1 #include "cgroup-internal.h"
2
3 #include <linux/ctype.h>
4 #include <linux/kmod.h>
5 #include <linux/sort.h>
6 #include <linux/delay.h>
7 #include <linux/mm.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/task.h>
10 #include <linux/magic.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/delayacct.h>
14 #include <linux/pid_namespace.h>
15 #include <linux/cgroupstats.h>
16
17 #include <trace/events/cgroup.h>
18
19 /*
20 * pidlists linger the following amount before being destroyed. The goal
21 * is avoiding frequent destruction in the middle of consecutive read calls
22 * Expiring in the middle is a performance problem not a correctness one.
23 * 1 sec should be enough.
24 */
25 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
26
27 /* Controllers blocked by the commandline in v1 */
28 static u16 cgroup_no_v1_mask;
29
30 /*
31 * pidlist destructions need to be flushed on cgroup destruction. Use a
32 * separate workqueue as flush domain.
33 */
34 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
35
36 /*
37 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
38 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
39 */
40 static DEFINE_SPINLOCK(release_agent_path_lock);
41
cgroup1_ssid_disabled(int ssid)42 bool cgroup1_ssid_disabled(int ssid)
43 {
44 return cgroup_no_v1_mask & (1 << ssid);
45 }
46
47 /**
48 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
49 * @from: attach to all cgroups of a given task
50 * @tsk: the task to be attached
51 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
53 {
54 struct cgroup_root *root;
55 int retval = 0;
56
57 mutex_lock(&cgroup_mutex);
58 percpu_down_write(&cgroup_threadgroup_rwsem);
59 for_each_root(root) {
60 struct cgroup *from_cgrp;
61
62 if (root == &cgrp_dfl_root)
63 continue;
64
65 spin_lock_irq(&css_set_lock);
66 from_cgrp = task_cgroup_from_root(from, root);
67 spin_unlock_irq(&css_set_lock);
68
69 retval = cgroup_attach_task(from_cgrp, tsk, false);
70 if (retval)
71 break;
72 }
73 percpu_up_write(&cgroup_threadgroup_rwsem);
74 mutex_unlock(&cgroup_mutex);
75
76 return retval;
77 }
78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
79
80 /**
81 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
82 * @to: cgroup to which the tasks will be moved
83 * @from: cgroup in which the tasks currently reside
84 *
85 * Locking rules between cgroup_post_fork() and the migration path
86 * guarantee that, if a task is forking while being migrated, the new child
87 * is guaranteed to be either visible in the source cgroup after the
88 * parent's migration is complete or put into the target cgroup. No task
89 * can slip out of migration through forking.
90 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
92 {
93 DEFINE_CGROUP_MGCTX(mgctx);
94 struct cgrp_cset_link *link;
95 struct css_task_iter it;
96 struct task_struct *task;
97 int ret;
98
99 if (cgroup_on_dfl(to))
100 return -EINVAL;
101
102 ret = cgroup_migrate_vet_dst(to);
103 if (ret)
104 return ret;
105
106 mutex_lock(&cgroup_mutex);
107
108 percpu_down_write(&cgroup_threadgroup_rwsem);
109
110 /* all tasks in @from are being moved, all csets are source */
111 spin_lock_irq(&css_set_lock);
112 list_for_each_entry(link, &from->cset_links, cset_link)
113 cgroup_migrate_add_src(link->cset, to, &mgctx);
114 spin_unlock_irq(&css_set_lock);
115
116 ret = cgroup_migrate_prepare_dst(&mgctx);
117 if (ret)
118 goto out_err;
119
120 /*
121 * Migrate tasks one-by-one until @from is empty. This fails iff
122 * ->can_attach() fails.
123 */
124 do {
125 css_task_iter_start(&from->self, 0, &it);
126
127 do {
128 task = css_task_iter_next(&it);
129 } while (task && (task->flags & PF_EXITING));
130
131 if (task)
132 get_task_struct(task);
133 css_task_iter_end(&it);
134
135 if (task) {
136 ret = cgroup_migrate(task, false, &mgctx);
137 if (!ret)
138 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
139 put_task_struct(task);
140 }
141 } while (task && !ret);
142 out_err:
143 cgroup_migrate_finish(&mgctx);
144 percpu_up_write(&cgroup_threadgroup_rwsem);
145 mutex_unlock(&cgroup_mutex);
146 return ret;
147 }
148
149 /*
150 * Stuff for reading the 'tasks'/'procs' files.
151 *
152 * Reading this file can return large amounts of data if a cgroup has
153 * *lots* of attached tasks. So it may need several calls to read(),
154 * but we cannot guarantee that the information we produce is correct
155 * unless we produce it entirely atomically.
156 *
157 */
158
159 /* which pidlist file are we talking about? */
160 enum cgroup_filetype {
161 CGROUP_FILE_PROCS,
162 CGROUP_FILE_TASKS,
163 };
164
165 /*
166 * A pidlist is a list of pids that virtually represents the contents of one
167 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
168 * a pair (one each for procs, tasks) for each pid namespace that's relevant
169 * to the cgroup.
