• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "cgroup-internal.h"
2 
3 #include <linux/ctype.h>
4 #include <linux/kmod.h>
5 #include <linux/sort.h>
6 #include <linux/delay.h>
7 #include <linux/mm.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/task.h>
10 #include <linux/magic.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/delayacct.h>
14 #include <linux/pid_namespace.h>
15 #include <linux/cgroupstats.h>
16 
17 #include <trace/events/cgroup.h>
18 
19 /*
20  * pidlists linger the following amount before being destroyed.  The goal
21  * is avoiding frequent destruction in the middle of consecutive read calls
22  * Expiring in the middle is a performance problem not a correctness one.
23  * 1 sec should be enough.
24  */
25 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
26 
27 /* Controllers blocked by the commandline in v1 */
28 static u16 cgroup_no_v1_mask;
29 
30 /*
31  * pidlist destructions need to be flushed on cgroup destruction.  Use a
32  * separate workqueue as flush domain.
33  */
34 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
35 
36 /*
37  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
38  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
39  */
40 static DEFINE_SPINLOCK(release_agent_path_lock);
41 
cgroup1_ssid_disabled(int ssid)42 bool cgroup1_ssid_disabled(int ssid)
43 {
44 	return cgroup_no_v1_mask & (1 << ssid);
45 }
46 
47 /**
48  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
49  * @from: attach to all cgroups of a given task
50  * @tsk: the task to be attached
51  */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
53 {
54 	struct cgroup_root *root;
55 	int retval = 0;
56 
57 	mutex_lock(&cgroup_mutex);
58 	percpu_down_write(&cgroup_threadgroup_rwsem);
59 	for_each_root(root) {
60 		struct cgroup *from_cgrp;
61 
62 		if (root == &cgrp_dfl_root)
63 			continue;
64 
65 		spin_lock_irq(&css_set_lock);
66 		from_cgrp = task_cgroup_from_root(from, root);
67 		spin_unlock_irq(&css_set_lock);
68 
69 		retval = cgroup_attach_task(from_cgrp, tsk, false);
70 		if (retval)
71 			break;
72 	}
73 	percpu_up_write(&cgroup_threadgroup_rwsem);
74 	mutex_unlock(&cgroup_mutex);
75 
76 	return retval;
77 }
78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
79 
80 /**
81  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
82  * @to: cgroup to which the tasks will be moved
83  * @from: cgroup in which the tasks currently reside
84  *
85  * Locking rules between cgroup_post_fork() and the migration path
86  * guarantee that, if a task is forking while being migrated, the new child
87  * is guaranteed to be either visible in the source cgroup after the
88  * parent's migration is complete or put into the target cgroup.  No task
89  * can slip out of migration through forking.
90  */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
92 {
93 	DEFINE_CGROUP_MGCTX(mgctx);
94 	struct cgrp_cset_link *link;
95 	struct css_task_iter it;
96 	struct task_struct *task;
97 	int ret;
98 
99 	if (cgroup_on_dfl(to))
100 		return -EINVAL;
101 
102 	ret = cgroup_migrate_vet_dst(to);
103 	if (ret)
104 		return ret;
105 
106 	mutex_lock(&cgroup_mutex);
107 
108 	percpu_down_write(&cgroup_threadgroup_rwsem);
109 
110 	/* all tasks in @from are being moved, all csets are source */
111 	spin_lock_irq(&css_set_lock);
112 	list_for_each_entry(link, &from->cset_links, cset_link)
113 		cgroup_migrate_add_src(link->cset, to, &mgctx);
114 	spin_unlock_irq(&css_set_lock);
115 
116 	ret = cgroup_migrate_prepare_dst(&mgctx);
117 	if (ret)
118 		goto out_err;
119 
120 	/*
121 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
122 	 * ->can_attach() fails.
123 	 */
124 	do {
125 		css_task_iter_start(&from->self, 0, &it);
126 
127 		do {
128 			task = css_task_iter_next(&it);
129 		} while (task && (task->flags & PF_EXITING));
130 
131 		if (task)
132 			get_task_struct(task);
133 		css_task_iter_end(&it);
134 
135 		if (task) {
136 			ret = cgroup_migrate(task, false, &mgctx);
137 			if (!ret)
138 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
139 			put_task_struct(task);
140 		}
141 	} while (task && !ret);
142 out_err:
143 	cgroup_migrate_finish(&mgctx);
144 	percpu_up_write(&cgroup_threadgroup_rwsem);
145 	mutex_unlock(&cgroup_mutex);
146 	return ret;
147 }
148 
149 /*
150  * Stuff for reading the 'tasks'/'procs' files.
151  *
152  * Reading this file can return large amounts of data if a cgroup has
153  * *lots* of attached tasks. So it may need several calls to read(),
154  * but we cannot guarantee that the information we produce is correct
155  * unless we produce it entirely atomically.
156  *
157  */
158 
159 /* which pidlist file are we talking about? */
160 enum cgroup_filetype {
161 	CGROUP_FILE_PROCS,
162 	CGROUP_FILE_TASKS,
163 };
164 
165 /*
166  * A pidlist is a list of pids that virtually represents the contents of one
167  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
168  * a pair (one each for procs, tasks) for each pid namespace that's relevant
169  * to the cgroup.
170  */
171 struct cgroup_pidlist {
172 	/*
173 	 * used to find which pidlist is wanted. doesn't change as long as
174 	 * this particular list stays in the list.
