1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
76 *
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
79 */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91
92 /*
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
95 */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97
98 /*
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
101 */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159
160 /*
161 * The default hierarchy always exists but is hidden until mounted for the
162 * first time. This is for backward compatibility.
163 */
164 static bool cgrp_dfl_visible;
165
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181
182 /*
183 * Assign a monotonically increasing serial number to csses. It guarantees
184 * cgroups with bigger numbers are newer than those with smaller numbers.
185 * Also, as csses are always appended to the parent's ->children list, it
186 * guarantees that sibling csses are always sorted in the ascending serial
187 * number order on the list. Protected by cgroup_mutex.
188 */
189 static u64 css_serial_nr_next = 1;
190
191 /*
192 * These bitmasks identify subsystems with specific features to avoid
193 * having to do iterative checks repeatedly.
194 */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 .count = REFCOUNT_INIT(2),
203 .user_ns = &init_user_ns,
204 .ns.ops = &cgroupns_operations,
205 .ns.inum = PROC_CGROUP_INIT_INO,
206 .root_cset = &init_css_set,
207 };
208
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 struct cgroup *cgrp, struct cftype cfts[],
223 bool is_add);
224
225 /**
226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227 * @ssid: subsys ID of interest
228 *
229 * cgroup_subsys_enabled() can only be used with literal subsys names which
230 * is fine for individual subsystems but unsuitable for cgroup core. This
231 * is slower static_key_enabled() based test indexed by @ssid.
232 */
cgroup_ssid_enabled(int ssid)233 bool cgroup_ssid_enabled(int ssid)
234 {
235 if (CGROUP_SUBSYS_COUNT == 0)
236 return false;
237
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240
241 /**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * List of changed behaviors:
251 *
252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253 * and "name" are disallowed.
254 *
255 * - When mounting an existing superblock, mount options should match.
256 *
257 * - Remount is disallowed.
258 *
259 * - rename(2) is disallowed.
260 *
261 * - "tasks" is removed. Everything should be at process granularity. Use
262 * "cgroup.procs" instead.
263 *
264 * - "cgroup.procs" is not sorted. pids will be unique unless they got
265 * recycled inbetween reads.
266 *
267 * - "release_agent" and "notify_on_release" are removed. Replacement
268 * notification mechanism will be implemented.
269 *
270 * - "cgroup.clone_children" is removed.
271 *
272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
273 * and its descendants contain no task; otherwise, 1. The file also
274 * generates kernfs notification which can be monitored through poll and
275 * [di]notify when the value of the file changes.
276 *
277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278 * take masks of ancestors with non-empty cpus/mems, instead of being
279 * moved to an ancestor.
280 *
281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
282 * masks of ancestors.
283 *
284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285 * is not created.
286 *
287 * - blkcg: blk-throttle becomes properly hierarchical.
288 *
289 * - debug: disallowed on the default hierarchy.
290 */
cgroup_on_dfl(const struct cgroup * cgrp)291 bool cgroup_on_dfl(const struct cgroup *cgrp)
292 {
293 return cgrp->root == &cgrp_dfl_root;
294 }
295
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
298 gfp_t gfp_mask)
299 {
300 int ret;
301
302 idr_preload(gfp_mask);
303 spin_lock_bh(&cgroup_idr_lock);
304 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
305 spin_unlock_bh(&cgroup_idr_lock);
306 idr_preload_end();
307 return ret;
308 }
309
cgroup_idr_replace(struct idr * idr,void * ptr,int id)310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
311 {
312 void *ret;
313
314 spin_lock_bh(&cgroup_idr_lock);
315 ret = idr_replace(idr, ptr, id);
316 spin_unlock_bh(&cgroup_idr_lock);
317 return ret;
318 }
319
cgroup_idr_remove(struct idr * idr,int id)320 static void cgroup_idr_remove(struct idr *idr, int id)
321 {
322 spin_lock_bh(&cgroup_idr_lock);
323 idr_remove(idr, id);
324 spin_unlock_bh(&cgroup_idr_lock);
325 }
326
cgroup_has_tasks(struct cgroup * cgrp)327 static bool cgroup_has_tasks(struct cgroup *cgrp)
328 {
329 return cgrp->nr_populated_csets;
330 }
331
cgroup_is_threaded(struct cgroup * cgrp)332 bool cgroup_is_threaded(struct cgroup *cgrp)
333 {
334 return cgrp->dom_cgrp != cgrp;
335 }
336
337 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)338 static bool cgroup_is_mixable(struct cgroup *cgrp)
339 {
340 /*
341 * Root isn't under domain level resource control exempting it from
342 * the no-internal-process constraint, so it can serve as a thread
343 * root and a parent of resource domains at the same time.
344 */
345 return !cgroup_parent(cgrp);
346 }
347
348 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
350 {
351 /* mixables don't care */
352 if (cgroup_is_mixable(cgrp))
353 return true;
354
355 /* domain roots can't be nested under threaded */
356 if (cgroup_is_threaded(cgrp))
357 return false;
358
359 /* can only have either domain or threaded children */
360 if (cgrp->nr_populated_domain_children)
361 return false;
362
363 /* and no domain controllers can be enabled */
364 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
365 return false;
366
367 return true;
368 }
369
370 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)371 bool cgroup_is_thread_root(struct cgroup *cgrp)
372 {
373 /* thread root should be a domain */
374 if (cgroup_is_threaded(cgrp))
375 return false;
376
377 /* a domain w/ threaded children is a thread root */
378 if (cgrp->nr_threaded_children)
379 return true;
380
381 /*
382 * A domain which has tasks and explicit threaded controllers
383 * enabled is a thread root.
384 */
385 if (cgroup_has_tasks(cgrp) &&
386 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
387 return true;
388
389 return false;
390 }
391
392 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)393 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
394 {
395 /* the cgroup itself can be a thread root */
396 if (cgroup_is_threaded(cgrp))
397 return false;
398
399 /* but the ancestors can't be unless mixable */
400 while ((cgrp = cgroup_parent(cgrp))) {
401 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
402 return false;
403 if (cgroup_is_threaded(cgrp))
404 return false;
405 }
406
407 return true;
408 }
409
410 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)411 static u16 cgroup_control(struct cgroup *cgrp)
412 {
413 struct cgroup *parent = cgroup_parent(cgrp);
414 u16 root_ss_mask = cgrp->root->subsys_mask;
415
416 if (parent) {
417 u16 ss_mask = parent->subtree_control;
418
419 /* threaded cgroups can only have threaded controllers */
420 if (cgroup_is_threaded(cgrp))
421 ss_mask &= cgrp_dfl_threaded_ss_mask;
422 return ss_mask;
423 }
424
425 if (cgroup_on_dfl(cgrp))
426 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
427 cgrp_dfl_implicit_ss_mask);
428 return root_ss_mask;
429 }
430
431 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)432 static u16 cgroup_ss_mask(struct cgroup *cgrp)
433 {
434 struct cgroup *parent = cgroup_parent(cgrp);
435
436 if (parent) {
437 u16 ss_mask = parent->subtree_ss_mask;
438
439 /* threaded cgroups can only have threaded controllers */
440 if (cgroup_is_threaded(cgrp))
441 ss_mask &= cgrp_dfl_threaded_ss_mask;
442 return ss_mask;
443 }
444
445 return cgrp->root->subsys_mask;
446 }
447
448 /**
449 * cgroup_css - obtain a cgroup's css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
452 *
453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
454 * function must be called either under cgroup_mutex or rcu_read_lock() and
455 * the caller is responsible for pinning the returned css if it wants to
456 * keep accessing it outside the said locks. This function may return
457 * %NULL if @cgrp doesn't have @subsys_id enabled.
458 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461 {
462 if (ss)
463 return rcu_dereference_check(cgrp->subsys[ss->id],
464 lockdep_is_held(&cgroup_mutex));
465 else
466 return &cgrp->self;
467 }
468
469 /**
470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest
473 *
474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
475 * or is offline, %NULL is returned.
476 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
478 struct cgroup_subsys *ss)
479 {
480 struct cgroup_subsys_state *css;
481
482 rcu_read_lock();
483 css = cgroup_css(cgrp, ss);
484 if (css && !css_tryget_online(css))
485 css = NULL;
486 rcu_read_unlock();
487
488 return css;
489 }
490
491 /**
492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
493 * @cgrp: the cgroup of interest
494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
495 *
496 * Similar to cgroup_css() but returns the effective css, which is defined
497 * as the matching css of the nearest ancestor including self which has @ss
498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
499 * function is guaranteed to return non-NULL css.
500 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
502 struct cgroup_subsys *ss)
503 {
504 lockdep_assert_held(&cgroup_mutex);
505
506 if (!ss)
507 return &cgrp->self;
508
509 /*
510 * This function is used while updating css associations and thus
511 * can't test the csses directly. Test ss_mask.
512 */
513 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
514 cgrp = cgroup_parent(cgrp);
515 if (!cgrp)
516 return NULL;
517 }
518
519 return cgroup_css(cgrp, ss);
520 }
521
522 /**
523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
524 * @cgrp: the cgroup of interest
525 * @ss: the subsystem of interest
526 *
527 * Find and get the effective css of @cgrp for @ss. The effective css is
528 * defined as the matching css of the nearest ancestor including self which
529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
530 * the root css is returned, so this function always returns a valid css.
531 *
532 * The returned css is not guaranteed to be online, and therefore it is the
533 * callers responsiblity to tryget a reference for it.
534 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
536 struct cgroup_subsys *ss)
537 {
538 struct cgroup_subsys_state *css;
539
540 do {
541 css = cgroup_css(cgrp, ss);
542
543 if (css)
544 return css;
545 cgrp = cgroup_parent(cgrp);
546 } while (cgrp);
547
548 return init_css_set.subsys[ss->id];
549 }
550
551 /**
552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
553 * @cgrp: the cgroup of interest
554 * @ss: the subsystem of interest
555 *
556 * Find and get the effective css of @cgrp for @ss. The effective css is
557 * defined as the matching css of the nearest ancestor including self which
558 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
559 * the root css is returned, so this function always returns a valid css.
560 * The returned css must be put using css_put().
561 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
563 struct cgroup_subsys *ss)
564 {
565 struct cgroup_subsys_state *css;
566
567 rcu_read_lock();
568
569 do {
570 css = cgroup_css(cgrp, ss);
571
572 if (css && css_tryget_online(css))
573 goto out_unlock;
574 cgrp = cgroup_parent(cgrp);
575 } while (cgrp);
576
577 css = init_css_set.subsys[ss->id];
578 css_get(css);
579 out_unlock:
580 rcu_read_unlock();
581 return css;
582 }
583
cgroup_get_live(struct cgroup * cgrp)584 static void cgroup_get_live(struct cgroup *cgrp)
585 {
586 WARN_ON_ONCE(cgroup_is_dead(cgrp));
587 css_get(&cgrp->self);
588 }
589
590 /**
591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
592 * is responsible for taking the css_set_lock.
593 * @cgrp: the cgroup in question
594 */
__cgroup_task_count(const struct cgroup * cgrp)595 int __cgroup_task_count(const struct cgroup *cgrp)
596 {
597 int count = 0;
598 struct cgrp_cset_link *link;
599
600 lockdep_assert_held(&css_set_lock);
601
602 list_for_each_entry(link, &cgrp->cset_links, cset_link)
603 count += link->cset->nr_tasks;
604
605 return count;
606 }
607
608 /**
609 * cgroup_task_count - count the number of tasks in a cgroup.
610 * @cgrp: the cgroup in question
611 */
cgroup_task_count(const struct cgroup * cgrp)612 int cgroup_task_count(const struct cgroup *cgrp)
613 {
614 int count;
615
616 spin_lock_irq(&css_set_lock);
617 count = __cgroup_task_count(cgrp);
618 spin_unlock_irq(&css_set_lock);
619
620 return count;
621 }
622
of_css(struct kernfs_open_file * of)623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
624 {
625 struct cgroup *cgrp = of->kn->parent->priv;
626 struct cftype *cft = of_cft(of);
627
628 /*
629 * This is open and unprotected implementation of cgroup_css().
630 * seq_css() is only called from a kernfs file operation which has
631 * an active reference on the file. Because all the subsystem
632 * files are drained before a css is disassociated with a cgroup,
633 * the matching css from the cgroup's subsys table is guaranteed to
634 * be and stay valid until the enclosing operation is complete.
635 */
636 if (cft->ss)
637 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
638 else
639 return &cgrp->self;
640 }
641 EXPORT_SYMBOL_GPL(of_css);
642
643 /**
644 * for_each_css - iterate all css's of a cgroup
645 * @css: the iteration cursor
646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
647 * @cgrp: the target cgroup to iterate css's of
648 *
649 * Should be called under cgroup_[tree_]mutex.
650 */
651 #define for_each_css(css, ssid, cgrp) \
652 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
653 if (!((css) = rcu_dereference_check( \
654 (cgrp)->subsys[(ssid)], \
655 lockdep_is_held(&cgroup_mutex)))) { } \
656 else
657
658 /**
659 * for_each_e_css - iterate all effective css's of a cgroup
660 * @css: the iteration cursor
661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
662 * @cgrp: the target cgroup to iterate css's of
663 *
664 * Should be called under cgroup_[tree_]mutex.
665 */
666 #define for_each_e_css(css, ssid, cgrp) \
667 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
668 if (!((css) = cgroup_e_css_by_mask(cgrp, \
669 cgroup_subsys[(ssid)]))) \
670 ; \
671 else
672
673 /**
674 * do_each_subsys_mask - filter for_each_subsys with a bitmask
675 * @ss: the iteration cursor
676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
677 * @ss_mask: the bitmask
678 *
679 * The block will only run for cases where the ssid-th bit (1 << ssid) of
680 * @ss_mask is set.
681 */
682 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
683 unsigned long __ss_mask = (ss_mask); \
684 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
685 (ssid) = 0; \
686 break; \
687 } \
688 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
689 (ss) = cgroup_subsys[ssid]; \
690 {
691
692 #define while_each_subsys_mask() \
693 } \
694 } \
695 } while (false)
696
697 /* iterate over child cgrps, lock should be held throughout iteration */
698 #define cgroup_for_each_live_child(child, cgrp) \
699 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
700 if (({ lockdep_assert_held(&cgroup_mutex); \
701 cgroup_is_dead(child); })) \
702 ; \
703 else
704
705 /* walk live descendants in preorder */
706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
707 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
708 if (({ lockdep_assert_held(&cgroup_mutex); \
709 (dsct) = (d_css)->cgroup; \
710 cgroup_is_dead(dsct); })) \
711 ; \
712 else
713
714 /* walk live descendants in postorder */
715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
716 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
717 if (({ lockdep_assert_held(&cgroup_mutex); \
718 (dsct) = (d_css)->cgroup; \
719 cgroup_is_dead(dsct); })) \
720 ; \
721 else
722
723 /*
724 * The default css_set - used by init and its children prior to any
725 * hierarchies being mounted. It contains a pointer to the root state
726 * for each subsystem. Also used to anchor the list of css_sets. Not
727 * reference-counted, to improve performance when child cgroups
728 * haven't been created.
729 */
730 struct css_set init_css_set = {
731 .refcount = REFCOUNT_INIT(1),
732 .dom_cset = &init_css_set,
733 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
734 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
735 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
736 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
737 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
738 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
739 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
740 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
741
742 /*
743 * The following field is re-initialized when this cset gets linked
744 * in cgroup_init(). However, let's initialize the field
745 * statically too so that the default cgroup can be accessed safely
746 * early during boot.
747 */
748 .dfl_cgrp = &cgrp_dfl_root.cgrp,
749 };
750
751 static int css_set_count = 1; /* 1 for init_css_set */
752
css_set_threaded(struct css_set * cset)753 static bool css_set_threaded(struct css_set *cset)
754 {
755 return cset->dom_cset != cset;
756 }
757
758 /**
759 * css_set_populated - does a css_set contain any tasks?
760 * @cset: target css_set
761 *
762 * css_set_populated() should be the same as !!cset->nr_tasks at steady
763 * state. However, css_set_populated() can be called while a task is being
764 * added to or removed from the linked list before the nr_tasks is
765 * properly updated. Hence, we can't just look at ->nr_tasks here.
766 */
css_set_populated(struct css_set * cset)767 static bool css_set_populated(struct css_set *cset)
768 {
769 lockdep_assert_held(&css_set_lock);
770
771 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
772 }
773
774 /**
775 * cgroup_update_populated - update the populated count of a cgroup
776 * @cgrp: the target cgroup
777 * @populated: inc or dec populated count
778 *
779 * One of the css_sets associated with @cgrp is either getting its first
780 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
781 * count is propagated towards root so that a given cgroup's
782 * nr_populated_children is zero iff none of its descendants contain any
783 * tasks.
784 *
785 * @cgrp's interface file "cgroup.populated" is zero if both
786 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
787 * 1 otherwise. When the sum changes from or to zero, userland is notified
788 * that the content of the interface file has changed. This can be used to
789 * detect when @cgrp and its descendants become populated or empty.
790 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)791 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
792 {
793 struct cgroup *child = NULL;
794 int adj = populated ? 1 : -1;
795
796 lockdep_assert_held(&css_set_lock);
797
798 do {
799 bool was_populated = cgroup_is_populated(cgrp);
800
801 if (!child) {
802 cgrp->nr_populated_csets += adj;
803 } else {
804 if (cgroup_is_threaded(child))
805 cgrp->nr_populated_threaded_children += adj;
806 else
807 cgrp->nr_populated_domain_children += adj;
808 }
809
810 if (was_populated == cgroup_is_populated(cgrp))
811 break;
812
813 cgroup1_check_for_release(cgrp);
814 TRACE_CGROUP_PATH(notify_populated, cgrp,
815 cgroup_is_populated(cgrp));
816 cgroup_file_notify(&cgrp->events_file);
817
818 child = cgrp;
819 cgrp = cgroup_parent(cgrp);
820 } while (cgrp);
821 }
822
823 /**
824 * css_set_update_populated - update populated state of a css_set
825 * @cset: target css_set
826 * @populated: whether @cset is populated or depopulated
827 *
828 * @cset is either getting the first task or losing the last. Update the
829 * populated counters of all associated cgroups accordingly.
830 */
css_set_update_populated(struct css_set * cset,bool populated)831 static void css_set_update_populated(struct css_set *cset, bool populated)
832 {
833 struct cgrp_cset_link *link;
834
835 lockdep_assert_held(&css_set_lock);
836
837 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
838 cgroup_update_populated(link->cgrp, populated);
839 }
840
841 /*
842 * @task is leaving, advance task iterators which are pointing to it so
843 * that they can resume at the next position. Advancing an iterator might
844 * remove it from the list, use safe walk. See css_task_iter_skip() for
845 * details.
846 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)847 static void css_set_skip_task_iters(struct css_set *cset,
848 struct task_struct *task)
849 {
850 struct css_task_iter *it, *pos;
851
852 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
853 css_task_iter_skip(it, task);
854 }
855
856 /**
857 * css_set_move_task - move a task from one css_set to another
858 * @task: task being moved
859 * @from_cset: css_set @task currently belongs to (may be NULL)
860 * @to_cset: new css_set @task is being moved to (may be NULL)
861 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
862 *
863 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
864 * css_set, @from_cset can be NULL. If @task is being disassociated
865 * instead of moved, @to_cset can be NULL.
866 *
867 * This function automatically handles populated counter updates and
868 * css_task_iter adjustments but the caller is responsible for managing
869 * @from_cset and @to_cset's reference counts.
870 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)871 static void css_set_move_task(struct task_struct *task,
872 struct css_set *from_cset, struct css_set *to_cset,
873 bool use_mg_tasks)
874 {
875 lockdep_assert_held(&css_set_lock);
876
877 if (to_cset && !css_set_populated(to_cset))
878 css_set_update_populated(to_cset, true);
879
880 if (from_cset) {
881 WARN_ON_ONCE(list_empty(&task->cg_list));
882
883 css_set_skip_task_iters(from_cset, task);
884 list_del_init(&task->cg_list);
885 if (!css_set_populated(from_cset))
886 css_set_update_populated(from_cset, false);
887 } else {
888 WARN_ON_ONCE(!list_empty(&task->cg_list));
889 }
890
891 if (to_cset) {
892 /*
893 * We are synchronized through cgroup_threadgroup_rwsem
894 * against PF_EXITING setting such that we can't race
895 * against cgroup_exit()/cgroup_free() dropping the css_set.
896 */
897 WARN_ON_ONCE(task->flags & PF_EXITING);
898
899 cgroup_move_task(task, to_cset);
900 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
901 &to_cset->tasks);
902 }
903 }
904
905 /*
906 * hash table for cgroup groups. This improves the performance to find
907 * an existing css_set. This hash doesn't (currently) take into
908 * account cgroups in empty hierarchies.
909 */
910 #define CSS_SET_HASH_BITS 7
911 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
912
css_set_hash(struct cgroup_subsys_state * css[])913 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
914 {
915 unsigned long key = 0UL;
916 struct cgroup_subsys *ss;
917 int i;
918
919 for_each_subsys(ss, i)
920 key += (unsigned long)css[i];
921 key = (key >> 16) ^ key;
922
923 return key;
924 }
925
put_css_set_locked(struct css_set * cset)926 void put_css_set_locked(struct css_set *cset)
927 {
928 struct cgrp_cset_link *link, *tmp_link;
929 struct cgroup_subsys *ss;
930 int ssid;
931
932 lockdep_assert_held(&css_set_lock);
933
934 if (!refcount_dec_and_test(&cset->refcount))
935 return;
936
937 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
938
939 /* This css_set is dead. unlink it and release cgroup and css refs */
940 for_each_subsys(ss, ssid) {
941 list_del(&cset->e_cset_node[ssid]);
942 css_put(cset->subsys[ssid]);
943 }
944 hash_del(&cset->hlist);
945 css_set_count--;
946
947 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
948 list_del(&link->cset_link);
949 list_del(&link->cgrp_link);
950 if (cgroup_parent(link->cgrp))
951 cgroup_put(link->cgrp);
952 kfree(link);
953 }
954
955 if (css_set_threaded(cset)) {
956 list_del(&cset->threaded_csets_node);
957 put_css_set_locked(cset->dom_cset);
958 }
959
960 kfree_rcu(cset, rcu_head);
961 }
962
963 /**
964 * compare_css_sets - helper function for find_existing_css_set().
965 * @cset: candidate css_set being tested
966 * @old_cset: existing css_set for a task
967 * @new_cgrp: cgroup that's being entered by the task
968 * @template: desired set of css pointers in css_set (pre-calculated)
969 *
970 * Returns true if "cset" matches "old_cset" except for the hierarchy
971 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
972 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])973 static bool compare_css_sets(struct css_set *cset,
974 struct css_set *old_cset,
975 struct cgroup *new_cgrp,
976 struct cgroup_subsys_state *template[])
977 {
978 struct cgroup *new_dfl_cgrp;
979 struct list_head *l1, *l2;
980
981 /*
982 * On the default hierarchy, there can be csets which are
983 * associated with the same set of cgroups but different csses.
984 * Let's first ensure that csses match.
985 */
986 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
987 return false;
988
989
990 /* @cset's domain should match the default cgroup's */
991 if (cgroup_on_dfl(new_cgrp))
992 new_dfl_cgrp = new_cgrp;
993 else
994 new_dfl_cgrp = old_cset->dfl_cgrp;
995
996 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
997 return false;
998
999 /*
1000 * Compare cgroup pointers in order to distinguish between
1001 * different cgroups in hierarchies. As different cgroups may
1002 * share the same effective css, this comparison is always
1003 * necessary.
1004 */
1005 l1 = &cset->cgrp_links;
1006 l2 = &old_cset->cgrp_links;
1007 while (1) {
1008 struct cgrp_cset_link *link1, *link2;
1009 struct cgroup *cgrp1, *cgrp2;
1010
1011 l1 = l1->next;
1012 l2 = l2->next;
1013 /* See if we reached the end - both lists are equal length. */
1014 if (l1 == &cset->cgrp_links) {
1015 BUG_ON(l2 != &old_cset->cgrp_links);
1016 break;
1017 } else {
1018 BUG_ON(l2 == &old_cset->cgrp_links);
1019 }
1020 /* Locate the cgroups associated with these links. */
1021 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023 cgrp1 = link1->cgrp;
1024 cgrp2 = link2->cgrp;
1025 /* Hierarchies should be linked in the same order. */
1026 BUG_ON(cgrp1->root != cgrp2->root);
1027
1028 /*
1029 * If this hierarchy is the hierarchy of the cgroup
1030 * that's changing, then we need to check that this
1031 * css_set points to the new cgroup; if it's any other
1032 * hierarchy, then this css_set should point to the
1033 * same cgroup as the old css_set.