170 */
171 struct cgroup_pidlist {
172 /*
173 * used to find which pidlist is wanted. doesn't change as long as
174 * this particular list stays in the list.
175 */
176 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
177 /* array of xids */
178 pid_t *list;
179 /* how many elements the above list has */
180 int length;
181 /* each of these stored in a list by its cgroup */
182 struct list_head links;
183 /* pointer to the cgroup we belong to, for list removal purposes */
184 struct cgroup *owner;
185 /* for delayed destruction */
186 struct delayed_work destroy_dwork;
187 };
188
189 /*
190 * The following two functions "fix" the issue where there are more pids
191 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
192 * TODO: replace with a kernel-wide solution to this problem
193 */
194 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)195 static void *pidlist_allocate(int count)
196 {
197 if (PIDLIST_TOO_LARGE(count))
198 return vmalloc(array_size(count, sizeof(pid_t)));
199 else
200 return kmalloc_array(count, sizeof(pid_t), GFP_KERNEL);
201 }
202
pidlist_free(void * p)203 static void pidlist_free(void *p)
204 {
205 kvfree(p);
206 }
207
208 /*
209 * Used to destroy all pidlists lingering waiting for destroy timer. None
210 * should be left afterwards.
211 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)212 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
213 {
214 struct cgroup_pidlist *l, *tmp_l;
215
216 mutex_lock(&cgrp->pidlist_mutex);
217 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
218 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
219 mutex_unlock(&cgrp->pidlist_mutex);
220
221 flush_workqueue(cgroup_pidlist_destroy_wq);
222 BUG_ON(!list_empty(&cgrp->pidlists));
223 }
224
cgroup_pidlist_destroy_work_fn(struct work_struct * work)225 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
226 {
227 struct delayed_work *dwork = to_delayed_work(work);
228 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
229 destroy_dwork);
230 struct cgroup_pidlist *tofree = NULL;
231
232 mutex_lock(&l->owner->pidlist_mutex);
233
234 /*
235 * Destroy iff we didn't get queued again. The state won't change
236 * as destroy_dwork can only be queued while locked.
237 */
238 if (!delayed_work_pending(dwork)) {
239 list_del(&l->links);
240 pidlist_free(l->list);
241 put_pid_ns(l->key.ns);
242 tofree = l;
243 }
244
245 mutex_unlock(&l->owner->pidlist_mutex);
246 kfree(tofree);
247 }
248
249 /*
250 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
251 * Returns the number of unique elements.
252 */
pidlist_uniq(pid_t * list,int length)253 static int pidlist_uniq(pid_t *list, int length)
254 {
255 int src, dest = 1;
256
257 /*
258 * we presume the 0th element is unique, so i starts at 1. trivial
259 * edge cases first; no work needs to be done for either
260 */
261 if (length == 0 || length == 1)
262 return length;
263 /* src and dest walk down the list; dest counts unique elements */
264 for (src = 1; src < length; src++) {
265 /* find next unique element */
266 while (list[src] == list[src-1]) {
267 src++;
268 if (src == length)
269 goto after;
270 }
271 /* dest always points to where the next unique element goes */
272 list[dest] = list[src];
273 dest++;
274 }
275 after:
276 return dest;
277 }
278
279 /*
280 * The two pid files - task and cgroup.procs - guaranteed that the result
281 * is sorted, which forced this whole pidlist fiasco. As pid order is
282 * different per namespace, each namespace needs differently sorted list,
283 * making it impossible to use, for example, single rbtree of member tasks
284 * sorted by task pointer. As pidlists can be fairly large, allocating one
285 * per open file is dangerous, so cgroup had to implement shared pool of
286 * pidlists keyed by cgroup and namespace.
287 */
cmppid(const void * a,const void * b)288 static int cmppid(const void *a, const void *b)
289 {
290 return *(pid_t *)a - *(pid_t *)b;
291 }
292
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)293 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
294 enum cgroup_filetype type)
295 {
296 struct cgroup_pidlist *l;
297 /* don't need task_nsproxy() if we're looking at ourself */
298 struct pid_namespace *ns = task_active_pid_ns(current);
299
300 lockdep_assert_held(&cgrp->pidlist_mutex);
301
302 list_for_each_entry(l, &cgrp->pidlists, links)
303 if (l->key.type == type && l->key.ns == ns)
304 return l;
305 return NULL;
306 }
307
308 /*
309 * find the appropriate pidlist for our purpose (given procs vs tasks)
310 * returns with the lock on that pidlist already held, and takes care
311 * of the use count, or returns NULL with no locks held if we're out of
312 * memory.
313 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)314 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
315 enum cgroup_filetype type)
316 {
317 struct cgroup_pidlist *l;
318
319 lockdep_assert_held(&cgrp->pidlist_mutex);
320
321 l = cgroup_pidlist_find(cgrp, type);
322 if (l)
323 return l;
324
325 /* entry not found; create a new one */
326 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
327 if (!l)
328 return l;
329
330 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
331 l->key.type = type;
332 /* don't need task_nsproxy() if we're looking at ourself */
333 l->key.ns = get_pid_ns(task_active_pid_ns(current));
334 l->owner = cgrp;
335 list_add(&l->links, &cgrp->pidlists);
336 return l;
337 }
338
339 /**
340 * cgroup_task_count - count the number of tasks in a cgroup.