175 	*/
176 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
177 	/* array of xids */
178 	pid_t *list;
179 	/* how many elements the above list has */
180 	int length;
181 	/* each of these stored in a list by its cgroup */
182 	struct list_head links;
183 	/* pointer to the cgroup we belong to, for list removal purposes */
184 	struct cgroup *owner;
185 	/* for delayed destruction */
186 	struct delayed_work destroy_dwork;
187 };
188 
189 /*
190  * The following two functions "fix" the issue where there are more pids
191  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
192  * TODO: replace with a kernel-wide solution to this problem
193  */
194 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)195 static void *pidlist_allocate(int count)
196 {
197 	if (PIDLIST_TOO_LARGE(count))
198 		return vmalloc(array_size(count, sizeof(pid_t)));
199 	else
200 		return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL);
201 }
202 
pidlist_free(void * p)203 static void pidlist_free(void *p)
204 {
205 	kvfree(p);
206 }
207 
208 /*
209  * Used to destroy all pidlists lingering waiting for destroy timer.  None
210  * should be left afterwards.
211  */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)212 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
213 {
214 	struct cgroup_pidlist *l, *tmp_l;
215 
216 	mutex_lock(&cgrp->pidlist_mutex);
217 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
218 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
219 	mutex_unlock(&cgrp->pidlist_mutex);
220 
221 	flush_workqueue(cgroup_pidlist_destroy_wq);
222 	BUG_ON(!list_empty(&cgrp->pidlists));
223 }
224 
cgroup_pidlist_destroy_work_fn(struct work_struct * work)225 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
226 {
227 	struct delayed_work *dwork = to_delayed_work(work);
228 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
229 						destroy_dwork);
230 	struct cgroup_pidlist *tofree = NULL;
231 
232 	mutex_lock(&l->owner->pidlist_mutex);
233 
234 	/*
235 	 * Destroy iff we didn't get queued again.  The state won't change
236 	 * as destroy_dwork can only be queued while locked.
237 	 */
238 	if (!delayed_work_pending(dwork)) {
239 		list_del(&l->links);
240 		pidlist_free(l->list);
241 		put_pid_ns(l->key.ns);
242 		tofree = l;
243 	}
244 
245 	mutex_unlock(&l->owner->pidlist_mutex);
246 	kfree(tofree);
247 }
248 
249 /*
250  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
251  * Returns the number of unique elements.
252  */
pidlist_uniq(pid_t * list,int length)253 static int pidlist_uniq(pid_t *list, int length)
254 {
255 	int src, dest = 1;
256 
257 	/*
258 	 * we presume the 0th element is unique, so i starts at 1. trivial
259 	 * edge cases first; no work needs to be done for either
260 	 */
261 	if (length == 0 || length == 1)
262 		return length;
263 	/* src and dest walk down the list; dest counts unique elements */
264 	for (src = 1; src < length; src++) {
265 		/* find next unique element */
266 		while (list[src] == list[src-1]) {
267 			src++;
268 			if (src == length)
269 				goto after;
270 		}
271 		/* dest always points to where the next unique element goes */
272 		list[dest] = list[src];
273 		dest++;
274 	}
275 after:
276 	return dest;
277 }
278 
279 /*
280  * The two pid files - task and cgroup.procs - guaranteed that the result
281  * is sorted, which forced this whole pidlist fiasco.  As pid order is
282  * different per namespace, each namespace needs differently sorted list,
283  * making it impossible to use, for example, single rbtree of member tasks
284  * sorted by task pointer.  As pidlists can be fairly large, allocating one
285  * per open file is dangerous, so cgroup had to implement shared pool of
286  * pidlists keyed by cgroup and namespace.
287  */
cmppid(const void * a,const void * b)288 static int cmppid(const void *a, const void *b)
289 {
290 	return *(pid_t *)a - *(pid_t *)b;
291 }
292 
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)293 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
294 						  enum cgroup_filetype type)
295 {
296 	struct cgroup_pidlist *l;
297 	/* don't need task_nsproxy() if we're looking at ourself */
298 	struct pid_namespace *ns = task_active_pid_ns(current);
299 
300 	lockdep_assert_held(&cgrp->pidlist_mutex);
301 
302 	list_for_each_entry(l, &cgrp->pidlists, links)
303 		if (l->key.type == type && l->key.ns == ns)
304 			return l;
305 	return NULL;
306 }
307 
308 /*
309  * find the appropriate pidlist for our purpose (given procs vs tasks)
310  * returns with the lock on that pidlist already held, and takes care
311  * of the use count, or returns NULL with no locks held if we're out of
312  * memory.
313  */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)314 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
315 						enum cgroup_filetype type)
316 {
317 	struct cgroup_pidlist *l;
318 
319 	lockdep_assert_held(&cgrp->pidlist_mutex);
320 
321 	l = cgroup_pidlist_find(cgrp, type);
322 	if (l)
323 		return l;
324 
325 	/* entry not found; create a new one */
326 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
327 	if (!l)
328 		return l;
329 
330 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
331 	l->key.type = type;
332 	/* don't need task_nsproxy() if we're looking at ourself */
333 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
334 	l->owner = cgrp;
335 	list_add(&l->links, &cgrp->pidlists);
336 	return l;
337 }
338 
339 /**
340  * cgroup_task_count - count the number of tasks in a cgroup.
