• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159 
160 /*
161  * The default hierarchy always exists but is hidden until mounted for the
162  * first time.  This is for backward compatibility.
163  */
164 static bool cgrp_dfl_visible;
165 
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168 
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171 
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174 
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178 
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181 
182 /*
183  * Assign a monotonically increasing serial number to csses.  It guarantees
184  * cgroups with bigger numbers are newer than those with smaller numbers.
185  * Also, as csses are always appended to the parent's ->children list, it
186  * guarantees that sibling csses are always sorted in the ascending serial
187  * number order on the list.  Protected by cgroup_mutex.
188  */
189 static u64 css_serial_nr_next = 1;
190 
191 /*
192  * These bitmasks identify subsystems with specific features to avoid
193  * having to do iterative checks repeatedly.
194  */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199 
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 	.count		= REFCOUNT_INIT(2),
203 	.user_ns	= &init_user_ns,
204 	.ns.ops		= &cgroupns_operations,
205 	.ns.inum	= PROC_CGROUP_INIT_INO,
206 	.root_cset	= &init_css_set,
207 };
208 
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211 
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 			       struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 					      struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 			      struct cgroup *cgrp, struct cftype cfts[],
223 			      bool is_add);
224 
225 /**
226  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227  * @ssid: subsys ID of interest
228  *
229  * cgroup_subsys_enabled() can only be used with literal subsys names which
230  * is fine for individual subsystems but unsuitable for cgroup core.  This
231  * is slower static_key_enabled() based test indexed by @ssid.
232  */
cgroup_ssid_enabled(int ssid)233 bool cgroup_ssid_enabled(int ssid)
234 {
235 	if (CGROUP_SUBSYS_COUNT == 0)
236 		return false;
237 
238 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240 
241 /**
242  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243  * @cgrp: the cgroup of interest
244  *
245  * The default hierarchy is the v2 interface of cgroup and this function
246  * can be used to test whether a cgroup is on the default hierarchy for
247  * cases where a subsystem should behave differnetly depending on the
248  * interface version.
249  *
250  * List of changed behaviors:
251  *
252  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253  *   and "name" are disallowed.
254  *
255  * - When mounting an existing superblock, mount options should match.
256  *
257  * - Remount is disallowed.
258  *
259  * - rename(2) is disallowed.
260  *
261  * - "tasks" is removed.  Everything should be at process granularity.  Use
262  *   "cgroup.procs" instead.
263  *
264  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
265  *   recycled inbetween reads.
266  *
267  * - "release_agent" and "notify_on_release" are removed.  Replacement
268  *   notification mechanism will be implemented.
269  *
270  * - "cgroup.clone_children" is removed.
271  *
272  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
273  *   and its descendants contain no task; otherwise, 1.  The file also
274  *   generates kernfs notification which can be monitored through poll and
275  *   [di]notify when the value of the file changes.
276  *
277  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278  *   take masks of ancestors with non-empty cpus/mems, instead of being
279  *   moved to an ancestor.
280  *
281  * - cpuset: a task can be moved into an empty cpuset, and again it takes
282  *   masks of ancestors.
283  *
284  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285  *   is not created.
286  *
287  * - blkcg: blk-throttle becomes properly hierarchical.
288  *
289  * - debug: disallowed on the default hierarchy.
290  */
cgroup_on_dfl(const struct cgroup * cgrp)291 bool cgroup_on_dfl(const struct cgroup *cgrp)
292 {
293 	return cgrp->root == &cgrp_dfl_root;
294 }
295 
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
298 			    gfp_t gfp_mask)
299 {
300 	int ret;
301 
302 	idr_preload(gfp_mask);
303 	spin_lock_bh(&cgroup_idr_lock);
304 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
305 	spin_unlock_bh(&cgroup_idr_lock);
306 	idr_preload_end();
307 	return ret;
308 }
309 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
311 {
312 	void *ret;
313 
314 	spin_lock_bh(&cgroup_idr_lock);
315 	ret = idr_replace(idr, ptr, id);
316 	spin_unlock_bh(&cgroup_idr_lock);
317 	return ret;
318 }
319 
cgroup_idr_remove(struct idr * idr,int id)320 static void cgroup_idr_remove(struct idr *idr, int id)
321 {
322 	spin_lock_bh(&cgroup_idr_lock);
323 	idr_remove(idr, id);
324 	spin_unlock_bh(&cgroup_idr_lock);
325 }
326 
cgroup_has_tasks(struct cgroup * cgrp)327 static bool cgroup_has_tasks(struct cgroup *cgrp)
328 {
329 	return cgrp->nr_populated_csets;
330 }
331 
cgroup_is_threaded(struct cgroup * cgrp)332 bool cgroup_is_threaded(struct cgroup *cgrp)
333 {
334 	return cgrp->dom_cgrp != cgrp;
335 }
336 
337 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)338 static bool cgroup_is_mixable(struct cgroup *cgrp)
339 {
340 	/*
341 	 * Root isn't under domain level resource control exempting it from
342 	 * the no-internal-process constraint, so it can serve as a thread
343 	 * root and a parent of resource domains at the same time.
344 	 */
345 	return !cgroup_parent(cgrp);
346 }
347 
348 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
350 {
351 	/* mixables don't care */
352 	if (cgroup_is_mixable(cgrp))
353 		return true;
354 
355 	/* domain roots can't be nested under threaded */
356 	if (cgroup_is_threaded(cgrp))
357 		return false;
358 
359 	/* can only have either domain or threaded children */
360 	if (cgrp->nr_populated_domain_children)
361 		return false;
362 
363 	/* and no domain controllers can be enabled */
364 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
365 		return false;
366 
367 	return true;
368 }
369 
370 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)371 bool cgroup_is_thread_root(struct cgroup *cgrp)
372 {
373 	/* thread root should be a domain */
374 	if (cgroup_is_threaded(cgrp))
375 		return false;
376 
377 	/* a domain w/ threaded children is a thread root */
378 	if (cgrp->nr_threaded_children)
379 		return true;
380 
381 	/*
382 	 * A domain which has tasks and explicit threaded controllers
383 	 * enabled is a thread root.
384 	 */
385 	if (cgroup_has_tasks(cgrp) &&
386 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
387 		return true;
388 
389 	return false;
390 }
391 
392 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)393 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
394 {
395 	/* the cgroup itself can be a thread root */
396 	if (cgroup_is_threaded(cgrp))
397 		return false;
398 
399 	/* but the ancestors can't be unless mixable */
400 	while ((cgrp = cgroup_parent(cgrp))) {
401 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
402 			return false;
403 		if (cgroup_is_threaded(cgrp))
404 			return false;
405 	}
406 
407 	return true;
408 }
409 
410 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)411 static u16 cgroup_control(struct cgroup *cgrp)
412 {
413 	struct cgroup *parent = cgroup_parent(cgrp);
414 	u16 root_ss_mask = cgrp->root->subsys_mask;
415 
416 	if (parent) {
417 		u16 ss_mask = parent->subtree_control;
418 
419 		/* threaded cgroups can only have threaded controllers */
420 		if (cgroup_is_threaded(cgrp))
421 			ss_mask &= cgrp_dfl_threaded_ss_mask;
422 		return ss_mask;
423 	}
424 
425 	if (cgroup_on_dfl(cgrp))
426 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
427 				  cgrp_dfl_implicit_ss_mask);
428 	return root_ss_mask;
429 }
430 
431 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)432 static u16 cgroup_ss_mask(struct cgroup *cgrp)
433 {
434 	struct cgroup *parent = cgroup_parent(cgrp);
435 
436 	if (parent) {
437 		u16 ss_mask = parent->subtree_ss_mask;
438 
439 		/* threaded cgroups can only have threaded controllers */
440 		if (cgroup_is_threaded(cgrp))
441 			ss_mask &= cgrp_dfl_threaded_ss_mask;
442 		return ss_mask;
443 	}
444 
445 	return cgrp->root->subsys_mask;
446 }
447 
448 /**
449  * cgroup_css - obtain a cgroup's css for the specified subsystem
450  * @cgrp: the cgroup of interest
451  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
452  *
453  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
454  * function must be called either under cgroup_mutex or rcu_read_lock() and
455  * the caller is responsible for pinning the returned css if it wants to
456  * keep accessing it outside the said locks.  This function may return
457  * %NULL if @cgrp doesn't have @subsys_id enabled.
458  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
460 					      struct cgroup_subsys *ss)
461 {
462 	if (ss)
463 		return rcu_dereference_check(cgrp->subsys[ss->id],
464 					lockdep_is_held(&cgroup_mutex));
465 	else
466 		return &cgrp->self;
467 }
468 
469 /**
470  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471  * @cgrp: the cgroup of interest
472  * @ss: the subsystem of interest
473  *
474  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
475  * or is offline, %NULL is returned.
476  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
478 						     struct cgroup_subsys *ss)
479 {
480 	struct cgroup_subsys_state *css;
481 
482 	rcu_read_lock();
483 	css = cgroup_css(cgrp, ss);
484 	if (css && !css_tryget_online(css))
485 		css = NULL;
486 	rcu_read_unlock();
487 
488 	return css;
489 }
490 
491 /**
492  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
493  * @cgrp: the cgroup of interest
494  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
495  *
496  * Similar to cgroup_css() but returns the effective css, which is defined
497  * as the matching css of the nearest ancestor including self which has @ss
498  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
499  * function is guaranteed to return non-NULL css.
500  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
502 							struct cgroup_subsys *ss)
503 {
504 	lockdep_assert_held(&cgroup_mutex);
505 
506 	if (!ss)
507 		return &cgrp->self;
508 
509 	/*
510 	 * This function is used while updating css associations and thus
511 	 * can't test the csses directly.  Test ss_mask.
512 	 */
513 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
514 		cgrp = cgroup_parent(cgrp);
515 		if (!cgrp)
516 			return NULL;
517 	}
518 
519 	return cgroup_css(cgrp, ss);
520 }
521 
522 /**
523  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
524  * @cgrp: the cgroup of interest
525  * @ss: the subsystem of interest
526  *
527  * Find and get the effective css of @cgrp for @ss.  The effective css is
528  * defined as the matching css of the nearest ancestor including self which
529  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
530  * the root css is returned, so this function always returns a valid css.
531  *
532  * The returned css is not guaranteed to be online, and therefore it is the
533  * callers responsiblity to tryget a reference for it.
534  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
536 					 struct cgroup_subsys *ss)
537 {
538 	struct cgroup_subsys_state *css;
539 
540 	do {
541 		css = cgroup_css(cgrp, ss);
542 
543 		if (css)
544 			return css;
545 		cgrp = cgroup_parent(cgrp);
546 	} while (cgrp);
547 
548 	return init_css_set.subsys[ss->id];
549 }
550 
551 /**
552  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
553  * @cgrp: the cgroup of interest
554  * @ss: the subsystem of interest
555  *
556  * Find and get the effective css of @cgrp for @ss.  The effective css is
557  * defined as the matching css of the nearest ancestor including self which
558  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
559  * the root css is returned, so this function always returns a valid css.
560  * The returned css must be put using css_put().
561  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
563 					     struct cgroup_subsys *ss)
564 {
565 	struct cgroup_subsys_state *css;
566 
567 	rcu_read_lock();
568 
569 	do {
570 		css = cgroup_css(cgrp, ss);
571 
572 		if (css && css_tryget_online(css))
573 			goto out_unlock;
574 		cgrp = cgroup_parent(cgrp);
575 	} while (cgrp);
576 
577 	css = init_css_set.subsys[ss->id];
578 	css_get(css);
579 out_unlock:
580 	rcu_read_unlock();
581 	return css;
582 }
583 
cgroup_get_live(struct cgroup * cgrp)584 static void cgroup_get_live(struct cgroup *cgrp)
585 {
586 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
587 	css_get(&cgrp->self);
588 }
589 
590 /**
591  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
592  * is responsible for taking the css_set_lock.
593  * @cgrp: the cgroup in question
594  */
__cgroup_task_count(const struct cgroup * cgrp)595 int __cgroup_task_count(const struct cgroup *cgrp)
596 {
597 	int count = 0;
598 	struct cgrp_cset_link *link;
599 
600 	lockdep_assert_held(&css_set_lock);
601 
602 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
603 		count += link->cset->nr_tasks;
604 
605 	return count;
606 }
607 
608 /**
609  * cgroup_task_count - count the number of tasks in a cgroup.
610  * @cgrp: the cgroup in question
611  */
cgroup_task_count(const struct cgroup * cgrp)612 int cgroup_task_count(const struct cgroup *cgrp)
613 {
614 	int count;
615 
616 	spin_lock_irq(&css_set_lock);
617 	count = __cgroup_task_count(cgrp);
618 	spin_unlock_irq(&css_set_lock);
619 
620 	return count;
621 }
622 
of_css(struct kernfs_open_file * of)623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
624 {
625 	struct cgroup *cgrp = of->kn->parent->priv;
626 	struct cftype *cft = of_cft(of);
627 
628 	/*
629 	 * This is open and unprotected implementation of cgroup_css().
630 	 * seq_css() is only called from a kernfs file operation which has
631 	 * an active reference on the file.  Because all the subsystem
632 	 * files are drained before a css is disassociated with a cgroup,
633 	 * the matching css from the cgroup's subsys table is guaranteed to
634 	 * be and stay valid until the enclosing operation is complete.
635 	 */
636 	if (cft->ss)
637 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
638 	else
639 		return &cgrp->self;
640 }
641 EXPORT_SYMBOL_GPL(of_css);
642 
643 /**
644  * for_each_css - iterate all css's of a cgroup
645  * @css: the iteration cursor
646  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
647  * @cgrp: the target cgroup to iterate css's of
648  *
649  * Should be called under cgroup_[tree_]mutex.
650  */
651 #define for_each_css(css, ssid, cgrp)					\
652 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
653 		if (!((css) = rcu_dereference_check(			\
654 				(cgrp)->subsys[(ssid)],			\
655 				lockdep_is_held(&cgroup_mutex)))) { }	\
656 		else
657 
658 /**
659  * for_each_e_css - iterate all effective css's of a cgroup
660  * @css: the iteration cursor
661  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
662  * @cgrp: the target cgroup to iterate css's of
663  *
664  * Should be called under cgroup_[tree_]mutex.
665  */
666 #define for_each_e_css(css, ssid, cgrp)					    \
667 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
668 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
669 						   cgroup_subsys[(ssid)]))) \
670 			;						    \
671 		else
672 
673 /**
674  * do_each_subsys_mask - filter for_each_subsys with a bitmask
675  * @ss: the iteration cursor
676  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
677  * @ss_mask: the bitmask
678  *
679  * The block will only run for cases where the ssid-th bit (1 << ssid) of
680  * @ss_mask is set.
681  */
682 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
683 	unsigned long __ss_mask = (ss_mask);				\
684 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
685 		(ssid) = 0;						\
686 		break;							\
687 	}								\
688 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
689 		(ss) = cgroup_subsys[ssid];				\
690 		{
691 
692 #define while_each_subsys_mask()					\
693 		}							\
694 	}								\
695 } while (false)
696 
697 /* iterate over child cgrps, lock should be held throughout iteration */
698 #define cgroup_for_each_live_child(child, cgrp)				\
699 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
700 		if (({ lockdep_assert_held(&cgroup_mutex);		\
701 		       cgroup_is_dead(child); }))			\
702 			;						\
703 		else
704 
705 /* walk live descendants in preorder */
706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
707 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
708 		if (({ lockdep_assert_held(&cgroup_mutex);		\
709 		       (dsct) = (d_css)->cgroup;			\
710 		       cgroup_is_dead(dsct); }))			\
711 			;						\
712 		else
713 
714 /* walk live descendants in postorder */
715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
716 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
717 		if (({ lockdep_assert_held(&cgroup_mutex);		\
718 		       (dsct) = (d_css)->cgroup;			\
719 		       cgroup_is_dead(dsct); }))			\
720 			;						\
721 		else
722 
723 /*
724  * The default css_set - used by init and its children prior to any
725  * hierarchies being mounted. It contains a pointer to the root state
726  * for each subsystem. Also used to anchor the list of css_sets. Not
727  * reference-counted, to improve performance when child cgroups
728  * haven't been created.
729  */
730 struct css_set init_css_set = {
731 	.refcount		= REFCOUNT_INIT(1),
732 	.dom_cset		= &init_css_set,
733 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
734 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
735 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
736 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
737 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
738 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
739 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
740 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
741 
742 	/*
743 	 * The following field is re-initialized when this cset gets linked
744 	 * in cgroup_init().  However, let's initialize the field
745 	 * statically too so that the default cgroup can be accessed safely
746 	 * early during boot.
747 	 */
748 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
749 };
750 
751 static int css_set_count	= 1;	/* 1 for init_css_set */
752 
css_set_threaded(struct css_set * cset)753 static bool css_set_threaded(struct css_set *cset)
754 {
755 	return cset->dom_cset != cset;
756 }
757 
758 /**
759  * css_set_populated - does a css_set contain any tasks?
760  * @cset: target css_set
761  *
762  * css_set_populated() should be the same as !!cset->nr_tasks at steady
763  * state. However, css_set_populated() can be called while a task is being
764  * added to or removed from the linked list before the nr_tasks is
765  * properly updated. Hence, we can't just look at ->nr_tasks here.
766  */
css_set_populated(struct css_set * cset)767 static bool css_set_populated(struct css_set *cset)
768 {
769 	lockdep_assert_held(&css_set_lock);
770 
771 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
772 }
773 
774 /**
775  * cgroup_update_populated - update the populated count of a cgroup
776  * @cgrp: the target cgroup
777  * @populated: inc or dec populated count
778  *
779  * One of the css_sets associated with @cgrp is either getting its first
780  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
781  * count is propagated towards root so that a given cgroup's
782  * nr_populated_children is zero iff none of its descendants contain any
783  * tasks.
784  *
785  * @cgrp's interface file "cgroup.populated" is zero if both
786  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
787  * 1 otherwise.  When the sum changes from or to zero, userland is notified
788  * that the content of the interface file has changed.  This can be used to
789  * detect when @cgrp and its descendants become populated or empty.
790  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)791 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
792 {
793 	struct cgroup *child = NULL;
794 	int adj = populated ? 1 : -1;
795 
796 	lockdep_assert_held(&css_set_lock);
797 
798 	do {
799 		bool was_populated = cgroup_is_populated(cgrp);
800 
801 		if (!child) {
802 			cgrp->nr_populated_csets += adj;
803 		} else {
804 			if (cgroup_is_threaded(child))
805 				cgrp->nr_populated_threaded_children += adj;
806 			else
807 				cgrp->nr_populated_domain_children += adj;
808 		}
809 
810 		if (was_populated == cgroup_is_populated(cgrp))
811 			break;
812 
813 		cgroup1_check_for_release(cgrp);
814 		TRACE_CGROUP_PATH(notify_populated, cgrp,
815 				  cgroup_is_populated(cgrp));
816 		cgroup_file_notify(&cgrp->events_file);
817 
818 		child = cgrp;
819 		cgrp = cgroup_parent(cgrp);
820 	} while (cgrp);
821 }
822 
823 /**
824  * css_set_update_populated - update populated state of a css_set
825  * @cset: target css_set
826  * @populated: whether @cset is populated or depopulated
827  *
828  * @cset is either getting the first task or losing the last.  Update the
829  * populated counters of all associated cgroups accordingly.
830  */
css_set_update_populated(struct css_set * cset,bool populated)831 static void css_set_update_populated(struct css_set *cset, bool populated)
832 {
833 	struct cgrp_cset_link *link;
834 
835 	lockdep_assert_held(&css_set_lock);
836 
837 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
838 		cgroup_update_populated(link->cgrp, populated);
839 }
840 
841 /*
842  * @task is leaving, advance task iterators which are pointing to it so
843  * that they can resume at the next position.  Advancing an iterator might
844  * remove it from the list, use safe walk.  See css_task_iter_skip() for
845  * details.
846  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)847 static void css_set_skip_task_iters(struct css_set *cset,
848 				    struct task_struct *task)
849 {
850 	struct css_task_iter *it, *pos;
851 
852 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
853 		css_task_iter_skip(it, task);
854 }
855 
856 /**
857  * css_set_move_task - move a task from one css_set to another
858  * @task: task being moved
859  * @from_cset: css_set @task currently belongs to (may be NULL)
860  * @to_cset: new css_set @task is being moved to (may be NULL)
861  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
862  *
863  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
864  * css_set, @from_cset can be NULL.  If @task is being disassociated
865  * instead of moved, @to_cset can be NULL.
866  *
867  * This function automatically handles populated counter updates and
868  * css_task_iter adjustments but the caller is responsible for managing
869  * @from_cset and @to_cset's reference counts.
870  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)871 static void css_set_move_task(struct task_struct *task,
872 			      struct css_set *from_cset, struct css_set *to_cset,
873 			      bool use_mg_tasks)
874 {
875 	lockdep_assert_held(&css_set_lock);
876 
877 	if (to_cset && !css_set_populated(to_cset))
878 		css_set_update_populated(to_cset, true);
879 
880 	if (from_cset) {
881 		WARN_ON_ONCE(list_empty(&task->cg_list));
882 
883 		css_set_skip_task_iters(from_cset, task);
884 		list_del_init(&task->cg_list);
885 		if (!css_set_populated(from_cset))
886 			css_set_update_populated(from_cset, false);
887 	} else {
888 		WARN_ON_ONCE(!list_empty(&task->cg_list));
889 	}
890 
891 	if (to_cset) {
892 		/*
893 		 * We are synchronized through cgroup_threadgroup_rwsem
894 		 * against PF_EXITING setting such that we can't race
895 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
896 		 */
897 		WARN_ON_ONCE(task->flags & PF_EXITING);
898 
899 		cgroup_move_task(task, to_cset);
900 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
901 							     &to_cset->tasks);
902 	}
903 }
904 
905 /*
906  * hash table for cgroup groups. This improves the performance to find
907  * an existing css_set. This hash doesn't (currently) take into
908  * account cgroups in empty hierarchies.
909  */
910 #define CSS_SET_HASH_BITS	7
911 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
912 
css_set_hash(struct cgroup_subsys_state * css[])913 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
914 {
915 	unsigned long key = 0UL;
916 	struct cgroup_subsys *ss;
917 	int i;
918 
919 	for_each_subsys(ss, i)
920 		key += (unsigned long)css[i];
921 	key = (key >> 16) ^ key;
922 
923 	return key;
924 }
925 
put_css_set_locked(struct css_set * cset)926 void put_css_set_locked(struct css_set *cset)
927 {
928 	struct cgrp_cset_link *link, *tmp_link;
929 	struct cgroup_subsys *ss;
930 	int ssid;
931 
932 	lockdep_assert_held(&css_set_lock);
933 
934 	if (!refcount_dec_and_test(&cset->refcount))
935 		return;
936 
937 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
938 
939 	/* This css_set is dead. unlink it and release cgroup and css refs */
940 	for_each_subsys(ss, ssid) {
941 		list_del(&cset->e_cset_node[ssid]);
942 		css_put(cset->subsys[ssid]);
943 	}
944 	hash_del(&cset->hlist);
945 	css_set_count--;
946 
947 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
948 		list_del(&link->cset_link);
949 		list_del(&link->cgrp_link);
950 		if (cgroup_parent(link->cgrp))
951 			cgroup_put(link->cgrp);
952 		kfree(link);
953 	}
954 
955 	if (css_set_threaded(cset)) {
956 		list_del(&cset->threaded_csets_node);
957 		put_css_set_locked(cset->dom_cset);
958 	}
959 
960 	kfree_rcu(cset, rcu_head);
961 }
962 
963 /**
964  * compare_css_sets - helper function for find_existing_css_set().
965  * @cset: candidate css_set being tested
966  * @old_cset: existing css_set for a task
967  * @new_cgrp: cgroup that's being entered by the task
968  * @template: desired set of css pointers in css_set (pre-calculated)
969  *
970  * Returns true if "cset" matches "old_cset" except for the hierarchy
971  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
972  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])973 static bool compare_css_sets(struct css_set *cset,
974 			     struct css_set *old_cset,
975 			     struct cgroup *new_cgrp,
976 			     struct cgroup_subsys_state *template[])
977 {
978 	struct cgroup *new_dfl_cgrp;
979 	struct list_head *l1, *l2;
980 
981 	/*
982 	 * On the default hierarchy, there can be csets which are
983 	 * associated with the same set of cgroups but different csses.
984 	 * Let's first ensure that csses match.
985 	 */
986 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
987 		return false;
988 
989 
990 	/* @cset's domain should match the default cgroup's */
991 	if (cgroup_on_dfl(new_cgrp))
992 		new_dfl_cgrp = new_cgrp;
993 	else
994 		new_dfl_cgrp = old_cset->dfl_cgrp;
995 
996 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
997 		return false;
998 
999 	/*
1000 	 * Compare cgroup pointers in order to distinguish between
1001 	 * different cgroups in hierarchies.  As different cgroups may
1002 	 * share the same effective css, this comparison is always
1003 	 * necessary.
