutex);
1058 mutex_init(&root->ordered_extent_mutex);
1059 mutex_init(&root->delalloc_mutex);
1060 init_waitqueue_head(&root->qgroup_flush_wait);
1061 init_waitqueue_head(&root->log_writer_wait);
1062 init_waitqueue_head(&root->log_commit_wait[0]);
1063 init_waitqueue_head(&root->log_commit_wait[1]);
1064 INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 atomic_set(&root->log_commit[0], 0);
1067 atomic_set(&root->log_commit[1], 0);
1068 atomic_set(&root->log_writers, 0);
1069 atomic_set(&root->log_batch, 0);
1070 refcount_set(&root->refs, 1);
1071 atomic_set(&root->snapshot_force_cow, 0);
1072 atomic_set(&root->nr_swapfiles, 0);
1073 root->log_transid = 0;
1074 root->log_transid_committed = -1;
1075 root->last_log_commit = 0;
1076 if (!dummy) {
1077 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079 extent_io_tree_init(fs_info, &root->log_csum_range,
1080 IO_TREE_LOG_CSUM_RANGE, NULL);
1081 }
1082
1083 memset(&root->root_key, 0, sizeof(root->root_key));
1084 memset(&root->root_item, 0, sizeof(root->root_item));
1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086 root->root_key.objectid = objectid;
1087 root->anon_dev = 0;
1088
1089 spin_lock_init(&root->root_item_lock);
1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 INIT_LIST_HEAD(&root->leak_list);
1093 spin_lock(&fs_info->fs_roots_radix_lock);
1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100 u64 objectid, gfp_t flags)
1101 {
1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103 if (root)
1104 __setup_root(root, fs_info, objectid);
1105 return root;
1106 }
1107
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112 struct btrfs_root *root;
1113
1114 if (!fs_info)
1115 return ERR_PTR(-EINVAL);
1116
1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118 if (!root)
1119 return ERR_PTR(-ENOMEM);
1120
1121 /* We don't use the stripesize in selftest, set it as sectorsize */
1122 root->alloc_bytenr = 0;
1123
1124 return root;
1125 }
1126 #endif
1127
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129 u64 objectid)
1130 {
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct extent_buffer *leaf;
1133 struct btrfs_root *tree_root = fs_info->tree_root;
1134 struct btrfs_root *root;
1135 struct btrfs_key key;
1136 unsigned int nofs_flag;
1137 int ret = 0;
1138
1139 /*
1140 * We're holding a transaction handle, so use a NOFS memory allocation
1141 * context to avoid deadlock if reclaim happens.
1142 */
1143 nofs_flag = memalloc_nofs_save();
1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145 memalloc_nofs_restore(nofs_flag);
1146 if (!root)
1147 return ERR_PTR(-ENOMEM);
1148
1149 root->root_key.objectid = objectid;
1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 root->root_key.offset = 0;
1152
1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 BTRFS_NESTING_NORMAL);
1155 if (IS_ERR(leaf)) {
1156 ret = PTR_ERR(leaf);
1157 leaf = NULL;
1158 goto fail;
1159 }
1160
1161 root->node = leaf;
1162 btrfs_mark_buffer_dirty(leaf);
1163
1164 root->commit_root = btrfs_root_node(root);
1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167 root->root_item.flags = 0;
1168 root->root_item.byte_limit = 0;
1169 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 btrfs_set_root_generation(&root->root_item, trans->transid);
1171 btrfs_set_root_level(&root->root_item, 0);
1172 btrfs_set_root_refs(&root->root_item, 1);
1173 btrfs_set_root_used(&root->root_item, leaf->len);
1174 btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 btrfs_set_root_dirid(&root->root_item, 0);
1176 if (is_fstree(objectid))
1177 generate_random_guid(root->root_item.uuid);
1178 else
1179 export_guid(root->root_item.uuid, &guid_null);
1180 root->root_item.drop_level = 0;
1181
1182 key.objectid = objectid;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1184 key.offset = 0;
1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186 if (ret)
1187 goto fail;
1188
1189 btrfs_tree_unlock(leaf);
1190
1191 return root;
1192
1193 fail:
1194 if (leaf)
1195 btrfs_tree_unlock(leaf);
1196 btrfs_put_root(root);
1197
1198 return ERR_PTR(ret);
1199 }
1200
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info)
1203 {
1204 struct btrfs_root *root;
1205 struct extent_buffer *leaf;
1206
1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208 if (!root)
1209 return ERR_PTR(-ENOMEM);
1210
1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215 /*
1216 * DON'T set SHAREABLE bit for log trees.
1217 *
1218 * Log trees are not exposed to user space thus can't be snapshotted,
1219 * and they go away before a real commit is actually done.
1220 *
1221 * They do store pointers to file data extents, and those reference
1222 * counts still get updated (along with back refs to the log tree).
1223 */
1224
1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227 if (IS_ERR(leaf)) {
1228 btrfs_put_root(root);
1229 return ERR_CAST(leaf);
1230 }
1231
1232 root->node = leaf;
1233
1234 btrfs_mark_buffer_dirty(root->node);
1235 btrfs_tree_unlock(root->node);
1236 return root;
1237 }
1238
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
1241 {
1242 struct btrfs_root *log_root;
1243
1244 log_root = alloc_log_tree(trans, fs_info);
1245 if (IS_ERR(log_root))
1246 return PTR_ERR(log_root);
1247 WARN_ON(fs_info->log_root_tree);
1248 fs_info->log_root_tree = log_root;
1249 return 0;
1250 }
1251
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root)
1254 {
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_root *log_root;
1257 struct btrfs_inode_item *inode_item;
1258
1259 log_root = alloc_log_tree(trans, fs_info);
1260 if (IS_ERR(log_root))
1261 return PTR_ERR(log_root);
1262
1263 log_root->last_trans = trans->transid;
1264 log_root->root_key.offset = root->root_key.objectid;
1265
1266 inode_item = &log_root->root_item.inode;
1267 btrfs_set_stack_inode_generation(inode_item, 1);
1268 btrfs_set_stack_inode_size(inode_item, 3);
1269 btrfs_set_stack_inode_nlink(inode_item, 1);
1270 btrfs_set_stack_inode_nbytes(inode_item,
1271 fs_info->nodesize);
1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274 btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276 WARN_ON(root->log_root);
1277 root->log_root = log_root;
1278 root->log_transid = 0;
1279 root->log_transid_committed = -1;
1280 root->last_log_commit = 0;
1281 return 0;
1282 }
1283
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285 struct btrfs_path *path,
1286 struct btrfs_key *key)
1287 {
1288 struct btrfs_root *root;
1289 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290 u64 generation;
1291 int ret;
1292 int level;
1293
1294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295 if (!root)
1296 return ERR_PTR(-ENOMEM);
1297
1298 ret = btrfs_find_root(tree_root, key, path,
1299 &root->root_item, &root->root_key);
1300 if (ret) {
1301 if (ret > 0)
1302 ret = -ENOENT;
1303 goto fail;
1304 }
1305
1306 generation = btrfs_root_generation(&root->root_item);
1307 level = btrfs_root_level(&root->root_item);
1308 root->node = read_tree_block(fs_info,
1309 btrfs_root_bytenr(&root->root_item),
1310 generation, level, NULL);
1311 if (IS_ERR(root->node)) {
1312 ret = PTR_ERR(root->node);
1313 root->node = NULL;
1314 goto fail;
1315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316 ret = -EIO;
1317 goto fail;
1318 }
1319 root->commit_root = btrfs_root_node(root);
1320 return root;
1321 fail:
1322 btrfs_put_root(root);
1323 return ERR_PTR(ret);
1324 }
1325
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327 struct btrfs_key *key)
1328 {
1329 struct btrfs_root *root;
1330 struct btrfs_path *path;
1331
1332 path = btrfs_alloc_path();
1333 if (!path)
1334 return ERR_PTR(-ENOMEM);
1335 root = read_tree_root_path(tree_root, path, key);
1336 btrfs_free_path(path);
1337
1338 return root;
1339 }
1340
1341 /*
1342 * Initialize subvolume root in-memory structure
1343 *
1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1345 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347 {
1348 int ret;
1349 unsigned int nofs_flag;
1350
1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353 GFP_NOFS);
1354 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355 ret = -ENOMEM;
1356 goto fail;
1357 }
1358
1359 /*
1360 * We might be called under a transaction (e.g. indirect backref
1361 * resolution) which could deadlock if it triggers memory reclaim
1362 */
1363 nofs_flag = memalloc_nofs_save();
1364 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365 memalloc_nofs_restore(nofs_flag);
1366 if (ret)
1367 goto fail;
1368
1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372 btrfs_check_and_init_root_item(&root->root_item);
1373 }
1374
1375 btrfs_init_free_ino_ctl(root);
1376 spin_lock_init(&root->ino_cache_lock);
1377 init_waitqueue_head(&root->ino_cache_wait);
1378
1379 /*
1380 * Don't assign anonymous block device to roots that are not exposed to
1381 * userspace, the id pool is limited to 1M
1382 */
1383 if (is_fstree(root->root_key.objectid) &&
1384 btrfs_root_refs(&root->root_item) > 0) {
1385 if (!anon_dev) {
1386 ret = get_anon_bdev(&root->anon_dev);
1387 if (ret)
1388 goto fail;
1389 } else {
1390 root->anon_dev = anon_dev;
1391 }
1392 }
1393
1394 mutex_lock(&root->objectid_mutex);
1395 ret = btrfs_find_highest_objectid(root,
1396 &root->highest_objectid);
1397 if (ret) {
1398 mutex_unlock(&root->objectid_mutex);
1399 goto fail;
1400 }
1401
1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404 mutex_unlock(&root->objectid_mutex);
1405
1406 return 0;
1407 fail:
1408 /* The caller is responsible to call btrfs_free_fs_root */
1409 return ret;
1410 }
1411
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413 u64 root_id)
1414 {
1415 struct btrfs_root *root;
1416
1417 spin_lock(&fs_info->fs_roots_radix_lock);
1418 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419 (unsigned long)root_id);
1420 if (root)
1421 root = btrfs_grab_root(root);
1422 spin_unlock(&fs_info->fs_roots_radix_lock);
1423 return root;
1424 }
1425
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427 u64 objectid)
1428 {
1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430 return btrfs_grab_root(fs_info->tree_root);
1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->extent_root);
1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->chunk_root);
1435 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->dev_root);
1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->csum_root);
1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->quota_root) ?
1441 fs_info->quota_root : ERR_PTR(-ENOENT);
1442 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443 return btrfs_grab_root(fs_info->uuid_root) ?
1444 fs_info->uuid_root : ERR_PTR(-ENOENT);
1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446 return btrfs_grab_root(fs_info->free_space_root) ?
1447 fs_info->free_space_root : ERR_PTR(-ENOENT);
1448 return NULL;
1449 }
1450
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452 struct btrfs_root *root)
1453 {
1454 int ret;
1455
1456 ret = radix_tree_preload(GFP_NOFS);
1457 if (ret)
1458 return ret;
1459
1460 spin_lock(&fs_info->fs_roots_radix_lock);
1461 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462 (unsigned long)root->root_key.objectid,
1463 root);
1464 if (ret == 0) {
1465 btrfs_grab_root(root);
1466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467 }
1468 spin_unlock(&fs_info->fs_roots_radix_lock);
1469 radix_tree_preload_end();
1470
1471 return ret;
1472 }
1473
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475 {
1476 #ifdef CONFIG_BTRFS_DEBUG
1477 struct btrfs_root *root;
1478
1479 while (!list_empty(&fs_info->allocated_roots)) {
1480 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482 root = list_first_entry(&fs_info->allocated_roots,
1483 struct btrfs_root, leak_list);
1484 btrfs_err(fs_info, "leaked root %s refcount %d",
1485 btrfs_root_name(&root->root_key, buf),
1486 refcount_read(&root->refs));
1487 while (refcount_read(&root->refs) > 1)
1488 btrfs_put_root(root);
1489 btrfs_put_root(root);
1490 }
1491 #endif
1492 }
1493
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495 {
1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497 percpu_counter_destroy(&fs_info->delalloc_bytes);
1498 percpu_counter_destroy(&fs_info->dio_bytes);
1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500 btrfs_free_csum_hash(fs_info);
1501 btrfs_free_stripe_hash_table(fs_info);
1502 btrfs_free_ref_cache(fs_info);
1503 kfree(fs_info->balance_ctl);
1504 kfree(fs_info->delayed_root);
1505 btrfs_put_root(fs_info->extent_root);
1506 btrfs_put_root(fs_info->tree_root);
1507 btrfs_put_root(fs_info->chunk_root);
1508 btrfs_put_root(fs_info->dev_root);
1509 btrfs_put_root(fs_info->csum_root);
1510 btrfs_put_root(fs_info->quota_root);
1511 btrfs_put_root(fs_info->uuid_root);
1512 btrfs_put_root(fs_info->free_space_root);
1513 btrfs_put_root(fs_info->fs_root);
1514 btrfs_put_root(fs_info->data_reloc_root);
1515 btrfs_check_leaked_roots(fs_info);
1516 btrfs_extent_buffer_leak_debug_check(fs_info);
1517 kfree(fs_info->super_copy);
1518 kfree(fs_info->super_for_commit);
1519 kvfree(fs_info);
1520 }
1521
1522
1523 /*
1524 * Get an in-memory reference of a root structure.
1525 *
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1529 *
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1531 *
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 * same root objectid.
1534 *
1535 * @objectid: root id
1536 * @anon_dev: preallocated anonymous block device number for new roots,
1537 * pass 0 for new allocation.
