• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <net/sock.h>
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
62 
63 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
64 					 MAX_CFTYPE_NAME + 2)
65 /* let's not notify more than 100 times per second */
66 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
67 
68 /*
69  * cgroup_mutex is the master lock.  Any modification to cgroup or its
70  * hierarchy must be performed while holding it.
71  *
72  * css_set_lock protects task->cgroups pointer, the list of css_set
73  * objects, and the chain of tasks off each css_set.
74  *
75  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
76  * cgroup.h can use them for lockdep annotations.
77  */
78 DEFINE_MUTEX(cgroup_mutex);
79 DEFINE_SPINLOCK(css_set_lock);
80 
81 #ifdef CONFIG_PROVE_RCU
82 EXPORT_SYMBOL_GPL(cgroup_mutex);
83 EXPORT_SYMBOL_GPL(css_set_lock);
84 #endif
85 
86 DEFINE_SPINLOCK(trace_cgroup_path_lock);
87 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
88 
89 /*
90  * Protects cgroup_idr and css_idr so that IDs can be released without
91  * grabbing cgroup_mutex.
92  */
93 static DEFINE_SPINLOCK(cgroup_idr_lock);
94 
95 /*
96  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
97  * against file removal/re-creation across css hiding.
98  */
99 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
100 
101 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
102 
103 #define cgroup_assert_mutex_or_rcu_locked()				\
104 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
105 			   !lockdep_is_held(&cgroup_mutex),		\
106 			   "cgroup_mutex or RCU read lock required");
107 
108 /*
109  * cgroup destruction makes heavy use of work items and there can be a lot
110  * of concurrent destructions.  Use a separate workqueue so that cgroup
111  * destruction work items don't end up filling up max_active of system_wq
112  * which may lead to deadlock.
113  */
114 static struct workqueue_struct *cgroup_destroy_wq;
115 
116 /* generate an array of cgroup subsystem pointers */
117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
118 struct cgroup_subsys *cgroup_subsys[] = {
119 #include <linux/cgroup_subsys.h>
120 };
121 #undef SUBSYS
122 
123 /* array of cgroup subsystem names */
124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125 static const char *cgroup_subsys_name[] = {
126 #include <linux/cgroup_subsys.h>
127 };
128 #undef SUBSYS
129 
130 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
131 #define SUBSYS(_x)								\
132 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
133 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
134 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
135 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
136 #include <linux/cgroup_subsys.h>
137 #undef SUBSYS
138 
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
140 static struct static_key_true *cgroup_subsys_enabled_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144 
145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
146 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
147 #include <linux/cgroup_subsys.h>
148 };
149 #undef SUBSYS
150 
151 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
152 
153 /*
154  * The default hierarchy, reserved for the subsystems that are otherwise
155  * unattached - it never has more than a single cgroup, and all tasks are
156  * part of that cgroup.
157  */
158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
159 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
160 
161 /*
162  * The default hierarchy always exists but is hidden until mounted for the
163  * first time.  This is for backward compatibility.
164  */
165 static bool cgrp_dfl_visible;
166 
167 /* some controllers are not supported in the default hierarchy */
168 static u16 cgrp_dfl_inhibit_ss_mask;
169 
170 /* some controllers are implicitly enabled on the default hierarchy */
171 static u16 cgrp_dfl_implicit_ss_mask;
172 
173 /* some controllers can be threaded on the default hierarchy */
174 static u16 cgrp_dfl_threaded_ss_mask;
175 
176 /* The list of hierarchy roots */
177 LIST_HEAD(cgroup_roots);
178 static int cgroup_root_count;
179 
180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
181 static DEFINE_IDR(cgroup_hierarchy_idr);
182 
183 /*
184  * Assign a monotonically increasing serial number to csses.  It guarantees
185  * cgroups with bigger numbers are newer than those with smaller numbers.
186  * Also, as csses are always appended to the parent's ->children list, it
187  * guarantees that sibling csses are always sorted in the ascending serial
188  * number order on the list.  Protected by cgroup_mutex.
189  */
190 static u64 css_serial_nr_next = 1;
191 
192 /*
193  * These bitmasks identify subsystems with specific features to avoid
194  * having to do iterative checks repeatedly.
195  */
196 static u16 have_fork_callback __read_mostly;
197 static u16 have_exit_callback __read_mostly;
198 static u16 have_release_callback __read_mostly;
199 static u16 have_canfork_callback __read_mostly;
200 
201 /* cgroup namespace for init task */
202 struct cgroup_namespace init_cgroup_ns = {
203 	.count		= REFCOUNT_INIT(2),
204 	.user_ns	= &init_user_ns,
205 	.ns.ops		= &cgroupns_operations,
206 	.ns.inum	= PROC_CGROUP_INIT_INO,
207 	.root_cset	= &init_css_set,
208 };
209 
210 static struct file_system_type cgroup2_fs_type;
211 static struct cftype cgroup_base_files[];
212 
213 static int cgroup_apply_control(struct cgroup *cgrp);
214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
215 static void css_task_iter_skip(struct css_task_iter *it,
216 			       struct task_struct *task);
217 static int cgroup_destroy_locked(struct cgroup *cgrp);
218 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
219 					      struct cgroup_subsys *ss);
220 static void css_release(struct percpu_ref *ref);
221 static void kill_css(struct cgroup_subsys_state *css);
222 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
223 			      struct cgroup *cgrp, struct cftype cfts[],
224 			      bool is_add);
225 
226 /**
227  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
228  * @ssid: subsys ID of interest
229  *
230  * cgroup_subsys_enabled() can only be used with literal subsys names which
231  * is fine for individual subsystems but unsuitable for cgroup core.  This
232  * is slower static_key_enabled() based test indexed by @ssid.
233  */
cgroup_ssid_enabled(int ssid)234 bool cgroup_ssid_enabled(int ssid)
235 {
236 	if (CGROUP_SUBSYS_COUNT == 0)
237 		return false;
238 
239 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241 
242 /**
243  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244  * @cgrp: the cgroup of interest
245  *
246  * The default hierarchy is the v2 interface of cgroup and this function
247  * can be used to test whether a cgroup is on the default hierarchy for
248  * cases where a subsystem should behave differnetly depending on the
249  * interface version.
250  *
251  * The set of behaviors which change on the default hierarchy are still
252  * being determined and the mount option is prefixed with __DEVEL__.
253  *
254  * List of changed behaviors:
255  *
256  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257  *   and "name" are disallowed.
258  *
259  * - When mounting an existing superblock, mount options should match.
260  *
261  * - Remount is disallowed.
262  *
263  * - rename(2) is disallowed.
264  *
265  * - "tasks" is removed.  Everything should be at process granularity.  Use
266  *   "cgroup.procs" instead.
267  *
268  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
269  *   recycled inbetween reads.
270  *
271  * - "release_agent" and "notify_on_release" are removed.  Replacement
272  *   notification mechanism will be implemented.
273  *
274  * - "cgroup.clone_children" is removed.
275  *
276  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
277  *   and its descendants contain no task; otherwise, 1.  The file also
278  *   generates kernfs notification which can be monitored through poll and
279  *   [di]notify when the value of the file changes.
280  *
281  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282  *   take masks of ancestors with non-empty cpus/mems, instead of being
283  *   moved to an ancestor.
284  *
285  * - cpuset: a task can be moved into an empty cpuset, and again it takes
286  *   masks of ancestors.
287  *
288  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289  *   is not created.
290  *
291  * - blkcg: blk-throttle becomes properly hierarchical.
292  *
293  * - debug: disallowed on the default hierarchy.
294  */
cgroup_on_dfl(const struct cgroup * cgrp)295 bool cgroup_on_dfl(const struct cgroup *cgrp)
296 {
297 	return cgrp->root == &cgrp_dfl_root;
298 }
299 
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 			    gfp_t gfp_mask)
303 {
304 	int ret;
305 
306 	idr_preload(gfp_mask);
307 	spin_lock_bh(&cgroup_idr_lock);
308 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
309 	spin_unlock_bh(&cgroup_idr_lock);
310 	idr_preload_end();
311 	return ret;
312 }
313 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315 {
316 	void *ret;
317 
318 	spin_lock_bh(&cgroup_idr_lock);
319 	ret = idr_replace(idr, ptr, id);
320 	spin_unlock_bh(&cgroup_idr_lock);
321 	return ret;
322 }
323 
cgroup_idr_remove(struct idr * idr,int id)324 static void cgroup_idr_remove(struct idr *idr, int id)
325 {
326 	spin_lock_bh(&cgroup_idr_lock);
327 	idr_remove(idr, id);
328 	spin_unlock_bh(&cgroup_idr_lock);
329 }
330 
cgroup_has_tasks(struct cgroup * cgrp)331 static bool cgroup_has_tasks(struct cgroup *cgrp)
332 {
333 	return cgrp->nr_populated_csets;
334 }
335 
cgroup_is_threaded(struct cgroup * cgrp)336 bool cgroup_is_threaded(struct cgroup *cgrp)
337 {
338 	return cgrp->dom_cgrp != cgrp;
339 }
340 
341 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)342 static bool cgroup_is_mixable(struct cgroup *cgrp)
343 {
344 	/*
345 	 * Root isn't under domain level resource control exempting it from
346 	 * the no-internal-process constraint, so it can serve as a thread
347 	 * root and a parent of resource domains at the same time.
348 	 */
349 	return !cgroup_parent(cgrp);
350 }
351 
352 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)353 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
354 {
355 	/* mixables don't care */
356 	if (cgroup_is_mixable(cgrp))
357 		return true;
358 
359 	/* domain roots can't be nested under threaded */
360 	if (cgroup_is_threaded(cgrp))
361 		return false;
362 
363 	/* can only have either domain or threaded children */
364 	if (cgrp->nr_populated_domain_children)
365 		return false;
366 
367 	/* and no domain controllers can be enabled */
368 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
369 		return false;
370 
371 	return true;
372 }
373 
374 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)375 bool cgroup_is_thread_root(struct cgroup *cgrp)
376 {
377 	/* thread root should be a domain */
378 	if (cgroup_is_threaded(cgrp))
379 		return false;
380 
381 	/* a domain w/ threaded children is a thread root */
382 	if (cgrp->nr_threaded_children)
383 		return true;
384 
385 	/*
386 	 * A domain which has tasks and explicit threaded controllers
387 	 * enabled is a thread root.
388 	 */
389 	if (cgroup_has_tasks(cgrp) &&
390 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
391 		return true;
392 
393 	return false;
394 }
395 
396 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)397 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
398 {
399 	/* the cgroup itself can be a thread root */
400 	if (cgroup_is_threaded(cgrp))
401 		return false;
402 
403 	/* but the ancestors can't be unless mixable */
404 	while ((cgrp = cgroup_parent(cgrp))) {
405 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
406 			return false;
407 		if (cgroup_is_threaded(cgrp))
408 			return false;
409 	}
410 
411 	return true;
412 }
413 
414 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)415 static u16 cgroup_control(struct cgroup *cgrp)
416 {
417 	struct cgroup *parent = cgroup_parent(cgrp);
418 	u16 root_ss_mask = cgrp->root->subsys_mask;
419 
420 	if (parent) {
421 		u16 ss_mask = parent->subtree_control;
422 
423 		/* threaded cgroups can only have threaded controllers */
424 		if (cgroup_is_threaded(cgrp))
425 			ss_mask &= cgrp_dfl_threaded_ss_mask;
426 		return ss_mask;
427 	}
428 
429 	if (cgroup_on_dfl(cgrp))
430 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
431 				  cgrp_dfl_implicit_ss_mask);
432 	return root_ss_mask;
433 }
434 
435 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)436 static u16 cgroup_ss_mask(struct cgroup *cgrp)
437 {
438 	struct cgroup *parent = cgroup_parent(cgrp);
439 
440 	if (parent) {
441 		u16 ss_mask = parent->subtree_ss_mask;
442 
443 		/* threaded cgroups can only have threaded controllers */
444 		if (cgroup_is_threaded(cgrp))
445 			ss_mask &= cgrp_dfl_threaded_ss_mask;
446 		return ss_mask;
447 	}
448 
449 	return cgrp->root->subsys_mask;
450 }
451 
452 /**
453  * cgroup_css - obtain a cgroup's css for the specified subsystem
454  * @cgrp: the cgroup of interest
455  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
456  *
457  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
458  * function must be called either under cgroup_mutex or rcu_read_lock() and
459  * the caller is responsible for pinning the returned css if it wants to
460  * keep accessing it outside the said locks.  This function may return
461  * %NULL if @cgrp doesn't have @subsys_id enabled.
462  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)463 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
464 					      struct cgroup_subsys *ss)
465 {
466 	if (ss)
467 		return rcu_dereference_check(cgrp->subsys[ss->id],
468 					lockdep_is_held(&cgroup_mutex));
469 	else
470 		return &cgrp->self;
471 }
472 
473 /**
474  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
475  * @cgrp: the cgroup of interest
476  * @ss: the subsystem of interest
477  *
478  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
479  * or is offline, %NULL is returned.
480  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)481 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
482 						     struct cgroup_subsys *ss)
483 {
484 	struct cgroup_subsys_state *css;
485 
486 	rcu_read_lock();
487 	css = cgroup_css(cgrp, ss);
488 	if (!css || !css_tryget_online(css))
489 		css = NULL;
490 	rcu_read_unlock();
491 
492 	return css;
493 }
494 
495 /**
496  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
497  * @cgrp: the cgroup of interest
498  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
499  *
500  * Similar to cgroup_css() but returns the effective css, which is defined
501  * as the matching css of the nearest ancestor including self which has @ss
502  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
503  * function is guaranteed to return non-NULL css.
504  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)505 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
506 						struct cgroup_subsys *ss)
507 {
508 	lockdep_assert_held(&cgroup_mutex);
509 
510 	if (!ss)
511 		return &cgrp->self;
512 
513 	/*
514 	 * This function is used while updating css associations and thus
515 	 * can't test the csses directly.  Test ss_mask.
516 	 */
517 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
518 		cgrp = cgroup_parent(cgrp);
519 		if (!cgrp)
520 			return NULL;
521 	}
522 
523 	return cgroup_css(cgrp, ss);
524 }
525 
526 /**
527  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
528  * @cgrp: the cgroup of interest
529  * @ss: the subsystem of interest
530  *
531  * Find and get the effective css of @cgrp for @ss.  The effective css is
532  * defined as the matching css of the nearest ancestor including self which
533  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
534  * the root css is returned, so this function always returns a valid css.
535  * The returned css must be put using css_put().
536  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)537 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
538 					     struct cgroup_subsys *ss)
539 {
540 	struct cgroup_subsys_state *css;
541 
542 	rcu_read_lock();
543 
544 	do {
545 		css = cgroup_css(cgrp, ss);
546 
547 		if (css && css_tryget_online(css))
548 			goto out_unlock;
549 		cgrp = cgroup_parent(cgrp);
550 	} while (cgrp);
551 
552 	css = init_css_set.subsys[ss->id];
553 	css_get(css);
554 out_unlock:
555 	rcu_read_unlock();
556 	return css;
557 }
558 
cgroup_get_live(struct cgroup * cgrp)559 static void cgroup_get_live(struct cgroup *cgrp)
560 {
561 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
562 	css_get(&cgrp->self);
563 }
564 
of_css(struct kernfs_open_file * of)565 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
566 {
567 	struct cgroup *cgrp = of->kn->parent->priv;
568 	struct cftype *cft = of_cft(of);
569 
570 	/*
571 	 * This is open and unprotected implementation of cgroup_css().
572 	 * seq_css() is only called from a kernfs file operation which has
573 	 * an active reference on the file.  Because all the subsystem
574 	 * files are drained before a css is disassociated with a cgroup,
575 	 * the matching css from the cgroup's subsys table is guaranteed to
576 	 * be and stay valid until the enclosing operation is complete.
577 	 */
578 	if (cft->ss)
579 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
580 	else
581 		return &cgrp->self;
582 }
583 EXPORT_SYMBOL_GPL(of_css);
584 
585 /**
586  * for_each_css - iterate all css's of a cgroup
587  * @css: the iteration cursor
588  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
589  * @cgrp: the target cgroup to iterate css's of
590  *
591  * Should be called under cgroup_[tree_]mutex.
592  */
593 #define for_each_css(css, ssid, cgrp)					\
594 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
595 		if (!((css) = rcu_dereference_check(			\
596 				(cgrp)->subsys[(ssid)],			\
597 				lockdep_is_held(&cgroup_mutex)))) { }	\
598 		else
599 
600 /**
601  * for_each_e_css - iterate all effective css's of a cgroup
602  * @css: the iteration cursor
603  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
604  * @cgrp: the target cgroup to iterate css's of
605  *
606  * Should be called under cgroup_[tree_]mutex.
607  */
608 #define for_each_e_css(css, ssid, cgrp)					\
609 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
610 		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
611 			;						\
612 		else
613 
614 /**
615  * do_each_subsys_mask - filter for_each_subsys with a bitmask
616  * @ss: the iteration cursor
617  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
618  * @ss_mask: the bitmask
619  *
620  * The block will only run for cases where the ssid-th bit (1 << ssid) of
621  * @ss_mask is set.
622  */
623 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
624 	unsigned long __ss_mask = (ss_mask);				\
625 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
626 		(ssid) = 0;						\
627 		break;							\
628 	}								\
629 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
630 		(ss) = cgroup_subsys[ssid];				\
631 		{
632 
633 #define while_each_subsys_mask()					\
634 		}							\
635 	}								\
636 } while (false)
637 
638 /* iterate over child cgrps, lock should be held throughout iteration */
639 #define cgroup_for_each_live_child(child, cgrp)				\
640 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
641 		if (({ lockdep_assert_held(&cgroup_mutex);		\
642 		       cgroup_is_dead(child); }))			\
643 			;						\
644 		else
645 
646 /* walk live descendants in preorder */
647 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
648 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
649 		if (({ lockdep_assert_held(&cgroup_mutex);		\
650 		       (dsct) = (d_css)->cgroup;			\
651 		       cgroup_is_dead(dsct); }))			\
652 			;						\
653 		else
654 
655 /* walk live descendants in postorder */
656 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
657 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
658 		if (({ lockdep_assert_held(&cgroup_mutex);		\
659 		       (dsct) = (d_css)->cgroup;			\
660 		       cgroup_is_dead(dsct); }))			\
661 			;						\
662 		else
663 
664 /*
665  * The default css_set - used by init and its children prior to any
666  * hierarchies being mounted. It contains a pointer to the root state
667  * for each subsystem. Also used to anchor the list of css_sets. Not
668  * reference-counted, to improve performance when child cgroups
669  * haven't been created.