1004 	 */
1005 	l1 = &cset->cgrp_links;
1006 	l2 = &old_cset->cgrp_links;
1007 	while (1) {
1008 		struct cgrp_cset_link *link1, *link2;
1009 		struct cgroup *cgrp1, *cgrp2;
1010 
1011 		l1 = l1->next;
1012 		l2 = l2->next;
1013 		/* See if we reached the end - both lists are equal length. */
1014 		if (l1 == &cset->cgrp_links) {
1015 			BUG_ON(l2 != &old_cset->cgrp_links);
1016 			break;
1017 		} else {
1018 			BUG_ON(l2 == &old_cset->cgrp_links);
1019 		}
1020 		/* Locate the cgroups associated with these links. */
1021 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023 		cgrp1 = link1->cgrp;
1024 		cgrp2 = link2->cgrp;
1025 		/* Hierarchies should be linked in the same order. */
1026 		BUG_ON(cgrp1->root != cgrp2->root);
1027 
1028 		/*
1029 		 * If this hierarchy is the hierarchy of the cgroup
1030 		 * that's changing, then we need to check that this
1031 		 * css_set points to the new cgroup; if it's any other
1032 		 * hierarchy, then this css_set should point to the
1033 		 * same cgroup as the old css_set.
1034 		 */
1035 		if (cgrp1->root == new_cgrp->root) {
1036 			if (cgrp1 != new_cgrp)
1037 				return false;
1038 		} else {
1039 			if (cgrp1 != cgrp2)
1040 				return false;
1041 		}
1042 	}
1043 	return true;
1044 }
1045 
1046 /**
1047  * find_existing_css_set - init css array and find the matching css_set
1048  * @old_cset: the css_set that we're using before the cgroup transition
1049  * @cgrp: the cgroup that we're moving into
1050  * @template: out param for the new set of csses, should be clear on entry
1051  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1052 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053 					struct cgroup *cgrp,
1054 					struct cgroup_subsys_state *template[])
1055 {
1056 	struct cgroup_root *root = cgrp->root;
1057 	struct cgroup_subsys *ss;
1058 	struct css_set *cset;
1059 	unsigned long key;
1060 	int i;
1061 
1062 	/*
1063 	 * Build the set of subsystem state objects that we want to see in the
1064 	 * new css_set. while subsystems can change globally, the entries here
1065 	 * won't change, so no need for locking.
1066 	 */
1067 	for_each_subsys(ss, i) {
1068 		if (root->subsys_mask & (1UL << i)) {
1069 			/*
1070 			 * @ss is in this hierarchy, so we want the
1071 			 * effective css from @cgrp.
1072 			 */
1073 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074 		} else {
1075 			/*
1076 			 * @ss is not in this hierarchy, so we don't want
1077 			 * to change the css.
1078 			 */
1079 			template[i] = old_cset->subsys[i];
1080 		}
1081 	}
1082 
1083 	key = css_set_hash(template);
1084 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1085 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1086 			continue;
1087 
1088 		/* This css_set matches what we need */
1089 		return cset;
1090 	}
1091 
1092 	/* No existing cgroup group matched */
1093 	return NULL;
1094 }
1095 
free_cgrp_cset_links(struct list_head * links_to_free)1096 static void free_cgrp_cset_links(struct list_head *links_to_free)
1097 {
1098 	struct cgrp_cset_link *link, *tmp_link;
1099 
1100 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101 		list_del(&link->cset_link);
1102 		kfree(link);
1103 	}
1104 }
1105 
1106 /**
1107  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108  * @count: the number of links to allocate
1109  * @tmp_links: list_head the allocated links are put on
1110  *
1111  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112  * through ->cset_link.  Returns 0 on success or -errno.
1113  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1114 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115 {
1116 	struct cgrp_cset_link *link;
1117 	int i;
1118 
1119 	INIT_LIST_HEAD(tmp_links);
1120 
1121 	for (i = 0; i < count; i++) {
1122 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1123 		if (!link) {
1124 			free_cgrp_cset_links(tmp_links);
1125 			return -ENOMEM;
1126 		}
1127 		list_add(&link->cset_link, tmp_links);
1128 	}
1129 	return 0;
1130 }
1131 
1132 /**
1133  * link_css_set - a helper function to link a css_set to a cgroup
1134  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135  * @cset: the css_set to be linked
1136  * @cgrp: the destination cgroup
1137  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1138 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139 			 struct cgroup *cgrp)
1140 {
1141 	struct cgrp_cset_link *link;
1142 
1143 	BUG_ON(list_empty(tmp_links));
1144 
1145 	if (cgroup_on_dfl(cgrp))
1146 		cset->dfl_cgrp = cgrp;
1147 
1148 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149 	link->cset = cset;
1150 	link->cgrp = cgrp;
1151 
1152 	/*
1153 	 * Always add links to the tail of the lists so that the lists are
1154 	 * in choronological order.
1155 	 */
1156 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1157 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158 
1159 	if (cgroup_parent(cgrp))
1160 		cgroup_get_live(cgrp);
1161 }
1162 
1163 /**
1164  * find_css_set - return a new css_set with one cgroup updated
1165  * @old_cset: the baseline css_set
1166  * @cgrp: the cgroup to be updated
1167  *
1168  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169  * substituted into the appropriate hierarchy.
1170  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1171 static struct css_set *find_css_set(struct css_set *old_cset,
1172 				    struct cgroup *cgrp)
1173 {
1174 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175 	struct css_set *cset;
1176 	struct list_head tmp_links;
1177 	struct cgrp_cset_link *link;
1178 	struct cgroup_subsys *ss;
1179 	unsigned long key;
1180 	int ssid;
1181 
1182 	lockdep_assert_held(&cgroup_mutex);
1183 
1184 	/* First see if we already have a cgroup group that matches
1185 	 * the desired set */
1186 	spin_lock_irq(&css_set_lock);
1187 	cset = find_existing_css_set(old_cset, cgrp, template);
1188 	if (cset)
1189 		get_css_set(cset);
1190 	spin_unlock_irq(&css_set_lock);
1191 
1192 	if (cset)
1193 		return cset;
1194 
1195 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196 	if (!cset)
1197 		return NULL;
1198 
1199 	/* Allocate all the cgrp_cset_link objects that we'll need */
1200 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201 		kfree(cset);
1202 		return NULL;
1203 	}
1204 
1205 	refcount_set(&cset->refcount, 1);
1206 	cset->dom_cset = cset;
1207 	INIT_LIST_HEAD(&cset->tasks);
1208 	INIT_LIST_HEAD(&cset->mg_tasks);
1209 	INIT_LIST_HEAD(&cset->dying_tasks);
1210 	INIT_LIST_HEAD(&cset->task_iters);
1211 	INIT_LIST_HEAD(&cset->threaded_csets);
1212 	INIT_HLIST_NODE(&cset->hlist);
1213 	INIT_LIST_HEAD(&cset->cgrp_links);
1214 	INIT_LIST_HEAD(&cset->mg_preload_node);
1215 	INIT_LIST_HEAD(&cset->mg_node);
1216 
1217 	/* Copy the set of subsystem state objects generated in
1218 	 * find_existing_css_set() */
1219 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220 
1221 	spin_lock_irq(&css_set_lock);
1222 	/* Add reference counts and links from the new css_set. */
1223 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 		struct cgroup *c = link->cgrp;
1225 
1226 		if (c->root == cgrp->root)
1227 			c = cgrp;
1228 		link_css_set(&tmp_links, cset, c);
1229 	}
1230 
1231 	BUG_ON(!list_empty(&tmp_links));
1232 
1233 	css_set_count++;
1234 
1235 	/* Add @cset to the hash table */
1236 	key = css_set_hash(cset->subsys);
1237 	hash_add(css_set_table, &cset->hlist, key);
1238 
1239 	for_each_subsys(ss, ssid) {
1240 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241 
1242 		list_add_tail(&cset->e_cset_node[ssid],
1243 			      &css->cgroup->e_csets[ssid]);
1244 		css_get(css);
1245 	}
1246 
1247 	spin_unlock_irq(&css_set_lock);
1248 
1249 	/*
1250 	 * If @cset should be threaded, look up the matching dom_cset and
1251 	 * link them up.  We first fully initialize @cset then look for the
1252 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253 	 * to stay empty until we return.
1254 	 */
1255 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 		struct css_set *dcset;
1257 
1258 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 		if (!dcset) {
1260 			put_css_set(cset);
1261 			return NULL;
1262 		}
1263 
1264 		spin_lock_irq(&css_set_lock);
1265 		cset->dom_cset = dcset;
1266 		list_add_tail(&cset->threaded_csets_node,
1267 			      &dcset->threaded_csets);
1268 		spin_unlock_irq(&css_set_lock);
1269 	}
1270 
1271 	return cset;
1272 }
1273 
cgroup_root_from_kf(struct kernfs_root * kf_root)1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 	struct cgroup *root_cgrp = kf_root->kn->priv;
1277 
1278 	return root_cgrp->root;
1279 }
1280 
cgroup_init_root_id(struct cgroup_root * root)1281 static int cgroup_init_root_id(struct cgroup_root *root)
1282 {
1283 	int id;
1284 
1285 	lockdep_assert_held(&cgroup_mutex);
1286 
1287 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288 	if (id < 0)
1289 		return id;
1290 
1291 	root->hierarchy_id = id;
1292 	return 0;
1293 }
1294 
cgroup_exit_root_id(struct cgroup_root * root)1295 static void cgroup_exit_root_id(struct cgroup_root *root)
1296 {
1297 	lockdep_assert_held(&cgroup_mutex);
1298 
1299 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300 }
1301 
cgroup_free_root(struct cgroup_root * root)1302 void cgroup_free_root(struct cgroup_root *root)
1303 {
1304 	kfree(root);
1305 }
1306 
cgroup_destroy_root(struct cgroup_root * root)1307 static void cgroup_destroy_root(struct cgroup_root *root)
1308 {
1309 	struct cgroup *cgrp = &root->cgrp;
1310 	struct cgrp_cset_link *link, *tmp_link;
1311 
1312 	trace_cgroup_destroy_root(root);
1313 
1314 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315 
1316 	BUG_ON(atomic_read(&root->nr_cgrps));
1317 	BUG_ON(!list_empty(&cgrp->self.children));
1318 
1319 	/* Rebind all subsystems back to the default hierarchy */
1320 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321 
1322 	/*
1323 	 * Release all the links from cset_links to this hierarchy's
1324 	 * root cgroup
1325 	 */
1326 	spin_lock_irq(&css_set_lock);
1327 
1328 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329 		list_del(&link->cset_link);
1330 		list_del(&link->cgrp_link);
1331 		kfree(link);
1332 	}
1333 
1334 	spin_unlock_irq(&css_set_lock);
1335 
1336 	if (!list_empty(&root->root_list)) {
1337 		list_del(&root->root_list);
1338 		cgroup_root_count--;
1339 	}
1340 
1341 	cgroup_exit_root_id(root);
1342 
1343 	mutex_unlock(&cgroup_mutex);
1344 
1345 	kernfs_destroy_root(root->kf_root);
1346 	cgroup_free_root(root);
1347 }
1348 
1349 /*
1350  * look up cgroup associated with current task's cgroup namespace on the
1351  * specified hierarchy
1352  */
1353 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1354 current_cgns_cgroup_from_root(struct cgroup_root *root)
1355 {
1356 	struct cgroup *res = NULL;
1357 	struct css_set *cset;
1358 
1359 	lockdep_assert_held(&css_set_lock);
1360 
1361 	rcu_read_lock();
1362 
1363 	cset = current->nsproxy->cgroup_ns->root_cset;
1364 	if (cset == &init_css_set) {
1365 		res = &root->cgrp;
1366 	} else if (root == &cgrp_dfl_root) {
1367 		res = cset->dfl_cgrp;
1368 	} else {
1369 		struct cgrp_cset_link *link;
1370 
1371 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372 			struct cgroup *c = link->cgrp;
1373 
1374 			if (c->root == root) {
1375 				res = c;
1376 				break;
1377 			}
1378 		}
1379 	}
1380 	rcu_read_unlock();
1381 
1382 	BUG_ON(!res);
1383 	return res;
1384 }
1385 
1386 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1387 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388 					    struct cgroup_root *root)
1389 {
1390 	struct cgroup *res = NULL;
1391 
1392 	lockdep_assert_held(&cgroup_mutex);
1393 	lockdep_assert_held(&css_set_lock);
1394 
1395 	if (cset == &init_css_set) {
1396 		res = &root->cgrp;
1397 	} else if (root == &cgrp_dfl_root) {
1398 		res = cset->dfl_cgrp;
1399 	} else {
1400 		struct cgrp_cset_link *link;
1401 
1402 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403 			struct cgroup *c = link->cgrp;
1404 
1405 			if (c->root == root) {
1406 				res = c;
1407 				break;
1408 			}
1409 		}
1410 	}
1411 
1412 	BUG_ON(!res);
1413 	return res;
1414 }
1415 
1416 /*
1417  * Return the cgroup for "task" from the given hierarchy. Must be
1418  * called with cgroup_mutex and css_set_lock held.
1419  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1420 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421 				     struct cgroup_root *root)
1422 {
1423 	/*
1424 	 * No need to lock the task - since we hold css_set_lock the
1425 	 * task can't change groups.
1426 	 */
1427 	return cset_cgroup_from_root(task_css_set(task), root);
1428 }
1429 
1430 /*
1431  * A task must hold cgroup_mutex to modify cgroups.
1432  *
1433  * Any task can increment and decrement the count field without lock.
1434  * So in general, code holding cgroup_mutex can't rely on the count
1435  * field not changing.  However, if the count goes to zero, then only
1436  * cgroup_attach_task() can increment it again.  Because a count of zero
1437  * means that no tasks are currently attached, therefore there is no
1438  * way a task attached to that cgroup can fork (the other way to
1439  * increment the count).  So code holding cgroup_mutex can safely
1440  * assume that if the count is zero, it will stay zero. Similarly, if
1441  * a task holds cgroup_mutex on a cgroup with zero count, it
1442  * knows that the cgroup won't be removed, as cgroup_rmdir()
1443  * needs that mutex.
1444  *
1445  * A cgroup can only be deleted if both its 'count' of using tasks
1446  * is zero, and its list of 'children' cgroups is empty.  Since all
1447  * tasks in the system use _some_ cgroup, and since there is always at
1448  * least one task in the system (init, pid == 1), therefore, root cgroup
1449  * always has either children cgroups and/or using tasks.  So we don't
1450  * need a special hack to ensure that root cgroup cannot be deleted.
1451  *
1452  * P.S.  One more locking exception.  RCU is used to guard the
1453  * update of a tasks cgroup pointer by cgroup_attach_task()
1454  */
1455 
1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1458 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459 			      char *buf)
1460 {
1461 	struct cgroup_subsys *ss = cft->ss;
1462 
1463 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466 
1467 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469 			 cft->name);
1470 	} else {
1471 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472 	}
1473 	return buf;
1474 }
1475 
1476 /**
1477  * cgroup_file_mode - deduce file mode of a control file
1478  * @cft: the control file in question
1479  *
1480  * S_IRUGO for read, S_IWUSR for write.
1481  */
cgroup_file_mode(const struct cftype * cft)1482 static umode_t cgroup_file_mode(const struct cftype *cft)
1483 {
1484 	umode_t mode = 0;
1485 
1486 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487 		mode |= S_IRUGO;
1488 
1489 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1490 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491 			mode |= S_IWUGO;
1492 		else
1493 			mode |= S_IWUSR;
1494 	}
1495 
1496 	return mode;
1497 }
1498 
1499 /**
1500  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501  * @subtree_control: the new subtree_control mask to consider
1502  * @this_ss_mask: available subsystems
1503  *
1504  * On the default hierarchy, a subsystem may request other subsystems to be
1505  * enabled together through its ->depends_on mask.  In such cases, more
1506  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507  *
1508  * This function calculates which subsystems need to be enabled if
1509  * @subtree_control is to be applied while restricted to @this_ss_mask.
1510  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1511 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512 {
1513 	u16 cur_ss_mask = subtree_control;
1514 	struct cgroup_subsys *ss;
1515 	int ssid;
1516 
1517 	lockdep_assert_held(&cgroup_mutex);
1518 
1519 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520 
1521 	while (true) {
1522 		u16 new_ss_mask = cur_ss_mask;
1523 
1524 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525 			new_ss_mask |= ss->depends_on;
1526 		} while_each_subsys_mask();
1527 
1528 		/*
1529 		 * Mask out subsystems which aren't available.  This can
1530 		 * happen only if some depended-upon subsystems were bound
1531 		 * to non-default hierarchies.
1532 		 */
1533 		new_ss_mask &= this_ss_mask;
1534 
1535 		if (new_ss_mask == cur_ss_mask)
1536 			break;
1537 		cur_ss_mask = new_ss_mask;
1538 	}
1539 
1540 	return cur_ss_mask;
1541 }
1542 
1543 /**
1544  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545  * @kn: the kernfs_node being serviced
1546  *
1547  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548  * the method finishes if locking succeeded.  Note that once this function
1549  * returns the cgroup returned by cgroup_kn_lock_live() may become
1550  * inaccessible any time.  If the caller intends to continue to access the
1551  * cgroup, it should pin it before invoking this function.
1552  */
cgroup_kn_unlock(struct kernfs_node * kn)1553 void cgroup_kn_unlock(struct kernfs_node *kn)
1554 {
1555 	struct cgroup *cgrp;
1556 
1557 	if (kernfs_type(kn) == KERNFS_DIR)
1558 		cgrp = kn->priv;
1559 	else
1560 		cgrp = kn->parent->priv;
1561 
1562 	mutex_unlock(&cgroup_mutex);
1563 
1564 	kernfs_unbreak_active_protection(kn);
1565 	cgroup_put(cgrp);
1566 }
1567 
1568 /**
1569  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570  * @kn: the kernfs_node being serviced
1571  * @drain_offline: perform offline draining on the cgroup
1572  *
1573  * This helper is to be used by a cgroup kernfs method currently servicing
1574  * @kn.  It breaks the active protection, performs cgroup locking and
1575  * verifies that the associated cgroup is alive.  Returns the cgroup if
1576  * alive; otherwise, %NULL.  A successful return should be undone by a
1577  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1578  * cgroup is drained of offlining csses before return.
1579  *
1580  * Any cgroup kernfs method implementation which requires locking the
1581  * associated cgroup should use this helper.  It avoids nesting cgroup
1582  * locking under kernfs active protection and allows all kernfs operations
1583  * including self-removal.
1584  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1585 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586 {
1587 	struct cgroup *cgrp;
1588 
1589 	if (kernfs_type(kn) == KERNFS_DIR)
1590 		cgrp = kn->priv;
1591 	else
1592 		cgrp = kn->parent->priv;
1593 
1594 	/*
1595 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1596 	 * active_ref.  cgroup liveliness check alone provides enough
1597 	 * protection against removal.  Ensure @cgrp stays accessible and
1598 	 * break the active_ref protection.
1599 	 */
1600 	if (!cgroup_tryget(cgrp))
1601 		return NULL;
1602 	kernfs_break_active_protection(kn);
1603 
1604 	if (drain_offline)
1605 		cgroup_lock_and_drain_offline(cgrp);
1606 	else
1607 		mutex_lock(&cgroup_mutex);
1608 
1609 	if (!cgroup_is_dead(cgrp))
1610 		return cgrp;
1611 
1612 	cgroup_kn_unlock(kn);
1613 	return NULL;
1614 }
1615 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1616 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617 {
1618 	char name[CGROUP_FILE_NAME_MAX];
1619 
1620 	lockdep_assert_held(&cgroup_mutex);
1621 
1622 	if (cft->file_offset) {
1623 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625 
1626 		spin_lock_irq(&cgroup_file_kn_lock);
1627 		cfile->kn = NULL;
1628 		spin_unlock_irq(&cgroup_file_kn_lock);
1629 
1630 		del_timer_sync(&cfile->notify_timer);
1631 	}
1632 
1633 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634 }
1635 
1636 /**
1637  * css_clear_dir - remove subsys files in a cgroup directory
1638  * @css: taget css
1639  */
css_clear_dir(struct cgroup_subsys_state * css)1640 static void css_clear_dir(struct cgroup_subsys_state *css)
1641 {
1642 	struct cgroup *cgrp = css->cgroup;
1643 	struct cftype *cfts;
1644 
1645 	if (!(css->flags & CSS_VISIBLE))
1646 		return;
1647 
1648 	css->flags &= ~CSS_VISIBLE;
1649 
1650 	if (!css->ss) {
1651 		if (cgroup_on_dfl(cgrp))
1652 			cfts = cgroup_base_files;
1653 		else
1654 			cfts = cgroup1_base_files;
1655 
1656 		cgroup_addrm_files(css, cgrp, cfts, false);
1657 	} else {
1658 		list_for_each_entry(cfts, &css->ss->cfts, node)
1659 			cgroup_addrm_files(css, cgrp, cfts, false);
1660 	}
1661 }
1662 
1663 /**
1664  * css_populate_dir - create subsys files in a cgroup directory
1665  * @css: target css
1666  *
1667  * On failure, no file is added.
1668  */
css_populate_dir(struct cgroup_subsys_state * css)1669 static int css_populate_dir(struct cgroup_subsys_state *css)
1670 {
1671 	struct cgroup *cgrp = css->cgroup;
1672 	struct cftype *cfts, *failed_cfts;
1673 	int ret;
1674 
1675 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676 		return 0;
1677 
1678 	if (!css->ss) {
1679 		if (cgroup_on_dfl(cgrp))
1680 			cfts = cgroup_base_files;
1681 		else
1682 			cfts = cgroup1_base_files;
1683 
1684 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685 		if (ret < 0)
1686 			return ret;
1687 	} else {
1688 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1689 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690 			if (ret < 0) {
1691 				failed_cfts = cfts;
1692 				goto err;
1693 			}
1694 		}
1695 	}
1696 
1697 	css->flags |= CSS_VISIBLE;
1698 
1699 	return 0;
1700 err:
1701 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1702 		if (cfts == failed_cfts)
1703 			break;
1704 		cgroup_addrm_files(css, cgrp, cfts, false);
1705 	}
1706 	return ret;
1707 }
1708 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1709 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710 {
1711 	struct cgroup *dcgrp = &dst_root->cgrp;
1712 	struct cgroup_subsys *ss;
1713 	int ssid, i, ret;
1714 
1715 	lockdep_assert_held(&cgroup_mutex);
1716 
1717 	do_each_subsys_mask(ss, ssid, ss_mask) {
1718 		/*
1719 		 * If @ss has non-root csses attached to it, can't move.
1720 		 * If @ss is an implicit controller, it is exempt from this
1721 		 * rule and can be stolen.