341  * @cgrp: the cgroup in question
342  */
cgroup_task_count(const struct cgroup * cgrp)343 int cgroup_task_count(const struct cgroup *cgrp)
344 {
345 	int count = 0;
346 	struct cgrp_cset_link *link;
347 
348 	spin_lock_irq(&css_set_lock);
349 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
350 		count += link->cset->nr_tasks;
351 	spin_unlock_irq(&css_set_lock);
352 	return count;
353 }
354 
355 /*
356  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
357  */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)358 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
359 			      struct cgroup_pidlist **lp)
360 {
361 	pid_t *array;
362 	int length;
363 	int pid, n = 0; /* used for populating the array */
364 	struct css_task_iter it;
365 	struct task_struct *tsk;
366 	struct cgroup_pidlist *l;
367 
368 	lockdep_assert_held(&cgrp->pidlist_mutex);
369 
370 	/*
371 	 * If cgroup gets more users after we read count, we won't have
372 	 * enough space - tough.  This race is indistinguishable to the
373 	 * caller from the case that the additional cgroup users didn't
374 	 * show up until sometime later on.
375 	 */
376 	length = cgroup_task_count(cgrp);
377 	array = pidlist_allocate(length);
378 	if (!array)
379 		return -ENOMEM;
380 	/* now, populate the array */
381 	css_task_iter_start(&cgrp->self, 0, &it);
382 	while ((tsk = css_task_iter_next(&it))) {
383 		if (unlikely(n == length))
384 			break;
385 		/* get tgid or pid for procs or tasks file respectively */
386 		if (type == CGROUP_FILE_PROCS)
387 			pid = task_tgid_vnr(tsk);
388 		else
389 			pid = task_pid_vnr(tsk);
390 		if (pid > 0) /* make sure to only use valid results */
391 			array[n++] = pid;
392 	}
393 	css_task_iter_end(&it);
394 	length = n;
395 	/* now sort & (if procs) strip out duplicates */
396 	sort(array, length, sizeof(pid_t), cmppid, NULL);
397 	if (type == CGROUP_FILE_PROCS)
398 		length = pidlist_uniq(array, length);
399 
400 	l = cgroup_pidlist_find_create(cgrp, type);
401 	if (!l) {
402 		pidlist_free(array);
403 		return -ENOMEM;
404 	}
405 
406 	/* store array, freeing old if necessary */
407 	pidlist_free(l->list);
408 	l->list = array;
409 	l->length = length;
410 	*lp = l;
411 	return 0;
412 }
413 
414 /*
415  * seq_file methods for the tasks/procs files. The seq_file position is the
416  * next pid to display; the seq_file iterator is a pointer to the pid
417  * in the cgroup->l->list array.
418  */
419 
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)420 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
421 {
422 	/*
423 	 * Initially we receive a position value that corresponds to
424 	 * one more than the last pid shown (or 0 on the first call or
425 	 * after a seek to the start). Use a binary-search to find the
426 	 * next pid to display, if any
427 	 */
428 	struct kernfs_open_file *of = s->private;
429 	struct cgroup *cgrp = seq_css(s)->cgroup;
430 	struct cgroup_pidlist *l;
431 	enum cgroup_filetype type = seq_cft(s)->private;
432 	int index = 0, pid = *pos;
433 	int *iter, ret;
434 
435 	mutex_lock(&cgrp->pidlist_mutex);
436 
437 	/*
438 	 * !NULL @of->priv indicates that this isn't the first start()
439 	 * after open.  If the matching pidlist is around, we can use that.
440 	 * Look for it.  Note that @of->priv can't be used directly.  It
441 	 * could already have been destroyed.
442 	 */
443 	if (of->priv)
444 		of->priv = cgroup_pidlist_find(cgrp, type);
445 
446 	/*
447 	 * Either this is the first start() after open or the matching
448 	 * pidlist has been destroyed inbetween.  Create a new one.
449 	 */
450 	if (!of->priv) {
451 		ret = pidlist_array_load(cgrp, type,
452 					 (struct cgroup_pidlist **)&of->priv);
453 		if (ret)
454 			return ERR_PTR(ret);
455 	}
456 	l = of->priv;
457 
458 	if (pid) {
459 		int end = l->length;
460 
461 		while (index < end) {
462 			int mid = (index + end) / 2;
463 			if (l->list[mid] == pid) {
464 				index = mid;
465 				break;
466 			} else if (l->list[mid] <= pid)
467 				index = mid + 1;
468 			else
469 				end = mid;
470 		}
471 	}
472 	/* If we're off the end of the array, we're done */
473 	if (index >= l->length)
474 		return NULL;
475 	/* Update the abstract position to be the actual pid that we found */
476 	iter = l->list + index;
477 	*pos = *iter;
478 	return iter;
479 }
480 
cgroup_pidlist_stop(struct seq_file * s,void * v)481 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
482 {
483 	struct kernfs_open_file *of = s->private;
484 	struct cgroup_pidlist *l = of->priv;
485 
486 	if (l)
487 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
488 				 CGROUP_PIDLIST_DESTROY_DELAY);
489 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
490 }
491 
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)492 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
493 {
494 	struct kernfs_open_file *of = s->private;
495 	struct cgroup_pidlist *l = of->priv;
496 	pid_t *p = v;
497 	pid_t *end = l->list + l->length;
498 	/*
499 	 * Advance to the next pid in the array. If this goes off the
500 	 * end, we're done
501 	 */
502 	p++;
503 	if (p >= end) {
504 		(*pos)++;
505 		return NULL;
506 	} else {
507 		*pos = *p;
508 		return p;
509 	}
510 }
511 
cgroup_pidlist_show(struct seq_file * s,void * v)512 static int cgroup_pidlist_show(struct seq_file *s, void *v)
513 {
514 	seq_printf(s, "%d\n", *(int *)v);
515 
516 	return 0;
517 }
518 
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)519 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
520 				     char *buf, size_t nbytes, loff_t off,
521 				     bool threadgroup)
522 {
523 	struct cgroup *cgrp;
524 	struct task_struct *task;
525 	const struct cred *cred, *tcred;
526 	ssize_t ret;
527 
528 	cgrp = cgroup_kn_lock_live(of->kn, false);
529 	if (!cgrp)
530 		return -ENODEV;
531 
532 	task = cgroup_procs_write_start(buf, threadgroup);
533 	ret = PTR_ERR_OR_ZERO(task);
534 	if (ret)
535 		goto out_unlock;
536 
537 	/*
538 	 * Even if we're attaching all tasks in the thread group, we only
539 	 * need to check permissions on one of them.