1034 */
1035 if (cgrp1->root == new_cgrp->root) {
1036 if (cgrp1 != new_cgrp)
1037 return false;
1038 } else {
1039 if (cgrp1 != cgrp2)
1040 return false;
1041 }
1042 }
1043 return true;
1044 }
1045
1046 /**
1047 * find_existing_css_set - init css array and find the matching css_set
1048 * @old_cset: the css_set that we're using before the cgroup transition
1049 * @cgrp: the cgroup that we're moving into
1050 * @template: out param for the new set of csses, should be clear on entry
1051 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1052 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053 struct cgroup *cgrp,
1054 struct cgroup_subsys_state *template[])
1055 {
1056 struct cgroup_root *root = cgrp->root;
1057 struct cgroup_subsys *ss;
1058 struct css_set *cset;
1059 unsigned long key;
1060 int i;
1061
1062 /*
1063 * Build the set of subsystem state objects that we want to see in the
1064 * new css_set. while subsystems can change globally, the entries here
1065 * won't change, so no need for locking.
1066 */
1067 for_each_subsys(ss, i) {
1068 if (root->subsys_mask & (1UL << i)) {
1069 /*
1070 * @ss is in this hierarchy, so we want the
1071 * effective css from @cgrp.
1072 */
1073 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074 } else {
1075 /*
1076 * @ss is not in this hierarchy, so we don't want
1077 * to change the css.
1078 */
1079 template[i] = old_cset->subsys[i];
1080 }
1081 }
1082
1083 key = css_set_hash(template);
1084 hash_for_each_possible(css_set_table, cset, hlist, key) {
1085 if (!compare_css_sets(cset, old_cset, cgrp, template))
1086 continue;
1087
1088 /* This css_set matches what we need */
1089 return cset;
1090 }
1091
1092 /* No existing cgroup group matched */
1093 return NULL;
1094 }
1095
free_cgrp_cset_links(struct list_head * links_to_free)1096 static void free_cgrp_cset_links(struct list_head *links_to_free)
1097 {
1098 struct cgrp_cset_link *link, *tmp_link;
1099
1100 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101 list_del(&link->cset_link);
1102 kfree(link);
1103 }
1104 }
1105
1106 /**
1107 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108 * @count: the number of links to allocate
1109 * @tmp_links: list_head the allocated links are put on
1110 *
1111 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112 * through ->cset_link. Returns 0 on success or -errno.
1113 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1114 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115 {
1116 struct cgrp_cset_link *link;
1117 int i;
1118
1119 INIT_LIST_HEAD(tmp_links);
1120
1121 for (i = 0; i < count; i++) {
1122 link = kzalloc(sizeof(*link), GFP_KERNEL);
1123 if (!link) {
1124 free_cgrp_cset_links(tmp_links);
1125 return -ENOMEM;
1126 }
1127 list_add(&link->cset_link, tmp_links);
1128 }
1129 return 0;
1130 }
1131
1132 /**
1133 * link_css_set - a helper function to link a css_set to a cgroup
1134 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135 * @cset: the css_set to be linked
1136 * @cgrp: the destination cgroup
1137 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1138 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139 struct cgroup *cgrp)
1140 {
1141 struct cgrp_cset_link *link;
1142
1143 BUG_ON(list_empty(tmp_links));
1144
1145 if (cgroup_on_dfl(cgrp))
1146 cset->dfl_cgrp = cgrp;
1147
1148 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149 link->cset = cset;
1150 link->cgrp = cgrp;
1151
1152 /*
1153 * Always add links to the tail of the lists so that the lists are
1154 * in choronological order.
1155 */
1156 list_move_tail(&link->cset_link, &cgrp->cset_links);
1157 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158
1159 if (cgroup_parent(cgrp))
1160 cgroup_get_live(cgrp);
1161 }
1162
1163 /**
1164 * find_css_set - return a new css_set with one cgroup updated
1165 * @old_cset: the baseline css_set
1166 * @cgrp: the cgroup to be updated
1167 *
1168 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169 * substituted into the appropriate hierarchy.
1170 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1171 static struct css_set *find_css_set(struct css_set *old_cset,
1172 struct cgroup *cgrp)
1173 {
1174 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175 struct css_set *cset;
1176 struct list_head tmp_links;
1177 struct cgrp_cset_link *link;
1178 struct cgroup_subsys *ss;
1179 unsigned long key;
1180 int ssid;
1181
1182 lockdep_assert_held(&cgroup_mutex);
1183
1184 /* First see if we already have a cgroup group that matches
1185 * the desired set */
1186 spin_lock_irq(&css_set_lock);
1187 cset = find_existing_css_set(old_cset, cgrp, template);
1188 if (cset)
1189 get_css_set(cset);
1190 spin_unlock_irq(&css_set_lock);
1191
1192 if (cset)
1193 return cset;
1194
1195 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196 if (!cset)
1197 return NULL;
1198
1199 /* Allocate all the cgrp_cset_link objects that we'll need */
1200 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201 kfree(cset);
1202 return NULL;
1203 }
1204
1205 refcount_set(&cset->refcount, 1);
1206 cset->dom_cset = cset;
1207 INIT_LIST_HEAD(&cset->tasks);
1208 INIT_LIST_HEAD(&cset->mg_tasks);
1209 INIT_LIST_HEAD(&cset->dying_tasks);
1210 INIT_LIST_HEAD(&cset->task_iters);
1211 INIT_LIST_HEAD(&cset->threaded_csets);
1212 INIT_HLIST_NODE(&cset->hlist);
1213 INIT_LIST_HEAD(&cset->cgrp_links);
1214 INIT_LIST_HEAD(&cset->mg_preload_node);
1215 INIT_LIST_HEAD(&cset->mg_node);
1216
1217 /* Copy the set of subsystem state objects generated in
1218 * find_existing_css_set() */
1219 memcpy(cset->subsys, template, sizeof(cset->subsys));
1220
1221 spin_lock_irq(&css_set_lock);
1222 /* Add reference counts and links from the new css_set. */
1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 struct cgroup *c = link->cgrp;
1225
1226 if (c->root == cgrp->root)
1227 c = cgrp;
1228 link_css_set(&tmp_links, cset, c);
1229 }
1230
1231 BUG_ON(!list_empty(&tmp_links));
1232
1233 css_set_count++;
1234
1235 /* Add @cset to the hash table */
1236 key = css_set_hash(cset->subsys);
1237 hash_add(css_set_table, &cset->hlist, key);
1238
1239 for_each_subsys(ss, ssid) {
1240 struct cgroup_subsys_state *css = cset->subsys[ssid];
1241
1242 list_add_tail(&cset->e_cset_node[ssid],
1243 &css->cgroup->e_csets[ssid]);
1244 css_get(css);
1245 }
1246
1247 spin_unlock_irq(&css_set_lock);
1248
1249 /*
1250 * If @cset should be threaded, look up the matching dom_cset and
1251 * link them up. We first fully initialize @cset then look for the
1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1253 * to stay empty until we return.
1254 */
1255 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 struct css_set *dcset;
1257
1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 if (!dcset) {
1260 put_css_set(cset);
1261 return NULL;
1262 }
1263
1264 spin_lock_irq(&css_set_lock);
1265 cset->dom_cset = dcset;
1266 list_add_tail(&cset->threaded_csets_node,
1267 &dcset->threaded_csets);
1268 spin_unlock_irq(&css_set_lock);
1269 }
1270
1271 return cset;
1272 }
1273
cgroup_root_from_kf(struct kernfs_root * kf_root)1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 struct cgroup *root_cgrp = kf_root->kn->priv;
1277
1278 return root_cgrp->root;
1279 }
1280
cgroup_init_root_id(struct cgroup_root * root)1281 static int cgroup_init_root_id(struct cgroup_root *root)
1282 {
1283 int id;
1284
1285 lockdep_assert_held(&cgroup_mutex);
1286
1287 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288 if (id < 0)
1289 return id;
1290
1291 root->hierarchy_id = id;
1292 return 0;
1293 }
1294
cgroup_exit_root_id(struct cgroup_root * root)1295 static void cgroup_exit_root_id(struct cgroup_root *root)
1296 {
1297 lockdep_assert_held(&cgroup_mutex);
1298
1299 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300 }
1301
cgroup_free_root(struct cgroup_root * root)1302 void cgroup_free_root(struct cgroup_root *root)
1303 {
1304 kfree(root);
1305 }
1306
cgroup_destroy_root(struct cgroup_root * root)1307 static void cgroup_destroy_root(struct cgroup_root *root)
1308 {
1309 struct cgroup *cgrp = &root->cgrp;
1310 struct cgrp_cset_link *link, *tmp_link;
1311
1312 trace_cgroup_destroy_root(root);
1313
1314 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315
1316 BUG_ON(atomic_read(&root->nr_cgrps));
1317 BUG_ON(!list_empty(&cgrp->self.children));
1318
1319 /* Rebind all subsystems back to the default hierarchy */
1320 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321
1322 /*
1323 * Release all the links from cset_links to this hierarchy's
1324 * root cgroup
1325 */
1326 spin_lock_irq(&css_set_lock);
1327
1328 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329 list_del(&link->cset_link);
1330 list_del(&link->cgrp_link);
1331 kfree(link);
1332 }
1333
1334 spin_unlock_irq(&css_set_lock);
1335
1336 if (!list_empty(&root->root_list)) {
1337 list_del(&root->root_list);
1338 cgroup_root_count--;
1339 }
1340
1341 cgroup_exit_root_id(root);
1342
1343 mutex_unlock(&cgroup_mutex);
1344
1345 kernfs_destroy_root(root->kf_root);
1346 cgroup_free_root(root);
1347 }
1348
1349 /*
1350 * look up cgroup associated with current task's cgroup namespace on the
1351 * specified hierarchy
1352 */
1353 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1354 current_cgns_cgroup_from_root(struct cgroup_root *root)
1355 {
1356 struct cgroup *res = NULL;
1357 struct css_set *cset;
1358
1359 lockdep_assert_held(&css_set_lock);
1360
1361 rcu_read_lock();
1362
1363 cset = current->nsproxy->cgroup_ns->root_cset;
1364 if (cset == &init_css_set) {
1365 res = &root->cgrp;
1366 } else if (root == &cgrp_dfl_root) {
1367 res = cset->dfl_cgrp;
1368 } else {
1369 struct cgrp_cset_link *link;
1370
1371 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372 struct cgroup *c = link->cgrp;
1373
1374 if (c->root == root) {
1375 res = c;
1376 break;
1377 }
1378 }
1379 }
1380 rcu_read_unlock();
1381
1382 BUG_ON(!res);
1383 return res;
1384 }
1385
1386 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1387 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388 struct cgroup_root *root)
1389 {
1390 struct cgroup *res = NULL;
1391
1392 lockdep_assert_held(&cgroup_mutex);
1393 lockdep_assert_held(&css_set_lock);
1394
1395 if (cset == &init_css_set) {
1396 res = &root->cgrp;
1397 } else if (root == &cgrp_dfl_root) {
1398 res = cset->dfl_cgrp;
1399 } else {
1400 struct cgrp_cset_link *link;
1401
1402 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403 struct cgroup *c = link->cgrp;
1404
1405 if (c->root == root) {
1406 res = c;
1407 break;
1408 }
1409 }
1410 }
1411
1412 BUG_ON(!res);
1413 return res;
1414 }
1415
1416 /*
1417 * Return the cgroup for "task" from the given hierarchy. Must be
1418 * called with cgroup_mutex and css_set_lock held.
1419 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1420 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421 struct cgroup_root *root)
1422 {
1423 /*
1424 * No need to lock the task - since we hold css_set_lock the
1425 * task can't change groups.
1426 */
1427 return cset_cgroup_from_root(task_css_set(task), root);
1428 }
1429
1430 /*
1431 * A task must hold cgroup_mutex to modify cgroups.
1432 *
1433 * Any task can increment and decrement the count field without lock.
1434 * So in general, code holding cgroup_mutex can't rely on the count
1435 * field not changing. However, if the count goes to zero, then only
1436 * cgroup_attach_task() can increment it again. Because a count of zero
1437 * means that no tasks are currently attached, therefore there is no
1438 * way a task attached to that cgroup can fork (the other way to
1439 * increment the count). So code holding cgroup_mutex can safely
1440 * assume that if the count is zero, it will stay zero. Similarly, if
1441 * a task holds cgroup_mutex on a cgroup with zero count, it
1442 * knows that the cgroup won't be removed, as cgroup_rmdir()
1443 * needs that mutex.
1444 *
1445 * A cgroup can only be deleted if both its 'count' of using tasks
1446 * is zero, and its list of 'children' cgroups is empty. Since all
1447 * tasks in the system use _some_ cgroup, and since there is always at
1448 * least one task in the system (init, pid == 1), therefore, root cgroup
1449 * always has either children cgroups and/or using tasks. So we don't
1450 * need a special hack to ensure that root cgroup cannot be deleted.
1451 *
1452 * P.S. One more locking exception. RCU is used to guard the
1453 * update of a tasks cgroup pointer by cgroup_attach_task()
1454 */
1455
1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1458 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459 char *buf)
1460 {
1461 struct cgroup_subsys *ss = cft->ss;
1462
1463 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466
1467 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469 cft->name);
1470 } else {
1471 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472 }
1473 return buf;
1474 }
1475
1476 /**
1477 * cgroup_file_mode - deduce file mode of a control file
1478 * @cft: the control file in question
1479 *
1480 * S_IRUGO for read, S_IWUSR for write.
1481 */
cgroup_file_mode(const struct cftype * cft)1482 static umode_t cgroup_file_mode(const struct cftype *cft)
1483 {
1484 umode_t mode = 0;
1485
1486 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487 mode |= S_IRUGO;
1488
1489 if (cft->write_u64 || cft->write_s64 || cft->write) {
1490 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491 mode |= S_IWUGO;
1492 else
1493 mode |= S_IWUSR;
1494 }
1495
1496 return mode;
1497 }
1498
1499 /**
1500 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501 * @subtree_control: the new subtree_control mask to consider
1502 * @this_ss_mask: available subsystems
1503 *
1504 * On the default hierarchy, a subsystem may request other subsystems to be
1505 * enabled together through its ->depends_on mask. In such cases, more
1506 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507 *
1508 * This function calculates which subsystems need to be enabled if
1509 * @subtree_control is to be applied while restricted to @this_ss_mask.
1510 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1511 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512 {
1513 u16 cur_ss_mask = subtree_control;
1514 struct cgroup_subsys *ss;
1515 int ssid;
1516
1517 lockdep_assert_held(&cgroup_mutex);
1518
1519 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520
1521 while (true) {
1522 u16 new_ss_mask = cur_ss_mask;
1523
1524 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525 new_ss_mask |= ss->depends_on;
1526 } while_each_subsys_mask();
1527
1528 /*
1529 * Mask out subsystems which aren't available. This can
1530 * happen only if some depended-upon subsystems were bound
1531 * to non-default hierarchies.
1532 */
1533 new_ss_mask &= this_ss_mask;
1534
1535 if (new_ss_mask == cur_ss_mask)
1536 break;
1537 cur_ss_mask = new_ss_mask;
1538 }
1539
1540 return cur_ss_mask;
1541 }
1542
1543 /**
1544 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545 * @kn: the kernfs_node being serviced
1546 *
1547 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548 * the method finishes if locking succeeded. Note that once this function
1549 * returns the cgroup returned by cgroup_kn_lock_live() may become
1550 * inaccessible any time. If the caller intends to continue to access the
1551 * cgroup, it should pin it before invoking this function.
1552 */
cgroup_kn_unlock(struct kernfs_node * kn)1553 void cgroup_kn_unlock(struct kernfs_node *kn)
1554 {
1555 struct cgroup *cgrp;
1556
1557 if (kernfs_type(kn) == KERNFS_DIR)
1558 cgrp = kn->priv;
1559 else
1560 cgrp = kn->parent->priv;
1561
1562 mutex_unlock(&cgroup_mutex);
1563
1564 kernfs_unbreak_active_protection(kn);
1565 cgroup_put(cgrp);
1566 }
1567
1568 /**
1569 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570 * @kn: the kernfs_node being serviced
1571 * @drain_offline: perform offline draining on the cgroup
1572 *
1573 * This helper is to be used by a cgroup kernfs method currently servicing
1574 * @kn. It breaks the active protection, performs cgroup locking and
1575 * verifies that the associated cgroup is alive. Returns the cgroup if
1576 * alive; otherwise, %NULL. A successful return should be undone by a
1577 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1578 * cgroup is drained of offlining csses before return.
1579 *
1580 * Any cgroup kernfs method implementation which requires locking the
1581 * associated cgroup should use this helper. It avoids nesting cgroup
1582 * locking under kernfs active protection and allows all kernfs operations
1583 * including self-removal.
1584 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1585 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586 {
1587 struct cgroup *cgrp;
1588
1589 if (kernfs_type(kn) == KERNFS_DIR)
1590 cgrp = kn->priv;
1591 else
1592 cgrp = kn->parent->priv;
1593
1594 /*
1595 * We're gonna grab cgroup_mutex which nests outside kernfs
1596 * active_ref. cgroup liveliness check alone provides enough
1597 * protection against removal. Ensure @cgrp stays accessible and
1598 * break the active_ref protection.
1599 */
1600 if (!cgroup_tryget(cgrp))
1601 return NULL;
1602 kernfs_break_active_protection(kn);
1603
1604 if (drain_offline)
1605 cgroup_lock_and_drain_offline(cgrp);
1606 else
1607 mutex_lock(&cgroup_mutex);
1608
1609 if (!cgroup_is_dead(cgrp))
1610 return cgrp;
1611
1612 cgroup_kn_unlock(kn);
1613 return NULL;
1614 }
1615
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1616 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617 {
1618 char name[CGROUP_FILE_NAME_MAX];
1619
1620 lockdep_assert_held(&cgroup_mutex);
1621
1622 if (cft->file_offset) {
1623 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625
1626 spin_lock_irq(&cgroup_file_kn_lock);
1627 cfile->kn = NULL;
1628 spin_unlock_irq(&cgroup_file_kn_lock);
1629
1630 del_timer_sync(&cfile->notify_timer);
1631 }
1632
1633 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634 }
1635
1636 /**
1637 * css_clear_dir - remove subsys files in a cgroup directory
1638 * @css: taget css
1639 */
css_clear_dir(struct cgroup_subsys_state * css)1640 static void css_clear_dir(struct cgroup_subsys_state *css)
1641 {
1642 struct cgroup *cgrp = css->cgroup;
1643 struct cftype *cfts;
1644
1645 if (!(css->flags & CSS_VISIBLE))
1646 return;
1647
1648 css->flags &= ~CSS_VISIBLE;
1649
1650 if (!css->ss) {
1651 if (cgroup_on_dfl(cgrp))
1652 cfts = cgroup_base_files;
1653 else
1654 cfts = cgroup1_base_files;
1655
1656 cgroup_addrm_files(css, cgrp, cfts, false);
1657 } else {
1658 list_for_each_entry(cfts, &css->ss->cfts, node)
1659 cgroup_addrm_files(css, cgrp, cfts, false);
1660 }
1661 }
1662
1663 /**
1664 * css_populate_dir - create subsys files in a cgroup directory
1665 * @css: target css
1666 *
1667 * On failure, no file is added.
1668 */
css_populate_dir(struct cgroup_subsys_state * css)1669 static int css_populate_dir(struct cgroup_subsys_state *css)
1670 {
1671 struct cgroup *cgrp = css->cgroup;
1672 struct cftype *cfts, *failed_cfts;
1673 int ret;
1674
1675 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676 return 0;
1677
1678 if (!css->ss) {
1679 if (cgroup_on_dfl(cgrp))
1680 cfts = cgroup_base_files;
1681 else
1682 cfts = cgroup1_base_files;
1683
1684 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685 if (ret < 0)
1686 return ret;
1687 } else {
1688 list_for_each_entry(cfts, &css->ss->cfts, node) {
1689 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690 if (ret < 0) {
1691 failed_cfts = cfts;
1692 goto err;
1693 }
1694 }
1695 }
1696
1697 css->flags |= CSS_VISIBLE;
1698
1699 return 0;
1700 err:
1701 list_for_each_entry(cfts, &css->ss->cfts, node) {
1702 if (cfts == failed_cfts)
1703 break;
1704 cgroup_addrm_files(css, cgrp, cfts, false);
1705 }
1706 return ret;
1707 }
1708
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1709 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710 {
1711 struct cgroup *dcgrp = &dst_root->cgrp;
1712 struct cgroup_subsys *ss;
1713 int ssid, i, ret;
1714
1715 lockdep_assert_held(&cgroup_mutex);
1716
1717 do_each_subsys_mask(ss, ssid, ss_mask) {
1718 /*
1719 * If @ss has non-root csses attached to it, can't move.
1720 * If @ss is an implicit controller, it is exempt from this
1721 * rule and can be stolen.
1722 */
1723 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1724 !ss->implicit_on_dfl)
1725 return -EBUSY;
1726
1727 /* can't move between two non-dummy roots either */
1728 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1729 return -EBUSY;
1730 } while_each_subsys_mask();
1731
1732 do_each_subsys_mask(ss, ssid, ss_mask) {
1733 struct cgroup_root *src_root = ss->root;
1734 struct cgroup *scgrp = &src_root->cgrp;
1735 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1736 struct css_set *cset;
1737
1738 WARN_ON(!css || cgroup_css(dcgrp, ss));
1739
1740 /* disable from the source */
1741 src_root->subsys_mask &= ~(1 << ssid);
1742 WARN_ON(cgroup_apply_control(scgrp));
1743 cgroup_finalize_control(scgrp, 0);
1744
1745 /* rebind */
1746 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1747 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1748 ss->root = dst_root;
1749 css->cgroup = dcgrp;
1750
1751 spin_lock_irq(&css_set_lock);
1752 hash_for_each(css_set_table, i, cset, hlist)
1753 list_move_tail(&cset->e_cset_node[ss->id],
1754 &dcgrp->e_csets[ss->id]);
1755 spin_unlock_irq(&css_set_lock);
1756
1757 /* default hierarchy doesn't enable controllers by default */
1758 dst_root->subsys_mask |= 1 << ssid;
1759 if (dst_root == &cgrp_dfl_root) {
1760 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1761 } else {
1762 dcgrp->subtree_control |= 1 << ssid;
1763 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1764 }
1765
1766 ret = cgroup_apply_control(dcgrp);
1767 if (ret)
1768 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1769 ss->name, ret);
1770
1771 if (ss->bind)
1772 ss->bind(css);
1773 } while_each_subsys_mask();
1774
1775 kernfs_activate(dcgrp->kn);
1776 return 0;
1777 }
1778
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1779 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1780 struct kernfs_root *kf_root)
1781 {
1782 int len = 0;
1783 char *buf = NULL;
1784 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1785 struct cgroup *ns_cgroup;
1786
1787 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1788 if (!buf)
1789 return -ENOMEM;
1790
1791 spin_lock_irq(&css_set_lock);
1792 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1793 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1794 spin_unlock_irq(&css_set_lock);
1795
1796 if (len >= PATH_MAX)
1797 len = -ERANGE;
1798 else if (len > 0) {
1799 seq_escape(sf, buf, " \t\n\\");
1800 len = 0;
1801 }
1802 kfree(buf);
1803 return len;
1804 }
1805
1806 enum cgroup2_param {
1807 Opt_nsdelegate,
1808 Opt_memory_localevents,
1809 Opt_memory_recursiveprot,
1810 nr__cgroup2_params
1811 };
1812
1813 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1814 fsparam_flag("nsdelegate", Opt_nsdelegate),
1815 fsparam_flag("memory_localevents", Opt_memory_localevents),
1816 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1817 {}
1818 };
1819
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1820 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1821 {
1822 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1823 struct fs_parse_result result;
1824 int opt;
1825
1826 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1827 if (opt < 0)
1828 return opt;
1829
1830 switch (opt) {
1831 case Opt_nsdelegate:
1832 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1833 return 0;
1834 case Opt_memory_localevents:
1835 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1836 return 0;
1837 case Opt_memory_recursiveprot:
1838 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1839 return 0;
1840 }
1841 return -EINVAL;
1842 }
1843
apply_cgroup_root_flags(unsigned int root_flags)1844 static void apply_cgroup_root_flags(unsigned int root_flags)
1845 {
1846 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849 else
1850 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1851
1852 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1853 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1854 else
1855 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1856
1857 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1858 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1859 else
1860 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1861 }
1862 }
1863
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1864 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1865 {
1866 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1867 seq_puts(seq, ",nsdelegate");
1868 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1869 seq_puts(seq, ",memory_localevents");
1870 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1871 seq_puts(seq, ",memory_recursiveprot");
1872 return 0;
1873 }
1874
cgroup_reconfigure(struct fs_context * fc)1875 static int cgroup_reconfigure(struct fs_context *fc)
1876 {
1877 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1878
1879 apply_cgroup_root_flags(ctx->flags);
1880 return 0;
1881 }
1882
init_cgroup_housekeeping(struct cgroup * cgrp)1883 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884 {
1885 struct cgroup_subsys *ss;
1886 int ssid;
1887
1888 INIT_LIST_HEAD(&cgrp->self.sibling);
1889 INIT_LIST_HEAD(&cgrp->self.children);
1890 INIT_LIST_HEAD(&cgrp->cset_links);
1891 INIT_LIST_HEAD(&cgrp->pidlists);
1892 mutex_init(&cgrp->pidlist_mutex);
1893 cgrp->self.cgroup = cgrp;
1894 cgrp->self.flags |= CSS_ONLINE;
1895 cgrp->dom_cgrp = cgrp;
1896 cgrp->max_descendants = INT_MAX;
1897 cgrp->max_depth = INT_MAX;
1898 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899 prev_cputime_init(&cgrp->prev_cputime);
1900
1901 for_each_subsys(ss, ssid)
1902 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903
1904 init_waitqueue_head(&cgrp->offline_waitq);
1905 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906 }
1907
init_cgroup_root(struct cgroup_fs_context * ctx)1908 void init_cgroup_root(struct cgroup_fs_context *ctx)
1909 {
1910 struct cgroup_root *root = ctx->root;
1911 struct cgroup *cgrp = &root->cgrp;
1912
1913 INIT_LIST_HEAD(&root->root_list);
1914 atomic_set(&root->nr_cgrps, 1);
1915 cgrp->root = root;
1916 init_cgroup_housekeeping(cgrp);
1917 init_waitqueue_head(&root->wait);
1918
1919 root->flags = ctx->flags;
1920 if (ctx->release_agent)
1921 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1922 if (ctx->name)
1923 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1924 if (ctx->cpuset_clone_children)
1925 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1926 }
1927
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1928 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1929 {
1930 LIST_HEAD(tmp_links);
1931 struct cgroup *root_cgrp = &root->cgrp;
1932 struct kernfs_syscall_ops *kf_sops;
1933 struct css_set *cset;
1934 int i, ret;
1935
1936 lockdep_assert_held(&cgroup_mutex);
1937
1938 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1939 0, GFP_KERNEL);
1940 if (ret)
1941 goto out;
1942
1943 /*
1944 * We're accessing css_set_count without locking css_set_lock here,
1945 * but that's OK - it can only be increased by someone holding
1946 * cgroup_lock, and that's us. Later rebinding may disable
1947 * controllers on the default hierarchy and thus create new csets,
1948 * which can't be more than the existing ones. Allocate 2x.