1722 		 */
1723 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1724 		    !ss->implicit_on_dfl)
1725 			return -EBUSY;
1726 
1727 		/* can't move between two non-dummy roots either */
1728 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1729 			return -EBUSY;
1730 	} while_each_subsys_mask();
1731 
1732 	do_each_subsys_mask(ss, ssid, ss_mask) {
1733 		struct cgroup_root *src_root = ss->root;
1734 		struct cgroup *scgrp = &src_root->cgrp;
1735 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1736 		struct css_set *cset;
1737 
1738 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1739 
1740 		/* disable from the source */
1741 		src_root->subsys_mask &= ~(1 << ssid);
1742 		WARN_ON(cgroup_apply_control(scgrp));
1743 		cgroup_finalize_control(scgrp, 0);
1744 
1745 		/* rebind */
1746 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1747 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1748 		ss->root = dst_root;
1749 		css->cgroup = dcgrp;
1750 
1751 		spin_lock_irq(&css_set_lock);
1752 		hash_for_each(css_set_table, i, cset, hlist)
1753 			list_move_tail(&cset->e_cset_node[ss->id],
1754 				       &dcgrp->e_csets[ss->id]);
1755 		spin_unlock_irq(&css_set_lock);
1756 
1757 		/* default hierarchy doesn't enable controllers by default */
1758 		dst_root->subsys_mask |= 1 << ssid;
1759 		if (dst_root == &cgrp_dfl_root) {
1760 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1761 		} else {
1762 			dcgrp->subtree_control |= 1 << ssid;
1763 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1764 		}
1765 
1766 		ret = cgroup_apply_control(dcgrp);
1767 		if (ret)
1768 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1769 				ss->name, ret);
1770 
1771 		if (ss->bind)
1772 			ss->bind(css);
1773 	} while_each_subsys_mask();
1774 
1775 	kernfs_activate(dcgrp->kn);
1776 	return 0;
1777 }
1778 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1779 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1780 		     struct kernfs_root *kf_root)
1781 {
1782 	int len = 0;
1783 	char *buf = NULL;
1784 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1785 	struct cgroup *ns_cgroup;
1786 
1787 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1788 	if (!buf)
1789 		return -ENOMEM;
1790 
1791 	spin_lock_irq(&css_set_lock);
1792 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1793 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1794 	spin_unlock_irq(&css_set_lock);
1795 
1796 	if (len >= PATH_MAX)
1797 		len = -ERANGE;
1798 	else if (len > 0) {
1799 		seq_escape(sf, buf, " \t\n\\");
1800 		len = 0;
1801 	}
1802 	kfree(buf);
1803 	return len;
1804 }
1805 
1806 enum cgroup2_param {
1807 	Opt_nsdelegate,
1808 	Opt_memory_localevents,
1809 	Opt_memory_recursiveprot,
1810 	nr__cgroup2_params
1811 };
1812 
1813 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1814 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1815 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1816 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1817 	{}
1818 };
1819 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1820 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1821 {
1822 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1823 	struct fs_parse_result result;
1824 	int opt;
1825 
1826 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1827 	if (opt < 0)
1828 		return opt;
1829 
1830 	switch (opt) {
1831 	case Opt_nsdelegate:
1832 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1833 		return 0;
1834 	case Opt_memory_localevents:
1835 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1836 		return 0;
1837 	case Opt_memory_recursiveprot:
1838 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1839 		return 0;
1840 	}
1841 	return -EINVAL;
1842 }
1843 
apply_cgroup_root_flags(unsigned int root_flags)1844 static void apply_cgroup_root_flags(unsigned int root_flags)
1845 {
1846 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849 		else
1850 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1851 
1852 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1853 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1854 		else
1855 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1856 
1857 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1858 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1859 		else
1860 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1861 	}
1862 }
1863 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1864 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1865 {
1866 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1867 		seq_puts(seq, ",nsdelegate");
1868 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1869 		seq_puts(seq, ",memory_localevents");
1870 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1871 		seq_puts(seq, ",memory_recursiveprot");
1872 	return 0;
1873 }
1874 
cgroup_reconfigure(struct fs_context * fc)1875 static int cgroup_reconfigure(struct fs_context *fc)
1876 {
1877 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1878 
1879 	apply_cgroup_root_flags(ctx->flags);
1880 	return 0;
1881 }
1882 
init_cgroup_housekeeping(struct cgroup * cgrp)1883 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884 {
1885 	struct cgroup_subsys *ss;
1886 	int ssid;
1887 
1888 	INIT_LIST_HEAD(&cgrp->self.sibling);
1889 	INIT_LIST_HEAD(&cgrp->self.children);
1890 	INIT_LIST_HEAD(&cgrp->cset_links);
1891 	INIT_LIST_HEAD(&cgrp->pidlists);
1892 	mutex_init(&cgrp->pidlist_mutex);
1893 	cgrp->self.cgroup = cgrp;
1894 	cgrp->self.flags |= CSS_ONLINE;
1895 	cgrp->dom_cgrp = cgrp;
1896 	cgrp->max_descendants = INT_MAX;
1897 	cgrp->max_depth = INT_MAX;
1898 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899 	prev_cputime_init(&cgrp->prev_cputime);
1900 
1901 	for_each_subsys(ss, ssid)
1902 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903 
1904 	init_waitqueue_head(&cgrp->offline_waitq);
1905 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906 }
1907 
init_cgroup_root(struct cgroup_fs_context * ctx)1908 void init_cgroup_root(struct cgroup_fs_context *ctx)
1909 {
1910 	struct cgroup_root *root = ctx->root;
1911 	struct cgroup *cgrp = &root->cgrp;
1912 
1913 	INIT_LIST_HEAD(&root->root_list);
1914 	atomic_set(&root->nr_cgrps, 1);
1915 	cgrp->root = root;
1916 	init_cgroup_housekeeping(cgrp);
1917 	init_waitqueue_head(&root->wait);
1918 
1919 	root->flags = ctx->flags;
1920 	if (ctx->release_agent)
1921 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1922 	if (ctx->name)
1923 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1924 	if (ctx->cpuset_clone_children)
1925 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1926 }
1927 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1928 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1929 {
1930 	LIST_HEAD(tmp_links);
1931 	struct cgroup *root_cgrp = &root->cgrp;
1932 	struct kernfs_syscall_ops *kf_sops;
1933 	struct css_set *cset;
1934 	int i, ret;
1935 
1936 	lockdep_assert_held(&cgroup_mutex);
1937 
1938 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1939 			      0, GFP_KERNEL);
1940 	if (ret)
1941 		goto out;
1942 
1943 	/*
1944 	 * We're accessing css_set_count without locking css_set_lock here,
1945 	 * but that's OK - it can only be increased by someone holding
1946 	 * cgroup_lock, and that's us.  Later rebinding may disable
1947 	 * controllers on the default hierarchy and thus create new csets,
1948 	 * which can't be more than the existing ones.  Allocate 2x.
1949 	 */
1950 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1951 	if (ret)
1952 		goto cancel_ref;
1953 
1954 	ret = cgroup_init_root_id(root);
1955 	if (ret)
1956 		goto cancel_ref;
1957 
1958 	kf_sops = root == &cgrp_dfl_root ?
1959 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1960 
1961 	root->kf_root = kernfs_create_root(kf_sops,
1962 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1963 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1964 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1965 					   root_cgrp);
1966 	if (IS_ERR(root->kf_root)) {
1967 		ret = PTR_ERR(root->kf_root);
1968 		goto exit_root_id;
1969 	}
1970 	root_cgrp->kn = root->kf_root->kn;
1971 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1972 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1973 
1974 	ret = css_populate_dir(&root_cgrp->self);
1975 	if (ret)
1976 		goto destroy_root;
1977 
1978 	ret = rebind_subsystems(root, ss_mask);
1979 	if (ret)
1980 		goto destroy_root;
1981 
1982 	ret = cgroup_bpf_inherit(root_cgrp);
1983 	WARN_ON_ONCE(ret);
1984 
1985 	trace_cgroup_setup_root(root);
1986 
1987 	/*
1988 	 * There must be no failure case after here, since rebinding takes
1989 	 * care of subsystems' refcounts, which are explicitly dropped in
1990 	 * the failure exit path.
1991 	 */
1992 	list_add(&root->root_list, &cgroup_roots);
1993 	cgroup_root_count++;
1994 
1995 	/*
1996 	 * Link the root cgroup in this hierarchy into all the css_set
1997 	 * objects.
1998 	 */
1999 	spin_lock_irq(&css_set_lock);
2000 	hash_for_each(css_set_table, i, cset, hlist) {
2001 		link_css_set(&tmp_links, cset, root_cgrp);
2002 		if (css_set_populated(cset))
2003 			cgroup_update_populated(root_cgrp, true);
2004 	}
2005 	spin_unlock_irq(&css_set_lock);
2006 
2007 	BUG_ON(!list_empty(&root_cgrp->self.children));
2008 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2009 
2010 	ret = 0;
2011 	goto out;
2012 
2013 destroy_root:
2014 	kernfs_destroy_root(root->kf_root);
2015 	root->kf_root = NULL;
2016 exit_root_id:
2017 	cgroup_exit_root_id(root);
2018 cancel_ref:
2019 	percpu_ref_exit(&root_cgrp->self.refcnt);
2020 out:
2021 	free_cgrp_cset_links(&tmp_links);
2022 	return ret;
2023 }
2024 
cgroup_do_get_tree(struct fs_context * fc)2025 int cgroup_do_get_tree(struct fs_context *fc)
2026 {
2027 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2028 	int ret;
2029 
2030 	ctx->kfc.root = ctx->root->kf_root;
2031 	if (fc->fs_type == &cgroup2_fs_type)
2032 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2033 	else
2034 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2035 	ret = kernfs_get_tree(fc);
2036 
2037 	/*
2038 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2039 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2040 	 */
2041 	if (!ret && ctx->ns != &init_cgroup_ns) {
2042 		struct dentry *nsdentry;
2043 		struct super_block *sb = fc->root->d_sb;
2044 		struct cgroup *cgrp;
2045 
2046 		mutex_lock(&cgroup_mutex);
2047 		spin_lock_irq(&css_set_lock);
2048 
2049 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2050 
2051 		spin_unlock_irq(&css_set_lock);
2052 		mutex_unlock(&cgroup_mutex);
2053 
2054 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2055 		dput(fc->root);
2056 		if (IS_ERR(nsdentry)) {
2057 			deactivate_locked_super(sb);
2058 			ret = PTR_ERR(nsdentry);
2059 			nsdentry = NULL;
2060 		}
2061 		fc->root = nsdentry;
2062 	}
2063 
2064 	if (!ctx->kfc.new_sb_created)
2065 		cgroup_put(&ctx->root->cgrp);
2066 
2067 	return ret;
2068 }
2069 
2070 /*
2071  * Destroy a cgroup filesystem context.
2072  */
cgroup_fs_context_free(struct fs_context * fc)2073 static void cgroup_fs_context_free(struct fs_context *fc)
2074 {
2075 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2076 
2077 	kfree(ctx->name);
2078 	kfree(ctx->release_agent);
2079 	put_cgroup_ns(ctx->ns);
2080 	kernfs_free_fs_context(fc);
2081 	kfree(ctx);
2082 }
2083 
cgroup_get_tree(struct fs_context * fc)2084 static int cgroup_get_tree(struct fs_context *fc)
2085 {
2086 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2087 	int ret;
2088 
2089 	cgrp_dfl_visible = true;
2090 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2091 	ctx->root = &cgrp_dfl_root;
2092 
2093 	ret = cgroup_do_get_tree(fc);
2094 	if (!ret)
2095 		apply_cgroup_root_flags(ctx->flags);
2096 	return ret;
2097 }
2098 
2099 static const struct fs_context_operations cgroup_fs_context_ops = {
2100 	.free		= cgroup_fs_context_free,
2101 	.parse_param	= cgroup2_parse_param,
2102 	.get_tree	= cgroup_get_tree,
2103 	.reconfigure	= cgroup_reconfigure,
2104 };
2105 
2106 static const struct fs_context_operations cgroup1_fs_context_ops = {
2107 	.free		= cgroup_fs_context_free,
2108 	.parse_param	= cgroup1_parse_param,
2109 	.get_tree	= cgroup1_get_tree,
2110 	.reconfigure	= cgroup1_reconfigure,
2111 };
2112 
2113 /*
2114  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2115  * we select the namespace we're going to use.
2116  */
cgroup_init_fs_context(struct fs_context * fc)2117 static int cgroup_init_fs_context(struct fs_context *fc)
2118 {
2119 	struct cgroup_fs_context *ctx;
2120 
2121 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2122 	if (!ctx)
2123 		return -ENOMEM;
2124 
2125 	ctx->ns = current->nsproxy->cgroup_ns;
2126 	get_cgroup_ns(ctx->ns);
2127 	fc->fs_private = &ctx->kfc;
2128 	if (fc->fs_type == &cgroup2_fs_type)
2129 		fc->ops = &cgroup_fs_context_ops;
2130 	else
2131 		fc->ops = &cgroup1_fs_context_ops;
2132 	put_user_ns(fc->user_ns);
2133 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2134 	fc->global = true;
2135 	return 0;
2136 }
2137 
cgroup_kill_sb(struct super_block * sb)2138 static void cgroup_kill_sb(struct super_block *sb)
2139 {
2140 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2141 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2142 
2143 	/*
2144 	 * Wait if there are cgroups being destroyed, because the destruction
2145 	 * is asynchronous. On the other hand some controllers like memcg
2146 	 * may pin cgroups for a very long time, so don't wait forever.
2147 	 */
2148 	if (root != &cgrp_dfl_root) {
2149 		wait_event_timeout(root->wait,
2150 				   list_empty(&root->cgrp.self.children),
2151 				   msecs_to_jiffies(500));
2152 	}
2153 
2154 	/*
2155 	 * If @root doesn't have any children, start killing it.
2156 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2157 	 * cgroup_mount() may wait for @root's release.
2158 	 *
2159 	 * And don't kill the default root.
2160 	 */
2161 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2162 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2163 		cgroup_bpf_offline(&root->cgrp);
2164 		percpu_ref_kill(&root->cgrp.self.refcnt);
2165 	}
2166 	cgroup_put(&root->cgrp);
2167 	kernfs_kill_sb(sb);
2168 }
2169 
2170 struct file_system_type cgroup_fs_type = {
2171 	.name			= "cgroup",
2172 	.init_fs_context	= cgroup_init_fs_context,
2173 	.parameters		= cgroup1_fs_parameters,
2174 	.kill_sb		= cgroup_kill_sb,
2175 	.fs_flags		= FS_USERNS_MOUNT,
2176 };
2177 
2178 static struct file_system_type cgroup2_fs_type = {
2179 	.name			= "cgroup2",
2180 	.init_fs_context	= cgroup_init_fs_context,
2181 	.parameters		= cgroup2_fs_parameters,
2182 	.kill_sb		= cgroup_kill_sb,
2183 	.fs_flags		= FS_USERNS_MOUNT,
2184 };
2185 
2186 #ifdef CONFIG_CPUSETS
2187 static const struct fs_context_operations cpuset_fs_context_ops = {
2188 	.get_tree	= cgroup1_get_tree,
2189 	.free		= cgroup_fs_context_free,
2190 };
2191 
2192 /*
2193  * This is ugly, but preserves the userspace API for existing cpuset
2194  * users. If someone tries to mount the "cpuset" filesystem, we
2195  * silently switch it to mount "cgroup" instead
2196  */
cpuset_init_fs_context(struct fs_context * fc)2197 static int cpuset_init_fs_context(struct fs_context *fc)
2198 {
2199 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2200 	struct cgroup_fs_context *ctx;
2201 	int err;
2202 
2203 	err = cgroup_init_fs_context(fc);
2204 	if (err) {
2205 		kfree(agent);
2206 		return err;
2207 	}
2208 
2209 	fc->ops = &cpuset_fs_context_ops;
2210 
2211 	ctx = cgroup_fc2context(fc);
2212 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2213 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2214 	ctx->release_agent = agent;
2215 
2216 	get_filesystem(&cgroup_fs_type);
2217 	put_filesystem(fc->fs_type);
2218 	fc->fs_type = &cgroup_fs_type;
2219 
2220 	return 0;
2221 }
2222 
2223 static struct file_system_type cpuset_fs_type = {
2224 	.name			= "cpuset",
2225 	.init_fs_context	= cpuset_init_fs_context,
2226 	.fs_flags		= FS_USERNS_MOUNT,
2227 };
2228 #endif
2229 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2230 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2231 			  struct cgroup_namespace *ns)
2232 {
2233 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2234 
2235 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2236 }
2237 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2238 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2239 		   struct cgroup_namespace *ns)
2240 {
2241 	int ret;
2242 
2243 	mutex_lock(&cgroup_mutex);
2244 	spin_lock_irq(&css_set_lock);
2245 
2246 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2247 
2248 	spin_unlock_irq(&css_set_lock);
2249 	mutex_unlock(&cgroup_mutex);
2250 
2251 	return ret;
2252 }
2253 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2254 
2255 /**
2256  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2257  * @task: target task
2258  * @buf: the buffer to write the path into
2259  * @buflen: the length of the buffer
2260  *
2261  * Determine @task's cgroup on the first (the one with the lowest non-zero
2262  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2263  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2264  * cgroup controller callbacks.
2265  *
2266  * Return value is the same as kernfs_path().
2267  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2268 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2269 {
2270 	struct cgroup_root *root;
2271 	struct cgroup *cgrp;
2272 	int hierarchy_id = 1;
2273 	int ret;
2274 
2275 	mutex_lock(&cgroup_mutex);
2276 	spin_lock_irq(&css_set_lock);
2277 
2278 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2279 
2280 	if (root) {
2281 		cgrp = task_cgroup_from_root(task, root);
2282 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2283 	} else {
2284 		/* if no hierarchy exists, everyone is in "/" */
2285 		ret = strlcpy(buf, "/", buflen);
2286 	}
2287 
2288 	spin_unlock_irq(&css_set_lock);
2289 	mutex_unlock(&cgroup_mutex);
2290 	return ret;
2291 }
2292 EXPORT_SYMBOL_GPL(task_cgroup_path);
2293 
2294 /**
2295  * cgroup_migrate_add_task - add a migration target task to a migration context
2296  * @task: target task
2297  * @mgctx: target migration context
2298  *
2299  * Add @task, which is a migration target, to @mgctx->tset.  This function
2300  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2301  * should have been added as a migration source and @task->cg_list will be
2302  * moved from the css_set's tasks list to mg_tasks one.
2303  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2304 static void cgroup_migrate_add_task(struct task_struct *task,
2305 				    struct cgroup_mgctx *mgctx)
2306 {
2307 	struct css_set *cset;
2308 
2309 	lockdep_assert_held(&css_set_lock);
2310 
2311 	/* @task either already exited or can't exit until the end */
2312 	if (task->flags & PF_EXITING)
2313 		return;
2314 
2315 	/* cgroup_threadgroup_rwsem protects racing against forks */
2316 	WARN_ON_ONCE(list_empty(&task->cg_list));
2317 
2318 	cset = task_css_set(task);
2319 	if (!cset->mg_src_cgrp)
2320 		return;
2321 
2322 	mgctx->tset.nr_tasks++;
2323 
2324 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2325 	if (list_empty(&cset->mg_node))
2326 		list_add_tail(&cset->mg_node,
2327 			      &mgctx->tset.src_csets);
2328 	if (list_empty(&cset->mg_dst_cset->mg_node))
2329 		list_add_tail(&cset->mg_dst_cset->mg_node,
2330 			      &mgctx->tset.dst_csets);
2331 }
2332 
2333 /**
2334  * cgroup_taskset_first - reset taskset and return the first task
2335  * @tset: taskset of interest
2336  * @dst_cssp: output variable for the destination css
2337  *
2338  * @tset iteration is initialized and the first task is returned.
2339  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2340 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2341 					 struct cgroup_subsys_state **dst_cssp)
2342 {
2343 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2344 	tset->cur_task = NULL;
2345 
2346 	return cgroup_taskset_next(tset, dst_cssp);
2347 }
2348 
2349 /**
2350  * cgroup_taskset_next - iterate to the next task in taskset
2351  * @tset: taskset of interest
2352  * @dst_cssp: output variable for the destination css
2353  *
2354  * Return the next task in @tset.  Iteration must have been initialized
2355  * with cgroup_taskset_first().
2356  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2357 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2358 					struct cgroup_subsys_state **dst_cssp)
2359 {
2360 	struct css_set *cset = tset->cur_cset;
2361 	struct task_struct *task = tset->cur_task;
2362 
2363 	while (&cset->mg_node != tset->csets) {
2364 		if (!task)
2365 			task = list_first_entry(&cset->mg_tasks,
2366 						struct task_struct, cg_list);
2367 		else
2368 			task = list_next_entry(task, cg_list);
2369 
2370 		if (&task->cg_list != &cset->mg_tasks) {
2371 			tset->cur_cset = cset;
2372 			tset->cur_task = task;
2373 
2374 			/*
2375 			 * This function may be called both before and
2376 			 * after cgroup_taskset_migrate().  The two cases
2377 			 * can be distinguished by looking at whether @cset
2378 			 * has its ->mg_dst_cset set.
2379 			 */
2380 			if (cset->mg_dst_cset)
2381 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2382 			else
2383 				*dst_cssp = cset->subsys[tset->ssid];
2384 
2385 			return task;
2386 		}
2387 
2388 		cset = list_next_entry(cset, mg_node);
2389 		task = NULL;
2390 	}
2391 
2392 	return NULL;
2393 }
2394 
2395 /**
2396  * cgroup_taskset_migrate - migrate a taskset
2397  * @mgctx: migration context
2398  *
2399  * Migrate tasks in @mgctx as setup by migration preparation functions.
2400  * This function fails iff one of the ->can_attach callbacks fails and
2401  * guarantees that either all or none of the tasks in @mgctx are migrated.
2402  * @mgctx is consumed regardless of success.
2403  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2404 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2405 {
2406 	struct cgroup_taskset *tset = &mgctx->tset;
2407 	struct cgroup_subsys *ss;
2408 	struct task_struct *task, *tmp_task;
2409 	struct css_set *cset, *tmp_cset;
2410 	int ssid, failed_ssid, ret;
2411 
2412 	/* check that we can legitimately attach to the cgroup */
2413 	if (tset->nr_tasks) {
2414 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2415 			if (ss->can_attach) {
2416 				tset->ssid = ssid;
2417 				ret = ss->can_attach(tset);
2418 				if (ret) {
2419 					failed_ssid = ssid;
2420 					goto out_cancel_attach;
2421 				}
2422 			}
2423 		} while_each_subsys_mask();
2424 	}
2425 
2426 	/*
2427 	 * Now that we're guaranteed success, proceed to move all tasks to
2428 	 * the new cgroup.  There are no failure cases after here, so this
2429 	 * is the commit point.
2430 	 */
2431 	spin_lock_irq(&css_set_lock);
2432 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2433 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2434 			struct css_set *from_cset = task_css_set(task);
2435 			struct css_set *to_cset = cset->mg_dst_cset;
2436 
2437 			get_css_set(to_cset);
2438 			to_cset->nr_tasks++;
2439 			css_set_move_task(task, from_cset, to_cset, true);
2440 			from_cset->nr_tasks--;
2441 			/*
2442 			 * If the source or destination cgroup is frozen,
2443 			 * the task might require to change its state.
2444 			 */
2445 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2446 						    to_cset->dfl_cgrp);
2447 			put_css_set_locked(from_cset);
2448 
2449 		}
2450 	}
2451 	spin_unlock_irq(&css_set_lock);
2452 
2453 	/*
2454 	 * Migration is committed, all target tasks are now on dst_csets.
2455 	 * Nothing is sensitive to fork() after this point.  Notify
2456 	 * controllers that migration is complete.
2457 	 */
2458 	tset->csets = &tset->dst_csets;
2459 
2460 	if (tset->nr_tasks) {
2461 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2462 			if (ss->attach) {
2463 				tset->ssid = ssid;
2464 				ss->attach(tset);
2465 			}
2466 		} while_each_subsys_mask();
2467 	}
2468 
2469 	ret = 0;
2470 	goto out_release_tset;
2471 
2472 out_cancel_attach:
2473 	if (tset->nr_tasks) {
2474 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2475 			if (ssid == failed_ssid)
2476 				break;
2477 			if (ss->cancel_attach) {
2478 				tset->ssid = ssid;
2479 				ss->cancel_attach(tset);
2480 			}
2481 		} while_each_subsys_mask();
2482 	}
2483 out_release_tset:
2484 	spin_lock_irq(&css_set_lock);
2485 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2486 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2487 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2488 		list_del_init(&cset->mg_node);
2489 	}
2490 	spin_unlock_irq(&css_set_lock);
2491 
2492 	/*
2493 	 * Re-initialize the cgroup_taskset structure in case it is reused
2494 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2495 	 * iteration.
2496 	 */
2497 	tset->nr_tasks = 0;
2498 	tset->csets    = &tset->src_csets;
2499 	return ret;
2500 }
2501 
2502 /**
2503  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2504  * @dst_cgrp: destination cgroup to test
2505  *
2506  * On the default hierarchy, except for the mixable, (possible) thread root
2507  * and threaded cgroups, subtree_control must be zero for migration
2508  * destination cgroups with tasks so that child cgroups don't compete
2509  * against tasks.
2510  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2511 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2512 {
2513 	/* v1 doesn't have any restriction */
2514 	if (!cgroup_on_dfl(dst_cgrp))
2515 		return 0;
2516 
2517 	/* verify @dst_cgrp can host resources */
2518 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2519 		return -EOPNOTSUPP;
2520 
2521 	/* mixables don't care */
2522 	if (cgroup_is_mixable(dst_cgrp))
2523 		return 0;
2524 
2525 	/*
2526 	 * If @dst_cgrp is already or can become a thread root or is
2527 	 * threaded, it doesn't matter.
2528 	 */
2529 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2530 		return 0;
2531 
2532 	/* apply no-internal-process constraint */
2533 	if (dst_cgrp->subtree_control)
2534 		return -EBUSY;
2535 
2536 	return 0;
2537 }
2538 
2539 /**
2540  * cgroup_migrate_finish - cleanup after attach
2541  * @mgctx: migration context
2542  *
2543  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2544  * those functions for details.
2545  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2546 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2547 {
2548 	LIST_HEAD(preloaded);
2549 	struct css_set *cset, *tmp_cset;
2550 
2551 	lockdep_assert_held(&cgroup_mutex);
2552 
2553 	spin_lock_irq(&css_set_lock);
2554 
2555 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2556 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2557 
2558 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2559 		cset->mg_src_cgrp = NULL;
2560 		cset->mg_dst_cgrp = NULL;
2561 		cset->mg_dst_cset = NULL;
2562 		list_del_init(&cset->mg_preload_node);
2563 		put_css_set_locked(cset);
2564 	}
2565 
2566 	spin_unlock_irq(&css_set_lock);
2567 }
2568 
2569 /**
2570  * cgroup_migrate_add_src - add a migration source css_set
2571  * @src_cset: the source css_set to add
2572  * @dst_cgrp: the destination cgroup
2573  * @mgctx: migration context
2574  *
2575  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2576  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2577  * up by cgroup_migrate_finish().
2578  *
2579  * This function may be called without holding cgroup_threadgroup_rwsem
2580  * even if the target is a process.  Threads may be created and destroyed
2581  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2582  * into play and the preloaded css_sets are guaranteed to cover all
2583  * migrations.
2584  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2585 void cgroup_migrate_add_src(struct css_set *src_cset,
2586 			    struct cgroup *dst_cgrp,
2587 			    struct cgroup_mgctx *mgctx)
2588 {
2589 	struct cgroup *src_cgrp;
2590 
2591 	lockdep_assert_held(&cgroup_mutex);
2592 	lockdep_assert_held(&css_set_lock);
2593 
2594 	/*
2595 	 * If ->dead, @src_set is associated with one or more dead cgroups
2596 	 * and doesn't contain any migratable tasks.  Ignore it early so
2597 	 * that the rest of migration path doesn't get confused by it.