670  */
671 struct css_set init_css_set = {
672 	.refcount		= REFCOUNT_INIT(1),
673 	.dom_cset		= &init_css_set,
674 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
675 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
676 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
677 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
678 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
679 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
680 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
681 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
682 
683 	/*
684 	 * The following field is re-initialized when this cset gets linked
685 	 * in cgroup_init().  However, let's initialize the field
686 	 * statically too so that the default cgroup can be accessed safely
687 	 * early during boot.
688 	 */
689 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
690 };
691 
692 static int css_set_count	= 1;	/* 1 for init_css_set */
693 
css_set_threaded(struct css_set * cset)694 static bool css_set_threaded(struct css_set *cset)
695 {
696 	return cset->dom_cset != cset;
697 }
698 
699 /**
700  * css_set_populated - does a css_set contain any tasks?
701  * @cset: target css_set
702  *
703  * css_set_populated() should be the same as !!cset->nr_tasks at steady
704  * state. However, css_set_populated() can be called while a task is being
705  * added to or removed from the linked list before the nr_tasks is
706  * properly updated. Hence, we can't just look at ->nr_tasks here.
707  */
css_set_populated(struct css_set * cset)708 static bool css_set_populated(struct css_set *cset)
709 {
710 	lockdep_assert_held(&css_set_lock);
711 
712 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
713 }
714 
715 /**
716  * cgroup_update_populated - update the populated count of a cgroup
717  * @cgrp: the target cgroup
718  * @populated: inc or dec populated count
719  *
720  * One of the css_sets associated with @cgrp is either getting its first
721  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
722  * count is propagated towards root so that a given cgroup's
723  * nr_populated_children is zero iff none of its descendants contain any
724  * tasks.
725  *
726  * @cgrp's interface file "cgroup.populated" is zero if both
727  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
728  * 1 otherwise.  When the sum changes from or to zero, userland is notified
729  * that the content of the interface file has changed.  This can be used to
730  * detect when @cgrp and its descendants become populated or empty.
731  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)732 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
733 {
734 	struct cgroup *child = NULL;
735 	int adj = populated ? 1 : -1;
736 
737 	lockdep_assert_held(&css_set_lock);
738 
739 	do {
740 		bool was_populated = cgroup_is_populated(cgrp);
741 
742 		if (!child) {
743 			cgrp->nr_populated_csets += adj;
744 		} else {
745 			if (cgroup_is_threaded(child))
746 				cgrp->nr_populated_threaded_children += adj;
747 			else
748 				cgrp->nr_populated_domain_children += adj;
749 		}
750 
751 		if (was_populated == cgroup_is_populated(cgrp))
752 			break;
753 
754 		cgroup1_check_for_release(cgrp);
755 		cgroup_file_notify(&cgrp->events_file);
756 
757 		child = cgrp;
758 		cgrp = cgroup_parent(cgrp);
759 	} while (cgrp);
760 }
761 
762 /**
763  * css_set_update_populated - update populated state of a css_set
764  * @cset: target css_set
765  * @populated: whether @cset is populated or depopulated
766  *
767  * @cset is either getting the first task or losing the last.  Update the
768  * populated counters of all associated cgroups accordingly.
769  */
css_set_update_populated(struct css_set * cset,bool populated)770 static void css_set_update_populated(struct css_set *cset, bool populated)
771 {
772 	struct cgrp_cset_link *link;
773 
774 	lockdep_assert_held(&css_set_lock);
775 
776 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
777 		cgroup_update_populated(link->cgrp, populated);
778 }
779 
780 /*
781  * @task is leaving, advance task iterators which are pointing to it so
782  * that they can resume at the next position.  Advancing an iterator might
783  * remove it from the list, use safe walk.  See css_task_iter_skip() for
784  * details.
785  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)786 static void css_set_skip_task_iters(struct css_set *cset,
787 				    struct task_struct *task)
788 {
789 	struct css_task_iter *it, *pos;
790 
791 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
792 		css_task_iter_skip(it, task);
793 }
794 
795 /**
796  * css_set_move_task - move a task from one css_set to another
797  * @task: task being moved
798  * @from_cset: css_set @task currently belongs to (may be NULL)
799  * @to_cset: new css_set @task is being moved to (may be NULL)
800  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
801  *
802  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
803  * css_set, @from_cset can be NULL.  If @task is being disassociated
804  * instead of moved, @to_cset can be NULL.
805  *
806  * This function automatically handles populated counter updates and
807  * css_task_iter adjustments but the caller is responsible for managing
808  * @from_cset and @to_cset's reference counts.
809  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)810 static void css_set_move_task(struct task_struct *task,
811 			      struct css_set *from_cset, struct css_set *to_cset,
812 			      bool use_mg_tasks)
813 {
814 	lockdep_assert_held(&css_set_lock);
815 
816 	if (to_cset && !css_set_populated(to_cset))
817 		css_set_update_populated(to_cset, true);
818 
819 	if (from_cset) {
820 		WARN_ON_ONCE(list_empty(&task->cg_list));
821 
822 		css_set_skip_task_iters(from_cset, task);
823 		list_del_init(&task->cg_list);
824 		if (!css_set_populated(from_cset))
825 			css_set_update_populated(from_cset, false);
826 	} else {
827 		WARN_ON_ONCE(!list_empty(&task->cg_list));
828 	}
829 
830 	if (to_cset) {
831 		/*
832 		 * We are synchronized through cgroup_threadgroup_rwsem
833 		 * against PF_EXITING setting such that we can't race
834 		 * against cgroup_exit() changing the css_set to
835 		 * init_css_set and dropping the old one.
836 		 */
837 		WARN_ON_ONCE(task->flags & PF_EXITING);
838 
839 		rcu_assign_pointer(task->cgroups, to_cset);
840 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
841 							     &to_cset->tasks);
842 	}
843 }
844 
845 /*
846  * hash table for cgroup groups. This improves the performance to find
847  * an existing css_set. This hash doesn't (currently) take into
848  * account cgroups in empty hierarchies.
849  */
850 #define CSS_SET_HASH_BITS	7
851 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
852 
css_set_hash(struct cgroup_subsys_state * css[])853 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
854 {
855 	unsigned long key = 0UL;
856 	struct cgroup_subsys *ss;
857 	int i;
858 
859 	for_each_subsys(ss, i)
860 		key += (unsigned long)css[i];
861 	key = (key >> 16) ^ key;
862 
863 	return key;
864 }
865 
put_css_set_locked(struct css_set * cset)866 void put_css_set_locked(struct css_set *cset)
867 {
868 	struct cgrp_cset_link *link, *tmp_link;
869 	struct cgroup_subsys *ss;
870 	int ssid;
871 
872 	lockdep_assert_held(&css_set_lock);
873 
874 	if (!refcount_dec_and_test(&cset->refcount))
875 		return;
876 
877 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
878 
879 	/* This css_set is dead. unlink it and release cgroup and css refs */
880 	for_each_subsys(ss, ssid) {
881 		list_del(&cset->e_cset_node[ssid]);
882 		css_put(cset->subsys[ssid]);
883 	}
884 	hash_del(&cset->hlist);
885 	css_set_count--;
886 
887 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
888 		list_del(&link->cset_link);
889 		list_del(&link->cgrp_link);
890 		if (cgroup_parent(link->cgrp))
891 			cgroup_put(link->cgrp);
892 		kfree(link);
893 	}
894 
895 	if (css_set_threaded(cset)) {
896 		list_del(&cset->threaded_csets_node);
897 		put_css_set_locked(cset->dom_cset);
898 	}
899 
900 	kfree_rcu(cset, rcu_head);
901 }
902 
903 /**
904  * compare_css_sets - helper function for find_existing_css_set().
905  * @cset: candidate css_set being tested
906  * @old_cset: existing css_set for a task
907  * @new_cgrp: cgroup that's being entered by the task
908  * @template: desired set of css pointers in css_set (pre-calculated)
909  *
910  * Returns true if "cset" matches "old_cset" except for the hierarchy
911  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
912  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])913 static bool compare_css_sets(struct css_set *cset,
914 			     struct css_set *old_cset,
915 			     struct cgroup *new_cgrp,
916 			     struct cgroup_subsys_state *template[])
917 {
918 	struct cgroup *new_dfl_cgrp;
919 	struct list_head *l1, *l2;
920 
921 	/*
922 	 * On the default hierarchy, there can be csets which are
923 	 * associated with the same set of cgroups but different csses.
924 	 * Let's first ensure that csses match.
925 	 */
926 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
927 		return false;
928 
929 
930 	/* @cset's domain should match the default cgroup's */
931 	if (cgroup_on_dfl(new_cgrp))
932 		new_dfl_cgrp = new_cgrp;
933 	else
934 		new_dfl_cgrp = old_cset->dfl_cgrp;
935 
936 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
937 		return false;
938 
939 	/*
940 	 * Compare cgroup pointers in order to distinguish between
941 	 * different cgroups in hierarchies.  As different cgroups may
942 	 * share the same effective css, this comparison is always
943 	 * necessary.
944 	 */
945 	l1 = &cset->cgrp_links;
946 	l2 = &old_cset->cgrp_links;
947 	while (1) {
948 		struct cgrp_cset_link *link1, *link2;
949 		struct cgroup *cgrp1, *cgrp2;
950 
951 		l1 = l1->next;
952 		l2 = l2->next;
953 		/* See if we reached the end - both lists are equal length. */
954 		if (l1 == &cset->cgrp_links) {
955 			BUG_ON(l2 != &old_cset->cgrp_links);
956 			break;
957 		} else {
958 			BUG_ON(l2 == &old_cset->cgrp_links);
959 		}
960 		/* Locate the cgroups associated with these links. */
961 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
962 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
963 		cgrp1 = link1->cgrp;
964 		cgrp2 = link2->cgrp;
965 		/* Hierarchies should be linked in the same order. */
966 		BUG_ON(cgrp1->root != cgrp2->root);
967 
968 		/*
969 		 * If this hierarchy is the hierarchy of the cgroup
970 		 * that's changing, then we need to check that this
971 		 * css_set points to the new cgroup; if it's any other
972 		 * hierarchy, then this css_set should point to the
973 		 * same cgroup as the old css_set.
974 		 */
975 		if (cgrp1->root == new_cgrp->root) {
976 			if (cgrp1 != new_cgrp)
977 				return false;
978 		} else {
979 			if (cgrp1 != cgrp2)
980 				return false;
981 		}
982 	}
983 	return true;
984 }
985 
986 /**
987  * find_existing_css_set - init css array and find the matching css_set
988  * @old_cset: the css_set that we're using before the cgroup transition
989  * @cgrp: the cgroup that we're moving into
990  * @template: out param for the new set of csses, should be clear on entry
991  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])992 static struct css_set *find_existing_css_set(struct css_set *old_cset,
993 					struct cgroup *cgrp,
994 					struct cgroup_subsys_state *template[])
995 {
996 	struct cgroup_root *root = cgrp->root;
997 	struct cgroup_subsys *ss;
998 	struct css_set *cset;
999 	unsigned long key;
1000 	int i;
1001 
1002 	/*
1003 	 * Build the set of subsystem state objects that we want to see in the
1004 	 * new css_set. while subsystems can change globally, the entries here
1005 	 * won't change, so no need for locking.
1006 	 */
1007 	for_each_subsys(ss, i) {
1008 		if (root->subsys_mask & (1UL << i)) {
1009 			/*
1010 			 * @ss is in this hierarchy, so we want the
1011 			 * effective css from @cgrp.
1012 			 */
1013 			template[i] = cgroup_e_css(cgrp, ss);
1014 		} else {
1015 			/*
1016 			 * @ss is not in this hierarchy, so we don't want
1017 			 * to change the css.
1018 			 */
1019 			template[i] = old_cset->subsys[i];
1020 		}
1021 	}
1022 
1023 	key = css_set_hash(template);
1024 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1025 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1026 			continue;
1027 
1028 		/* This css_set matches what we need */
1029 		return cset;
1030 	}
1031 
1032 	/* No existing cgroup group matched */
1033 	return NULL;
1034 }
1035 
free_cgrp_cset_links(struct list_head * links_to_free)1036 static void free_cgrp_cset_links(struct list_head *links_to_free)
1037 {
1038 	struct cgrp_cset_link *link, *tmp_link;
1039 
1040 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1041 		list_del(&link->cset_link);
1042 		kfree(link);
1043 	}
1044 }
1045 
1046 /**
1047  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1048  * @count: the number of links to allocate
1049  * @tmp_links: list_head the allocated links are put on
1050  *
1051  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1052  * through ->cset_link.  Returns 0 on success or -errno.
1053  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1054 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1055 {
1056 	struct cgrp_cset_link *link;
1057 	int i;
1058 
1059 	INIT_LIST_HEAD(tmp_links);
1060 
1061 	for (i = 0; i < count; i++) {
1062 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1063 		if (!link) {
1064 			free_cgrp_cset_links(tmp_links);
1065 			return -ENOMEM;
1066 		}
1067 		list_add(&link->cset_link, tmp_links);
1068 	}
1069 	return 0;
1070 }
1071 
1072 /**
1073  * link_css_set - a helper function to link a css_set to a cgroup
1074  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1075  * @cset: the css_set to be linked
1076  * @cgrp: the destination cgroup
1077  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1078 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1079 			 struct cgroup *cgrp)
1080 {
1081 	struct cgrp_cset_link *link;
1082 
1083 	BUG_ON(list_empty(tmp_links));
1084 
1085 	if (cgroup_on_dfl(cgrp))
1086 		cset->dfl_cgrp = cgrp;
1087 
1088 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1089 	link->cset = cset;
1090 	link->cgrp = cgrp;
1091 
1092 	/*
1093 	 * Always add links to the tail of the lists so that the lists are
1094 	 * in choronological order.
1095 	 */
1096 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1097 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1098 
1099 	if (cgroup_parent(cgrp))
1100 		cgroup_get_live(cgrp);
1101 }
1102 
1103 /**
1104  * find_css_set - return a new css_set with one cgroup updated
1105  * @old_cset: the baseline css_set
1106  * @cgrp: the cgroup to be updated
1107  *
1108  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1109  * substituted into the appropriate hierarchy.
1110  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1111 static struct css_set *find_css_set(struct css_set *old_cset,
1112 				    struct cgroup *cgrp)
1113 {
1114 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1115 	struct css_set *cset;
1116 	struct list_head tmp_links;
1117 	struct cgrp_cset_link *link;
1118 	struct cgroup_subsys *ss;
1119 	unsigned long key;
1120 	int ssid;
1121 
1122 	lockdep_assert_held(&cgroup_mutex);
1123 
1124 	/* First see if we already have a cgroup group that matches
1125 	 * the desired set */
1126 	spin_lock_irq(&css_set_lock);
1127 	cset = find_existing_css_set(old_cset, cgrp, template);
1128 	if (cset)
1129 		get_css_set(cset);
1130 	spin_unlock_irq(&css_set_lock);
1131 
1132 	if (cset)
1133 		return cset;
1134 
1135 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1136 	if (!cset)
1137 		return NULL;
1138 
1139 	/* Allocate all the cgrp_cset_link objects that we'll need */
1140 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1141 		kfree(cset);
1142 		return NULL;
1143 	}
1144 
1145 	refcount_set(&cset->refcount, 1);
1146 	cset->dom_cset = cset;
1147 	INIT_LIST_HEAD(&cset->tasks);
1148 	INIT_LIST_HEAD(&cset->mg_tasks);
1149 	INIT_LIST_HEAD(&cset->dying_tasks);
1150 	INIT_LIST_HEAD(&cset->task_iters);
1151 	INIT_LIST_HEAD(&cset->threaded_csets);
1152 	INIT_HLIST_NODE(&cset->hlist);
1153 	INIT_LIST_HEAD(&cset->cgrp_links);
1154 	INIT_LIST_HEAD(&cset->mg_preload_node);
1155 	INIT_LIST_HEAD(&cset->mg_node);
1156 
1157 	/* Copy the set of subsystem state objects generated in
1158 	 * find_existing_css_set() */
1159 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1160 
1161 	spin_lock_irq(&css_set_lock);
1162 	/* Add reference counts and links from the new css_set. */
1163 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1164 		struct cgroup *c = link->cgrp;
1165 
1166 		if (c->root == cgrp->root)
1167 			c = cgrp;
1168 		link_css_set(&tmp_links, cset, c);
1169 	}
1170 
1171 	BUG_ON(!list_empty(&tmp_links));
1172 
1173 	css_set_count++;
1174 
1175 	/* Add @cset to the hash table */
1176 	key = css_set_hash(cset->subsys);
1177 	hash_add(css_set_table, &cset->hlist, key);
1178 
1179 	for_each_subsys(ss, ssid) {
1180 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1181 
1182 		list_add_tail(&cset->e_cset_node[ssid],
1183 			      &css->cgroup->e_csets[ssid]);
1184 		css_get(css);
1185 	}
1186 
1187 	spin_unlock_irq(&css_set_lock);
1188 
1189 	/*
1190 	 * If @cset should be threaded, look up the matching dom_cset and
1191 	 * link them up.  We first fully initialize @cset then look for the
1192 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1193 	 * to stay empty until we return.