540 	 */
541 	cred = current_cred();
542 	tcred = get_task_cred(task);
543 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
544 	    !uid_eq(cred->euid, tcred->uid) &&
545 	    !uid_eq(cred->euid, tcred->suid))
546 		ret = -EACCES;
547 	put_cred(tcred);
548 	if (ret)
549 		goto out_finish;
550 
551 	ret = cgroup_attach_task(cgrp, task, threadgroup);
552 
553 out_finish:
554 	cgroup_procs_write_finish(task);
555 out_unlock:
556 	cgroup_kn_unlock(of->kn);
557 
558 	return ret ?: nbytes;
559 }
560 
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)561 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
562 				   char *buf, size_t nbytes, loff_t off)
563 {
564 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
565 }
566 
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)567 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
568 				   char *buf, size_t nbytes, loff_t off)
569 {
570 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
571 }
572 
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)573 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
574 					  char *buf, size_t nbytes, loff_t off)
575 {
576 	struct cgroup *cgrp;
577 
578 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
579 
580 	cgrp = cgroup_kn_lock_live(of->kn, false);
581 	if (!cgrp)
582 		return -ENODEV;
583 	spin_lock(&release_agent_path_lock);
584 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
585 		sizeof(cgrp->root->release_agent_path));
586 	spin_unlock(&release_agent_path_lock);
587 	cgroup_kn_unlock(of->kn);
588 	return nbytes;
589 }
590 
cgroup_release_agent_show(struct seq_file * seq,void * v)591 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
592 {
593 	struct cgroup *cgrp = seq_css(seq)->cgroup;
594 
595 	spin_lock(&release_agent_path_lock);
596 	seq_puts(seq, cgrp->root->release_agent_path);
597 	spin_unlock(&release_agent_path_lock);
598 	seq_putc(seq, '\n');
599 	return 0;
600 }
601 
cgroup_sane_behavior_show(struct seq_file * seq,void * v)602 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
603 {
604 	seq_puts(seq, "0\n");
605 	return 0;
606 }
607 
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)608 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
609 					 struct cftype *cft)
610 {
611 	return notify_on_release(css->cgroup);
612 }
613 
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)614 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
615 					  struct cftype *cft, u64 val)
616 {
617 	if (val)
618 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
619 	else
620 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
621 	return 0;
622 }
623 
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)624 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
625 				      struct cftype *cft)
626 {
627 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
628 }
629 
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)630 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
631 				       struct cftype *cft, u64 val)
632 {
633 	if (val)
634 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
635 	else
636 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
637 	return 0;
638 }
639 
640 /* cgroup core interface files for the legacy hierarchies */
641 struct cftype cgroup1_base_files[] = {
642 	{
643 		.name = "cgroup.procs",
644 		.seq_start = cgroup_pidlist_start,
645 		.seq_next = cgroup_pidlist_next,
646 		.seq_stop = cgroup_pidlist_stop,
647 		.seq_show = cgroup_pidlist_show,
648 		.private = CGROUP_FILE_PROCS,
649 		.write = cgroup1_procs_write,
650 	},
651 	{
652 		.name = "cgroup.clone_children",
653 		.read_u64 = cgroup_clone_children_read,
654 		.write_u64 = cgroup_clone_children_write,
655 	},
656 	{
657 		.name = "cgroup.sane_behavior",
658 		.flags = CFTYPE_ONLY_ON_ROOT,
659 		.seq_show = cgroup_sane_behavior_show,
660 	},
661 	{
662 		.name = "tasks",
663 		.seq_start = cgroup_pidlist_start,
664 		.seq_next = cgroup_pidlist_next,
665 		.seq_stop = cgroup_pidlist_stop,
666 		.seq_show = cgroup_pidlist_show,
667 		.private = CGROUP_FILE_TASKS,
668 		.write = cgroup1_tasks_write,
669 	},
670 	{
671 		.name = "notify_on_release",
672 		.read_u64 = cgroup_read_notify_on_release,
673 		.write_u64 = cgroup_write_notify_on_release,
674 	},
675 	{
676 		.name = "release_agent",
677 		.flags = CFTYPE_ONLY_ON_ROOT,
678 		.seq_show = cgroup_release_agent_show,
679 		.write = cgroup_release_agent_write,
680 		.max_write_len = PATH_MAX - 1,
681 	},
682 	{ }	/* terminate */
683 };
684 
685 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)686 int proc_cgroupstats_show(struct seq_file *m, void *v)
687 {
688 	struct cgroup_subsys *ss;
689 	int i;
690 
691 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
692 	/*
693 	 * ideally we don't want subsystems moving around while we do this.