1949 */
1950 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1951 if (ret)
1952 goto cancel_ref;
1953
1954 ret = cgroup_init_root_id(root);
1955 if (ret)
1956 goto cancel_ref;
1957
1958 kf_sops = root == &cgrp_dfl_root ?
1959 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1960
1961 root->kf_root = kernfs_create_root(kf_sops,
1962 KERNFS_ROOT_CREATE_DEACTIVATED |
1963 KERNFS_ROOT_SUPPORT_EXPORTOP |
1964 KERNFS_ROOT_SUPPORT_USER_XATTR,
1965 root_cgrp);
1966 if (IS_ERR(root->kf_root)) {
1967 ret = PTR_ERR(root->kf_root);
1968 goto exit_root_id;
1969 }
1970 root_cgrp->kn = root->kf_root->kn;
1971 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1972 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1973
1974 ret = css_populate_dir(&root_cgrp->self);
1975 if (ret)
1976 goto destroy_root;
1977
1978 ret = rebind_subsystems(root, ss_mask);
1979 if (ret)
1980 goto destroy_root;
1981
1982 ret = cgroup_bpf_inherit(root_cgrp);
1983 WARN_ON_ONCE(ret);
1984
1985 trace_cgroup_setup_root(root);
1986
1987 /*
1988 * There must be no failure case after here, since rebinding takes
1989 * care of subsystems' refcounts, which are explicitly dropped in
1990 * the failure exit path.
1991 */
1992 list_add(&root->root_list, &cgroup_roots);
1993 cgroup_root_count++;
1994
1995 /*
1996 * Link the root cgroup in this hierarchy into all the css_set
1997 * objects.
1998 */
1999 spin_lock_irq(&css_set_lock);
2000 hash_for_each(css_set_table, i, cset, hlist) {
2001 link_css_set(&tmp_links, cset, root_cgrp);
2002 if (css_set_populated(cset))
2003 cgroup_update_populated(root_cgrp, true);
2004 }
2005 spin_unlock_irq(&css_set_lock);
2006
2007 BUG_ON(!list_empty(&root_cgrp->self.children));
2008 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2009
2010 ret = 0;
2011 goto out;
2012
2013 destroy_root:
2014 kernfs_destroy_root(root->kf_root);
2015 root->kf_root = NULL;
2016 exit_root_id:
2017 cgroup_exit_root_id(root);
2018 cancel_ref:
2019 percpu_ref_exit(&root_cgrp->self.refcnt);
2020 out:
2021 free_cgrp_cset_links(&tmp_links);
2022 return ret;
2023 }
2024
cgroup_do_get_tree(struct fs_context * fc)2025 int cgroup_do_get_tree(struct fs_context *fc)
2026 {
2027 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2028 int ret;
2029
2030 ctx->kfc.root = ctx->root->kf_root;
2031 if (fc->fs_type == &cgroup2_fs_type)
2032 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2033 else
2034 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2035 ret = kernfs_get_tree(fc);
2036
2037 /*
2038 * In non-init cgroup namespace, instead of root cgroup's dentry,
2039 * we return the dentry corresponding to the cgroupns->root_cgrp.
2040 */
2041 if (!ret && ctx->ns != &init_cgroup_ns) {
2042 struct dentry *nsdentry;
2043 struct super_block *sb = fc->root->d_sb;
2044 struct cgroup *cgrp;
2045
2046 mutex_lock(&cgroup_mutex);
2047 spin_lock_irq(&css_set_lock);
2048
2049 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2050
2051 spin_unlock_irq(&css_set_lock);
2052 mutex_unlock(&cgroup_mutex);
2053
2054 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2055 dput(fc->root);
2056 if (IS_ERR(nsdentry)) {
2057 deactivate_locked_super(sb);
2058 ret = PTR_ERR(nsdentry);
2059 nsdentry = NULL;
2060 }
2061 fc->root = nsdentry;
2062 }
2063
2064 if (!ctx->kfc.new_sb_created)
2065 cgroup_put(&ctx->root->cgrp);
2066
2067 return ret;
2068 }
2069
2070 /*
2071 * Destroy a cgroup filesystem context.
2072 */
cgroup_fs_context_free(struct fs_context * fc)2073 static void cgroup_fs_context_free(struct fs_context *fc)
2074 {
2075 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2076
2077 kfree(ctx->name);
2078 kfree(ctx->release_agent);
2079 put_cgroup_ns(ctx->ns);
2080 kernfs_free_fs_context(fc);
2081 kfree(ctx);
2082 }
2083
cgroup_get_tree(struct fs_context * fc)2084 static int cgroup_get_tree(struct fs_context *fc)
2085 {
2086 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2087 int ret;
2088
2089 cgrp_dfl_visible = true;
2090 cgroup_get_live(&cgrp_dfl_root.cgrp);
2091 ctx->root = &cgrp_dfl_root;
2092
2093 ret = cgroup_do_get_tree(fc);
2094 if (!ret)
2095 apply_cgroup_root_flags(ctx->flags);
2096 return ret;
2097 }
2098
2099 static const struct fs_context_operations cgroup_fs_context_ops = {
2100 .free = cgroup_fs_context_free,
2101 .parse_param = cgroup2_parse_param,
2102 .get_tree = cgroup_get_tree,
2103 .reconfigure = cgroup_reconfigure,
2104 };
2105
2106 static const struct fs_context_operations cgroup1_fs_context_ops = {
2107 .free = cgroup_fs_context_free,
2108 .parse_param = cgroup1_parse_param,
2109 .get_tree = cgroup1_get_tree,
2110 .reconfigure = cgroup1_reconfigure,
2111 };
2112
2113 /*
2114 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2115 * we select the namespace we're going to use.
2116 */
cgroup_init_fs_context(struct fs_context * fc)2117 static int cgroup_init_fs_context(struct fs_context *fc)
2118 {
2119 struct cgroup_fs_context *ctx;
2120
2121 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2122 if (!ctx)
2123 return -ENOMEM;
2124
2125 ctx->ns = current->nsproxy->cgroup_ns;
2126 get_cgroup_ns(ctx->ns);
2127 fc->fs_private = &ctx->kfc;
2128 if (fc->fs_type == &cgroup2_fs_type)
2129 fc->ops = &cgroup_fs_context_ops;
2130 else
2131 fc->ops = &cgroup1_fs_context_ops;
2132 put_user_ns(fc->user_ns);
2133 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2134 fc->global = true;
2135 return 0;
2136 }
2137
cgroup_kill_sb(struct super_block * sb)2138 static void cgroup_kill_sb(struct super_block *sb)
2139 {
2140 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2141 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2142
2143 /*
2144 * Wait if there are cgroups being destroyed, because the destruction
2145 * is asynchronous. On the other hand some controllers like memcg
2146 * may pin cgroups for a very long time, so don't wait forever.
2147 */
2148 if (root != &cgrp_dfl_root) {
2149 wait_event_timeout(root->wait,
2150 list_empty(&root->cgrp.self.children),
2151 msecs_to_jiffies(500));
2152 }
2153
2154 /*
2155 * If @root doesn't have any children, start killing it.
2156 * This prevents new mounts by disabling percpu_ref_tryget_live().
2157 * cgroup_mount() may wait for @root's release.
2158 *
2159 * And don't kill the default root.
2160 */
2161 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2162 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2163 cgroup_bpf_offline(&root->cgrp);
2164 percpu_ref_kill(&root->cgrp.self.refcnt);
2165 }
2166 cgroup_put(&root->cgrp);
2167 kernfs_kill_sb(sb);
2168 }
2169
2170 struct file_system_type cgroup_fs_type = {
2171 .name = "cgroup",
2172 .init_fs_context = cgroup_init_fs_context,
2173 .parameters = cgroup1_fs_parameters,
2174 .kill_sb = cgroup_kill_sb,
2175 .fs_flags = FS_USERNS_MOUNT,
2176 };
2177
2178 static struct file_system_type cgroup2_fs_type = {
2179 .name = "cgroup2",
2180 .init_fs_context = cgroup_init_fs_context,
2181 .parameters = cgroup2_fs_parameters,
2182 .kill_sb = cgroup_kill_sb,
2183 .fs_flags = FS_USERNS_MOUNT,
2184 };
2185
2186 #ifdef CONFIG_CPUSETS
2187 static const struct fs_context_operations cpuset_fs_context_ops = {
2188 .get_tree = cgroup1_get_tree,
2189 .free = cgroup_fs_context_free,
2190 };
2191
2192 /*
2193 * This is ugly, but preserves the userspace API for existing cpuset
2194 * users. If someone tries to mount the "cpuset" filesystem, we
2195 * silently switch it to mount "cgroup" instead
2196 */
cpuset_init_fs_context(struct fs_context * fc)2197 static int cpuset_init_fs_context(struct fs_context *fc)
2198 {
2199 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2200 struct cgroup_fs_context *ctx;
2201 int err;
2202
2203 err = cgroup_init_fs_context(fc);
2204 if (err) {
2205 kfree(agent);
2206 return err;
2207 }
2208
2209 fc->ops = &cpuset_fs_context_ops;
2210
2211 ctx = cgroup_fc2context(fc);
2212 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2213 ctx->flags |= CGRP_ROOT_NOPREFIX;
2214 ctx->release_agent = agent;
2215
2216 get_filesystem(&cgroup_fs_type);
2217 put_filesystem(fc->fs_type);
2218 fc->fs_type = &cgroup_fs_type;
2219
2220 return 0;
2221 }
2222
2223 static struct file_system_type cpuset_fs_type = {
2224 .name = "cpuset",
2225 .init_fs_context = cpuset_init_fs_context,
2226 .fs_flags = FS_USERNS_MOUNT,
2227 };
2228 #endif
2229
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2230 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2231 struct cgroup_namespace *ns)
2232 {
2233 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2234
2235 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2236 }
2237
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2238 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2239 struct cgroup_namespace *ns)
2240 {
2241 int ret;
2242
2243 mutex_lock(&cgroup_mutex);
2244 spin_lock_irq(&css_set_lock);
2245
2246 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2247
2248 spin_unlock_irq(&css_set_lock);
2249 mutex_unlock(&cgroup_mutex);
2250
2251 return ret;
2252 }
2253 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2254
2255 /**
2256 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2257 * @task: target task
2258 * @buf: the buffer to write the path into
2259 * @buflen: the length of the buffer
2260 *
2261 * Determine @task's cgroup on the first (the one with the lowest non-zero
2262 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2263 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2264 * cgroup controller callbacks.
2265 *
2266 * Return value is the same as kernfs_path().
2267 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2268 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2269 {
2270 struct cgroup_root *root;
2271 struct cgroup *cgrp;
2272 int hierarchy_id = 1;
2273 int ret;
2274
2275 mutex_lock(&cgroup_mutex);
2276 spin_lock_irq(&css_set_lock);
2277
2278 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2279
2280 if (root) {
2281 cgrp = task_cgroup_from_root(task, root);
2282 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2283 } else {
2284 /* if no hierarchy exists, everyone is in "/" */
2285 ret = strlcpy(buf, "/", buflen);
2286 }
2287
2288 spin_unlock_irq(&css_set_lock);
2289 mutex_unlock(&cgroup_mutex);
2290 return ret;
2291 }
2292 EXPORT_SYMBOL_GPL(task_cgroup_path);
2293
2294 /**
2295 * cgroup_migrate_add_task - add a migration target task to a migration context
2296 * @task: target task
2297 * @mgctx: target migration context
2298 *
2299 * Add @task, which is a migration target, to @mgctx->tset. This function
2300 * becomes noop if @task doesn't need to be migrated. @task's css_set
2301 * should have been added as a migration source and @task->cg_list will be
2302 * moved from the css_set's tasks list to mg_tasks one.
2303 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2304 static void cgroup_migrate_add_task(struct task_struct *task,
2305 struct cgroup_mgctx *mgctx)
2306 {
2307 struct css_set *cset;
2308
2309 lockdep_assert_held(&css_set_lock);
2310
2311 /* @task either already exited or can't exit until the end */
2312 if (task->flags & PF_EXITING)
2313 return;
2314
2315 /* cgroup_threadgroup_rwsem protects racing against forks */
2316 WARN_ON_ONCE(list_empty(&task->cg_list));
2317
2318 cset = task_css_set(task);
2319 if (!cset->mg_src_cgrp)
2320 return;
2321
2322 mgctx->tset.nr_tasks++;
2323
2324 list_move_tail(&task->cg_list, &cset->mg_tasks);
2325 if (list_empty(&cset->mg_node))
2326 list_add_tail(&cset->mg_node,
2327 &mgctx->tset.src_csets);
2328 if (list_empty(&cset->mg_dst_cset->mg_node))
2329 list_add_tail(&cset->mg_dst_cset->mg_node,
2330 &mgctx->tset.dst_csets);
2331 }
2332
2333 /**
2334 * cgroup_taskset_first - reset taskset and return the first task
2335 * @tset: taskset of interest
2336 * @dst_cssp: output variable for the destination css
2337 *
2338 * @tset iteration is initialized and the first task is returned.
2339 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2340 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2341 struct cgroup_subsys_state **dst_cssp)
2342 {
2343 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2344 tset->cur_task = NULL;
2345
2346 return cgroup_taskset_next(tset, dst_cssp);
2347 }
2348
2349 /**
2350 * cgroup_taskset_next - iterate to the next task in taskset
2351 * @tset: taskset of interest
2352 * @dst_cssp: output variable for the destination css
2353 *
2354 * Return the next task in @tset. Iteration must have been initialized
2355 * with cgroup_taskset_first().
2356 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2357 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2358 struct cgroup_subsys_state **dst_cssp)
2359 {
2360 struct css_set *cset = tset->cur_cset;
2361 struct task_struct *task = tset->cur_task;
2362
2363 while (&cset->mg_node != tset->csets) {
2364 if (!task)
2365 task = list_first_entry(&cset->mg_tasks,
2366 struct task_struct, cg_list);
2367 else
2368 task = list_next_entry(task, cg_list);
2369
2370 if (&task->cg_list != &cset->mg_tasks) {
2371 tset->cur_cset = cset;
2372 tset->cur_task = task;
2373
2374 /*
2375 * This function may be called both before and
2376 * after cgroup_taskset_migrate(). The two cases
2377 * can be distinguished by looking at whether @cset
2378 * has its ->mg_dst_cset set.
2379 */
2380 if (cset->mg_dst_cset)
2381 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2382 else
2383 *dst_cssp = cset->subsys[tset->ssid];
2384
2385 return task;
2386 }
2387
2388 cset = list_next_entry(cset, mg_node);
2389 task = NULL;
2390 }
2391
2392 return NULL;
2393 }
2394
2395 /**
2396 * cgroup_taskset_migrate - migrate a taskset
2397 * @mgctx: migration context
2398 *
2399 * Migrate tasks in @mgctx as setup by migration preparation functions.
2400 * This function fails iff one of the ->can_attach callbacks fails and
2401 * guarantees that either all or none of the tasks in @mgctx are migrated.
2402 * @mgctx is consumed regardless of success.
2403 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2404 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2405 {
2406 struct cgroup_taskset *tset = &mgctx->tset;
2407 struct cgroup_subsys *ss;
2408 struct task_struct *task, *tmp_task;
2409 struct css_set *cset, *tmp_cset;
2410 int ssid, failed_ssid, ret;
2411
2412 /* check that we can legitimately attach to the cgroup */
2413 if (tset->nr_tasks) {
2414 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2415 if (ss->can_attach) {
2416 tset->ssid = ssid;
2417 ret = ss->can_attach(tset);
2418 if (ret) {
2419 failed_ssid = ssid;
2420 goto out_cancel_attach;
2421 }
2422 }
2423 } while_each_subsys_mask();
2424 }
2425
2426 /*
2427 * Now that we're guaranteed success, proceed to move all tasks to
2428 * the new cgroup. There are no failure cases after here, so this
2429 * is the commit point.
2430 */
2431 spin_lock_irq(&css_set_lock);
2432 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2433 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2434 struct css_set *from_cset = task_css_set(task);
2435 struct css_set *to_cset = cset->mg_dst_cset;
2436
2437 get_css_set(to_cset);
2438 to_cset->nr_tasks++;
2439 css_set_move_task(task, from_cset, to_cset, true);
2440 from_cset->nr_tasks--;
2441 /*
2442 * If the source or destination cgroup is frozen,
2443 * the task might require to change its state.
2444 */
2445 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2446 to_cset->dfl_cgrp);
2447 put_css_set_locked(from_cset);
2448
2449 }
2450 }
2451 spin_unlock_irq(&css_set_lock);
2452
2453 /*
2454 * Migration is committed, all target tasks are now on dst_csets.
2455 * Nothing is sensitive to fork() after this point. Notify
2456 * controllers that migration is complete.
2457 */
2458 tset->csets = &tset->dst_csets;
2459
2460 if (tset->nr_tasks) {
2461 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2462 if (ss->attach) {
2463 tset->ssid = ssid;
2464 ss->attach(tset);
2465 }
2466 } while_each_subsys_mask();
2467 }
2468
2469 ret = 0;
2470 goto out_release_tset;
2471
2472 out_cancel_attach:
2473 if (tset->nr_tasks) {
2474 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2475 if (ssid == failed_ssid)
2476 break;
2477 if (ss->cancel_attach) {
2478 tset->ssid = ssid;
2479 ss->cancel_attach(tset);
2480 }
2481 } while_each_subsys_mask();
2482 }
2483 out_release_tset:
2484 spin_lock_irq(&css_set_lock);
2485 list_splice_init(&tset->dst_csets, &tset->src_csets);
2486 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2487 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2488 list_del_init(&cset->mg_node);
2489 }
2490 spin_unlock_irq(&css_set_lock);
2491
2492 /*
2493 * Re-initialize the cgroup_taskset structure in case it is reused
2494 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2495 * iteration.
2496 */
2497 tset->nr_tasks = 0;
2498 tset->csets = &tset->src_csets;
2499 return ret;
2500 }
2501
2502 /**
2503 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2504 * @dst_cgrp: destination cgroup to test
2505 *
2506 * On the default hierarchy, except for the mixable, (possible) thread root
2507 * and threaded cgroups, subtree_control must be zero for migration
2508 * destination cgroups with tasks so that child cgroups don't compete
2509 * against tasks.
2510 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2511 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2512 {
2513 /* v1 doesn't have any restriction */
2514 if (!cgroup_on_dfl(dst_cgrp))
2515 return 0;
2516
2517 /* verify @dst_cgrp can host resources */
2518 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2519 return -EOPNOTSUPP;
2520
2521 /* mixables don't care */
2522 if (cgroup_is_mixable(dst_cgrp))
2523 return 0;
2524
2525 /*
2526 * If @dst_cgrp is already or can become a thread root or is
2527 * threaded, it doesn't matter.
2528 */
2529 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2530 return 0;
2531
2532 /* apply no-internal-process constraint */
2533 if (dst_cgrp->subtree_control)
2534 return -EBUSY;
2535
2536 return 0;
2537 }
2538
2539 /**
2540 * cgroup_migrate_finish - cleanup after attach
2541 * @mgctx: migration context
2542 *
2543 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2544 * those functions for details.
2545 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2546 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2547 {
2548 LIST_HEAD(preloaded);
2549 struct css_set *cset, *tmp_cset;
2550
2551 lockdep_assert_held(&cgroup_mutex);
2552
2553 spin_lock_irq(&css_set_lock);
2554
2555 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2556 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2557
2558 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2559 cset->mg_src_cgrp = NULL;
2560 cset->mg_dst_cgrp = NULL;
2561 cset->mg_dst_cset = NULL;
2562 list_del_init(&cset->mg_preload_node);
2563 put_css_set_locked(cset);
2564 }
2565
2566 spin_unlock_irq(&css_set_lock);
2567 }
2568
2569 /**
2570 * cgroup_migrate_add_src - add a migration source css_set
2571 * @src_cset: the source css_set to add
2572 * @dst_cgrp: the destination cgroup
2573 * @mgctx: migration context
2574 *
2575 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2576 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2577 * up by cgroup_migrate_finish().
2578 *
2579 * This function may be called without holding cgroup_threadgroup_rwsem
2580 * even if the target is a process. Threads may be created and destroyed
2581 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2582 * into play and the preloaded css_sets are guaranteed to cover all
2583 * migrations.
2584 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2585 void cgroup_migrate_add_src(struct css_set *src_cset,
2586 struct cgroup *dst_cgrp,
2587 struct cgroup_mgctx *mgctx)
2588 {
2589 struct cgroup *src_cgrp;
2590
2591 lockdep_assert_held(&cgroup_mutex);
2592 lockdep_assert_held(&css_set_lock);
2593
2594 /*
2595 * If ->dead, @src_set is associated with one or more dead cgroups
2596 * and doesn't contain any migratable tasks. Ignore it early so
2597 * that the rest of migration path doesn't get confused by it.
2598 */
2599 if (src_cset->dead)
2600 return;
2601
2602 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2603
2604 if (!list_empty(&src_cset->mg_preload_node))
2605 return;
2606
2607 WARN_ON(src_cset->mg_src_cgrp);
2608 WARN_ON(src_cset->mg_dst_cgrp);
2609 WARN_ON(!list_empty(&src_cset->mg_tasks));
2610 WARN_ON(!list_empty(&src_cset->mg_node));
2611
2612 src_cset->mg_src_cgrp = src_cgrp;
2613 src_cset->mg_dst_cgrp = dst_cgrp;
2614 get_css_set(src_cset);
2615 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2616 }
2617
2618 /**
2619 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2620 * @mgctx: migration context
2621 *
2622 * Tasks are about to be moved and all the source css_sets have been
2623 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2624 * pins all destination css_sets, links each to its source, and append them
2625 * to @mgctx->preloaded_dst_csets.