1538 * @check_ref: whether to check root item references, If true, return -ENOENT
1539 * for orphan roots
1540 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542 u64 objectid, dev_t anon_dev,
1543 bool check_ref)
1544 {
1545 struct btrfs_root *root;
1546 struct btrfs_path *path;
1547 struct btrfs_key key;
1548 int ret;
1549
1550 root = btrfs_get_global_root(fs_info, objectid);
1551 if (root)
1552 return root;
1553 again:
1554 root = btrfs_lookup_fs_root(fs_info, objectid);
1555 if (root) {
1556 /* Shouldn't get preallocated anon_dev for cached roots */
1557 ASSERT(!anon_dev);
1558 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1559 btrfs_put_root(root);
1560 return ERR_PTR(-ENOENT);
1561 }
1562 return root;
1563 }
1564
1565 key.objectid = objectid;
1566 key.type = BTRFS_ROOT_ITEM_KEY;
1567 key.offset = (u64)-1;
1568 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1569 if (IS_ERR(root))
1570 return root;
1571
1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1573 ret = -ENOENT;
1574 goto fail;
1575 }
1576
1577 ret = btrfs_init_fs_root(root, anon_dev);
1578 if (ret)
1579 goto fail;
1580
1581 path = btrfs_alloc_path();
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto fail;
1585 }
1586 key.objectid = BTRFS_ORPHAN_OBJECTID;
1587 key.type = BTRFS_ORPHAN_ITEM_KEY;
1588 key.offset = objectid;
1589
1590 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1591 btrfs_free_path(path);
1592 if (ret < 0)
1593 goto fail;
1594 if (ret == 0)
1595 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1596
1597 ret = btrfs_insert_fs_root(fs_info, root);
1598 if (ret) {
1599 btrfs_put_root(root);
1600 if (ret == -EEXIST)
1601 goto again;
1602 goto fail;
1603 }
1604 return root;
1605 fail:
1606 btrfs_put_root(root);
1607 return ERR_PTR(ret);
1608 }
1609
1610 /*
1611 * Get in-memory reference of a root structure
1612 *
1613 * @objectid: tree objectid
1614 * @check_ref: if set, verify that the tree exists and the item has at least
1615 * one reference
1616 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1617 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1618 u64 objectid, bool check_ref)
1619 {
1620 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1621 }
1622
1623 /*
1624 * Get in-memory reference of a root structure, created as new, optionally pass
1625 * the anonymous block device id
1626 *
1627 * @objectid: tree objectid
1628 * @anon_dev: if zero, allocate a new anonymous block device or use the
1629 * parameter value
1630 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1631 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1632 u64 objectid, dev_t anon_dev)
1633 {
1634 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1635 }
1636
1637 /*
1638 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1639 * @fs_info: the fs_info
1640 * @objectid: the objectid we need to lookup
1641 *
1642 * This is exclusively used for backref walking, and exists specifically because
1643 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1644 * creation time, which means we may have to read the tree_root in order to look
1645 * up a fs root that is not in memory. If the root is not in memory we will
1646 * read the tree root commit root and look up the fs root from there. This is a
1647 * temporary root, it will not be inserted into the radix tree as it doesn't
1648 * have the most uptodate information, it'll simply be discarded once the
1649 * backref code is finished using the root.
1650 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1651 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1652 struct btrfs_path *path,
1653 u64 objectid)
1654 {
1655 struct btrfs_root *root;
1656 struct btrfs_key key;
1657
1658 ASSERT(path->search_commit_root && path->skip_locking);
1659
1660 /*
1661 * This can return -ENOENT if we ask for a root that doesn't exist, but
1662 * since this is called via the backref walking code we won't be looking
1663 * up a root that doesn't exist, unless there's corruption. So if root
1664 * != NULL just return it.
1665 */
1666 root = btrfs_get_global_root(fs_info, objectid);
1667 if (root)
1668 return root;
1669
1670 root = btrfs_lookup_fs_root(fs_info, objectid);
1671 if (root)
1672 return root;
1673
1674 key.objectid = objectid;
1675 key.type = BTRFS_ROOT_ITEM_KEY;
1676 key.offset = (u64)-1;
1677 root = read_tree_root_path(fs_info->tree_root, path, &key);
1678 btrfs_release_path(path);
1679
1680 return root;
1681 }
1682
1683 /*
1684 * called by the kthread helper functions to finally call the bio end_io
1685 * functions. This is where read checksum verification actually happens
1686 */
end_workqueue_fn(struct btrfs_work * work)1687 static void end_workqueue_fn(struct btrfs_work *work)
1688 {
1689 struct bio *bio;
1690 struct btrfs_end_io_wq *end_io_wq;
1691
1692 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1693 bio = end_io_wq->bio;
1694
1695 bio->bi_status = end_io_wq->status;
1696 bio->bi_private = end_io_wq->private;
1697 bio->bi_end_io = end_io_wq->end_io;
1698 bio_endio(bio);
1699 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1700 }
1701
cleaner_kthread(void * arg)1702 static int cleaner_kthread(void *arg)
1703 {
1704 struct btrfs_root *root = arg;
1705 struct btrfs_fs_info *fs_info = root->fs_info;
1706 int again;
1707
1708 while (1) {
1709 again = 0;
1710
1711 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1712
1713 /* Make the cleaner go to sleep early. */
1714 if (btrfs_need_cleaner_sleep(fs_info))
1715 goto sleep;
1716
1717 /*
1718 * Do not do anything if we might cause open_ctree() to block
1719 * before we have finished mounting the filesystem.
1720 */
1721 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1722 goto sleep;
1723
1724 if (!mutex_trylock(&fs_info->cleaner_mutex))
1725 goto sleep;
1726
1727 /*
1728 * Avoid the problem that we change the status of the fs
1729 * during the above check and trylock.
1730 */
1731 if (btrfs_need_cleaner_sleep(fs_info)) {
1732 mutex_unlock(&fs_info->cleaner_mutex);
1733 goto sleep;
1734 }
1735
1736 btrfs_run_delayed_iputs(fs_info);
1737
1738 again = btrfs_clean_one_deleted_snapshot(root);
1739 mutex_unlock(&fs_info->cleaner_mutex);
1740
1741 /*
1742 * The defragger has dealt with the R/O remount and umount,
1743 * needn't do anything special here.
1744 */
1745 btrfs_run_defrag_inodes(fs_info);
1746
1747 /*
1748 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1749 * with relocation (btrfs_relocate_chunk) and relocation
1750 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1751 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1752 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1753 * unused block groups.
1754 */
1755 btrfs_delete_unused_bgs(fs_info);
1756 sleep:
1757 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1758 if (kthread_should_park())
1759 kthread_parkme();
1760 if (kthread_should_stop())
1761 return 0;
1762 if (!again) {
1763 set_current_state(TASK_INTERRUPTIBLE);
1764 schedule();
1765 __set_current_state(TASK_RUNNING);
1766 }
1767 }
1768 }
1769
transaction_kthread(void * arg)1770 static int transaction_kthread(void *arg)
1771 {
1772 struct btrfs_root *root = arg;
1773 struct btrfs_fs_info *fs_info = root->fs_info;
1774 struct btrfs_trans_handle *trans;
1775 struct btrfs_transaction *cur;
1776 u64 transid;
1777 time64_t now;
1778 unsigned long delay;
1779 bool cannot_commit;
1780
1781 do {
1782 cannot_commit = false;
1783 delay = HZ * fs_info->commit_interval;
1784 mutex_lock(&fs_info->transaction_kthread_mutex);
1785
1786 spin_lock(&fs_info->trans_lock);
1787 cur = fs_info->running_transaction;
1788 if (!cur) {
1789 spin_unlock(&fs_info->trans_lock);
1790 goto sleep;
1791 }
1792
1793 now = ktime_get_seconds();
1794 if (cur->state < TRANS_STATE_COMMIT_START &&
1795 (now < cur->start_time ||
1796 now - cur->start_time < fs_info->commit_interval)) {
1797 spin_unlock(&fs_info->trans_lock);
1798 delay = HZ * 5;
1799 goto sleep;
1800 }
1801 transid = cur->transid;
1802 spin_unlock(&fs_info->trans_lock);
1803
1804 /* If the file system is aborted, this will always fail. */
1805 trans = btrfs_attach_transaction(root);
1806 if (IS_ERR(trans)) {
1807 if (PTR_ERR(trans) != -ENOENT)
1808 cannot_commit = true;
1809 goto sleep;
1810 }
1811 if (transid == trans->transid) {
1812 btrfs_commit_transaction(trans);
1813 } else {
1814 btrfs_end_transaction(trans);
1815 }
1816 sleep:
1817 wake_up_process(fs_info->cleaner_kthread);
1818 mutex_unlock(&fs_info->transaction_kthread_mutex);
1819
1820 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1821 &fs_info->fs_state)))
1822 btrfs_cleanup_transaction(fs_info);
1823 if (!kthread_should_stop() &&
1824 (!btrfs_transaction_blocked(fs_info) ||
1825 cannot_commit))
1826 schedule_timeout_interruptible(delay);
1827 } while (!kthread_should_stop());
1828 return 0;
1829 }
1830
1831 /*
1832 * This will find the highest generation in the array of root backups. The
1833 * index of the highest array is returned, or -EINVAL if we can't find
1834 * anything.
1835 *
1836 * We check to make sure the array is valid by comparing the
1837 * generation of the latest root in the array with the generation
1838 * in the super block. If they don't match we pitch it.
1839 */
find_newest_super_backup(struct btrfs_fs_info * info)1840 static int find_newest_super_backup(struct btrfs_fs_info *info)
1841 {
1842 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1843 u64 cur;
1844 struct btrfs_root_backup *root_backup;
1845 int i;
1846
1847 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1848 root_backup = info->super_copy->super_roots + i;
1849 cur = btrfs_backup_tree_root_gen(root_backup);
1850 if (cur == newest_gen)
1851 return i;
1852 }
1853
1854 return -EINVAL;
1855 }
1856
1857 /*
1858 * copy all the root pointers into the super backup array.
1859 * this will bump the backup pointer by one when it is
1860 * done
1861 */
backup_super_roots(struct btrfs_fs_info * info)1862 static void backup_super_roots(struct btrfs_fs_info *info)
1863 {
1864 const int next_backup = info->backup_root_index;
1865 struct btrfs_root_backup *root_backup;
1866
1867 root_backup = info->super_for_commit->super_roots + next_backup;
1868
1869 /*
1870 * make sure all of our padding and empty slots get zero filled
1871 * regardless of which ones we use today
1872 */
1873 memset(root_backup, 0, sizeof(*root_backup));
1874
1875 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1876
1877 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1878 btrfs_set_backup_tree_root_gen(root_backup,
1879 btrfs_header_generation(info->tree_root->node));
1880
1881 btrfs_set_backup_tree_root_level(root_backup,
1882 btrfs_header_level(info->tree_root->node));
1883
1884 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1885 btrfs_set_backup_chunk_root_gen(root_backup,
1886 btrfs_header_generation(info->chunk_root->node));
1887 btrfs_set_backup_chunk_root_level(root_backup,
1888 btrfs_header_level(info->chunk_root->node));
1889
1890 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1891 btrfs_set_backup_extent_root_gen(root_backup,
1892 btrfs_header_generation(info->extent_root->node));
1893 btrfs_set_backup_extent_root_level(root_backup,
1894 btrfs_header_level(info->extent_root->node));
1895
1896 /*
1897 * we might commit during log recovery, which happens before we set
1898 * the fs_root. Make sure it is valid before we fill it in.
1899 */
1900 if (info->fs_root && info->fs_root->node) {
1901 btrfs_set_backup_fs_root(root_backup,
1902 info->fs_root->node->start);
1903 btrfs_set_backup_fs_root_gen(root_backup,
1904 btrfs_header_generation(info->fs_root->node));
1905 btrfs_set_backup_fs_root_level(root_backup,
1906 btrfs_header_level(info->fs_root->node));
1907 }
1908
1909 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1910 btrfs_set_backup_dev_root_gen(root_backup,
1911 btrfs_header_generation(info->dev_root->node));
1912 btrfs_set_backup_dev_root_level(root_backup,
1913 btrfs_header_level(info->dev_root->node));
1914
1915 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1916 btrfs_set_backup_csum_root_gen(root_backup,
1917 btrfs_header_generation(info->csum_root->node));
1918 btrfs_set_backup_csum_root_level(root_backup,
1919 btrfs_header_level(info->csum_root->node));
1920
1921 btrfs_set_backup_total_bytes(root_backup,
1922 btrfs_super_total_bytes(info->super_copy));
1923 btrfs_set_backup_bytes_used(root_backup,
1924 btrfs_super_bytes_used(info->super_copy));
1925 btrfs_set_backup_num_devices(root_backup,
1926 btrfs_super_num_devices(info->super_copy));
1927
1928 /*
1929 * if we don't copy this out to the super_copy, it won't get remembered
1930 * for the next commit
1931 */
1932 memcpy(&info->super_copy->super_roots,
1933 &info->super_for_commit->super_roots,
1934 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1935 }
1936
1937 /*
1938 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1939 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1940 *
1941 * fs_info - filesystem whose backup roots need to be read
1942 * priority - priority of backup root required
1943 *
1944 * Returns backup root index on success and -EINVAL otherwise.
1945 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1946 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1947 {
1948 int backup_index = find_newest_super_backup(fs_info);
1949 struct btrfs_super_block *super = fs_info->super_copy;
1950 struct btrfs_root_backup *root_backup;
1951
1952 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1953 if (priority == 0)
1954 return backup_index;
1955
1956 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1957 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1958 } else {
1959 return -EINVAL;
1960 }
1961
1962 root_backup = super->super_roots + backup_index;
1963
1964 btrfs_set_super_generation(super,
1965 btrfs_backup_tree_root_gen(root_backup));
1966 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1967 btrfs_set_super_root_level(super,
1968 btrfs_backup_tree_root_level(root_backup));
1969 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1970
1971 /*
1972 * Fixme: the total bytes and num_devices need to match or we should
1973 * need a fsck
1974 */
1975 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1976 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1977
1978 return backup_index;
1979 }
1980
1981 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1982 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1983 {
1984 btrfs_destroy_workqueue(fs_info->fixup_workers);
1985 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1986 btrfs_destroy_workqueue(fs_info->workers);
1987 btrfs_destroy_workqueue(fs_info->endio_workers);
1988 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1989 btrfs_destroy_workqueue(fs_info->rmw_workers);
1990 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1991 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1992 btrfs_destroy_workqueue(fs_info->delayed_workers);
1993 btrfs_destroy_workqueue(fs_info->caching_workers);
1994 btrfs_destroy_workqueue(fs_info->readahead_workers);
1995 btrfs_destroy_workqueue(fs_info->flush_workers);
1996 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1997 if (fs_info->discard_ctl.discard_workers)
1998 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1999 /*
2000 * Now that all other work queues are destroyed, we can safely destroy
2001 * the queues used for metadata I/O, since tasks from those other work
2002 * queues can do metadata I/O operations.