341 * @cgrp: the cgroup in question
342 */
cgroup_task_count(const struct cgroup * cgrp)343 int cgroup_task_count(const struct cgroup *cgrp)
344 {
345 int count = 0;
346 struct cgrp_cset_link *link;
347
348 spin_lock_irq(&css_set_lock);
349 list_for_each_entry(link, &cgrp->cset_links, cset_link)
350 count += link->cset->nr_tasks;
351 spin_unlock_irq(&css_set_lock);
352 return count;
353 }
354
355 /*
356 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
357 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)358 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
359 struct cgroup_pidlist **lp)
360 {
361 pid_t *array;
362 int length;
363 int pid, n = 0; /* used for populating the array */
364 struct css_task_iter it;
365 struct task_struct *tsk;
366 struct cgroup_pidlist *l;
367
368 lockdep_assert_held(&cgrp->pidlist_mutex);
369
370 /*
371 * If cgroup gets more users after we read count, we won't have
372 * enough space - tough. This race is indistinguishable to the
373 * caller from the case that the additional cgroup users didn't
374 * show up until sometime later on.
375 */
376 length = cgroup_task_count(cgrp);
377 array = pidlist_allocate(length);
378 if (!array)
379 return -ENOMEM;
380 /* now, populate the array */
381 css_task_iter_start(&cgrp->self, 0, &it);
382 while ((tsk = css_task_iter_next(&it))) {
383 if (unlikely(n == length))
384 break;
385 /* get tgid or pid for procs or tasks file respectively */
386 if (type == CGROUP_FILE_PROCS)
387 pid = task_tgid_vnr(tsk);
388 else
389 pid = task_pid_vnr(tsk);
390 if (pid > 0) /* make sure to only use valid results */
391 array[n++] = pid;
392 }
393 css_task_iter_end(&it);
394 length = n;
395 /* now sort & (if procs) strip out duplicates */
396 sort(array, length, sizeof(pid_t), cmppid, NULL);
397 if (type == CGROUP_FILE_PROCS)
398 length = pidlist_uniq(array, length);
399
400 l = cgroup_pidlist_find_create(cgrp, type);
401 if (!l) {
402 pidlist_free(array);
403 return -ENOMEM;
404 }
405
406 /* store array, freeing old if necessary */
407 pidlist_free(l->list);
408 l->list = array;
409 l->length = length;
410 *lp = l;
411 return 0;
412 }
413
414 /*
415 * seq_file methods for the tasks/procs files. The seq_file position is the
416 * next pid to display; the seq_file iterator is a pointer to the pid
417 * in the cgroup->l->list array.
418 */
419
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)420 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
421 {
422 /*
423 * Initially we receive a position value that corresponds to
424 * one more than the last pid shown (or 0 on the first call or
425 * after a seek to the start). Use a binary-search to find the
426 * next pid to display, if any
427 */
428 struct kernfs_open_file *of = s->private;
429 struct cgroup *cgrp = seq_css(s)->cgroup;
430 struct cgroup_pidlist *l;
431 enum cgroup_filetype type = seq_cft(s)->private;
432 int index = 0, pid = *pos;
433 int *iter, ret;
434
435 mutex_lock(&cgrp->pidlist_mutex);
436
437 /*
438 * !NULL @of->priv indicates that this isn't the first start()
439 * after open. If the matching pidlist is around, we can use that.
440 * Look for it. Note that @of->priv can't be used directly. It
441 * could already have been destroyed.
442 */
443 if (of->priv)
444 of->priv = cgroup_pidlist_find(cgrp, type);
445
446 /*
447 * Either this is the first start() after open or the matching
448 * pidlist has been destroyed inbetween. Create a new one.