2626 *
2627 * This function must be called after cgroup_migrate_add_src() has been
2628 * called on each migration source css_set. After migration is performed
2629 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2630 * @mgctx.
2631 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2632 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2633 {
2634 struct css_set *src_cset, *tmp_cset;
2635
2636 lockdep_assert_held(&cgroup_mutex);
2637
2638 /* look up the dst cset for each src cset and link it to src */
2639 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2640 mg_preload_node) {
2641 struct css_set *dst_cset;
2642 struct cgroup_subsys *ss;
2643 int ssid;
2644
2645 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2646 if (!dst_cset)
2647 return -ENOMEM;
2648
2649 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2650
2651 /*
2652 * If src cset equals dst, it's noop. Drop the src.
2653 * cgroup_migrate() will skip the cset too. Note that we
2654 * can't handle src == dst as some nodes are used by both.
2655 */
2656 if (src_cset == dst_cset) {
2657 src_cset->mg_src_cgrp = NULL;
2658 src_cset->mg_dst_cgrp = NULL;
2659 list_del_init(&src_cset->mg_preload_node);
2660 put_css_set(src_cset);
2661 put_css_set(dst_cset);
2662 continue;
2663 }
2664
2665 src_cset->mg_dst_cset = dst_cset;
2666
2667 if (list_empty(&dst_cset->mg_preload_node))
2668 list_add_tail(&dst_cset->mg_preload_node,
2669 &mgctx->preloaded_dst_csets);
2670 else
2671 put_css_set(dst_cset);
2672
2673 for_each_subsys(ss, ssid)
2674 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2675 mgctx->ss_mask |= 1 << ssid;
2676 }
2677
2678 return 0;
2679 }
2680
2681 /**
2682 * cgroup_migrate - migrate a process or task to a cgroup
2683 * @leader: the leader of the process or the task to migrate
2684 * @threadgroup: whether @leader points to the whole process or a single task
2685 * @mgctx: migration context
2686 *
2687 * Migrate a process or task denoted by @leader. If migrating a process,
2688 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2689 * responsible for invoking cgroup_migrate_add_src() and
2690 * cgroup_migrate_prepare_dst() on the targets before invoking this
2691 * function and following up with cgroup_migrate_finish().
2692 *
2693 * As long as a controller's ->can_attach() doesn't fail, this function is
2694 * guaranteed to succeed. This means that, excluding ->can_attach()
2695 * failure, when migrating multiple targets, the success or failure can be
2696 * decided for all targets by invoking group_migrate_prepare_dst() before
2697 * actually starting migrating.
2698 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2699 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2700 struct cgroup_mgctx *mgctx)
2701 {
2702 int err = 0;
2703 struct task_struct *task;
2704
2705 /*
2706 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2707 * already PF_EXITING could be freed from underneath us unless we
2708 * take an rcu_read_lock.
2709 */
2710 spin_lock_irq(&css_set_lock);
2711 rcu_read_lock();
2712 task = leader;
2713 do {
2714 cgroup_migrate_add_task(task, mgctx);
2715 if (!threadgroup) {
2716 if (task->flags & PF_EXITING)
2717 err = -ESRCH;
2718 break;
2719 }
2720 } while_each_thread(leader, task);
2721 rcu_read_unlock();
2722 spin_unlock_irq(&css_set_lock);
2723
2724 return err ? err : cgroup_migrate_execute(mgctx);
2725 }
2726
2727 /**
2728 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2729 * @dst_cgrp: the cgroup to attach to
2730 * @leader: the task or the leader of the threadgroup to be attached
2731 * @threadgroup: attach the whole threadgroup?
2732 *
2733 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2734 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2735 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2736 bool threadgroup)
2737 {
2738 DEFINE_CGROUP_MGCTX(mgctx);
2739 struct task_struct *task;
2740 int ret = 0;
2741
2742 /* look up all src csets */
2743 spin_lock_irq(&css_set_lock);
2744 rcu_read_lock();
2745 task = leader;
2746 do {
2747 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2748 if (!threadgroup)
2749 break;
2750 } while_each_thread(leader, task);
2751 rcu_read_unlock();
2752 spin_unlock_irq(&css_set_lock);
2753
2754 /* prepare dst csets and commit */
2755 ret = cgroup_migrate_prepare_dst(&mgctx);
2756 if (!ret)
2757 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2758
2759 cgroup_migrate_finish(&mgctx);
2760
2761 if (!ret)
2762 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2763
2764 return ret;
2765 }
2766
cgroup_procs_write_start(char * buf,bool threadgroup,bool * locked)2767 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2768 bool *locked)
2769 __acquires(&cgroup_threadgroup_rwsem)
2770 {
2771 struct task_struct *tsk;
2772 pid_t pid;
2773
2774 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2775 return ERR_PTR(-EINVAL);
2776
2777 /*
2778 * If we migrate a single thread, we don't care about threadgroup
2779 * stability. If the thread is `current`, it won't exit(2) under our
2780 * hands or change PID through exec(2). We exclude
2781 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2782 * callers by cgroup_mutex.
2783 * Therefore, we can skip the global lock.
2784 */
2785 lockdep_assert_held(&cgroup_mutex);
2786 if (pid || threadgroup) {
2787 percpu_down_write(&cgroup_threadgroup_rwsem);
2788 *locked = true;
2789 } else {
2790 *locked = false;
2791 }
2792
2793 rcu_read_lock();
2794 if (pid) {
2795 tsk = find_task_by_vpid(pid);
2796 if (!tsk) {
2797 tsk = ERR_PTR(-ESRCH);
2798 goto out_unlock_threadgroup;
2799 }
2800 } else {
2801 tsk = current;
2802 }
2803
2804 if (threadgroup)
2805 tsk = tsk->group_leader;
2806
2807 /*
2808 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2809 * If userland migrates such a kthread to a non-root cgroup, it can
2810 * become trapped in a cpuset, or RT kthread may be born in a
2811 * cgroup with no rt_runtime allocated. Just say no.
2812 */
2813 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2814 tsk = ERR_PTR(-EINVAL);
2815 goto out_unlock_threadgroup;
2816 }
2817
2818 get_task_struct(tsk);
2819 goto out_unlock_rcu;
2820
2821 out_unlock_threadgroup:
2822 if (*locked) {
2823 percpu_up_write(&cgroup_threadgroup_rwsem);
2824 *locked = false;
2825 }
2826 out_unlock_rcu:
2827 rcu_read_unlock();
2828 return tsk;
2829 }
2830
cgroup_procs_write_finish(struct task_struct * task,bool locked)2831 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2832 __releases(&cgroup_threadgroup_rwsem)
2833 {
2834 struct cgroup_subsys *ss;
2835 int ssid;
2836
2837 /* release reference from cgroup_procs_write_start() */
2838 put_task_struct(task);
2839
2840 if (locked)
2841 percpu_up_write(&cgroup_threadgroup_rwsem);
2842 for_each_subsys(ss, ssid)
2843 if (ss->post_attach)
2844 ss->post_attach();
2845 }
2846
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2847 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2848 {
2849 struct cgroup_subsys *ss;
2850 bool printed = false;
2851 int ssid;
2852
2853 do_each_subsys_mask(ss, ssid, ss_mask) {
2854 if (printed)
2855 seq_putc(seq, ' ');
2856 seq_puts(seq, ss->name);
2857 printed = true;
2858 } while_each_subsys_mask();
2859 if (printed)
2860 seq_putc(seq, '\n');
2861 }
2862
2863 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2864 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2865 {
2866 struct cgroup *cgrp = seq_css(seq)->cgroup;
2867
2868 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2869 return 0;
2870 }
2871
2872 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2873 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2874 {
2875 struct cgroup *cgrp = seq_css(seq)->cgroup;
2876
2877 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2878 return 0;
2879 }
2880
2881 /**
2882 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2883 * @cgrp: root of the subtree to update csses for
2884 *
2885 * @cgrp's control masks have changed and its subtree's css associations
2886 * need to be updated accordingly. This function looks up all css_sets
2887 * which are attached to the subtree, creates the matching updated css_sets
2888 * and migrates the tasks to the new ones.
2889 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2890 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2891 {
2892 DEFINE_CGROUP_MGCTX(mgctx);
2893 struct cgroup_subsys_state *d_css;
2894 struct cgroup *dsct;
2895 struct css_set *src_cset;
2896 int ret;
2897
2898 lockdep_assert_held(&cgroup_mutex);
2899
2900 percpu_down_write(&cgroup_threadgroup_rwsem);
2901
2902 /* look up all csses currently attached to @cgrp's subtree */
2903 spin_lock_irq(&css_set_lock);
2904 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2905 struct cgrp_cset_link *link;
2906
2907 list_for_each_entry(link, &dsct->cset_links, cset_link)
2908 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2909 }
2910 spin_unlock_irq(&css_set_lock);
2911
2912 /* NULL dst indicates self on default hierarchy */
2913 ret = cgroup_migrate_prepare_dst(&mgctx);
2914 if (ret)
2915 goto out_finish;
2916
2917 spin_lock_irq(&css_set_lock);
2918 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2919 struct task_struct *task, *ntask;
2920
2921 /* all tasks in src_csets need to be migrated */
2922 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2923 cgroup_migrate_add_task(task, &mgctx);
2924 }
2925 spin_unlock_irq(&css_set_lock);
2926
2927 ret = cgroup_migrate_execute(&mgctx);
2928 out_finish:
2929 cgroup_migrate_finish(&mgctx);
2930 percpu_up_write(&cgroup_threadgroup_rwsem);
2931 return ret;
2932 }
2933
2934 /**
2935 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2936 * @cgrp: root of the target subtree
2937 *
2938 * Because css offlining is asynchronous, userland may try to re-enable a
2939 * controller while the previous css is still around. This function grabs
2940 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2941 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2942 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2943 __acquires(&cgroup_mutex)
2944 {
2945 struct cgroup *dsct;
2946 struct cgroup_subsys_state *d_css;
2947 struct cgroup_subsys *ss;
2948 int ssid;
2949
2950 restart:
2951 mutex_lock(&cgroup_mutex);
2952
2953 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2954 for_each_subsys(ss, ssid) {
2955 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2956 DEFINE_WAIT(wait);
2957
2958 if (!css || !percpu_ref_is_dying(&css->refcnt))
2959 continue;
2960
2961 cgroup_get_live(dsct);
2962 prepare_to_wait(&dsct->offline_waitq, &wait,
2963 TASK_UNINTERRUPTIBLE);
2964
2965 mutex_unlock(&cgroup_mutex);
2966 schedule();
2967 finish_wait(&dsct->offline_waitq, &wait);
2968
2969 cgroup_put(dsct);
2970 goto restart;
2971 }
2972 }
2973 }
2974
2975 /**
2976 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2977 * @cgrp: root of the target subtree
2978 *
2979 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2980 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2981 * itself.
2982 */
cgroup_save_control(struct cgroup * cgrp)2983 static void cgroup_save_control(struct cgroup *cgrp)
2984 {
2985 struct cgroup *dsct;
2986 struct cgroup_subsys_state *d_css;
2987
2988 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2989 dsct->old_subtree_control = dsct->subtree_control;
2990 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2991 dsct->old_dom_cgrp = dsct->dom_cgrp;
2992 }
2993 }
2994
2995 /**
2996 * cgroup_propagate_control - refresh control masks of a subtree
2997 * @cgrp: root of the target subtree
2998 *
2999 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3000 * ->subtree_control and propagate controller availability through the
3001 * subtree so that descendants don't have unavailable controllers enabled.
3002 */
cgroup_propagate_control(struct cgroup * cgrp)3003 static void cgroup_propagate_control(struct cgroup *cgrp)
3004 {
3005 struct cgroup *dsct;
3006 struct cgroup_subsys_state *d_css;
3007
3008 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3009 dsct->subtree_control &= cgroup_control(dsct);
3010 dsct->subtree_ss_mask =
3011 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3012 cgroup_ss_mask(dsct));
3013 }
3014 }
3015
3016 /**
3017 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3018 * @cgrp: root of the target subtree
3019 *
3020 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3021 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3022 * itself.
3023 */
cgroup_restore_control(struct cgroup * cgrp)3024 static void cgroup_restore_control(struct cgroup *cgrp)
3025 {
3026 struct cgroup *dsct;
3027 struct cgroup_subsys_state *d_css;
3028
3029 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3030 dsct->subtree_control = dsct->old_subtree_control;
3031 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3032 dsct->dom_cgrp = dsct->old_dom_cgrp;
3033 }
3034 }
3035
css_visible(struct cgroup_subsys_state * css)3036 static bool css_visible(struct cgroup_subsys_state *css)
3037 {
3038 struct cgroup_subsys *ss = css->ss;
3039 struct cgroup *cgrp = css->cgroup;
3040
3041 if (cgroup_control(cgrp) & (1 << ss->id))
3042 return true;
3043 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3044 return false;
3045 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3046 }
3047
3048 /**
3049 * cgroup_apply_control_enable - enable or show csses according to control
3050 * @cgrp: root of the target subtree
3051 *
3052 * Walk @cgrp's subtree and create new csses or make the existing ones
3053 * visible. A css is created invisible if it's being implicitly enabled
3054 * through dependency. An invisible css is made visible when the userland
3055 * explicitly enables it.
3056 *
3057 * Returns 0 on success, -errno on failure. On failure, csses which have
3058 * been processed already aren't cleaned up. The caller is responsible for
3059 * cleaning up with cgroup_apply_control_disable().
3060 */
cgroup_apply_control_enable(struct cgroup * cgrp)3061 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3062 {
3063 struct cgroup *dsct;
3064 struct cgroup_subsys_state *d_css;
3065 struct cgroup_subsys *ss;
3066 int ssid, ret;
3067
3068 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3069 for_each_subsys(ss, ssid) {
3070 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3071
3072 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3073 continue;
3074
3075 if (!css) {
3076 css = css_create(dsct, ss);
3077 if (IS_ERR(css))
3078 return PTR_ERR(css);
3079 }
3080
3081 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3082
3083 if (css_visible(css)) {
3084 ret = css_populate_dir(css);
3085 if (ret)
3086 return ret;
3087 }
3088 }
3089 }
3090
3091 return 0;
3092 }
3093
3094 /**
3095 * cgroup_apply_control_disable - kill or hide csses according to control
3096 * @cgrp: root of the target subtree
3097 *
3098 * Walk @cgrp's subtree and kill and hide csses so that they match
3099 * cgroup_ss_mask() and cgroup_visible_mask().
3100 *
3101 * A css is hidden when the userland requests it to be disabled while other
3102 * subsystems are still depending on it. The css must not actively control
3103 * resources and be in the vanilla state if it's made visible again later.
3104 * Controllers which may be depended upon should provide ->css_reset() for
3105 * this purpose.
3106 */
cgroup_apply_control_disable(struct cgroup * cgrp)3107 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3108 {
3109 struct cgroup *dsct;
3110 struct cgroup_subsys_state *d_css;
3111 struct cgroup_subsys *ss;
3112 int ssid;
3113
3114 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3115 for_each_subsys(ss, ssid) {
3116 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3117
3118 if (!css)
3119 continue;
3120
3121 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3122
3123 if (css->parent &&
3124 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3125 kill_css(css);
3126 } else if (!css_visible(css)) {
3127 css_clear_dir(css);
3128 if (ss->css_reset)
3129 ss->css_reset(css);
3130 }
3131 }
3132 }
3133 }
3134
3135 /**
3136 * cgroup_apply_control - apply control mask updates to the subtree
3137 * @cgrp: root of the target subtree
3138 *
3139 * subsystems can be enabled and disabled in a subtree using the following
3140 * steps.
3141 *
3142 * 1. Call cgroup_save_control() to stash the current state.
3143 * 2. Update ->subtree_control masks in the subtree as desired.
3144 * 3. Call cgroup_apply_control() to apply the changes.
3145 * 4. Optionally perform other related operations.
3146 * 5. Call cgroup_finalize_control() to finish up.
3147 *
3148 * This function implements step 3 and propagates the mask changes
3149 * throughout @cgrp's subtree, updates csses accordingly and perform
3150 * process migrations.
3151 */
cgroup_apply_control(struct cgroup * cgrp)3152 static int cgroup_apply_control(struct cgroup *cgrp)
3153 {
3154 int ret;
3155
3156 cgroup_propagate_control(cgrp);
3157
3158 ret = cgroup_apply_control_enable(cgrp);
3159 if (ret)
3160 return ret;
3161
3162 /*
3163 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3164 * making the following cgroup_update_dfl_csses() properly update
3165 * css associations of all tasks in the subtree.
3166 */
3167 ret = cgroup_update_dfl_csses(cgrp);
3168 if (ret)
3169 return ret;
3170
3171 return 0;
3172 }
3173
3174 /**
3175 * cgroup_finalize_control - finalize control mask update
3176 * @cgrp: root of the target subtree
3177 * @ret: the result of the update
3178 *
3179 * Finalize control mask update. See cgroup_apply_control() for more info.
3180 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3181 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3182 {
3183 if (ret) {
3184 cgroup_restore_control(cgrp);
3185 cgroup_propagate_control(cgrp);
3186 }
3187
3188 cgroup_apply_control_disable(cgrp);
3189 }
3190
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3191 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3192 {
3193 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3194
3195 /* if nothing is getting enabled, nothing to worry about */
3196 if (!enable)
3197 return 0;
3198
3199 /* can @cgrp host any resources? */
3200 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3201 return -EOPNOTSUPP;
3202
3203 /* mixables don't care */
3204 if (cgroup_is_mixable(cgrp))
3205 return 0;
3206
3207 if (domain_enable) {
3208 /* can't enable domain controllers inside a thread subtree */
3209 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3210 return -EOPNOTSUPP;
3211 } else {
3212 /*
3213 * Threaded controllers can handle internal competitions
3214 * and are always allowed inside a (prospective) thread
3215 * subtree.
3216 */
3217 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3218 return 0;
3219 }
3220
3221 /*
3222 * Controllers can't be enabled for a cgroup with tasks to avoid
3223 * child cgroups competing against tasks.
3224 */
3225 if (cgroup_has_tasks(cgrp))
3226 return -EBUSY;
3227
3228 return 0;
3229 }
3230
3231 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3232 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3233 char *buf, size_t nbytes,
3234 loff_t off)
3235 {
3236 u16 enable = 0, disable = 0;
3237 struct cgroup *cgrp, *child;
3238 struct cgroup_subsys *ss;
3239 char *tok;
3240 int ssid, ret;
3241
3242 /*
3243 * Parse input - space separated list of subsystem names prefixed
3244 * with either + or -.
3245 */
3246 buf = strstrip(buf);
3247 while ((tok = strsep(&buf, " "))) {
3248 if (tok[0] == '\0')
3249 continue;
3250 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3251 if (!cgroup_ssid_enabled(ssid) ||
3252 strcmp(tok + 1, ss->name))
3253 continue;
3254
3255 if (*tok == '+') {
3256 enable |= 1 << ssid;
3257 disable &= ~(1 << ssid);
3258 } else if (*tok == '-') {
3259 disable |= 1 << ssid;
3260 enable &= ~(1 << ssid);
3261 } else {
3262 return -EINVAL;
3263 }
3264 break;
3265 } while_each_subsys_mask();
3266 if (ssid == CGROUP_SUBSYS_COUNT)
3267 return -EINVAL;
3268 }
3269
3270 cgrp = cgroup_kn_lock_live(of->kn, true);
3271 if (!cgrp)
3272 return -ENODEV;
3273
3274 for_each_subsys(ss, ssid) {
3275 if (enable & (1 << ssid)) {
3276 if (cgrp->subtree_control & (1 << ssid)) {
3277 enable &= ~(1 << ssid);
3278 continue;
3279 }
3280
3281 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3282 ret = -ENOENT;
3283 goto out_unlock;
3284 }
3285 } else if (disable & (1 << ssid)) {
3286 if (!(cgrp->subtree_control & (1 << ssid))) {
3287 disable &= ~(1 << ssid);
3288 continue;
3289 }
3290
3291 /* a child has it enabled? */
3292 cgroup_for_each_live_child(child, cgrp) {
3293 if (child->subtree_control & (1 << ssid)) {
3294 ret = -EBUSY;
3295 goto out_unlock;
3296 }
3297 }
3298 }
3299 }
3300
3301 if (!enable && !disable) {
3302 ret = 0;
3303 goto out_unlock;
3304 }
3305
3306 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3307 if (ret)
3308 goto out_unlock;
3309
3310 /* save and update control masks and prepare csses */
3311 cgroup_save_control(cgrp);
3312
3313 cgrp->subtree_control |= enable;
3314 cgrp->subtree_control &= ~disable;
3315
3316 ret = cgroup_apply_control(cgrp);
3317 cgroup_finalize_control(cgrp, ret);
3318 if (ret)
3319 goto out_unlock;
3320
3321 kernfs_activate(cgrp->kn);
3322 out_unlock:
3323 cgroup_kn_unlock(of->kn);
3324 return ret ?: nbytes;
3325 }
3326
3327 /**
3328 * cgroup_enable_threaded - make @cgrp threaded
3329 * @cgrp: the target cgroup
3330 *
3331 * Called when "threaded" is written to the cgroup.type interface file and
3332 * tries to make @cgrp threaded and join the parent's resource domain.
3333 * This function is never called on the root cgroup as cgroup.type doesn't
3334 * exist on it.
3335 */
cgroup_enable_threaded(struct cgroup * cgrp)3336 static int cgroup_enable_threaded(struct cgroup *cgrp)
3337 {
3338 struct cgroup *parent = cgroup_parent(cgrp);
3339 struct cgroup *dom_cgrp = parent->dom_cgrp;
3340 struct cgroup *dsct;
3341 struct cgroup_subsys_state *d_css;
3342 int ret;
3343
3344 lockdep_assert_held(&cgroup_mutex);
3345
3346 /* noop if already threaded */
3347 if (cgroup_is_threaded(cgrp))
3348 return 0;
3349
3350 /*
3351 * If @cgroup is populated or has domain controllers enabled, it
3352 * can't be switched. While the below cgroup_can_be_thread_root()
3353 * test can catch the same conditions, that's only when @parent is
3354 * not mixable, so let's check it explicitly.
3355 */
3356 if (cgroup_is_populated(cgrp) ||
3357 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3358 return -EOPNOTSUPP;
3359
3360 /* we're joining the parent's domain, ensure its validity */
3361 if (!cgroup_is_valid_domain(dom_cgrp) ||
3362 !cgroup_can_be_thread_root(dom_cgrp))
3363 return -EOPNOTSUPP;
3364
3365 /*
3366 * The following shouldn't cause actual migrations and should
3367 * always succeed.