2003 */
2004 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2005 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2006 }
2007
free_root_extent_buffers(struct btrfs_root * root)2008 static void free_root_extent_buffers(struct btrfs_root *root)
2009 {
2010 if (root) {
2011 free_extent_buffer(root->node);
2012 free_extent_buffer(root->commit_root);
2013 root->node = NULL;
2014 root->commit_root = NULL;
2015 }
2016 }
2017
2018 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2019 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2020 {
2021 free_root_extent_buffers(info->tree_root);
2022
2023 free_root_extent_buffers(info->dev_root);
2024 free_root_extent_buffers(info->extent_root);
2025 free_root_extent_buffers(info->csum_root);
2026 free_root_extent_buffers(info->quota_root);
2027 free_root_extent_buffers(info->uuid_root);
2028 free_root_extent_buffers(info->fs_root);
2029 free_root_extent_buffers(info->data_reloc_root);
2030 if (free_chunk_root)
2031 free_root_extent_buffers(info->chunk_root);
2032 free_root_extent_buffers(info->free_space_root);
2033 }
2034
btrfs_put_root(struct btrfs_root * root)2035 void btrfs_put_root(struct btrfs_root *root)
2036 {
2037 if (!root)
2038 return;
2039
2040 if (refcount_dec_and_test(&root->refs)) {
2041 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2042 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2043 if (root->anon_dev)
2044 free_anon_bdev(root->anon_dev);
2045 btrfs_drew_lock_destroy(&root->snapshot_lock);
2046 free_root_extent_buffers(root);
2047 kfree(root->free_ino_ctl);
2048 kfree(root->free_ino_pinned);
2049 #ifdef CONFIG_BTRFS_DEBUG
2050 spin_lock(&root->fs_info->fs_roots_radix_lock);
2051 list_del_init(&root->leak_list);
2052 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2053 #endif
2054 kfree(root);
2055 }
2056 }
2057
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2058 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2059 {
2060 int ret;
2061 struct btrfs_root *gang[8];
2062 int i;
2063
2064 while (!list_empty(&fs_info->dead_roots)) {
2065 gang[0] = list_entry(fs_info->dead_roots.next,
2066 struct btrfs_root, root_list);
2067 list_del(&gang[0]->root_list);
2068
2069 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2070 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2071 btrfs_put_root(gang[0]);
2072 }
2073
2074 while (1) {
2075 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2076 (void **)gang, 0,
2077 ARRAY_SIZE(gang));
2078 if (!ret)
2079 break;
2080 for (i = 0; i < ret; i++)
2081 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2082 }
2083 }
2084
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2085 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2086 {
2087 mutex_init(&fs_info->scrub_lock);
2088 atomic_set(&fs_info->scrubs_running, 0);
2089 atomic_set(&fs_info->scrub_pause_req, 0);
2090 atomic_set(&fs_info->scrubs_paused, 0);
2091 atomic_set(&fs_info->scrub_cancel_req, 0);
2092 init_waitqueue_head(&fs_info->scrub_pause_wait);
2093 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2094 }
2095
btrfs_init_balance(struct btrfs_fs_info * fs_info)2096 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2097 {
2098 spin_lock_init(&fs_info->balance_lock);
2099 mutex_init(&fs_info->balance_mutex);
2100 atomic_set(&fs_info->balance_pause_req, 0);
2101 atomic_set(&fs_info->balance_cancel_req, 0);
2102 fs_info->balance_ctl = NULL;
2103 init_waitqueue_head(&fs_info->balance_wait_q);
2104 }
2105
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2106 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2107 {
2108 struct inode *inode = fs_info->btree_inode;
2109
2110 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2111 set_nlink(inode, 1);
2112 /*
2113 * we set the i_size on the btree inode to the max possible int.
2114 * the real end of the address space is determined by all of
2115 * the devices in the system
2116 */
2117 inode->i_size = OFFSET_MAX;
2118 inode->i_mapping->a_ops = &btree_aops;
2119
2120 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2121 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2122 IO_TREE_BTREE_INODE_IO, inode);
2123 BTRFS_I(inode)->io_tree.track_uptodate = false;
2124 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2125
2126 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2127 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2128 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2129 btrfs_insert_inode_hash(inode);
2130 }
2131
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2132 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2133 {
2134 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2135 init_rwsem(&fs_info->dev_replace.rwsem);
2136 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2137 }
2138
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2139 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2140 {
2141 spin_lock_init(&fs_info->qgroup_lock);
2142 mutex_init(&fs_info->qgroup_ioctl_lock);
2143 fs_info->qgroup_tree = RB_ROOT;
2144 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2145 fs_info->qgroup_seq = 1;
2146 fs_info->qgroup_ulist = NULL;
2147 fs_info->qgroup_rescan_running = false;
2148 mutex_init(&fs_info->qgroup_rescan_lock);
2149 }
2150
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2151 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2152 struct btrfs_fs_devices *fs_devices)
2153 {
2154 u32 max_active = fs_info->thread_pool_size;
2155 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2156
2157 fs_info->workers =
2158 btrfs_alloc_workqueue(fs_info, "worker",
2159 flags | WQ_HIGHPRI, max_active, 16);
2160
2161 fs_info->delalloc_workers =
2162 btrfs_alloc_workqueue(fs_info, "delalloc",
2163 flags, max_active, 2);
2164
2165 fs_info->flush_workers =
2166 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2167 flags, max_active, 0);
2168
2169 fs_info->caching_workers =
2170 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2171
2172 fs_info->fixup_workers =
2173 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2174
2175 /*
2176 * endios are largely parallel and should have a very
2177 * low idle thresh
2178 */
2179 fs_info->endio_workers =
2180 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2181 fs_info->endio_meta_workers =
2182 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2183 max_active, 4);
2184 fs_info->endio_meta_write_workers =
2185 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2186 max_active, 2);
2187 fs_info->endio_raid56_workers =
2188 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2189 max_active, 4);
2190 fs_info->rmw_workers =
2191 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2192 fs_info->endio_write_workers =
2193 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2194 max_active, 2);
2195 fs_info->endio_freespace_worker =
2196 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2197 max_active, 0);
2198 fs_info->delayed_workers =
2199 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2200 max_active, 0);
2201 fs_info->readahead_workers =
2202 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2203 max_active, 2);
2204 fs_info->qgroup_rescan_workers =
2205 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2206 fs_info->discard_ctl.discard_workers =
2207 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2208
2209 if (!(fs_info->workers && fs_info->delalloc_workers &&
2210 fs_info->flush_workers &&
2211 fs_info->endio_workers && fs_info->endio_meta_workers &&
2212 fs_info->endio_meta_write_workers &&
2213 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2214 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2215 fs_info->caching_workers && fs_info->readahead_workers &&
2216 fs_info->fixup_workers && fs_info->delayed_workers &&
2217 fs_info->qgroup_rescan_workers &&
2218 fs_info->discard_ctl.discard_workers)) {
2219 return -ENOMEM;
2220 }
2221
2222 return 0;
2223 }
2224
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2225 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2226 {
2227 struct crypto_shash *csum_shash;
2228 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2229
2230 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2231
2232 if (IS_ERR(csum_shash)) {
2233 btrfs_err(fs_info, "error allocating %s hash for checksum",
2234 csum_driver);
2235 return PTR_ERR(csum_shash);
2236 }
2237
2238 fs_info->csum_shash = csum_shash;
2239
2240 return 0;
2241 }
2242
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2243 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2244 struct btrfs_fs_devices *fs_devices)
2245 {
2246 int ret;
2247 struct btrfs_root *log_tree_root;
2248 struct btrfs_super_block *disk_super = fs_info->super_copy;
2249 u64 bytenr = btrfs_super_log_root(disk_super);
2250 int level = btrfs_super_log_root_level(disk_super);
2251
2252 if (fs_devices->rw_devices == 0) {
2253 btrfs_warn(fs_info, "log replay required on RO media");
2254 return -EIO;
2255 }
2256
2257 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2258 GFP_KERNEL);
2259 if (!log_tree_root)
2260 return -ENOMEM;
2261
2262 log_tree_root->node = read_tree_block(fs_info, bytenr,
2263 fs_info->generation + 1,
2264 level, NULL);
2265 if (IS_ERR(log_tree_root->node)) {
2266 btrfs_warn(fs_info, "failed to read log tree");
2267 ret = PTR_ERR(log_tree_root->node);
2268 log_tree_root->node = NULL;
2269 btrfs_put_root(log_tree_root);
2270 return ret;
2271 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2272 btrfs_err(fs_info, "failed to read log tree");
2273 btrfs_put_root(log_tree_root);
2274 return -EIO;
2275 }
2276 /* returns with log_tree_root freed on success */
2277 ret = btrfs_recover_log_trees(log_tree_root);
2278 if (ret) {
2279 btrfs_handle_fs_error(fs_info, ret,
2280 "Failed to recover log tree");
2281 btrfs_put_root(log_tree_root);
2282 return ret;
2283 }
2284
2285 if (sb_rdonly(fs_info->sb)) {
2286 ret = btrfs_commit_super(fs_info);
2287 if (ret)
2288 return ret;
2289 }
2290
2291 return 0;
2292 }
2293
btrfs_read_roots(struct btrfs_fs_info * fs_info)2294 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2295 {
2296 struct btrfs_root *tree_root = fs_info->tree_root;
2297 struct btrfs_root *root;
2298 struct btrfs_key location;
2299 int ret;
2300
2301 BUG_ON(!fs_info->tree_root);
2302
2303 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2304 location.type = BTRFS_ROOT_ITEM_KEY;
2305 location.offset = 0;
2306
2307 root = btrfs_read_tree_root(tree_root, &location);
2308 if (IS_ERR(root)) {
2309 ret = PTR_ERR(root);
2310 goto out;
2311 }
2312 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2313 fs_info->extent_root = root;
2314
2315 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2316 root = btrfs_read_tree_root(tree_root, &location);
2317 if (IS_ERR(root)) {
2318 ret = PTR_ERR(root);
2319 goto out;
2320 }
2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 fs_info->dev_root = root;
2323 btrfs_init_devices_late(fs_info);
2324
2325 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2326 root = btrfs_read_tree_root(tree_root, &location);
2327 if (IS_ERR(root)) {
2328 ret = PTR_ERR(root);
2329 goto out;
2330 }
2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332 fs_info->csum_root = root;
2333
2334 /*
2335 * This tree can share blocks with some other fs tree during relocation
2336 * and we need a proper setup by btrfs_get_fs_root
2337 */
2338 root = btrfs_get_fs_root(tree_root->fs_info,
2339 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2340 if (IS_ERR(root)) {
2341 ret = PTR_ERR(root);
2342 goto out;
2343 }
2344 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345 fs_info->data_reloc_root = root;
2346
2347 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2348 root = btrfs_read_tree_root(tree_root, &location);
2349 if (!IS_ERR(root)) {
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2352 fs_info->quota_root = root;
2353 }
2354
2355 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2356 root = btrfs_read_tree_root(tree_root, &location);
2357 if (IS_ERR(root)) {
2358 ret = PTR_ERR(root);
2359 if (ret != -ENOENT)
2360 goto out;
2361 } else {
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->uuid_root = root;
2364 }
2365
2366 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2367 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2368 root = btrfs_read_tree_root(tree_root, &location);
2369 if (IS_ERR(root)) {
2370 ret = PTR_ERR(root);
2371 goto out;
2372 }
2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 fs_info->free_space_root = root;
2375 }
2376
2377 return 0;
2378 out:
2379 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2380 location.objectid, ret);
2381 return ret;
2382 }
2383
2384 /*
2385 * Real super block validation
2386 * NOTE: super csum type and incompat features will not be checked here.
2387 *
2388 * @sb: super block to check
2389 * @mirror_num: the super block number to check its bytenr:
2390 * 0 the primary (1st) sb
2391 * 1, 2 2nd and 3rd backup copy
2392 * -1 skip bytenr check
2393 */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2394 static int validate_super(struct btrfs_fs_info *fs_info,
2395 struct btrfs_super_block *sb, int mirror_num)
2396 {
2397 u64 nodesize = btrfs_super_nodesize(sb);
2398 u64 sectorsize = btrfs_super_sectorsize(sb);
2399 int ret = 0;
2400
2401 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2402 btrfs_err(fs_info, "no valid FS found");
2403 ret = -EINVAL;
2404 }
2405 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2406 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2407 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2408 ret = -EINVAL;
2409 }
2410 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2412 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2413 ret = -EINVAL;
2414 }
2415 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2417 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2418 ret = -EINVAL;
2419 }
2420 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2421 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2422 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2423 ret = -EINVAL;
2424 }
2425
2426 /*
2427 * Check sectorsize and nodesize first, other check will need it.