694 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
695 	 * subsys/hierarchy state.
696 	 */
697 	mutex_lock(&cgroup_mutex);
698 
699 	for_each_subsys(ss, i)
700 		seq_printf(m, "%s\t%d\t%d\t%d\n",
701 			   ss->legacy_name, ss->root->hierarchy_id,
702 			   atomic_read(&ss->root->nr_cgrps),
703 			   cgroup_ssid_enabled(i));
704 
705 	mutex_unlock(&cgroup_mutex);
706 	return 0;
707 }
708 
709 /**
710  * cgroupstats_build - build and fill cgroupstats
711  * @stats: cgroupstats to fill information into
712  * @dentry: A dentry entry belonging to the cgroup for which stats have
713  * been requested.
714  *
715  * Build and fill cgroupstats so that taskstats can export it to user
716  * space.
717  */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)718 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
719 {
720 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
721 	struct cgroup *cgrp;
722 	struct css_task_iter it;
723 	struct task_struct *tsk;
724 
725 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
726 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
727 	    kernfs_type(kn) != KERNFS_DIR)
728 		return -EINVAL;
729 
730 	mutex_lock(&cgroup_mutex);
731 
732 	/*
733 	 * We aren't being called from kernfs and there's no guarantee on
734 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
735 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
736 	 */
737 	rcu_read_lock();
738 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
739 	if (!cgrp || cgroup_is_dead(cgrp)) {
740 		rcu_read_unlock();
741 		mutex_unlock(&cgroup_mutex);
742 		return -ENOENT;
743 	}
744 	rcu_read_unlock();
745 
746 	css_task_iter_start(&cgrp->self, 0, &it);
747 	while ((tsk = css_task_iter_next(&it))) {
748 		switch (tsk->state) {
749 		case TASK_RUNNING:
750 			stats->nr_running++;
751 			break;
752 		case TASK_INTERRUPTIBLE:
753 			stats->nr_sleeping++;
754 			break;
755 		case TASK_UNINTERRUPTIBLE:
756 			stats->nr_uninterruptible++;
757 			break;
758 		case TASK_STOPPED:
759 			stats->nr_stopped++;
760 			break;
761 		default:
762 			if (delayacct_is_task_waiting_on_io(tsk))
763 				stats->nr_io_wait++;
764 			break;
765 		}
766 	}
767 	css_task_iter_end(&it);
768 
769 	mutex_unlock(&cgroup_mutex);
770 	return 0;
771 }
772 
cgroup1_check_for_release(struct cgroup * cgrp)773 void cgroup1_check_for_release(struct cgroup *cgrp)
774 {
775 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
776 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
777 		schedule_work(&cgrp->release_agent_work);
778 }
779 
780 /*
781  * Notify userspace when a cgroup is released, by running the
782  * configured release agent with the name of the cgroup (path
783  * relative to the root of cgroup file system) as the argument.
784  *
785  * Most likely, this user command will try to rmdir this cgroup.
786  *
787  * This races with the possibility that some other task will be
788  * attached to this cgroup before it is removed, or that some other
789  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
790  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
791  * unused, and this cgroup will be reprieved from its death sentence,
792  * to continue to serve a useful existence.  Next time it's released,
793  * we will get notified again, if it still has 'notify_on_release' set.
794  *
795  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
796  * means only wait until the task is successfully execve()'d.  The
797  * separate release agent task is forked by call_usermodehelper(),
798  * then control in this thread returns here, without waiting for the
799  * release agent task.  We don't bother to wait because the caller of
800  * this routine has no use for the exit status of the release agent
801  * task, so no sense holding our caller up for that.
802  */
cgroup1_release_agent(struct work_struct * work)803 void cgroup1_release_agent(struct work_struct *work)
804 {
805 	struct cgroup *cgrp =
806 		container_of(work, struct cgroup, release_agent_work);
807 	char *pathbuf = NULL, *agentbuf = NULL;
808 	char *argv[3], *envp[3];
809 	int ret;
810 
811 	mutex_lock(&cgroup_mutex);
812 
813 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
814 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
815 	if (!pathbuf || !agentbuf || !strlen(agentbuf))
816 		goto out;
817 
818 	spin_lock_irq(&css_set_lock);
819 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
820 	spin_unlock_irq(&css_set_lock);
821 	if (ret < 0 || ret >= PATH_MAX)
822 		goto out;
823 
824 	argv[0] = agentbuf;
825 	argv[1] = pathbuf;
826 	argv[2] = NULL;
827 
828 	/* minimal command environment */
829 	envp[0] = "HOME=/";
830 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
831 	envp[2] = NULL;
832 
833 	mutex_unlock(&cgroup_mutex);
834 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
835 	goto out_free;
836 out:
837 	mutex_unlock(&cgroup_mutex);
838 out_free:
839 	kfree(agentbuf);
840 	kfree(pathbuf);
841 }
842 
843 /*
844  * cgroup_rename - Only allow simple rename of directories in place.