2598 	 */
2599 	if (src_cset->dead)
2600 		return;
2601 
2602 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2603 
2604 	if (!list_empty(&src_cset->mg_preload_node))
2605 		return;
2606 
2607 	WARN_ON(src_cset->mg_src_cgrp);
2608 	WARN_ON(src_cset->mg_dst_cgrp);
2609 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2610 	WARN_ON(!list_empty(&src_cset->mg_node));
2611 
2612 	src_cset->mg_src_cgrp = src_cgrp;
2613 	src_cset->mg_dst_cgrp = dst_cgrp;
2614 	get_css_set(src_cset);
2615 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2616 }
2617 
2618 /**
2619  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2620  * @mgctx: migration context
2621  *
2622  * Tasks are about to be moved and all the source css_sets have been
2623  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2624  * pins all destination css_sets, links each to its source, and append them
2625  * to @mgctx->preloaded_dst_csets.
2626  *
2627  * This function must be called after cgroup_migrate_add_src() has been
2628  * called on each migration source css_set.  After migration is performed
2629  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2630  * @mgctx.
2631  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2632 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2633 {
2634 	struct css_set *src_cset, *tmp_cset;
2635 
2636 	lockdep_assert_held(&cgroup_mutex);
2637 
2638 	/* look up the dst cset for each src cset and link it to src */
2639 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2640 				 mg_preload_node) {
2641 		struct css_set *dst_cset;
2642 		struct cgroup_subsys *ss;
2643 		int ssid;
2644 
2645 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2646 		if (!dst_cset)
2647 			return -ENOMEM;
2648 
2649 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2650 
2651 		/*
2652 		 * If src cset equals dst, it's noop.  Drop the src.
2653 		 * cgroup_migrate() will skip the cset too.  Note that we
2654 		 * can't handle src == dst as some nodes are used by both.
2655 		 */
2656 		if (src_cset == dst_cset) {
2657 			src_cset->mg_src_cgrp = NULL;
2658 			src_cset->mg_dst_cgrp = NULL;
2659 			list_del_init(&src_cset->mg_preload_node);
2660 			put_css_set(src_cset);
2661 			put_css_set(dst_cset);
2662 			continue;
2663 		}
2664 
2665 		src_cset->mg_dst_cset = dst_cset;
2666 
2667 		if (list_empty(&dst_cset->mg_preload_node))
2668 			list_add_tail(&dst_cset->mg_preload_node,
2669 				      &mgctx->preloaded_dst_csets);
2670 		else
2671 			put_css_set(dst_cset);
2672 
2673 		for_each_subsys(ss, ssid)
2674 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2675 				mgctx->ss_mask |= 1 << ssid;
2676 	}
2677 
2678 	return 0;
2679 }
2680 
2681 /**
2682  * cgroup_migrate - migrate a process or task to a cgroup
2683  * @leader: the leader of the process or the task to migrate
2684  * @threadgroup: whether @leader points to the whole process or a single task
2685  * @mgctx: migration context
2686  *
2687  * Migrate a process or task denoted by @leader.  If migrating a process,
2688  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2689  * responsible for invoking cgroup_migrate_add_src() and
2690  * cgroup_migrate_prepare_dst() on the targets before invoking this
2691  * function and following up with cgroup_migrate_finish().
2692  *
2693  * As long as a controller's ->can_attach() doesn't fail, this function is
2694  * guaranteed to succeed.  This means that, excluding ->can_attach()
2695  * failure, when migrating multiple targets, the success or failure can be
2696  * decided for all targets by invoking group_migrate_prepare_dst() before
2697  * actually starting migrating.
2698  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2699 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2700 		   struct cgroup_mgctx *mgctx)
2701 {
2702 	int err = 0;
2703 	struct task_struct *task;
2704 
2705 	/*
2706 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2707 	 * already PF_EXITING could be freed from underneath us unless we
2708 	 * take an rcu_read_lock.
2709 	 */
2710 	spin_lock_irq(&css_set_lock);
2711 	rcu_read_lock();
2712 	task = leader;
2713 	do {
2714 		cgroup_migrate_add_task(task, mgctx);
2715 		if (!threadgroup) {
2716 			if (task->flags & PF_EXITING)
2717 				err = -ESRCH;
2718 			break;
2719 		}
2720 	} while_each_thread(leader, task);
2721 	rcu_read_unlock();
2722 	spin_unlock_irq(&css_set_lock);
2723 
2724 	return err ? err : cgroup_migrate_execute(mgctx);
2725 }
2726 
2727 /**
2728  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2729  * @dst_cgrp: the cgroup to attach to
2730  * @leader: the task or the leader of the threadgroup to be attached
2731  * @threadgroup: attach the whole threadgroup?
2732  *
2733  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2734  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2735 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2736 		       bool threadgroup)
2737 {
2738 	DEFINE_CGROUP_MGCTX(mgctx);
2739 	struct task_struct *task;
2740 	int ret = 0;
2741 
2742 	/* look up all src csets */
2743 	spin_lock_irq(&css_set_lock);
2744 	rcu_read_lock();
2745 	task = leader;
2746 	do {
2747 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2748 		if (!threadgroup)
2749 			break;
2750 	} while_each_thread(leader, task);
2751 	rcu_read_unlock();
2752 	spin_unlock_irq(&css_set_lock);
2753 
2754 	/* prepare dst csets and commit */
2755 	ret = cgroup_migrate_prepare_dst(&mgctx);
2756 	if (!ret)
2757 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2758 
2759 	cgroup_migrate_finish(&mgctx);
2760 
2761 	if (!ret)
2762 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2763 
2764 	return ret;
2765 }
2766 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * locked)2767 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2768 					     bool *locked)
2769 	__acquires(&cgroup_threadgroup_rwsem)
2770 {
2771 	struct task_struct *tsk;
2772 	pid_t pid;
2773 
2774 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2775 		return ERR_PTR(-EINVAL);
2776 
2777 	/*
2778 	 * If we migrate a single thread, we don't care about threadgroup
2779 	 * stability. If the thread is `current`, it won't exit(2) under our
2780 	 * hands or change PID through exec(2). We exclude
2781 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2782 	 * callers by cgroup_mutex.
2783 	 * Therefore, we can skip the global lock.
2784 	 */
2785 	lockdep_assert_held(&cgroup_mutex);
2786 	if (pid || threadgroup) {
2787 		percpu_down_write(&cgroup_threadgroup_rwsem);
2788 		*locked = true;
2789 	} else {
2790 		*locked = false;
2791 	}
2792 
2793 	rcu_read_lock();
2794 	if (pid) {
2795 		tsk = find_task_by_vpid(pid);
2796 		if (!tsk) {
2797 			tsk = ERR_PTR(-ESRCH);
2798 			goto out_unlock_threadgroup;
2799 		}
2800 	} else {
2801 		tsk = current;
2802 	}
2803 
2804 	if (threadgroup)
2805 		tsk = tsk->group_leader;
2806 
2807 	/*
2808 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2809 	 * If userland migrates such a kthread to a non-root cgroup, it can
2810 	 * become trapped in a cpuset, or RT kthread may be born in a
2811 	 * cgroup with no rt_runtime allocated.  Just say no.
2812 	 */
2813 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2814 		tsk = ERR_PTR(-EINVAL);
2815 		goto out_unlock_threadgroup;
2816 	}
2817 
2818 	get_task_struct(tsk);
2819 	goto out_unlock_rcu;
2820 
2821 out_unlock_threadgroup:
2822 	if (*locked) {
2823 		percpu_up_write(&cgroup_threadgroup_rwsem);
2824 		*locked = false;
2825 	}
2826 out_unlock_rcu:
2827 	rcu_read_unlock();
2828 	return tsk;
2829 }
2830 
cgroup_procs_write_finish(struct task_struct * task,bool locked)2831 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2832 	__releases(&cgroup_threadgroup_rwsem)
2833 {
2834 	struct cgroup_subsys *ss;
2835 	int ssid;
2836 
2837 	/* release reference from cgroup_procs_write_start() */
2838 	put_task_struct(task);
2839 
2840 	if (locked)
2841 		percpu_up_write(&cgroup_threadgroup_rwsem);
2842 	for_each_subsys(ss, ssid)
2843 		if (ss->post_attach)
2844 			ss->post_attach();
2845 }
2846 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2847 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2848 {
2849 	struct cgroup_subsys *ss;
2850 	bool printed = false;
2851 	int ssid;
2852 
2853 	do_each_subsys_mask(ss, ssid, ss_mask) {
2854 		if (printed)
2855 			seq_putc(seq, ' ');
2856 		seq_puts(seq, ss->name);
2857 		printed = true;
2858 	} while_each_subsys_mask();
2859 	if (printed)
2860 		seq_putc(seq, '\n');
2861 }
2862 
2863 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2864 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2865 {
2866 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2867 
2868 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2869 	return 0;
2870 }
2871 
2872 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2873 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2874 {
2875 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2876 
2877 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2878 	return 0;
2879 }
2880 
2881 /**
2882  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2883  * @cgrp: root of the subtree to update csses for
2884  *
2885  * @cgrp's control masks have changed and its subtree's css associations
2886  * need to be updated accordingly.  This function looks up all css_sets
2887  * which are attached to the subtree, creates the matching updated css_sets
2888  * and migrates the tasks to the new ones.
2889  */
cgroup_update_dfl_csses(struct cgroup * cgrp)2890 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2891 {
2892 	DEFINE_CGROUP_MGCTX(mgctx);
2893 	struct cgroup_subsys_state *d_css;
2894 	struct cgroup *dsct;
2895 	struct css_set *src_cset;
2896 	int ret;
2897 
2898 	lockdep_assert_held(&cgroup_mutex);
2899 
2900 	percpu_down_write(&cgroup_threadgroup_rwsem);
2901 
2902 	/* look up all csses currently attached to @cgrp's subtree */
2903 	spin_lock_irq(&css_set_lock);
2904 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2905 		struct cgrp_cset_link *link;
2906 
2907 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2908 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2909 	}
2910 	spin_unlock_irq(&css_set_lock);
2911 
2912 	/* NULL dst indicates self on default hierarchy */
2913 	ret = cgroup_migrate_prepare_dst(&mgctx);
2914 	if (ret)
2915 		goto out_finish;
2916 
2917 	spin_lock_irq(&css_set_lock);
2918 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2919 		struct task_struct *task, *ntask;
2920 
2921 		/* all tasks in src_csets need to be migrated */
2922 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2923 			cgroup_migrate_add_task(task, &mgctx);
2924 	}
2925 	spin_unlock_irq(&css_set_lock);
2926 
2927 	ret = cgroup_migrate_execute(&mgctx);
2928 out_finish:
2929 	cgroup_migrate_finish(&mgctx);
2930 	percpu_up_write(&cgroup_threadgroup_rwsem);
2931 	return ret;
2932 }
2933 
2934 /**
2935  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2936  * @cgrp: root of the target subtree
2937  *
2938  * Because css offlining is asynchronous, userland may try to re-enable a
2939  * controller while the previous css is still around.  This function grabs
2940  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2941  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2942 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2943 	__acquires(&cgroup_mutex)
2944 {
2945 	struct cgroup *dsct;
2946 	struct cgroup_subsys_state *d_css;
2947 	struct cgroup_subsys *ss;
2948 	int ssid;
2949 
2950 restart:
2951 	mutex_lock(&cgroup_mutex);
2952 
2953 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2954 		for_each_subsys(ss, ssid) {
2955 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2956 			DEFINE_WAIT(wait);
2957 
2958 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2959 				continue;
2960 
2961 			cgroup_get_live(dsct);
2962 			prepare_to_wait(&dsct->offline_waitq, &wait,
2963 					TASK_UNINTERRUPTIBLE);
2964 
2965 			mutex_unlock(&cgroup_mutex);
2966 			schedule();
2967 			finish_wait(&dsct->offline_waitq, &wait);
2968 
2969 			cgroup_put(dsct);
2970 			goto restart;
2971 		}
2972 	}
2973 }
2974 
2975 /**
2976  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2977  * @cgrp: root of the target subtree
2978  *
2979  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2980  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2981  * itself.
2982  */
cgroup_save_control(struct cgroup * cgrp)2983 static void cgroup_save_control(struct cgroup *cgrp)
2984 {
2985 	struct cgroup *dsct;
2986 	struct cgroup_subsys_state *d_css;
2987 
2988 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2989 		dsct->old_subtree_control = dsct->subtree_control;
2990 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2991 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2992 	}
2993 }
2994 
2995 /**
2996  * cgroup_propagate_control - refresh control masks of a subtree
2997  * @cgrp: root of the target subtree
2998  *
2999  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3000  * ->subtree_control and propagate controller availability through the
3001  * subtree so that descendants don't have unavailable controllers enabled.
3002  */
cgroup_propagate_control(struct cgroup * cgrp)3003 static void cgroup_propagate_control(struct cgroup *cgrp)
3004 {
3005 	struct cgroup *dsct;
3006 	struct cgroup_subsys_state *d_css;
3007 
3008 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3009 		dsct->subtree_control &= cgroup_control(dsct);
3010 		dsct->subtree_ss_mask =
3011 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3012 						    cgroup_ss_mask(dsct));
3013 	}
3014 }
3015 
3016 /**
3017  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3018  * @cgrp: root of the target subtree
3019  *
3020  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3021  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3022  * itself.
3023  */
cgroup_restore_control(struct cgroup * cgrp)3024 static void cgroup_restore_control(struct cgroup *cgrp)
3025 {
3026 	struct cgroup *dsct;
3027 	struct cgroup_subsys_state *d_css;
3028 
3029 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3030 		dsct->subtree_control = dsct->old_subtree_control;
3031 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3032 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3033 	}
3034 }
3035 
css_visible(struct cgroup_subsys_state * css)3036 static bool css_visible(struct cgroup_subsys_state *css)
3037 {
3038 	struct cgroup_subsys *ss = css->ss;
3039 	struct cgroup *cgrp = css->cgroup;
3040 
3041 	if (cgroup_control(cgrp) & (1 << ss->id))
3042 		return true;
3043 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3044 		return false;
3045 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3046 }
3047 
3048 /**
3049  * cgroup_apply_control_enable - enable or show csses according to control
3050  * @cgrp: root of the target subtree
3051  *
3052  * Walk @cgrp's subtree and create new csses or make the existing ones
3053  * visible.  A css is created invisible if it's being implicitly enabled
3054  * through dependency.  An invisible css is made visible when the userland
3055  * explicitly enables it.
3056  *
3057  * Returns 0 on success, -errno on failure.  On failure, csses which have
3058  * been processed already aren't cleaned up.  The caller is responsible for
3059  * cleaning up with cgroup_apply_control_disable().
3060  */
cgroup_apply_control_enable(struct cgroup * cgrp)3061 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3062 {
3063 	struct cgroup *dsct;
3064 	struct cgroup_subsys_state *d_css;
3065 	struct cgroup_subsys *ss;
3066 	int ssid, ret;
3067 
3068 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3069 		for_each_subsys(ss, ssid) {
3070 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3071 
3072 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3073 				continue;
3074 
3075 			if (!css) {
3076 				css = css_create(dsct, ss);
3077 				if (IS_ERR(css))
3078 					return PTR_ERR(css);
3079 			}
3080 
3081 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3082 
3083 			if (css_visible(css)) {
3084 				ret = css_populate_dir(css);
3085 				if (ret)
3086 					return ret;
3087 			}
3088 		}
3089 	}
3090 
3091 	return 0;
3092 }
3093 
3094 /**
3095  * cgroup_apply_control_disable - kill or hide csses according to control
3096  * @cgrp: root of the target subtree
3097  *
3098  * Walk @cgrp's subtree and kill and hide csses so that they match
3099  * cgroup_ss_mask() and cgroup_visible_mask().
3100  *
3101  * A css is hidden when the userland requests it to be disabled while other
3102  * subsystems are still depending on it.  The css must not actively control
3103  * resources and be in the vanilla state if it's made visible again later.
3104  * Controllers which may be depended upon should provide ->css_reset() for
3105  * this purpose.
3106  */
cgroup_apply_control_disable(struct cgroup * cgrp)3107 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3108 {
3109 	struct cgroup *dsct;
3110 	struct cgroup_subsys_state *d_css;
3111 	struct cgroup_subsys *ss;
3112 	int ssid;
3113 
3114 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3115 		for_each_subsys(ss, ssid) {
3116 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3117 
3118 			if (!css)
3119 				continue;
3120 
3121 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3122 
3123 			if (css->parent &&
3124 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3125 				kill_css(css);
3126 			} else if (!css_visible(css)) {
3127 				css_clear_dir(css);
3128 				if (ss->css_reset)
3129 					ss->css_reset(css);
3130 			}
3131 		}
3132 	}
3133 }
3134 
3135 /**
3136  * cgroup_apply_control - apply control mask updates to the subtree
3137  * @cgrp: root of the target subtree
3138  *
3139  * subsystems can be enabled and disabled in a subtree using the following
3140  * steps.
3141  *
3142  * 1. Call cgroup_save_control() to stash the current state.
3143  * 2. Update ->subtree_control masks in the subtree as desired.
3144  * 3. Call cgroup_apply_control() to apply the changes.
3145  * 4. Optionally perform other related operations.
3146  * 5. Call cgroup_finalize_control() to finish up.
3147  *
3148  * This function implements step 3 and propagates the mask changes
3149  * throughout @cgrp's subtree, updates csses accordingly and perform
3150  * process migrations.
3151  */
cgroup_apply_control(struct cgroup * cgrp)3152 static int cgroup_apply_control(struct cgroup *cgrp)
3153 {
3154 	int ret;
3155 
3156 	cgroup_propagate_control(cgrp);
3157 
3158 	ret = cgroup_apply_control_enable(cgrp);
3159 	if (ret)
3160 		return ret;
3161 
3162 	/*
3163 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3164 	 * making the following cgroup_update_dfl_csses() properly update
3165 	 * css associations of all tasks in the subtree.
3166 	 */
3167 	ret = cgroup_update_dfl_csses(cgrp);
3168 	if (ret)
3169 		return ret;
3170 
3171 	return 0;
3172 }
3173 
3174 /**
3175  * cgroup_finalize_control - finalize control mask update
3176  * @cgrp: root of the target subtree
3177  * @ret: the result of the update
3178  *
3179  * Finalize control mask update.  See cgroup_apply_control() for more info.
3180  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3181 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3182 {
3183 	if (ret) {
3184 		cgroup_restore_control(cgrp);
3185 		cgroup_propagate_control(cgrp);
3186 	}
3187 
3188 	cgroup_apply_control_disable(cgrp);
3189 }
3190 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3191 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3192 {
3193 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3194 
3195 	/* if nothing is getting enabled, nothing to worry about */
3196 	if (!enable)
3197 		return 0;
3198 
3199 	/* can @cgrp host any resources? */
3200 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3201 		return -EOPNOTSUPP;
3202 
3203 	/* mixables don't care */
3204 	if (cgroup_is_mixable(cgrp))
3205 		return 0;
3206 
3207 	if (domain_enable) {
3208 		/* can't enable domain controllers inside a thread subtree */
3209 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3210 			return -EOPNOTSUPP;
3211 	} else {
3212 		/*
3213 		 * Threaded controllers can handle internal competitions
3214 		 * and are always allowed inside a (prospective) thread
3215 		 * subtree.
3216 		 */
3217 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3218 			return 0;
3219 	}
3220 
3221 	/*
3222 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3223 	 * child cgroups competing against tasks.
3224 	 */
3225 	if (cgroup_has_tasks(cgrp))
3226 		return -EBUSY;
3227 
3228 	return 0;
3229 }
3230 
3231 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3232 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3233 					    char *buf, size_t nbytes,
3234 					    loff_t off)
3235 {
3236 	u16 enable = 0, disable = 0;
3237 	struct cgroup *cgrp, *child;
3238 	struct cgroup_subsys *ss;
3239 	char *tok;
3240 	int ssid, ret;
3241 
3242 	/*
3243 	 * Parse input - space separated list of subsystem names prefixed
3244 	 * with either + or -.
3245 	 */
3246 	buf = strstrip(buf);
3247 	while ((tok = strsep(&buf, " "))) {
3248 		if (tok[0] == '\0')
3249 			continue;
3250 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3251 			if (!cgroup_ssid_enabled(ssid) ||
3252 			    strcmp(tok + 1, ss->name))
3253 				continue;
3254 
3255 			if (*tok == '+') {
3256 				enable |= 1 << ssid;
3257 				disable &= ~(1 << ssid);
3258 			} else if (*tok == '-') {
3259 				disable |= 1 << ssid;
3260 				enable &= ~(1 << ssid);
3261 			} else {
3262 				return -EINVAL;
3263 			}
3264 			break;
3265 		} while_each_subsys_mask();
3266 		if (ssid == CGROUP_SUBSYS_COUNT)
3267 			return -EINVAL;
3268 	}
3269 
3270 	cgrp = cgroup_kn_lock_live(of->kn, true);
3271 	if (!cgrp)
3272 		return -ENODEV;
3273 
3274 	for_each_subsys(ss, ssid) {
3275 		if (enable & (1 << ssid)) {
3276 			if (cgrp->subtree_control & (1 << ssid)) {
3277 				enable &= ~(1 << ssid);
3278 				continue;
3279 			}
3280 
3281 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3282 				ret = -ENOENT;
3283 				goto out_unlock;
3284 			}
3285 		} else if (disable & (1 << ssid)) {
3286 			if (!(cgrp->subtree_control & (1 << ssid))) {
3287 				disable &= ~(1 << ssid);
3288 				continue;
3289 			}
3290 
3291 			/* a child has it enabled? */
3292 			cgroup_for_each_live_child(child, cgrp) {
3293 				if (child->subtree_control & (1 << ssid)) {
3294 					ret = -EBUSY;
3295 					goto out_unlock;
3296 				}
3297 			}
3298 		}
3299 	}
3300 
3301 	if (!enable && !disable) {
3302 		ret = 0;
3303 		goto out_unlock;
3304 	}
3305 
3306 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3307 	if (ret)
3308 		goto out_unlock;
3309 
3310 	/* save and update control masks and prepare csses */
3311 	cgroup_save_control(cgrp);
3312 
3313 	cgrp->subtree_control |= enable;
3314 	cgrp->subtree_control &= ~disable;
3315 
3316 	ret = cgroup_apply_control(cgrp);
3317 	cgroup_finalize_control(cgrp, ret);
3318 	if (ret)
3319 		goto out_unlock;
3320 
3321 	kernfs_activate(cgrp->kn);
3322 out_unlock:
3323 	cgroup_kn_unlock(of->kn);
3324 	return ret ?: nbytes;
3325 }
3326 
3327 /**
3328  * cgroup_enable_threaded - make @cgrp threaded
3329  * @cgrp: the target cgroup
3330  *
3331  * Called when "threaded" is written to the cgroup.type interface file and
3332  * tries to make @cgrp threaded and join the parent's resource domain.
3333  * This function is never called on the root cgroup as cgroup.type doesn't
3334  * exist on it.
3335  */
cgroup_enable_threaded(struct cgroup * cgrp)3336 static int cgroup_enable_threaded(struct cgroup *cgrp)
3337 {
3338 	struct cgroup *parent = cgroup_parent(cgrp);
3339 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3340 	struct cgroup *dsct;
3341 	struct cgroup_subsys_state *d_css;
3342 	int ret;
3343 
3344 	lockdep_assert_held(&cgroup_mutex);
3345 
3346 	/* noop if already threaded */
3347 	if (cgroup_is_threaded(cgrp))
3348 		return 0;
3349 
3350 	/*
3351 	 * If @cgroup is populated or has domain controllers enabled, it
3352 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3353 	 * test can catch the same conditions, that's only when @parent is
3354 	 * not mixable, so let's check it explicitly.
3355 	 */
3356 	if (cgroup_is_populated(cgrp) ||
3357 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3358 		return -EOPNOTSUPP;
3359 
3360 	/* we're joining the parent's domain, ensure its validity */
3361 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3362 	    !cgroup_can_be_thread_root(dom_cgrp))
3363 		return -EOPNOTSUPP;
3364 
3365 	/*
3366 	 * The following shouldn't cause actual migrations and should
3367 	 * always succeed.