2428 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2429 */
2430 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2431 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2433 ret = -EINVAL;
2434 }
2435 /* Only PAGE SIZE is supported yet */
2436 if (sectorsize != PAGE_SIZE) {
2437 btrfs_err(fs_info,
2438 "sectorsize %llu not supported yet, only support %lu",
2439 sectorsize, PAGE_SIZE);
2440 ret = -EINVAL;
2441 }
2442 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2443 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2445 ret = -EINVAL;
2446 }
2447 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2448 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2449 le32_to_cpu(sb->__unused_leafsize), nodesize);
2450 ret = -EINVAL;
2451 }
2452
2453 /* Root alignment check */
2454 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2455 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2456 btrfs_super_root(sb));
2457 ret = -EINVAL;
2458 }
2459 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2460 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2461 btrfs_super_chunk_root(sb));
2462 ret = -EINVAL;
2463 }
2464 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2465 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2466 btrfs_super_log_root(sb));
2467 ret = -EINVAL;
2468 }
2469
2470 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2471 BTRFS_FSID_SIZE)) {
2472 btrfs_err(fs_info,
2473 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2474 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2475 ret = -EINVAL;
2476 }
2477
2478 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2479 memcmp(fs_info->fs_devices->metadata_uuid,
2480 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2481 btrfs_err(fs_info,
2482 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2483 fs_info->super_copy->metadata_uuid,
2484 fs_info->fs_devices->metadata_uuid);
2485 ret = -EINVAL;
2486 }
2487
2488 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2489 BTRFS_FSID_SIZE) != 0) {
2490 btrfs_err(fs_info,
2491 "dev_item UUID does not match metadata fsid: %pU != %pU",
2492 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2493 ret = -EINVAL;
2494 }
2495
2496 /*
2497 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2498 * done later
2499 */
2500 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2501 btrfs_err(fs_info, "bytes_used is too small %llu",
2502 btrfs_super_bytes_used(sb));
2503 ret = -EINVAL;
2504 }
2505 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2506 btrfs_err(fs_info, "invalid stripesize %u",
2507 btrfs_super_stripesize(sb));
2508 ret = -EINVAL;
2509 }
2510 if (btrfs_super_num_devices(sb) > (1UL << 31))
2511 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2512 btrfs_super_num_devices(sb));
2513 if (btrfs_super_num_devices(sb) == 0) {
2514 btrfs_err(fs_info, "number of devices is 0");
2515 ret = -EINVAL;
2516 }
2517
2518 if (mirror_num >= 0 &&
2519 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2520 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2521 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2522 ret = -EINVAL;
2523 }
2524
2525 /*
2526 * Obvious sys_chunk_array corruptions, it must hold at least one key
2527 * and one chunk
2528 */
2529 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2530 btrfs_err(fs_info, "system chunk array too big %u > %u",
2531 btrfs_super_sys_array_size(sb),
2532 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2533 ret = -EINVAL;
2534 }
2535 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2536 + sizeof(struct btrfs_chunk)) {
2537 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2538 btrfs_super_sys_array_size(sb),
2539 sizeof(struct btrfs_disk_key)
2540 + sizeof(struct btrfs_chunk));
2541 ret = -EINVAL;
2542 }
2543
2544 /*
2545 * The generation is a global counter, we'll trust it more than the others
2546 * but it's still possible that it's the one that's wrong.
2547 */
2548 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2549 btrfs_warn(fs_info,
2550 "suspicious: generation < chunk_root_generation: %llu < %llu",
2551 btrfs_super_generation(sb),
2552 btrfs_super_chunk_root_generation(sb));
2553 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2554 && btrfs_super_cache_generation(sb) != (u64)-1)
2555 btrfs_warn(fs_info,
2556 "suspicious: generation < cache_generation: %llu < %llu",
2557 btrfs_super_generation(sb),
2558 btrfs_super_cache_generation(sb));
2559
2560 return ret;
2561 }
2562
2563 /*
2564 * Validation of super block at mount time.
2565 * Some checks already done early at mount time, like csum type and incompat
2566 * flags will be skipped.
2567 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2568 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2569 {
2570 return validate_super(fs_info, fs_info->super_copy, 0);
2571 }
2572
2573 /*
2574 * Validation of super block at write time.
2575 * Some checks like bytenr check will be skipped as their values will be
2576 * overwritten soon.
2577 * Extra checks like csum type and incompat flags will be done here.
2578 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2579 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2580 struct btrfs_super_block *sb)
2581 {
2582 int ret;
2583
2584 ret = validate_super(fs_info, sb, -1);
2585 if (ret < 0)
2586 goto out;
2587 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2588 ret = -EUCLEAN;
2589 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2590 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2591 goto out;
2592 }
2593 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2594 ret = -EUCLEAN;
2595 btrfs_err(fs_info,
2596 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2597 btrfs_super_incompat_flags(sb),
2598 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2599 goto out;
2600 }
2601 out:
2602 if (ret < 0)
2603 btrfs_err(fs_info,
2604 "super block corruption detected before writing it to disk");
2605 return ret;
2606 }
2607
init_tree_roots(struct btrfs_fs_info * fs_info)2608 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2609 {
2610 int backup_index = find_newest_super_backup(fs_info);
2611 struct btrfs_super_block *sb = fs_info->super_copy;
2612 struct btrfs_root *tree_root = fs_info->tree_root;
2613 bool handle_error = false;
2614 int ret = 0;
2615 int i;
2616
2617 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2618 u64 generation;
2619 int level;
2620
2621 if (handle_error) {
2622 if (!IS_ERR(tree_root->node))
2623 free_extent_buffer(tree_root->node);
2624 tree_root->node = NULL;
2625
2626 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2627 break;
2628
2629 free_root_pointers(fs_info, 0);
2630
2631 /*
2632 * Don't use the log in recovery mode, it won't be
2633 * valid
2634 */
2635 btrfs_set_super_log_root(sb, 0);
2636
2637 /* We can't trust the free space cache either */
2638 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2639
2640 ret = read_backup_root(fs_info, i);
2641 backup_index = ret;
2642 if (ret < 0)
2643 return ret;
2644 }
2645 generation = btrfs_super_generation(sb);
2646 level = btrfs_super_root_level(sb);
2647 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2648 generation, level, NULL);
2649 if (IS_ERR(tree_root->node)) {
2650 handle_error = true;
2651 ret = PTR_ERR(tree_root->node);
2652 tree_root->node = NULL;
2653 btrfs_warn(fs_info, "couldn't read tree root");
2654 continue;
2655
2656 } else if (!extent_buffer_uptodate(tree_root->node)) {
2657 handle_error = true;
2658 ret = -EIO;
2659 btrfs_warn(fs_info, "error while reading tree root");
2660 continue;
2661 }
2662
2663 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2664 tree_root->commit_root = btrfs_root_node(tree_root);
2665 btrfs_set_root_refs(&tree_root->root_item, 1);
2666
2667 /*
2668 * No need to hold btrfs_root::objectid_mutex since the fs
2669 * hasn't been fully initialised and we are the only user
2670 */
2671 ret = btrfs_find_highest_objectid(tree_root,
2672 &tree_root->highest_objectid);
2673 if (ret < 0) {
2674 handle_error = true;
2675 continue;
2676 }
2677
2678 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2679
2680 ret = btrfs_read_roots(fs_info);
2681 if (ret < 0) {
2682 handle_error = true;
2683 continue;
2684 }
2685
2686 /* All successful */
2687 fs_info->generation = generation;
2688 fs_info->last_trans_committed = generation;
2689
2690 /* Always begin writing backup roots after the one being used */
2691 if (backup_index < 0) {
2692 fs_info->backup_root_index = 0;
2693 } else {
2694 fs_info->backup_root_index = backup_index + 1;
2695 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2696 }
2697 break;
2698 }
2699
2700 return ret;
2701 }
2702
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2703 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2704 {
2705 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2706 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2707 INIT_LIST_HEAD(&fs_info->trans_list);
2708 INIT_LIST_HEAD(&fs_info->dead_roots);
2709 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2710 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2711 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2712 spin_lock_init(&fs_info->delalloc_root_lock);
2713 spin_lock_init(&fs_info->trans_lock);
2714 spin_lock_init(&fs_info->fs_roots_radix_lock);
2715 spin_lock_init(&fs_info->delayed_iput_lock);
2716 spin_lock_init(&fs_info->defrag_inodes_lock);
2717 spin_lock_init(&fs_info->super_lock);
2718 spin_lock_init(&fs_info->buffer_lock);
2719 spin_lock_init(&fs_info->unused_bgs_lock);
2720 rwlock_init(&fs_info->tree_mod_log_lock);
2721 mutex_init(&fs_info->unused_bg_unpin_mutex);
2722 mutex_init(&fs_info->delete_unused_bgs_mutex);
2723 mutex_init(&fs_info->reloc_mutex);
2724 mutex_init(&fs_info->delalloc_root_mutex);
2725 seqlock_init(&fs_info->profiles_lock);
2726
2727 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2728 INIT_LIST_HEAD(&fs_info->space_info);
2729 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2730 INIT_LIST_HEAD(&fs_info->unused_bgs);
2731 #ifdef CONFIG_BTRFS_DEBUG
2732 INIT_LIST_HEAD(&fs_info->allocated_roots);
2733 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2734 spin_lock_init(&fs_info->eb_leak_lock);
2735 #endif
2736 extent_map_tree_init(&fs_info->mapping_tree);
2737 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2738 BTRFS_BLOCK_RSV_GLOBAL);
2739 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2740 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2741 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2742 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2743 BTRFS_BLOCK_RSV_DELOPS);
2744 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2745 BTRFS_BLOCK_RSV_DELREFS);
2746
2747 atomic_set(&fs_info->async_delalloc_pages, 0);
2748 atomic_set(&fs_info->defrag_running, 0);
2749 atomic_set(&fs_info->reada_works_cnt, 0);
2750 atomic_set(&fs_info->nr_delayed_iputs, 0);
2751 atomic64_set(&fs_info->tree_mod_seq, 0);
2752 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2753 fs_info->metadata_ratio = 0;
2754 fs_info->defrag_inodes = RB_ROOT;
2755 atomic64_set(&fs_info->free_chunk_space, 0);
2756 fs_info->tree_mod_log = RB_ROOT;
2757 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2758 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2759 /* readahead state */
2760 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2761 spin_lock_init(&fs_info->reada_lock);
2762 btrfs_init_ref_verify(fs_info);
2763
2764 fs_info->thread_pool_size = min_t(unsigned long,
2765 num_online_cpus() + 2, 8);
2766
2767 INIT_LIST_HEAD(&fs_info->ordered_roots);
2768 spin_lock_init(&fs_info->ordered_root_lock);
2769
2770 btrfs_init_scrub(fs_info);
2771 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2772 fs_info->check_integrity_print_mask = 0;
2773 #endif
2774 btrfs_init_balance(fs_info);
2775 btrfs_init_async_reclaim_work(fs_info);
2776
2777 spin_lock_init(&fs_info->block_group_cache_lock);
2778 fs_info->block_group_cache_tree = RB_ROOT;
2779 fs_info->first_logical_byte = (u64)-1;
2780
2781 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2782 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2783 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2784
2785 mutex_init(&fs_info->ordered_operations_mutex);
2786 mutex_init(&fs_info->tree_log_mutex);
2787 mutex_init(&fs_info->chunk_mutex);
2788 mutex_init(&fs_info->transaction_kthread_mutex);
2789 mutex_init(&fs_info->cleaner_mutex);
2790 mutex_init(&fs_info->ro_block_group_mutex);
2791 init_rwsem(&fs_info->commit_root_sem);
2792 init_rwsem(&fs_info->cleanup_work_sem);
2793 init_rwsem(&fs_info->subvol_sem);
2794 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2795
2796 btrfs_init_dev_replace_locks(fs_info);
2797 btrfs_init_qgroup(fs_info);
2798 btrfs_discard_init(fs_info);
2799
2800 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2801 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2802
2803 init_waitqueue_head(&fs_info->transaction_throttle);
2804 init_waitqueue_head(&fs_info->transaction_wait);
2805 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2806 init_waitqueue_head(&fs_info->async_submit_wait);
2807 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2808
2809 /* Usable values until the real ones are cached from the superblock */
2810 fs_info->nodesize = 4096;
2811 fs_info->sectorsize = 4096;
2812 fs_info->stripesize = 4096;
2813
2814 spin_lock_init(&fs_info->swapfile_pins_lock);
2815 fs_info->swapfile_pins = RB_ROOT;
2816
2817 fs_info->send_in_progress = 0;
2818 }
2819
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2820 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2821 {
2822 int ret;
2823
2824 fs_info->sb = sb;
2825 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2826 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2827
2828 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2829 if (ret)
2830 return ret;
2831
2832 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2833 if (ret)
2834 return ret;
2835
2836 fs_info->dirty_metadata_batch = PAGE_SIZE *
2837 (1 + ilog2(nr_cpu_ids));
2838
2839 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2840 if (ret)
2841 return ret;
2842
2843 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2844 GFP_KERNEL);
2845 if (ret)
2846 return ret;
2847
2848 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2849 GFP_KERNEL);
2850 if (!fs_info->delayed_root)
2851 return -ENOMEM;
2852 btrfs_init_delayed_root(fs_info->delayed_root);
2853
2854 return btrfs_alloc_stripe_hash_table(fs_info);
2855 }
2856
btrfs_uuid_rescan_kthread(void * data)2857 static int btrfs_uuid_rescan_kthread(void *data)
2858 {
2859 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2860 int ret;
2861
2862 /*
2863 * 1st step is to iterate through the existing UUID tree and
2864 * to delete all entries that contain outdated data.
2865 * 2nd step is to add all missing entries to the UUID tree.