1194 	 */
1195 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1196 		struct css_set *dcset;
1197 
1198 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1199 		if (!dcset) {
1200 			put_css_set(cset);
1201 			return NULL;
1202 		}
1203 
1204 		spin_lock_irq(&css_set_lock);
1205 		cset->dom_cset = dcset;
1206 		list_add_tail(&cset->threaded_csets_node,
1207 			      &dcset->threaded_csets);
1208 		spin_unlock_irq(&css_set_lock);
1209 	}
1210 
1211 	return cset;
1212 }
1213 
cgroup_root_from_kf(struct kernfs_root * kf_root)1214 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1215 {
1216 	struct cgroup *root_cgrp = kf_root->kn->priv;
1217 
1218 	return root_cgrp->root;
1219 }
1220 
cgroup_init_root_id(struct cgroup_root * root)1221 static int cgroup_init_root_id(struct cgroup_root *root)
1222 {
1223 	int id;
1224 
1225 	lockdep_assert_held(&cgroup_mutex);
1226 
1227 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1228 	if (id < 0)
1229 		return id;
1230 
1231 	root->hierarchy_id = id;
1232 	return 0;
1233 }
1234 
cgroup_exit_root_id(struct cgroup_root * root)1235 static void cgroup_exit_root_id(struct cgroup_root *root)
1236 {
1237 	lockdep_assert_held(&cgroup_mutex);
1238 
1239 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1240 }
1241 
cgroup_free_root(struct cgroup_root * root)1242 void cgroup_free_root(struct cgroup_root *root)
1243 {
1244 	if (root) {
1245 		idr_destroy(&root->cgroup_idr);
1246 		kfree(root);
1247 	}
1248 }
1249 
cgroup_destroy_root(struct cgroup_root * root)1250 static void cgroup_destroy_root(struct cgroup_root *root)
1251 {
1252 	struct cgroup *cgrp = &root->cgrp;
1253 	struct cgrp_cset_link *link, *tmp_link;
1254 
1255 	trace_cgroup_destroy_root(root);
1256 
1257 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1258 
1259 	BUG_ON(atomic_read(&root->nr_cgrps));
1260 	BUG_ON(!list_empty(&cgrp->self.children));
1261 
1262 	/* Rebind all subsystems back to the default hierarchy */
1263 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1264 
1265 	/*
1266 	 * Release all the links from cset_links to this hierarchy's
1267 	 * root cgroup
1268 	 */
1269 	spin_lock_irq(&css_set_lock);
1270 
1271 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1272 		list_del(&link->cset_link);
1273 		list_del(&link->cgrp_link);
1274 		kfree(link);
1275 	}
1276 
1277 	spin_unlock_irq(&css_set_lock);
1278 
1279 	if (!list_empty(&root->root_list)) {
1280 		list_del(&root->root_list);
1281 		cgroup_root_count--;
1282 	}
1283 
1284 	cgroup_exit_root_id(root);
1285 
1286 	mutex_unlock(&cgroup_mutex);
1287 
1288 	kernfs_destroy_root(root->kf_root);
1289 	cgroup_free_root(root);
1290 }
1291 
1292 /*
1293  * look up cgroup associated with current task's cgroup namespace on the
1294  * specified hierarchy
1295  */
1296 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1297 current_cgns_cgroup_from_root(struct cgroup_root *root)
1298 {
1299 	struct cgroup *res = NULL;
1300 	struct css_set *cset;
1301 
1302 	lockdep_assert_held(&css_set_lock);
1303 
1304 	rcu_read_lock();
1305 
1306 	cset = current->nsproxy->cgroup_ns->root_cset;
1307 	if (cset == &init_css_set) {
1308 		res = &root->cgrp;
1309 	} else {
1310 		struct cgrp_cset_link *link;
1311 
1312 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1313 			struct cgroup *c = link->cgrp;
1314 
1315 			if (c->root == root) {
1316 				res = c;
1317 				break;
1318 			}
1319 		}
1320 	}
1321 	rcu_read_unlock();
1322 
1323 	BUG_ON(!res);
1324 	return res;
1325 }
1326 
1327 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1328 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1329 					    struct cgroup_root *root)
1330 {
1331 	struct cgroup *res = NULL;
1332 
1333 	lockdep_assert_held(&cgroup_mutex);
1334 	lockdep_assert_held(&css_set_lock);
1335 
1336 	if (cset == &init_css_set) {
1337 		res = &root->cgrp;
1338 	} else if (root == &cgrp_dfl_root) {
1339 		res = cset->dfl_cgrp;
1340 	} else {
1341 		struct cgrp_cset_link *link;
1342 
1343 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1344 			struct cgroup *c = link->cgrp;
1345 
1346 			if (c->root == root) {
1347 				res = c;
1348 				break;
1349 			}
1350 		}
1351 	}
1352 
1353 	BUG_ON(!res);
1354 	return res;
1355 }
1356 
1357 /*
1358  * Return the cgroup for "task" from the given hierarchy. Must be
1359  * called with cgroup_mutex and css_set_lock held.
1360  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1361 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1362 				     struct cgroup_root *root)
1363 {
1364 	/*
1365 	 * No need to lock the task - since we hold cgroup_mutex the
1366 	 * task can't change groups, so the only thing that can happen
1367 	 * is that it exits and its css is set back to init_css_set.
1368 	 */
1369 	return cset_cgroup_from_root(task_css_set(task), root);
1370 }
1371 
1372 /*
1373  * A task must hold cgroup_mutex to modify cgroups.
1374  *
1375  * Any task can increment and decrement the count field without lock.
1376  * So in general, code holding cgroup_mutex can't rely on the count
1377  * field not changing.  However, if the count goes to zero, then only
1378  * cgroup_attach_task() can increment it again.  Because a count of zero
1379  * means that no tasks are currently attached, therefore there is no
1380  * way a task attached to that cgroup can fork (the other way to
1381  * increment the count).  So code holding cgroup_mutex can safely
1382  * assume that if the count is zero, it will stay zero. Similarly, if
1383  * a task holds cgroup_mutex on a cgroup with zero count, it
1384  * knows that the cgroup won't be removed, as cgroup_rmdir()
1385  * needs that mutex.
1386  *
1387  * A cgroup can only be deleted if both its 'count' of using tasks
1388  * is zero, and its list of 'children' cgroups is empty.  Since all
1389  * tasks in the system use _some_ cgroup, and since there is always at
1390  * least one task in the system (init, pid == 1), therefore, root cgroup
1391  * always has either children cgroups and/or using tasks.  So we don't
1392  * need a special hack to ensure that root cgroup cannot be deleted.
1393  *
1394  * P.S.  One more locking exception.  RCU is used to guard the
1395  * update of a tasks cgroup pointer by cgroup_attach_task()
1396  */
1397 
1398 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1399 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1400 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1401 			      char *buf)
1402 {
1403 	struct cgroup_subsys *ss = cft->ss;
1404 
1405 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1406 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1407 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1408 			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1409 			 cft->name);
1410 	else
1411 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1412 	return buf;
1413 }
1414 
1415 /**
1416  * cgroup_file_mode - deduce file mode of a control file
1417  * @cft: the control file in question
1418  *
1419  * S_IRUGO for read, S_IWUSR for write.
1420  */
cgroup_file_mode(const struct cftype * cft)1421 static umode_t cgroup_file_mode(const struct cftype *cft)
1422 {
1423 	umode_t mode = 0;
1424 
1425 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1426 		mode |= S_IRUGO;
1427 
1428 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1429 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1430 			mode |= S_IWUGO;
1431 		else
1432 			mode |= S_IWUSR;
1433 	}
1434 
1435 	return mode;
1436 }
1437 
1438 /**
1439  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1440  * @subtree_control: the new subtree_control mask to consider
1441  * @this_ss_mask: available subsystems
1442  *
1443  * On the default hierarchy, a subsystem may request other subsystems to be
1444  * enabled together through its ->depends_on mask.  In such cases, more
1445  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1446  *
1447  * This function calculates which subsystems need to be enabled if
1448  * @subtree_control is to be applied while restricted to @this_ss_mask.
1449  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1450 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1451 {
1452 	u16 cur_ss_mask = subtree_control;
1453 	struct cgroup_subsys *ss;
1454 	int ssid;
1455 
1456 	lockdep_assert_held(&cgroup_mutex);
1457 
1458 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1459 
1460 	while (true) {
1461 		u16 new_ss_mask = cur_ss_mask;
1462 
1463 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1464 			new_ss_mask |= ss->depends_on;
1465 		} while_each_subsys_mask();
1466 
1467 		/*
1468 		 * Mask out subsystems which aren't available.  This can
1469 		 * happen only if some depended-upon subsystems were bound
1470 		 * to non-default hierarchies.
1471 		 */
1472 		new_ss_mask &= this_ss_mask;
1473 
1474 		if (new_ss_mask == cur_ss_mask)
1475 			break;
1476 		cur_ss_mask = new_ss_mask;
1477 	}
1478 
1479 	return cur_ss_mask;
1480 }
1481 
1482 /**
1483  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1484  * @kn: the kernfs_node being serviced
1485  *
1486  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1487  * the method finishes if locking succeeded.  Note that once this function
1488  * returns the cgroup returned by cgroup_kn_lock_live() may become
1489  * inaccessible any time.  If the caller intends to continue to access the
1490  * cgroup, it should pin it before invoking this function.
1491  */
cgroup_kn_unlock(struct kernfs_node * kn)1492 void cgroup_kn_unlock(struct kernfs_node *kn)
1493 {
1494 	struct cgroup *cgrp;
1495 
1496 	if (kernfs_type(kn) == KERNFS_DIR)
1497 		cgrp = kn->priv;
1498 	else
1499 		cgrp = kn->parent->priv;
1500 
1501 	mutex_unlock(&cgroup_mutex);
1502 
1503 	kernfs_unbreak_active_protection(kn);
1504 	cgroup_put(cgrp);
1505 }
1506 
1507 /**
1508  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1509  * @kn: the kernfs_node being serviced
1510  * @drain_offline: perform offline draining on the cgroup
1511  *
1512  * This helper is to be used by a cgroup kernfs method currently servicing
1513  * @kn.  It breaks the active protection, performs cgroup locking and
1514  * verifies that the associated cgroup is alive.  Returns the cgroup if
1515  * alive; otherwise, %NULL.  A successful return should be undone by a
1516  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1517  * cgroup is drained of offlining csses before return.
1518  *
1519  * Any cgroup kernfs method implementation which requires locking the
1520  * associated cgroup should use this helper.  It avoids nesting cgroup
1521  * locking under kernfs active protection and allows all kernfs operations
1522  * including self-removal.
1523  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1524 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1525 {
1526 	struct cgroup *cgrp;
1527 
1528 	if (kernfs_type(kn) == KERNFS_DIR)
1529 		cgrp = kn->priv;
1530 	else
1531 		cgrp = kn->parent->priv;
1532 
1533 	/*
1534 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1535 	 * active_ref.  cgroup liveliness check alone provides enough
1536 	 * protection against removal.  Ensure @cgrp stays accessible and
1537 	 * break the active_ref protection.
1538 	 */
1539 	if (!cgroup_tryget(cgrp))
1540 		return NULL;
1541 	kernfs_break_active_protection(kn);
1542 
1543 	if (drain_offline)
1544 		cgroup_lock_and_drain_offline(cgrp);
1545 	else
1546 		mutex_lock(&cgroup_mutex);
1547 
1548 	if (!cgroup_is_dead(cgrp))
1549 		return cgrp;
1550 
1551 	cgroup_kn_unlock(kn);
1552 	return NULL;
1553 }
1554 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1555 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1556 {
1557 	char name[CGROUP_FILE_NAME_MAX];
1558 
1559 	lockdep_assert_held(&cgroup_mutex);
1560 
1561 	if (cft->file_offset) {
1562 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1563 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1564 
1565 		spin_lock_irq(&cgroup_file_kn_lock);
1566 		cfile->kn = NULL;
1567 		spin_unlock_irq(&cgroup_file_kn_lock);
1568 
1569 		del_timer_sync(&cfile->notify_timer);
1570 	}
1571 
1572 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1573 }
1574 
1575 /**
1576  * css_clear_dir - remove subsys files in a cgroup directory
1577  * @css: taget css
1578  */
css_clear_dir(struct cgroup_subsys_state * css)1579 static void css_clear_dir(struct cgroup_subsys_state *css)
1580 {
1581 	struct cgroup *cgrp = css->cgroup;
1582 	struct cftype *cfts;
1583 
1584 	if (!(css->flags & CSS_VISIBLE))
1585 		return;
1586 
1587 	css->flags &= ~CSS_VISIBLE;
1588 
1589 	if (!css->ss) {
1590 		if (cgroup_on_dfl(cgrp))
1591 			cfts = cgroup_base_files;
1592 		else
1593 			cfts = cgroup1_base_files;
1594 
1595 		cgroup_addrm_files(css, cgrp, cfts, false);
1596 	} else {
1597 		list_for_each_entry(cfts, &css->ss->cfts, node)
1598 			cgroup_addrm_files(css, cgrp, cfts, false);
1599 	}
1600 }
1601 
1602 /**
1603  * css_populate_dir - create subsys files in a cgroup directory
1604  * @css: target css
1605  *
1606  * On failure, no file is added.
1607  */
css_populate_dir(struct cgroup_subsys_state * css)1608 static int css_populate_dir(struct cgroup_subsys_state *css)
1609 {
1610 	struct cgroup *cgrp = css->cgroup;
1611 	struct cftype *cfts, *failed_cfts;
1612 	int ret;
1613 
1614 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1615 		return 0;
1616 
1617 	if (!css->ss) {
1618 		if (cgroup_on_dfl(cgrp))
1619 			cfts = cgroup_base_files;
1620 		else
1621 			cfts = cgroup1_base_files;
1622 
1623 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1624 		if (ret < 0)
1625 			return ret;
1626 	} else {
1627 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1628 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1629 			if (ret < 0) {
1630 				failed_cfts = cfts;
1631 				goto err;
1632 			}
1633 		}
1634 	}
1635 
1636 	css->flags |= CSS_VISIBLE;
1637 
1638 	return 0;
1639 err:
1640 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1641 		if (cfts == failed_cfts)
1642 			break;
1643 		cgroup_addrm_files(css, cgrp, cfts, false);
1644 	}
1645 	return ret;
1646 }
1647 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1648 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1649 {
1650 	struct cgroup *dcgrp = &dst_root->cgrp;
1651 	struct cgroup_subsys *ss;
1652 	int ssid, i, ret;
1653 
1654 	lockdep_assert_held(&cgroup_mutex);
1655 
1656 	do_each_subsys_mask(ss, ssid, ss_mask) {
1657 		/*
1658 		 * If @ss has non-root csses attached to it, can't move.
1659 		 * If @ss is an implicit controller, it is exempt from this
1660 		 * rule and can be stolen.
1661 		 */
1662 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1663 		    !ss->implicit_on_dfl)
1664 			return -EBUSY;
1665 
1666 		/* can't move between two non-dummy roots either */
1667 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1668 			return -EBUSY;
1669 	} while_each_subsys_mask();
1670 
1671 	do_each_subsys_mask(ss, ssid, ss_mask) {
1672 		struct cgroup_root *src_root = ss->root;
1673 		struct cgroup *scgrp = &src_root->cgrp;
1674 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1675 		struct css_set *cset;
1676 
1677 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1678 
1679 		/* disable from the source */
1680 		src_root->subsys_mask &= ~(1 << ssid);
1681 		WARN_ON(cgroup_apply_control(scgrp));
1682 		cgroup_finalize_control(scgrp, 0);
1683 
1684 		/* rebind */
1685 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1686 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1687 		ss->root = dst_root;
1688 		css->cgroup = dcgrp;
1689 
1690 		spin_lock_irq(&css_set_lock);
1691 		hash_for_each(css_set_table, i, cset, hlist)
1692 			list_move_tail(&cset->e_cset_node[ss->id],
1693 				       &dcgrp->e_csets[ss->id]);
1694 		spin_unlock_irq(&css_set_lock);
1695 
1696 		/* default hierarchy doesn't enable controllers by default */
1697 		dst_root->subsys_mask |= 1 << ssid;
1698 		if (dst_root == &cgrp_dfl_root) {
1699 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1700 		} else {
1701 			dcgrp->subtree_control |= 1 << ssid;
1702 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1703 		}
1704 
1705 		ret = cgroup_apply_control(dcgrp);
1706 		if (ret)
1707 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1708 				ss->name, ret);
1709 
1710 		if (ss->bind)
1711 			ss->bind(css);
1712 	} while_each_subsys_mask();
1713 
1714 	kernfs_activate(dcgrp->kn);
1715 	return 0;
1716 }
1717 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1718 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1719 		     struct kernfs_root *kf_root)
1720 {
1721 	int len = 0;
1722 	char *buf = NULL;
1723 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1724 	struct cgroup *ns_cgroup;
1725 
1726 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1727 	if (!buf)
1728 		return -ENOMEM;
1729 
1730 	spin_lock_irq(&css_set_lock);
1731 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1732 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1733 	spin_unlock_irq(&css_set_lock);
1734 
1735 	if (len >= PATH_MAX)
1736 		len = -ERANGE;
1737 	else if (len > 0) {
1738 		seq_escape(sf, buf, " \t\n\\");
1739 		len = 0;
1740 	}
1741 	kfree(buf);
1742 	return len;
1743 }
1744 
parse_cgroup_root_flags(char * data,unsigned int * root_flags)1745 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1746 {
1747 	char *token;
1748 
1749 	*root_flags = 0;
1750 
1751 	if (!data || *data == '\0')
1752 		return 0;
1753 
1754 	while ((token = strsep(&data, ",")) != NULL) {
1755 		if (!strcmp(token, "nsdelegate")) {
1756 			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1757 			continue;
1758 		}
1759 
1760 		pr_err("cgroup2: unknown option \"%s\"\n", token);
1761 		return -EINVAL;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
apply_cgroup_root_flags(unsigned int root_flags)1767 static void apply_cgroup_root_flags(unsigned int root_flags)
1768 {
1769 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1770 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1771 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1772 		else
1773 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1774 	}
1775 }
1776 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1777 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1778 {
1779 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1780 		seq_puts(seq, ",nsdelegate");
1781 	return 0;
1782 }
1783 
cgroup_remount(struct kernfs_root * kf_root,int * flags,char * data)1784 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1785 {
1786 	unsigned int root_flags;
1787 	int ret;
1788 
1789 	ret = parse_cgroup_root_flags(data, &root_flags);
1790 	if (ret)
1791 		return ret;
1792 
1793 	apply_cgroup_root_flags(root_flags);
1794 	return 0;
1795 }
1796 
1797 /*
1798  * To reduce the fork() overhead for systems that are not actually using
1799  * their cgroups capability, we don't maintain the lists running through
1800  * each css_set to its tasks until we see the list actually used - in other
1801  * words after the first mount.
1802  */
1803 static bool use_task_css_set_links __read_mostly;
1804 
cgroup_enable_task_cg_lists(void)1805 static void cgroup_enable_task_cg_lists(void)
1806 {
1807 	struct task_struct *p, *g;
1808 
1809 	/*
1810 	 * We need tasklist_lock because RCU is not safe against
1811 	 * while_each_thread(). Besides, a forking task that has passed
1812 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1813 	 * is not guaranteed to have its child immediately visible in the
1814 	 * tasklist if we walk through it with RCU.