3368 */
3369 cgroup_save_control(cgrp);
3370
3371 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3372 if (dsct == cgrp || cgroup_is_threaded(dsct))
3373 dsct->dom_cgrp = dom_cgrp;
3374
3375 ret = cgroup_apply_control(cgrp);
3376 if (!ret)
3377 parent->nr_threaded_children++;
3378
3379 cgroup_finalize_control(cgrp, ret);
3380 return ret;
3381 }
3382
cgroup_type_show(struct seq_file * seq,void * v)3383 static int cgroup_type_show(struct seq_file *seq, void *v)
3384 {
3385 struct cgroup *cgrp = seq_css(seq)->cgroup;
3386
3387 if (cgroup_is_threaded(cgrp))
3388 seq_puts(seq, "threaded\n");
3389 else if (!cgroup_is_valid_domain(cgrp))
3390 seq_puts(seq, "domain invalid\n");
3391 else if (cgroup_is_thread_root(cgrp))
3392 seq_puts(seq, "domain threaded\n");
3393 else
3394 seq_puts(seq, "domain\n");
3395
3396 return 0;
3397 }
3398
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3399 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3400 size_t nbytes, loff_t off)
3401 {
3402 struct cgroup *cgrp;
3403 int ret;
3404
3405 /* only switching to threaded mode is supported */
3406 if (strcmp(strstrip(buf), "threaded"))
3407 return -EINVAL;
3408
3409 /* drain dying csses before we re-apply (threaded) subtree control */
3410 cgrp = cgroup_kn_lock_live(of->kn, true);
3411 if (!cgrp)
3412 return -ENOENT;
3413
3414 /* threaded can only be enabled */
3415 ret = cgroup_enable_threaded(cgrp);
3416
3417 cgroup_kn_unlock(of->kn);
3418 return ret ?: nbytes;
3419 }
3420
cgroup_max_descendants_show(struct seq_file * seq,void * v)3421 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3422 {
3423 struct cgroup *cgrp = seq_css(seq)->cgroup;
3424 int descendants = READ_ONCE(cgrp->max_descendants);
3425
3426 if (descendants == INT_MAX)
3427 seq_puts(seq, "max\n");
3428 else
3429 seq_printf(seq, "%d\n", descendants);
3430
3431 return 0;
3432 }
3433
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3434 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3435 char *buf, size_t nbytes, loff_t off)
3436 {
3437 struct cgroup *cgrp;
3438 int descendants;
3439 ssize_t ret;
3440
3441 buf = strstrip(buf);
3442 if (!strcmp(buf, "max")) {
3443 descendants = INT_MAX;
3444 } else {
3445 ret = kstrtoint(buf, 0, &descendants);
3446 if (ret)
3447 return ret;
3448 }
3449
3450 if (descendants < 0)
3451 return -ERANGE;
3452
3453 cgrp = cgroup_kn_lock_live(of->kn, false);
3454 if (!cgrp)
3455 return -ENOENT;
3456
3457 cgrp->max_descendants = descendants;
3458
3459 cgroup_kn_unlock(of->kn);
3460
3461 return nbytes;
3462 }
3463
cgroup_max_depth_show(struct seq_file * seq,void * v)3464 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3465 {
3466 struct cgroup *cgrp = seq_css(seq)->cgroup;
3467 int depth = READ_ONCE(cgrp->max_depth);
3468
3469 if (depth == INT_MAX)
3470 seq_puts(seq, "max\n");
3471 else
3472 seq_printf(seq, "%d\n", depth);
3473
3474 return 0;
3475 }
3476
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3477 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3478 char *buf, size_t nbytes, loff_t off)
3479 {
3480 struct cgroup *cgrp;
3481 ssize_t ret;
3482 int depth;
3483
3484 buf = strstrip(buf);
3485 if (!strcmp(buf, "max")) {
3486 depth = INT_MAX;
3487 } else {
3488 ret = kstrtoint(buf, 0, &depth);
3489 if (ret)
3490 return ret;
3491 }
3492
3493 if (depth < 0)
3494 return -ERANGE;
3495
3496 cgrp = cgroup_kn_lock_live(of->kn, false);
3497 if (!cgrp)
3498 return -ENOENT;
3499
3500 cgrp->max_depth = depth;
3501
3502 cgroup_kn_unlock(of->kn);
3503
3504 return nbytes;
3505 }
3506
cgroup_events_show(struct seq_file * seq,void * v)3507 static int cgroup_events_show(struct seq_file *seq, void *v)
3508 {
3509 struct cgroup *cgrp = seq_css(seq)->cgroup;
3510
3511 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3512 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3513
3514 return 0;
3515 }
3516
cgroup_stat_show(struct seq_file * seq,void * v)3517 static int cgroup_stat_show(struct seq_file *seq, void *v)
3518 {
3519 struct cgroup *cgroup = seq_css(seq)->cgroup;
3520
3521 seq_printf(seq, "nr_descendants %d\n",
3522 cgroup->nr_descendants);
3523 seq_printf(seq, "nr_dying_descendants %d\n",
3524 cgroup->nr_dying_descendants);
3525
3526 return 0;
3527 }
3528
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3529 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3530 struct cgroup *cgrp, int ssid)
3531 {
3532 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3533 struct cgroup_subsys_state *css;
3534 int ret;
3535
3536 if (!ss->css_extra_stat_show)
3537 return 0;
3538
3539 css = cgroup_tryget_css(cgrp, ss);
3540 if (!css)
3541 return 0;
3542
3543 ret = ss->css_extra_stat_show(seq, css);
3544 css_put(css);
3545 return ret;
3546 }
3547
cpu_stat_show(struct seq_file * seq,void * v)3548 static int cpu_stat_show(struct seq_file *seq, void *v)
3549 {
3550 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3551 int ret = 0;
3552
3553 cgroup_base_stat_cputime_show(seq);
3554 #ifdef CONFIG_CGROUP_SCHED
3555 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3556 #endif
3557 return ret;
3558 }
3559
3560 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3561 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3562 {
3563 struct cgroup *cgrp = seq_css(seq)->cgroup;
3564 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3565
3566 return psi_show(seq, psi, PSI_IO);
3567 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3568 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3569 {
3570 struct cgroup *cgrp = seq_css(seq)->cgroup;
3571 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3572
3573 return psi_show(seq, psi, PSI_MEM);
3574 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3575 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3576 {
3577 struct cgroup *cgrp = seq_css(seq)->cgroup;
3578 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3579
3580 return psi_show(seq, psi, PSI_CPU);
3581 }
3582
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3583 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3584 size_t nbytes, enum psi_res res)
3585 {
3586 struct cgroup_file_ctx *ctx = of->priv;
3587 struct psi_trigger *new;
3588 struct cgroup *cgrp;
3589 struct psi_group *psi;
3590
3591 cgrp = cgroup_kn_lock_live(of->kn, false);
3592 if (!cgrp)
3593 return -ENODEV;
3594
3595 cgroup_get(cgrp);
3596 cgroup_kn_unlock(of->kn);
3597
3598 /* Allow only one trigger per file descriptor */
3599 if (of->priv) {
3600 cgroup_put(cgrp);
3601 return -EBUSY;
3602 }
3603
3604 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3605 new = psi_trigger_create(psi, buf, nbytes, res);
3606 if (IS_ERR(new)) {
3607 cgroup_put(cgrp);
3608 return PTR_ERR(new);
3609 }
3610
3611 smp_store_release(&ctx->psi.trigger, new);
3612 cgroup_put(cgrp);
3613
3614 return nbytes;
3615 }
3616
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3617 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3618 char *buf, size_t nbytes,
3619 loff_t off)
3620 {
3621 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3622 }
3623
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3624 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3625 char *buf, size_t nbytes,
3626 loff_t off)
3627 {
3628 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3629 }
3630
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3631 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3632 char *buf, size_t nbytes,
3633 loff_t off)
3634 {
3635 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3636 }
3637
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3638 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3639 poll_table *pt)
3640 {
3641 struct cgroup_file_ctx *ctx = of->priv;
3642
3643 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3644 }
3645
cgroup_pressure_release(struct kernfs_open_file * of)3646 static void cgroup_pressure_release(struct kernfs_open_file *of)
3647 {
3648 struct cgroup_file_ctx *ctx = of->priv;
3649
3650 psi_trigger_destroy(ctx->psi.trigger);
3651 }
3652 #endif /* CONFIG_PSI */
3653
cgroup_freeze_show(struct seq_file * seq,void * v)3654 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3655 {
3656 struct cgroup *cgrp = seq_css(seq)->cgroup;
3657
3658 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3659
3660 return 0;
3661 }
3662
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3663 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3664 char *buf, size_t nbytes, loff_t off)
3665 {
3666 struct cgroup *cgrp;
3667 ssize_t ret;
3668 int freeze;
3669
3670 ret = kstrtoint(strstrip(buf), 0, &freeze);
3671 if (ret)
3672 return ret;
3673
3674 if (freeze < 0 || freeze > 1)
3675 return -ERANGE;
3676
3677 cgrp = cgroup_kn_lock_live(of->kn, false);
3678 if (!cgrp)
3679 return -ENOENT;
3680
3681 cgroup_freeze(cgrp, freeze);
3682
3683 cgroup_kn_unlock(of->kn);
3684
3685 return nbytes;
3686 }
3687
cgroup_file_open(struct kernfs_open_file * of)3688 static int cgroup_file_open(struct kernfs_open_file *of)
3689 {
3690 struct cftype *cft = of_cft(of);
3691 struct cgroup_file_ctx *ctx;
3692 int ret;
3693
3694 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3695 if (!ctx)
3696 return -ENOMEM;
3697
3698 ctx->ns = current->nsproxy->cgroup_ns;
3699 get_cgroup_ns(ctx->ns);
3700 of->priv = ctx;
3701
3702 if (!cft->open)
3703 return 0;
3704
3705 ret = cft->open(of);
3706 if (ret) {
3707 put_cgroup_ns(ctx->ns);
3708 kfree(ctx);
3709 }
3710 return ret;
3711 }
3712
cgroup_file_release(struct kernfs_open_file * of)3713 static void cgroup_file_release(struct kernfs_open_file *of)
3714 {
3715 struct cftype *cft = of_cft(of);
3716 struct cgroup_file_ctx *ctx = of->priv;
3717
3718 if (cft->release)
3719 cft->release(of);
3720 put_cgroup_ns(ctx->ns);
3721 kfree(ctx);
3722 }
3723
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3724 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3725 size_t nbytes, loff_t off)
3726 {
3727 struct cgroup_file_ctx *ctx = of->priv;
3728 struct cgroup *cgrp = of->kn->parent->priv;
3729 struct cftype *cft = of_cft(of);
3730 struct cgroup_subsys_state *css;
3731 int ret;
3732
3733 if (!nbytes)
3734 return 0;
3735
3736 /*
3737 * If namespaces are delegation boundaries, disallow writes to
3738 * files in an non-init namespace root from inside the namespace
3739 * except for the files explicitly marked delegatable -
3740 * cgroup.procs and cgroup.subtree_control.
3741 */
3742 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3743 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3744 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3745 return -EPERM;
3746
3747 if (cft->write)
3748 return cft->write(of, buf, nbytes, off);
3749
3750 /*
3751 * kernfs guarantees that a file isn't deleted with operations in
3752 * flight, which means that the matching css is and stays alive and
3753 * doesn't need to be pinned. The RCU locking is not necessary
3754 * either. It's just for the convenience of using cgroup_css().
3755 */
3756 rcu_read_lock();
3757 css = cgroup_css(cgrp, cft->ss);
3758 rcu_read_unlock();
3759
3760 if (cft->write_u64) {
3761 unsigned long long v;
3762 ret = kstrtoull(buf, 0, &v);
3763 if (!ret)
3764 ret = cft->write_u64(css, cft, v);
3765 } else if (cft->write_s64) {
3766 long long v;
3767 ret = kstrtoll(buf, 0, &v);
3768 if (!ret)
3769 ret = cft->write_s64(css, cft, v);
3770 } else {
3771 ret = -EINVAL;
3772 }
3773
3774 return ret ?: nbytes;
3775 }
3776
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3777 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3778 {
3779 struct cftype *cft = of_cft(of);
3780
3781 if (cft->poll)
3782 return cft->poll(of, pt);
3783
3784 return kernfs_generic_poll(of, pt);
3785 }
3786
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3787 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3788 {
3789 return seq_cft(seq)->seq_start(seq, ppos);
3790 }
3791
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3792 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3793 {
3794 return seq_cft(seq)->seq_next(seq, v, ppos);
3795 }
3796
cgroup_seqfile_stop(struct seq_file * seq,void * v)3797 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3798 {
3799 if (seq_cft(seq)->seq_stop)
3800 seq_cft(seq)->seq_stop(seq, v);
3801 }
3802
cgroup_seqfile_show(struct seq_file * m,void * arg)3803 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3804 {
3805 struct cftype *cft = seq_cft(m);
3806 struct cgroup_subsys_state *css = seq_css(m);
3807
3808 if (cft->seq_show)
3809 return cft->seq_show(m, arg);
3810
3811 if (cft->read_u64)
3812 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3813 else if (cft->read_s64)
3814 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3815 else
3816 return -EINVAL;
3817 return 0;
3818 }
3819
3820 static struct kernfs_ops cgroup_kf_single_ops = {
3821 .atomic_write_len = PAGE_SIZE,
3822 .open = cgroup_file_open,
3823 .release = cgroup_file_release,
3824 .write = cgroup_file_write,
3825 .poll = cgroup_file_poll,
3826 .seq_show = cgroup_seqfile_show,
3827 };
3828
3829 static struct kernfs_ops cgroup_kf_ops = {
3830 .atomic_write_len = PAGE_SIZE,
3831 .open = cgroup_file_open,
3832 .release = cgroup_file_release,
3833 .write = cgroup_file_write,
3834 .poll = cgroup_file_poll,
3835 .seq_start = cgroup_seqfile_start,
3836 .seq_next = cgroup_seqfile_next,
3837 .seq_stop = cgroup_seqfile_stop,
3838 .seq_show = cgroup_seqfile_show,
3839 };
3840
3841 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3842 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3843 {
3844 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3845 .ia_uid = current_fsuid(),
3846 .ia_gid = current_fsgid(), };
3847
3848 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3849 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3850 return 0;
3851
3852 return kernfs_setattr(kn, &iattr);
3853 }
3854
cgroup_file_notify_timer(struct timer_list * timer)3855 static void cgroup_file_notify_timer(struct timer_list *timer)
3856 {
3857 cgroup_file_notify(container_of(timer, struct cgroup_file,
3858 notify_timer));
3859 }
3860
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3861 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3862 struct cftype *cft)
3863 {
3864 char name[CGROUP_FILE_NAME_MAX];
3865 struct kernfs_node *kn;
3866 struct lock_class_key *key = NULL;
3867 int ret;
3868
3869 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3870 key = &cft->lockdep_key;
3871 #endif
3872 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3873 cgroup_file_mode(cft),
3874 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3875 0, cft->kf_ops, cft,
3876 NULL, key);
3877 if (IS_ERR(kn))
3878 return PTR_ERR(kn);
3879
3880 ret = cgroup_kn_set_ugid(kn);
3881 if (ret) {
3882 kernfs_remove(kn);
3883 return ret;
3884 }
3885
3886 if (cft->file_offset) {
3887 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3888
3889 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3890
3891 spin_lock_irq(&cgroup_file_kn_lock);
3892 cfile->kn = kn;
3893 spin_unlock_irq(&cgroup_file_kn_lock);
3894 }
3895
3896 return 0;
3897 }
3898
3899 /**
3900 * cgroup_addrm_files - add or remove files to a cgroup directory
3901 * @css: the target css
3902 * @cgrp: the target cgroup (usually css->cgroup)
3903 * @cfts: array of cftypes to be added
3904 * @is_add: whether to add or remove
3905 *
3906 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3907 * For removals, this function never fails.
3908 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3909 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3910 struct cgroup *cgrp, struct cftype cfts[],
3911 bool is_add)
3912 {
3913 struct cftype *cft, *cft_end = NULL;
3914 int ret = 0;
3915
3916 lockdep_assert_held(&cgroup_mutex);
3917
3918 restart:
3919 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3920 /* does cft->flags tell us to skip this file on @cgrp? */
3921 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3922 continue;
3923 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3924 continue;
3925 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3926 continue;
3927 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3928 continue;
3929 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3930 continue;
3931 if (is_add) {
3932 ret = cgroup_add_file(css, cgrp, cft);
3933 if (ret) {
3934 pr_warn("%s: failed to add %s, err=%d\n",
3935 __func__, cft->name, ret);
3936 cft_end = cft;
3937 is_add = false;
3938 goto restart;
3939 }
3940 } else {
3941 cgroup_rm_file(cgrp, cft);
3942 }
3943 }
3944 return ret;
3945 }
3946
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3947 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3948 {
3949 struct cgroup_subsys *ss = cfts[0].ss;
3950 struct cgroup *root = &ss->root->cgrp;
3951 struct cgroup_subsys_state *css;
3952 int ret = 0;
3953
3954 lockdep_assert_held(&cgroup_mutex);
3955
3956 /* add/rm files for all cgroups created before */
3957 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3958 struct cgroup *cgrp = css->cgroup;
3959
3960 if (!(css->flags & CSS_VISIBLE))
3961 continue;
3962
3963 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3964 if (ret)
3965 break;
3966 }
3967
3968 if (is_add && !ret)
3969 kernfs_activate(root->kn);
3970 return ret;
3971 }
3972
cgroup_exit_cftypes(struct cftype * cfts)3973 static void cgroup_exit_cftypes(struct cftype *cfts)
3974 {
3975 struct cftype *cft;
3976
3977 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3978 /* free copy for custom atomic_write_len, see init_cftypes() */
3979 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3980 kfree(cft->kf_ops);
3981 cft->kf_ops = NULL;
3982 cft->ss = NULL;
3983
3984 /* revert flags set by cgroup core while adding @cfts */
3985 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3986 }
3987 }
3988
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3989 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3990 {
3991 struct cftype *cft;
3992
3993 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3994 struct kernfs_ops *kf_ops;
3995
3996 WARN_ON(cft->ss || cft->kf_ops);
3997
3998 if (cft->seq_start)
3999 kf_ops = &cgroup_kf_ops;
4000 else
4001 kf_ops = &cgroup_kf_single_ops;
4002
4003 /*
4004 * Ugh... if @cft wants a custom max_write_len, we need to
4005 * make a copy of kf_ops to set its atomic_write_len.
4006 */
4007 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4008 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4009 if (!kf_ops) {
4010 cgroup_exit_cftypes(cfts);
4011 return -ENOMEM;
4012 }
4013 kf_ops->atomic_write_len = cft->max_write_len;
4014 }
4015
4016 cft->kf_ops = kf_ops;
4017 cft->ss = ss;
4018 }
4019
4020 return 0;
4021 }
4022
cgroup_rm_cftypes_locked(struct cftype * cfts)4023 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4024 {
4025 lockdep_assert_held(&cgroup_mutex);
4026
4027 if (!cfts || !cfts[0].ss)
4028 return -ENOENT;
4029
4030 list_del(&cfts->node);
4031 cgroup_apply_cftypes(cfts, false);
4032 cgroup_exit_cftypes(cfts);
4033 return 0;
4034 }
4035
4036 /**
4037 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4038 * @cfts: zero-length name terminated array of cftypes
4039 *
4040 * Unregister @cfts. Files described by @cfts are removed from all
4041 * existing cgroups and all future cgroups won't have them either. This
4042 * function can be called anytime whether @cfts' subsys is attached or not.
4043 *
4044 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4045 * registered.
4046 */
cgroup_rm_cftypes(struct cftype * cfts)4047 int cgroup_rm_cftypes(struct cftype *cfts)
4048 {
4049 int ret;
4050
4051 mutex_lock(&cgroup_mutex);
4052 ret = cgroup_rm_cftypes_locked(cfts);
4053 mutex_unlock(&cgroup_mutex);
4054 return ret;
4055 }
4056
4057 /**
4058 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4059 * @ss: target cgroup subsystem
4060 * @cfts: zero-length name terminated array of cftypes
4061 *
4062 * Register @cfts to @ss. Files described by @cfts are created for all
4063 * existing cgroups to which @ss is attached and all future cgroups will
4064 * have them too. This function can be called anytime whether @ss is
4065 * attached or not.
4066 *
4067 * Returns 0 on successful registration, -errno on failure. Note that this
4068 * function currently returns 0 as long as @cfts registration is successful
4069 * even if some file creation attempts on existing cgroups fail.
4070 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4071 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4072 {
4073 int ret;
4074
4075 if (!cgroup_ssid_enabled(ss->id))
4076 return 0;
4077
4078 if (!cfts || cfts[0].name[0] == '\0')
4079 return 0;
4080
4081 ret = cgroup_init_cftypes(ss, cfts);
4082 if (ret)
4083 return ret;
4084
4085 mutex_lock(&cgroup_mutex);
4086
4087 list_add_tail(&cfts->node, &ss->cfts);
4088 ret = cgroup_apply_cftypes(cfts, true);
4089 if (ret)
4090 cgroup_rm_cftypes_locked(cfts);
4091
4092 mutex_unlock(&cgroup_mutex);
4093 return ret;
4094 }
4095
4096 /**
4097 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4098 * @ss: target cgroup subsystem
4099 * @cfts: zero-length name terminated array of cftypes
4100 *
4101 * Similar to cgroup_add_cftypes() but the added files are only used for
4102 * the default hierarchy.
4103 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4104 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4105 {
4106 struct cftype *cft;
4107
4108 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4109 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4110 return cgroup_add_cftypes(ss, cfts);
4111 }
4112
4113 /**
4114 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4115 * @ss: target cgroup subsystem
4116 * @cfts: zero-length name terminated array of cftypes
4117 *
4118 * Similar to cgroup_add_cftypes() but the added files are only used for
4119 * the legacy hierarchies.
4120 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4121 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4122 {
4123 struct cftype *cft;
4124
4125 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4126 cft->flags |= __CFTYPE_NOT_ON_DFL;
4127 return cgroup_add_cftypes(ss, cfts);
4128 }
4129
4130 /**
4131 * cgroup_file_notify - generate a file modified event for a cgroup_file
4132 * @cfile: target cgroup_file
4133 *
4134 * @cfile must have been obtained by setting cftype->file_offset.
4135 */
cgroup_file_notify(struct cgroup_file * cfile)4136 void cgroup_file_notify(struct cgroup_file *cfile)
4137 {
4138 unsigned long flags;
4139
4140 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4141 if (cfile->kn) {
4142 unsigned long last = cfile->notified_at;
4143 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4144
4145 if (time_in_range(jiffies, last, next)) {
4146 timer_reduce(&cfile->notify_timer, next);
4147 } else {
4148 kernfs_notify(cfile->kn);
4149 cfile->notified_at = jiffies;
4150 }
4151 }
4152 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4153 }
4154
4155 /**
4156 * css_next_child - find the next child of a given css
4157 * @pos: the current position (%NULL to initiate traversal)
4158 * @parent: css whose children to walk
4159 *
4160 * This function returns the next child of @parent and should be called
4161 * under either cgroup_mutex or RCU read lock. The only requirement is
4162 * that @parent and @pos are accessible. The next sibling is guaranteed to
4163 * be returned regardless of their states.
4164 *
4165 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4166 * css which finished ->css_online() is guaranteed to be visible in the
4167 * future iterations and will stay visible until the last reference is put.
4168 * A css which hasn't finished ->css_online() or already finished
4169 * ->css_offline() may show up during traversal. It's each subsystem's
4170 * responsibility to synchronize against on/offlining.
4171 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4172 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4173 struct cgroup_subsys_state *parent)
4174 {
4175 struct cgroup_subsys_state *next;
4176
4177 cgroup_assert_mutex_or_rcu_locked();
4178
4179 /*
4180 * @pos could already have been unlinked from the sibling list.
4181 * Once a cgroup is removed, its ->sibling.next is no longer
4182 * updated when its next sibling changes. CSS_RELEASED is set when
4183 * @pos is taken off list, at which time its next pointer is valid,
4184 * and, as releases are serialized, the one pointed to by the next
4185 * pointer is guaranteed to not have started release yet. This
4186 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4187 * critical section, the one pointed to by its next pointer is
4188 * guaranteed to not have finished its RCU grace period even if we
4189 * have dropped rcu_read_lock() inbetween iterations.
4190 *
4191 * If @pos has CSS_RELEASED set, its next pointer can't be
4192 * dereferenced; however, as each css is given a monotonically
4193 * increasing unique serial number and always appended to the
4194 * sibling list, the next one can be found by walking the parent's
4195 * children until the first css with higher serial number than
4196 * @pos's. While this path can be slower, it happens iff iteration
4197 * races against release and the race window is very small.
4198 */
4199 if (!pos) {
4200 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4201 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4202 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4203 } else {
4204 list_for_each_entry_rcu(next, &parent->children, sibling,
4205 lockdep_is_held(&cgroup_mutex))
4206 if (next->serial_nr > pos->serial_nr)
4207 break;
4208 }
4209
4210 /*
4211 * @next, if not pointing to the head, can be dereferenced and is
4212 * the next sibling.
4213 */
4214 if (&next->sibling != &parent->children)
4215 return next;
4216 return NULL;
4217 }
4218
4219 /**
4220 * css_next_descendant_pre - find the next descendant for pre-order walk
4221 * @pos: the current position (%NULL to initiate traversal)
4222 * @root: css whose descendants to walk
4223 *
4224 * To be used by css_for_each_descendant_pre(). Find the next descendant
4225 * to visit for pre-order traversal of @root's descendants. @root is
4226 * included in the iteration and the first node to be visited.
4227 *
4228 * While this function requires cgroup_mutex or RCU read locking, it
4229 * doesn't require the whole traversal to be contained in a single critical
4230 * section. This function will return the correct next descendant as long
4231 * as both @pos and @root are accessible and @pos is a descendant of @root.
4232 *
4233 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4234 * css which finished ->css_online() is guaranteed to be visible in the
4235 * future iterations and will stay visible until the last reference is put.