449 */
450 if (!of->priv) {
451 ret = pidlist_array_load(cgrp, type,
452 (struct cgroup_pidlist **)&of->priv);
453 if (ret)
454 return ERR_PTR(ret);
455 }
456 l = of->priv;
457
458 if (pid) {
459 int end = l->length;
460
461 while (index < end) {
462 int mid = (index + end) / 2;
463 if (l->list[mid] == pid) {
464 index = mid;
465 break;
466 } else if (l->list[mid] <= pid)
467 index = mid + 1;
468 else
469 end = mid;
470 }
471 }
472 /* If we're off the end of the array, we're done */
473 if (index >= l->length)
474 return NULL;
475 /* Update the abstract position to be the actual pid that we found */
476 iter = l->list + index;
477 *pos = *iter;
478 return iter;
479 }
480
cgroup_pidlist_stop(struct seq_file * s,void * v)481 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
482 {
483 struct kernfs_open_file *of = s->private;
484 struct cgroup_pidlist *l = of->priv;
485
486 if (l)
487 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
488 CGROUP_PIDLIST_DESTROY_DELAY);
489 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
490 }
491
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)492 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
493 {
494 struct kernfs_open_file *of = s->private;
495 struct cgroup_pidlist *l = of->priv;
496 pid_t *p = v;
497 pid_t *end = l->list + l->length;
498 /*
499 * Advance to the next pid in the array. If this goes off the
500 * end, we're done
501 */
502 p++;
503 if (p >= end) {
504 (*pos)++;
505 return NULL;
506 } else {
507 *pos = *p;
508 return p;
509 }
510 }
511
cgroup_pidlist_show(struct seq_file * s,void * v)512 static int cgroup_pidlist_show(struct seq_file *s, void *v)
513 {
514 seq_printf(s, "%d\n", *(int *)v);
515
516 return 0;
517 }
518
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)519 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
520 char *buf, size_t nbytes, loff_t off,
521 bool threadgroup)
522 {
523 struct cgroup *cgrp;
524 struct task_struct *task;
525 const struct cred *cred, *tcred;
526 ssize_t ret;
527
528 cgrp = cgroup_kn_lock_live(of->kn, false);
529 if (!cgrp)
530 return -ENODEV;
531
532 task = cgroup_procs_write_start(buf, threadgroup);
533 ret = PTR_ERR_OR_ZERO(task);
534 if (ret)
535 goto out_unlock;
536
537 /*
538 * Even if we're attaching all tasks in the thread group, we only
539 * need to check permissions on one of them.
540 */
541 cred = current_cred();
542 tcred = get_task_cred(task);
543 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
544 !uid_eq(cred->euid, tcred->uid) &&
545 !uid_eq(cred->euid, tcred->suid))
546 ret = -EACCES;
547 put_cred(tcred);
548 if (ret)
549 goto out_finish;
550
551 ret = cgroup_attach_task(cgrp, task, threadgroup);
552
553 out_finish:
554 cgroup_procs_write_finish(task);
555 out_unlock:
556 cgroup_kn_unlock(of->kn);
557
558 return ret ?: nbytes;
559 }
560
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)561 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
562 char *buf, size_t nbytes, loff_t off)
563 {
564 return __cgroup1_procs_write(of, buf, nbytes, off, true);
565 }
566
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)567 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
568 char *buf, size_t nbytes, loff_t off)
569 {
570 return __cgroup1_procs_write(of, buf, nbytes, off, false);
571 }
572
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)573 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
574 char *buf, size_t nbytes, loff_t off)
575 {
576 struct cgroup *cgrp;
577
578 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
579
580 cgrp = cgroup_kn_lock_live(of->kn, false);
581 if (!cgrp)
582 return -ENODEV;
583 spin_lock(&release_agent_path_lock);
584 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
585 sizeof(cgrp->root->release_agent_path));
586 spin_unlock(&release_agent_path_lock);
587 cgroup_kn_unlock(of->kn);
588 return nbytes;
589 }
590
cgroup_release_agent_show(struct seq_file * seq,void * v)591 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
592 {
593 struct cgroup *cgrp = seq_css(seq)->cgroup;
594
595 spin_lock(&release_agent_path_lock);
596 seq_puts(seq, cgrp->root->release_agent_path);
597 spin_unlock(&release_agent_path_lock);
598 seq_putc(seq, '\n');
599 return 0;
600 }
601
cgroup_sane_behavior_show(struct seq_file * seq,void * v)602 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
603 {
604 seq_puts(seq, "0\n");
605 return 0;
606 }
607
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)608 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
609 struct cftype *cft)
610 {
611 return notify_on_release(css->cgroup);
612 }
613
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)614 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
615 struct cftype *cft, u64 val)
616 {
617 if (val)
618 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
619 else
620 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
621 return 0;
622 }
623
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)624 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
625 struct cftype *cft)
626 {
627 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
628 }
629
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)630 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
631 struct cftype *cft, u64 val)
632 {
633 if (val)
634 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
635 else
636 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
637 return 0;
638 }
639
640 /* cgroup core interface files for the legacy hierarchies */
641 struct cftype cgroup1_base_files[] = {
642 {
643 .name = "cgroup.procs",
644 .seq_start = cgroup_pidlist_start,
645 .seq_next = cgroup_pidlist_next,
646 .seq_stop = cgroup_pidlist_stop,
647 .seq_show = cgroup_pidlist_show,
648 .private = CGROUP_FILE_PROCS,
649 .write = cgroup1_procs_write,
650 },
651 {
652 .name = "cgroup.clone_children",
653 .read_u64 = cgroup_clone_children_read,
654 .write_u64 = cgroup_clone_children_write,
655 },
656 {
657 .name = "cgroup.sane_behavior",
658 .flags = CFTYPE_ONLY_ON_ROOT,
659 .seq_show = cgroup_sane_behavior_show,
660 },
661 {
662 .name = "tasks",
663 .seq_start = cgroup_pidlist_start,
664 .seq_next = cgroup_pidlist_next,
665 .seq_stop = cgroup_pidlist_stop,
666 .seq_show = cgroup_pidlist_show,
667 .private = CGROUP_FILE_TASKS,
668 .write = cgroup1_tasks_write,
669 },
670 {
671 .name = "notify_on_release",
672 .read_u64 = cgroup_read_notify_on_release,
673 .write_u64 = cgroup_write_notify_on_release,
674 },
675 {
676 .name = "release_agent",
677 .flags = CFTYPE_ONLY_ON_ROOT,
678 .seq_show = cgroup_release_agent_show,
679 .write = cgroup_release_agent_write,
680 .max_write_len = PATH_MAX - 1,
681 },
682 { } /* terminate */
683 };
684
685 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)686 int proc_cgroupstats_show(struct seq_file *m, void *v)
687 {
688 struct cgroup_subsys *ss;
689 int i;
690
691 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
692 /*
693 * ideally we don't want subsystems moving around while we do this.