1815 	 */
1816 	read_lock(&tasklist_lock);
1817 	spin_lock_irq(&css_set_lock);
1818 
1819 	if (use_task_css_set_links)
1820 		goto out_unlock;
1821 
1822 	use_task_css_set_links = true;
1823 
1824 	do_each_thread(g, p) {
1825 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1826 			     task_css_set(p) != &init_css_set);
1827 
1828 		/*
1829 		 * We should check if the process is exiting, otherwise
1830 		 * it will race with cgroup_exit() in that the list
1831 		 * entry won't be deleted though the process has exited.
1832 		 * Do it while holding siglock so that we don't end up
1833 		 * racing against cgroup_exit().
1834 		 *
1835 		 * Interrupts were already disabled while acquiring
1836 		 * the css_set_lock, so we do not need to disable it
1837 		 * again when acquiring the sighand->siglock here.
1838 		 */
1839 		spin_lock(&p->sighand->siglock);
1840 		if (!(p->flags & PF_EXITING)) {
1841 			struct css_set *cset = task_css_set(p);
1842 
1843 			if (!css_set_populated(cset))
1844 				css_set_update_populated(cset, true);
1845 			list_add_tail(&p->cg_list, &cset->tasks);
1846 			get_css_set(cset);
1847 			cset->nr_tasks++;
1848 		}
1849 		spin_unlock(&p->sighand->siglock);
1850 	} while_each_thread(g, p);
1851 out_unlock:
1852 	spin_unlock_irq(&css_set_lock);
1853 	read_unlock(&tasklist_lock);
1854 }
1855 
init_cgroup_housekeeping(struct cgroup * cgrp)1856 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1857 {
1858 	struct cgroup_subsys *ss;
1859 	int ssid;
1860 
1861 	INIT_LIST_HEAD(&cgrp->self.sibling);
1862 	INIT_LIST_HEAD(&cgrp->self.children);
1863 	INIT_LIST_HEAD(&cgrp->cset_links);
1864 	INIT_LIST_HEAD(&cgrp->pidlists);
1865 	mutex_init(&cgrp->pidlist_mutex);
1866 	cgrp->self.cgroup = cgrp;
1867 	cgrp->self.flags |= CSS_ONLINE;
1868 	cgrp->dom_cgrp = cgrp;
1869 	cgrp->max_descendants = INT_MAX;
1870 	cgrp->max_depth = INT_MAX;
1871 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1872 	prev_cputime_init(&cgrp->prev_cputime);
1873 
1874 	for_each_subsys(ss, ssid)
1875 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1876 
1877 	init_waitqueue_head(&cgrp->offline_waitq);
1878 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1879 }
1880 
init_cgroup_root(struct cgroup_root * root,struct cgroup_sb_opts * opts)1881 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1882 {
1883 	struct cgroup *cgrp = &root->cgrp;
1884 
1885 	INIT_LIST_HEAD(&root->root_list);
1886 	atomic_set(&root->nr_cgrps, 1);
1887 	cgrp->root = root;
1888 	init_cgroup_housekeeping(cgrp);
1889 	idr_init(&root->cgroup_idr);
1890 
1891 	root->flags = opts->flags;
1892 	if (opts->release_agent)
1893 		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1894 	if (opts->name)
1895 		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1896 	if (opts->cpuset_clone_children)
1897 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1898 }
1899 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask,int ref_flags)1900 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1901 {
1902 	LIST_HEAD(tmp_links);
1903 	struct cgroup *root_cgrp = &root->cgrp;
1904 	struct kernfs_syscall_ops *kf_sops;
1905 	struct css_set *cset;
1906 	int i, ret;
1907 
1908 	lockdep_assert_held(&cgroup_mutex);
1909 
1910 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1911 	if (ret < 0)
1912 		goto out;
1913 	root_cgrp->id = ret;
1914 	root_cgrp->ancestor_ids[0] = ret;
1915 
1916 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1917 			      ref_flags, GFP_KERNEL);
1918 	if (ret)
1919 		goto out;
1920 
1921 	/*
1922 	 * We're accessing css_set_count without locking css_set_lock here,
1923 	 * but that's OK - it can only be increased by someone holding
1924 	 * cgroup_lock, and that's us.  Later rebinding may disable
1925 	 * controllers on the default hierarchy and thus create new csets,
1926 	 * which can't be more than the existing ones.  Allocate 2x.
1927 	 */
1928 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1929 	if (ret)
1930 		goto cancel_ref;
1931 
1932 	ret = cgroup_init_root_id(root);
1933 	if (ret)
1934 		goto cancel_ref;
1935 
1936 	kf_sops = root == &cgrp_dfl_root ?
1937 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1938 
1939 	root->kf_root = kernfs_create_root(kf_sops,
1940 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1941 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1942 					   root_cgrp);
1943 	if (IS_ERR(root->kf_root)) {
1944 		ret = PTR_ERR(root->kf_root);
1945 		goto exit_root_id;
1946 	}
1947 	root_cgrp->kn = root->kf_root->kn;
1948 
1949 	ret = css_populate_dir(&root_cgrp->self);
1950 	if (ret)
1951 		goto destroy_root;
1952 
1953 	ret = rebind_subsystems(root, ss_mask);
1954 	if (ret)
1955 		goto destroy_root;
1956 
1957 	ret = cgroup_bpf_inherit(root_cgrp);
1958 	WARN_ON_ONCE(ret);
1959 
1960 	trace_cgroup_setup_root(root);
1961 
1962 	/*
1963 	 * There must be no failure case after here, since rebinding takes
1964 	 * care of subsystems' refcounts, which are explicitly dropped in
1965 	 * the failure exit path.
1966 	 */
1967 	list_add(&root->root_list, &cgroup_roots);
1968 	cgroup_root_count++;
1969 
1970 	/*
1971 	 * Link the root cgroup in this hierarchy into all the css_set
1972 	 * objects.
1973 	 */
1974 	spin_lock_irq(&css_set_lock);
1975 	hash_for_each(css_set_table, i, cset, hlist) {
1976 		link_css_set(&tmp_links, cset, root_cgrp);
1977 		if (css_set_populated(cset))
1978 			cgroup_update_populated(root_cgrp, true);
1979 	}
1980 	spin_unlock_irq(&css_set_lock);
1981 
1982 	BUG_ON(!list_empty(&root_cgrp->self.children));
1983 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1984 
1985 	kernfs_activate(root_cgrp->kn);
1986 	ret = 0;
1987 	goto out;
1988 
1989 destroy_root:
1990 	kernfs_destroy_root(root->kf_root);
1991 	root->kf_root = NULL;
1992 exit_root_id:
1993 	cgroup_exit_root_id(root);
1994 cancel_ref:
1995 	percpu_ref_exit(&root_cgrp->self.refcnt);
1996 out:
1997 	free_cgrp_cset_links(&tmp_links);
1998 	return ret;
1999 }
2000 
cgroup_do_mount(struct file_system_type * fs_type,int flags,struct cgroup_root * root,unsigned long magic,struct cgroup_namespace * ns)2001 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
2002 			       struct cgroup_root *root, unsigned long magic,
2003 			       struct cgroup_namespace *ns)
2004 {
2005 	struct dentry *dentry;
2006 	bool new_sb = false;
2007 
2008 	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2009 
2010 	/*
2011 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2012 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2013 	 */
2014 	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2015 		struct dentry *nsdentry;
2016 		struct super_block *sb = dentry->d_sb;
2017 		struct cgroup *cgrp;
2018 
2019 		mutex_lock(&cgroup_mutex);
2020 		spin_lock_irq(&css_set_lock);
2021 
2022 		cgrp = cset_cgroup_from_root(ns->root_cset, root);
2023 
2024 		spin_unlock_irq(&css_set_lock);
2025 		mutex_unlock(&cgroup_mutex);
2026 
2027 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2028 		dput(dentry);
2029 		if (IS_ERR(nsdentry))
2030 			deactivate_locked_super(sb);
2031 		dentry = nsdentry;
2032 	}
2033 
2034 	if (!new_sb)
2035 		cgroup_put(&root->cgrp);
2036 
2037 	return dentry;
2038 }
2039 
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)2040 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2041 			 int flags, const char *unused_dev_name,
2042 			 void *data)
2043 {
2044 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2045 	struct dentry *dentry;
2046 	int ret;
2047 
2048 	get_cgroup_ns(ns);
2049 
2050 	/* Check if the caller has permission to mount. */
2051 	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2052 		put_cgroup_ns(ns);
2053 		return ERR_PTR(-EPERM);
2054 	}
2055 
2056 	/*
2057 	 * The first time anyone tries to mount a cgroup, enable the list
2058 	 * linking each css_set to its tasks and fix up all existing tasks.
2059 	 */
2060 	if (!use_task_css_set_links)
2061 		cgroup_enable_task_cg_lists();
2062 
2063 	if (fs_type == &cgroup2_fs_type) {
2064 		unsigned int root_flags;
2065 
2066 		ret = parse_cgroup_root_flags(data, &root_flags);
2067 		if (ret) {
2068 			put_cgroup_ns(ns);
2069 			return ERR_PTR(ret);
2070 		}
2071 
2072 		cgrp_dfl_visible = true;
2073 		cgroup_get_live(&cgrp_dfl_root.cgrp);
2074 
2075 		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2076 					 CGROUP2_SUPER_MAGIC, ns);
2077 		if (!IS_ERR(dentry))
2078 			apply_cgroup_root_flags(root_flags);
2079 	} else {
2080 		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2081 				       CGROUP_SUPER_MAGIC, ns);
2082 	}
2083 
2084 	put_cgroup_ns(ns);
2085 	return dentry;
2086 }
2087 
cgroup_kill_sb(struct super_block * sb)2088 static void cgroup_kill_sb(struct super_block *sb)
2089 {
2090 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2091 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2092 
2093 	/*
2094 	 * If @root doesn't have any mounts or children, start killing it.
2095 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2096 	 * cgroup_mount() may wait for @root's release.
2097 	 *
2098 	 * And don't kill the default root.
2099 	 */
2100 	if (!list_empty(&root->cgrp.self.children) ||
2101 	    root == &cgrp_dfl_root)
2102 		cgroup_put(&root->cgrp);
2103 	else
2104 		percpu_ref_kill(&root->cgrp.self.refcnt);
2105 
2106 	kernfs_kill_sb(sb);
2107 }
2108 
2109 struct file_system_type cgroup_fs_type = {
2110 	.name = "cgroup",
2111 	.mount = cgroup_mount,
2112 	.kill_sb = cgroup_kill_sb,
2113 	.fs_flags = FS_USERNS_MOUNT,
2114 };
2115 
2116 static struct file_system_type cgroup2_fs_type = {
2117 	.name = "cgroup2",
2118 	.mount = cgroup_mount,
2119 	.kill_sb = cgroup_kill_sb,
2120 	.fs_flags = FS_USERNS_MOUNT,
2121 };
2122 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2123 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2124 			  struct cgroup_namespace *ns)
2125 {
2126 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2127 
2128 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2129 }
2130 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2131 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2132 		   struct cgroup_namespace *ns)
2133 {
2134 	int ret;
2135 
2136 	mutex_lock(&cgroup_mutex);
2137 	spin_lock_irq(&css_set_lock);
2138 
2139 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2140 
2141 	spin_unlock_irq(&css_set_lock);
2142 	mutex_unlock(&cgroup_mutex);
2143 
2144 	return ret;
2145 }
2146 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2147 
2148 /**
2149  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2150  * @task: target task
2151  * @buf: the buffer to write the path into
2152  * @buflen: the length of the buffer
2153  *
2154  * Determine @task's cgroup on the first (the one with the lowest non-zero
2155  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2156  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2157  * cgroup controller callbacks.
2158  *
2159  * Return value is the same as kernfs_path().
2160  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2161 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2162 {
2163 	struct cgroup_root *root;
2164 	struct cgroup *cgrp;
2165 	int hierarchy_id = 1;
2166 	int ret;
2167 
2168 	mutex_lock(&cgroup_mutex);
2169 	spin_lock_irq(&css_set_lock);
2170 
2171 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2172 
2173 	if (root) {
2174 		cgrp = task_cgroup_from_root(task, root);
2175 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2176 	} else {
2177 		/* if no hierarchy exists, everyone is in "/" */
2178 		ret = strlcpy(buf, "/", buflen);
2179 	}
2180 
2181 	spin_unlock_irq(&css_set_lock);
2182 	mutex_unlock(&cgroup_mutex);
2183 	return ret;
2184 }
2185 EXPORT_SYMBOL_GPL(task_cgroup_path);
2186 
2187 /**
2188  * cgroup_migrate_add_task - add a migration target task to a migration context
2189  * @task: target task
2190  * @mgctx: target migration context
2191  *
2192  * Add @task, which is a migration target, to @mgctx->tset.  This function
2193  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2194  * should have been added as a migration source and @task->cg_list will be
2195  * moved from the css_set's tasks list to mg_tasks one.
2196  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2197 static void cgroup_migrate_add_task(struct task_struct *task,
2198 				    struct cgroup_mgctx *mgctx)
2199 {
2200 	struct css_set *cset;
2201 
2202 	lockdep_assert_held(&css_set_lock);
2203 
2204 	/* @task either already exited or can't exit until the end */
2205 	if (task->flags & PF_EXITING)
2206 		return;
2207 
2208 	/* leave @task alone if post_fork() hasn't linked it yet */
2209 	if (list_empty(&task->cg_list))
2210 		return;
2211 
2212 	cset = task_css_set(task);
2213 	if (!cset->mg_src_cgrp)
2214 		return;
2215 
2216 	mgctx->tset.nr_tasks++;
2217 
2218 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2219 	if (list_empty(&cset->mg_node))
2220 		list_add_tail(&cset->mg_node,
2221 			      &mgctx->tset.src_csets);
2222 	if (list_empty(&cset->mg_dst_cset->mg_node))
2223 		list_add_tail(&cset->mg_dst_cset->mg_node,
2224 			      &mgctx->tset.dst_csets);
2225 }
2226 
2227 /**
2228  * cgroup_taskset_first - reset taskset and return the first task
2229  * @tset: taskset of interest
2230  * @dst_cssp: output variable for the destination css
2231  *
2232  * @tset iteration is initialized and the first task is returned.
2233  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2234 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2235 					 struct cgroup_subsys_state **dst_cssp)
2236 {
2237 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2238 	tset->cur_task = NULL;
2239 
2240 	return cgroup_taskset_next(tset, dst_cssp);
2241 }
2242 
2243 /**
2244  * cgroup_taskset_next - iterate to the next task in taskset
2245  * @tset: taskset of interest
2246  * @dst_cssp: output variable for the destination css
2247  *
2248  * Return the next task in @tset.  Iteration must have been initialized
2249  * with cgroup_taskset_first().
2250  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2251 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2252 					struct cgroup_subsys_state **dst_cssp)
2253 {
2254 	struct css_set *cset = tset->cur_cset;
2255 	struct task_struct *task = tset->cur_task;
2256 
2257 	while (&cset->mg_node != tset->csets) {
2258 		if (!task)
2259 			task = list_first_entry(&cset->mg_tasks,
2260 						struct task_struct, cg_list);
2261 		else
2262 			task = list_next_entry(task, cg_list);
2263 
2264 		if (&task->cg_list != &cset->mg_tasks) {
2265 			tset->cur_cset = cset;
2266 			tset->cur_task = task;
2267 
2268 			/*
2269 			 * This function may be called both before and
2270 			 * after cgroup_taskset_migrate().  The two cases
2271 			 * can be distinguished by looking at whether @cset
2272 			 * has its ->mg_dst_cset set.
2273 			 */
2274 			if (cset->mg_dst_cset)
2275 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2276 			else
2277 				*dst_cssp = cset->subsys[tset->ssid];
2278 
2279 			return task;
2280 		}
2281 
2282 		cset = list_next_entry(cset, mg_node);
2283 		task = NULL;
2284 	}
2285 
2286 	return NULL;
2287 }
2288 
2289 /**
2290  * cgroup_taskset_migrate - migrate a taskset
2291  * @mgctx: migration context
2292  *
2293  * Migrate tasks in @mgctx as setup by migration preparation functions.
2294  * This function fails iff one of the ->can_attach callbacks fails and
2295  * guarantees that either all or none of the tasks in @mgctx are migrated.
2296  * @mgctx is consumed regardless of success.
2297  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2298 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2299 {
2300 	struct cgroup_taskset *tset = &mgctx->tset;
2301 	struct cgroup_subsys *ss;
2302 	struct task_struct *task, *tmp_task;
2303 	struct css_set *cset, *tmp_cset;
2304 	int ssid, failed_ssid, ret;
2305 
2306 	/* check that we can legitimately attach to the cgroup */
2307 	if (tset->nr_tasks) {
2308 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2309 			if (ss->can_attach) {
2310 				tset->ssid = ssid;
2311 				ret = ss->can_attach(tset);
2312 				if (ret) {
2313 					failed_ssid = ssid;
2314 					goto out_cancel_attach;
2315 				}
2316 			}
2317 		} while_each_subsys_mask();
2318 	}
2319 
2320 	/*
2321 	 * Now that we're guaranteed success, proceed to move all tasks to
2322 	 * the new cgroup.  There are no failure cases after here, so this
2323 	 * is the commit point.
2324 	 */
2325 	spin_lock_irq(&css_set_lock);
2326 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2327 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2328 			struct css_set *from_cset = task_css_set(task);
2329 			struct css_set *to_cset = cset->mg_dst_cset;
2330 
2331 			get_css_set(to_cset);
2332 			to_cset->nr_tasks++;
2333 			css_set_move_task(task, from_cset, to_cset, true);
2334 			put_css_set_locked(from_cset);
2335 			from_cset->nr_tasks--;
2336 		}
2337 	}
2338 	spin_unlock_irq(&css_set_lock);
2339 
2340 	/*
2341 	 * Migration is committed, all target tasks are now on dst_csets.
2342 	 * Nothing is sensitive to fork() after this point.  Notify
2343 	 * controllers that migration is complete.
2344 	 */
2345 	tset->csets = &tset->dst_csets;
2346 
2347 	if (tset->nr_tasks) {
2348 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2349 			if (ss->attach) {
2350 				tset->ssid = ssid;
2351 				ss->attach(tset);
2352 			}
2353 		} while_each_subsys_mask();
2354 	}
2355 
2356 	ret = 0;
2357 	goto out_release_tset;
2358 
2359 out_cancel_attach:
2360 	if (tset->nr_tasks) {
2361 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2362 			if (ssid == failed_ssid)
2363 				break;
2364 			if (ss->cancel_attach) {
2365 				tset->ssid = ssid;
2366 				ss->cancel_attach(tset);
2367 			}
2368 		} while_each_subsys_mask();
2369 	}
2370 out_release_tset:
2371 	spin_lock_irq(&css_set_lock);
2372 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2373 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2374 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2375 		list_del_init(&cset->mg_node);
2376 	}
2377 	spin_unlock_irq(&css_set_lock);
2378 
2379 	/*
2380 	 * Re-initialize the cgroup_taskset structure in case it is reused
2381 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2382 	 * iteration.