4236 * A css which hasn't finished ->css_online() or already finished
4237 * ->css_offline() may show up during traversal. It's each subsystem's
4238 * responsibility to synchronize against on/offlining.
4239 */
4240 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4241 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4242 struct cgroup_subsys_state *root)
4243 {
4244 struct cgroup_subsys_state *next;
4245
4246 cgroup_assert_mutex_or_rcu_locked();
4247
4248 /* if first iteration, visit @root */
4249 if (!pos)
4250 return root;
4251
4252 /* visit the first child if exists */
4253 next = css_next_child(NULL, pos);
4254 if (next)
4255 return next;
4256
4257 /* no child, visit my or the closest ancestor's next sibling */
4258 while (pos != root) {
4259 next = css_next_child(pos, pos->parent);
4260 if (next)
4261 return next;
4262 pos = pos->parent;
4263 }
4264
4265 return NULL;
4266 }
4267 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4268
4269 /**
4270 * css_rightmost_descendant - return the rightmost descendant of a css
4271 * @pos: css of interest
4272 *
4273 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4274 * is returned. This can be used during pre-order traversal to skip
4275 * subtree of @pos.
4276 *
4277 * While this function requires cgroup_mutex or RCU read locking, it
4278 * doesn't require the whole traversal to be contained in a single critical
4279 * section. This function will return the correct rightmost descendant as
4280 * long as @pos is accessible.
4281 */
4282 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4283 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4284 {
4285 struct cgroup_subsys_state *last, *tmp;
4286
4287 cgroup_assert_mutex_or_rcu_locked();
4288
4289 do {
4290 last = pos;
4291 /* ->prev isn't RCU safe, walk ->next till the end */
4292 pos = NULL;
4293 css_for_each_child(tmp, last)
4294 pos = tmp;
4295 } while (pos);
4296
4297 return last;
4298 }
4299
4300 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4301 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4302 {
4303 struct cgroup_subsys_state *last;
4304
4305 do {
4306 last = pos;
4307 pos = css_next_child(NULL, pos);
4308 } while (pos);
4309
4310 return last;
4311 }
4312
4313 /**
4314 * css_next_descendant_post - find the next descendant for post-order walk
4315 * @pos: the current position (%NULL to initiate traversal)
4316 * @root: css whose descendants to walk
4317 *
4318 * To be used by css_for_each_descendant_post(). Find the next descendant
4319 * to visit for post-order traversal of @root's descendants. @root is
4320 * included in the iteration and the last node to be visited.
4321 *
4322 * While this function requires cgroup_mutex or RCU read locking, it
4323 * doesn't require the whole traversal to be contained in a single critical
4324 * section. This function will return the correct next descendant as long
4325 * as both @pos and @cgroup are accessible and @pos is a descendant of
4326 * @cgroup.
4327 *
4328 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4329 * css which finished ->css_online() is guaranteed to be visible in the
4330 * future iterations and will stay visible until the last reference is put.
4331 * A css which hasn't finished ->css_online() or already finished
4332 * ->css_offline() may show up during traversal. It's each subsystem's
4333 * responsibility to synchronize against on/offlining.
4334 */
4335 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4336 css_next_descendant_post(struct cgroup_subsys_state *pos,
4337 struct cgroup_subsys_state *root)
4338 {
4339 struct cgroup_subsys_state *next;
4340
4341 cgroup_assert_mutex_or_rcu_locked();
4342
4343 /* if first iteration, visit leftmost descendant which may be @root */
4344 if (!pos)
4345 return css_leftmost_descendant(root);
4346
4347 /* if we visited @root, we're done */
4348 if (pos == root)
4349 return NULL;
4350
4351 /* if there's an unvisited sibling, visit its leftmost descendant */
4352 next = css_next_child(pos, pos->parent);
4353 if (next)
4354 return css_leftmost_descendant(next);
4355
4356 /* no sibling left, visit parent */
4357 return pos->parent;
4358 }
4359
4360 /**
4361 * css_has_online_children - does a css have online children
4362 * @css: the target css
4363 *
4364 * Returns %true if @css has any online children; otherwise, %false. This
4365 * function can be called from any context but the caller is responsible
4366 * for synchronizing against on/offlining as necessary.
4367 */
css_has_online_children(struct cgroup_subsys_state * css)4368 bool css_has_online_children(struct cgroup_subsys_state *css)
4369 {
4370 struct cgroup_subsys_state *child;
4371 bool ret = false;
4372
4373 rcu_read_lock();
4374 css_for_each_child(child, css) {
4375 if (child->flags & CSS_ONLINE) {
4376 ret = true;
4377 break;
4378 }
4379 }
4380 rcu_read_unlock();
4381 return ret;
4382 }
4383
css_task_iter_next_css_set(struct css_task_iter * it)4384 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4385 {
4386 struct list_head *l;
4387 struct cgrp_cset_link *link;
4388 struct css_set *cset;
4389
4390 lockdep_assert_held(&css_set_lock);
4391
4392 /* find the next threaded cset */
4393 if (it->tcset_pos) {
4394 l = it->tcset_pos->next;
4395
4396 if (l != it->tcset_head) {
4397 it->tcset_pos = l;
4398 return container_of(l, struct css_set,
4399 threaded_csets_node);
4400 }
4401
4402 it->tcset_pos = NULL;
4403 }
4404
4405 /* find the next cset */
4406 l = it->cset_pos;
4407 l = l->next;
4408 if (l == it->cset_head) {
4409 it->cset_pos = NULL;
4410 return NULL;
4411 }
4412
4413 if (it->ss) {
4414 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4415 } else {
4416 link = list_entry(l, struct cgrp_cset_link, cset_link);
4417 cset = link->cset;
4418 }
4419
4420 it->cset_pos = l;
4421
4422 /* initialize threaded css_set walking */
4423 if (it->flags & CSS_TASK_ITER_THREADED) {
4424 if (it->cur_dcset)
4425 put_css_set_locked(it->cur_dcset);
4426 it->cur_dcset = cset;
4427 get_css_set(cset);
4428
4429 it->tcset_head = &cset->threaded_csets;
4430 it->tcset_pos = &cset->threaded_csets;
4431 }
4432
4433 return cset;
4434 }
4435
4436 /**
4437 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4438 * @it: the iterator to advance
4439 *
4440 * Advance @it to the next css_set to walk.
4441 */
css_task_iter_advance_css_set(struct css_task_iter * it)4442 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4443 {
4444 struct css_set *cset;
4445
4446 lockdep_assert_held(&css_set_lock);
4447
4448 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4449 while ((cset = css_task_iter_next_css_set(it))) {
4450 if (!list_empty(&cset->tasks)) {
4451 it->cur_tasks_head = &cset->tasks;
4452 break;
4453 } else if (!list_empty(&cset->mg_tasks)) {
4454 it->cur_tasks_head = &cset->mg_tasks;
4455 break;
4456 } else if (!list_empty(&cset->dying_tasks)) {
4457 it->cur_tasks_head = &cset->dying_tasks;
4458 break;
4459 }
4460 }
4461 if (!cset) {
4462 it->task_pos = NULL;
4463 return;
4464 }
4465 it->task_pos = it->cur_tasks_head->next;
4466
4467 /*
4468 * We don't keep css_sets locked across iteration steps and thus
4469 * need to take steps to ensure that iteration can be resumed after
4470 * the lock is re-acquired. Iteration is performed at two levels -
4471 * css_sets and tasks in them.
4472 *
4473 * Once created, a css_set never leaves its cgroup lists, so a
4474 * pinned css_set is guaranteed to stay put and we can resume
4475 * iteration afterwards.
4476 *
4477 * Tasks may leave @cset across iteration steps. This is resolved
4478 * by registering each iterator with the css_set currently being
4479 * walked and making css_set_move_task() advance iterators whose
4480 * next task is leaving.
4481 */
4482 if (it->cur_cset) {
4483 list_del(&it->iters_node);
4484 put_css_set_locked(it->cur_cset);
4485 }
4486 get_css_set(cset);
4487 it->cur_cset = cset;
4488 list_add(&it->iters_node, &cset->task_iters);
4489 }
4490
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4491 static void css_task_iter_skip(struct css_task_iter *it,
4492 struct task_struct *task)
4493 {
4494 lockdep_assert_held(&css_set_lock);
4495
4496 if (it->task_pos == &task->cg_list) {
4497 it->task_pos = it->task_pos->next;
4498 it->flags |= CSS_TASK_ITER_SKIPPED;
4499 }
4500 }
4501
css_task_iter_advance(struct css_task_iter * it)4502 static void css_task_iter_advance(struct css_task_iter *it)
4503 {
4504 struct task_struct *task;
4505
4506 lockdep_assert_held(&css_set_lock);
4507 repeat:
4508 if (it->task_pos) {
4509 /*
4510 * Advance iterator to find next entry. We go through cset
4511 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4512 * the next cset.
4513 */
4514 if (it->flags & CSS_TASK_ITER_SKIPPED)
4515 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4516 else
4517 it->task_pos = it->task_pos->next;
4518
4519 if (it->task_pos == &it->cur_cset->tasks) {
4520 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4521 it->task_pos = it->cur_tasks_head->next;
4522 }
4523 if (it->task_pos == &it->cur_cset->mg_tasks) {
4524 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4525 it->task_pos = it->cur_tasks_head->next;
4526 }
4527 if (it->task_pos == &it->cur_cset->dying_tasks)
4528 css_task_iter_advance_css_set(it);
4529 } else {
4530 /* called from start, proceed to the first cset */
4531 css_task_iter_advance_css_set(it);
4532 }
4533
4534 if (!it->task_pos)
4535 return;
4536
4537 task = list_entry(it->task_pos, struct task_struct, cg_list);
4538
4539 if (it->flags & CSS_TASK_ITER_PROCS) {
4540 /* if PROCS, skip over tasks which aren't group leaders */
4541 if (!thread_group_leader(task))
4542 goto repeat;
4543
4544 /* and dying leaders w/o live member threads */
4545 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4546 !atomic_read(&task->signal->live))
4547 goto repeat;
4548 } else {
4549 /* skip all dying ones */
4550 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4551 goto repeat;
4552 }
4553 }
4554
4555 /**
4556 * css_task_iter_start - initiate task iteration
4557 * @css: the css to walk tasks of
4558 * @flags: CSS_TASK_ITER_* flags
4559 * @it: the task iterator to use
4560 *
4561 * Initiate iteration through the tasks of @css. The caller can call
4562 * css_task_iter_next() to walk through the tasks until the function
4563 * returns NULL. On completion of iteration, css_task_iter_end() must be
4564 * called.
4565 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4566 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4567 struct css_task_iter *it)
4568 {
4569 memset(it, 0, sizeof(*it));
4570
4571 spin_lock_irq(&css_set_lock);
4572
4573 it->ss = css->ss;
4574 it->flags = flags;
4575
4576 if (it->ss)
4577 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4578 else
4579 it->cset_pos = &css->cgroup->cset_links;
4580
4581 it->cset_head = it->cset_pos;
4582
4583 css_task_iter_advance(it);
4584
4585 spin_unlock_irq(&css_set_lock);
4586 }
4587
4588 /**
4589 * css_task_iter_next - return the next task for the iterator
4590 * @it: the task iterator being iterated
4591 *
4592 * The "next" function for task iteration. @it should have been
4593 * initialized via css_task_iter_start(). Returns NULL when the iteration
4594 * reaches the end.
4595 */
css_task_iter_next(struct css_task_iter * it)4596 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4597 {
4598 if (it->cur_task) {
4599 put_task_struct(it->cur_task);
4600 it->cur_task = NULL;
4601 }
4602
4603 spin_lock_irq(&css_set_lock);
4604
4605 /* @it may be half-advanced by skips, finish advancing */
4606 if (it->flags & CSS_TASK_ITER_SKIPPED)
4607 css_task_iter_advance(it);
4608
4609 if (it->task_pos) {
4610 it->cur_task = list_entry(it->task_pos, struct task_struct,
4611 cg_list);
4612 get_task_struct(it->cur_task);
4613 css_task_iter_advance(it);
4614 }
4615
4616 spin_unlock_irq(&css_set_lock);
4617
4618 return it->cur_task;
4619 }
4620
4621 /**
4622 * css_task_iter_end - finish task iteration
4623 * @it: the task iterator to finish
4624 *
4625 * Finish task iteration started by css_task_iter_start().
4626 */
css_task_iter_end(struct css_task_iter * it)4627 void css_task_iter_end(struct css_task_iter *it)
4628 {
4629 if (it->cur_cset) {
4630 spin_lock_irq(&css_set_lock);
4631 list_del(&it->iters_node);
4632 put_css_set_locked(it->cur_cset);
4633 spin_unlock_irq(&css_set_lock);
4634 }
4635
4636 if (it->cur_dcset)
4637 put_css_set(it->cur_dcset);
4638
4639 if (it->cur_task)
4640 put_task_struct(it->cur_task);
4641 }
4642
cgroup_procs_release(struct kernfs_open_file * of)4643 static void cgroup_procs_release(struct kernfs_open_file *of)
4644 {
4645 struct cgroup_file_ctx *ctx = of->priv;
4646
4647 if (ctx->procs.started)
4648 css_task_iter_end(&ctx->procs.iter);
4649 }
4650
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4651 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4652 {
4653 struct kernfs_open_file *of = s->private;
4654 struct cgroup_file_ctx *ctx = of->priv;
4655
4656 if (pos)
4657 (*pos)++;
4658
4659 return css_task_iter_next(&ctx->procs.iter);
4660 }
4661
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4662 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4663 unsigned int iter_flags)
4664 {
4665 struct kernfs_open_file *of = s->private;
4666 struct cgroup *cgrp = seq_css(s)->cgroup;
4667 struct cgroup_file_ctx *ctx = of->priv;
4668 struct css_task_iter *it = &ctx->procs.iter;
4669
4670 /*
4671 * When a seq_file is seeked, it's always traversed sequentially
4672 * from position 0, so we can simply keep iterating on !0 *pos.
4673 */
4674 if (!ctx->procs.started) {
4675 if (WARN_ON_ONCE((*pos)))
4676 return ERR_PTR(-EINVAL);
4677 css_task_iter_start(&cgrp->self, iter_flags, it);
4678 ctx->procs.started = true;
4679 } else if (!(*pos)) {
4680 css_task_iter_end(it);
4681 css_task_iter_start(&cgrp->self, iter_flags, it);
4682 } else
4683 return it->cur_task;
4684
4685 return cgroup_procs_next(s, NULL, NULL);
4686 }
4687
cgroup_procs_start(struct seq_file * s,loff_t * pos)4688 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4689 {
4690 struct cgroup *cgrp = seq_css(s)->cgroup;
4691
4692 /*
4693 * All processes of a threaded subtree belong to the domain cgroup
4694 * of the subtree. Only threads can be distributed across the
4695 * subtree. Reject reads on cgroup.procs in the subtree proper.
4696 * They're always empty anyway.
4697 */
4698 if (cgroup_is_threaded(cgrp))
4699 return ERR_PTR(-EOPNOTSUPP);
4700
4701 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4702 CSS_TASK_ITER_THREADED);
4703 }
4704
cgroup_procs_show(struct seq_file * s,void * v)4705 static int cgroup_procs_show(struct seq_file *s, void *v)
4706 {
4707 seq_printf(s, "%d\n", task_pid_vnr(v));
4708 return 0;
4709 }
4710
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4711 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4712 {
4713 int ret;
4714 struct inode *inode;
4715
4716 lockdep_assert_held(&cgroup_mutex);
4717
4718 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4719 if (!inode)
4720 return -ENOMEM;
4721
4722 ret = inode_permission(inode, MAY_WRITE);
4723 iput(inode);
4724 return ret;
4725 }
4726
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4727 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4728 struct cgroup *dst_cgrp,
4729 struct super_block *sb,
4730 struct cgroup_namespace *ns)
4731 {
4732 struct cgroup *com_cgrp = src_cgrp;
4733 int ret;
4734
4735 lockdep_assert_held(&cgroup_mutex);
4736
4737 /* find the common ancestor */
4738 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4739 com_cgrp = cgroup_parent(com_cgrp);
4740
4741 /* %current should be authorized to migrate to the common ancestor */
4742 ret = cgroup_may_write(com_cgrp, sb);
4743 if (ret)
4744 return ret;
4745
4746 /*
4747 * If namespaces are delegation boundaries, %current must be able
4748 * to see both source and destination cgroups from its namespace.
4749 */
4750 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4751 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4752 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4753 return -ENOENT;
4754
4755 return 0;
4756 }
4757
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4758 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4759 struct cgroup *dst_cgrp,
4760 struct super_block *sb, bool threadgroup,
4761 struct cgroup_namespace *ns)
4762 {
4763 int ret = 0;
4764
4765 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4766 if (ret)
4767 return ret;
4768
4769 ret = cgroup_migrate_vet_dst(dst_cgrp);
4770 if (ret)
4771 return ret;
4772
4773 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4774 ret = -EOPNOTSUPP;
4775
4776 return ret;
4777 }
4778
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4779 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4780 bool threadgroup)
4781 {
4782 struct cgroup_file_ctx *ctx = of->priv;
4783 struct cgroup *src_cgrp, *dst_cgrp;
4784 struct task_struct *task;
4785 const struct cred *saved_cred;
4786 ssize_t ret;
4787 bool locked;
4788
4789 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4790 if (!dst_cgrp)
4791 return -ENODEV;
4792
4793 task = cgroup_procs_write_start(buf, threadgroup, &locked);
4794 ret = PTR_ERR_OR_ZERO(task);
4795 if (ret)
4796 goto out_unlock;
4797
4798 /* find the source cgroup */
4799 spin_lock_irq(&css_set_lock);
4800 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4801 spin_unlock_irq(&css_set_lock);
4802
4803 /*
4804 * Process and thread migrations follow same delegation rule. Check
4805 * permissions using the credentials from file open to protect against
4806 * inherited fd attacks.
4807 */
4808 saved_cred = override_creds(of->file->f_cred);
4809 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4810 of->file->f_path.dentry->d_sb,
4811 threadgroup, ctx->ns);
4812 revert_creds(saved_cred);
4813 if (ret)
4814 goto out_finish;
4815
4816 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4817
4818 out_finish:
4819 cgroup_procs_write_finish(task, locked);
4820 out_unlock:
4821 cgroup_kn_unlock(of->kn);
4822
4823 return ret;
4824 }
4825
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4826 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4827 char *buf, size_t nbytes, loff_t off)
4828 {
4829 return __cgroup_procs_write(of, buf, true) ?: nbytes;
4830 }
4831
cgroup_threads_start(struct seq_file * s,loff_t * pos)4832 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4833 {
4834 return __cgroup_procs_start(s, pos, 0);
4835 }
4836
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4837 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4838 char *buf, size_t nbytes, loff_t off)
4839 {
4840 return __cgroup_procs_write(of, buf, false) ?: nbytes;
4841 }
4842
4843 /* cgroup core interface files for the default hierarchy */
4844 static struct cftype cgroup_base_files[] = {
4845 {
4846 .name = "cgroup.type",
4847 .flags = CFTYPE_NOT_ON_ROOT,
4848 .seq_show = cgroup_type_show,
4849 .write = cgroup_type_write,
4850 },
4851 {
4852 .name = "cgroup.procs",
4853 .flags = CFTYPE_NS_DELEGATABLE,
4854 .file_offset = offsetof(struct cgroup, procs_file),
4855 .release = cgroup_procs_release,
4856 .seq_start = cgroup_procs_start,
4857 .seq_next = cgroup_procs_next,
4858 .seq_show = cgroup_procs_show,
4859 .write = cgroup_procs_write,
4860 },
4861 {
4862 .name = "cgroup.threads",
4863 .flags = CFTYPE_NS_DELEGATABLE,
4864 .release = cgroup_procs_release,
4865 .seq_start = cgroup_threads_start,
4866 .seq_next = cgroup_procs_next,
4867 .seq_show = cgroup_procs_show,
4868 .write = cgroup_threads_write,
4869 },
4870 {
4871 .name = "cgroup.controllers",
4872 .seq_show = cgroup_controllers_show,
4873 },
4874 {
4875 .name = "cgroup.subtree_control",
4876 .flags = CFTYPE_NS_DELEGATABLE,
4877 .seq_show = cgroup_subtree_control_show,
4878 .write = cgroup_subtree_control_write,
4879 },
4880 {
4881 .name = "cgroup.events",
4882 .flags = CFTYPE_NOT_ON_ROOT,
4883 .file_offset = offsetof(struct cgroup, events_file),
4884 .seq_show = cgroup_events_show,
4885 },
4886 {
4887 .name = "cgroup.max.descendants",
4888 .seq_show = cgroup_max_descendants_show,
4889 .write = cgroup_max_descendants_write,
4890 },
4891 {
4892 .name = "cgroup.max.depth",
4893 .seq_show = cgroup_max_depth_show,
4894 .write = cgroup_max_depth_write,
4895 },
4896 {
4897 .name = "cgroup.stat",
4898 .seq_show = cgroup_stat_show,
4899 },
4900 {
4901 .name = "cgroup.freeze",
4902 .flags = CFTYPE_NOT_ON_ROOT,
4903 .seq_show = cgroup_freeze_show,
4904 .write = cgroup_freeze_write,
4905 },
4906 {
4907 .name = "cpu.stat",
4908 .seq_show = cpu_stat_show,
4909 },
4910 #ifdef CONFIG_PSI
4911 {
4912 .name = "io.pressure",
4913 .seq_show = cgroup_io_pressure_show,
4914 .write = cgroup_io_pressure_write,
4915 .poll = cgroup_pressure_poll,
4916 .release = cgroup_pressure_release,
4917 },
4918 {
4919 .name = "memory.pressure",
4920 .seq_show = cgroup_memory_pressure_show,
4921 .write = cgroup_memory_pressure_write,
4922 .poll = cgroup_pressure_poll,
4923 .release = cgroup_pressure_release,
4924 },
4925 {
4926 .name = "cpu.pressure",
4927 .seq_show = cgroup_cpu_pressure_show,
4928 .write = cgroup_cpu_pressure_write,
4929 .poll = cgroup_pressure_poll,
4930 .release = cgroup_pressure_release,
4931 },
4932 #endif /* CONFIG_PSI */
4933 { } /* terminate */
4934 };
4935
4936 /*
4937 * css destruction is four-stage process.
4938 *
4939 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4940 * Implemented in kill_css().
4941 *
4942 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4943 * and thus css_tryget_online() is guaranteed to fail, the css can be
4944 * offlined by invoking offline_css(). After offlining, the base ref is
4945 * put. Implemented in css_killed_work_fn().
4946 *
4947 * 3. When the percpu_ref reaches zero, the only possible remaining
4948 * accessors are inside RCU read sections. css_release() schedules the
4949 * RCU callback.
4950 *
4951 * 4. After the grace period, the css can be freed. Implemented in
4952 * css_free_work_fn().
4953 *
4954 * It is actually hairier because both step 2 and 4 require process context
4955 * and thus involve punting to css->destroy_work adding two additional
4956 * steps to the already complex sequence.
4957 */
css_free_rwork_fn(struct work_struct * work)4958 static void css_free_rwork_fn(struct work_struct *work)
4959 {
4960 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4961 struct cgroup_subsys_state, destroy_rwork);
4962 struct cgroup_subsys *ss = css->ss;
4963 struct cgroup *cgrp = css->cgroup;
4964
4965 percpu_ref_exit(&css->refcnt);
4966
4967 if (ss) {
4968 /* css free path */
4969 struct cgroup_subsys_state *parent = css->parent;
4970 int id = css->id;
4971
4972 ss->css_free(css);
4973 cgroup_idr_remove(&ss->css_idr, id);
4974 cgroup_put(cgrp);
4975
4976 if (parent)
4977 css_put(parent);
4978 } else {
4979 /* cgroup free path */
4980 atomic_dec(&cgrp->root->nr_cgrps);
4981 cgroup1_pidlist_destroy_all(cgrp);
4982 cancel_work_sync(&cgrp->release_agent_work);
4983
4984 if (cgroup_parent(cgrp)) {
4985 /*
4986 * We get a ref to the parent, and put the ref when
4987 * this cgroup is being freed, so it's guaranteed
4988 * that the parent won't be destroyed before its
4989 * children.
4990 */
4991 cgroup_put(cgroup_parent(cgrp));
4992 kernfs_put(cgrp->kn);
4993 psi_cgroup_free(cgrp);
4994 if (cgroup_on_dfl(cgrp))
4995 cgroup_rstat_exit(cgrp);
4996 kfree(cgrp);
4997 } else {
4998 /*
4999 * This is root cgroup's refcnt reaching zero,
5000 * which indicates that the root should be
5001 * released.