2866 */
2867 ret = btrfs_uuid_tree_iterate(fs_info);
2868 if (ret < 0) {
2869 if (ret != -EINTR)
2870 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2871 ret);
2872 up(&fs_info->uuid_tree_rescan_sem);
2873 return ret;
2874 }
2875 return btrfs_uuid_scan_kthread(data);
2876 }
2877
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2878 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2879 {
2880 struct task_struct *task;
2881
2882 down(&fs_info->uuid_tree_rescan_sem);
2883 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2884 if (IS_ERR(task)) {
2885 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2886 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2887 up(&fs_info->uuid_tree_rescan_sem);
2888 return PTR_ERR(task);
2889 }
2890
2891 return 0;
2892 }
2893
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2894 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2895 char *options)
2896 {
2897 u32 sectorsize;
2898 u32 nodesize;
2899 u32 stripesize;
2900 u64 generation;
2901 u64 features;
2902 u16 csum_type;
2903 struct btrfs_super_block *disk_super;
2904 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2905 struct btrfs_root *tree_root;
2906 struct btrfs_root *chunk_root;
2907 int ret;
2908 int err = -EINVAL;
2909 int clear_free_space_tree = 0;
2910 int level;
2911
2912 ret = init_mount_fs_info(fs_info, sb);
2913 if (ret) {
2914 err = ret;
2915 goto fail;
2916 }
2917
2918 /* These need to be init'ed before we start creating inodes and such. */
2919 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2920 GFP_KERNEL);
2921 fs_info->tree_root = tree_root;
2922 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2923 GFP_KERNEL);
2924 fs_info->chunk_root = chunk_root;
2925 if (!tree_root || !chunk_root) {
2926 err = -ENOMEM;
2927 goto fail;
2928 }
2929
2930 fs_info->btree_inode = new_inode(sb);
2931 if (!fs_info->btree_inode) {
2932 err = -ENOMEM;
2933 goto fail;
2934 }
2935 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2936 btrfs_init_btree_inode(fs_info);
2937
2938 invalidate_bdev(fs_devices->latest_bdev);
2939
2940 /*
2941 * Read super block and check the signature bytes only
2942 */
2943 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2944 if (IS_ERR(disk_super)) {
2945 err = PTR_ERR(disk_super);
2946 goto fail_alloc;
2947 }
2948
2949 /*
2950 * Verify the type first, if that or the checksum value are
2951 * corrupted, we'll find out
2952 */
2953 csum_type = btrfs_super_csum_type(disk_super);
2954 if (!btrfs_supported_super_csum(csum_type)) {
2955 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2956 csum_type);
2957 err = -EINVAL;
2958 btrfs_release_disk_super(disk_super);
2959 goto fail_alloc;
2960 }
2961
2962 ret = btrfs_init_csum_hash(fs_info, csum_type);
2963 if (ret) {
2964 err = ret;
2965 btrfs_release_disk_super(disk_super);
2966 goto fail_alloc;
2967 }
2968
2969 /*
2970 * We want to check superblock checksum, the type is stored inside.
2971 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2972 */
2973 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2974 btrfs_err(fs_info, "superblock checksum mismatch");
2975 err = -EINVAL;
2976 btrfs_release_disk_super(disk_super);
2977 goto fail_alloc;
2978 }
2979
2980 /*
2981 * super_copy is zeroed at allocation time and we never touch the
2982 * following bytes up to INFO_SIZE, the checksum is calculated from
2983 * the whole block of INFO_SIZE
2984 */
2985 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2986 btrfs_release_disk_super(disk_super);
2987
2988 disk_super = fs_info->super_copy;
2989
2990
2991 features = btrfs_super_flags(disk_super);
2992 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2993 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2994 btrfs_set_super_flags(disk_super, features);
2995 btrfs_info(fs_info,
2996 "found metadata UUID change in progress flag, clearing");
2997 }
2998
2999 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3000 sizeof(*fs_info->super_for_commit));
3001
3002 ret = btrfs_validate_mount_super(fs_info);
3003 if (ret) {
3004 btrfs_err(fs_info, "superblock contains fatal errors");
3005 err = -EINVAL;
3006 goto fail_alloc;
3007 }
3008
3009 if (!btrfs_super_root(disk_super))
3010 goto fail_alloc;
3011
3012 /* check FS state, whether FS is broken. */
3013 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3014 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3015
3016 /*
3017 * In the long term, we'll store the compression type in the super
3018 * block, and it'll be used for per file compression control.
3019 */
3020 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3021
3022 /*
3023 * Flag our filesystem as having big metadata blocks if they are bigger
3024 * than the page size
3025 */
3026 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3027 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3028 btrfs_info(fs_info,
3029 "flagging fs with big metadata feature");
3030 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3031 }
3032
3033 /* Set up fs_info before parsing mount options */
3034 nodesize = btrfs_super_nodesize(disk_super);
3035 sectorsize = btrfs_super_sectorsize(disk_super);
3036 stripesize = sectorsize;
3037 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3038 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3039
3040 /* Cache block sizes */
3041 fs_info->nodesize = nodesize;
3042 fs_info->sectorsize = sectorsize;
3043 fs_info->stripesize = stripesize;
3044
3045 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3046 if (ret) {
3047 err = ret;
3048 goto fail_alloc;
3049 }
3050
3051 features = btrfs_super_incompat_flags(disk_super) &
3052 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3053 if (features) {
3054 btrfs_err(fs_info,
3055 "cannot mount because of unsupported optional features (%llx)",
3056 features);
3057 err = -EINVAL;
3058 goto fail_alloc;
3059 }
3060
3061 features = btrfs_super_incompat_flags(disk_super);
3062 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3063 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3064 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3065 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3066 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3067
3068 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3069 btrfs_info(fs_info, "has skinny extents");
3070
3071 /*
3072 * mixed block groups end up with duplicate but slightly offset
3073 * extent buffers for the same range. It leads to corruptions
3074 */
3075 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3076 (sectorsize != nodesize)) {
3077 btrfs_err(fs_info,
3078 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3079 nodesize, sectorsize);
3080 goto fail_alloc;
3081 }
3082
3083 /*
3084 * Needn't use the lock because there is no other task which will
3085 * update the flag.
3086 */
3087 btrfs_set_super_incompat_flags(disk_super, features);
3088
3089 features = btrfs_super_compat_ro_flags(disk_super) &
3090 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3091 if (!sb_rdonly(sb) && features) {
3092 btrfs_err(fs_info,
3093 "cannot mount read-write because of unsupported optional features (%llx)",
3094 features);
3095 err = -EINVAL;
3096 goto fail_alloc;
3097 }
3098
3099 ret = btrfs_init_workqueues(fs_info, fs_devices);
3100 if (ret) {
3101 err = ret;
3102 goto fail_sb_buffer;
3103 }
3104
3105 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3106 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3107
3108 sb->s_blocksize = sectorsize;
3109 sb->s_blocksize_bits = blksize_bits(sectorsize);
3110 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3111
3112 mutex_lock(&fs_info->chunk_mutex);
3113 ret = btrfs_read_sys_array(fs_info);
3114 mutex_unlock(&fs_info->chunk_mutex);
3115 if (ret) {
3116 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3117 goto fail_sb_buffer;
3118 }
3119
3120 generation = btrfs_super_chunk_root_generation(disk_super);
3121 level = btrfs_super_chunk_root_level(disk_super);
3122
3123 chunk_root->node = read_tree_block(fs_info,
3124 btrfs_super_chunk_root(disk_super),
3125 generation, level, NULL);
3126 if (IS_ERR(chunk_root->node) ||
3127 !extent_buffer_uptodate(chunk_root->node)) {
3128 btrfs_err(fs_info, "failed to read chunk root");
3129 if (!IS_ERR(chunk_root->node))
3130 free_extent_buffer(chunk_root->node);
3131 chunk_root->node = NULL;
3132 goto fail_tree_roots;
3133 }
3134 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3135 chunk_root->commit_root = btrfs_root_node(chunk_root);
3136
3137 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3138 offsetof(struct btrfs_header, chunk_tree_uuid),
3139 BTRFS_UUID_SIZE);
3140
3141 ret = btrfs_read_chunk_tree(fs_info);
3142 if (ret) {
3143 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3144 goto fail_tree_roots;
3145 }
3146
3147 /*
3148 * Keep the devid that is marked to be the target device for the
3149 * device replace procedure
3150 */
3151 btrfs_free_extra_devids(fs_devices, 0);
3152
3153 if (!fs_devices->latest_bdev) {
3154 btrfs_err(fs_info, "failed to read devices");
3155 goto fail_tree_roots;
3156 }
3157
3158 ret = init_tree_roots(fs_info);
3159 if (ret)
3160 goto fail_tree_roots;
3161
3162 /*
3163 * If we have a uuid root and we're not being told to rescan we need to
3164 * check the generation here so we can set the
3165 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3166 * transaction during a balance or the log replay without updating the
3167 * uuid generation, and then if we crash we would rescan the uuid tree,
3168 * even though it was perfectly fine.
3169 */
3170 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3171 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3172 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3173
3174 ret = btrfs_verify_dev_extents(fs_info);
3175 if (ret) {
3176 btrfs_err(fs_info,
3177 "failed to verify dev extents against chunks: %d",
3178 ret);
3179 goto fail_block_groups;
3180 }
3181 ret = btrfs_recover_balance(fs_info);
3182 if (ret) {
3183 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3184 goto fail_block_groups;
3185 }
3186
3187 ret = btrfs_init_dev_stats(fs_info);
3188 if (ret) {
3189 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3190 goto fail_block_groups;
3191 }
3192
3193 ret = btrfs_init_dev_replace(fs_info);
3194 if (ret) {
3195 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3196 goto fail_block_groups;
3197 }
3198
3199 btrfs_free_extra_devids(fs_devices, 1);
3200
3201 ret = btrfs_sysfs_add_fsid(fs_devices);
3202 if (ret) {
3203 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3204 ret);
3205 goto fail_block_groups;
3206 }
3207
3208 ret = btrfs_sysfs_add_mounted(fs_info);
3209 if (ret) {
3210 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3211 goto fail_fsdev_sysfs;
3212 }
3213
3214 ret = btrfs_init_space_info(fs_info);
3215 if (ret) {
3216 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3217 goto fail_sysfs;
3218 }
3219
3220 ret = btrfs_read_block_groups(fs_info);
3221 if (ret) {
3222 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3223 goto fail_sysfs;
3224 }
3225
3226 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3227 btrfs_warn(fs_info,
3228 "writable mount is not allowed due to too many missing devices");
3229 goto fail_sysfs;
3230 }
3231
3232 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3233 "btrfs-cleaner");
3234 if (IS_ERR(fs_info->cleaner_kthread))
3235 goto fail_sysfs;
3236
3237 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3238 tree_root,
3239 "btrfs-transaction");
3240 if (IS_ERR(fs_info->transaction_kthread))
3241 goto fail_cleaner;
3242
3243 if (!btrfs_test_opt(fs_info, NOSSD) &&
3244 !fs_info->fs_devices->rotating) {
3245 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3246 }
3247
3248 /*
3249 * Mount does not set all options immediately, we can do it now and do
3250 * not have to wait for transaction commit
3251 */
3252 btrfs_apply_pending_changes(fs_info);
3253
3254 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3255 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3256 ret = btrfsic_mount(fs_info, fs_devices,
3257 btrfs_test_opt(fs_info,
3258 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3259 1 : 0,
3260 fs_info->check_integrity_print_mask);
3261 if (ret)
3262 btrfs_warn(fs_info,
3263 "failed to initialize integrity check module: %d",
3264 ret);
3265 }
3266 #endif
3267 ret = btrfs_read_qgroup_config(fs_info);
3268 if (ret)
3269 goto fail_trans_kthread;
3270
3271 if (btrfs_build_ref_tree(fs_info))
3272 btrfs_err(fs_info, "couldn't build ref tree");
3273
3274 /* do not make disk changes in broken FS or nologreplay is given */
3275 if (btrfs_super_log_root(disk_super) != 0 &&
3276 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3277 btrfs_info(fs_info, "start tree-log replay");
3278 ret = btrfs_replay_log(fs_info, fs_devices);
3279 if (ret) {
3280 err = ret;
3281 goto fail_qgroup;
3282 }
3283 }
3284
3285 ret = btrfs_find_orphan_roots(fs_info);
3286 if (ret)
3287 goto fail_qgroup;
3288
3289 if (!sb_rdonly(sb)) {
3290 ret = btrfs_cleanup_fs_roots(fs_info);
3291 if (ret)
3292 goto fail_qgroup;
3293
3294 mutex_lock(&fs_info->cleaner_mutex);
3295 ret = btrfs_recover_relocation(tree_root);
3296 mutex_unlock(&fs_info->cleaner_mutex);
3297 if (ret < 0) {
3298 btrfs_warn(fs_info, "failed to recover relocation: %d",
3299 ret);
3300 err = -EINVAL;
3301 goto fail_qgroup;
3302 }
3303 }
3304
3305 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3306 if (IS_ERR(fs_info->fs_root)) {
3307 err = PTR_ERR(fs_info->fs_root);
3308 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3309 fs_info->fs_root = NULL;
3310 goto fail_qgroup;
3311 }
3312
3313 if (sb_rdonly(sb))
3314 return 0;
3315
3316 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3317 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3318 clear_free_space_tree = 1;
3319 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3320 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3321 btrfs_warn(fs_info, "free space tree is invalid");
3322 clear_free_space_tree = 1;
3323 }
3324
3325 if (clear_free_space_tree) {
3326 btrfs_info(fs_info, "clearing free space tree");
3327 ret = btrfs_clear_free_space_tree(fs_info);
3328 if (ret) {
3329 btrfs_warn(fs_info,
3330 "failed to clear free space tree: %d", ret);
3331 close_ctree(fs_info);
3332 return ret;
3333 }
3334 }
3335
3336 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3337 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3338 btrfs_info(fs_info, "creating free space tree");
3339 ret = btrfs_create_free_space_tree(fs_info);
3340 if (ret) {