2383 	 */
2384 	tset->nr_tasks = 0;
2385 	tset->csets    = &tset->src_csets;
2386 	return ret;
2387 }
2388 
2389 /**
2390  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2391  * @dst_cgrp: destination cgroup to test
2392  *
2393  * On the default hierarchy, except for the mixable, (possible) thread root
2394  * and threaded cgroups, subtree_control must be zero for migration
2395  * destination cgroups with tasks so that child cgroups don't compete
2396  * against tasks.
2397  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2398 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2399 {
2400 	/* v1 doesn't have any restriction */
2401 	if (!cgroup_on_dfl(dst_cgrp))
2402 		return 0;
2403 
2404 	/* verify @dst_cgrp can host resources */
2405 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2406 		return -EOPNOTSUPP;
2407 
2408 	/* mixables don't care */
2409 	if (cgroup_is_mixable(dst_cgrp))
2410 		return 0;
2411 
2412 	/*
2413 	 * If @dst_cgrp is already or can become a thread root or is
2414 	 * threaded, it doesn't matter.
2415 	 */
2416 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2417 		return 0;
2418 
2419 	/* apply no-internal-process constraint */
2420 	if (dst_cgrp->subtree_control)
2421 		return -EBUSY;
2422 
2423 	return 0;
2424 }
2425 
2426 /**
2427  * cgroup_migrate_finish - cleanup after attach
2428  * @mgctx: migration context
2429  *
2430  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2431  * those functions for details.
2432  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2433 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2434 {
2435 	LIST_HEAD(preloaded);
2436 	struct css_set *cset, *tmp_cset;
2437 
2438 	lockdep_assert_held(&cgroup_mutex);
2439 
2440 	spin_lock_irq(&css_set_lock);
2441 
2442 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2443 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2444 
2445 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2446 		cset->mg_src_cgrp = NULL;
2447 		cset->mg_dst_cgrp = NULL;
2448 		cset->mg_dst_cset = NULL;
2449 		list_del_init(&cset->mg_preload_node);
2450 		put_css_set_locked(cset);
2451 	}
2452 
2453 	spin_unlock_irq(&css_set_lock);
2454 }
2455 
2456 /**
2457  * cgroup_migrate_add_src - add a migration source css_set
2458  * @src_cset: the source css_set to add
2459  * @dst_cgrp: the destination cgroup
2460  * @mgctx: migration context
2461  *
2462  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2463  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2464  * up by cgroup_migrate_finish().
2465  *
2466  * This function may be called without holding cgroup_threadgroup_rwsem
2467  * even if the target is a process.  Threads may be created and destroyed
2468  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2469  * into play and the preloaded css_sets are guaranteed to cover all
2470  * migrations.
2471  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2472 void cgroup_migrate_add_src(struct css_set *src_cset,
2473 			    struct cgroup *dst_cgrp,
2474 			    struct cgroup_mgctx *mgctx)
2475 {
2476 	struct cgroup *src_cgrp;
2477 
2478 	lockdep_assert_held(&cgroup_mutex);
2479 	lockdep_assert_held(&css_set_lock);
2480 
2481 	/*
2482 	 * If ->dead, @src_set is associated with one or more dead cgroups
2483 	 * and doesn't contain any migratable tasks.  Ignore it early so
2484 	 * that the rest of migration path doesn't get confused by it.
2485 	 */
2486 	if (src_cset->dead)
2487 		return;
2488 
2489 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2490 
2491 	if (!list_empty(&src_cset->mg_preload_node))
2492 		return;
2493 
2494 	WARN_ON(src_cset->mg_src_cgrp);
2495 	WARN_ON(src_cset->mg_dst_cgrp);
2496 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2497 	WARN_ON(!list_empty(&src_cset->mg_node));
2498 
2499 	src_cset->mg_src_cgrp = src_cgrp;
2500 	src_cset->mg_dst_cgrp = dst_cgrp;
2501 	get_css_set(src_cset);
2502 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2503 }
2504 
2505 /**
2506  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2507  * @mgctx: migration context
2508  *
2509  * Tasks are about to be moved and all the source css_sets have been
2510  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2511  * pins all destination css_sets, links each to its source, and append them
2512  * to @mgctx->preloaded_dst_csets.
2513  *
2514  * This function must be called after cgroup_migrate_add_src() has been
2515  * called on each migration source css_set.  After migration is performed
2516  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2517  * @mgctx.
2518  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2519 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2520 {
2521 	struct css_set *src_cset, *tmp_cset;
2522 
2523 	lockdep_assert_held(&cgroup_mutex);
2524 
2525 	/* look up the dst cset for each src cset and link it to src */
2526 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2527 				 mg_preload_node) {
2528 		struct css_set *dst_cset;
2529 		struct cgroup_subsys *ss;
2530 		int ssid;
2531 
2532 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2533 		if (!dst_cset)
2534 			goto err;
2535 
2536 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2537 
2538 		/*
2539 		 * If src cset equals dst, it's noop.  Drop the src.
2540 		 * cgroup_migrate() will skip the cset too.  Note that we
2541 		 * can't handle src == dst as some nodes are used by both.
2542 		 */
2543 		if (src_cset == dst_cset) {
2544 			src_cset->mg_src_cgrp = NULL;
2545 			src_cset->mg_dst_cgrp = NULL;
2546 			list_del_init(&src_cset->mg_preload_node);
2547 			put_css_set(src_cset);
2548 			put_css_set(dst_cset);
2549 			continue;
2550 		}
2551 
2552 		src_cset->mg_dst_cset = dst_cset;
2553 
2554 		if (list_empty(&dst_cset->mg_preload_node))
2555 			list_add_tail(&dst_cset->mg_preload_node,
2556 				      &mgctx->preloaded_dst_csets);
2557 		else
2558 			put_css_set(dst_cset);
2559 
2560 		for_each_subsys(ss, ssid)
2561 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2562 				mgctx->ss_mask |= 1 << ssid;
2563 	}
2564 
2565 	return 0;
2566 err:
2567 	cgroup_migrate_finish(mgctx);
2568 	return -ENOMEM;
2569 }
2570 
2571 /**
2572  * cgroup_migrate - migrate a process or task to a cgroup
2573  * @leader: the leader of the process or the task to migrate
2574  * @threadgroup: whether @leader points to the whole process or a single task
2575  * @mgctx: migration context
2576  *
2577  * Migrate a process or task denoted by @leader.  If migrating a process,
2578  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2579  * responsible for invoking cgroup_migrate_add_src() and
2580  * cgroup_migrate_prepare_dst() on the targets before invoking this
2581  * function and following up with cgroup_migrate_finish().
2582  *
2583  * As long as a controller's ->can_attach() doesn't fail, this function is
2584  * guaranteed to succeed.  This means that, excluding ->can_attach()
2585  * failure, when migrating multiple targets, the success or failure can be
2586  * decided for all targets by invoking group_migrate_prepare_dst() before
2587  * actually starting migrating.
2588  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2589 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2590 		   struct cgroup_mgctx *mgctx)
2591 {
2592 	struct task_struct *task;
2593 
2594 	/*
2595 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2596 	 * already PF_EXITING could be freed from underneath us unless we
2597 	 * take an rcu_read_lock.
2598 	 */
2599 	spin_lock_irq(&css_set_lock);
2600 	rcu_read_lock();
2601 	task = leader;
2602 	do {
2603 		cgroup_migrate_add_task(task, mgctx);
2604 		if (!threadgroup)
2605 			break;
2606 	} while_each_thread(leader, task);
2607 	rcu_read_unlock();
2608 	spin_unlock_irq(&css_set_lock);
2609 
2610 	return cgroup_migrate_execute(mgctx);
2611 }
2612 
2613 /**
2614  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2615  * @dst_cgrp: the cgroup to attach to
2616  * @leader: the task or the leader of the threadgroup to be attached
2617  * @threadgroup: attach the whole threadgroup?
2618  *
2619  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2620  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2621 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2622 		       bool threadgroup)
2623 {
2624 	DEFINE_CGROUP_MGCTX(mgctx);
2625 	struct task_struct *task;
2626 	int ret;
2627 
2628 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2629 	if (ret)
2630 		return ret;
2631 
2632 	/* look up all src csets */
2633 	spin_lock_irq(&css_set_lock);
2634 	rcu_read_lock();
2635 	task = leader;
2636 	do {
2637 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2638 		if (!threadgroup)
2639 			break;
2640 	} while_each_thread(leader, task);
2641 	rcu_read_unlock();
2642 	spin_unlock_irq(&css_set_lock);
2643 
2644 	/* prepare dst csets and commit */
2645 	ret = cgroup_migrate_prepare_dst(&mgctx);
2646 	if (!ret)
2647 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2648 
2649 	cgroup_migrate_finish(&mgctx);
2650 
2651 	if (!ret)
2652 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2653 
2654 	return ret;
2655 }
2656 
cgroup_procs_write_start(char * buf,bool threadgroup)2657 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2658 	__acquires(&cgroup_threadgroup_rwsem)
2659 {
2660 	struct task_struct *tsk;
2661 	pid_t pid;
2662 
2663 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2664 		return ERR_PTR(-EINVAL);
2665 
2666 	percpu_down_write(&cgroup_threadgroup_rwsem);
2667 
2668 	rcu_read_lock();
2669 	if (pid) {
2670 		tsk = find_task_by_vpid(pid);
2671 		if (!tsk) {
2672 			tsk = ERR_PTR(-ESRCH);
2673 			goto out_unlock_threadgroup;
2674 		}
2675 	} else {
2676 		tsk = current;
2677 	}
2678 
2679 	if (threadgroup)
2680 		tsk = tsk->group_leader;
2681 
2682 	/*
2683 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2684 	 * If userland migrates such a kthread to a non-root cgroup, it can
2685 	 * become trapped in a cpuset, or RT kthread may be born in a
2686 	 * cgroup with no rt_runtime allocated.  Just say no.
2687 	 */
2688 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2689 		tsk = ERR_PTR(-EINVAL);
2690 		goto out_unlock_threadgroup;
2691 	}
2692 
2693 	get_task_struct(tsk);
2694 	goto out_unlock_rcu;
2695 
2696 out_unlock_threadgroup:
2697 	percpu_up_write(&cgroup_threadgroup_rwsem);
2698 out_unlock_rcu:
2699 	rcu_read_unlock();
2700 	return tsk;
2701 }
2702 
cgroup_procs_write_finish(struct task_struct * task)2703 void cgroup_procs_write_finish(struct task_struct *task)
2704 	__releases(&cgroup_threadgroup_rwsem)
2705 {
2706 	struct cgroup_subsys *ss;
2707 	int ssid;
2708 
2709 	/* release reference from cgroup_procs_write_start() */
2710 	put_task_struct(task);
2711 
2712 	percpu_up_write(&cgroup_threadgroup_rwsem);
2713 	for_each_subsys(ss, ssid)
2714 		if (ss->post_attach)
2715 			ss->post_attach();
2716 }
2717 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2718 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2719 {
2720 	struct cgroup_subsys *ss;
2721 	bool printed = false;
2722 	int ssid;
2723 
2724 	do_each_subsys_mask(ss, ssid, ss_mask) {
2725 		if (printed)
2726 			seq_putc(seq, ' ');
2727 		seq_printf(seq, "%s", ss->name);
2728 		printed = true;
2729 	} while_each_subsys_mask();
2730 	if (printed)
2731 		seq_putc(seq, '\n');
2732 }
2733 
2734 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2735 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2736 {
2737 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2738 
2739 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2740 	return 0;
2741 }
2742 
2743 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2744 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2745 {
2746 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2747 
2748 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2749 	return 0;
2750 }
2751 
2752 /**
2753  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2754  * @cgrp: root of the subtree to update csses for
2755  *
2756  * @cgrp's control masks have changed and its subtree's css associations
2757  * need to be updated accordingly.  This function looks up all css_sets
2758  * which are attached to the subtree, creates the matching updated css_sets
2759  * and migrates the tasks to the new ones.
2760  */
cgroup_update_dfl_csses(struct cgroup * cgrp)2761 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2762 {
2763 	DEFINE_CGROUP_MGCTX(mgctx);
2764 	struct cgroup_subsys_state *d_css;
2765 	struct cgroup *dsct;
2766 	struct css_set *src_cset;
2767 	int ret;
2768 
2769 	lockdep_assert_held(&cgroup_mutex);
2770 
2771 	percpu_down_write(&cgroup_threadgroup_rwsem);
2772 
2773 	/* look up all csses currently attached to @cgrp's subtree */
2774 	spin_lock_irq(&css_set_lock);
2775 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2776 		struct cgrp_cset_link *link;
2777 
2778 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2779 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2780 	}
2781 	spin_unlock_irq(&css_set_lock);
2782 
2783 	/* NULL dst indicates self on default hierarchy */
2784 	ret = cgroup_migrate_prepare_dst(&mgctx);
2785 	if (ret)
2786 		goto out_finish;
2787 
2788 	spin_lock_irq(&css_set_lock);
2789 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2790 		struct task_struct *task, *ntask;
2791 
2792 		/* all tasks in src_csets need to be migrated */
2793 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2794 			cgroup_migrate_add_task(task, &mgctx);
2795 	}
2796 	spin_unlock_irq(&css_set_lock);
2797 
2798 	ret = cgroup_migrate_execute(&mgctx);
2799 out_finish:
2800 	cgroup_migrate_finish(&mgctx);
2801 	percpu_up_write(&cgroup_threadgroup_rwsem);
2802 	return ret;
2803 }
2804 
2805 /**
2806  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2807  * @cgrp: root of the target subtree
2808  *
2809  * Because css offlining is asynchronous, userland may try to re-enable a
2810  * controller while the previous css is still around.  This function grabs
2811  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2812  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2813 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2814 	__acquires(&cgroup_mutex)
2815 {
2816 	struct cgroup *dsct;
2817 	struct cgroup_subsys_state *d_css;
2818 	struct cgroup_subsys *ss;
2819 	int ssid;
2820 
2821 restart:
2822 	mutex_lock(&cgroup_mutex);
2823 
2824 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2825 		for_each_subsys(ss, ssid) {
2826 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2827 			DEFINE_WAIT(wait);
2828 
2829 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2830 				continue;
2831 
2832 			cgroup_get_live(dsct);
2833 			prepare_to_wait(&dsct->offline_waitq, &wait,
2834 					TASK_UNINTERRUPTIBLE);
2835 
2836 			mutex_unlock(&cgroup_mutex);
2837 			schedule();
2838 			finish_wait(&dsct->offline_waitq, &wait);
2839 
2840 			cgroup_put(dsct);
2841 			goto restart;
2842 		}
2843 	}
2844 }
2845 
2846 /**
2847  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2848  * @cgrp: root of the target subtree
2849  *
2850  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2851  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2852  * itself.
2853  */
cgroup_save_control(struct cgroup * cgrp)2854 static void cgroup_save_control(struct cgroup *cgrp)
2855 {
2856 	struct cgroup *dsct;
2857 	struct cgroup_subsys_state *d_css;
2858 
2859 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2860 		dsct->old_subtree_control = dsct->subtree_control;
2861 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2862 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2863 	}
2864 }
2865 
2866 /**
2867  * cgroup_propagate_control - refresh control masks of a subtree
2868  * @cgrp: root of the target subtree
2869  *
2870  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2871  * ->subtree_control and propagate controller availability through the
2872  * subtree so that descendants don't have unavailable controllers enabled.
2873  */
cgroup_propagate_control(struct cgroup * cgrp)2874 static void cgroup_propagate_control(struct cgroup *cgrp)
2875 {
2876 	struct cgroup *dsct;
2877 	struct cgroup_subsys_state *d_css;
2878 
2879 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2880 		dsct->subtree_control &= cgroup_control(dsct);
2881 		dsct->subtree_ss_mask =
2882 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2883 						    cgroup_ss_mask(dsct));
2884 	}
2885 }
2886 
2887 /**
2888  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2889  * @cgrp: root of the target subtree
2890  *
2891  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2892  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2893  * itself.
2894  */
cgroup_restore_control(struct cgroup * cgrp)2895 static void cgroup_restore_control(struct cgroup *cgrp)
2896 {
2897 	struct cgroup *dsct;
2898 	struct cgroup_subsys_state *d_css;
2899 
2900 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2901 		dsct->subtree_control = dsct->old_subtree_control;
2902 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2903 		dsct->dom_cgrp = dsct->old_dom_cgrp;
2904 	}
2905 }
2906 
css_visible(struct cgroup_subsys_state * css)2907 static bool css_visible(struct cgroup_subsys_state *css)
2908 {
2909 	struct cgroup_subsys *ss = css->ss;
2910 	struct cgroup *cgrp = css->cgroup;
2911 
2912 	if (cgroup_control(cgrp) & (1 << ss->id))
2913 		return true;
2914 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2915 		return false;
2916 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2917 }
2918 
2919 /**
2920  * cgroup_apply_control_enable - enable or show csses according to control
2921  * @cgrp: root of the target subtree
2922  *
2923  * Walk @cgrp's subtree and create new csses or make the existing ones
2924  * visible.  A css is created invisible if it's being implicitly enabled
2925  * through dependency.  An invisible css is made visible when the userland
2926  * explicitly enables it.
2927  *
2928  * Returns 0 on success, -errno on failure.  On failure, csses which have
2929  * been processed already aren't cleaned up.  The caller is responsible for
2930  * cleaning up with cgroup_apply_control_disable().
2931  */
cgroup_apply_control_enable(struct cgroup * cgrp)2932 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2933 {
2934 	struct cgroup *dsct;
2935 	struct cgroup_subsys_state *d_css;
2936 	struct cgroup_subsys *ss;
2937 	int ssid, ret;
2938 
2939 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2940 		for_each_subsys(ss, ssid) {
2941 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2942 
2943 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2944 				continue;
2945 
2946 			if (!css) {
2947 				css = css_create(dsct, ss);
2948 				if (IS_ERR(css))
2949 					return PTR_ERR(css);
2950 			}
2951 
2952 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
2953 
2954 			if (css_visible(css)) {
2955 				ret = css_populate_dir(css);
2956 				if (ret)
2957 					return ret;
2958 			}
2959 		}
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 /**
2966  * cgroup_apply_control_disable - kill or hide csses according to control
2967  * @cgrp: root of the target subtree
2968  *
2969  * Walk @cgrp's subtree and kill and hide csses so that they match
2970  * cgroup_ss_mask() and cgroup_visible_mask().