5002 */
5003 cgroup_destroy_root(cgrp->root);
5004 }
5005 }
5006 }
5007
css_release_work_fn(struct work_struct * work)5008 static void css_release_work_fn(struct work_struct *work)
5009 {
5010 struct cgroup_subsys_state *css =
5011 container_of(work, struct cgroup_subsys_state, destroy_work);
5012 struct cgroup_subsys *ss = css->ss;
5013 struct cgroup *cgrp = css->cgroup;
5014
5015 mutex_lock(&cgroup_mutex);
5016
5017 css->flags |= CSS_RELEASED;
5018 list_del_rcu(&css->sibling);
5019
5020 if (ss) {
5021 /* css release path */
5022 if (!list_empty(&css->rstat_css_node)) {
5023 cgroup_rstat_flush(cgrp);
5024 list_del_rcu(&css->rstat_css_node);
5025 }
5026
5027 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5028 if (ss->css_released)
5029 ss->css_released(css);
5030 } else {
5031 struct cgroup *tcgrp;
5032
5033 /* cgroup release path */
5034 TRACE_CGROUP_PATH(release, cgrp);
5035
5036 if (cgroup_on_dfl(cgrp))
5037 cgroup_rstat_flush(cgrp);
5038
5039 spin_lock_irq(&css_set_lock);
5040 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5041 tcgrp = cgroup_parent(tcgrp))
5042 tcgrp->nr_dying_descendants--;
5043 spin_unlock_irq(&css_set_lock);
5044
5045 /*
5046 * There are two control paths which try to determine
5047 * cgroup from dentry without going through kernfs -
5048 * cgroupstats_build() and css_tryget_online_from_dir().
5049 * Those are supported by RCU protecting clearing of
5050 * cgrp->kn->priv backpointer.
5051 */
5052 if (cgrp->kn)
5053 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5054 NULL);
5055 if (css->parent && !css->parent->parent &&
5056 list_empty(&css->parent->children))
5057 wake_up(&cgrp->root->wait);
5058 }
5059 mutex_unlock(&cgroup_mutex);
5060
5061 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5062 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5063 }
5064
css_release(struct percpu_ref * ref)5065 static void css_release(struct percpu_ref *ref)
5066 {
5067 struct cgroup_subsys_state *css =
5068 container_of(ref, struct cgroup_subsys_state, refcnt);
5069
5070 INIT_WORK(&css->destroy_work, css_release_work_fn);
5071 queue_work(cgroup_destroy_wq, &css->destroy_work);
5072 }
5073
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5074 static void init_and_link_css(struct cgroup_subsys_state *css,
5075 struct cgroup_subsys *ss, struct cgroup *cgrp)
5076 {
5077 lockdep_assert_held(&cgroup_mutex);
5078
5079 cgroup_get_live(cgrp);
5080
5081 memset(css, 0, sizeof(*css));
5082 css->cgroup = cgrp;
5083 css->ss = ss;
5084 css->id = -1;
5085 INIT_LIST_HEAD(&css->sibling);
5086 INIT_LIST_HEAD(&css->children);
5087 INIT_LIST_HEAD(&css->rstat_css_node);
5088 css->serial_nr = css_serial_nr_next++;
5089 atomic_set(&css->online_cnt, 0);
5090
5091 if (cgroup_parent(cgrp)) {
5092 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5093 css_get(css->parent);
5094 }
5095
5096 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5097 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5098
5099 BUG_ON(cgroup_css(cgrp, ss));
5100 }
5101
5102 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5103 static int online_css(struct cgroup_subsys_state *css)
5104 {
5105 struct cgroup_subsys *ss = css->ss;
5106 int ret = 0;
5107
5108 lockdep_assert_held(&cgroup_mutex);
5109
5110 if (ss->css_online)
5111 ret = ss->css_online(css);
5112 if (!ret) {
5113 css->flags |= CSS_ONLINE;
5114 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5115
5116 atomic_inc(&css->online_cnt);
5117 if (css->parent)
5118 atomic_inc(&css->parent->online_cnt);
5119 }
5120 return ret;
5121 }
5122
5123 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5124 static void offline_css(struct cgroup_subsys_state *css)
5125 {
5126 struct cgroup_subsys *ss = css->ss;
5127
5128 lockdep_assert_held(&cgroup_mutex);
5129
5130 if (!(css->flags & CSS_ONLINE))
5131 return;
5132
5133 if (ss->css_offline)
5134 ss->css_offline(css);
5135
5136 css->flags &= ~CSS_ONLINE;
5137 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5138
5139 wake_up_all(&css->cgroup->offline_waitq);
5140 }
5141
5142 /**
5143 * css_create - create a cgroup_subsys_state
5144 * @cgrp: the cgroup new css will be associated with
5145 * @ss: the subsys of new css
5146 *
5147 * Create a new css associated with @cgrp - @ss pair. On success, the new
5148 * css is online and installed in @cgrp. This function doesn't create the
5149 * interface files. Returns 0 on success, -errno on failure.
5150 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5151 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5152 struct cgroup_subsys *ss)
5153 {
5154 struct cgroup *parent = cgroup_parent(cgrp);
5155 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5156 struct cgroup_subsys_state *css;
5157 int err;
5158
5159 lockdep_assert_held(&cgroup_mutex);
5160
5161 css = ss->css_alloc(parent_css);
5162 if (!css)
5163 css = ERR_PTR(-ENOMEM);
5164 if (IS_ERR(css))
5165 return css;
5166
5167 init_and_link_css(css, ss, cgrp);
5168
5169 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5170 if (err)
5171 goto err_free_css;
5172
5173 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5174 if (err < 0)
5175 goto err_free_css;
5176 css->id = err;
5177
5178 /* @css is ready to be brought online now, make it visible */
5179 list_add_tail_rcu(&css->sibling, &parent_css->children);
5180 cgroup_idr_replace(&ss->css_idr, css, css->id);
5181
5182 err = online_css(css);
5183 if (err)
5184 goto err_list_del;
5185
5186 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5187 cgroup_parent(parent)) {
5188 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5189 current->comm, current->pid, ss->name);
5190 if (!strcmp(ss->name, "memory"))
5191 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5192 ss->warned_broken_hierarchy = true;
5193 }
5194
5195 return css;
5196
5197 err_list_del:
5198 list_del_rcu(&css->sibling);
5199 err_free_css:
5200 list_del_rcu(&css->rstat_css_node);
5201 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5202 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5203 return ERR_PTR(err);
5204 }
5205
5206 /*
5207 * The returned cgroup is fully initialized including its control mask, but
5208 * it isn't associated with its kernfs_node and doesn't have the control
5209 * mask applied.
5210 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5211 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5212 umode_t mode)
5213 {
5214 struct cgroup_root *root = parent->root;
5215 struct cgroup *cgrp, *tcgrp;
5216 struct kernfs_node *kn;
5217 int level = parent->level + 1;
5218 int ret;
5219
5220 /* allocate the cgroup and its ID, 0 is reserved for the root */
5221 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5222 GFP_KERNEL);
5223 if (!cgrp)
5224 return ERR_PTR(-ENOMEM);
5225
5226 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5227 if (ret)
5228 goto out_free_cgrp;
5229
5230 if (cgroup_on_dfl(parent)) {
5231 ret = cgroup_rstat_init(cgrp);
5232 if (ret)
5233 goto out_cancel_ref;
5234 }
5235
5236 /* create the directory */
5237 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5238 if (IS_ERR(kn)) {
5239 ret = PTR_ERR(kn);
5240 goto out_stat_exit;
5241 }
5242 cgrp->kn = kn;
5243
5244 init_cgroup_housekeeping(cgrp);
5245
5246 cgrp->self.parent = &parent->self;
5247 cgrp->root = root;
5248 cgrp->level = level;
5249
5250 ret = psi_cgroup_alloc(cgrp);
5251 if (ret)
5252 goto out_kernfs_remove;
5253
5254 ret = cgroup_bpf_inherit(cgrp);
5255 if (ret)
5256 goto out_psi_free;
5257
5258 /*
5259 * New cgroup inherits effective freeze counter, and
5260 * if the parent has to be frozen, the child has too.
5261 */
5262 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5263 if (cgrp->freezer.e_freeze) {
5264 /*
5265 * Set the CGRP_FREEZE flag, so when a process will be
5266 * attached to the child cgroup, it will become frozen.
5267 * At this point the new cgroup is unpopulated, so we can
5268 * consider it frozen immediately.
5269 */
5270 set_bit(CGRP_FREEZE, &cgrp->flags);
5271 set_bit(CGRP_FROZEN, &cgrp->flags);
5272 }
5273
5274 spin_lock_irq(&css_set_lock);
5275 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5276 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5277
5278 if (tcgrp != cgrp) {
5279 tcgrp->nr_descendants++;
5280
5281 /*
5282 * If the new cgroup is frozen, all ancestor cgroups
5283 * get a new frozen descendant, but their state can't
5284 * change because of this.
5285 */
5286 if (cgrp->freezer.e_freeze)
5287 tcgrp->freezer.nr_frozen_descendants++;
5288 }
5289 }
5290 spin_unlock_irq(&css_set_lock);
5291
5292 if (notify_on_release(parent))
5293 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5294
5295 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5296 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5297
5298 cgrp->self.serial_nr = css_serial_nr_next++;
5299
5300 /* allocation complete, commit to creation */
5301 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5302 atomic_inc(&root->nr_cgrps);
5303 cgroup_get_live(parent);
5304
5305 /*
5306 * On the default hierarchy, a child doesn't automatically inherit
5307 * subtree_control from the parent. Each is configured manually.
5308 */
5309 if (!cgroup_on_dfl(cgrp))
5310 cgrp->subtree_control = cgroup_control(cgrp);
5311
5312 cgroup_propagate_control(cgrp);
5313
5314 return cgrp;
5315
5316 out_psi_free:
5317 psi_cgroup_free(cgrp);
5318 out_kernfs_remove:
5319 kernfs_remove(cgrp->kn);
5320 out_stat_exit:
5321 if (cgroup_on_dfl(parent))
5322 cgroup_rstat_exit(cgrp);
5323 out_cancel_ref:
5324 percpu_ref_exit(&cgrp->self.refcnt);
5325 out_free_cgrp:
5326 kfree(cgrp);
5327 return ERR_PTR(ret);
5328 }
5329
cgroup_check_hierarchy_limits(struct cgroup * parent)5330 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5331 {
5332 struct cgroup *cgroup;
5333 int ret = false;
5334 int level = 1;
5335
5336 lockdep_assert_held(&cgroup_mutex);
5337
5338 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5339 if (cgroup->nr_descendants >= cgroup->max_descendants)
5340 goto fail;
5341
5342 if (level > cgroup->max_depth)
5343 goto fail;
5344
5345 level++;
5346 }
5347
5348 ret = true;
5349 fail:
5350 return ret;
5351 }
5352
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5353 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5354 {
5355 struct cgroup *parent, *cgrp;
5356 int ret;
5357
5358 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5359 if (strchr(name, '\n'))
5360 return -EINVAL;
5361
5362 parent = cgroup_kn_lock_live(parent_kn, false);
5363 if (!parent)
5364 return -ENODEV;
5365
5366 if (!cgroup_check_hierarchy_limits(parent)) {
5367 ret = -EAGAIN;
5368 goto out_unlock;
5369 }
5370
5371 cgrp = cgroup_create(parent, name, mode);
5372 if (IS_ERR(cgrp)) {
5373 ret = PTR_ERR(cgrp);
5374 goto out_unlock;
5375 }
5376
5377 /*
5378 * This extra ref will be put in cgroup_free_fn() and guarantees
5379 * that @cgrp->kn is always accessible.
5380 */
5381 kernfs_get(cgrp->kn);
5382
5383 ret = cgroup_kn_set_ugid(cgrp->kn);
5384 if (ret)
5385 goto out_destroy;
5386
5387 ret = css_populate_dir(&cgrp->self);
5388 if (ret)
5389 goto out_destroy;
5390
5391 ret = cgroup_apply_control_enable(cgrp);
5392 if (ret)
5393 goto out_destroy;
5394
5395 TRACE_CGROUP_PATH(mkdir, cgrp);
5396
5397 /* let's create and online css's */
5398 kernfs_activate(cgrp->kn);
5399
5400 ret = 0;
5401 goto out_unlock;
5402
5403 out_destroy:
5404 cgroup_destroy_locked(cgrp);
5405 out_unlock:
5406 cgroup_kn_unlock(parent_kn);
5407 return ret;
5408 }
5409
5410 /*
5411 * This is called when the refcnt of a css is confirmed to be killed.
5412 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5413 * initate destruction and put the css ref from kill_css().
5414 */
css_killed_work_fn(struct work_struct * work)5415 static void css_killed_work_fn(struct work_struct *work)
5416 {
5417 struct cgroup_subsys_state *css =
5418 container_of(work, struct cgroup_subsys_state, destroy_work);
5419
5420 mutex_lock(&cgroup_mutex);
5421
5422 do {
5423 offline_css(css);
5424 css_put(css);
5425 /* @css can't go away while we're holding cgroup_mutex */
5426 css = css->parent;
5427 } while (css && atomic_dec_and_test(&css->online_cnt));
5428
5429 mutex_unlock(&cgroup_mutex);
5430 }
5431
5432 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5433 static void css_killed_ref_fn(struct percpu_ref *ref)
5434 {
5435 struct cgroup_subsys_state *css =
5436 container_of(ref, struct cgroup_subsys_state, refcnt);
5437
5438 if (atomic_dec_and_test(&css->online_cnt)) {
5439 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5440 queue_work(cgroup_destroy_wq, &css->destroy_work);
5441 }
5442 }
5443
5444 /**
5445 * kill_css - destroy a css
5446 * @css: css to destroy
5447 *
5448 * This function initiates destruction of @css by removing cgroup interface
5449 * files and putting its base reference. ->css_offline() will be invoked
5450 * asynchronously once css_tryget_online() is guaranteed to fail and when
5451 * the reference count reaches zero, @css will be released.
5452 */
kill_css(struct cgroup_subsys_state * css)5453 static void kill_css(struct cgroup_subsys_state *css)
5454 {
5455 lockdep_assert_held(&cgroup_mutex);
5456
5457 if (css->flags & CSS_DYING)
5458 return;
5459
5460 css->flags |= CSS_DYING;
5461
5462 /*
5463 * This must happen before css is disassociated with its cgroup.
5464 * See seq_css() for details.
5465 */
5466 css_clear_dir(css);
5467
5468 /*
5469 * Killing would put the base ref, but we need to keep it alive
5470 * until after ->css_offline().
5471 */
5472 css_get(css);
5473
5474 /*
5475 * cgroup core guarantees that, by the time ->css_offline() is
5476 * invoked, no new css reference will be given out via
5477 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5478 * proceed to offlining css's because percpu_ref_kill() doesn't
5479 * guarantee that the ref is seen as killed on all CPUs on return.
5480 *
5481 * Use percpu_ref_kill_and_confirm() to get notifications as each
5482 * css is confirmed to be seen as killed on all CPUs.
5483 */
5484 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5485 }
5486
5487 /**
5488 * cgroup_destroy_locked - the first stage of cgroup destruction
5489 * @cgrp: cgroup to be destroyed
5490 *
5491 * css's make use of percpu refcnts whose killing latency shouldn't be
5492 * exposed to userland and are RCU protected. Also, cgroup core needs to
5493 * guarantee that css_tryget_online() won't succeed by the time
5494 * ->css_offline() is invoked. To satisfy all the requirements,
5495 * destruction is implemented in the following two steps.
5496 *
5497 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5498 * userland visible parts and start killing the percpu refcnts of
5499 * css's. Set up so that the next stage will be kicked off once all
5500 * the percpu refcnts are confirmed to be killed.
5501 *
5502 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5503 * rest of destruction. Once all cgroup references are gone, the
5504 * cgroup is RCU-freed.
5505 *
5506 * This function implements s1. After this step, @cgrp is gone as far as
5507 * the userland is concerned and a new cgroup with the same name may be
5508 * created. As cgroup doesn't care about the names internally, this
5509 * doesn't cause any problem.
5510 */
cgroup_destroy_locked(struct cgroup * cgrp)5511 static int cgroup_destroy_locked(struct cgroup *cgrp)
5512 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5513 {
5514 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5515 struct cgroup_subsys_state *css;
5516 struct cgrp_cset_link *link;
5517 int ssid;
5518
5519 lockdep_assert_held(&cgroup_mutex);
5520
5521 /*
5522 * Only migration can raise populated from zero and we're already
5523 * holding cgroup_mutex.
5524 */
5525 if (cgroup_is_populated(cgrp))
5526 return -EBUSY;
5527
5528 /*
5529 * Make sure there's no live children. We can't test emptiness of
5530 * ->self.children as dead children linger on it while being
5531 * drained; otherwise, "rmdir parent/child parent" may fail.
5532 */
5533 if (css_has_online_children(&cgrp->self))
5534 return -EBUSY;
5535
5536 /*
5537 * Mark @cgrp and the associated csets dead. The former prevents
5538 * further task migration and child creation by disabling
5539 * cgroup_lock_live_group(). The latter makes the csets ignored by
5540 * the migration path.
5541 */
5542 cgrp->self.flags &= ~CSS_ONLINE;
5543
5544 spin_lock_irq(&css_set_lock);
5545 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5546 link->cset->dead = true;
5547 spin_unlock_irq(&css_set_lock);
5548
5549 /* initiate massacre of all css's */
5550 for_each_css(css, ssid, cgrp)
5551 kill_css(css);
5552
5553 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5554 css_clear_dir(&cgrp->self);
5555 kernfs_remove(cgrp->kn);
5556
5557 if (parent && cgroup_is_threaded(cgrp))
5558 parent->nr_threaded_children--;
5559
5560 spin_lock_irq(&css_set_lock);
5561 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5562 tcgrp->nr_descendants--;
5563 tcgrp->nr_dying_descendants++;
5564 /*
5565 * If the dying cgroup is frozen, decrease frozen descendants
5566 * counters of ancestor cgroups.
5567 */
5568 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5569 tcgrp->freezer.nr_frozen_descendants--;
5570 }
5571 spin_unlock_irq(&css_set_lock);
5572
5573 cgroup1_check_for_release(parent);
5574
5575 cgroup_bpf_offline(cgrp);
5576
5577 /* put the base reference */
5578 percpu_ref_kill(&cgrp->self.refcnt);
5579
5580 return 0;
5581 };
5582
cgroup_rmdir(struct kernfs_node * kn)5583 int cgroup_rmdir(struct kernfs_node *kn)
5584 {
5585 struct cgroup *cgrp;
5586 int ret = 0;
5587
5588 cgrp = cgroup_kn_lock_live(kn, false);
5589 if (!cgrp)
5590 return 0;
5591
5592 ret = cgroup_destroy_locked(cgrp);
5593 if (!ret)
5594 TRACE_CGROUP_PATH(rmdir, cgrp);
5595
5596 cgroup_kn_unlock(kn);
5597 return ret;
5598 }
5599
5600 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5601 .show_options = cgroup_show_options,
5602 .mkdir = cgroup_mkdir,
5603 .rmdir = cgroup_rmdir,
5604 .show_path = cgroup_show_path,
5605 };
5606
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5607 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5608 {
5609 struct cgroup_subsys_state *css;
5610
5611 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5612
5613 mutex_lock(&cgroup_mutex);
5614
5615 idr_init(&ss->css_idr);
5616 INIT_LIST_HEAD(&ss->cfts);
5617
5618 /* Create the root cgroup state for this subsystem */
5619 ss->root = &cgrp_dfl_root;
5620 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5621 /* We don't handle early failures gracefully */
5622 BUG_ON(IS_ERR(css));
5623 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5624
5625 /*
5626 * Root csses are never destroyed and we can't initialize
5627 * percpu_ref during early init. Disable refcnting.
5628 */
5629 css->flags |= CSS_NO_REF;
5630
5631 if (early) {
5632 /* allocation can't be done safely during early init */
5633 css->id = 1;
5634 } else {
5635 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5636 BUG_ON(css->id < 0);
5637 }
5638
5639 /* Update the init_css_set to contain a subsys
5640 * pointer to this state - since the subsystem is
5641 * newly registered, all tasks and hence the
5642 * init_css_set is in the subsystem's root cgroup. */
5643 init_css_set.subsys[ss->id] = css;
5644
5645 have_fork_callback |= (bool)ss->fork << ss->id;
5646 have_exit_callback |= (bool)ss->exit << ss->id;
5647 have_release_callback |= (bool)ss->release << ss->id;
5648 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5649
5650 /* At system boot, before all subsystems have been
5651 * registered, no tasks have been forked, so we don't
5652 * need to invoke fork callbacks here. */
5653 BUG_ON(!list_empty(&init_task.tasks));
5654
5655 BUG_ON(online_css(css));
5656
5657 mutex_unlock(&cgroup_mutex);
5658 }
5659
5660 /**
5661 * cgroup_init_early - cgroup initialization at system boot
5662 *
5663 * Initialize cgroups at system boot, and initialize any
5664 * subsystems that request early init.
5665 */
cgroup_init_early(void)5666 int __init cgroup_init_early(void)
5667 {
5668 static struct cgroup_fs_context __initdata ctx;
5669 struct cgroup_subsys *ss;
5670 int i;
5671
5672 ctx.root = &cgrp_dfl_root;
5673 init_cgroup_root(&ctx);
5674 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5675
5676 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5677
5678 for_each_subsys(ss, i) {
5679 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5680 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5681 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5682 ss->id, ss->name);
5683 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5684 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5685
5686 ss->id = i;
5687 ss->name = cgroup_subsys_name[i];
5688 if (!ss->legacy_name)
5689 ss->legacy_name = cgroup_subsys_name[i];
5690
5691 if (ss->early_init)
5692 cgroup_init_subsys(ss, true);
5693 }
5694 return 0;
5695 }
5696
5697 /**
5698 * cgroup_init - cgroup initialization
5699 *
5700 * Register cgroup filesystem and /proc file, and initialize
5701 * any subsystems that didn't request early init.
5702 */
cgroup_init(void)5703 int __init cgroup_init(void)
5704 {
5705 struct cgroup_subsys *ss;
5706 int ssid;
5707
5708 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5709 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5710 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5711
5712 cgroup_rstat_boot();
5713
5714 /*
5715 * The latency of the synchronize_rcu() is too high for cgroups,
5716 * avoid it at the cost of forcing all readers into the slow path.
5717 */
5718 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5719
5720 get_user_ns(init_cgroup_ns.user_ns);
5721
5722 mutex_lock(&cgroup_mutex);
5723
5724 /*
5725 * Add init_css_set to the hash table so that dfl_root can link to
5726 * it during init.
5727 */
5728 hash_add(css_set_table, &init_css_set.hlist,
5729 css_set_hash(init_css_set.subsys));
5730
5731 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5732
5733 mutex_unlock(&cgroup_mutex);
5734
5735 for_each_subsys(ss, ssid) {
5736 if (ss->early_init) {
5737 struct cgroup_subsys_state *css =
5738 init_css_set.subsys[ss->id];
5739
5740 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5741 GFP_KERNEL);
5742 BUG_ON(css->id < 0);
5743 } else {
5744 cgroup_init_subsys(ss, false);
5745 }
5746
5747 list_add_tail(&init_css_set.e_cset_node[ssid],
5748 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5749
5750 /*
5751 * Setting dfl_root subsys_mask needs to consider the
5752 * disabled flag and cftype registration needs kmalloc,
5753 * both of which aren't available during early_init.
5754 */
5755 if (!cgroup_ssid_enabled(ssid))
5756 continue;
5757
5758 if (cgroup1_ssid_disabled(ssid))
5759 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5760 ss->name);
5761
5762 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5763
5764 /* implicit controllers must be threaded too */
5765 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5766
5767 if (ss->implicit_on_dfl)
5768 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5769 else if (!ss->dfl_cftypes)
5770 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5771
5772 if (ss->threaded)
5773 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5774
5775 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5776 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5777 } else {
5778 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5779 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5780 }
5781
5782 if (ss->bind)
5783 ss->bind(init_css_set.subsys[ssid]);
5784
5785 mutex_lock(&cgroup_mutex);
5786 css_populate_dir(init_css_set.subsys[ssid]);
5787 mutex_unlock(&cgroup_mutex);
5788 }
5789
5790 /* init_css_set.subsys[] has been updated, re-hash */
5791 hash_del(&init_css_set.hlist);
5792 hash_add(css_set_table, &init_css_set.hlist,
5793 css_set_hash(init_css_set.subsys));
5794
5795 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5796 WARN_ON(register_filesystem(&cgroup_fs_type));
5797 WARN_ON(register_filesystem(&cgroup2_fs_type));
5798 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5799 #ifdef CONFIG_CPUSETS
5800 WARN_ON(register_filesystem(&cpuset_fs_type));
5801 #endif
5802
5803 return 0;
5804 }
5805
cgroup_wq_init(void)5806 static int __init cgroup_wq_init(void)
5807 {
5808 /*
5809 * There isn't much point in executing destruction path in
5810 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5811 * Use 1 for @max_active.