3368 	 */
3369 	cgroup_save_control(cgrp);
3370 
3371 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3372 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3373 			dsct->dom_cgrp = dom_cgrp;
3374 
3375 	ret = cgroup_apply_control(cgrp);
3376 	if (!ret)
3377 		parent->nr_threaded_children++;
3378 
3379 	cgroup_finalize_control(cgrp, ret);
3380 	return ret;
3381 }
3382 
cgroup_type_show(struct seq_file * seq,void * v)3383 static int cgroup_type_show(struct seq_file *seq, void *v)
3384 {
3385 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3386 
3387 	if (cgroup_is_threaded(cgrp))
3388 		seq_puts(seq, "threaded\n");
3389 	else if (!cgroup_is_valid_domain(cgrp))
3390 		seq_puts(seq, "domain invalid\n");
3391 	else if (cgroup_is_thread_root(cgrp))
3392 		seq_puts(seq, "domain threaded\n");
3393 	else
3394 		seq_puts(seq, "domain\n");
3395 
3396 	return 0;
3397 }
3398 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3399 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3400 				 size_t nbytes, loff_t off)
3401 {
3402 	struct cgroup *cgrp;
3403 	int ret;
3404 
3405 	/* only switching to threaded mode is supported */
3406 	if (strcmp(strstrip(buf), "threaded"))
3407 		return -EINVAL;
3408 
3409 	/* drain dying csses before we re-apply (threaded) subtree control */
3410 	cgrp = cgroup_kn_lock_live(of->kn, true);
3411 	if (!cgrp)
3412 		return -ENOENT;
3413 
3414 	/* threaded can only be enabled */
3415 	ret = cgroup_enable_threaded(cgrp);
3416 
3417 	cgroup_kn_unlock(of->kn);
3418 	return ret ?: nbytes;
3419 }
3420 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3421 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3422 {
3423 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3424 	int descendants = READ_ONCE(cgrp->max_descendants);
3425 
3426 	if (descendants == INT_MAX)
3427 		seq_puts(seq, "max\n");
3428 	else
3429 		seq_printf(seq, "%d\n", descendants);
3430 
3431 	return 0;
3432 }
3433 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3434 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3435 					   char *buf, size_t nbytes, loff_t off)
3436 {
3437 	struct cgroup *cgrp;
3438 	int descendants;
3439 	ssize_t ret;
3440 
3441 	buf = strstrip(buf);
3442 	if (!strcmp(buf, "max")) {
3443 		descendants = INT_MAX;
3444 	} else {
3445 		ret = kstrtoint(buf, 0, &descendants);
3446 		if (ret)
3447 			return ret;
3448 	}
3449 
3450 	if (descendants < 0)
3451 		return -ERANGE;
3452 
3453 	cgrp = cgroup_kn_lock_live(of->kn, false);
3454 	if (!cgrp)
3455 		return -ENOENT;
3456 
3457 	cgrp->max_descendants = descendants;
3458 
3459 	cgroup_kn_unlock(of->kn);
3460 
3461 	return nbytes;
3462 }
3463 
cgroup_max_depth_show(struct seq_file * seq,void * v)3464 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3465 {
3466 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3467 	int depth = READ_ONCE(cgrp->max_depth);
3468 
3469 	if (depth == INT_MAX)
3470 		seq_puts(seq, "max\n");
3471 	else
3472 		seq_printf(seq, "%d\n", depth);
3473 
3474 	return 0;
3475 }
3476 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3477 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3478 				      char *buf, size_t nbytes, loff_t off)
3479 {
3480 	struct cgroup *cgrp;
3481 	ssize_t ret;
3482 	int depth;
3483 
3484 	buf = strstrip(buf);
3485 	if (!strcmp(buf, "max")) {
3486 		depth = INT_MAX;
3487 	} else {
3488 		ret = kstrtoint(buf, 0, &depth);
3489 		if (ret)
3490 			return ret;
3491 	}
3492 
3493 	if (depth < 0)
3494 		return -ERANGE;
3495 
3496 	cgrp = cgroup_kn_lock_live(of->kn, false);
3497 	if (!cgrp)
3498 		return -ENOENT;
3499 
3500 	cgrp->max_depth = depth;
3501 
3502 	cgroup_kn_unlock(of->kn);
3503 
3504 	return nbytes;
3505 }
3506 
cgroup_events_show(struct seq_file * seq,void * v)3507 static int cgroup_events_show(struct seq_file *seq, void *v)
3508 {
3509 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3510 
3511 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3512 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3513 
3514 	return 0;
3515 }
3516 
cgroup_stat_show(struct seq_file * seq,void * v)3517 static int cgroup_stat_show(struct seq_file *seq, void *v)
3518 {
3519 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3520 
3521 	seq_printf(seq, "nr_descendants %d\n",
3522 		   cgroup->nr_descendants);
3523 	seq_printf(seq, "nr_dying_descendants %d\n",
3524 		   cgroup->nr_dying_descendants);
3525 
3526 	return 0;
3527 }
3528 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3529 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3530 						 struct cgroup *cgrp, int ssid)
3531 {
3532 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3533 	struct cgroup_subsys_state *css;
3534 	int ret;
3535 
3536 	if (!ss->css_extra_stat_show)
3537 		return 0;
3538 
3539 	css = cgroup_tryget_css(cgrp, ss);
3540 	if (!css)
3541 		return 0;
3542 
3543 	ret = ss->css_extra_stat_show(seq, css);
3544 	css_put(css);
3545 	return ret;
3546 }
3547 
cpu_stat_show(struct seq_file * seq,void * v)3548 static int cpu_stat_show(struct seq_file *seq, void *v)
3549 {
3550 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3551 	int ret = 0;
3552 
3553 	cgroup_base_stat_cputime_show(seq);
3554 #ifdef CONFIG_CGROUP_SCHED
3555 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3556 #endif
3557 	return ret;
3558 }
3559 
3560 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3561 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3562 {
3563 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3564 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3565 
3566 	return psi_show(seq, psi, PSI_IO);
3567 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3568 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3569 {
3570 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3571 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3572 
3573 	return psi_show(seq, psi, PSI_MEM);
3574 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3575 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3576 {
3577 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3578 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3579 
3580 	return psi_show(seq, psi, PSI_CPU);
3581 }
3582 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3583 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3584 					  size_t nbytes, enum psi_res res)
3585 {
3586 	struct cgroup_file_ctx *ctx = of->priv;
3587 	struct psi_trigger *new;
3588 	struct cgroup *cgrp;
3589 	struct psi_group *psi;
3590 
3591 	cgrp = cgroup_kn_lock_live(of->kn, false);
3592 	if (!cgrp)
3593 		return -ENODEV;
3594 
3595 	cgroup_get(cgrp);
3596 	cgroup_kn_unlock(of->kn);
3597 
3598 	/* Allow only one trigger per file descriptor */
3599 	if (of->priv) {
3600 		cgroup_put(cgrp);
3601 		return -EBUSY;
3602 	}
3603 
3604 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3605 	new = psi_trigger_create(psi, buf, nbytes, res);
3606 	if (IS_ERR(new)) {
3607 		cgroup_put(cgrp);
3608 		return PTR_ERR(new);
3609 	}
3610 
3611 	smp_store_release(&ctx->psi.trigger, new);
3612 	cgroup_put(cgrp);
3613 
3614 	return nbytes;
3615 }
3616 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3617 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3618 					  char *buf, size_t nbytes,
3619 					  loff_t off)
3620 {
3621 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3622 }
3623 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3624 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3625 					  char *buf, size_t nbytes,
3626 					  loff_t off)
3627 {
3628 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3629 }
3630 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3631 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3632 					  char *buf, size_t nbytes,
3633 					  loff_t off)
3634 {
3635 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3636 }
3637 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3638 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3639 					  poll_table *pt)
3640 {
3641 	struct cgroup_file_ctx *ctx = of->priv;
3642 
3643 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3644 }
3645 
cgroup_pressure_release(struct kernfs_open_file * of)3646 static void cgroup_pressure_release(struct kernfs_open_file *of)
3647 {
3648 	struct cgroup_file_ctx *ctx = of->priv;
3649 
3650 	psi_trigger_destroy(ctx->psi.trigger);
3651 }
3652 #endif /* CONFIG_PSI */
3653 
cgroup_freeze_show(struct seq_file * seq,void * v)3654 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3655 {
3656 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3657 
3658 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3659 
3660 	return 0;
3661 }
3662 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3663 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3664 				   char *buf, size_t nbytes, loff_t off)
3665 {
3666 	struct cgroup *cgrp;
3667 	ssize_t ret;
3668 	int freeze;
3669 
3670 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3671 	if (ret)
3672 		return ret;
3673 
3674 	if (freeze < 0 || freeze > 1)
3675 		return -ERANGE;
3676 
3677 	cgrp = cgroup_kn_lock_live(of->kn, false);
3678 	if (!cgrp)
3679 		return -ENOENT;
3680 
3681 	cgroup_freeze(cgrp, freeze);
3682 
3683 	cgroup_kn_unlock(of->kn);
3684 
3685 	return nbytes;
3686 }
3687 
cgroup_file_open(struct kernfs_open_file * of)3688 static int cgroup_file_open(struct kernfs_open_file *of)
3689 {
3690 	struct cftype *cft = of_cft(of);
3691 	struct cgroup_file_ctx *ctx;
3692 	int ret;
3693 
3694 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3695 	if (!ctx)
3696 		return -ENOMEM;
3697 
3698 	ctx->ns = current->nsproxy->cgroup_ns;
3699 	get_cgroup_ns(ctx->ns);
3700 	of->priv = ctx;
3701 
3702 	if (!cft->open)
3703 		return 0;
3704 
3705 	ret = cft->open(of);
3706 	if (ret) {
3707 		put_cgroup_ns(ctx->ns);
3708 		kfree(ctx);
3709 	}
3710 	return ret;
3711 }
3712 
cgroup_file_release(struct kernfs_open_file * of)3713 static void cgroup_file_release(struct kernfs_open_file *of)
3714 {
3715 	struct cftype *cft = of_cft(of);
3716 	struct cgroup_file_ctx *ctx = of->priv;
3717 
3718 	if (cft->release)
3719 		cft->release(of);
3720 	put_cgroup_ns(ctx->ns);
3721 	kfree(ctx);
3722 }
3723 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3724 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3725 				 size_t nbytes, loff_t off)
3726 {
3727 	struct cgroup_file_ctx *ctx = of->priv;
3728 	struct cgroup *cgrp = of->kn->parent->priv;
3729 	struct cftype *cft = of_cft(of);
3730 	struct cgroup_subsys_state *css;
3731 	int ret;
3732 
3733 	if (!nbytes)
3734 		return 0;
3735 
3736 	/*
3737 	 * If namespaces are delegation boundaries, disallow writes to
3738 	 * files in an non-init namespace root from inside the namespace
3739 	 * except for the files explicitly marked delegatable -
3740 	 * cgroup.procs and cgroup.subtree_control.
3741 	 */
3742 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3743 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3744 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3745 		return -EPERM;
3746 
3747 	if (cft->write)
3748 		return cft->write(of, buf, nbytes, off);
3749 
3750 	/*
3751 	 * kernfs guarantees that a file isn't deleted with operations in
3752 	 * flight, which means that the matching css is and stays alive and
3753 	 * doesn't need to be pinned.  The RCU locking is not necessary
3754 	 * either.  It's just for the convenience of using cgroup_css().
3755 	 */
3756 	rcu_read_lock();
3757 	css = cgroup_css(cgrp, cft->ss);
3758 	rcu_read_unlock();
3759 
3760 	if (cft->write_u64) {
3761 		unsigned long long v;
3762 		ret = kstrtoull(buf, 0, &v);
3763 		if (!ret)
3764 			ret = cft->write_u64(css, cft, v);
3765 	} else if (cft->write_s64) {
3766 		long long v;
3767 		ret = kstrtoll(buf, 0, &v);
3768 		if (!ret)
3769 			ret = cft->write_s64(css, cft, v);
3770 	} else {
3771 		ret = -EINVAL;
3772 	}
3773 
3774 	return ret ?: nbytes;
3775 }
3776 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3777 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3778 {
3779 	struct cftype *cft = of_cft(of);
3780 
3781 	if (cft->poll)
3782 		return cft->poll(of, pt);
3783 
3784 	return kernfs_generic_poll(of, pt);
3785 }
3786 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3787 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3788 {
3789 	return seq_cft(seq)->seq_start(seq, ppos);
3790 }
3791 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3792 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3793 {
3794 	return seq_cft(seq)->seq_next(seq, v, ppos);
3795 }
3796 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3797 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3798 {
3799 	if (seq_cft(seq)->seq_stop)
3800 		seq_cft(seq)->seq_stop(seq, v);
3801 }
3802 
cgroup_seqfile_show(struct seq_file * m,void * arg)3803 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3804 {
3805 	struct cftype *cft = seq_cft(m);
3806 	struct cgroup_subsys_state *css = seq_css(m);
3807 
3808 	if (cft->seq_show)
3809 		return cft->seq_show(m, arg);
3810 
3811 	if (cft->read_u64)
3812 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3813 	else if (cft->read_s64)
3814 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3815 	else
3816 		return -EINVAL;
3817 	return 0;
3818 }
3819 
3820 static struct kernfs_ops cgroup_kf_single_ops = {
3821 	.atomic_write_len	= PAGE_SIZE,
3822 	.open			= cgroup_file_open,
3823 	.release		= cgroup_file_release,
3824 	.write			= cgroup_file_write,
3825 	.poll			= cgroup_file_poll,
3826 	.seq_show		= cgroup_seqfile_show,
3827 };
3828 
3829 static struct kernfs_ops cgroup_kf_ops = {
3830 	.atomic_write_len	= PAGE_SIZE,
3831 	.open			= cgroup_file_open,
3832 	.release		= cgroup_file_release,
3833 	.write			= cgroup_file_write,
3834 	.poll			= cgroup_file_poll,
3835 	.seq_start		= cgroup_seqfile_start,
3836 	.seq_next		= cgroup_seqfile_next,
3837 	.seq_stop		= cgroup_seqfile_stop,
3838 	.seq_show		= cgroup_seqfile_show,
3839 };
3840 
3841 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3842 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3843 {
3844 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3845 			       .ia_uid = current_fsuid(),
3846 			       .ia_gid = current_fsgid(), };
3847 
3848 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3849 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3850 		return 0;
3851 
3852 	return kernfs_setattr(kn, &iattr);
3853 }
3854 
cgroup_file_notify_timer(struct timer_list * timer)3855 static void cgroup_file_notify_timer(struct timer_list *timer)
3856 {
3857 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3858 					notify_timer));
3859 }
3860 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3861 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3862 			   struct cftype *cft)
3863 {
3864 	char name[CGROUP_FILE_NAME_MAX];
3865 	struct kernfs_node *kn;
3866 	struct lock_class_key *key = NULL;
3867 	int ret;
3868 
3869 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3870 	key = &cft->lockdep_key;
3871 #endif
3872 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3873 				  cgroup_file_mode(cft),
3874 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3875 				  0, cft->kf_ops, cft,
3876 				  NULL, key);
3877 	if (IS_ERR(kn))
3878 		return PTR_ERR(kn);
3879 
3880 	ret = cgroup_kn_set_ugid(kn);
3881 	if (ret) {
3882 		kernfs_remove(kn);
3883 		return ret;
3884 	}
3885 
3886 	if (cft->file_offset) {
3887 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3888 
3889 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3890 
3891 		spin_lock_irq(&cgroup_file_kn_lock);
3892 		cfile->kn = kn;
3893 		spin_unlock_irq(&cgroup_file_kn_lock);
3894 	}
3895 
3896 	return 0;
3897 }
3898 
3899 /**
3900  * cgroup_addrm_files - add or remove files to a cgroup directory
3901  * @css: the target css
3902  * @cgrp: the target cgroup (usually css->cgroup)
3903  * @cfts: array of cftypes to be added
3904  * @is_add: whether to add or remove
3905  *
3906  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3907  * For removals, this function never fails.
3908  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3909 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3910 			      struct cgroup *cgrp, struct cftype cfts[],
3911 			      bool is_add)
3912 {
3913 	struct cftype *cft, *cft_end = NULL;
3914 	int ret = 0;
3915 
3916 	lockdep_assert_held(&cgroup_mutex);
3917 
3918 restart:
3919 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3920 		/* does cft->flags tell us to skip this file on @cgrp? */
3921 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3922 			continue;
3923 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3924 			continue;
3925 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3926 			continue;
3927 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3928 			continue;
3929 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3930 			continue;
3931 		if (is_add) {
3932 			ret = cgroup_add_file(css, cgrp, cft);
3933 			if (ret) {
3934 				pr_warn("%s: failed to add %s, err=%d\n",
3935 					__func__, cft->name, ret);
3936 				cft_end = cft;
3937 				is_add = false;
3938 				goto restart;
3939 			}
3940 		} else {
3941 			cgroup_rm_file(cgrp, cft);
3942 		}
3943 	}
3944 	return ret;
3945 }
3946 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3947 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3948 {
3949 	struct cgroup_subsys *ss = cfts[0].ss;
3950 	struct cgroup *root = &ss->root->cgrp;
3951 	struct cgroup_subsys_state *css;
3952 	int ret = 0;
3953 
3954 	lockdep_assert_held(&cgroup_mutex);
3955 
3956 	/* add/rm files for all cgroups created before */
3957 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3958 		struct cgroup *cgrp = css->cgroup;
3959 
3960 		if (!(css->flags & CSS_VISIBLE))
3961 			continue;
3962 
3963 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3964 		if (ret)
3965 			break;
3966 	}
3967 
3968 	if (is_add && !ret)
3969 		kernfs_activate(root->kn);
3970 	return ret;
3971 }
3972 
cgroup_exit_cftypes(struct cftype * cfts)3973 static void cgroup_exit_cftypes(struct cftype *cfts)
3974 {
3975 	struct cftype *cft;
3976 
3977 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3978 		/* free copy for custom atomic_write_len, see init_cftypes() */
3979 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3980 			kfree(cft->kf_ops);
3981 		cft->kf_ops = NULL;
3982 		cft->ss = NULL;
3983 
3984 		/* revert flags set by cgroup core while adding @cfts */
3985 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3986 	}
3987 }
3988 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3989 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3990 {
3991 	struct cftype *cft;
3992 
3993 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3994 		struct kernfs_ops *kf_ops;
3995 
3996 		WARN_ON(cft->ss || cft->kf_ops);
3997 
3998 		if (cft->seq_start)
3999 			kf_ops = &cgroup_kf_ops;
4000 		else
4001 			kf_ops = &cgroup_kf_single_ops;
4002 
4003 		/*
4004 		 * Ugh... if @cft wants a custom max_write_len, we need to
4005 		 * make a copy of kf_ops to set its atomic_write_len.
4006 		 */
4007 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4008 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4009 			if (!kf_ops) {
4010 				cgroup_exit_cftypes(cfts);
4011 				return -ENOMEM;
4012 			}
4013 			kf_ops->atomic_write_len = cft->max_write_len;
4014 		}
4015 
4016 		cft->kf_ops = kf_ops;
4017 		cft->ss = ss;
4018 	}
4019 
4020 	return 0;
4021 }
4022 
cgroup_rm_cftypes_locked(struct cftype * cfts)4023 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4024 {
4025 	lockdep_assert_held(&cgroup_mutex);
4026 
4027 	if (!cfts || !cfts[0].ss)
4028 		return -ENOENT;
4029 
4030 	list_del(&cfts->node);
4031 	cgroup_apply_cftypes(cfts, false);
4032 	cgroup_exit_cftypes(cfts);
4033 	return 0;
4034 }
4035 
4036 /**
4037  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4038  * @cfts: zero-length name terminated array of cftypes
4039  *
4040  * Unregister @cfts.  Files described by @cfts are removed from all
4041  * existing cgroups and all future cgroups won't have them either.  This
4042  * function can be called anytime whether @cfts' subsys is attached or not.
4043  *
4044  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4045  * registered.
4046  */
cgroup_rm_cftypes(struct cftype * cfts)4047 int cgroup_rm_cftypes(struct cftype *cfts)
4048 {
4049 	int ret;
4050 
4051 	mutex_lock(&cgroup_mutex);
4052 	ret = cgroup_rm_cftypes_locked(cfts);
4053 	mutex_unlock(&cgroup_mutex);
4054 	return ret;
4055 }
4056 
4057 /**
4058  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4059  * @ss: target cgroup subsystem
4060  * @cfts: zero-length name terminated array of cftypes
4061  *
4062  * Register @cfts to @ss.  Files described by @cfts are created for all
4063  * existing cgroups to which @ss is attached and all future cgroups will
4064  * have them too.  This function can be called anytime whether @ss is
4065  * attached or not.
4066  *
4067  * Returns 0 on successful registration, -errno on failure.  Note that this
4068  * function currently returns 0 as long as @cfts registration is successful
4069  * even if some file creation attempts on existing cgroups fail.
4070  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4071 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4072 {
4073 	int ret;
4074 
4075 	if (!cgroup_ssid_enabled(ss->id))
4076 		return 0;
4077 
4078 	if (!cfts || cfts[0].name[0] == '\0')
4079 		return 0;
4080 
4081 	ret = cgroup_init_cftypes(ss, cfts);
4082 	if (ret)
4083 		return ret;
4084 
4085 	mutex_lock(&cgroup_mutex);
4086 
4087 	list_add_tail(&cfts->node, &ss->cfts);
4088 	ret = cgroup_apply_cftypes(cfts, true);
4089 	if (ret)
4090 		cgroup_rm_cftypes_locked(cfts);
4091 
4092 	mutex_unlock(&cgroup_mutex);
4093 	return ret;
4094 }
4095 
4096 /**
4097  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4098  * @ss: target cgroup subsystem
4099  * @cfts: zero-length name terminated array of cftypes
4100  *
4101  * Similar to cgroup_add_cftypes() but the added files are only used for
4102  * the default hierarchy.
4103  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4104 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4105 {
4106 	struct cftype *cft;
4107 
4108 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4109 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4110 	return cgroup_add_cftypes(ss, cfts);
4111 }
4112 
4113 /**
4114  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4115  * @ss: target cgroup subsystem
4116  * @cfts: zero-length name terminated array of cftypes
4117  *
4118  * Similar to cgroup_add_cftypes() but the added files are only used for
4119  * the legacy hierarchies.
4120  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4121 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4122 {
4123 	struct cftype *cft;
4124 
4125 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4126 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4127 	return cgroup_add_cftypes(ss, cfts);
4128 }
4129 
4130 /**
4131  * cgroup_file_notify - generate a file modified event for a cgroup_file
4132  * @cfile: target cgroup_file
4133  *
4134  * @cfile must have been obtained by setting cftype->file_offset.
4135  */
cgroup_file_notify(struct cgroup_file * cfile)4136 void cgroup_file_notify(struct cgroup_file *cfile)
4137 {
4138 	unsigned long flags;
4139 
4140 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4141 	if (cfile->kn) {
4142 		unsigned long last = cfile->notified_at;
4143 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4144 
4145 		if (time_in_range(jiffies, last, next)) {
4146 			timer_reduce(&cfile->notify_timer, next);
4147 		} else {
4148 			kernfs_notify(cfile->kn);
4149 			cfile->notified_at = jiffies;
4150 		}
4151 	}
4152 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4153 }
4154 
4155 /**
4156  * css_next_child - find the next child of a given css
4157  * @pos: the current position (%NULL to initiate traversal)
4158  * @parent: css whose children to walk
4159  *
4160  * This function returns the next child of @parent and should be called
4161  * under either cgroup_mutex or RCU read lock.  The only requirement is
4162  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4163  * be returned regardless of their states.
4164  *
4165  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4166  * css which finished ->css_online() is guaranteed to be visible in the
4167  * future iterations and will stay visible until the last reference is put.
4168  * A css which hasn't finished ->css_online() or already finished
4169  * ->css_offline() may show up during traversal.  It's each subsystem's
4170  * responsibility to synchronize against on/offlining.
4171  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4172 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4173 					   struct cgroup_subsys_state *parent)
4174 {
4175 	struct cgroup_subsys_state *next;
4176 
4177 	cgroup_assert_mutex_or_rcu_locked();
4178 
4179 	/*
4180 	 * @pos could already have been unlinked from the sibling list.
4181 	 * Once a cgroup is removed, its ->sibling.next is no longer
4182 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4183 	 * @pos is taken off list, at which time its next pointer is valid,
4184 	 * and, as releases are serialized, the one pointed to by the next
4185 	 * pointer is guaranteed to not have started release yet.  This
4186 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4187 	 * critical section, the one pointed to by its next pointer is
4188 	 * guaranteed to not have finished its RCU grace period even if we
4189 	 * have dropped rcu_read_lock() inbetween iterations.
4190 	 *
4191 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4192 	 * dereferenced; however, as each css is given a monotonically
4193 	 * increasing unique serial number and always appended to the
4194 	 * sibling list, the next one can be found by walking the parent's
4195 	 * children until the first css with higher serial number than
4196 	 * @pos's.  While this path can be slower, it happens iff iteration
4197 	 * races against release and the race window is very small.
4198 	 */
4199 	if (!pos) {
4200 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4201 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4202 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4203 	} else {
4204 		list_for_each_entry_rcu(next, &parent->children, sibling,
4205 					lockdep_is_held(&cgroup_mutex))
4206 			if (next->serial_nr > pos->serial_nr)
4207 				break;
4208 	}
4209 
4210 	/*
4211 	 * @next, if not pointing to the head, can be dereferenced and is
4212 	 * the next sibling.
4213 	 */
4214 	if (&next->sibling != &parent->children)
4215 		return next;
4216 	return NULL;
4217 }
4218 
4219 /**
4220  * css_next_descendant_pre - find the next descendant for pre-order walk
4221  * @pos: the current position (%NULL to initiate traversal)
4222  * @root: css whose descendants to walk
4223  *
4224  * To be used by css_for_each_descendant_pre().  Find the next descendant
4225  * to visit for pre-order traversal of @root's descendants.  @root is
4226  * included in the iteration and the first node to be visited.
4227  *
4228  * While this function requires cgroup_mutex or RCU read locking, it
4229  * doesn't require the whole traversal to be contained in a single critical
4230  * section.  This function will return the correct next descendant as long
4231  * as both @pos and @root are accessible and @pos is a descendant of @root.