2971  *
2972  * A css is hidden when the userland requests it to be disabled while other
2973  * subsystems are still depending on it.  The css must not actively control
2974  * resources and be in the vanilla state if it's made visible again later.
2975  * Controllers which may be depended upon should provide ->css_reset() for
2976  * this purpose.
2977  */
cgroup_apply_control_disable(struct cgroup * cgrp)2978 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2979 {
2980 	struct cgroup *dsct;
2981 	struct cgroup_subsys_state *d_css;
2982 	struct cgroup_subsys *ss;
2983 	int ssid;
2984 
2985 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2986 		for_each_subsys(ss, ssid) {
2987 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2988 
2989 			if (!css)
2990 				continue;
2991 
2992 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
2993 
2994 			if (css->parent &&
2995 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2996 				kill_css(css);
2997 			} else if (!css_visible(css)) {
2998 				css_clear_dir(css);
2999 				if (ss->css_reset)
3000 					ss->css_reset(css);
3001 			}
3002 		}
3003 	}
3004 }
3005 
3006 /**
3007  * cgroup_apply_control - apply control mask updates to the subtree
3008  * @cgrp: root of the target subtree
3009  *
3010  * subsystems can be enabled and disabled in a subtree using the following
3011  * steps.
3012  *
3013  * 1. Call cgroup_save_control() to stash the current state.
3014  * 2. Update ->subtree_control masks in the subtree as desired.
3015  * 3. Call cgroup_apply_control() to apply the changes.
3016  * 4. Optionally perform other related operations.
3017  * 5. Call cgroup_finalize_control() to finish up.
3018  *
3019  * This function implements step 3 and propagates the mask changes
3020  * throughout @cgrp's subtree, updates csses accordingly and perform
3021  * process migrations.
3022  */
cgroup_apply_control(struct cgroup * cgrp)3023 static int cgroup_apply_control(struct cgroup *cgrp)
3024 {
3025 	int ret;
3026 
3027 	cgroup_propagate_control(cgrp);
3028 
3029 	ret = cgroup_apply_control_enable(cgrp);
3030 	if (ret)
3031 		return ret;
3032 
3033 	/*
3034 	 * At this point, cgroup_e_css() results reflect the new csses
3035 	 * making the following cgroup_update_dfl_csses() properly update
3036 	 * css associations of all tasks in the subtree.
3037 	 */
3038 	ret = cgroup_update_dfl_csses(cgrp);
3039 	if (ret)
3040 		return ret;
3041 
3042 	return 0;
3043 }
3044 
3045 /**
3046  * cgroup_finalize_control - finalize control mask update
3047  * @cgrp: root of the target subtree
3048  * @ret: the result of the update
3049  *
3050  * Finalize control mask update.  See cgroup_apply_control() for more info.
3051  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3052 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3053 {
3054 	if (ret) {
3055 		cgroup_restore_control(cgrp);
3056 		cgroup_propagate_control(cgrp);
3057 	}
3058 
3059 	cgroup_apply_control_disable(cgrp);
3060 }
3061 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3062 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3063 {
3064 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3065 
3066 	/* if nothing is getting enabled, nothing to worry about */
3067 	if (!enable)
3068 		return 0;
3069 
3070 	/* can @cgrp host any resources? */
3071 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3072 		return -EOPNOTSUPP;
3073 
3074 	/* mixables don't care */
3075 	if (cgroup_is_mixable(cgrp))
3076 		return 0;
3077 
3078 	if (domain_enable) {
3079 		/* can't enable domain controllers inside a thread subtree */
3080 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3081 			return -EOPNOTSUPP;
3082 	} else {
3083 		/*
3084 		 * Threaded controllers can handle internal competitions
3085 		 * and are always allowed inside a (prospective) thread
3086 		 * subtree.
3087 		 */
3088 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3089 			return 0;
3090 	}
3091 
3092 	/*
3093 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3094 	 * child cgroups competing against tasks.
3095 	 */
3096 	if (cgroup_has_tasks(cgrp))
3097 		return -EBUSY;
3098 
3099 	return 0;
3100 }
3101 
3102 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3103 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3104 					    char *buf, size_t nbytes,
3105 					    loff_t off)
3106 {
3107 	u16 enable = 0, disable = 0;
3108 	struct cgroup *cgrp, *child;
3109 	struct cgroup_subsys *ss;
3110 	char *tok;
3111 	int ssid, ret;
3112 
3113 	/*
3114 	 * Parse input - space separated list of subsystem names prefixed
3115 	 * with either + or -.
3116 	 */
3117 	buf = strstrip(buf);
3118 	while ((tok = strsep(&buf, " "))) {
3119 		if (tok[0] == '\0')
3120 			continue;
3121 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3122 			if (!cgroup_ssid_enabled(ssid) ||
3123 			    strcmp(tok + 1, ss->name))
3124 				continue;
3125 
3126 			if (*tok == '+') {
3127 				enable |= 1 << ssid;
3128 				disable &= ~(1 << ssid);
3129 			} else if (*tok == '-') {
3130 				disable |= 1 << ssid;
3131 				enable &= ~(1 << ssid);
3132 			} else {
3133 				return -EINVAL;
3134 			}
3135 			break;
3136 		} while_each_subsys_mask();
3137 		if (ssid == CGROUP_SUBSYS_COUNT)
3138 			return -EINVAL;
3139 	}
3140 
3141 	cgrp = cgroup_kn_lock_live(of->kn, true);
3142 	if (!cgrp)
3143 		return -ENODEV;
3144 
3145 	for_each_subsys(ss, ssid) {
3146 		if (enable & (1 << ssid)) {
3147 			if (cgrp->subtree_control & (1 << ssid)) {
3148 				enable &= ~(1 << ssid);
3149 				continue;
3150 			}
3151 
3152 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3153 				ret = -ENOENT;
3154 				goto out_unlock;
3155 			}
3156 		} else if (disable & (1 << ssid)) {
3157 			if (!(cgrp->subtree_control & (1 << ssid))) {
3158 				disable &= ~(1 << ssid);
3159 				continue;
3160 			}
3161 
3162 			/* a child has it enabled? */
3163 			cgroup_for_each_live_child(child, cgrp) {
3164 				if (child->subtree_control & (1 << ssid)) {
3165 					ret = -EBUSY;
3166 					goto out_unlock;
3167 				}
3168 			}
3169 		}
3170 	}
3171 
3172 	if (!enable && !disable) {
3173 		ret = 0;
3174 		goto out_unlock;
3175 	}
3176 
3177 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3178 	if (ret)
3179 		goto out_unlock;
3180 
3181 	/* save and update control masks and prepare csses */
3182 	cgroup_save_control(cgrp);
3183 
3184 	cgrp->subtree_control |= enable;
3185 	cgrp->subtree_control &= ~disable;
3186 
3187 	ret = cgroup_apply_control(cgrp);
3188 	cgroup_finalize_control(cgrp, ret);
3189 	if (ret)
3190 		goto out_unlock;
3191 
3192 	kernfs_activate(cgrp->kn);
3193 out_unlock:
3194 	cgroup_kn_unlock(of->kn);
3195 	return ret ?: nbytes;
3196 }
3197 
3198 /**
3199  * cgroup_enable_threaded - make @cgrp threaded
3200  * @cgrp: the target cgroup
3201  *
3202  * Called when "threaded" is written to the cgroup.type interface file and
3203  * tries to make @cgrp threaded and join the parent's resource domain.
3204  * This function is never called on the root cgroup as cgroup.type doesn't
3205  * exist on it.
3206  */
cgroup_enable_threaded(struct cgroup * cgrp)3207 static int cgroup_enable_threaded(struct cgroup *cgrp)
3208 {
3209 	struct cgroup *parent = cgroup_parent(cgrp);
3210 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3211 	struct cgroup *dsct;
3212 	struct cgroup_subsys_state *d_css;
3213 	int ret;
3214 
3215 	lockdep_assert_held(&cgroup_mutex);
3216 
3217 	/* noop if already threaded */
3218 	if (cgroup_is_threaded(cgrp))
3219 		return 0;
3220 
3221 	/*
3222 	 * If @cgroup is populated or has domain controllers enabled, it
3223 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3224 	 * test can catch the same conditions, that's only when @parent is
3225 	 * not mixable, so let's check it explicitly.
3226 	 */
3227 	if (cgroup_is_populated(cgrp) ||
3228 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3229 		return -EOPNOTSUPP;
3230 
3231 	/* we're joining the parent's domain, ensure its validity */
3232 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3233 	    !cgroup_can_be_thread_root(dom_cgrp))
3234 		return -EOPNOTSUPP;
3235 
3236 	/*
3237 	 * The following shouldn't cause actual migrations and should
3238 	 * always succeed.
3239 	 */
3240 	cgroup_save_control(cgrp);
3241 
3242 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3243 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3244 			dsct->dom_cgrp = dom_cgrp;
3245 
3246 	ret = cgroup_apply_control(cgrp);
3247 	if (!ret)
3248 		parent->nr_threaded_children++;
3249 
3250 	cgroup_finalize_control(cgrp, ret);
3251 	return ret;
3252 }
3253 
cgroup_type_show(struct seq_file * seq,void * v)3254 static int cgroup_type_show(struct seq_file *seq, void *v)
3255 {
3256 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3257 
3258 	if (cgroup_is_threaded(cgrp))
3259 		seq_puts(seq, "threaded\n");
3260 	else if (!cgroup_is_valid_domain(cgrp))
3261 		seq_puts(seq, "domain invalid\n");
3262 	else if (cgroup_is_thread_root(cgrp))
3263 		seq_puts(seq, "domain threaded\n");
3264 	else
3265 		seq_puts(seq, "domain\n");
3266 
3267 	return 0;
3268 }
3269 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3270 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3271 				 size_t nbytes, loff_t off)
3272 {
3273 	struct cgroup *cgrp;
3274 	int ret;
3275 
3276 	/* only switching to threaded mode is supported */
3277 	if (strcmp(strstrip(buf), "threaded"))
3278 		return -EINVAL;
3279 
3280 	/* drain dying csses before we re-apply (threaded) subtree control */
3281 	cgrp = cgroup_kn_lock_live(of->kn, true);
3282 	if (!cgrp)
3283 		return -ENOENT;
3284 
3285 	/* threaded can only be enabled */
3286 	ret = cgroup_enable_threaded(cgrp);
3287 
3288 	cgroup_kn_unlock(of->kn);
3289 	return ret ?: nbytes;
3290 }
3291 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3292 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3293 {
3294 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3295 	int descendants = READ_ONCE(cgrp->max_descendants);
3296 
3297 	if (descendants == INT_MAX)
3298 		seq_puts(seq, "max\n");
3299 	else
3300 		seq_printf(seq, "%d\n", descendants);
3301 
3302 	return 0;
3303 }
3304 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3305 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3306 					   char *buf, size_t nbytes, loff_t off)
3307 {
3308 	struct cgroup *cgrp;
3309 	int descendants;
3310 	ssize_t ret;
3311 
3312 	buf = strstrip(buf);
3313 	if (!strcmp(buf, "max")) {
3314 		descendants = INT_MAX;
3315 	} else {
3316 		ret = kstrtoint(buf, 0, &descendants);
3317 		if (ret)
3318 			return ret;
3319 	}
3320 
3321 	if (descendants < 0)
3322 		return -ERANGE;
3323 
3324 	cgrp = cgroup_kn_lock_live(of->kn, false);
3325 	if (!cgrp)
3326 		return -ENOENT;
3327 
3328 	cgrp->max_descendants = descendants;
3329 
3330 	cgroup_kn_unlock(of->kn);
3331 
3332 	return nbytes;
3333 }
3334 
cgroup_max_depth_show(struct seq_file * seq,void * v)3335 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3336 {
3337 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3338 	int depth = READ_ONCE(cgrp->max_depth);
3339 
3340 	if (depth == INT_MAX)
3341 		seq_puts(seq, "max\n");
3342 	else
3343 		seq_printf(seq, "%d\n", depth);
3344 
3345 	return 0;
3346 }
3347 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3348 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3349 				      char *buf, size_t nbytes, loff_t off)
3350 {
3351 	struct cgroup *cgrp;
3352 	ssize_t ret;
3353 	int depth;
3354 
3355 	buf = strstrip(buf);
3356 	if (!strcmp(buf, "max")) {
3357 		depth = INT_MAX;
3358 	} else {
3359 		ret = kstrtoint(buf, 0, &depth);
3360 		if (ret)
3361 			return ret;
3362 	}
3363 
3364 	if (depth < 0)
3365 		return -ERANGE;
3366 
3367 	cgrp = cgroup_kn_lock_live(of->kn, false);
3368 	if (!cgrp)
3369 		return -ENOENT;
3370 
3371 	cgrp->max_depth = depth;
3372 
3373 	cgroup_kn_unlock(of->kn);
3374 
3375 	return nbytes;
3376 }
3377 
cgroup_events_show(struct seq_file * seq,void * v)3378 static int cgroup_events_show(struct seq_file *seq, void *v)
3379 {
3380 	seq_printf(seq, "populated %d\n",
3381 		   cgroup_is_populated(seq_css(seq)->cgroup));
3382 	return 0;
3383 }
3384 
cgroup_stat_show(struct seq_file * seq,void * v)3385 static int cgroup_stat_show(struct seq_file *seq, void *v)
3386 {
3387 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3388 
3389 	seq_printf(seq, "nr_descendants %d\n",
3390 		   cgroup->nr_descendants);
3391 	seq_printf(seq, "nr_dying_descendants %d\n",
3392 		   cgroup->nr_dying_descendants);
3393 
3394 	return 0;
3395 }
3396 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3397 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3398 						 struct cgroup *cgrp, int ssid)
3399 {
3400 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3401 	struct cgroup_subsys_state *css;
3402 	int ret;
3403 
3404 	if (!ss->css_extra_stat_show)
3405 		return 0;
3406 
3407 	css = cgroup_tryget_css(cgrp, ss);
3408 	if (!css)
3409 		return 0;
3410 
3411 	ret = ss->css_extra_stat_show(seq, css);
3412 	css_put(css);
3413 	return ret;
3414 }
3415 
cpu_stat_show(struct seq_file * seq,void * v)3416 static int cpu_stat_show(struct seq_file *seq, void *v)
3417 {
3418 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3419 	int ret = 0;
3420 
3421 	cgroup_base_stat_cputime_show(seq);
3422 #ifdef CONFIG_CGROUP_SCHED
3423 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3424 #endif
3425 	return ret;
3426 }
3427 
cgroup_file_open(struct kernfs_open_file * of)3428 static int cgroup_file_open(struct kernfs_open_file *of)
3429 {
3430 	struct cftype *cft = of->kn->priv;
3431 
3432 	if (cft->open)
3433 		return cft->open(of);
3434 	return 0;
3435 }
3436 
cgroup_file_release(struct kernfs_open_file * of)3437 static void cgroup_file_release(struct kernfs_open_file *of)
3438 {
3439 	struct cftype *cft = of->kn->priv;
3440 
3441 	if (cft->release)
3442 		cft->release(of);
3443 }
3444 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3445 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3446 				 size_t nbytes, loff_t off)
3447 {
3448 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3449 	struct cgroup *cgrp = of->kn->parent->priv;
3450 	struct cftype *cft = of->kn->priv;
3451 	struct cgroup_subsys_state *css;
3452 	int ret;
3453 
3454 	/*
3455 	 * If namespaces are delegation boundaries, disallow writes to
3456 	 * files in an non-init namespace root from inside the namespace
3457 	 * except for the files explicitly marked delegatable -
3458 	 * cgroup.procs and cgroup.subtree_control.
3459 	 */
3460 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3461 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3462 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3463 		return -EPERM;
3464 
3465 	if (cft->write)
3466 		return cft->write(of, buf, nbytes, off);
3467 
3468 	/*
3469 	 * kernfs guarantees that a file isn't deleted with operations in
3470 	 * flight, which means that the matching css is and stays alive and
3471 	 * doesn't need to be pinned.  The RCU locking is not necessary
3472 	 * either.  It's just for the convenience of using cgroup_css().