5812 *
5813 * We would prefer to do this in cgroup_init() above, but that
5814 * is called before init_workqueues(): so leave this until after.
5815 */
5816 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5817 BUG_ON(!cgroup_destroy_wq);
5818 return 0;
5819 }
5820 core_initcall(cgroup_wq_init);
5821
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5822 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5823 {
5824 struct kernfs_node *kn;
5825
5826 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5827 if (!kn)
5828 return;
5829 kernfs_path(kn, buf, buflen);
5830 kernfs_put(kn);
5831 }
5832
5833 /*
5834 * proc_cgroup_show()
5835 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5836 * - Used for /proc/<pid>/cgroup.
5837 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5838 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5839 struct pid *pid, struct task_struct *tsk)
5840 {
5841 char *buf;
5842 int retval;
5843 struct cgroup_root *root;
5844
5845 retval = -ENOMEM;
5846 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5847 if (!buf)
5848 goto out;
5849
5850 mutex_lock(&cgroup_mutex);
5851 spin_lock_irq(&css_set_lock);
5852
5853 for_each_root(root) {
5854 struct cgroup_subsys *ss;
5855 struct cgroup *cgrp;
5856 int ssid, count = 0;
5857
5858 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5859 continue;
5860
5861 seq_printf(m, "%d:", root->hierarchy_id);
5862 if (root != &cgrp_dfl_root)
5863 for_each_subsys(ss, ssid)
5864 if (root->subsys_mask & (1 << ssid))
5865 seq_printf(m, "%s%s", count++ ? "," : "",
5866 ss->legacy_name);
5867 if (strlen(root->name))
5868 seq_printf(m, "%sname=%s", count ? "," : "",
5869 root->name);
5870 seq_putc(m, ':');
5871
5872 cgrp = task_cgroup_from_root(tsk, root);
5873
5874 /*
5875 * On traditional hierarchies, all zombie tasks show up as
5876 * belonging to the root cgroup. On the default hierarchy,
5877 * while a zombie doesn't show up in "cgroup.procs" and
5878 * thus can't be migrated, its /proc/PID/cgroup keeps
5879 * reporting the cgroup it belonged to before exiting. If
5880 * the cgroup is removed before the zombie is reaped,
5881 * " (deleted)" is appended to the cgroup path.
5882 */
5883 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5884 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5885 current->nsproxy->cgroup_ns);
5886 if (retval >= PATH_MAX)
5887 retval = -ENAMETOOLONG;
5888 if (retval < 0)
5889 goto out_unlock;
5890
5891 seq_puts(m, buf);
5892 } else {
5893 seq_puts(m, "/");
5894 }
5895
5896 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5897 seq_puts(m, " (deleted)\n");
5898 else
5899 seq_putc(m, '\n');
5900 }
5901
5902 retval = 0;
5903 out_unlock:
5904 spin_unlock_irq(&css_set_lock);
5905 mutex_unlock(&cgroup_mutex);
5906 kfree(buf);
5907 out:
5908 return retval;
5909 }
5910
5911 /**
5912 * cgroup_fork - initialize cgroup related fields during copy_process()
5913 * @child: pointer to task_struct of forking parent process.
5914 *
5915 * A task is associated with the init_css_set until cgroup_post_fork()
5916 * attaches it to the target css_set.
5917 */
cgroup_fork(struct task_struct * child)5918 void cgroup_fork(struct task_struct *child)
5919 {
5920 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5921 INIT_LIST_HEAD(&child->cg_list);
5922 }
5923
cgroup_get_from_file(struct file * f)5924 static struct cgroup *cgroup_get_from_file(struct file *f)
5925 {
5926 struct cgroup_subsys_state *css;
5927 struct cgroup *cgrp;
5928
5929 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5930 if (IS_ERR(css))
5931 return ERR_CAST(css);
5932
5933 cgrp = css->cgroup;
5934 if (!cgroup_on_dfl(cgrp)) {
5935 cgroup_put(cgrp);
5936 return ERR_PTR(-EBADF);
5937 }
5938
5939 return cgrp;
5940 }
5941
5942 /**
5943 * cgroup_css_set_fork - find or create a css_set for a child process
5944 * @kargs: the arguments passed to create the child process
5945 *
5946 * This functions finds or creates a new css_set which the child
5947 * process will be attached to in cgroup_post_fork(). By default,
5948 * the child process will be given the same css_set as its parent.
5949 *
5950 * If CLONE_INTO_CGROUP is specified this function will try to find an
5951 * existing css_set which includes the requested cgroup and if not create
5952 * a new css_set that the child will be attached to later. If this function
5953 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5954 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5955 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5956 * to the target cgroup.
5957 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)5958 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5959 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5960 {
5961 int ret;
5962 struct cgroup *dst_cgrp = NULL;
5963 struct css_set *cset;
5964 struct super_block *sb;
5965 struct file *f;
5966
5967 if (kargs->flags & CLONE_INTO_CGROUP)
5968 mutex_lock(&cgroup_mutex);
5969
5970 cgroup_threadgroup_change_begin(current);
5971
5972 spin_lock_irq(&css_set_lock);
5973 cset = task_css_set(current);
5974 get_css_set(cset);
5975 spin_unlock_irq(&css_set_lock);
5976
5977 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5978 kargs->cset = cset;
5979 return 0;
5980 }
5981
5982 f = fget_raw(kargs->cgroup);
5983 if (!f) {
5984 ret = -EBADF;
5985 goto err;
5986 }
5987 sb = f->f_path.dentry->d_sb;
5988
5989 dst_cgrp = cgroup_get_from_file(f);
5990 if (IS_ERR(dst_cgrp)) {
5991 ret = PTR_ERR(dst_cgrp);
5992 dst_cgrp = NULL;
5993 goto err;
5994 }
5995
5996 if (cgroup_is_dead(dst_cgrp)) {
5997 ret = -ENODEV;
5998 goto err;
5999 }
6000
6001 /*
6002 * Verify that we the target cgroup is writable for us. This is
6003 * usually done by the vfs layer but since we're not going through
6004 * the vfs layer here we need to do it "manually".
6005 */
6006 ret = cgroup_may_write(dst_cgrp, sb);
6007 if (ret)
6008 goto err;
6009
6010 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6011 !(kargs->flags & CLONE_THREAD),
6012 current->nsproxy->cgroup_ns);
6013 if (ret)
6014 goto err;
6015
6016 kargs->cset = find_css_set(cset, dst_cgrp);
6017 if (!kargs->cset) {
6018 ret = -ENOMEM;
6019 goto err;
6020 }
6021
6022 put_css_set(cset);
6023 fput(f);
6024 kargs->cgrp = dst_cgrp;
6025 return ret;
6026
6027 err:
6028 cgroup_threadgroup_change_end(current);
6029 mutex_unlock(&cgroup_mutex);
6030 if (f)
6031 fput(f);
6032 if (dst_cgrp)
6033 cgroup_put(dst_cgrp);
6034 put_css_set(cset);
6035 if (kargs->cset)
6036 put_css_set(kargs->cset);
6037 return ret;
6038 }
6039
6040 /**
6041 * cgroup_css_set_put_fork - drop references we took during fork
6042 * @kargs: the arguments passed to create the child process
6043 *
6044 * Drop references to the prepared css_set and target cgroup if
6045 * CLONE_INTO_CGROUP was requested.
6046 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6047 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6048 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6049 {
6050 cgroup_threadgroup_change_end(current);
6051
6052 if (kargs->flags & CLONE_INTO_CGROUP) {
6053 struct cgroup *cgrp = kargs->cgrp;
6054 struct css_set *cset = kargs->cset;
6055
6056 mutex_unlock(&cgroup_mutex);
6057
6058 if (cset) {
6059 put_css_set(cset);
6060 kargs->cset = NULL;
6061 }
6062
6063 if (cgrp) {
6064 cgroup_put(cgrp);
6065 kargs->cgrp = NULL;
6066 }
6067 }
6068 }
6069
6070 /**
6071 * cgroup_can_fork - called on a new task before the process is exposed
6072 * @child: the child process
6073 *
6074 * This prepares a new css_set for the child process which the child will
6075 * be attached to in cgroup_post_fork().
6076 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6077 * callback returns an error, the fork aborts with that error code. This
6078 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6079 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6080 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6081 {
6082 struct cgroup_subsys *ss;
6083 int i, j, ret;
6084
6085 ret = cgroup_css_set_fork(kargs);
6086 if (ret)
6087 return ret;
6088
6089 do_each_subsys_mask(ss, i, have_canfork_callback) {
6090 ret = ss->can_fork(child, kargs->cset);
6091 if (ret)
6092 goto out_revert;
6093 } while_each_subsys_mask();
6094
6095 return 0;
6096
6097 out_revert:
6098 for_each_subsys(ss, j) {
6099 if (j >= i)
6100 break;
6101 if (ss->cancel_fork)
6102 ss->cancel_fork(child, kargs->cset);
6103 }
6104
6105 cgroup_css_set_put_fork(kargs);
6106
6107 return ret;
6108 }
6109
6110 /**
6111 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6112 * @child: the child process
6113 * @kargs: the arguments passed to create the child process
6114 *
6115 * This calls the cancel_fork() callbacks if a fork failed *after*
6116 * cgroup_can_fork() succeded and cleans up references we took to
6117 * prepare a new css_set for the child process in cgroup_can_fork().
6118 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6119 void cgroup_cancel_fork(struct task_struct *child,
6120 struct kernel_clone_args *kargs)
6121 {
6122 struct cgroup_subsys *ss;
6123 int i;
6124
6125 for_each_subsys(ss, i)
6126 if (ss->cancel_fork)
6127 ss->cancel_fork(child, kargs->cset);
6128
6129 cgroup_css_set_put_fork(kargs);
6130 }
6131
6132 /**
6133 * cgroup_post_fork - finalize cgroup setup for the child process
6134 * @child: the child process
6135 *
6136 * Attach the child process to its css_set calling the subsystem fork()
6137 * callbacks.
6138 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6139 void cgroup_post_fork(struct task_struct *child,
6140 struct kernel_clone_args *kargs)
6141 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6142 {
6143 struct cgroup_subsys *ss;
6144 struct css_set *cset;
6145 int i;
6146
6147 cset = kargs->cset;
6148 kargs->cset = NULL;
6149
6150 spin_lock_irq(&css_set_lock);
6151
6152 /* init tasks are special, only link regular threads */
6153 if (likely(child->pid)) {
6154 WARN_ON_ONCE(!list_empty(&child->cg_list));
6155 cset->nr_tasks++;
6156 css_set_move_task(child, NULL, cset, false);
6157 } else {
6158 put_css_set(cset);
6159 cset = NULL;
6160 }
6161
6162 /*
6163 * If the cgroup has to be frozen, the new task has too. Let's set
6164 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6165 * frozen state.
6166 */
6167 if (unlikely(cgroup_task_freeze(child))) {
6168 spin_lock(&child->sighand->siglock);
6169 WARN_ON_ONCE(child->frozen);
6170 child->jobctl |= JOBCTL_TRAP_FREEZE;
6171 spin_unlock(&child->sighand->siglock);
6172
6173 /*
6174 * Calling cgroup_update_frozen() isn't required here,
6175 * because it will be called anyway a bit later from
6176 * do_freezer_trap(). So we avoid cgroup's transient switch
6177 * from the frozen state and back.
6178 */
6179 }
6180
6181 spin_unlock_irq(&css_set_lock);
6182
6183 /*
6184 * Call ss->fork(). This must happen after @child is linked on
6185 * css_set; otherwise, @child might change state between ->fork()
6186 * and addition to css_set.
6187 */
6188 do_each_subsys_mask(ss, i, have_fork_callback) {
6189 ss->fork(child);
6190 } while_each_subsys_mask();
6191
6192 /* Make the new cset the root_cset of the new cgroup namespace. */
6193 if (kargs->flags & CLONE_NEWCGROUP) {
6194 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6195
6196 get_css_set(cset);
6197 child->nsproxy->cgroup_ns->root_cset = cset;
6198 put_css_set(rcset);
6199 }
6200
6201 cgroup_css_set_put_fork(kargs);
6202 }
6203
6204 /**
6205 * cgroup_exit - detach cgroup from exiting task
6206 * @tsk: pointer to task_struct of exiting process
6207 *
6208 * Description: Detach cgroup from @tsk.
6209 *
6210 */
cgroup_exit(struct task_struct * tsk)6211 void cgroup_exit(struct task_struct *tsk)
6212 {
6213 struct cgroup_subsys *ss;
6214 struct css_set *cset;
6215 int i;
6216
6217 spin_lock_irq(&css_set_lock);
6218
6219 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6220 cset = task_css_set(tsk);
6221 css_set_move_task(tsk, cset, NULL, false);
6222 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6223 cset->nr_tasks--;
6224
6225 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6226 if (unlikely(cgroup_task_freeze(tsk)))
6227 cgroup_update_frozen(task_dfl_cgroup(tsk));
6228
6229 spin_unlock_irq(&css_set_lock);
6230
6231 /* see cgroup_post_fork() for details */
6232 do_each_subsys_mask(ss, i, have_exit_callback) {
6233 ss->exit(tsk);
6234 } while_each_subsys_mask();
6235 }
6236
cgroup_release(struct task_struct * task)6237 void cgroup_release(struct task_struct *task)
6238 {
6239 struct cgroup_subsys *ss;
6240 int ssid;
6241
6242 do_each_subsys_mask(ss, ssid, have_release_callback) {
6243 ss->release(task);
6244 } while_each_subsys_mask();
6245
6246 spin_lock_irq(&css_set_lock);
6247 css_set_skip_task_iters(task_css_set(task), task);
6248 list_del_init(&task->cg_list);
6249 spin_unlock_irq(&css_set_lock);
6250 }
6251
cgroup_free(struct task_struct * task)6252 void cgroup_free(struct task_struct *task)
6253 {
6254 struct css_set *cset = task_css_set(task);
6255 put_css_set(cset);
6256 }
6257
cgroup_disable(char * str)6258 static int __init cgroup_disable(char *str)
6259 {
6260 struct cgroup_subsys *ss;
6261 char *token;
6262 int i;
6263
6264 while ((token = strsep(&str, ",")) != NULL) {
6265 if (!*token)
6266 continue;
6267
6268 for_each_subsys(ss, i) {
6269 if (strcmp(token, ss->name) &&
6270 strcmp(token, ss->legacy_name))
6271 continue;
6272
6273 static_branch_disable(cgroup_subsys_enabled_key[i]);
6274 pr_info("Disabling %s control group subsystem\n",
6275 ss->name);
6276 }
6277 }
6278 return 1;
6279 }
6280 __setup("cgroup_disable=", cgroup_disable);
6281
enable_debug_cgroup(void)6282 void __init __weak enable_debug_cgroup(void) { }
6283
enable_cgroup_debug(char * str)6284 static int __init enable_cgroup_debug(char *str)
6285 {
6286 cgroup_debug = true;
6287 enable_debug_cgroup();
6288 return 1;
6289 }
6290 __setup("cgroup_debug", enable_cgroup_debug);
6291
6292 /**
6293 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6294 * @dentry: directory dentry of interest
6295 * @ss: subsystem of interest
6296 *
6297 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6298 * to get the corresponding css and return it. If such css doesn't exist
6299 * or can't be pinned, an ERR_PTR value is returned.
6300 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6301 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6302 struct cgroup_subsys *ss)
6303 {
6304 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6305 struct file_system_type *s_type = dentry->d_sb->s_type;
6306 struct cgroup_subsys_state *css = NULL;
6307 struct cgroup *cgrp;
6308
6309 /* is @dentry a cgroup dir? */
6310 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6311 !kn || kernfs_type(kn) != KERNFS_DIR)
6312 return ERR_PTR(-EBADF);
6313
6314 rcu_read_lock();
6315
6316 /*
6317 * This path doesn't originate from kernfs and @kn could already
6318 * have been or be removed at any point. @kn->priv is RCU
6319 * protected for this access. See css_release_work_fn() for details.
6320 */
6321 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6322 if (cgrp)
6323 css = cgroup_css(cgrp, ss);
6324
6325 if (!css || !css_tryget_online(css))
6326 css = ERR_PTR(-ENOENT);
6327
6328 rcu_read_unlock();
6329 return css;
6330 }
6331
6332 /**
6333 * css_from_id - lookup css by id
6334 * @id: the cgroup id
6335 * @ss: cgroup subsys to be looked into
6336 *
6337 * Returns the css if there's valid one with @id, otherwise returns NULL.
6338 * Should be called under rcu_read_lock().
6339 */
css_from_id(int id,struct cgroup_subsys * ss)6340 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6341 {
6342 WARN_ON_ONCE(!rcu_read_lock_held());
6343 return idr_find(&ss->css_idr, id);
6344 }
6345
6346 /**
6347 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6348 * @path: path on the default hierarchy
6349 *
6350 * Find the cgroup at @path on the default hierarchy, increment its
6351 * reference count and return it. Returns pointer to the found cgroup on
6352 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6353 * if @path points to a non-directory.
6354 */
cgroup_get_from_path(const char * path)6355 struct cgroup *cgroup_get_from_path(const char *path)
6356 {
6357 struct kernfs_node *kn;
6358 struct cgroup *cgrp;
6359
6360 mutex_lock(&cgroup_mutex);
6361
6362 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6363 if (kn) {
6364 if (kernfs_type(kn) == KERNFS_DIR) {
6365 cgrp = kn->priv;
6366 cgroup_get_live(cgrp);
6367 } else {
6368 cgrp = ERR_PTR(-ENOTDIR);
6369 }
6370 kernfs_put(kn);
6371 } else {
6372 cgrp = ERR_PTR(-ENOENT);
6373 }
6374
6375 mutex_unlock(&cgroup_mutex);
6376 return cgrp;
6377 }
6378 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6379
6380 /**
6381 * cgroup_get_from_fd - get a cgroup pointer from a fd
6382 * @fd: fd obtained by open(cgroup2_dir)
6383 *
6384 * Find the cgroup from a fd which should be obtained
6385 * by opening a cgroup directory. Returns a pointer to the
6386 * cgroup on success. ERR_PTR is returned if the cgroup
6387 * cannot be found.
6388 */
cgroup_get_from_fd(int fd)6389 struct cgroup *cgroup_get_from_fd(int fd)
6390 {
6391 struct cgroup *cgrp;
6392 struct file *f;
6393
6394 f = fget_raw(fd);
6395 if (!f)
6396 return ERR_PTR(-EBADF);
6397
6398 cgrp = cgroup_get_from_file(f);
6399 fput(f);
6400 return cgrp;
6401 }
6402 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6403
power_of_ten(int power)6404 static u64 power_of_ten(int power)
6405 {
6406 u64 v = 1;
6407 while (power--)
6408 v *= 10;
6409 return v;
6410 }
6411
6412 /**
6413 * cgroup_parse_float - parse a floating number
6414 * @input: input string
6415 * @dec_shift: number of decimal digits to shift
6416 * @v: output
6417 *
6418 * Parse a decimal floating point number in @input and store the result in
6419 * @v with decimal point right shifted @dec_shift times. For example, if
6420 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6421 * Returns 0 on success, -errno otherwise.
6422 *
6423 * There's nothing cgroup specific about this function except that it's
6424 * currently the only user.
6425 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6426 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6427 {
6428 s64 whole, frac = 0;
6429 int fstart = 0, fend = 0, flen;
6430
6431 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6432 return -EINVAL;
6433 if (frac < 0)
6434 return -EINVAL;
6435
6436 flen = fend > fstart ? fend - fstart : 0;
6437 if (flen < dec_shift)
6438 frac *= power_of_ten(dec_shift - flen);
6439 else
6440 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6441
6442 *v = whole * power_of_ten(dec_shift) + frac;
6443 return 0;
6444 }
6445
6446 /*
6447 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6448 * definition in cgroup-defs.h.
6449 */
6450 #ifdef CONFIG_SOCK_CGROUP_DATA
6451
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6452 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6453 {
6454 struct cgroup *cgroup;
6455
6456 rcu_read_lock();
6457 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6458 if (in_interrupt()) {
6459 cgroup = &cgrp_dfl_root.cgrp;
6460 cgroup_get(cgroup);
6461 goto out;
6462 }
6463
6464 while (true) {
6465 struct css_set *cset;
6466
6467 cset = task_css_set(current);
6468 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6469 cgroup = cset->dfl_cgrp;
6470 break;
6471 }
6472 cpu_relax();
6473 }
6474 out:
6475 skcd->cgroup = cgroup;
6476 cgroup_bpf_get(cgroup);
6477 rcu_read_unlock();
6478 }
6479
cgroup_sk_clone(struct sock_cgroup_data * skcd)6480 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6481 {
6482 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6483
6484 /*
6485 * We might be cloning a socket which is left in an empty
6486 * cgroup and the cgroup might have already been rmdir'd.
6487 * Don't use cgroup_get_live().
6488 */
6489 cgroup_get(cgrp);
6490 cgroup_bpf_get(cgrp);
6491 }
6492
cgroup_sk_free(struct sock_cgroup_data * skcd)6493 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6494 {
6495 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6496
6497 cgroup_bpf_put(cgrp);
6498 cgroup_put(cgrp);
6499 }
6500
6501 #endif /* CONFIG_SOCK_CGROUP_DATA */
6502
6503 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6504 int cgroup_bpf_attach(struct cgroup *cgrp,
6505 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6506 struct bpf_cgroup_link *link,
6507 enum bpf_attach_type type,
6508 u32 flags)
6509 {
6510 int ret;
6511
6512 mutex_lock(&cgroup_mutex);
6513 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6514 mutex_unlock(&cgroup_mutex);
6515 return ret;
6516 }
6517
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6518 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6519 enum bpf_attach_type type)
6520 {
6521 int ret;
6522
6523 mutex_lock(&cgroup_mutex);
6524 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6525 mutex_unlock(&cgroup_mutex);
6526 return ret;
6527 }
6528
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6529 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6530 union bpf_attr __user *uattr)
6531 {
6532 int ret;
6533
6534 mutex_lock(&cgroup_mutex);
6535 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6536 mutex_unlock(&cgroup_mutex);
6537 return ret;
6538 }
6539 #endif /* CONFIG_CGROUP_BPF */
6540
6541 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6542 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6543 ssize_t size, const char *prefix)
6544 {
6545 struct cftype *cft;
6546 ssize_t ret = 0;
6547
6548 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6549 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6550 continue;
6551
6552 if (prefix)
6553 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6554
6555 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6556
6557 if (WARN_ON(ret >= size))
6558 break;
6559 }
6560
6561 return ret;
6562 }
6563
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6564 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6565 char *buf)
6566 {
6567 struct cgroup_subsys *ss;
6568 int ssid;
6569 ssize_t ret = 0;
6570
6571 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6572 NULL);
6573
6574 for_each_subsys(ss, ssid)
6575 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6576 PAGE_SIZE - ret,
6577 cgroup_subsys_name[ssid]);
6578
6579 return ret;
6580 }
6581 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6582
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6583 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6584 char *buf)
6585 {
6586 return snprintf(buf, PAGE_SIZE,
6587 "nsdelegate\n"
6588 "memory_localevents\n"
6589 "memory_recursiveprot\n");
6590 }
6591 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6592
6593 static struct attribute *cgroup_sysfs_attrs[] = {
6594 &cgroup_delegate_attr.attr,
6595 &cgroup_features_attr.attr,
6596 NULL,
6597 };
6598
6599 static const struct attribute_group cgroup_sysfs_attr_group = {
6600 .attrs = cgroup_sysfs_attrs,
6601 .name = "cgroup",
6602 };
6603
cgroup_sysfs_init(void)6604 static int __init cgroup_sysfs_init(void)
6605 {
6606 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6607 }
6608 subsys_initcall(cgroup_sysfs_init);
6609
6610 #endif /* CONFIG_SYSFS */
6611