4232  *
4233  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4234  * css which finished ->css_online() is guaranteed to be visible in the
4235  * future iterations and will stay visible until the last reference is put.
4236  * A css which hasn't finished ->css_online() or already finished
4237  * ->css_offline() may show up during traversal.  It's each subsystem's
4238  * responsibility to synchronize against on/offlining.
4239  */
4240 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4241 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4242 			struct cgroup_subsys_state *root)
4243 {
4244 	struct cgroup_subsys_state *next;
4245 
4246 	cgroup_assert_mutex_or_rcu_locked();
4247 
4248 	/* if first iteration, visit @root */
4249 	if (!pos)
4250 		return root;
4251 
4252 	/* visit the first child if exists */
4253 	next = css_next_child(NULL, pos);
4254 	if (next)
4255 		return next;
4256 
4257 	/* no child, visit my or the closest ancestor's next sibling */
4258 	while (pos != root) {
4259 		next = css_next_child(pos, pos->parent);
4260 		if (next)
4261 			return next;
4262 		pos = pos->parent;
4263 	}
4264 
4265 	return NULL;
4266 }
4267 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4268 
4269 /**
4270  * css_rightmost_descendant - return the rightmost descendant of a css
4271  * @pos: css of interest
4272  *
4273  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4274  * is returned.  This can be used during pre-order traversal to skip
4275  * subtree of @pos.
4276  *
4277  * While this function requires cgroup_mutex or RCU read locking, it
4278  * doesn't require the whole traversal to be contained in a single critical
4279  * section.  This function will return the correct rightmost descendant as
4280  * long as @pos is accessible.
4281  */
4282 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4283 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4284 {
4285 	struct cgroup_subsys_state *last, *tmp;
4286 
4287 	cgroup_assert_mutex_or_rcu_locked();
4288 
4289 	do {
4290 		last = pos;
4291 		/* ->prev isn't RCU safe, walk ->next till the end */
4292 		pos = NULL;
4293 		css_for_each_child(tmp, last)
4294 			pos = tmp;
4295 	} while (pos);
4296 
4297 	return last;
4298 }
4299 
4300 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4301 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4302 {
4303 	struct cgroup_subsys_state *last;
4304 
4305 	do {
4306 		last = pos;
4307 		pos = css_next_child(NULL, pos);
4308 	} while (pos);
4309 
4310 	return last;
4311 }
4312 
4313 /**
4314  * css_next_descendant_post - find the next descendant for post-order walk
4315  * @pos: the current position (%NULL to initiate traversal)
4316  * @root: css whose descendants to walk
4317  *
4318  * To be used by css_for_each_descendant_post().  Find the next descendant
4319  * to visit for post-order traversal of @root's descendants.  @root is
4320  * included in the iteration and the last node to be visited.
4321  *
4322  * While this function requires cgroup_mutex or RCU read locking, it
4323  * doesn't require the whole traversal to be contained in a single critical
4324  * section.  This function will return the correct next descendant as long
4325  * as both @pos and @cgroup are accessible and @pos is a descendant of
4326  * @cgroup.
4327  *
4328  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4329  * css which finished ->css_online() is guaranteed to be visible in the
4330  * future iterations and will stay visible until the last reference is put.
4331  * A css which hasn't finished ->css_online() or already finished
4332  * ->css_offline() may show up during traversal.  It's each subsystem's
4333  * responsibility to synchronize against on/offlining.
4334  */
4335 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4336 css_next_descendant_post(struct cgroup_subsys_state *pos,
4337 			 struct cgroup_subsys_state *root)
4338 {
4339 	struct cgroup_subsys_state *next;
4340 
4341 	cgroup_assert_mutex_or_rcu_locked();
4342 
4343 	/* if first iteration, visit leftmost descendant which may be @root */
4344 	if (!pos)
4345 		return css_leftmost_descendant(root);
4346 
4347 	/* if we visited @root, we're done */
4348 	if (pos == root)
4349 		return NULL;
4350 
4351 	/* if there's an unvisited sibling, visit its leftmost descendant */
4352 	next = css_next_child(pos, pos->parent);
4353 	if (next)
4354 		return css_leftmost_descendant(next);
4355 
4356 	/* no sibling left, visit parent */
4357 	return pos->parent;
4358 }
4359 
4360 /**
4361  * css_has_online_children - does a css have online children
4362  * @css: the target css
4363  *
4364  * Returns %true if @css has any online children; otherwise, %false.  This
4365  * function can be called from any context but the caller is responsible
4366  * for synchronizing against on/offlining as necessary.
4367  */
css_has_online_children(struct cgroup_subsys_state * css)4368 bool css_has_online_children(struct cgroup_subsys_state *css)
4369 {
4370 	struct cgroup_subsys_state *child;
4371 	bool ret = false;
4372 
4373 	rcu_read_lock();
4374 	css_for_each_child(child, css) {
4375 		if (child->flags & CSS_ONLINE) {
4376 			ret = true;
4377 			break;
4378 		}
4379 	}
4380 	rcu_read_unlock();
4381 	return ret;
4382 }
4383 
css_task_iter_next_css_set(struct css_task_iter * it)4384 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4385 {
4386 	struct list_head *l;
4387 	struct cgrp_cset_link *link;
4388 	struct css_set *cset;
4389 
4390 	lockdep_assert_held(&css_set_lock);
4391 
4392 	/* find the next threaded cset */
4393 	if (it->tcset_pos) {
4394 		l = it->tcset_pos->next;
4395 
4396 		if (l != it->tcset_head) {
4397 			it->tcset_pos = l;
4398 			return container_of(l, struct css_set,
4399 					    threaded_csets_node);
4400 		}
4401 
4402 		it->tcset_pos = NULL;
4403 	}
4404 
4405 	/* find the next cset */
4406 	l = it->cset_pos;
4407 	l = l->next;
4408 	if (l == it->cset_head) {
4409 		it->cset_pos = NULL;
4410 		return NULL;
4411 	}
4412 
4413 	if (it->ss) {
4414 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4415 	} else {
4416 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4417 		cset = link->cset;
4418 	}
4419 
4420 	it->cset_pos = l;
4421 
4422 	/* initialize threaded css_set walking */
4423 	if (it->flags & CSS_TASK_ITER_THREADED) {
4424 		if (it->cur_dcset)
4425 			put_css_set_locked(it->cur_dcset);
4426 		it->cur_dcset = cset;
4427 		get_css_set(cset);
4428 
4429 		it->tcset_head = &cset->threaded_csets;
4430 		it->tcset_pos = &cset->threaded_csets;
4431 	}
4432 
4433 	return cset;
4434 }
4435 
4436 /**
4437  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4438  * @it: the iterator to advance
4439  *
4440  * Advance @it to the next css_set to walk.
4441  */
css_task_iter_advance_css_set(struct css_task_iter * it)4442 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4443 {
4444 	struct css_set *cset;
4445 
4446 	lockdep_assert_held(&css_set_lock);
4447 
4448 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4449 	while ((cset = css_task_iter_next_css_set(it))) {
4450 		if (!list_empty(&cset->tasks)) {
4451 			it->cur_tasks_head = &cset->tasks;
4452 			break;
4453 		} else if (!list_empty(&cset->mg_tasks)) {
4454 			it->cur_tasks_head = &cset->mg_tasks;
4455 			break;
4456 		} else if (!list_empty(&cset->dying_tasks)) {
4457 			it->cur_tasks_head = &cset->dying_tasks;
4458 			break;
4459 		}
4460 	}
4461 	if (!cset) {
4462 		it->task_pos = NULL;
4463 		return;
4464 	}
4465 	it->task_pos = it->cur_tasks_head->next;
4466 
4467 	/*
4468 	 * We don't keep css_sets locked across iteration steps and thus
4469 	 * need to take steps to ensure that iteration can be resumed after
4470 	 * the lock is re-acquired.  Iteration is performed at two levels -
4471 	 * css_sets and tasks in them.
4472 	 *
4473 	 * Once created, a css_set never leaves its cgroup lists, so a
4474 	 * pinned css_set is guaranteed to stay put and we can resume
4475 	 * iteration afterwards.
4476 	 *
4477 	 * Tasks may leave @cset across iteration steps.  This is resolved
4478 	 * by registering each iterator with the css_set currently being
4479 	 * walked and making css_set_move_task() advance iterators whose
4480 	 * next task is leaving.
4481 	 */
4482 	if (it->cur_cset) {
4483 		list_del(&it->iters_node);
4484 		put_css_set_locked(it->cur_cset);
4485 	}
4486 	get_css_set(cset);
4487 	it->cur_cset = cset;
4488 	list_add(&it->iters_node, &cset->task_iters);
4489 }
4490 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4491 static void css_task_iter_skip(struct css_task_iter *it,
4492 			       struct task_struct *task)
4493 {
4494 	lockdep_assert_held(&css_set_lock);
4495 
4496 	if (it->task_pos == &task->cg_list) {
4497 		it->task_pos = it->task_pos->next;
4498 		it->flags |= CSS_TASK_ITER_SKIPPED;
4499 	}
4500 }
4501 
css_task_iter_advance(struct css_task_iter * it)4502 static void css_task_iter_advance(struct css_task_iter *it)
4503 {
4504 	struct task_struct *task;
4505 
4506 	lockdep_assert_held(&css_set_lock);
4507 repeat:
4508 	if (it->task_pos) {
4509 		/*
4510 		 * Advance iterator to find next entry. We go through cset
4511 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4512 		 * the next cset.
4513 		 */
4514 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4515 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4516 		else
4517 			it->task_pos = it->task_pos->next;
4518 
4519 		if (it->task_pos == &it->cur_cset->tasks) {
4520 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4521 			it->task_pos = it->cur_tasks_head->next;
4522 		}
4523 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4524 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4525 			it->task_pos = it->cur_tasks_head->next;
4526 		}
4527 		if (it->task_pos == &it->cur_cset->dying_tasks)
4528 			css_task_iter_advance_css_set(it);
4529 	} else {
4530 		/* called from start, proceed to the first cset */
4531 		css_task_iter_advance_css_set(it);
4532 	}
4533 
4534 	if (!it->task_pos)
4535 		return;
4536 
4537 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4538 
4539 	if (it->flags & CSS_TASK_ITER_PROCS) {
4540 		/* if PROCS, skip over tasks which aren't group leaders */
4541 		if (!thread_group_leader(task))
4542 			goto repeat;
4543 
4544 		/* and dying leaders w/o live member threads */
4545 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4546 		    !atomic_read(&task->signal->live))
4547 			goto repeat;
4548 	} else {
4549 		/* skip all dying ones */
4550 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4551 			goto repeat;
4552 	}
4553 }
4554 
4555 /**
4556  * css_task_iter_start - initiate task iteration
4557  * @css: the css to walk tasks of
4558  * @flags: CSS_TASK_ITER_* flags
4559  * @it: the task iterator to use
4560  *
4561  * Initiate iteration through the tasks of @css.  The caller can call
4562  * css_task_iter_next() to walk through the tasks until the function
4563  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4564  * called.
4565  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4566 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4567 			 struct css_task_iter *it)
4568 {
4569 	memset(it, 0, sizeof(*it));
4570 
4571 	spin_lock_irq(&css_set_lock);
4572 
4573 	it->ss = css->ss;
4574 	it->flags = flags;
4575 
4576 	if (it->ss)
4577 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4578 	else
4579 		it->cset_pos = &css->cgroup->cset_links;
4580 
4581 	it->cset_head = it->cset_pos;
4582 
4583 	css_task_iter_advance(it);
4584 
4585 	spin_unlock_irq(&css_set_lock);
4586 }
4587 
4588 /**
4589  * css_task_iter_next - return the next task for the iterator
4590  * @it: the task iterator being iterated
4591  *
4592  * The "next" function for task iteration.  @it should have been
4593  * initialized via css_task_iter_start().  Returns NULL when the iteration
4594  * reaches the end.
4595  */
css_task_iter_next(struct css_task_iter * it)4596 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4597 {
4598 	if (it->cur_task) {
4599 		put_task_struct(it->cur_task);
4600 		it->cur_task = NULL;
4601 	}
4602 
4603 	spin_lock_irq(&css_set_lock);
4604 
4605 	/* @it may be half-advanced by skips, finish advancing */
4606 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4607 		css_task_iter_advance(it);
4608 
4609 	if (it->task_pos) {
4610 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4611 					  cg_list);
4612 		get_task_struct(it->cur_task);
4613 		css_task_iter_advance(it);
4614 	}
4615 
4616 	spin_unlock_irq(&css_set_lock);
4617 
4618 	return it->cur_task;
4619 }
4620 
4621 /**
4622  * css_task_iter_end - finish task iteration
4623  * @it: the task iterator to finish
4624  *
4625  * Finish task iteration started by css_task_iter_start().
4626  */
css_task_iter_end(struct css_task_iter * it)4627 void css_task_iter_end(struct css_task_iter *it)
4628 {
4629 	if (it->cur_cset) {
4630 		spin_lock_irq(&css_set_lock);
4631 		list_del(&it->iters_node);
4632 		put_css_set_locked(it->cur_cset);
4633 		spin_unlock_irq(&css_set_lock);
4634 	}
4635 
4636 	if (it->cur_dcset)
4637 		put_css_set(it->cur_dcset);
4638 
4639 	if (it->cur_task)
4640 		put_task_struct(it->cur_task);
4641 }
4642 
cgroup_procs_release(struct kernfs_open_file * of)4643 static void cgroup_procs_release(struct kernfs_open_file *of)
4644 {
4645 	struct cgroup_file_ctx *ctx = of->priv;
4646 
4647 	if (ctx->procs.started)
4648 		css_task_iter_end(&ctx->procs.iter);
4649 }
4650 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4651 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4652 {
4653 	struct kernfs_open_file *of = s->private;
4654 	struct cgroup_file_ctx *ctx = of->priv;
4655 
4656 	if (pos)
4657 		(*pos)++;
4658 
4659 	return css_task_iter_next(&ctx->procs.iter);
4660 }
4661 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4662 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4663 				  unsigned int iter_flags)
4664 {
4665 	struct kernfs_open_file *of = s->private;
4666 	struct cgroup *cgrp = seq_css(s)->cgroup;
4667 	struct cgroup_file_ctx *ctx = of->priv;
4668 	struct css_task_iter *it = &ctx->procs.iter;
4669 
4670 	/*
4671 	 * When a seq_file is seeked, it's always traversed sequentially
4672 	 * from position 0, so we can simply keep iterating on !0 *pos.
4673 	 */
4674 	if (!ctx->procs.started) {
4675 		if (WARN_ON_ONCE((*pos)))
4676 			return ERR_PTR(-EINVAL);
4677 		css_task_iter_start(&cgrp->self, iter_flags, it);
4678 		ctx->procs.started = true;
4679 	} else if (!(*pos)) {
4680 		css_task_iter_end(it);
4681 		css_task_iter_start(&cgrp->self, iter_flags, it);
4682 	} else
4683 		return it->cur_task;
4684 
4685 	return cgroup_procs_next(s, NULL, NULL);
4686 }
4687 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4688 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4689 {
4690 	struct cgroup *cgrp = seq_css(s)->cgroup;
4691 
4692 	/*
4693 	 * All processes of a threaded subtree belong to the domain cgroup
4694 	 * of the subtree.  Only threads can be distributed across the
4695 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4696 	 * They're always empty anyway.
4697 	 */
4698 	if (cgroup_is_threaded(cgrp))
4699 		return ERR_PTR(-EOPNOTSUPP);
4700 
4701 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4702 					    CSS_TASK_ITER_THREADED);
4703 }
4704 
cgroup_procs_show(struct seq_file * s,void * v)4705 static int cgroup_procs_show(struct seq_file *s, void *v)
4706 {
4707 	seq_printf(s, "%d\n", task_pid_vnr(v));
4708 	return 0;
4709 }
4710 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4711 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4712 {
4713 	int ret;
4714 	struct inode *inode;
4715 
4716 	lockdep_assert_held(&cgroup_mutex);
4717 
4718 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4719 	if (!inode)
4720 		return -ENOMEM;
4721 
4722 	ret = inode_permission(inode, MAY_WRITE);
4723 	iput(inode);
4724 	return ret;
4725 }
4726 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4727 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4728 					 struct cgroup *dst_cgrp,
4729 					 struct super_block *sb,
4730 					 struct cgroup_namespace *ns)
4731 {
4732 	struct cgroup *com_cgrp = src_cgrp;
4733 	int ret;
4734 
4735 	lockdep_assert_held(&cgroup_mutex);
4736 
4737 	/* find the common ancestor */
4738 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4739 		com_cgrp = cgroup_parent(com_cgrp);
4740 
4741 	/* %current should be authorized to migrate to the common ancestor */
4742 	ret = cgroup_may_write(com_cgrp, sb);
4743 	if (ret)
4744 		return ret;
4745 
4746 	/*
4747 	 * If namespaces are delegation boundaries, %current must be able
4748 	 * to see both source and destination cgroups from its namespace.
4749 	 */
4750 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4751 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4752 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4753 		return -ENOENT;
4754 
4755 	return 0;
4756 }
4757 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4758 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4759 				     struct cgroup *dst_cgrp,
4760 				     struct super_block *sb, bool threadgroup,
4761 				     struct cgroup_namespace *ns)
4762 {
4763 	int ret = 0;
4764 
4765 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4766 	if (ret)
4767 		return ret;
4768 
4769 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4770 	if (ret)
4771 		return ret;
4772 
4773 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4774 		ret = -EOPNOTSUPP;
4775 
4776 	return ret;
4777 }
4778 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4779 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4780 				    bool threadgroup)
4781 {
4782 	struct cgroup_file_ctx *ctx = of->priv;
4783 	struct cgroup *src_cgrp, *dst_cgrp;
4784 	struct task_struct *task;
4785 	const struct cred *saved_cred;
4786 	ssize_t ret;
4787 	bool locked;
4788 
4789 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4790 	if (!dst_cgrp)
4791 		return -ENODEV;
4792 
4793 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
4794 	ret = PTR_ERR_OR_ZERO(task);
4795 	if (ret)
4796 		goto out_unlock;
4797 
4798 	/* find the source cgroup */
4799 	spin_lock_irq(&css_set_lock);
4800 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4801 	spin_unlock_irq(&css_set_lock);
4802 
4803 	/*
4804 	 * Process and thread migrations follow same delegation rule. Check
4805 	 * permissions using the credentials from file open to protect against
4806 	 * inherited fd attacks.
4807 	 */
4808 	saved_cred = override_creds(of->file->f_cred);
4809 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4810 					of->file->f_path.dentry->d_sb,
4811 					threadgroup, ctx->ns);
4812 	revert_creds(saved_cred);
4813 	if (ret)
4814 		goto out_finish;
4815 
4816 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4817 
4818 out_finish:
4819 	cgroup_procs_write_finish(task, locked);
4820 out_unlock:
4821 	cgroup_kn_unlock(of->kn);
4822 
4823 	return ret;
4824 }
4825 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4826 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4827 				  char *buf, size_t nbytes, loff_t off)
4828 {
4829 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
4830 }
4831 
cgroup_threads_start(struct seq_file * s,loff_t * pos)4832 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4833 {
4834 	return __cgroup_procs_start(s, pos, 0);
4835 }
4836 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4837 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4838 				    char *buf, size_t nbytes, loff_t off)
4839 {
4840 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
4841 }
4842 
4843 /* cgroup core interface files for the default hierarchy */
4844 static struct cftype cgroup_base_files[] = {
4845 	{
4846 		.name = "cgroup.type",
4847 		.flags = CFTYPE_NOT_ON_ROOT,
4848 		.seq_show = cgroup_type_show,
4849 		.write = cgroup_type_write,
4850 	},
4851 	{
4852 		.name = "cgroup.procs",
4853 		.flags = CFTYPE_NS_DELEGATABLE,
4854 		.file_offset = offsetof(struct cgroup, procs_file),
4855 		.release = cgroup_procs_release,
4856 		.seq_start = cgroup_procs_start,
4857 		.seq_next = cgroup_procs_next,
4858 		.seq_show = cgroup_procs_show,
4859 		.write = cgroup_procs_write,
4860 	},
4861 	{
4862 		.name = "cgroup.threads",
4863 		.flags = CFTYPE_NS_DELEGATABLE,
4864 		.release = cgroup_procs_release,
4865 		.seq_start = cgroup_threads_start,
4866 		.seq_next = cgroup_procs_next,
4867 		.seq_show = cgroup_procs_show,
4868 		.write = cgroup_threads_write,
4869 	},
4870 	{
4871 		.name = "cgroup.controllers",
4872 		.seq_show = cgroup_controllers_show,
4873 	},
4874 	{
4875 		.name = "cgroup.subtree_control",
4876 		.flags = CFTYPE_NS_DELEGATABLE,
4877 		.seq_show = cgroup_subtree_control_show,
4878 		.write = cgroup_subtree_control_write,
4879 	},
4880 	{
4881 		.name = "cgroup.events",
4882 		.flags = CFTYPE_NOT_ON_ROOT,
4883 		.file_offset = offsetof(struct cgroup, events_file),
4884 		.seq_show = cgroup_events_show,
4885 	},
4886 	{
4887 		.name = "cgroup.max.descendants",
4888 		.seq_show = cgroup_max_descendants_show,
4889 		.write = cgroup_max_descendants_write,
4890 	},
4891 	{
4892 		.name = "cgroup.max.depth",
4893 		.seq_show = cgroup_max_depth_show,
4894 		.write = cgroup_max_depth_write,
4895 	},
4896 	{
4897 		.name = "cgroup.stat",
4898 		.seq_show = cgroup_stat_show,
4899 	},
4900 	{
4901 		.name = "cgroup.freeze",
4902 		.flags = CFTYPE_NOT_ON_ROOT,
4903 		.seq_show = cgroup_freeze_show,
4904 		.write = cgroup_freeze_write,
4905 	},
4906 	{
4907 		.name = "cpu.stat",
4908 		.seq_show = cpu_stat_show,
4909 	},
4910 #ifdef CONFIG_PSI
4911 	{
4912 		.name = "io.pressure",
4913 		.seq_show = cgroup_io_pressure_show,
4914 		.write = cgroup_io_pressure_write,
4915 		.poll = cgroup_pressure_poll,
4916 		.release = cgroup_pressure_release,
4917 	},
4918 	{
4919 		.name = "memory.pressure",
4920 		.seq_show = cgroup_memory_pressure_show,
4921 		.write = cgroup_memory_pressure_write,
4922 		.poll = cgroup_pressure_poll,
4923 		.release = cgroup_pressure_release,
4924 	},
4925 	{
4926 		.name = "cpu.pressure",
4927 		.seq_show = cgroup_cpu_pressure_show,
4928 		.write = cgroup_cpu_pressure_write,
4929 		.poll = cgroup_pressure_poll,
4930 		.release = cgroup_pressure_release,
4931 	},
4932 #endif /* CONFIG_PSI */
4933 	{ }	/* terminate */
4934 };
4935 
4936 /*
4937  * css destruction is four-stage process.
4938  *
4939  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4940  *    Implemented in kill_css().
4941  *
4942  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4943  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4944  *    offlined by invoking offline_css().  After offlining, the base ref is
4945  *    put.  Implemented in css_killed_work_fn().
4946  *
4947  * 3. When the percpu_ref reaches zero, the only possible remaining
4948  *    accessors are inside RCU read sections.  css_release() schedules the
4949  *    RCU callback.
4950  *
4951  * 4. After the grace period, the css can be freed.  Implemented in
4952  *    css_free_work_fn().
4953  *
4954  * It is actually hairier because both step 2 and 4 require process context
4955  * and thus involve punting to css->destroy_work adding two additional
4956  * steps to the already complex sequence.
4957  */
css_free_rwork_fn(struct work_struct * work)4958 static void css_free_rwork_fn(struct work_struct *work)
4959 {
4960 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4961 				struct cgroup_subsys_state, destroy_rwork);
4962 	struct cgroup_subsys *ss = css->ss;
4963 	struct cgroup *cgrp = css->cgroup;
4964 
4965 	percpu_ref_exit(&css->refcnt);
4966 
4967 	if (ss) {
4968 		/* css free path */
4969 		struct cgroup_subsys_state *parent = css->parent;
4970 		int id = css->id;
4971 
4972 		ss->css_free(css);
4973 		cgroup_idr_remove(&ss->css_idr, id);
4974 		cgroup_put(cgrp);
4975 
4976 		if (parent)
4977 			css_put(parent);
4978 	} else {
4979 		/* cgroup free path */
4980 		atomic_dec(&cgrp->root->nr_cgrps);
4981 		cgroup1_pidlist_destroy_all(cgrp);
4982 		cancel_work_sync(&cgrp->release_agent_work);
4983 
4984 		if (cgroup_parent(cgrp)) {
4985 			/*
4986 			 * We get a ref to the parent, and put the ref when
4987 			 * this cgroup is being freed, so it's guaranteed
4988 			 * that the parent won't be destroyed before its
4989 			 * children.
4990 			 */
4991 			cgroup_put(cgroup_parent(cgrp));
4992 			kernfs_put(cgrp->kn);
4993 			psi_cgroup_free(cgrp);
4994 			if (cgroup_on_dfl(cgrp))
4995 				cgroup_rstat_exit(cgrp);
4996 			kfree(cgrp);
4997 		} else {
4998 			/*
4999 			 * This is root cgroup's refcnt reaching zero,
5000 			 * which indicates that the root should be
5001 			 * released.