3473 	 */
3474 	rcu_read_lock();
3475 	css = cgroup_css(cgrp, cft->ss);
3476 	rcu_read_unlock();
3477 
3478 	if (cft->write_u64) {
3479 		unsigned long long v;
3480 		ret = kstrtoull(buf, 0, &v);
3481 		if (!ret)
3482 			ret = cft->write_u64(css, cft, v);
3483 	} else if (cft->write_s64) {
3484 		long long v;
3485 		ret = kstrtoll(buf, 0, &v);
3486 		if (!ret)
3487 			ret = cft->write_s64(css, cft, v);
3488 	} else {
3489 		ret = -EINVAL;
3490 	}
3491 
3492 	return ret ?: nbytes;
3493 }
3494 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3495 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3496 {
3497 	return seq_cft(seq)->seq_start(seq, ppos);
3498 }
3499 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3500 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3501 {
3502 	return seq_cft(seq)->seq_next(seq, v, ppos);
3503 }
3504 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3505 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3506 {
3507 	if (seq_cft(seq)->seq_stop)
3508 		seq_cft(seq)->seq_stop(seq, v);
3509 }
3510 
cgroup_seqfile_show(struct seq_file * m,void * arg)3511 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3512 {
3513 	struct cftype *cft = seq_cft(m);
3514 	struct cgroup_subsys_state *css = seq_css(m);
3515 
3516 	if (cft->seq_show)
3517 		return cft->seq_show(m, arg);
3518 
3519 	if (cft->read_u64)
3520 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3521 	else if (cft->read_s64)
3522 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3523 	else
3524 		return -EINVAL;
3525 	return 0;
3526 }
3527 
3528 static struct kernfs_ops cgroup_kf_single_ops = {
3529 	.atomic_write_len	= PAGE_SIZE,
3530 	.open			= cgroup_file_open,
3531 	.release		= cgroup_file_release,
3532 	.write			= cgroup_file_write,
3533 	.seq_show		= cgroup_seqfile_show,
3534 };
3535 
3536 static struct kernfs_ops cgroup_kf_ops = {
3537 	.atomic_write_len	= PAGE_SIZE,
3538 	.open			= cgroup_file_open,
3539 	.release		= cgroup_file_release,
3540 	.write			= cgroup_file_write,
3541 	.seq_start		= cgroup_seqfile_start,
3542 	.seq_next		= cgroup_seqfile_next,
3543 	.seq_stop		= cgroup_seqfile_stop,
3544 	.seq_show		= cgroup_seqfile_show,
3545 };
3546 
3547 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3548 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3549 {
3550 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3551 			       .ia_uid = current_fsuid(),
3552 			       .ia_gid = current_fsgid(), };
3553 
3554 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3555 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3556 		return 0;
3557 
3558 	return kernfs_setattr(kn, &iattr);
3559 }
3560 
cgroup_file_notify_timer(struct timer_list * timer)3561 static void cgroup_file_notify_timer(struct timer_list *timer)
3562 {
3563 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3564 					notify_timer));
3565 }
3566 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3567 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3568 			   struct cftype *cft)
3569 {
3570 	char name[CGROUP_FILE_NAME_MAX];
3571 	struct kernfs_node *kn;
3572 	struct lock_class_key *key = NULL;
3573 	int ret;
3574 
3575 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3576 	key = &cft->lockdep_key;
3577 #endif
3578 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3579 				  cgroup_file_mode(cft),
3580 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3581 				  0, cft->kf_ops, cft,
3582 				  NULL, key);
3583 	if (IS_ERR(kn))
3584 		return PTR_ERR(kn);
3585 
3586 	ret = cgroup_kn_set_ugid(kn);
3587 	if (ret) {
3588 		kernfs_remove(kn);
3589 		return ret;
3590 	}
3591 
3592 	if (cft->file_offset) {
3593 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3594 
3595 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3596 
3597 		spin_lock_irq(&cgroup_file_kn_lock);
3598 		cfile->kn = kn;
3599 		spin_unlock_irq(&cgroup_file_kn_lock);
3600 	}
3601 
3602 	return 0;
3603 }
3604 
3605 /**
3606  * cgroup_addrm_files - add or remove files to a cgroup directory
3607  * @css: the target css
3608  * @cgrp: the target cgroup (usually css->cgroup)
3609  * @cfts: array of cftypes to be added
3610  * @is_add: whether to add or remove
3611  *
3612  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3613  * For removals, this function never fails.
3614  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3615 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3616 			      struct cgroup *cgrp, struct cftype cfts[],
3617 			      bool is_add)
3618 {
3619 	struct cftype *cft, *cft_end = NULL;
3620 	int ret = 0;
3621 
3622 	lockdep_assert_held(&cgroup_mutex);
3623 
3624 restart:
3625 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3626 		/* does cft->flags tell us to skip this file on @cgrp? */
3627 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3628 			continue;
3629 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3630 			continue;
3631 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3632 			continue;
3633 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3634 			continue;
3635 
3636 		if (is_add) {
3637 			ret = cgroup_add_file(css, cgrp, cft);
3638 			if (ret) {
3639 				pr_warn("%s: failed to add %s, err=%d\n",
3640 					__func__, cft->name, ret);
3641 				cft_end = cft;
3642 				is_add = false;
3643 				goto restart;
3644 			}
3645 		} else {
3646 			cgroup_rm_file(cgrp, cft);
3647 		}
3648 	}
3649 	return ret;
3650 }
3651 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3652 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3653 {
3654 	struct cgroup_subsys *ss = cfts[0].ss;
3655 	struct cgroup *root = &ss->root->cgrp;
3656 	struct cgroup_subsys_state *css;
3657 	int ret = 0;
3658 
3659 	lockdep_assert_held(&cgroup_mutex);
3660 
3661 	/* add/rm files for all cgroups created before */
3662 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3663 		struct cgroup *cgrp = css->cgroup;
3664 
3665 		if (!(css->flags & CSS_VISIBLE))
3666 			continue;
3667 
3668 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3669 		if (ret)
3670 			break;
3671 	}
3672 
3673 	if (is_add && !ret)
3674 		kernfs_activate(root->kn);
3675 	return ret;
3676 }
3677 
cgroup_exit_cftypes(struct cftype * cfts)3678 static void cgroup_exit_cftypes(struct cftype *cfts)
3679 {
3680 	struct cftype *cft;
3681 
3682 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3683 		/* free copy for custom atomic_write_len, see init_cftypes() */
3684 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3685 			kfree(cft->kf_ops);
3686 		cft->kf_ops = NULL;
3687 		cft->ss = NULL;
3688 
3689 		/* revert flags set by cgroup core while adding @cfts */
3690 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3691 	}
3692 }
3693 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3694 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3695 {
3696 	struct cftype *cft;
3697 
3698 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3699 		struct kernfs_ops *kf_ops;
3700 
3701 		WARN_ON(cft->ss || cft->kf_ops);
3702 
3703 		if (cft->seq_start)
3704 			kf_ops = &cgroup_kf_ops;
3705 		else
3706 			kf_ops = &cgroup_kf_single_ops;
3707 
3708 		/*
3709 		 * Ugh... if @cft wants a custom max_write_len, we need to
3710 		 * make a copy of kf_ops to set its atomic_write_len.
3711 		 */
3712 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3713 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3714 			if (!kf_ops) {
3715 				cgroup_exit_cftypes(cfts);
3716 				return -ENOMEM;
3717 			}
3718 			kf_ops->atomic_write_len = cft->max_write_len;
3719 		}
3720 
3721 		cft->kf_ops = kf_ops;
3722 		cft->ss = ss;
3723 	}
3724 
3725 	return 0;
3726 }
3727 
cgroup_rm_cftypes_locked(struct cftype * cfts)3728 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3729 {
3730 	lockdep_assert_held(&cgroup_mutex);
3731 
3732 	if (!cfts || !cfts[0].ss)
3733 		return -ENOENT;
3734 
3735 	list_del(&cfts->node);
3736 	cgroup_apply_cftypes(cfts, false);
3737 	cgroup_exit_cftypes(cfts);
3738 	return 0;
3739 }
3740 
3741 /**
3742  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3743  * @cfts: zero-length name terminated array of cftypes
3744  *
3745  * Unregister @cfts.  Files described by @cfts are removed from all
3746  * existing cgroups and all future cgroups won't have them either.  This
3747  * function can be called anytime whether @cfts' subsys is attached or not.
3748  *
3749  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3750  * registered.
3751  */
cgroup_rm_cftypes(struct cftype * cfts)3752 int cgroup_rm_cftypes(struct cftype *cfts)
3753 {
3754 	int ret;
3755 
3756 	mutex_lock(&cgroup_mutex);
3757 	ret = cgroup_rm_cftypes_locked(cfts);
3758 	mutex_unlock(&cgroup_mutex);
3759 	return ret;
3760 }
3761 
3762 /**
3763  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3764  * @ss: target cgroup subsystem
3765  * @cfts: zero-length name terminated array of cftypes
3766  *
3767  * Register @cfts to @ss.  Files described by @cfts are created for all
3768  * existing cgroups to which @ss is attached and all future cgroups will
3769  * have them too.  This function can be called anytime whether @ss is
3770  * attached or not.
3771  *
3772  * Returns 0 on successful registration, -errno on failure.  Note that this
3773  * function currently returns 0 as long as @cfts registration is successful
3774  * even if some file creation attempts on existing cgroups fail.
3775  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3776 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3777 {
3778 	int ret;
3779 
3780 	if (!cgroup_ssid_enabled(ss->id))
3781 		return 0;
3782 
3783 	if (!cfts || cfts[0].name[0] == '\0')
3784 		return 0;
3785 
3786 	ret = cgroup_init_cftypes(ss, cfts);
3787 	if (ret)
3788 		return ret;
3789 
3790 	mutex_lock(&cgroup_mutex);
3791 
3792 	list_add_tail(&cfts->node, &ss->cfts);
3793 	ret = cgroup_apply_cftypes(cfts, true);
3794 	if (ret)
3795 		cgroup_rm_cftypes_locked(cfts);
3796 
3797 	mutex_unlock(&cgroup_mutex);
3798 	return ret;
3799 }
3800 
3801 /**
3802  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3803  * @ss: target cgroup subsystem
3804  * @cfts: zero-length name terminated array of cftypes
3805  *
3806  * Similar to cgroup_add_cftypes() but the added files are only used for
3807  * the default hierarchy.
3808  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3809 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3810 {
3811 	struct cftype *cft;
3812 
3813 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3814 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3815 	return cgroup_add_cftypes(ss, cfts);
3816 }
3817 
3818 /**
3819  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3820  * @ss: target cgroup subsystem
3821  * @cfts: zero-length name terminated array of cftypes
3822  *
3823  * Similar to cgroup_add_cftypes() but the added files are only used for
3824  * the legacy hierarchies.
3825  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3826 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3827 {
3828 	struct cftype *cft;
3829 
3830 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3831 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3832 	return cgroup_add_cftypes(ss, cfts);
3833 }
3834 
3835 /**
3836  * cgroup_file_notify - generate a file modified event for a cgroup_file
3837  * @cfile: target cgroup_file
3838  *
3839  * @cfile must have been obtained by setting cftype->file_offset.
3840  */
cgroup_file_notify(struct cgroup_file * cfile)3841 void cgroup_file_notify(struct cgroup_file *cfile)
3842 {
3843 	unsigned long flags;
3844 
3845 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3846 	if (cfile->kn) {
3847 		unsigned long last = cfile->notified_at;
3848 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3849 
3850 		if (time_in_range(jiffies, last, next)) {
3851 			timer_reduce(&cfile->notify_timer, next);
3852 		} else {
3853 			kernfs_notify(cfile->kn);
3854 			cfile->notified_at = jiffies;
3855 		}
3856 	}
3857 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3858 }
3859 
3860 /**
3861  * css_next_child - find the next child of a given css
3862  * @pos: the current position (%NULL to initiate traversal)
3863  * @parent: css whose children to walk
3864  *
3865  * This function returns the next child of @parent and should be called
3866  * under either cgroup_mutex or RCU read lock.  The only requirement is
3867  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3868  * be returned regardless of their states.
3869  *
3870  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3871  * css which finished ->css_online() is guaranteed to be visible in the
3872  * future iterations and will stay visible until the last reference is put.
3873  * A css which hasn't finished ->css_online() or already finished
3874  * ->css_offline() may show up during traversal.  It's each subsystem's
3875  * responsibility to synchronize against on/offlining.
3876  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)3877 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3878 					   struct cgroup_subsys_state *parent)
3879 {
3880 	struct cgroup_subsys_state *next;
3881 
3882 	cgroup_assert_mutex_or_rcu_locked();
3883 
3884 	/*
3885 	 * @pos could already have been unlinked from the sibling list.
3886 	 * Once a cgroup is removed, its ->sibling.next is no longer
3887 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3888 	 * @pos is taken off list, at which time its next pointer is valid,
3889 	 * and, as releases are serialized, the one pointed to by the next
3890 	 * pointer is guaranteed to not have started release yet.  This
3891 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3892 	 * critical section, the one pointed to by its next pointer is
3893 	 * guaranteed to not have finished its RCU grace period even if we
3894 	 * have dropped rcu_read_lock() inbetween iterations.
3895 	 *
3896 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3897 	 * dereferenced; however, as each css is given a monotonically
3898 	 * increasing unique serial number and always appended to the
3899 	 * sibling list, the next one can be found by walking the parent's
3900 	 * children until the first css with higher serial number than
3901 	 * @pos's.  While this path can be slower, it happens iff iteration
3902 	 * races against release and the race window is very small.
3903 	 */
3904 	if (!pos) {
3905 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3906 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3907 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3908 	} else {
3909 		list_for_each_entry_rcu(next, &parent->children, sibling)
3910 			if (next->serial_nr > pos->serial_nr)
3911 				break;
3912 	}
3913 
3914 	/*
3915 	 * @next, if not pointing to the head, can be dereferenced and is
3916 	 * the next sibling.
3917 	 */
3918 	if (&next->sibling != &parent->children)
3919 		return next;
3920 	return NULL;
3921 }
3922 
3923 /**
3924  * css_next_descendant_pre - find the next descendant for pre-order walk
3925  * @pos: the current position (%NULL to initiate traversal)
3926  * @root: css whose descendants to walk
3927  *
3928  * To be used by css_for_each_descendant_pre().  Find the next descendant
3929  * to visit for pre-order traversal of @root's descendants.  @root is
3930  * included in the iteration and the first node to be visited.
3931  *
3932  * While this function requires cgroup_mutex or RCU read locking, it
3933  * doesn't require the whole traversal to be contained in a single critical
3934  * section.  This function will return the correct next descendant as long
3935  * as both @pos and @root are accessible and @pos is a descendant of @root.
3936  *
3937  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3938  * css which finished ->css_online() is guaranteed to be visible in the
3939  * future iterations and will stay visible until the last reference is put.
3940  * A css which hasn't finished ->css_online() or already finished
3941  * ->css_offline() may show up during traversal.  It's each subsystem's
3942  * responsibility to synchronize against on/offlining.
3943  */
3944 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3945 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3946 			struct cgroup_subsys_state *root)
3947 {
3948 	struct cgroup_subsys_state *next;
3949 
3950 	cgroup_assert_mutex_or_rcu_locked();
3951 
3952 	/* if first iteration, visit @root */
3953 	if (!pos)
3954 		return root;
3955 
3956 	/* visit the first child if exists */
3957 	next = css_next_child(NULL, pos);
3958 	if (next)
3959 		return next;
3960 
3961 	/* no child, visit my or the closest ancestor's next sibling */
3962 	while (pos != root) {
3963 		next = css_next_child(pos, pos->parent);
3964 		if (next)
3965 			return next;
3966 		pos = pos->parent;
3967 	}
3968 
3969 	return NULL;
3970 }
3971 
3972 /**
3973  * css_rightmost_descendant - return the rightmost descendant of a css
3974  * @pos: css of interest
3975  *
3976  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3977  * is returned.  This can be used during pre-order traversal to skip
3978  * subtree of @pos.
3979  *
3980  * While this function requires cgroup_mutex or RCU read locking, it
3981  * doesn't require the whole traversal to be contained in a single critical
3982  * section.  This function will return the correct rightmost descendant as
3983  * long as @pos is accessible.
3984  */
3985 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)3986 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3987 {
3988 	struct cgroup_subsys_state *last, *tmp;
3989 
3990 	cgroup_assert_mutex_or_rcu_locked();
3991 
3992 	do {
3993 		last = pos;
3994 		/* ->prev isn't RCU safe, walk ->next till the end */
3995 		pos = NULL;
3996 		css_for_each_child(tmp, last)
3997 			pos = tmp;
3998 	} while (pos);
3999 
4000 	return last;
4001 }
4002 
4003 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4004 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4005 {
4006 	struct cgroup_subsys_state *last;
4007 
4008 	do {
4009 		last = pos;
4010 		pos = css_next_child(NULL, pos);
4011 	} while (pos);
4012 
4013 	return last;
4014 }
4015 
4016 /**
4017  * css_next_descendant_post - find the next descendant for post-order walk
4018  * @pos: the current position (%NULL to initiate traversal)
4019  * @root: css whose descendants to walk
4020  *
4021  * To be used by css_for_each_descendant_post().  Find the next descendant
4022  * to visit for post-order traversal of @root's descendants.  @root is
4023  * included in the iteration and the last node to be visited.
4024  *
4025  * While this function requires cgroup_mutex or RCU read locking, it
4026  * doesn't require the whole traversal to be contained in a single critical
4027  * section.  This function will return the correct next descendant as long
4028  * as both @pos and @cgroup are accessible and @pos is a descendant of
4029  * @cgroup.
4030  *
4031  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4032  * css which finished ->css_online() is guaranteed to be visible in the
4033  * future iterations and will stay visible until the last reference is put.
4034  * A css which hasn't finished ->css_online() or already finished
4035  * ->css_offline() may show up during traversal.  It's each subsystem's
4036  * responsibility to synchronize against on/offlining.
4037  */
4038 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4039 css_next_descendant_post(struct cgroup_subsys_state *pos,
4040 			 struct cgroup_subsys_state *root)
4041 {
4042 	struct cgroup_subsys_state *next;
4043 
4044 	cgroup_assert_mutex_or_rcu_locked();
4045 
4046 	/* if first iteration, visit leftmost descendant which may be @root */
4047 	if (!pos)
4048 		return css_leftmost_descendant(root);
4049 
4050 	/* if we visited @root, we're done */
4051 	if (pos == root)
4052 		return NULL;
4053 
4054 	/* if there's an unvisited sibling, visit its leftmost descendant */
4055 	next = css_next_child(pos, pos->parent);
4056 	if (next)
4057 		return css_leftmost_descendant(next);
4058 
4059 	/* no sibling left, visit parent */
4060 	return pos->parent;
4061 }
4062 
4063 /**
4064  * css_has_online_children - does a css have online children
4065  * @css: the target css
4066  *
4067  * Returns %true if @css has any online children; otherwise, %false.  This
4068  * function can be called from any context but the caller is responsible
4069  * for synchronizing against on/offlining as necessary.
4070  */
css_has_online_children(struct cgroup_subsys_state * css)4071 bool css_has_online_children(struct cgroup_subsys_state *css)
4072 {
4073 	struct cgroup_subsys_state *child;
4074 	bool ret = false;
4075 
4076 	rcu_read_lock();
4077 	css_for_each_child(child, css) {
4078 		if (child->flags & CSS_ONLINE) {
4079 			ret = true;
4080 			break;
4081 		}
4082 	}
4083 	rcu_read_unlock();
4084 	return ret;
4085 }
4086 
css_task_iter_next_css_set(struct css_task_iter * it)4087 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4088 {
4089 	struct list_head *l;
4090 	struct cgrp_cset_link *link;
4091 	struct css_set *cset;
4092 
4093 	lockdep_assert_held(&css_set_lock);
4094 
4095 	/* find the next threaded cset */
4096 	if (it->tcset_pos) {
4097 		l = it->tcset_pos->next;
4098 
4099 		if (l != it->tcset_head) {
4100 			it->tcset_pos = l;
4101 			return container_of(l, struct css_set,
4102 					    threaded_csets_node);
4103 		}
4104 
4105 		it->tcset_pos = NULL;
4106 	}
4107 
4108 	/* find the next cset */
4109 	l = it->cset_pos;
4110 	l = l->next;
4111 	if (l == it->cset_head) {
4112 		it->cset_pos = NULL;
4113 		return NULL;
4114 	}
4115 
4116 	if (it->ss) {
4117 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4118 	} else {
4119 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4120 		cset = link->cset;
4121 	}
4122 
4123 	it->cset_pos = l;
4124 
4125 	/* initialize threaded css_set walking */
4126 	if (it->flags & CSS_TASK_ITER_THREADED) {
4127 		if (it->cur_dcset)
4128 			put_css_set_locked(it->cur_dcset);
4129 		it->cur_dcset = cset;
4130 		get_css_set(cset);
4131 
4132 		it->tcset_head = &cset->threaded_csets;
4133 		it->tcset_pos = &cset->threaded_csets;
4134 	}
4135 
4136 	return cset;
4137 }
4138 
4139 /**
4140  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4141  * @it: the iterator to advance
4142  *
4143  * Advance @it to the next css_set to walk.