694 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
695 * subsys/hierarchy state.
696 */
697 mutex_lock(&cgroup_mutex);
698
699 for_each_subsys(ss, i)
700 seq_printf(m, "%s\t%d\t%d\t%d\n",
701 ss->legacy_name, ss->root->hierarchy_id,
702 atomic_read(&ss->root->nr_cgrps),
703 cgroup_ssid_enabled(i));
704
705 mutex_unlock(&cgroup_mutex);
706 return 0;
707 }
708
709 /**
710 * cgroupstats_build - build and fill cgroupstats
711 * @stats: cgroupstats to fill information into
712 * @dentry: A dentry entry belonging to the cgroup for which stats have
713 * been requested.
714 *
715 * Build and fill cgroupstats so that taskstats can export it to user
716 * space.
717 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)718 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
719 {
720 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
721 struct cgroup *cgrp;
722 struct css_task_iter it;
723 struct task_struct *tsk;
724
725 /* it should be kernfs_node belonging to cgroupfs and is a directory */
726 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
727 kernfs_type(kn) != KERNFS_DIR)
728 return -EINVAL;
729
730 mutex_lock(&cgroup_mutex);
731
732 /*
733 * We aren't being called from kernfs and there's no guarantee on
734 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
735 * @kn->priv is RCU safe. Let's do the RCU dancing.
736 */
737 rcu_read_lock();
738 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
739 if (!cgrp || cgroup_is_dead(cgrp)) {
740 rcu_read_unlock();
741 mutex_unlock(&cgroup_mutex);
742 return -ENOENT;
743 }
744 rcu_read_unlock();
745
746 css_task_iter_start(&cgrp->self, 0, &it);
747 while ((tsk = css_task_iter_next(&it))) {
748 switch (tsk->state) {
749 case TASK_RUNNING:
750 stats->nr_running++;
751 break;
752 case TASK_INTERRUPTIBLE:
753 stats->nr_sleeping++;
754 break;
755 case TASK_UNINTERRUPTIBLE:
756 stats->nr_uninterruptible++;
757 break;
758 case TASK_STOPPED:
759 stats->nr_stopped++;
760 break;
761 default:
762 if (delayacct_is_task_waiting_on_io(tsk))
763 stats->nr_io_wait++;
764 break;
765 }
766 }
767 css_task_iter_end(&it);
768
769 mutex_unlock(&cgroup_mutex);
770 return 0;
771 }
772
cgroup1_check_for_release(struct cgroup * cgrp)773 void cgroup1_check_for_release(struct cgroup *cgrp)
774 {
775 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
776 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
777 schedule_work(&cgrp->release_agent_work);
778 }
779
780 /*
781 * Notify userspace when a cgroup is released, by running the
782 * configured release agent with the name of the cgroup (path
783 * relative to the root of cgroup file system) as the argument.
784 *
785 * Most likely, this user command will try to rmdir this cgroup.
786 *
787 * This races with the possibility that some other task will be
788 * attached to this cgroup before it is removed, or that some other
789 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
790 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
791 * unused, and this cgroup will be reprieved from its death sentence,
792 * to continue to serve a useful existence. Next time it's released,
793 * we will get notified again, if it still has 'notify_on_release' set.
794 *
795 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
796 * means only wait until the task is successfully execve()'d. The
797 * separate release agent task is forked by call_usermodehelper(),
798 * then control in this thread returns here, without waiting for the
799 * release agent task. We don't bother to wait because the caller of
800 * this routine has no use for the exit status of the release agent
801 * task, so no sense holding our caller up for that.
802 */
cgroup1_release_agent(struct work_struct * work)803 void cgroup1_release_agent(struct work_struct *work)
804 {
805 struct cgroup *cgrp =
806 container_of(work, struct cgroup, release_agent_work);
807 char *pathbuf = NULL, *agentbuf = NULL;
808 char *argv[3], *envp[3];
809 int ret;
810
811 mutex_lock(&cgroup_mutex);
812
813 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
814 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
815 if (!pathbuf || !agentbuf || !strlen(agentbuf))
816 goto out;
817
818 spin_lock_irq(&css_set_lock);
819 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
820 spin_unlock_irq(&css_set_lock);
821 if (ret < 0 || ret >= PATH_MAX)
822 goto out;
823
824 argv[0] = agentbuf;
825 argv[1] = pathbuf;
826 argv[2] = NULL;
827
828 /* minimal command environment */
829 envp[0] = "HOME=/";
830 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
831 envp[2] = NULL;
832
833 mutex_unlock(&cgroup_mutex);
834 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
835 goto out_free;
836 out:
837 mutex_unlock(&cgroup_mutex);
838 out_free:
839 kfree(agentbuf);
840 kfree(pathbuf);
841 }
842
843 /*
844 * cgroup_rename - Only allow simple rename of directories in place.