3341 btrfs_warn(fs_info,
3342 "failed to create free space tree: %d", ret);
3343 close_ctree(fs_info);
3344 return ret;
3345 }
3346 }
3347
3348 down_read(&fs_info->cleanup_work_sem);
3349 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3350 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3351 up_read(&fs_info->cleanup_work_sem);
3352 close_ctree(fs_info);
3353 return ret;
3354 }
3355 up_read(&fs_info->cleanup_work_sem);
3356
3357 ret = btrfs_resume_balance_async(fs_info);
3358 if (ret) {
3359 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3360 close_ctree(fs_info);
3361 return ret;
3362 }
3363
3364 ret = btrfs_resume_dev_replace_async(fs_info);
3365 if (ret) {
3366 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3367 close_ctree(fs_info);
3368 return ret;
3369 }
3370
3371 btrfs_qgroup_rescan_resume(fs_info);
3372 btrfs_discard_resume(fs_info);
3373
3374 if (!fs_info->uuid_root) {
3375 btrfs_info(fs_info, "creating UUID tree");
3376 ret = btrfs_create_uuid_tree(fs_info);
3377 if (ret) {
3378 btrfs_warn(fs_info,
3379 "failed to create the UUID tree: %d", ret);
3380 close_ctree(fs_info);
3381 return ret;
3382 }
3383 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3384 fs_info->generation !=
3385 btrfs_super_uuid_tree_generation(disk_super)) {
3386 btrfs_info(fs_info, "checking UUID tree");
3387 ret = btrfs_check_uuid_tree(fs_info);
3388 if (ret) {
3389 btrfs_warn(fs_info,
3390 "failed to check the UUID tree: %d", ret);
3391 close_ctree(fs_info);
3392 return ret;
3393 }
3394 }
3395 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3396
3397 /*
3398 * backuproot only affect mount behavior, and if open_ctree succeeded,
3399 * no need to keep the flag
3400 */
3401 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3402
3403 return 0;
3404
3405 fail_qgroup:
3406 btrfs_free_qgroup_config(fs_info);
3407 fail_trans_kthread:
3408 kthread_stop(fs_info->transaction_kthread);
3409 btrfs_cleanup_transaction(fs_info);
3410 btrfs_free_fs_roots(fs_info);
3411 fail_cleaner:
3412 kthread_stop(fs_info->cleaner_kthread);
3413
3414 /*
3415 * make sure we're done with the btree inode before we stop our
3416 * kthreads
3417 */
3418 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3419
3420 fail_sysfs:
3421 btrfs_sysfs_remove_mounted(fs_info);
3422
3423 fail_fsdev_sysfs:
3424 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3425
3426 fail_block_groups:
3427 btrfs_put_block_group_cache(fs_info);
3428
3429 fail_tree_roots:
3430 if (fs_info->data_reloc_root)
3431 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3432 free_root_pointers(fs_info, true);
3433 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3434
3435 fail_sb_buffer:
3436 btrfs_stop_all_workers(fs_info);
3437 btrfs_free_block_groups(fs_info);
3438 fail_alloc:
3439 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3440
3441 iput(fs_info->btree_inode);
3442 fail:
3443 btrfs_close_devices(fs_info->fs_devices);
3444 return err;
3445 }
3446 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3447
btrfs_end_super_write(struct bio * bio)3448 static void btrfs_end_super_write(struct bio *bio)
3449 {
3450 struct btrfs_device *device = bio->bi_private;
3451 struct bio_vec *bvec;
3452 struct bvec_iter_all iter_all;
3453 struct page *page;
3454
3455 bio_for_each_segment_all(bvec, bio, iter_all) {
3456 page = bvec->bv_page;
3457
3458 if (bio->bi_status) {
3459 btrfs_warn_rl_in_rcu(device->fs_info,
3460 "lost page write due to IO error on %s (%d)",
3461 rcu_str_deref(device->name),
3462 blk_status_to_errno(bio->bi_status));
3463 ClearPageUptodate(page);
3464 SetPageError(page);
3465 btrfs_dev_stat_inc_and_print(device,
3466 BTRFS_DEV_STAT_WRITE_ERRS);
3467 } else {
3468 SetPageUptodate(page);
3469 }
3470
3471 put_page(page);
3472 unlock_page(page);
3473 }
3474
3475 bio_put(bio);
3476 }
3477
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num)3478 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3479 int copy_num)
3480 {
3481 struct btrfs_super_block *super;
3482 struct page *page;
3483 u64 bytenr;
3484 struct address_space *mapping = bdev->bd_inode->i_mapping;
3485
3486 bytenr = btrfs_sb_offset(copy_num);
3487 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3488 return ERR_PTR(-EINVAL);
3489
3490 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3491 if (IS_ERR(page))
3492 return ERR_CAST(page);
3493
3494 super = page_address(page);
3495 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3496 btrfs_release_disk_super(super);
3497 return ERR_PTR(-ENODATA);
3498 }
3499
3500 if (btrfs_super_bytenr(super) != bytenr) {
3501 btrfs_release_disk_super(super);
3502 return ERR_PTR(-EINVAL);
3503 }
3504
3505 return super;
3506 }
3507
3508
btrfs_read_dev_super(struct block_device * bdev)3509 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3510 {
3511 struct btrfs_super_block *super, *latest = NULL;
3512 int i;
3513 u64 transid = 0;
3514
3515 /* we would like to check all the supers, but that would make
3516 * a btrfs mount succeed after a mkfs from a different FS.
3517 * So, we need to add a special mount option to scan for
3518 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3519 */
3520 for (i = 0; i < 1; i++) {
3521 super = btrfs_read_dev_one_super(bdev, i);
3522 if (IS_ERR(super))
3523 continue;
3524
3525 if (!latest || btrfs_super_generation(super) > transid) {
3526 if (latest)
3527 btrfs_release_disk_super(super);
3528
3529 latest = super;
3530 transid = btrfs_super_generation(super);
3531 }
3532 }
3533
3534 return super;
3535 }
3536
3537 /*
3538 * Write superblock @sb to the @device. Do not wait for completion, all the
3539 * pages we use for writing are locked.
3540 *
3541 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3542 * the expected device size at commit time. Note that max_mirrors must be
3543 * same for write and wait phases.
3544 *
3545 * Return number of errors when page is not found or submission fails.
3546 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3547 static int write_dev_supers(struct btrfs_device *device,
3548 struct btrfs_super_block *sb, int max_mirrors)
3549 {
3550 struct btrfs_fs_info *fs_info = device->fs_info;
3551 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3552 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3553 int i;
3554 int errors = 0;
3555 u64 bytenr;
3556
3557 if (max_mirrors == 0)
3558 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3559
3560 shash->tfm = fs_info->csum_shash;
3561
3562 for (i = 0; i < max_mirrors; i++) {
3563 struct page *page;
3564 struct bio *bio;
3565 struct btrfs_super_block *disk_super;
3566
3567 bytenr = btrfs_sb_offset(i);
3568 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3569 device->commit_total_bytes)
3570 break;
3571
3572 btrfs_set_super_bytenr(sb, bytenr);
3573
3574 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3575 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3576 sb->csum);
3577
3578 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3579 GFP_NOFS);
3580 if (!page) {
3581 btrfs_err(device->fs_info,
3582 "couldn't get super block page for bytenr %llu",
3583 bytenr);
3584 errors++;
3585 continue;
3586 }
3587
3588 /* Bump the refcount for wait_dev_supers() */
3589 get_page(page);
3590
3591 disk_super = page_address(page);
3592 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3593
3594 /*
3595 * Directly use bios here instead of relying on the page cache
3596 * to do I/O, so we don't lose the ability to do integrity
3597 * checking.
3598 */
3599 bio = bio_alloc(GFP_NOFS, 1);
3600 bio_set_dev(bio, device->bdev);
3601 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3602 bio->bi_private = device;
3603 bio->bi_end_io = btrfs_end_super_write;
3604 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3605 offset_in_page(bytenr));
3606
3607 /*
3608 * We FUA only the first super block. The others we allow to
3609 * go down lazy and there's a short window where the on-disk
3610 * copies might still contain the older version.
3611 */
3612 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3613 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3614 bio->bi_opf |= REQ_FUA;
3615
3616 btrfsic_submit_bio(bio);
3617 }
3618 return errors < i ? 0 : -1;
3619 }
3620
3621 /*
3622 * Wait for write completion of superblocks done by write_dev_supers,
3623 * @max_mirrors same for write and wait phases.
3624 *
3625 * Return number of errors when page is not found or not marked up to
3626 * date.
3627 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3628 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3629 {
3630 int i;
3631 int errors = 0;
3632 bool primary_failed = false;
3633 u64 bytenr;
3634
3635 if (max_mirrors == 0)
3636 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3637
3638 for (i = 0; i < max_mirrors; i++) {
3639 struct page *page;
3640
3641 bytenr = btrfs_sb_offset(i);
3642 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3643 device->commit_total_bytes)
3644 break;
3645
3646 page = find_get_page(device->bdev->bd_inode->i_mapping,
3647 bytenr >> PAGE_SHIFT);
3648 if (!page) {
3649 errors++;
3650 if (i == 0)
3651 primary_failed = true;
3652 continue;
3653 }
3654 /* Page is submitted locked and unlocked once the IO completes */
3655 wait_on_page_locked(page);
3656 if (PageError(page)) {
3657 errors++;
3658 if (i == 0)
3659 primary_failed = true;
3660 }
3661
3662 /* Drop our reference */
3663 put_page(page);
3664
3665 /* Drop the reference from the writing run */
3666 put_page(page);
3667 }
3668
3669 /* log error, force error return */
3670 if (primary_failed) {
3671 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3672 device->devid);
3673 return -1;
3674 }
3675
3676 return errors < i ? 0 : -1;
3677 }
3678
3679 /*
3680 * endio for the write_dev_flush, this will wake anyone waiting
3681 * for the barrier when it is done
3682 */
btrfs_end_empty_barrier(struct bio * bio)3683 static void btrfs_end_empty_barrier(struct bio *bio)
3684 {
3685 complete(bio->bi_private);
3686 }
3687
3688 /*
3689 * Submit a flush request to the device if it supports it. Error handling is
3690 * done in the waiting counterpart.
3691 */
write_dev_flush(struct btrfs_device * device)3692 static void write_dev_flush(struct btrfs_device *device)
3693 {
3694 struct request_queue *q = bdev_get_queue(device->bdev);
3695 struct bio *bio = device->flush_bio;
3696
3697 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3698 return;
3699
3700 bio_reset(bio);
3701 bio->bi_end_io = btrfs_end_empty_barrier;
3702 bio_set_dev(bio, device->bdev);
3703 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3704 init_completion(&device->flush_wait);
3705 bio->bi_private = &device->flush_wait;
3706
3707 btrfsic_submit_bio(bio);
3708 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3709 }
3710
3711 /*
3712 * If the flush bio has been submitted by write_dev_flush, wait for it.
3713 */
wait_dev_flush(struct btrfs_device * device)3714 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3715 {
3716 struct bio *bio = device->flush_bio;
3717
3718 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3719 return BLK_STS_OK;
3720
3721 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3722 wait_for_completion_io(&device->flush_wait);
3723
3724 return bio->bi_status;
3725 }
3726
check_barrier_error(struct btrfs_fs_info * fs_info)3727 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3728 {
3729 if (!btrfs_check_rw_degradable(fs_info, NULL))
3730 return -EIO;
3731 return 0;
3732 }
3733
3734 /*
3735 * send an empty flush down to each device in parallel,
3736 * then wait for them
3737 */
barrier_all_devices(struct btrfs_fs_info * info)3738 static int barrier_all_devices(struct btrfs_fs_info *info)
3739 {
3740 struct list_head *head;
3741 struct btrfs_device *dev;
3742 int errors_wait = 0;
3743 blk_status_t ret;
3744
3745 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3746 /* send down all the barriers */
3747 head = &info->fs_devices->devices;
3748 list_for_each_entry(dev, head, dev_list) {
3749 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3750 continue;
3751 if (!dev->bdev)
3752 continue;
3753 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3754 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3755 continue;
3756
3757 write_dev_flush(dev);
3758 dev->last_flush_error = BLK_STS_OK;
3759 }
3760
3761 /* wait for all the barriers */
3762 list_for_each_entry(dev, head, dev_list) {
3763 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3764 continue;
3765 if (!dev->bdev) {
3766 errors_wait++;
3767 continue;
3768 }
3769 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3770 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3771 continue;
3772
3773 ret = wait_dev_flush(dev);
3774 if (ret) {
3775 dev->last_flush_error = ret;
3776 btrfs_dev_stat_inc_and_print(dev,
3777 BTRFS_DEV_STAT_FLUSH_ERRS);
3778 errors_wait++;
3779 }
3780 }
3781
3782 if (errors_wait) {
3783 /*
3784 * At some point we need the status of all disks
3785 * to arrive at the volume status. So error checking
3786 * is being pushed to a separate loop.
3787 */
3788 return check_barrier_error(info);
3789 }
3790 return 0;
3791 }
3792
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3793 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3794 {
3795 int raid_type;
3796 int min_tolerated = INT_MAX;
3797
3798 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3799 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3800 min_tolerated = min_t(int, min_tolerated,
3801 btrfs_raid_array[BTRFS_RAID_SINGLE].
3802 tolerated_failures);
3803
3804 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3805 if (raid_type == BTRFS_RAID_SINGLE)
3806 continue;
3807 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3808 continue;
3809 min_tolerated = min_t(int, min_tolerated,
3810 btrfs_raid_array[raid_type].
3811 tolerated_failures);
3812 }
3813
3814 if (min_tolerated == INT_MAX) {
3815 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3816 min_tolerated = 0;
3817 }
3818
3819 return min_tolerated;
3820 }
3821
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3822 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3823 {
3824 struct list_head *head;
3825 struct btrfs_device *dev;
3826 struct btrfs_super_block *sb;
3827 struct btrfs_dev_item *dev_item;
3828 int ret;
3829 int do_barriers;
3830 int max_errors;
3831 int total_errors = 0;
3832 u64 flags;
3833
3834 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3835
3836 /*
3837 * max_mirrors == 0 indicates we're from commit_transaction,
3838 * not from fsync where the tree roots in fs_info have not
3839 * been consistent on disk.