845  */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)846 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
847 			  const char *new_name_str)
848 {
849 	struct cgroup *cgrp = kn->priv;
850 	int ret;
851 
852 	if (kernfs_type(kn) != KERNFS_DIR)
853 		return -ENOTDIR;
854 	if (kn->parent != new_parent)
855 		return -EIO;
856 
857 	/*
858 	 * We're gonna grab cgroup_mutex which nests outside kernfs
859 	 * active_ref.  kernfs_rename() doesn't require active_ref
860 	 * protection.  Break them before grabbing cgroup_mutex.
861 	 */
862 	kernfs_break_active_protection(new_parent);
863 	kernfs_break_active_protection(kn);
864 
865 	mutex_lock(&cgroup_mutex);
866 
867 	ret = kernfs_rename(kn, new_parent, new_name_str);
868 	if (!ret)
869 		TRACE_CGROUP_PATH(rename, cgrp);
870 
871 	mutex_unlock(&cgroup_mutex);
872 
873 	kernfs_unbreak_active_protection(kn);
874 	kernfs_unbreak_active_protection(new_parent);
875 	return ret;
876 }
877 
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)878 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
879 {
880 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
881 	struct cgroup_subsys *ss;
882 	int ssid;
883 
884 	for_each_subsys(ss, ssid)
885 		if (root->subsys_mask & (1 << ssid))
886 			seq_show_option(seq, ss->legacy_name, NULL);
887 	if (root->flags & CGRP_ROOT_NOPREFIX)
888 		seq_puts(seq, ",noprefix");
889 	if (root->flags & CGRP_ROOT_XATTR)
890 		seq_puts(seq, ",xattr");
891 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
892 		seq_puts(seq, ",cpuset_v2_mode");
893 
894 	spin_lock(&release_agent_path_lock);
895 	if (strlen(root->release_agent_path))
896 		seq_show_option(seq, "release_agent",
897 				root->release_agent_path);
898 	spin_unlock(&release_agent_path_lock);
899 
900 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
901 		seq_puts(seq, ",clone_children");
902 	if (strlen(root->name))
903 		seq_show_option(seq, "name", root->name);
904 	return 0;
905 }
906 
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)907 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
908 {
909 	char *token, *o = data;
910 	bool all_ss = false, one_ss = false;
911 	u16 mask = U16_MAX;
912 	struct cgroup_subsys *ss;
913 	int nr_opts = 0;
914 	int i;
915 
916 #ifdef CONFIG_CPUSETS
917 	mask = ~((u16)1 << cpuset_cgrp_id);
918 #endif
919 
920 	memset(opts, 0, sizeof(*opts));
921 
922 	while ((token = strsep(&o, ",")) != NULL) {
923 		nr_opts++;
924 
925 		if (!*token)
926 			return -EINVAL;
927 		if (!strcmp(token, "none")) {
928 			/* Explicitly have no subsystems */
929 			opts->none = true;
930 			continue;
931 		}
932 		if (!strcmp(token, "all")) {
933 			/* Mutually exclusive option 'all' + subsystem name */
934 			if (one_ss)
935 				return -EINVAL;
936 			all_ss = true;
937 			continue;
938 		}
939 		if (!strcmp(token, "noprefix")) {
940 			opts->flags |= CGRP_ROOT_NOPREFIX;
941 			continue;
942 		}
943 		if (!strcmp(token, "clone_children")) {
944 			opts->cpuset_clone_children = true;
945 			continue;
946 		}
947 		if (!strcmp(token, "cpuset_v2_mode")) {
948 			opts->flags |= CGRP_ROOT_CPUSET_V2_MODE;
949 			continue;
950 		}
951 		if (!strcmp(token, "xattr")) {
952 			opts->flags |= CGRP_ROOT_XATTR;
953 			continue;
954 		}
955 		if (!strncmp(token, "release_agent=", 14)) {
956 			/* Specifying two release agents is forbidden */
957 			if (opts->release_agent)
958 				return -EINVAL;
959 			opts->release_agent =
960 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
961 			if (!opts->release_agent)
962 				return -ENOMEM;
963 			continue;
964 		}
965 		if (!strncmp(token, "name=", 5)) {
966 			const char *name = token + 5;
967 			/* Can't specify an empty name */
968 			if (!strlen(name))
969 				return -EINVAL;
970 			/* Must match [\w.-]+ */
971 			for (i = 0; i < strlen(name); i++) {
972 				char c = name[i];
973 				if (isalnum(c))
974 					continue;
975 				if ((c == '.') || (c == '-') || (c == '_'))
976 					continue;
977 				return -EINVAL;
978 			}
979 			/* Specifying two names is forbidden */
980 			if (opts->name)
981 				return -EINVAL;
982 			opts->name = kstrndup(name,
983 					      MAX_CGROUP_ROOT_NAMELEN - 1,
984 					      GFP_KERNEL);
985 			if (!opts->name)
986 				return -ENOMEM;
987 
988 			continue;
989 		}
990 
991 		for_each_subsys(ss, i) {
992 			if (strcmp(token, ss->legacy_name))
993 				continue;
994 			if (!cgroup_ssid_enabled(i))
995 				continue;
996 			if (cgroup1_ssid_disabled(i))
997 				continue;
998 
999 			/* Mutually exclusive option 'all' + subsystem name */
1000 			if (all_ss)
1001 				return -EINVAL;
1002 			opts->subsys_mask |= (1 << i);
1003 			one_ss = true;
1004 
1005 			break;
1006 		}
1007 		if (i == CGROUP_SUBSYS_COUNT)
1008 			return -ENOENT;
1009 	}
1010 
1011 	/*
1012 	 * If the 'all' option was specified select all the subsystems,
1013 	 * otherwise if 'none', 'name=' and a subsystem name options were
1014 	 * not specified, let's default to 'all'
1015 	 */
1016 	if (all_ss || (!one_ss && !opts->none && !opts->name))
1017 		for_each_subsys(ss, i)
1018 			if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1019 				opts->subsys_mask |= (1 << i);
1020 
1021 	/*
1022 	 * We either have to specify by name or by subsystems. (So all
1023 	 * empty hierarchies must have a name).