5002 			 */
5003 			cgroup_destroy_root(cgrp->root);
5004 		}
5005 	}
5006 }
5007 
css_release_work_fn(struct work_struct * work)5008 static void css_release_work_fn(struct work_struct *work)
5009 {
5010 	struct cgroup_subsys_state *css =
5011 		container_of(work, struct cgroup_subsys_state, destroy_work);
5012 	struct cgroup_subsys *ss = css->ss;
5013 	struct cgroup *cgrp = css->cgroup;
5014 
5015 	mutex_lock(&cgroup_mutex);
5016 
5017 	css->flags |= CSS_RELEASED;
5018 	list_del_rcu(&css->sibling);
5019 
5020 	if (ss) {
5021 		/* css release path */
5022 		if (!list_empty(&css->rstat_css_node)) {
5023 			cgroup_rstat_flush(cgrp);
5024 			list_del_rcu(&css->rstat_css_node);
5025 		}
5026 
5027 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5028 		if (ss->css_released)
5029 			ss->css_released(css);
5030 	} else {
5031 		struct cgroup *tcgrp;
5032 
5033 		/* cgroup release path */
5034 		TRACE_CGROUP_PATH(release, cgrp);
5035 
5036 		if (cgroup_on_dfl(cgrp))
5037 			cgroup_rstat_flush(cgrp);
5038 
5039 		spin_lock_irq(&css_set_lock);
5040 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5041 		     tcgrp = cgroup_parent(tcgrp))
5042 			tcgrp->nr_dying_descendants--;
5043 		spin_unlock_irq(&css_set_lock);
5044 
5045 		/*
5046 		 * There are two control paths which try to determine
5047 		 * cgroup from dentry without going through kernfs -
5048 		 * cgroupstats_build() and css_tryget_online_from_dir().
5049 		 * Those are supported by RCU protecting clearing of
5050 		 * cgrp->kn->priv backpointer.
5051 		 */
5052 		if (cgrp->kn)
5053 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5054 					 NULL);
5055 		if (css->parent && !css->parent->parent &&
5056 		    list_empty(&css->parent->children))
5057 			wake_up(&cgrp->root->wait);
5058 	}
5059 	mutex_unlock(&cgroup_mutex);
5060 
5061 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5062 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5063 }
5064 
css_release(struct percpu_ref * ref)5065 static void css_release(struct percpu_ref *ref)
5066 {
5067 	struct cgroup_subsys_state *css =
5068 		container_of(ref, struct cgroup_subsys_state, refcnt);
5069 
5070 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5071 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5072 }
5073 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5074 static void init_and_link_css(struct cgroup_subsys_state *css,
5075 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5076 {
5077 	lockdep_assert_held(&cgroup_mutex);
5078 
5079 	cgroup_get_live(cgrp);
5080 
5081 	memset(css, 0, sizeof(*css));
5082 	css->cgroup = cgrp;
5083 	css->ss = ss;
5084 	css->id = -1;
5085 	INIT_LIST_HEAD(&css->sibling);
5086 	INIT_LIST_HEAD(&css->children);
5087 	INIT_LIST_HEAD(&css->rstat_css_node);
5088 	css->serial_nr = css_serial_nr_next++;
5089 	atomic_set(&css->online_cnt, 0);
5090 
5091 	if (cgroup_parent(cgrp)) {
5092 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5093 		css_get(css->parent);
5094 	}
5095 
5096 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5097 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5098 
5099 	BUG_ON(cgroup_css(cgrp, ss));
5100 }
5101 
5102 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5103 static int online_css(struct cgroup_subsys_state *css)
5104 {
5105 	struct cgroup_subsys *ss = css->ss;
5106 	int ret = 0;
5107 
5108 	lockdep_assert_held(&cgroup_mutex);
5109 
5110 	if (ss->css_online)
5111 		ret = ss->css_online(css);
5112 	if (!ret) {
5113 		css->flags |= CSS_ONLINE;
5114 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5115 
5116 		atomic_inc(&css->online_cnt);
5117 		if (css->parent)
5118 			atomic_inc(&css->parent->online_cnt);
5119 	}
5120 	return ret;
5121 }
5122 
5123 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5124 static void offline_css(struct cgroup_subsys_state *css)
5125 {
5126 	struct cgroup_subsys *ss = css->ss;
5127 
5128 	lockdep_assert_held(&cgroup_mutex);
5129 
5130 	if (!(css->flags & CSS_ONLINE))
5131 		return;
5132 
5133 	if (ss->css_offline)
5134 		ss->css_offline(css);
5135 
5136 	css->flags &= ~CSS_ONLINE;
5137 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5138 
5139 	wake_up_all(&css->cgroup->offline_waitq);
5140 }
5141 
5142 /**
5143  * css_create - create a cgroup_subsys_state
5144  * @cgrp: the cgroup new css will be associated with
5145  * @ss: the subsys of new css
5146  *
5147  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5148  * css is online and installed in @cgrp.  This function doesn't create the
5149  * interface files.  Returns 0 on success, -errno on failure.
5150  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5151 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5152 					      struct cgroup_subsys *ss)
5153 {
5154 	struct cgroup *parent = cgroup_parent(cgrp);
5155 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5156 	struct cgroup_subsys_state *css;
5157 	int err;
5158 
5159 	lockdep_assert_held(&cgroup_mutex);
5160 
5161 	css = ss->css_alloc(parent_css);
5162 	if (!css)
5163 		css = ERR_PTR(-ENOMEM);
5164 	if (IS_ERR(css))
5165 		return css;
5166 
5167 	init_and_link_css(css, ss, cgrp);
5168 
5169 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5170 	if (err)
5171 		goto err_free_css;
5172 
5173 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5174 	if (err < 0)
5175 		goto err_free_css;
5176 	css->id = err;
5177 
5178 	/* @css is ready to be brought online now, make it visible */
5179 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5180 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5181 
5182 	err = online_css(css);
5183 	if (err)
5184 		goto err_list_del;
5185 
5186 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5187 	    cgroup_parent(parent)) {
5188 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5189 			current->comm, current->pid, ss->name);
5190 		if (!strcmp(ss->name, "memory"))
5191 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5192 		ss->warned_broken_hierarchy = true;
5193 	}
5194 
5195 	return css;
5196 
5197 err_list_del:
5198 	list_del_rcu(&css->sibling);
5199 err_free_css:
5200 	list_del_rcu(&css->rstat_css_node);
5201 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5202 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5203 	return ERR_PTR(err);
5204 }
5205 
5206 /*
5207  * The returned cgroup is fully initialized including its control mask, but
5208  * it isn't associated with its kernfs_node and doesn't have the control
5209  * mask applied.
5210  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5211 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5212 				    umode_t mode)
5213 {
5214 	struct cgroup_root *root = parent->root;
5215 	struct cgroup *cgrp, *tcgrp;
5216 	struct kernfs_node *kn;
5217 	int level = parent->level + 1;
5218 	int ret;
5219 
5220 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5221 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5222 		       GFP_KERNEL);
5223 	if (!cgrp)
5224 		return ERR_PTR(-ENOMEM);
5225 
5226 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5227 	if (ret)
5228 		goto out_free_cgrp;
5229 
5230 	if (cgroup_on_dfl(parent)) {
5231 		ret = cgroup_rstat_init(cgrp);
5232 		if (ret)
5233 			goto out_cancel_ref;
5234 	}
5235 
5236 	/* create the directory */
5237 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5238 	if (IS_ERR(kn)) {
5239 		ret = PTR_ERR(kn);
5240 		goto out_stat_exit;
5241 	}
5242 	cgrp->kn = kn;
5243 
5244 	init_cgroup_housekeeping(cgrp);
5245 
5246 	cgrp->self.parent = &parent->self;
5247 	cgrp->root = root;
5248 	cgrp->level = level;
5249 
5250 	ret = psi_cgroup_alloc(cgrp);
5251 	if (ret)
5252 		goto out_kernfs_remove;
5253 
5254 	ret = cgroup_bpf_inherit(cgrp);
5255 	if (ret)
5256 		goto out_psi_free;
5257 
5258 	/*
5259 	 * New cgroup inherits effective freeze counter, and
5260 	 * if the parent has to be frozen, the child has too.
5261 	 */
5262 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5263 	if (cgrp->freezer.e_freeze) {
5264 		/*
5265 		 * Set the CGRP_FREEZE flag, so when a process will be
5266 		 * attached to the child cgroup, it will become frozen.
5267 		 * At this point the new cgroup is unpopulated, so we can
5268 		 * consider it frozen immediately.
5269 		 */
5270 		set_bit(CGRP_FREEZE, &cgrp->flags);
5271 		set_bit(CGRP_FROZEN, &cgrp->flags);
5272 	}
5273 
5274 	spin_lock_irq(&css_set_lock);
5275 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5276 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5277 
5278 		if (tcgrp != cgrp) {
5279 			tcgrp->nr_descendants++;
5280 
5281 			/*
5282 			 * If the new cgroup is frozen, all ancestor cgroups
5283 			 * get a new frozen descendant, but their state can't
5284 			 * change because of this.
5285 			 */
5286 			if (cgrp->freezer.e_freeze)
5287 				tcgrp->freezer.nr_frozen_descendants++;
5288 		}
5289 	}
5290 	spin_unlock_irq(&css_set_lock);
5291 
5292 	if (notify_on_release(parent))
5293 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5294 
5295 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5296 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5297 
5298 	cgrp->self.serial_nr = css_serial_nr_next++;
5299 
5300 	/* allocation complete, commit to creation */
5301 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5302 	atomic_inc(&root->nr_cgrps);
5303 	cgroup_get_live(parent);
5304 
5305 	/*
5306 	 * On the default hierarchy, a child doesn't automatically inherit
5307 	 * subtree_control from the parent.  Each is configured manually.
5308 	 */
5309 	if (!cgroup_on_dfl(cgrp))
5310 		cgrp->subtree_control = cgroup_control(cgrp);
5311 
5312 	cgroup_propagate_control(cgrp);
5313 
5314 	return cgrp;
5315 
5316 out_psi_free:
5317 	psi_cgroup_free(cgrp);
5318 out_kernfs_remove:
5319 	kernfs_remove(cgrp->kn);
5320 out_stat_exit:
5321 	if (cgroup_on_dfl(parent))
5322 		cgroup_rstat_exit(cgrp);
5323 out_cancel_ref:
5324 	percpu_ref_exit(&cgrp->self.refcnt);
5325 out_free_cgrp:
5326 	kfree(cgrp);
5327 	return ERR_PTR(ret);
5328 }
5329 
cgroup_check_hierarchy_limits(struct cgroup * parent)5330 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5331 {
5332 	struct cgroup *cgroup;
5333 	int ret = false;
5334 	int level = 1;
5335 
5336 	lockdep_assert_held(&cgroup_mutex);
5337 
5338 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5339 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5340 			goto fail;
5341 
5342 		if (level > cgroup->max_depth)
5343 			goto fail;
5344 
5345 		level++;
5346 	}
5347 
5348 	ret = true;
5349 fail:
5350 	return ret;
5351 }
5352 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5353 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5354 {
5355 	struct cgroup *parent, *cgrp;
5356 	int ret;
5357 
5358 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5359 	if (strchr(name, '\n'))
5360 		return -EINVAL;
5361 
5362 	parent = cgroup_kn_lock_live(parent_kn, false);
5363 	if (!parent)
5364 		return -ENODEV;
5365 
5366 	if (!cgroup_check_hierarchy_limits(parent)) {
5367 		ret = -EAGAIN;
5368 		goto out_unlock;
5369 	}
5370 
5371 	cgrp = cgroup_create(parent, name, mode);
5372 	if (IS_ERR(cgrp)) {
5373 		ret = PTR_ERR(cgrp);
5374 		goto out_unlock;
5375 	}
5376 
5377 	/*
5378 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5379 	 * that @cgrp->kn is always accessible.
5380 	 */
5381 	kernfs_get(cgrp->kn);
5382 
5383 	ret = cgroup_kn_set_ugid(cgrp->kn);
5384 	if (ret)
5385 		goto out_destroy;
5386 
5387 	ret = css_populate_dir(&cgrp->self);
5388 	if (ret)
5389 		goto out_destroy;
5390 
5391 	ret = cgroup_apply_control_enable(cgrp);
5392 	if (ret)
5393 		goto out_destroy;
5394 
5395 	TRACE_CGROUP_PATH(mkdir, cgrp);
5396 
5397 	/* let's create and online css's */
5398 	kernfs_activate(cgrp->kn);
5399 
5400 	ret = 0;
5401 	goto out_unlock;
5402 
5403 out_destroy:
5404 	cgroup_destroy_locked(cgrp);
5405 out_unlock:
5406 	cgroup_kn_unlock(parent_kn);
5407 	return ret;
5408 }
5409 
5410 /*
5411  * This is called when the refcnt of a css is confirmed to be killed.
5412  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5413  * initate destruction and put the css ref from kill_css().
5414  */
css_killed_work_fn(struct work_struct * work)5415 static void css_killed_work_fn(struct work_struct *work)
5416 {
5417 	struct cgroup_subsys_state *css =
5418 		container_of(work, struct cgroup_subsys_state, destroy_work);
5419 
5420 	mutex_lock(&cgroup_mutex);
5421 
5422 	do {
5423 		offline_css(css);
5424 		css_put(css);
5425 		/* @css can't go away while we're holding cgroup_mutex */
5426 		css = css->parent;
5427 	} while (css && atomic_dec_and_test(&css->online_cnt));
5428 
5429 	mutex_unlock(&cgroup_mutex);
5430 }
5431 
5432 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5433 static void css_killed_ref_fn(struct percpu_ref *ref)
5434 {
5435 	struct cgroup_subsys_state *css =
5436 		container_of(ref, struct cgroup_subsys_state, refcnt);
5437 
5438 	if (atomic_dec_and_test(&css->online_cnt)) {
5439 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5440 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5441 	}
5442 }
5443 
5444 /**
5445  * kill_css - destroy a css
5446  * @css: css to destroy
5447  *
5448  * This function initiates destruction of @css by removing cgroup interface
5449  * files and putting its base reference.  ->css_offline() will be invoked
5450  * asynchronously once css_tryget_online() is guaranteed to fail and when
5451  * the reference count reaches zero, @css will be released.
5452  */
kill_css(struct cgroup_subsys_state * css)5453 static void kill_css(struct cgroup_subsys_state *css)
5454 {
5455 	lockdep_assert_held(&cgroup_mutex);
5456 
5457 	if (css->flags & CSS_DYING)
5458 		return;
5459 
5460 	css->flags |= CSS_DYING;
5461 
5462 	/*
5463 	 * This must happen before css is disassociated with its cgroup.
5464 	 * See seq_css() for details.
5465 	 */
5466 	css_clear_dir(css);
5467 
5468 	/*
5469 	 * Killing would put the base ref, but we need to keep it alive
5470 	 * until after ->css_offline().
5471 	 */
5472 	css_get(css);
5473 
5474 	/*
5475 	 * cgroup core guarantees that, by the time ->css_offline() is
5476 	 * invoked, no new css reference will be given out via
5477 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5478 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5479 	 * guarantee that the ref is seen as killed on all CPUs on return.
5480 	 *
5481 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5482 	 * css is confirmed to be seen as killed on all CPUs.
5483 	 */
5484 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5485 }
5486 
5487 /**
5488  * cgroup_destroy_locked - the first stage of cgroup destruction
5489  * @cgrp: cgroup to be destroyed
5490  *
5491  * css's make use of percpu refcnts whose killing latency shouldn't be
5492  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5493  * guarantee that css_tryget_online() won't succeed by the time
5494  * ->css_offline() is invoked.  To satisfy all the requirements,
5495  * destruction is implemented in the following two steps.
5496  *
5497  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5498  *     userland visible parts and start killing the percpu refcnts of
5499  *     css's.  Set up so that the next stage will be kicked off once all
5500  *     the percpu refcnts are confirmed to be killed.
5501  *
5502  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5503  *     rest of destruction.  Once all cgroup references are gone, the
5504  *     cgroup is RCU-freed.
5505  *
5506  * This function implements s1.  After this step, @cgrp is gone as far as
5507  * the userland is concerned and a new cgroup with the same name may be
5508  * created.  As cgroup doesn't care about the names internally, this
5509  * doesn't cause any problem.
5510  */
cgroup_destroy_locked(struct cgroup * cgrp)5511 static int cgroup_destroy_locked(struct cgroup *cgrp)
5512 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5513 {
5514 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5515 	struct cgroup_subsys_state *css;
5516 	struct cgrp_cset_link *link;
5517 	int ssid;
5518 
5519 	lockdep_assert_held(&cgroup_mutex);
5520 
5521 	/*
5522 	 * Only migration can raise populated from zero and we're already
5523 	 * holding cgroup_mutex.
5524 	 */
5525 	if (cgroup_is_populated(cgrp))
5526 		return -EBUSY;
5527 
5528 	/*
5529 	 * Make sure there's no live children.  We can't test emptiness of
5530 	 * ->self.children as dead children linger on it while being
5531 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5532 	 */
5533 	if (css_has_online_children(&cgrp->self))
5534 		return -EBUSY;
5535 
5536 	/*
5537 	 * Mark @cgrp and the associated csets dead.  The former prevents
5538 	 * further task migration and child creation by disabling
5539 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5540 	 * the migration path.
5541 	 */
5542 	cgrp->self.flags &= ~CSS_ONLINE;
5543 
5544 	spin_lock_irq(&css_set_lock);
5545 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5546 		link->cset->dead = true;
5547 	spin_unlock_irq(&css_set_lock);
5548 
5549 	/* initiate massacre of all css's */
5550 	for_each_css(css, ssid, cgrp)
5551 		kill_css(css);
5552 
5553 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5554 	css_clear_dir(&cgrp->self);
5555 	kernfs_remove(cgrp->kn);
5556 
5557 	if (parent && cgroup_is_threaded(cgrp))
5558 		parent->nr_threaded_children--;
5559 
5560 	spin_lock_irq(&css_set_lock);
5561 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5562 		tcgrp->nr_descendants--;
5563 		tcgrp->nr_dying_descendants++;
5564 		/*
5565 		 * If the dying cgroup is frozen, decrease frozen descendants
5566 		 * counters of ancestor cgroups.
5567 		 */
5568 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5569 			tcgrp->freezer.nr_frozen_descendants--;
5570 	}
5571 	spin_unlock_irq(&css_set_lock);
5572 
5573 	cgroup1_check_for_release(parent);
5574 
5575 	cgroup_bpf_offline(cgrp);
5576 
5577 	/* put the base reference */
5578 	percpu_ref_kill(&cgrp->self.refcnt);
5579 
5580 	return 0;
5581 };
5582 
cgroup_rmdir(struct kernfs_node * kn)5583 int cgroup_rmdir(struct kernfs_node *kn)
5584 {
5585 	struct cgroup *cgrp;
5586 	int ret = 0;
5587 
5588 	cgrp = cgroup_kn_lock_live(kn, false);
5589 	if (!cgrp)
5590 		return 0;
5591 
5592 	ret = cgroup_destroy_locked(cgrp);
5593 	if (!ret)
5594 		TRACE_CGROUP_PATH(rmdir, cgrp);
5595 
5596 	cgroup_kn_unlock(kn);
5597 	return ret;
5598 }
5599 
5600 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5601 	.show_options		= cgroup_show_options,
5602 	.mkdir			= cgroup_mkdir,
5603 	.rmdir			= cgroup_rmdir,
5604 	.show_path		= cgroup_show_path,
5605 };
5606 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5607 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5608 {
5609 	struct cgroup_subsys_state *css;
5610 
5611 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5612 
5613 	mutex_lock(&cgroup_mutex);
5614 
5615 	idr_init(&ss->css_idr);
5616 	INIT_LIST_HEAD(&ss->cfts);
5617 
5618 	/* Create the root cgroup state for this subsystem */
5619 	ss->root = &cgrp_dfl_root;
5620 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5621 	/* We don't handle early failures gracefully */
5622 	BUG_ON(IS_ERR(css));
5623 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5624 
5625 	/*
5626 	 * Root csses are never destroyed and we can't initialize
5627 	 * percpu_ref during early init.  Disable refcnting.
5628 	 */
5629 	css->flags |= CSS_NO_REF;
5630 
5631 	if (early) {
5632 		/* allocation can't be done safely during early init */
5633 		css->id = 1;
5634 	} else {
5635 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5636 		BUG_ON(css->id < 0);
5637 	}
5638 
5639 	/* Update the init_css_set to contain a subsys
5640 	 * pointer to this state - since the subsystem is
5641 	 * newly registered, all tasks and hence the
5642 	 * init_css_set is in the subsystem's root cgroup. */
5643 	init_css_set.subsys[ss->id] = css;
5644 
5645 	have_fork_callback |= (bool)ss->fork << ss->id;
5646 	have_exit_callback |= (bool)ss->exit << ss->id;
5647 	have_release_callback |= (bool)ss->release << ss->id;
5648 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5649 
5650 	/* At system boot, before all subsystems have been
5651 	 * registered, no tasks have been forked, so we don't
5652 	 * need to invoke fork callbacks here. */
5653 	BUG_ON(!list_empty(&init_task.tasks));
5654 
5655 	BUG_ON(online_css(css));
5656 
5657 	mutex_unlock(&cgroup_mutex);
5658 }
5659 
5660 /**
5661  * cgroup_init_early - cgroup initialization at system boot
5662  *
5663  * Initialize cgroups at system boot, and initialize any
5664  * subsystems that request early init.
5665  */
cgroup_init_early(void)5666 int __init cgroup_init_early(void)
5667 {
5668 	static struct cgroup_fs_context __initdata ctx;
5669 	struct cgroup_subsys *ss;
5670 	int i;
5671 
5672 	ctx.root = &cgrp_dfl_root;
5673 	init_cgroup_root(&ctx);
5674 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5675 
5676 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5677 
5678 	for_each_subsys(ss, i) {
5679 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5680 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5681 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5682 		     ss->id, ss->name);
5683 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5684 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5685 
5686 		ss->id = i;
5687 		ss->name = cgroup_subsys_name[i];
5688 		if (!ss->legacy_name)
5689 			ss->legacy_name = cgroup_subsys_name[i];
5690 
5691 		if (ss->early_init)
5692 			cgroup_init_subsys(ss, true);
5693 	}
5694 	return 0;
5695 }
5696 
5697 /**
5698  * cgroup_init - cgroup initialization
5699  *
5700  * Register cgroup filesystem and /proc file, and initialize
5701  * any subsystems that didn't request early init.
5702  */
cgroup_init(void)5703 int __init cgroup_init(void)
5704 {
5705 	struct cgroup_subsys *ss;
5706 	int ssid;
5707 
5708 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5709 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5710 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5711 
5712 	cgroup_rstat_boot();
5713 
5714 	/*
5715 	 * The latency of the synchronize_rcu() is too high for cgroups,
5716 	 * avoid it at the cost of forcing all readers into the slow path.
5717 	 */
5718 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5719 
5720 	get_user_ns(init_cgroup_ns.user_ns);
5721 
5722 	mutex_lock(&cgroup_mutex);
5723 
5724 	/*
5725 	 * Add init_css_set to the hash table so that dfl_root can link to
5726 	 * it during init.
5727 	 */
5728 	hash_add(css_set_table, &init_css_set.hlist,
5729 		 css_set_hash(init_css_set.subsys));
5730 
5731 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5732 
5733 	mutex_unlock(&cgroup_mutex);
5734 
5735 	for_each_subsys(ss, ssid) {
5736 		if (ss->early_init) {
5737 			struct cgroup_subsys_state *css =
5738 				init_css_set.subsys[ss->id];
5739 
5740 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5741 						   GFP_KERNEL);
5742 			BUG_ON(css->id < 0);
5743 		} else {
5744 			cgroup_init_subsys(ss, false);
5745 		}
5746 
5747 		list_add_tail(&init_css_set.e_cset_node[ssid],
5748 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5749 
5750 		/*
5751 		 * Setting dfl_root subsys_mask needs to consider the
5752 		 * disabled flag and cftype registration needs kmalloc,
5753 		 * both of which aren't available during early_init.
5754 		 */
5755 		if (!cgroup_ssid_enabled(ssid))
5756 			continue;
5757 
5758 		if (cgroup1_ssid_disabled(ssid))
5759 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5760 			       ss->name);
5761 
5762 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5763 
5764 		/* implicit controllers must be threaded too */
5765 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5766 
5767 		if (ss->implicit_on_dfl)
5768 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5769 		else if (!ss->dfl_cftypes)
5770 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5771 
5772 		if (ss->threaded)
5773 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5774 
5775 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5776 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5777 		} else {
5778 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5779 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5780 		}
5781 
5782 		if (ss->bind)
5783 			ss->bind(init_css_set.subsys[ssid]);
5784 
5785 		mutex_lock(&cgroup_mutex);
5786 		css_populate_dir(init_css_set.subsys[ssid]);
5787 		mutex_unlock(&cgroup_mutex);
5788 	}
5789 
5790 	/* init_css_set.subsys[] has been updated, re-hash */
5791 	hash_del(&init_css_set.hlist);
5792 	hash_add(css_set_table, &init_css_set.hlist,
5793 		 css_set_hash(init_css_set.subsys));
5794 
5795 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5796 	WARN_ON(register_filesystem(&cgroup_fs_type));
5797 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5798 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5799 #ifdef CONFIG_CPUSETS
5800 	WARN_ON(register_filesystem(&cpuset_fs_type));
5801 #endif
5802 
5803 	return 0;
5804 }
5805 
cgroup_wq_init(void)5806 static int __init cgroup_wq_init(void)
5807 {
5808 	/*
5809 	 * There isn't much point in executing destruction path in
5810 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5811 	 * Use 1 for @max_active.