845 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)846 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
847 const char *new_name_str)
848 {
849 struct cgroup *cgrp = kn->priv;
850 int ret;
851
852 if (kernfs_type(kn) != KERNFS_DIR)
853 return -ENOTDIR;
854 if (kn->parent != new_parent)
855 return -EIO;
856
857 /*
858 * We're gonna grab cgroup_mutex which nests outside kernfs
859 * active_ref. kernfs_rename() doesn't require active_ref
860 * protection. Break them before grabbing cgroup_mutex.
861 */
862 kernfs_break_active_protection(new_parent);
863 kernfs_break_active_protection(kn);
864
865 mutex_lock(&cgroup_mutex);
866
867 ret = kernfs_rename(kn, new_parent, new_name_str);
868 if (!ret)
869 TRACE_CGROUP_PATH(rename, cgrp);
870
871 mutex_unlock(&cgroup_mutex);
872
873 kernfs_unbreak_active_protection(kn);
874 kernfs_unbreak_active_protection(new_parent);
875 return ret;
876 }
877
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)878 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
879 {
880 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
881 struct cgroup_subsys *ss;
882 int ssid;
883
884 for_each_subsys(ss, ssid)
885 if (root->subsys_mask & (1 << ssid))
886 seq_show_option(seq, ss->legacy_name, NULL);
887 if (root->flags & CGRP_ROOT_NOPREFIX)
888 seq_puts(seq, ",noprefix");
889 if (root->flags & CGRP_ROOT_XATTR)
890 seq_puts(seq, ",xattr");
891 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
892 seq_puts(seq, ",cpuset_v2_mode");
893
894 spin_lock(&release_agent_path_lock);
895 if (strlen(root->release_agent_path))
896 seq_show_option(seq, "release_agent",
897 root->release_agent_path);
898 spin_unlock(&release_agent_path_lock);
899
900 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
901 seq_puts(seq, ",clone_children");
902 if (strlen(root->name))
903 seq_show_option(seq, "name", root->name);
904 return 0;
905 }
906
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)907 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
908 {
909 char *token, *o = data;
910 bool all_ss = false, one_ss = false;
911 u16 mask = U16_MAX;
912 struct cgroup_subsys *ss;
913 int nr_opts = 0;
914 int i;
915
916 #ifdef CONFIG_CPUSETS
917 mask = ~((u16)1 << cpuset_cgrp_id);
918 #endif
919
920 memset(opts, 0, sizeof(*opts));
921
922 while ((token = strsep(&o, ",")) != NULL) {
923 nr_opts++;
924
925 if (!*token)
926 return -EINVAL;
927 if (!strcmp(token, "none")) {
928 /* Explicitly have no subsystems */
929 opts->none = true;
930 continue;
931 }
932 if (!strcmp(token, "all")) {
933 /* Mutually exclusive option 'all' + subsystem name */
934 if (one_ss)
935 return -EINVAL;
936 all_ss = true;
937 continue;
938 }
939 if (!strcmp(token, "noprefix")) {
940 opts->flags |= CGRP_ROOT_NOPREFIX;
941 continue;
942 }
943 if (!strcmp(token, "clone_children")) {
944 opts->cpuset_clone_children = true;
945 continue;
946 }
947 if (!strcmp(token, "cpuset_v2_mode")) {
948 opts->flags |= CGRP_ROOT_CPUSET_V2_MODE;
949 continue;
950 }
951 if (!strcmp(token, "xattr")) {
952 opts->flags |= CGRP_ROOT_XATTR;
953 continue;
954 }
955 if (!strncmp(token, "release_agent=", 14)) {
956 /* Specifying two release agents is forbidden */
957 if (opts->release_agent)
958 return -EINVAL;
959 opts->release_agent =
960 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
961 if (!opts->release_agent)
962 return -ENOMEM;
963 continue;
964 }
965 if (!strncmp(token, "name=", 5)) {
966 const char *name = token + 5;
967 /* Can't specify an empty name */
968 if (!strlen(name))
969 return -EINVAL;
970 /* Must match [\w.-]+ */
971 for (i = 0; i < strlen(name); i++) {
972 char c = name[i];
973 if (isalnum(c))
974 continue;
975 if ((c == '.') || (c == '-') || (c == '_'))
976 continue;
977 return -EINVAL;
978 }
979 /* Specifying two names is forbidden */
980 if (opts->name)
981 return -EINVAL;
982 opts->name = kstrndup(name,
983 MAX_CGROUP_ROOT_NAMELEN - 1,
984 GFP_KERNEL);
985 if (!opts->name)
986 return -ENOMEM;
987
988 continue;
989 }
990
991 for_each_subsys(ss, i) {
992 if (strcmp(token, ss->legacy_name))
993 continue;
994 if (!cgroup_ssid_enabled(i))
995 continue;
996 if (cgroup1_ssid_disabled(i))
997 continue;
998
999 /* Mutually exclusive option 'all' + subsystem name */
1000 if (all_ss)
1001 return -EINVAL;
1002 opts->subsys_mask |= (1 << i);
1003 one_ss = true;
1004
1005 break;
1006 }
1007 if (i == CGROUP_SUBSYS_COUNT)
1008 return -ENOENT;
1009 }
1010
1011 /*
1012 * If the 'all' option was specified select all the subsystems,
1013 * otherwise if 'none', 'name=' and a subsystem name options were
1014 * not specified, let's default to 'all'
1015 */
1016 if (all_ss || (!one_ss && !opts->none && !opts->name))
1017 for_each_subsys(ss, i)
1018 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1019 opts->subsys_mask |= (1 << i);
1020
1021 /*
1022 * We either have to specify by name or by subsystems. (So all
1023 * empty hierarchies must have a name).