1024 	 */
1025 	if (!opts->subsys_mask && !opts->name)
1026 		return -EINVAL;
1027 
1028 	/*
1029 	 * Option noprefix was introduced just for backward compatibility
1030 	 * with the old cpuset, so we allow noprefix only if mounting just
1031 	 * the cpuset subsystem.
1032 	 */
1033 	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1034 		return -EINVAL;
1035 
1036 	/* Can't specify "none" and some subsystems */
1037 	if (opts->subsys_mask && opts->none)
1038 		return -EINVAL;
1039 
1040 	return 0;
1041 }
1042 
cgroup1_remount(struct kernfs_root * kf_root,int * flags,char * data)1043 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
1044 {
1045 	int ret = 0;
1046 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1047 	struct cgroup_sb_opts opts;
1048 	u16 added_mask, removed_mask;
1049 
1050 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1051 
1052 	/* See what subsystems are wanted */
1053 	ret = parse_cgroupfs_options(data, &opts);
1054 	if (ret)
1055 		goto out_unlock;
1056 
1057 	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1058 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1059 			task_tgid_nr(current), current->comm);
1060 
1061 	added_mask = opts.subsys_mask & ~root->subsys_mask;
1062 	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1063 
1064 	/* Don't allow flags or name to change at remount */
1065 	if ((opts.flags ^ root->flags) ||
1066 	    (opts.name && strcmp(opts.name, root->name))) {
1067 		pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1068 		       opts.flags, opts.name ?: "", root->flags, root->name);
1069 		ret = -EINVAL;
1070 		goto out_unlock;
1071 	}
1072 
1073 	/* remounting is not allowed for populated hierarchies */
1074 	if (!list_empty(&root->cgrp.self.children)) {
1075 		ret = -EBUSY;
1076 		goto out_unlock;
1077 	}
1078 
1079 	ret = rebind_subsystems(root, added_mask);
1080 	if (ret)
1081 		goto out_unlock;
1082 
1083 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1084 
1085 	if (opts.release_agent) {
1086 		spin_lock(&release_agent_path_lock);
1087 		strcpy(root->release_agent_path, opts.release_agent);
1088 		spin_unlock(&release_agent_path_lock);
1089 	}
1090 
1091 	trace_cgroup_remount(root);
1092 
1093  out_unlock:
1094 	kfree(opts.release_agent);
1095 	kfree(opts.name);
1096 	mutex_unlock(&cgroup_mutex);
1097 	return ret;
1098 }
1099 
1100 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1101 	.rename			= cgroup1_rename,
1102 	.show_options		= cgroup1_show_options,
1103 	.remount_fs		= cgroup1_remount,
1104 	.mkdir			= cgroup_mkdir,
1105 	.rmdir			= cgroup_rmdir,
1106 	.show_path		= cgroup_show_path,
1107 };
1108 
cgroup1_mount(struct file_system_type * fs_type,int flags,void * data,unsigned long magic,struct cgroup_namespace * ns)1109 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1110 			     void *data, unsigned long magic,
1111 			     struct cgroup_namespace *ns)
1112 {
1113 	struct super_block *pinned_sb = NULL;
1114 	struct cgroup_sb_opts opts;
1115 	struct cgroup_root *root;
1116 	struct cgroup_subsys *ss;
1117 	struct dentry *dentry;
1118 	int i, ret;
1119 	bool new_root = false;
1120 
1121 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1122 
1123 	/* First find the desired set of subsystems */
1124 	ret = parse_cgroupfs_options(data, &opts);
1125 	if (ret)
1126 		goto out_unlock;
1127 
1128 	/*
1129 	 * Destruction of cgroup root is asynchronous, so subsystems may
1130 	 * still be dying after the previous unmount.  Let's drain the
1131 	 * dying subsystems.  We just need to ensure that the ones
1132 	 * unmounted previously finish dying and don't care about new ones
1133 	 * starting.  Testing ref liveliness is good enough.
1134 	 */
1135 	for_each_subsys(ss, i) {
1136 		if (!(opts.subsys_mask & (1 << i)) ||
1137 		    ss->root == &cgrp_dfl_root)
1138 			continue;
1139 
1140 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1141 			mutex_unlock(&cgroup_mutex);
1142 			msleep(10);
1143 			ret = restart_syscall();
1144 			goto out_free;
1145 		}
1146 		cgroup_put(&ss->root->cgrp);
1147 	}
1148 
1149 	for_each_root(root) {
1150 		bool name_match = false;
1151 
1152 		if (root == &cgrp_dfl_root)
1153 			continue;
1154 
1155 		/*
1156 		 * If we asked for a name then it must match.  Also, if
1157 		 * name matches but sybsys_mask doesn't, we should fail.