5812 	 *
5813 	 * We would prefer to do this in cgroup_init() above, but that
5814 	 * is called before init_workqueues(): so leave this until after.
5815 	 */
5816 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5817 	BUG_ON(!cgroup_destroy_wq);
5818 	return 0;
5819 }
5820 core_initcall(cgroup_wq_init);
5821 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5822 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5823 {
5824 	struct kernfs_node *kn;
5825 
5826 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5827 	if (!kn)
5828 		return;
5829 	kernfs_path(kn, buf, buflen);
5830 	kernfs_put(kn);
5831 }
5832 
5833 /*
5834  * proc_cgroup_show()
5835  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5836  *  - Used for /proc/<pid>/cgroup.
5837  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5838 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5839 		     struct pid *pid, struct task_struct *tsk)
5840 {
5841 	char *buf;
5842 	int retval;
5843 	struct cgroup_root *root;
5844 
5845 	retval = -ENOMEM;
5846 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5847 	if (!buf)
5848 		goto out;
5849 
5850 	mutex_lock(&cgroup_mutex);
5851 	spin_lock_irq(&css_set_lock);
5852 
5853 	for_each_root(root) {
5854 		struct cgroup_subsys *ss;
5855 		struct cgroup *cgrp;
5856 		int ssid, count = 0;
5857 
5858 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5859 			continue;
5860 
5861 		seq_printf(m, "%d:", root->hierarchy_id);
5862 		if (root != &cgrp_dfl_root)
5863 			for_each_subsys(ss, ssid)
5864 				if (root->subsys_mask & (1 << ssid))
5865 					seq_printf(m, "%s%s", count++ ? "," : "",
5866 						   ss->legacy_name);
5867 		if (strlen(root->name))
5868 			seq_printf(m, "%sname=%s", count ? "," : "",
5869 				   root->name);
5870 		seq_putc(m, ':');
5871 
5872 		cgrp = task_cgroup_from_root(tsk, root);
5873 
5874 		/*
5875 		 * On traditional hierarchies, all zombie tasks show up as
5876 		 * belonging to the root cgroup.  On the default hierarchy,
5877 		 * while a zombie doesn't show up in "cgroup.procs" and
5878 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5879 		 * reporting the cgroup it belonged to before exiting.  If
5880 		 * the cgroup is removed before the zombie is reaped,
5881 		 * " (deleted)" is appended to the cgroup path.
5882 		 */
5883 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5884 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5885 						current->nsproxy->cgroup_ns);
5886 			if (retval >= PATH_MAX)
5887 				retval = -ENAMETOOLONG;
5888 			if (retval < 0)
5889 				goto out_unlock;
5890 
5891 			seq_puts(m, buf);
5892 		} else {
5893 			seq_puts(m, "/");
5894 		}
5895 
5896 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5897 			seq_puts(m, " (deleted)\n");
5898 		else
5899 			seq_putc(m, '\n');
5900 	}
5901 
5902 	retval = 0;
5903 out_unlock:
5904 	spin_unlock_irq(&css_set_lock);
5905 	mutex_unlock(&cgroup_mutex);
5906 	kfree(buf);
5907 out:
5908 	return retval;
5909 }
5910 
5911 /**
5912  * cgroup_fork - initialize cgroup related fields during copy_process()
5913  * @child: pointer to task_struct of forking parent process.
5914  *
5915  * A task is associated with the init_css_set until cgroup_post_fork()
5916  * attaches it to the target css_set.
5917  */
cgroup_fork(struct task_struct * child)5918 void cgroup_fork(struct task_struct *child)
5919 {
5920 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5921 	INIT_LIST_HEAD(&child->cg_list);
5922 }
5923 
cgroup_get_from_file(struct file * f)5924 static struct cgroup *cgroup_get_from_file(struct file *f)
5925 {
5926 	struct cgroup_subsys_state *css;
5927 	struct cgroup *cgrp;
5928 
5929 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5930 	if (IS_ERR(css))
5931 		return ERR_CAST(css);
5932 
5933 	cgrp = css->cgroup;
5934 	if (!cgroup_on_dfl(cgrp)) {
5935 		cgroup_put(cgrp);
5936 		return ERR_PTR(-EBADF);
5937 	}
5938 
5939 	return cgrp;
5940 }
5941 
5942 /**
5943  * cgroup_css_set_fork - find or create a css_set for a child process
5944  * @kargs: the arguments passed to create the child process
5945  *
5946  * This functions finds or creates a new css_set which the child
5947  * process will be attached to in cgroup_post_fork(). By default,
5948  * the child process will be given the same css_set as its parent.
5949  *
5950  * If CLONE_INTO_CGROUP is specified this function will try to find an
5951  * existing css_set which includes the requested cgroup and if not create
5952  * a new css_set that the child will be attached to later. If this function
5953  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5954  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5955  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5956  * to the target cgroup.
5957  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)5958 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5959 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5960 {
5961 	int ret;
5962 	struct cgroup *dst_cgrp = NULL;
5963 	struct css_set *cset;
5964 	struct super_block *sb;
5965 	struct file *f;
5966 
5967 	if (kargs->flags & CLONE_INTO_CGROUP)
5968 		mutex_lock(&cgroup_mutex);
5969 
5970 	cgroup_threadgroup_change_begin(current);
5971 
5972 	spin_lock_irq(&css_set_lock);
5973 	cset = task_css_set(current);
5974 	get_css_set(cset);
5975 	spin_unlock_irq(&css_set_lock);
5976 
5977 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5978 		kargs->cset = cset;
5979 		return 0;
5980 	}
5981 
5982 	f = fget_raw(kargs->cgroup);
5983 	if (!f) {
5984 		ret = -EBADF;
5985 		goto err;
5986 	}
5987 	sb = f->f_path.dentry->d_sb;
5988 
5989 	dst_cgrp = cgroup_get_from_file(f);
5990 	if (IS_ERR(dst_cgrp)) {
5991 		ret = PTR_ERR(dst_cgrp);
5992 		dst_cgrp = NULL;
5993 		goto err;
5994 	}
5995 
5996 	if (cgroup_is_dead(dst_cgrp)) {
5997 		ret = -ENODEV;
5998 		goto err;
5999 	}
6000 
6001 	/*
6002 	 * Verify that we the target cgroup is writable for us. This is
6003 	 * usually done by the vfs layer but since we're not going through
6004 	 * the vfs layer here we need to do it "manually".
6005 	 */
6006 	ret = cgroup_may_write(dst_cgrp, sb);
6007 	if (ret)
6008 		goto err;
6009 
6010 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6011 					!(kargs->flags & CLONE_THREAD),
6012 					current->nsproxy->cgroup_ns);
6013 	if (ret)
6014 		goto err;
6015 
6016 	kargs->cset = find_css_set(cset, dst_cgrp);
6017 	if (!kargs->cset) {
6018 		ret = -ENOMEM;
6019 		goto err;
6020 	}
6021 
6022 	put_css_set(cset);
6023 	fput(f);
6024 	kargs->cgrp = dst_cgrp;
6025 	return ret;
6026 
6027 err:
6028 	cgroup_threadgroup_change_end(current);
6029 	mutex_unlock(&cgroup_mutex);
6030 	if (f)
6031 		fput(f);
6032 	if (dst_cgrp)
6033 		cgroup_put(dst_cgrp);
6034 	put_css_set(cset);
6035 	if (kargs->cset)
6036 		put_css_set(kargs->cset);
6037 	return ret;
6038 }
6039 
6040 /**
6041  * cgroup_css_set_put_fork - drop references we took during fork
6042  * @kargs: the arguments passed to create the child process
6043  *
6044  * Drop references to the prepared css_set and target cgroup if
6045  * CLONE_INTO_CGROUP was requested.
6046  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6047 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6048 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6049 {
6050 	cgroup_threadgroup_change_end(current);
6051 
6052 	if (kargs->flags & CLONE_INTO_CGROUP) {
6053 		struct cgroup *cgrp = kargs->cgrp;
6054 		struct css_set *cset = kargs->cset;
6055 
6056 		mutex_unlock(&cgroup_mutex);
6057 
6058 		if (cset) {
6059 			put_css_set(cset);
6060 			kargs->cset = NULL;
6061 		}
6062 
6063 		if (cgrp) {
6064 			cgroup_put(cgrp);
6065 			kargs->cgrp = NULL;
6066 		}
6067 	}
6068 }
6069 
6070 /**
6071  * cgroup_can_fork - called on a new task before the process is exposed
6072  * @child: the child process
6073  *
6074  * This prepares a new css_set for the child process which the child will
6075  * be attached to in cgroup_post_fork().
6076  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6077  * callback returns an error, the fork aborts with that error code. This
6078  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6079  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6080 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6081 {
6082 	struct cgroup_subsys *ss;
6083 	int i, j, ret;
6084 
6085 	ret = cgroup_css_set_fork(kargs);
6086 	if (ret)
6087 		return ret;
6088 
6089 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6090 		ret = ss->can_fork(child, kargs->cset);
6091 		if (ret)
6092 			goto out_revert;
6093 	} while_each_subsys_mask();
6094 
6095 	return 0;
6096 
6097 out_revert:
6098 	for_each_subsys(ss, j) {
6099 		if (j >= i)
6100 			break;
6101 		if (ss->cancel_fork)
6102 			ss->cancel_fork(child, kargs->cset);
6103 	}
6104 
6105 	cgroup_css_set_put_fork(kargs);
6106 
6107 	return ret;
6108 }
6109 
6110 /**
6111  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6112  * @child: the child process
6113  * @kargs: the arguments passed to create the child process
6114  *
6115  * This calls the cancel_fork() callbacks if a fork failed *after*
6116  * cgroup_can_fork() succeded and cleans up references we took to
6117  * prepare a new css_set for the child process in cgroup_can_fork().
6118  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6119 void cgroup_cancel_fork(struct task_struct *child,
6120 			struct kernel_clone_args *kargs)
6121 {
6122 	struct cgroup_subsys *ss;
6123 	int i;
6124 
6125 	for_each_subsys(ss, i)
6126 		if (ss->cancel_fork)
6127 			ss->cancel_fork(child, kargs->cset);
6128 
6129 	cgroup_css_set_put_fork(kargs);
6130 }
6131 
6132 /**
6133  * cgroup_post_fork - finalize cgroup setup for the child process
6134  * @child: the child process
6135  *
6136  * Attach the child process to its css_set calling the subsystem fork()
6137  * callbacks.
6138  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6139 void cgroup_post_fork(struct task_struct *child,
6140 		      struct kernel_clone_args *kargs)
6141 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6142 {
6143 	struct cgroup_subsys *ss;
6144 	struct css_set *cset;
6145 	int i;
6146 
6147 	cset = kargs->cset;
6148 	kargs->cset = NULL;
6149 
6150 	spin_lock_irq(&css_set_lock);
6151 
6152 	/* init tasks are special, only link regular threads */
6153 	if (likely(child->pid)) {
6154 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6155 		cset->nr_tasks++;
6156 		css_set_move_task(child, NULL, cset, false);
6157 	} else {
6158 		put_css_set(cset);
6159 		cset = NULL;
6160 	}
6161 
6162 	/*
6163 	 * If the cgroup has to be frozen, the new task has too.  Let's set
6164 	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6165 	 * frozen state.
6166 	 */
6167 	if (unlikely(cgroup_task_freeze(child))) {
6168 		spin_lock(&child->sighand->siglock);
6169 		WARN_ON_ONCE(child->frozen);
6170 		child->jobctl |= JOBCTL_TRAP_FREEZE;
6171 		spin_unlock(&child->sighand->siglock);
6172 
6173 		/*
6174 		 * Calling cgroup_update_frozen() isn't required here,
6175 		 * because it will be called anyway a bit later from
6176 		 * do_freezer_trap(). So we avoid cgroup's transient switch
6177 		 * from the frozen state and back.
6178 		 */
6179 	}
6180 
6181 	spin_unlock_irq(&css_set_lock);
6182 
6183 	/*
6184 	 * Call ss->fork().  This must happen after @child is linked on
6185 	 * css_set; otherwise, @child might change state between ->fork()
6186 	 * and addition to css_set.
6187 	 */
6188 	do_each_subsys_mask(ss, i, have_fork_callback) {
6189 		ss->fork(child);
6190 	} while_each_subsys_mask();
6191 
6192 	/* Make the new cset the root_cset of the new cgroup namespace. */
6193 	if (kargs->flags & CLONE_NEWCGROUP) {
6194 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6195 
6196 		get_css_set(cset);
6197 		child->nsproxy->cgroup_ns->root_cset = cset;
6198 		put_css_set(rcset);
6199 	}
6200 
6201 	cgroup_css_set_put_fork(kargs);
6202 }
6203 
6204 /**
6205  * cgroup_exit - detach cgroup from exiting task
6206  * @tsk: pointer to task_struct of exiting process
6207  *
6208  * Description: Detach cgroup from @tsk.
6209  *
6210  */
cgroup_exit(struct task_struct * tsk)6211 void cgroup_exit(struct task_struct *tsk)
6212 {
6213 	struct cgroup_subsys *ss;
6214 	struct css_set *cset;
6215 	int i;
6216 
6217 	spin_lock_irq(&css_set_lock);
6218 
6219 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6220 	cset = task_css_set(tsk);
6221 	css_set_move_task(tsk, cset, NULL, false);
6222 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6223 	cset->nr_tasks--;
6224 
6225 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6226 	if (unlikely(cgroup_task_freeze(tsk)))
6227 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6228 
6229 	spin_unlock_irq(&css_set_lock);
6230 
6231 	/* see cgroup_post_fork() for details */
6232 	do_each_subsys_mask(ss, i, have_exit_callback) {
6233 		ss->exit(tsk);
6234 	} while_each_subsys_mask();
6235 }
6236 
cgroup_release(struct task_struct * task)6237 void cgroup_release(struct task_struct *task)
6238 {
6239 	struct cgroup_subsys *ss;
6240 	int ssid;
6241 
6242 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6243 		ss->release(task);
6244 	} while_each_subsys_mask();
6245 
6246 	spin_lock_irq(&css_set_lock);
6247 	css_set_skip_task_iters(task_css_set(task), task);
6248 	list_del_init(&task->cg_list);
6249 	spin_unlock_irq(&css_set_lock);
6250 }
6251 
cgroup_free(struct task_struct * task)6252 void cgroup_free(struct task_struct *task)
6253 {
6254 	struct css_set *cset = task_css_set(task);
6255 	put_css_set(cset);
6256 }
6257 
cgroup_disable(char * str)6258 static int __init cgroup_disable(char *str)
6259 {
6260 	struct cgroup_subsys *ss;
6261 	char *token;
6262 	int i;
6263 
6264 	while ((token = strsep(&str, ",")) != NULL) {
6265 		if (!*token)
6266 			continue;
6267 
6268 		for_each_subsys(ss, i) {
6269 			if (strcmp(token, ss->name) &&
6270 			    strcmp(token, ss->legacy_name))
6271 				continue;
6272 
6273 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6274 			pr_info("Disabling %s control group subsystem\n",
6275 				ss->name);
6276 		}
6277 	}
6278 	return 1;
6279 }
6280 __setup("cgroup_disable=", cgroup_disable);
6281 
enable_debug_cgroup(void)6282 void __init __weak enable_debug_cgroup(void) { }
6283 
enable_cgroup_debug(char * str)6284 static int __init enable_cgroup_debug(char *str)
6285 {
6286 	cgroup_debug = true;
6287 	enable_debug_cgroup();
6288 	return 1;
6289 }
6290 __setup("cgroup_debug", enable_cgroup_debug);
6291 
6292 /**
6293  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6294  * @dentry: directory dentry of interest
6295  * @ss: subsystem of interest
6296  *
6297  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6298  * to get the corresponding css and return it.  If such css doesn't exist
6299  * or can't be pinned, an ERR_PTR value is returned.
6300  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6301 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6302 						       struct cgroup_subsys *ss)
6303 {
6304 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6305 	struct file_system_type *s_type = dentry->d_sb->s_type;
6306 	struct cgroup_subsys_state *css = NULL;
6307 	struct cgroup *cgrp;
6308 
6309 	/* is @dentry a cgroup dir? */
6310 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6311 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6312 		return ERR_PTR(-EBADF);
6313 
6314 	rcu_read_lock();
6315 
6316 	/*
6317 	 * This path doesn't originate from kernfs and @kn could already
6318 	 * have been or be removed at any point.  @kn->priv is RCU
6319 	 * protected for this access.  See css_release_work_fn() for details.
6320 	 */
6321 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6322 	if (cgrp)
6323 		css = cgroup_css(cgrp, ss);
6324 
6325 	if (!css || !css_tryget_online(css))
6326 		css = ERR_PTR(-ENOENT);
6327 
6328 	rcu_read_unlock();
6329 	return css;
6330 }
6331 
6332 /**
6333  * css_from_id - lookup css by id
6334  * @id: the cgroup id
6335  * @ss: cgroup subsys to be looked into
6336  *
6337  * Returns the css if there's valid one with @id, otherwise returns NULL.
6338  * Should be called under rcu_read_lock().
6339  */
css_from_id(int id,struct cgroup_subsys * ss)6340 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6341 {
6342 	WARN_ON_ONCE(!rcu_read_lock_held());
6343 	return idr_find(&ss->css_idr, id);
6344 }
6345 
6346 /**
6347  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6348  * @path: path on the default hierarchy
6349  *
6350  * Find the cgroup at @path on the default hierarchy, increment its
6351  * reference count and return it.  Returns pointer to the found cgroup on
6352  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6353  * if @path points to a non-directory.
6354  */
cgroup_get_from_path(const char * path)6355 struct cgroup *cgroup_get_from_path(const char *path)
6356 {
6357 	struct kernfs_node *kn;
6358 	struct cgroup *cgrp;
6359 
6360 	mutex_lock(&cgroup_mutex);
6361 
6362 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6363 	if (kn) {
6364 		if (kernfs_type(kn) == KERNFS_DIR) {
6365 			cgrp = kn->priv;
6366 			cgroup_get_live(cgrp);
6367 		} else {
6368 			cgrp = ERR_PTR(-ENOTDIR);
6369 		}
6370 		kernfs_put(kn);
6371 	} else {
6372 		cgrp = ERR_PTR(-ENOENT);
6373 	}
6374 
6375 	mutex_unlock(&cgroup_mutex);
6376 	return cgrp;
6377 }
6378 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6379 
6380 /**
6381  * cgroup_get_from_fd - get a cgroup pointer from a fd
6382  * @fd: fd obtained by open(cgroup2_dir)
6383  *
6384  * Find the cgroup from a fd which should be obtained
6385  * by opening a cgroup directory.  Returns a pointer to the
6386  * cgroup on success. ERR_PTR is returned if the cgroup
6387  * cannot be found.
6388  */
cgroup_get_from_fd(int fd)6389 struct cgroup *cgroup_get_from_fd(int fd)
6390 {
6391 	struct cgroup *cgrp;
6392 	struct file *f;
6393 
6394 	f = fget_raw(fd);
6395 	if (!f)
6396 		return ERR_PTR(-EBADF);
6397 
6398 	cgrp = cgroup_get_from_file(f);
6399 	fput(f);
6400 	return cgrp;
6401 }
6402 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6403 
power_of_ten(int power)6404 static u64 power_of_ten(int power)
6405 {
6406 	u64 v = 1;
6407 	while (power--)
6408 		v *= 10;
6409 	return v;
6410 }
6411 
6412 /**
6413  * cgroup_parse_float - parse a floating number
6414  * @input: input string
6415  * @dec_shift: number of decimal digits to shift
6416  * @v: output
6417  *
6418  * Parse a decimal floating point number in @input and store the result in
6419  * @v with decimal point right shifted @dec_shift times.  For example, if
6420  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6421  * Returns 0 on success, -errno otherwise.
6422  *
6423  * There's nothing cgroup specific about this function except that it's
6424  * currently the only user.
6425  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6426 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6427 {
6428 	s64 whole, frac = 0;
6429 	int fstart = 0, fend = 0, flen;
6430 
6431 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6432 		return -EINVAL;
6433 	if (frac < 0)
6434 		return -EINVAL;
6435 
6436 	flen = fend > fstart ? fend - fstart : 0;
6437 	if (flen < dec_shift)
6438 		frac *= power_of_ten(dec_shift - flen);
6439 	else
6440 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6441 
6442 	*v = whole * power_of_ten(dec_shift) + frac;
6443 	return 0;
6444 }
6445 
6446 /*
6447  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6448  * definition in cgroup-defs.h.
6449  */
6450 #ifdef CONFIG_SOCK_CGROUP_DATA
6451 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6452 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6453 {
6454 	struct cgroup *cgroup;
6455 
6456 	rcu_read_lock();
6457 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6458 	if (in_interrupt()) {
6459 		cgroup = &cgrp_dfl_root.cgrp;
6460 		cgroup_get(cgroup);
6461 		goto out;
6462 	}
6463 
6464 	while (true) {
6465 		struct css_set *cset;
6466 
6467 		cset = task_css_set(current);
6468 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6469 			cgroup = cset->dfl_cgrp;
6470 			break;
6471 		}
6472 		cpu_relax();
6473 	}
6474 out:
6475 	skcd->cgroup = cgroup;
6476 	cgroup_bpf_get(cgroup);
6477 	rcu_read_unlock();
6478 }
6479 
cgroup_sk_clone(struct sock_cgroup_data * skcd)6480 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6481 {
6482 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6483 
6484 	/*
6485 	 * We might be cloning a socket which is left in an empty
6486 	 * cgroup and the cgroup might have already been rmdir'd.
6487 	 * Don't use cgroup_get_live().
6488 	 */
6489 	cgroup_get(cgrp);
6490 	cgroup_bpf_get(cgrp);
6491 }
6492 
cgroup_sk_free(struct sock_cgroup_data * skcd)6493 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6494 {
6495 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6496 
6497 	cgroup_bpf_put(cgrp);
6498 	cgroup_put(cgrp);
6499 }
6500 
6501 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6502 
6503 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6504 int cgroup_bpf_attach(struct cgroup *cgrp,
6505 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6506 		      struct bpf_cgroup_link *link,
6507 		      enum bpf_attach_type type,
6508 		      u32 flags)
6509 {
6510 	int ret;
6511 
6512 	mutex_lock(&cgroup_mutex);
6513 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6514 	mutex_unlock(&cgroup_mutex);
6515 	return ret;
6516 }
6517 
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6518 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6519 		      enum bpf_attach_type type)
6520 {
6521 	int ret;
6522 
6523 	mutex_lock(&cgroup_mutex);
6524 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6525 	mutex_unlock(&cgroup_mutex);
6526 	return ret;
6527 }
6528 
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6529 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6530 		     union bpf_attr __user *uattr)
6531 {
6532 	int ret;
6533 
6534 	mutex_lock(&cgroup_mutex);
6535 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6536 	mutex_unlock(&cgroup_mutex);
6537 	return ret;
6538 }
6539 #endif /* CONFIG_CGROUP_BPF */
6540 
6541 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6542 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6543 				      ssize_t size, const char *prefix)
6544 {
6545 	struct cftype *cft;
6546 	ssize_t ret = 0;
6547 
6548 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6549 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6550 			continue;
6551 
6552 		if (prefix)
6553 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6554 
6555 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6556 
6557 		if (WARN_ON(ret >= size))
6558 			break;
6559 	}
6560 
6561 	return ret;
6562 }
6563 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6564 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6565 			      char *buf)
6566 {
6567 	struct cgroup_subsys *ss;
6568 	int ssid;
6569 	ssize_t ret = 0;
6570 
6571 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6572 				     NULL);
6573 
6574 	for_each_subsys(ss, ssid)
6575 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6576 					      PAGE_SIZE - ret,
6577 					      cgroup_subsys_name[ssid]);
6578 
6579 	return ret;
6580 }
6581 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6582 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6583 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6584 			     char *buf)
6585 {
6586 	return snprintf(buf, PAGE_SIZE,
6587 			"nsdelegate\n"
6588 			"memory_localevents\n"
6589 			"memory_recursiveprot\n");
6590 }
6591 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6592 
6593 static struct attribute *cgroup_sysfs_attrs[] = {
6594 	&cgroup_delegate_attr.attr,
6595 	&cgroup_features_attr.attr,
6596 	NULL,
6597 };
6598 
6599 static const struct attribute_group cgroup_sysfs_attr_group = {
6600 	.attrs = cgroup_sysfs_attrs,
6601 	.name = "cgroup",
6602 };
6603 
cgroup_sysfs_init(void)6604 static int __init cgroup_sysfs_init(void)
6605 {
6606 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6607 }
6608 subsys_initcall(cgroup_sysfs_init);
6609 
6610 #endif /* CONFIG_SYSFS */
6611