1024 */
1025 if (!opts->subsys_mask && !opts->name)
1026 return -EINVAL;
1027
1028 /*
1029 * Option noprefix was introduced just for backward compatibility
1030 * with the old cpuset, so we allow noprefix only if mounting just
1031 * the cpuset subsystem.
1032 */
1033 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1034 return -EINVAL;
1035
1036 /* Can't specify "none" and some subsystems */
1037 if (opts->subsys_mask && opts->none)
1038 return -EINVAL;
1039
1040 return 0;
1041 }
1042
cgroup1_remount(struct kernfs_root * kf_root,int * flags,char * data)1043 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
1044 {
1045 int ret = 0;
1046 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1047 struct cgroup_sb_opts opts;
1048 u16 added_mask, removed_mask;
1049
1050 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1051
1052 /* See what subsystems are wanted */
1053 ret = parse_cgroupfs_options(data, &opts);
1054 if (ret)
1055 goto out_unlock;
1056
1057 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1058 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1059 task_tgid_nr(current), current->comm);
1060
1061 added_mask = opts.subsys_mask & ~root->subsys_mask;
1062 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1063
1064 /* Don't allow flags or name to change at remount */
1065 if ((opts.flags ^ root->flags) ||
1066 (opts.name && strcmp(opts.name, root->name))) {
1067 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1068 opts.flags, opts.name ?: "", root->flags, root->name);
1069 ret = -EINVAL;
1070 goto out_unlock;
1071 }
1072
1073 /* remounting is not allowed for populated hierarchies */
1074 if (!list_empty(&root->cgrp.self.children)) {
1075 ret = -EBUSY;
1076 goto out_unlock;
1077 }
1078
1079 ret = rebind_subsystems(root, added_mask);
1080 if (ret)
1081 goto out_unlock;
1082
1083 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1084
1085 if (opts.release_agent) {
1086 spin_lock(&release_agent_path_lock);
1087 strcpy(root->release_agent_path, opts.release_agent);
1088 spin_unlock(&release_agent_path_lock);
1089 }
1090
1091 trace_cgroup_remount(root);
1092
1093 out_unlock:
1094 kfree(opts.release_agent);
1095 kfree(opts.name);
1096 mutex_unlock(&cgroup_mutex);
1097 return ret;
1098 }
1099
1100 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1101 .rename = cgroup1_rename,
1102 .show_options = cgroup1_show_options,
1103 .remount_fs = cgroup1_remount,
1104 .mkdir = cgroup_mkdir,
1105 .rmdir = cgroup_rmdir,
1106 .show_path = cgroup_show_path,
1107 };
1108
cgroup1_mount(struct file_system_type * fs_type,int flags,void * data,unsigned long magic,struct cgroup_namespace * ns)1109 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1110 void *data, unsigned long magic,
1111 struct cgroup_namespace *ns)
1112 {
1113 struct super_block *pinned_sb = NULL;
1114 struct cgroup_sb_opts opts;
1115 struct cgroup_root *root;
1116 struct cgroup_subsys *ss;
1117 struct dentry *dentry;
1118 int i, ret;
1119 bool new_root = false;
1120
1121 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1122
1123 /* First find the desired set of subsystems */
1124 ret = parse_cgroupfs_options(data, &opts);
1125 if (ret)
1126 goto out_unlock;
1127
1128 /*
1129 * Destruction of cgroup root is asynchronous, so subsystems may
1130 * still be dying after the previous unmount. Let's drain the
1131 * dying subsystems. We just need to ensure that the ones
1132 * unmounted previously finish dying and don't care about new ones
1133 * starting. Testing ref liveliness is good enough.
1134 */
1135 for_each_subsys(ss, i) {
1136 if (!(opts.subsys_mask & (1 << i)) ||
1137 ss->root == &cgrp_dfl_root)
1138 continue;
1139
1140 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1141 mutex_unlock(&cgroup_mutex);
1142 msleep(10);
1143 ret = restart_syscall();
1144 goto out_free;
1145 }
1146 cgroup_put(&ss->root->cgrp);
1147 }
1148
1149 for_each_root(root) {
1150 bool name_match = false;
1151
1152 if (root == &cgrp_dfl_root)
1153 continue;
1154
1155 /*
1156 * If we asked for a name then it must match. Also, if
1157 * name matches but sybsys_mask doesn't, we should fail.