1158 		 * Remember whether name matched.
1159 		 */
1160 		if (opts.name) {
1161 			if (strcmp(opts.name, root->name))
1162 				continue;
1163 			name_match = true;
1164 		}
1165 
1166 		/*
1167 		 * If we asked for subsystems (or explicitly for no
1168 		 * subsystems) then they must match.
1169 		 */
1170 		if ((opts.subsys_mask || opts.none) &&
1171 		    (opts.subsys_mask != root->subsys_mask)) {
1172 			if (!name_match)
1173 				continue;
1174 			ret = -EBUSY;
1175 			goto out_unlock;
1176 		}
1177 
1178 		if (root->flags ^ opts.flags)
1179 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1180 
1181 		/*
1182 		 * We want to reuse @root whose lifetime is governed by its
1183 		 * ->cgrp.  Let's check whether @root is alive and keep it
1184 		 * that way.  As cgroup_kill_sb() can happen anytime, we
1185 		 * want to block it by pinning the sb so that @root doesn't
1186 		 * get killed before mount is complete.
1187 		 *
1188 		 * With the sb pinned, tryget_live can reliably indicate
1189 		 * whether @root can be reused.  If it's being killed,
1190 		 * drain it.  We can use wait_queue for the wait but this
1191 		 * path is super cold.  Let's just sleep a bit and retry.
1192 		 */
1193 		pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1194 		if (IS_ERR(pinned_sb) ||
1195 		    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1196 			mutex_unlock(&cgroup_mutex);
1197 			if (!IS_ERR_OR_NULL(pinned_sb))
1198 				deactivate_super(pinned_sb);
1199 			msleep(10);
1200 			ret = restart_syscall();
1201 			goto out_free;
1202 		}
1203 
1204 		ret = 0;
1205 		goto out_unlock;
1206 	}
1207 
1208 	/*
1209 	 * No such thing, create a new one.  name= matching without subsys
1210 	 * specification is allowed for already existing hierarchies but we
1211 	 * can't create new one without subsys specification.
1212 	 */
1213 	if (!opts.subsys_mask && !opts.none) {
1214 		ret = -EINVAL;
1215 		goto out_unlock;
1216 	}
1217 
1218 	/* Hierarchies may only be created in the initial cgroup namespace. */
1219 	if (ns != &init_cgroup_ns) {
1220 		ret = -EPERM;
1221 		goto out_unlock;
1222 	}
1223 
1224 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1225 	if (!root) {
1226 		ret = -ENOMEM;
1227 		goto out_unlock;
1228 	}
1229 	new_root = true;
1230 
1231 	init_cgroup_root(root, &opts);
1232 
1233 	ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1234 	if (ret)
1235 		cgroup_free_root(root);
1236 
1237 out_unlock:
1238 	mutex_unlock(&cgroup_mutex);
1239 out_free:
1240 	kfree(opts.release_agent);
1241 	kfree(opts.name);
1242 
1243 	if (ret)
1244 		return ERR_PTR(ret);
1245 
1246 	dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1247 				 CGROUP_SUPER_MAGIC, ns);
1248 
1249 	/*
1250 	 * There's a race window after we release cgroup_mutex and before
1251 	 * allocating a superblock. Make sure a concurrent process won't
1252 	 * be able to re-use the root during this window by delaying the
1253 	 * initialization of root refcnt.
1254 	 */
1255 	if (new_root) {
1256 		mutex_lock(&cgroup_mutex);
1257 		percpu_ref_reinit(&root->cgrp.self.refcnt);
1258 		mutex_unlock(&cgroup_mutex);
1259 	}
1260 
1261 	/*
1262 	 * If @pinned_sb, we're reusing an existing root and holding an
1263 	 * extra ref on its sb.  Mount is complete.  Put the extra ref.
1264 	 */
1265 	if (pinned_sb)
1266 		deactivate_super(pinned_sb);
1267 
1268 	return dentry;
1269 }
1270 
cgroup1_wq_init(void)1271 static int __init cgroup1_wq_init(void)
1272 {
1273 	/*
1274 	 * Used to destroy pidlists and separate to serve as flush domain.
1275 	 * Cap @max_active to 1 too.
1276 	 */
1277 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1278 						    0, 1);
1279 	BUG_ON(!cgroup_pidlist_destroy_wq);
1280 	return 0;
1281 }
1282 core_initcall(cgroup1_wq_init);
1283 
cgroup_no_v1(char * str)1284 static int __init cgroup_no_v1(char *str)
1285 {
1286 	struct cgroup_subsys *ss;
1287 	char *token;
1288 	int i;
1289 
1290 	while ((token = strsep(&str, ",")) != NULL) {
1291 		if (!*token)
1292 			continue;
1293 
1294 		if (!strcmp(token, "all")) {
1295 			cgroup_no_v1_mask = U16_MAX;
1296 			break;
1297 		}
1298 
1299 		for_each_subsys(ss, i) {
1300 			if (strcmp(token, ss->name) &&
1301 			    strcmp(token, ss->legacy_name))
1302 				continue;
1303 
1304 			cgroup_no_v1_mask |= 1 << i;
1305 		}
1306 	}
1307 	return 1;
1308 }
1309 __setup("cgroup_no_v1=", cgroup_no_v1);
1310