3840 */
3841 if (max_mirrors == 0)
3842 backup_super_roots(fs_info);
3843
3844 sb = fs_info->super_for_commit;
3845 dev_item = &sb->dev_item;
3846
3847 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3848 head = &fs_info->fs_devices->devices;
3849 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3850
3851 if (do_barriers) {
3852 ret = barrier_all_devices(fs_info);
3853 if (ret) {
3854 mutex_unlock(
3855 &fs_info->fs_devices->device_list_mutex);
3856 btrfs_handle_fs_error(fs_info, ret,
3857 "errors while submitting device barriers.");
3858 return ret;
3859 }
3860 }
3861
3862 list_for_each_entry(dev, head, dev_list) {
3863 if (!dev->bdev) {
3864 total_errors++;
3865 continue;
3866 }
3867 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3868 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3869 continue;
3870
3871 btrfs_set_stack_device_generation(dev_item, 0);
3872 btrfs_set_stack_device_type(dev_item, dev->type);
3873 btrfs_set_stack_device_id(dev_item, dev->devid);
3874 btrfs_set_stack_device_total_bytes(dev_item,
3875 dev->commit_total_bytes);
3876 btrfs_set_stack_device_bytes_used(dev_item,
3877 dev->commit_bytes_used);
3878 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3879 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3880 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3881 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3882 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3883 BTRFS_FSID_SIZE);
3884
3885 flags = btrfs_super_flags(sb);
3886 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3887
3888 ret = btrfs_validate_write_super(fs_info, sb);
3889 if (ret < 0) {
3890 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3891 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3892 "unexpected superblock corruption detected");
3893 return -EUCLEAN;
3894 }
3895
3896 ret = write_dev_supers(dev, sb, max_mirrors);
3897 if (ret)
3898 total_errors++;
3899 }
3900 if (total_errors > max_errors) {
3901 btrfs_err(fs_info, "%d errors while writing supers",
3902 total_errors);
3903 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3904
3905 /* FUA is masked off if unsupported and can't be the reason */
3906 btrfs_handle_fs_error(fs_info, -EIO,
3907 "%d errors while writing supers",
3908 total_errors);
3909 return -EIO;
3910 }
3911
3912 total_errors = 0;
3913 list_for_each_entry(dev, head, dev_list) {
3914 if (!dev->bdev)
3915 continue;
3916 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3917 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3918 continue;
3919
3920 ret = wait_dev_supers(dev, max_mirrors);
3921 if (ret)
3922 total_errors++;
3923 }
3924 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925 if (total_errors > max_errors) {
3926 btrfs_handle_fs_error(fs_info, -EIO,
3927 "%d errors while writing supers",
3928 total_errors);
3929 return -EIO;
3930 }
3931 return 0;
3932 }
3933
3934 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3935 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3936 struct btrfs_root *root)
3937 {
3938 bool drop_ref = false;
3939
3940 spin_lock(&fs_info->fs_roots_radix_lock);
3941 radix_tree_delete(&fs_info->fs_roots_radix,
3942 (unsigned long)root->root_key.objectid);
3943 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3944 drop_ref = true;
3945 spin_unlock(&fs_info->fs_roots_radix_lock);
3946
3947 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3948 ASSERT(root->log_root == NULL);
3949 if (root->reloc_root) {
3950 btrfs_put_root(root->reloc_root);
3951 root->reloc_root = NULL;
3952 }
3953 }
3954
3955 if (root->free_ino_pinned)
3956 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3957 if (root->free_ino_ctl)
3958 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3959 if (root->ino_cache_inode) {
3960 iput(root->ino_cache_inode);
3961 root->ino_cache_inode = NULL;
3962 }
3963 if (drop_ref)
3964 btrfs_put_root(root);
3965 }
3966
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3967 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3968 {
3969 u64 root_objectid = 0;
3970 struct btrfs_root *gang[8];
3971 int i = 0;
3972 int err = 0;
3973 unsigned int ret = 0;
3974
3975 while (1) {
3976 spin_lock(&fs_info->fs_roots_radix_lock);
3977 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3978 (void **)gang, root_objectid,
3979 ARRAY_SIZE(gang));
3980 if (!ret) {
3981 spin_unlock(&fs_info->fs_roots_radix_lock);
3982 break;
3983 }
3984 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3985
3986 for (i = 0; i < ret; i++) {
3987 /* Avoid to grab roots in dead_roots */
3988 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3989 gang[i] = NULL;
3990 continue;
3991 }
3992 /* grab all the search result for later use */
3993 gang[i] = btrfs_grab_root(gang[i]);
3994 }
3995 spin_unlock(&fs_info->fs_roots_radix_lock);
3996
3997 for (i = 0; i < ret; i++) {
3998 if (!gang[i])
3999 continue;
4000 root_objectid = gang[i]->root_key.objectid;
4001 err = btrfs_orphan_cleanup(gang[i]);
4002 if (err)
4003 break;
4004 btrfs_put_root(gang[i]);
4005 }
4006 root_objectid++;
4007 }
4008
4009 /* release the uncleaned roots due to error */
4010 for (; i < ret; i++) {
4011 if (gang[i])
4012 btrfs_put_root(gang[i]);
4013 }
4014 return err;
4015 }
4016
btrfs_commit_super(struct btrfs_fs_info * fs_info)4017 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4018 {
4019 struct btrfs_root *root = fs_info->tree_root;
4020 struct btrfs_trans_handle *trans;
4021
4022 mutex_lock(&fs_info->cleaner_mutex);
4023 btrfs_run_delayed_iputs(fs_info);
4024 mutex_unlock(&fs_info->cleaner_mutex);
4025 wake_up_process(fs_info->cleaner_kthread);
4026
4027 /* wait until ongoing cleanup work done */
4028 down_write(&fs_info->cleanup_work_sem);
4029 up_write(&fs_info->cleanup_work_sem);
4030
4031 trans = btrfs_join_transaction(root);
4032 if (IS_ERR(trans))
4033 return PTR_ERR(trans);
4034 return btrfs_commit_transaction(trans);
4035 }
4036
close_ctree(struct btrfs_fs_info * fs_info)4037 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4038 {
4039 int ret;
4040
4041 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4042 /*
4043 * We don't want the cleaner to start new transactions, add more delayed
4044 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4045 * because that frees the task_struct, and the transaction kthread might
4046 * still try to wake up the cleaner.
4047 */
4048 kthread_park(fs_info->cleaner_kthread);
4049
4050 /* wait for the qgroup rescan worker to stop */
4051 btrfs_qgroup_wait_for_completion(fs_info, false);
4052
4053 /* wait for the uuid_scan task to finish */
4054 down(&fs_info->uuid_tree_rescan_sem);
4055 /* avoid complains from lockdep et al., set sem back to initial state */
4056 up(&fs_info->uuid_tree_rescan_sem);
4057
4058 /* pause restriper - we want to resume on mount */
4059 btrfs_pause_balance(fs_info);
4060
4061 btrfs_dev_replace_suspend_for_unmount(fs_info);
4062
4063 btrfs_scrub_cancel(fs_info);
4064
4065 /* wait for any defraggers to finish */
4066 wait_event(fs_info->transaction_wait,
4067 (atomic_read(&fs_info->defrag_running) == 0));
4068
4069 /* clear out the rbtree of defraggable inodes */
4070 btrfs_cleanup_defrag_inodes(fs_info);
4071
4072 cancel_work_sync(&fs_info->async_reclaim_work);
4073 cancel_work_sync(&fs_info->async_data_reclaim_work);
4074
4075 /* Cancel or finish ongoing discard work */
4076 btrfs_discard_cleanup(fs_info);
4077
4078 if (!sb_rdonly(fs_info->sb)) {
4079 /*
4080 * The cleaner kthread is stopped, so do one final pass over
4081 * unused block groups.
4082 */
4083 btrfs_delete_unused_bgs(fs_info);
4084
4085 /*
4086 * There might be existing delayed inode workers still running
4087 * and holding an empty delayed inode item. We must wait for
4088 * them to complete first because they can create a transaction.
4089 * This happens when someone calls btrfs_balance_delayed_items()
4090 * and then a transaction commit runs the same delayed nodes
4091 * before any delayed worker has done something with the nodes.
4092 * We must wait for any worker here and not at transaction
4093 * commit time since that could cause a deadlock.
4094 * This is a very rare case.
4095 */
4096 btrfs_flush_workqueue(fs_info->delayed_workers);
4097
4098 ret = btrfs_commit_super(fs_info);
4099 if (ret)
4100 btrfs_err(fs_info, "commit super ret %d", ret);
4101 }
4102
4103 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4104 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4105 btrfs_error_commit_super(fs_info);
4106
4107 kthread_stop(fs_info->transaction_kthread);
4108 kthread_stop(fs_info->cleaner_kthread);
4109
4110 ASSERT(list_empty(&fs_info->delayed_iputs));
4111 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4112
4113 if (btrfs_check_quota_leak(fs_info)) {
4114 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4115 btrfs_err(fs_info, "qgroup reserved space leaked");
4116 }
4117
4118 btrfs_free_qgroup_config(fs_info);
4119 ASSERT(list_empty(&fs_info->delalloc_roots));
4120
4121 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4122 btrfs_info(fs_info, "at unmount delalloc count %lld",
4123 percpu_counter_sum(&fs_info->delalloc_bytes));
4124 }
4125
4126 if (percpu_counter_sum(&fs_info->dio_bytes))
4127 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4128 percpu_counter_sum(&fs_info->dio_bytes));
4129
4130 btrfs_sysfs_remove_mounted(fs_info);
4131 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4132
4133 btrfs_put_block_group_cache(fs_info);
4134
4135 /*
4136 * we must make sure there is not any read request to
4137 * submit after we stopping all workers.
4138 */
4139 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4140 btrfs_stop_all_workers(fs_info);
4141
4142 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4143 free_root_pointers(fs_info, true);
4144 btrfs_free_fs_roots(fs_info);
4145
4146 /*
4147 * We must free the block groups after dropping the fs_roots as we could
4148 * have had an IO error and have left over tree log blocks that aren't
4149 * cleaned up until the fs roots are freed. This makes the block group
4150 * accounting appear to be wrong because there's pending reserved bytes,
4151 * so make sure we do the block group cleanup afterwards.
4152 */
4153 btrfs_free_block_groups(fs_info);
4154
4155 iput(fs_info->btree_inode);
4156
4157 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4158 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4159 btrfsic_unmount(fs_info->fs_devices);
4160 #endif
4161
4162 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4163 btrfs_close_devices(fs_info->fs_devices);
4164 }
4165
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4166 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4167 int atomic)
4168 {
4169 int ret;
4170 struct inode *btree_inode = buf->pages[0]->mapping->host;
4171
4172 ret = extent_buffer_uptodate(buf);
4173 if (!ret)
4174 return ret;
4175
4176 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4177 parent_transid, atomic);
4178 if (ret == -EAGAIN)
4179 return ret;
4180 return !ret;
4181 }
4182
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4183 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4184 {
4185 struct btrfs_fs_info *fs_info;
4186 struct btrfs_root *root;
4187 u64 transid = btrfs_header_generation(buf);
4188 int was_dirty;
4189
4190 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4191 /*
4192 * This is a fast path so only do this check if we have sanity tests
4193 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4194 * outside of the sanity tests.
4195 */
4196 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4197 return;
4198 #endif
4199 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4200 fs_info = root->fs_info;
4201 btrfs_assert_tree_locked(buf);
4202 if (transid != fs_info->generation)
4203 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4204 buf->start, transid, fs_info->generation);
4205 was_dirty = set_extent_buffer_dirty(buf);
4206 if (!was_dirty)
4207 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4208 buf->len,
4209 fs_info->dirty_metadata_batch);
4210 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4211 /*
4212 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4213 * but item data not updated.
4214 * So here we should only check item pointers, not item data.
4215 */
4216 if (btrfs_header_level(buf) == 0 &&
4217 btrfs_check_leaf_relaxed(buf)) {
4218 btrfs_print_leaf(buf);
4219 ASSERT(0);
4220 }
4221 #endif
4222 }
4223
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4224 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4225 int flush_delayed)
4226 {
4227 /*
4228 * looks as though older kernels can get into trouble with
4229 * this code, they end up stuck in balance_dirty_pages forever
4230 */
4231 int ret;
4232
4233 if (current->flags & PF_MEMALLOC)
4234 return;
4235
4236 if (flush_delayed)
4237 btrfs_balance_delayed_items(fs_info);
4238
4239 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4240 BTRFS_DIRTY_METADATA_THRESH,
4241 fs_info->dirty_metadata_batch);
4242 if (ret > 0) {
4243 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4244 }
4245 }
4246
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4247 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4248 {
4249 __btrfs_btree_balance_dirty(fs_info, 1);
4250 }
4251
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4252 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4253 {
4254 __btrfs_btree_balance_dirty(fs_info, 0);
4255 }
4256
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4257 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4258 struct btrfs_key *first_key)
4259 {
4260 return btree_read_extent_buffer_pages(buf, parent_transid,
4261 level, first_key);
4262 }
4263
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4264 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4265 {
4266 /* cleanup FS via transaction */
4267 btrfs_cleanup_transaction(fs_info);
4268
4269 mutex_lock(&fs_info->cleaner_mutex);
4270 btrfs_run_delayed_iputs(fs_info);
4271 mutex_unlock(&fs_info->cleaner_mutex);
4272
4273 down_write(&fs_info->cleanup_work_sem);
4274 up_write(&fs_info->cleanup_work_sem);
4275 }
4276
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4277 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4278 {
4279 struct btrfs_root *gang[8];
4280 u64 root_objectid = 0;
4281 int ret;
4282
4283 spin_lock(&fs_info->fs_roots_radix_lock);
4284 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4285 (void **)gang, root_objectid,
4286 ARRAY_SIZE(gang))) != 0) {
4287 int i;
4288
4289 for (i = 0; i < ret; i++)
4290 gang[i] = btrfs_grab_root(gang[i]);
4291 spin_unlock(&fs_info->fs_roots_radix_lock);
4292
4293 for (i = 0; i < ret; i++) {
4294 if (!gang[i])
4295 continue;
4296 root_objectid = gang[i]->root_key.objectid;
4297 btrfs_free_log(NULL, gang[i]);
4298 btrfs_put_root(gang[i]);
4299 }
4300 root_objectid++;
4301 spin_lock(&fs_info->fs_roots_radix_lock);
4302 }
4303 spin_unlock(&fs_info->fs_roots_radix_lock);
4304 btrfs_free_log_root_tree(NULL, fs_info);
4305 }
4306
btrfs_destroy_ordered_extents(struct btrfs_root * root)4307 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4308 {
4309 struct btrfs_ordered_extent *ordered;
4310
4311 spin_lock(&root->ordered_extent_lock);
4312 /*
4313 * This will just short circuit the ordered completion stuff which will
4314 * make sure the ordered extent gets properly cleaned up.