1158 * Remember whether name matched.
1159 */
1160 if (opts.name) {
1161 if (strcmp(opts.name, root->name))
1162 continue;
1163 name_match = true;
1164 }
1165
1166 /*
1167 * If we asked for subsystems (or explicitly for no
1168 * subsystems) then they must match.
1169 */
1170 if ((opts.subsys_mask || opts.none) &&
1171 (opts.subsys_mask != root->subsys_mask)) {
1172 if (!name_match)
1173 continue;
1174 ret = -EBUSY;
1175 goto out_unlock;
1176 }
1177
1178 if (root->flags ^ opts.flags)
1179 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1180
1181 /*
1182 * We want to reuse @root whose lifetime is governed by its
1183 * ->cgrp. Let's check whether @root is alive and keep it
1184 * that way. As cgroup_kill_sb() can happen anytime, we
1185 * want to block it by pinning the sb so that @root doesn't
1186 * get killed before mount is complete.
1187 *
1188 * With the sb pinned, tryget_live can reliably indicate
1189 * whether @root can be reused. If it's being killed,
1190 * drain it. We can use wait_queue for the wait but this
1191 * path is super cold. Let's just sleep a bit and retry.
1192 */
1193 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1194 if (IS_ERR(pinned_sb) ||
1195 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1196 mutex_unlock(&cgroup_mutex);
1197 if (!IS_ERR_OR_NULL(pinned_sb))
1198 deactivate_super(pinned_sb);
1199 msleep(10);
1200 ret = restart_syscall();
1201 goto out_free;
1202 }
1203
1204 ret = 0;
1205 goto out_unlock;
1206 }
1207
1208 /*
1209 * No such thing, create a new one. name= matching without subsys
1210 * specification is allowed for already existing hierarchies but we
1211 * can't create new one without subsys specification.
1212 */
1213 if (!opts.subsys_mask && !opts.none) {
1214 ret = -EINVAL;
1215 goto out_unlock;
1216 }
1217
1218 /* Hierarchies may only be created in the initial cgroup namespace. */
1219 if (ns != &init_cgroup_ns) {
1220 ret = -EPERM;
1221 goto out_unlock;
1222 }
1223
1224 root = kzalloc(sizeof(*root), GFP_KERNEL);
1225 if (!root) {
1226 ret = -ENOMEM;
1227 goto out_unlock;
1228 }
1229 new_root = true;
1230
1231 init_cgroup_root(root, &opts);
1232
1233 ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1234 if (ret)
1235 cgroup_free_root(root);
1236
1237 out_unlock:
1238 mutex_unlock(&cgroup_mutex);
1239 out_free:
1240 kfree(opts.release_agent);
1241 kfree(opts.name);
1242
1243 if (ret)
1244 return ERR_PTR(ret);
1245
1246 dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1247 CGROUP_SUPER_MAGIC, ns);
1248
1249 /*
1250 * There's a race window after we release cgroup_mutex and before
1251 * allocating a superblock. Make sure a concurrent process won't
1252 * be able to re-use the root during this window by delaying the
1253 * initialization of root refcnt.
1254 */
1255 if (new_root) {
1256 mutex_lock(&cgroup_mutex);
1257 percpu_ref_reinit(&root->cgrp.self.refcnt);
1258 mutex_unlock(&cgroup_mutex);
1259 }
1260
1261 /*
1262 * If @pinned_sb, we're reusing an existing root and holding an
1263 * extra ref on its sb. Mount is complete. Put the extra ref.
1264 */
1265 if (pinned_sb)
1266 deactivate_super(pinned_sb);
1267
1268 return dentry;
1269 }
1270
cgroup1_wq_init(void)1271 static int __init cgroup1_wq_init(void)
1272 {
1273 /*
1274 * Used to destroy pidlists and separate to serve as flush domain.
1275 * Cap @max_active to 1 too.
1276 */
1277 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1278 0, 1);
1279 BUG_ON(!cgroup_pidlist_destroy_wq);
1280 return 0;
1281 }
1282 core_initcall(cgroup1_wq_init);
1283
cgroup_no_v1(char * str)1284 static int __init cgroup_no_v1(char *str)
1285 {
1286 struct cgroup_subsys *ss;
1287 char *token;
1288 int i;
1289
1290 while ((token = strsep(&str, ",")) != NULL) {
1291 if (!*token)
1292 continue;
1293
1294 if (!strcmp(token, "all")) {
1295 cgroup_no_v1_mask = U16_MAX;
1296 break;
1297 }
1298
1299 for_each_subsys(ss, i) {
1300 if (strcmp(token, ss->name) &&
1301 strcmp(token, ss->legacy_name))
1302 continue;
1303
1304 cgroup_no_v1_mask |= 1 << i;
1305 }
1306 }
1307 return 1;
1308 }
1309 __setup("cgroup_no_v1=", cgroup_no_v1);
1310