4315 */
4316 list_for_each_entry(ordered, &root->ordered_extents,
4317 root_extent_list)
4318 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4319 spin_unlock(&root->ordered_extent_lock);
4320 }
4321
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4322 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4323 {
4324 struct btrfs_root *root;
4325 struct list_head splice;
4326
4327 INIT_LIST_HEAD(&splice);
4328
4329 spin_lock(&fs_info->ordered_root_lock);
4330 list_splice_init(&fs_info->ordered_roots, &splice);
4331 while (!list_empty(&splice)) {
4332 root = list_first_entry(&splice, struct btrfs_root,
4333 ordered_root);
4334 list_move_tail(&root->ordered_root,
4335 &fs_info->ordered_roots);
4336
4337 spin_unlock(&fs_info->ordered_root_lock);
4338 btrfs_destroy_ordered_extents(root);
4339
4340 cond_resched();
4341 spin_lock(&fs_info->ordered_root_lock);
4342 }
4343 spin_unlock(&fs_info->ordered_root_lock);
4344
4345 /*
4346 * We need this here because if we've been flipped read-only we won't
4347 * get sync() from the umount, so we need to make sure any ordered
4348 * extents that haven't had their dirty pages IO start writeout yet
4349 * actually get run and error out properly.
4350 */
4351 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4352 }
4353
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4354 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4355 struct btrfs_fs_info *fs_info)
4356 {
4357 struct rb_node *node;
4358 struct btrfs_delayed_ref_root *delayed_refs;
4359 struct btrfs_delayed_ref_node *ref;
4360 int ret = 0;
4361
4362 delayed_refs = &trans->delayed_refs;
4363
4364 spin_lock(&delayed_refs->lock);
4365 if (atomic_read(&delayed_refs->num_entries) == 0) {
4366 spin_unlock(&delayed_refs->lock);
4367 btrfs_debug(fs_info, "delayed_refs has NO entry");
4368 return ret;
4369 }
4370
4371 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4372 struct btrfs_delayed_ref_head *head;
4373 struct rb_node *n;
4374 bool pin_bytes = false;
4375
4376 head = rb_entry(node, struct btrfs_delayed_ref_head,
4377 href_node);
4378 if (btrfs_delayed_ref_lock(delayed_refs, head))
4379 continue;
4380
4381 spin_lock(&head->lock);
4382 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4383 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4384 ref_node);
4385 ref->in_tree = 0;
4386 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4387 RB_CLEAR_NODE(&ref->ref_node);
4388 if (!list_empty(&ref->add_list))
4389 list_del(&ref->add_list);
4390 atomic_dec(&delayed_refs->num_entries);
4391 btrfs_put_delayed_ref(ref);
4392 }
4393 if (head->must_insert_reserved)
4394 pin_bytes = true;
4395 btrfs_free_delayed_extent_op(head->extent_op);
4396 btrfs_delete_ref_head(delayed_refs, head);
4397 spin_unlock(&head->lock);
4398 spin_unlock(&delayed_refs->lock);
4399 mutex_unlock(&head->mutex);
4400
4401 if (pin_bytes) {
4402 struct btrfs_block_group *cache;
4403
4404 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4405 BUG_ON(!cache);
4406
4407 spin_lock(&cache->space_info->lock);
4408 spin_lock(&cache->lock);
4409 cache->pinned += head->num_bytes;
4410 btrfs_space_info_update_bytes_pinned(fs_info,
4411 cache->space_info, head->num_bytes);
4412 cache->reserved -= head->num_bytes;
4413 cache->space_info->bytes_reserved -= head->num_bytes;
4414 spin_unlock(&cache->lock);
4415 spin_unlock(&cache->space_info->lock);
4416 percpu_counter_add_batch(
4417 &cache->space_info->total_bytes_pinned,
4418 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4419
4420 btrfs_put_block_group(cache);
4421
4422 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4423 head->bytenr + head->num_bytes - 1);
4424 }
4425 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4426 btrfs_put_delayed_ref_head(head);
4427 cond_resched();
4428 spin_lock(&delayed_refs->lock);
4429 }
4430 btrfs_qgroup_destroy_extent_records(trans);
4431
4432 spin_unlock(&delayed_refs->lock);
4433
4434 return ret;
4435 }
4436
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4437 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4438 {
4439 struct btrfs_inode *btrfs_inode;
4440 struct list_head splice;
4441
4442 INIT_LIST_HEAD(&splice);
4443
4444 spin_lock(&root->delalloc_lock);
4445 list_splice_init(&root->delalloc_inodes, &splice);
4446
4447 while (!list_empty(&splice)) {
4448 struct inode *inode = NULL;
4449 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4450 delalloc_inodes);
4451 __btrfs_del_delalloc_inode(root, btrfs_inode);
4452 spin_unlock(&root->delalloc_lock);
4453
4454 /*
4455 * Make sure we get a live inode and that it'll not disappear
4456 * meanwhile.
4457 */
4458 inode = igrab(&btrfs_inode->vfs_inode);
4459 if (inode) {
4460 invalidate_inode_pages2(inode->i_mapping);
4461 iput(inode);
4462 }
4463 spin_lock(&root->delalloc_lock);
4464 }
4465 spin_unlock(&root->delalloc_lock);
4466 }
4467
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4468 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4469 {
4470 struct btrfs_root *root;
4471 struct list_head splice;
4472
4473 INIT_LIST_HEAD(&splice);
4474
4475 spin_lock(&fs_info->delalloc_root_lock);
4476 list_splice_init(&fs_info->delalloc_roots, &splice);
4477 while (!list_empty(&splice)) {
4478 root = list_first_entry(&splice, struct btrfs_root,
4479 delalloc_root);
4480 root = btrfs_grab_root(root);
4481 BUG_ON(!root);
4482 spin_unlock(&fs_info->delalloc_root_lock);
4483
4484 btrfs_destroy_delalloc_inodes(root);
4485 btrfs_put_root(root);
4486
4487 spin_lock(&fs_info->delalloc_root_lock);
4488 }
4489 spin_unlock(&fs_info->delalloc_root_lock);
4490 }
4491
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4492 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4493 struct extent_io_tree *dirty_pages,
4494 int mark)
4495 {
4496 int ret;
4497 struct extent_buffer *eb;
4498 u64 start = 0;
4499 u64 end;
4500
4501 while (1) {
4502 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4503 mark, NULL);
4504 if (ret)
4505 break;
4506
4507 clear_extent_bits(dirty_pages, start, end, mark);
4508 while (start <= end) {
4509 eb = find_extent_buffer(fs_info, start);
4510 start += fs_info->nodesize;
4511 if (!eb)
4512 continue;
4513 wait_on_extent_buffer_writeback(eb);
4514
4515 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4516 &eb->bflags))
4517 clear_extent_buffer_dirty(eb);
4518 free_extent_buffer_stale(eb);
4519 }
4520 }
4521
4522 return ret;
4523 }
4524
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4525 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4526 struct extent_io_tree *unpin)
4527 {
4528 u64 start;
4529 u64 end;
4530 int ret;
4531
4532 while (1) {
4533 struct extent_state *cached_state = NULL;
4534
4535 /*
4536 * The btrfs_finish_extent_commit() may get the same range as
4537 * ours between find_first_extent_bit and clear_extent_dirty.
4538 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4539 * the same extent range.
4540 */
4541 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4542 ret = find_first_extent_bit(unpin, 0, &start, &end,
4543 EXTENT_DIRTY, &cached_state);
4544 if (ret) {
4545 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4546 break;
4547 }
4548
4549 clear_extent_dirty(unpin, start, end, &cached_state);
4550 free_extent_state(cached_state);
4551 btrfs_error_unpin_extent_range(fs_info, start, end);
4552 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4553 cond_resched();
4554 }
4555
4556 return 0;
4557 }
4558
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4559 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4560 {
4561 struct inode *inode;
4562
4563 inode = cache->io_ctl.inode;
4564 if (inode) {
4565 invalidate_inode_pages2(inode->i_mapping);
4566 BTRFS_I(inode)->generation = 0;
4567 cache->io_ctl.inode = NULL;
4568 iput(inode);
4569 }
4570 ASSERT(cache->io_ctl.pages == NULL);
4571 btrfs_put_block_group(cache);
4572 }
4573
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4574 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4575 struct btrfs_fs_info *fs_info)
4576 {
4577 struct btrfs_block_group *cache;
4578
4579 spin_lock(&cur_trans->dirty_bgs_lock);
4580 while (!list_empty(&cur_trans->dirty_bgs)) {
4581 cache = list_first_entry(&cur_trans->dirty_bgs,
4582 struct btrfs_block_group,
4583 dirty_list);
4584
4585 if (!list_empty(&cache->io_list)) {
4586 spin_unlock(&cur_trans->dirty_bgs_lock);
4587 list_del_init(&cache->io_list);
4588 btrfs_cleanup_bg_io(cache);
4589 spin_lock(&cur_trans->dirty_bgs_lock);
4590 }
4591
4592 list_del_init(&cache->dirty_list);
4593 spin_lock(&cache->lock);
4594 cache->disk_cache_state = BTRFS_DC_ERROR;
4595 spin_unlock(&cache->lock);
4596
4597 spin_unlock(&cur_trans->dirty_bgs_lock);
4598 btrfs_put_block_group(cache);
4599 btrfs_delayed_refs_rsv_release(fs_info, 1);
4600 spin_lock(&cur_trans->dirty_bgs_lock);
4601 }
4602 spin_unlock(&cur_trans->dirty_bgs_lock);
4603
4604 /*
4605 * Refer to the definition of io_bgs member for details why it's safe
4606 * to use it without any locking
4607 */
4608 while (!list_empty(&cur_trans->io_bgs)) {
4609 cache = list_first_entry(&cur_trans->io_bgs,
4610 struct btrfs_block_group,
4611 io_list);
4612
4613 list_del_init(&cache->io_list);
4614 spin_lock(&cache->lock);
4615 cache->disk_cache_state = BTRFS_DC_ERROR;
4616 spin_unlock(&cache->lock);
4617 btrfs_cleanup_bg_io(cache);
4618 }
4619 }
4620
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4621 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4622 struct btrfs_fs_info *fs_info)
4623 {
4624 struct btrfs_device *dev, *tmp;
4625
4626 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4627 ASSERT(list_empty(&cur_trans->dirty_bgs));
4628 ASSERT(list_empty(&cur_trans->io_bgs));
4629
4630 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4631 post_commit_list) {
4632 list_del_init(&dev->post_commit_list);
4633 }
4634
4635 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4636
4637 cur_trans->state = TRANS_STATE_COMMIT_START;
4638 wake_up(&fs_info->transaction_blocked_wait);
4639
4640 cur_trans->state = TRANS_STATE_UNBLOCKED;
4641 wake_up(&fs_info->transaction_wait);
4642
4643 btrfs_destroy_delayed_inodes(fs_info);
4644
4645 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4646 EXTENT_DIRTY);
4647 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4648
4649 cur_trans->state =TRANS_STATE_COMPLETED;
4650 wake_up(&cur_trans->commit_wait);
4651 }
4652
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4653 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4654 {
4655 struct btrfs_transaction *t;
4656
4657 mutex_lock(&fs_info->transaction_kthread_mutex);
4658
4659 spin_lock(&fs_info->trans_lock);
4660 while (!list_empty(&fs_info->trans_list)) {
4661 t = list_first_entry(&fs_info->trans_list,
4662 struct btrfs_transaction, list);
4663 if (t->state >= TRANS_STATE_COMMIT_START) {
4664 refcount_inc(&t->use_count);
4665 spin_unlock(&fs_info->trans_lock);
4666 btrfs_wait_for_commit(fs_info, t->transid);
4667 btrfs_put_transaction(t);
4668 spin_lock(&fs_info->trans_lock);
4669 continue;
4670 }
4671 if (t == fs_info->running_transaction) {
4672 t->state = TRANS_STATE_COMMIT_DOING;
4673 spin_unlock(&fs_info->trans_lock);
4674 /*
4675 * We wait for 0 num_writers since we don't hold a trans
4676 * handle open currently for this transaction.
4677 */
4678 wait_event(t->writer_wait,
4679 atomic_read(&t->num_writers) == 0);
4680 } else {
4681 spin_unlock(&fs_info->trans_lock);
4682 }
4683 btrfs_cleanup_one_transaction(t, fs_info);
4684
4685 spin_lock(&fs_info->trans_lock);
4686 if (t == fs_info->running_transaction)
4687 fs_info->running_transaction = NULL;
4688 list_del_init(&t->list);
4689 spin_unlock(&fs_info->trans_lock);
4690
4691 btrfs_put_transaction(t);
4692 trace_btrfs_transaction_commit(fs_info->tree_root);
4693 spin_lock(&fs_info->trans_lock);
4694 }
4695 spin_unlock(&fs_info->trans_lock);
4696 btrfs_destroy_all_ordered_extents(fs_info);
4697 btrfs_destroy_delayed_inodes(fs_info);
4698 btrfs_assert_delayed_root_empty(fs_info);
4699 btrfs_destroy_all_delalloc_inodes(fs_info);
4700 btrfs_drop_all_logs(fs_info);
4701 mutex_unlock(&fs_info->transaction_kthread_mutex);
4702
4703 return 0;
4704 }
4705