4144  */
css_task_iter_advance_css_set(struct css_task_iter * it)4145 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4146 {
4147 	struct css_set *cset;
4148 
4149 	lockdep_assert_held(&css_set_lock);
4150 
4151 	/* Advance to the next non-empty css_set */
4152 	do {
4153 		cset = css_task_iter_next_css_set(it);
4154 		if (!cset) {
4155 			it->task_pos = NULL;
4156 			return;
4157 		}
4158 	} while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4159 
4160 	if (!list_empty(&cset->tasks)) {
4161 		it->task_pos = cset->tasks.next;
4162 		it->cur_tasks_head = &cset->tasks;
4163 	} else if (!list_empty(&cset->mg_tasks)) {
4164 		it->task_pos = cset->mg_tasks.next;
4165 		it->cur_tasks_head = &cset->mg_tasks;
4166 	} else {
4167 		it->task_pos = cset->dying_tasks.next;
4168 		it->cur_tasks_head = &cset->dying_tasks;
4169 	}
4170 
4171 	it->tasks_head = &cset->tasks;
4172 	it->mg_tasks_head = &cset->mg_tasks;
4173 	it->dying_tasks_head = &cset->dying_tasks;
4174 
4175 	/*
4176 	 * We don't keep css_sets locked across iteration steps and thus
4177 	 * need to take steps to ensure that iteration can be resumed after
4178 	 * the lock is re-acquired.  Iteration is performed at two levels -
4179 	 * css_sets and tasks in them.
4180 	 *
4181 	 * Once created, a css_set never leaves its cgroup lists, so a
4182 	 * pinned css_set is guaranteed to stay put and we can resume
4183 	 * iteration afterwards.
4184 	 *
4185 	 * Tasks may leave @cset across iteration steps.  This is resolved
4186 	 * by registering each iterator with the css_set currently being
4187 	 * walked and making css_set_move_task() advance iterators whose
4188 	 * next task is leaving.
4189 	 */
4190 	if (it->cur_cset) {
4191 		list_del(&it->iters_node);
4192 		put_css_set_locked(it->cur_cset);
4193 	}
4194 	get_css_set(cset);
4195 	it->cur_cset = cset;
4196 	list_add(&it->iters_node, &cset->task_iters);
4197 }
4198 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4199 static void css_task_iter_skip(struct css_task_iter *it,
4200 			       struct task_struct *task)
4201 {
4202 	lockdep_assert_held(&css_set_lock);
4203 
4204 	if (it->task_pos == &task->cg_list) {
4205 		it->task_pos = it->task_pos->next;
4206 		it->flags |= CSS_TASK_ITER_SKIPPED;
4207 	}
4208 }
4209 
css_task_iter_advance(struct css_task_iter * it)4210 static void css_task_iter_advance(struct css_task_iter *it)
4211 {
4212 	struct task_struct *task;
4213 
4214 	lockdep_assert_held(&css_set_lock);
4215 repeat:
4216 	if (it->task_pos) {
4217 		/*
4218 		 * Advance iterator to find next entry.  cset->tasks is
4219 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4220 		 * we move onto the next cset.
4221 		 */
4222 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4223 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4224 		else
4225 			it->task_pos = it->task_pos->next;
4226 
4227 		if (it->task_pos == it->tasks_head) {
4228 			it->task_pos = it->mg_tasks_head->next;
4229 			it->cur_tasks_head = it->mg_tasks_head;
4230 		}
4231 		if (it->task_pos == it->mg_tasks_head) {
4232 			it->task_pos = it->dying_tasks_head->next;
4233 			it->cur_tasks_head = it->dying_tasks_head;
4234 		}
4235 		if (it->task_pos == it->dying_tasks_head)
4236 			css_task_iter_advance_css_set(it);
4237 	} else {
4238 		/* called from start, proceed to the first cset */
4239 		css_task_iter_advance_css_set(it);
4240 	}
4241 
4242 	if (!it->task_pos)
4243 		return;
4244 
4245 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4246 
4247 	if (it->flags & CSS_TASK_ITER_PROCS) {
4248 		/* if PROCS, skip over tasks which aren't group leaders */
4249 		if (!thread_group_leader(task))
4250 			goto repeat;
4251 
4252 		/* and dying leaders w/o live member threads */
4253 		if (it->cur_tasks_head == it->dying_tasks_head &&
4254 		    !atomic_read(&task->signal->live))
4255 			goto repeat;
4256 	} else {
4257 		/* skip all dying ones */
4258 		if (it->cur_tasks_head == it->dying_tasks_head)
4259 			goto repeat;
4260 	}
4261 }
4262 
4263 /**
4264  * css_task_iter_start - initiate task iteration
4265  * @css: the css to walk tasks of
4266  * @flags: CSS_TASK_ITER_* flags
4267  * @it: the task iterator to use
4268  *
4269  * Initiate iteration through the tasks of @css.  The caller can call
4270  * css_task_iter_next() to walk through the tasks until the function
4271  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4272  * called.
4273  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4274 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4275 			 struct css_task_iter *it)
4276 {
4277 	/* no one should try to iterate before mounting cgroups */
4278 	WARN_ON_ONCE(!use_task_css_set_links);
4279 
4280 	memset(it, 0, sizeof(*it));
4281 
4282 	spin_lock_irq(&css_set_lock);
4283 
4284 	it->ss = css->ss;
4285 	it->flags = flags;
4286 
4287 	if (it->ss)
4288 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4289 	else
4290 		it->cset_pos = &css->cgroup->cset_links;
4291 
4292 	it->cset_head = it->cset_pos;
4293 
4294 	css_task_iter_advance(it);
4295 
4296 	spin_unlock_irq(&css_set_lock);
4297 }
4298 
4299 /**
4300  * css_task_iter_next - return the next task for the iterator
4301  * @it: the task iterator being iterated
4302  *
4303  * The "next" function for task iteration.  @it should have been
4304  * initialized via css_task_iter_start().  Returns NULL when the iteration
4305  * reaches the end.
4306  */
css_task_iter_next(struct css_task_iter * it)4307 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4308 {
4309 	if (it->cur_task) {
4310 		put_task_struct(it->cur_task);
4311 		it->cur_task = NULL;
4312 	}
4313 
4314 	spin_lock_irq(&css_set_lock);
4315 
4316 	/* @it may be half-advanced by skips, finish advancing */
4317 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4318 		css_task_iter_advance(it);
4319 
4320 	if (it->task_pos) {
4321 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4322 					  cg_list);
4323 		get_task_struct(it->cur_task);
4324 		css_task_iter_advance(it);
4325 	}
4326 
4327 	spin_unlock_irq(&css_set_lock);
4328 
4329 	return it->cur_task;
4330 }
4331 
4332 /**
4333  * css_task_iter_end - finish task iteration
4334  * @it: the task iterator to finish
4335  *
4336  * Finish task iteration started by css_task_iter_start().
4337  */
css_task_iter_end(struct css_task_iter * it)4338 void css_task_iter_end(struct css_task_iter *it)
4339 {
4340 	if (it->cur_cset) {
4341 		spin_lock_irq(&css_set_lock);
4342 		list_del(&it->iters_node);
4343 		put_css_set_locked(it->cur_cset);
4344 		spin_unlock_irq(&css_set_lock);
4345 	}
4346 
4347 	if (it->cur_dcset)
4348 		put_css_set(it->cur_dcset);
4349 
4350 	if (it->cur_task)
4351 		put_task_struct(it->cur_task);
4352 }
4353 
cgroup_procs_release(struct kernfs_open_file * of)4354 static void cgroup_procs_release(struct kernfs_open_file *of)
4355 {
4356 	if (of->priv) {
4357 		css_task_iter_end(of->priv);
4358 		kfree(of->priv);
4359 	}
4360 }
4361 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4362 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4363 {
4364 	struct kernfs_open_file *of = s->private;
4365 	struct css_task_iter *it = of->priv;
4366 
4367 	if (pos)
4368 		(*pos)++;
4369 
4370 	return css_task_iter_next(it);
4371 }
4372 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4373 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4374 				  unsigned int iter_flags)
4375 {
4376 	struct kernfs_open_file *of = s->private;
4377 	struct cgroup *cgrp = seq_css(s)->cgroup;
4378 	struct css_task_iter *it = of->priv;
4379 
4380 	/*
4381 	 * When a seq_file is seeked, it's always traversed sequentially
4382 	 * from position 0, so we can simply keep iterating on !0 *pos.
4383 	 */
4384 	if (!it) {
4385 		if (WARN_ON_ONCE((*pos)))
4386 			return ERR_PTR(-EINVAL);
4387 
4388 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4389 		if (!it)
4390 			return ERR_PTR(-ENOMEM);
4391 		of->priv = it;
4392 		css_task_iter_start(&cgrp->self, iter_flags, it);
4393 	} else if (!(*pos)) {
4394 		css_task_iter_end(it);
4395 		css_task_iter_start(&cgrp->self, iter_flags, it);
4396 	} else
4397 		return it->cur_task;
4398 
4399 	return cgroup_procs_next(s, NULL, NULL);
4400 }
4401 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4402 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4403 {
4404 	struct cgroup *cgrp = seq_css(s)->cgroup;
4405 
4406 	/*
4407 	 * All processes of a threaded subtree belong to the domain cgroup
4408 	 * of the subtree.  Only threads can be distributed across the
4409 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4410 	 * They're always empty anyway.
4411 	 */
4412 	if (cgroup_is_threaded(cgrp))
4413 		return ERR_PTR(-EOPNOTSUPP);
4414 
4415 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4416 					    CSS_TASK_ITER_THREADED);
4417 }
4418 
cgroup_procs_show(struct seq_file * s,void * v)4419 static int cgroup_procs_show(struct seq_file *s, void *v)
4420 {
4421 	seq_printf(s, "%d\n", task_pid_vnr(v));
4422 	return 0;
4423 }
4424 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb)4425 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4426 					 struct cgroup *dst_cgrp,
4427 					 struct super_block *sb)
4428 {
4429 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4430 	struct cgroup *com_cgrp = src_cgrp;
4431 	struct inode *inode;
4432 	int ret;
4433 
4434 	lockdep_assert_held(&cgroup_mutex);
4435 
4436 	/* find the common ancestor */
4437 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4438 		com_cgrp = cgroup_parent(com_cgrp);
4439 
4440 	/* %current should be authorized to migrate to the common ancestor */
4441 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4442 	if (!inode)
4443 		return -ENOMEM;
4444 
4445 	ret = inode_permission(inode, MAY_WRITE);
4446 	iput(inode);
4447 	if (ret)
4448 		return ret;
4449 
4450 	/*
4451 	 * If namespaces are delegation boundaries, %current must be able
4452 	 * to see both source and destination cgroups from its namespace.
4453 	 */
4454 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4455 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4456 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4457 		return -ENOENT;
4458 
4459 	return 0;
4460 }
4461 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4462 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4463 				  char *buf, size_t nbytes, loff_t off)
4464 {
4465 	struct cgroup *src_cgrp, *dst_cgrp;
4466 	struct task_struct *task;
4467 	ssize_t ret;
4468 
4469 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4470 	if (!dst_cgrp)
4471 		return -ENODEV;
4472 
4473 	task = cgroup_procs_write_start(buf, true);
4474 	ret = PTR_ERR_OR_ZERO(task);
4475 	if (ret)
4476 		goto out_unlock;
4477 
4478 	/* find the source cgroup */
4479 	spin_lock_irq(&css_set_lock);
4480 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4481 	spin_unlock_irq(&css_set_lock);
4482 
4483 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4484 					    of->file->f_path.dentry->d_sb);
4485 	if (ret)
4486 		goto out_finish;
4487 
4488 	ret = cgroup_attach_task(dst_cgrp, task, true);
4489 
4490 out_finish:
4491 	cgroup_procs_write_finish(task);
4492 out_unlock:
4493 	cgroup_kn_unlock(of->kn);
4494 
4495 	return ret ?: nbytes;
4496 }
4497 
cgroup_threads_start(struct seq_file * s,loff_t * pos)4498 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4499 {
4500 	return __cgroup_procs_start(s, pos, 0);
4501 }
4502 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4503 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4504 				    char *buf, size_t nbytes, loff_t off)
4505 {
4506 	struct cgroup *src_cgrp, *dst_cgrp;
4507 	struct task_struct *task;
4508 	ssize_t ret;
4509 
4510 	buf = strstrip(buf);
4511 
4512 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4513 	if (!dst_cgrp)
4514 		return -ENODEV;
4515 
4516 	task = cgroup_procs_write_start(buf, false);
4517 	ret = PTR_ERR_OR_ZERO(task);
4518 	if (ret)
4519 		goto out_unlock;
4520 
4521 	/* find the source cgroup */
4522 	spin_lock_irq(&css_set_lock);
4523 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4524 	spin_unlock_irq(&css_set_lock);
4525 
4526 	/* thread migrations follow the cgroup.procs delegation rule */
4527 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4528 					    of->file->f_path.dentry->d_sb);
4529 	if (ret)
4530 		goto out_finish;
4531 
4532 	/* and must be contained in the same domain */
4533 	ret = -EOPNOTSUPP;
4534 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4535 		goto out_finish;
4536 
4537 	ret = cgroup_attach_task(dst_cgrp, task, false);
4538 
4539 out_finish:
4540 	cgroup_procs_write_finish(task);
4541 out_unlock:
4542 	cgroup_kn_unlock(of->kn);
4543 
4544 	return ret ?: nbytes;
4545 }
4546 
4547 /* cgroup core interface files for the default hierarchy */
4548 static struct cftype cgroup_base_files[] = {
4549 	{
4550 		.name = "cgroup.type",
4551 		.flags = CFTYPE_NOT_ON_ROOT,
4552 		.seq_show = cgroup_type_show,
4553 		.write = cgroup_type_write,
4554 	},
4555 	{
4556 		.name = "cgroup.procs",
4557 		.flags = CFTYPE_NS_DELEGATABLE,
4558 		.file_offset = offsetof(struct cgroup, procs_file),
4559 		.release = cgroup_procs_release,
4560 		.seq_start = cgroup_procs_start,
4561 		.seq_next = cgroup_procs_next,
4562 		.seq_show = cgroup_procs_show,
4563 		.write = cgroup_procs_write,
4564 	},
4565 	{
4566 		.name = "cgroup.threads",
4567 		.flags = CFTYPE_NS_DELEGATABLE,
4568 		.release = cgroup_procs_release,
4569 		.seq_start = cgroup_threads_start,
4570 		.seq_next = cgroup_procs_next,
4571 		.seq_show = cgroup_procs_show,
4572 		.write = cgroup_threads_write,
4573 	},
4574 	{
4575 		.name = "cgroup.controllers",
4576 		.seq_show = cgroup_controllers_show,
4577 	},
4578 	{
4579 		.name = "cgroup.subtree_control",
4580 		.flags = CFTYPE_NS_DELEGATABLE,
4581 		.seq_show = cgroup_subtree_control_show,
4582 		.write = cgroup_subtree_control_write,
4583 	},
4584 	{
4585 		.name = "cgroup.events",
4586 		.flags = CFTYPE_NOT_ON_ROOT,
4587 		.file_offset = offsetof(struct cgroup, events_file),
4588 		.seq_show = cgroup_events_show,
4589 	},
4590 	{
4591 		.name = "cgroup.max.descendants",
4592 		.seq_show = cgroup_max_descendants_show,
4593 		.write = cgroup_max_descendants_write,
4594 	},
4595 	{
4596 		.name = "cgroup.max.depth",
4597 		.seq_show = cgroup_max_depth_show,
4598 		.write = cgroup_max_depth_write,
4599 	},
4600 	{
4601 		.name = "cgroup.stat",
4602 		.seq_show = cgroup_stat_show,
4603 	},
4604 	{
4605 		.name = "cpu.stat",
4606 		.flags = CFTYPE_NOT_ON_ROOT,
4607 		.seq_show = cpu_stat_show,
4608 	},
4609 	{ }	/* terminate */
4610 };
4611 
4612 /*
4613  * css destruction is four-stage process.
4614  *
4615  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4616  *    Implemented in kill_css().
4617  *
4618  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4619  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4620  *    offlined by invoking offline_css().  After offlining, the base ref is
4621  *    put.  Implemented in css_killed_work_fn().
4622  *
4623  * 3. When the percpu_ref reaches zero, the only possible remaining
4624  *    accessors are inside RCU read sections.  css_release() schedules the
4625  *    RCU callback.
4626  *
4627  * 4. After the grace period, the css can be freed.  Implemented in
4628  *    css_free_work_fn().
4629  *
4630  * It is actually hairier because both step 2 and 4 require process context
4631  * and thus involve punting to css->destroy_work adding two additional
4632  * steps to the already complex sequence.
4633  */
css_free_rwork_fn(struct work_struct * work)4634 static void css_free_rwork_fn(struct work_struct *work)
4635 {
4636 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4637 				struct cgroup_subsys_state, destroy_rwork);
4638 	struct cgroup_subsys *ss = css->ss;
4639 	struct cgroup *cgrp = css->cgroup;
4640 
4641 	percpu_ref_exit(&css->refcnt);
4642 
4643 	if (ss) {
4644 		/* css free path */
4645 		struct cgroup_subsys_state *parent = css->parent;
4646 		int id = css->id;
4647 
4648 		ss->css_free(css);
4649 		cgroup_idr_remove(&ss->css_idr, id);
4650 		cgroup_put(cgrp);
4651 
4652 		if (parent)
4653 			css_put(parent);
4654 	} else {
4655 		/* cgroup free path */
4656 		atomic_dec(&cgrp->root->nr_cgrps);
4657 		cgroup1_pidlist_destroy_all(cgrp);
4658 		cancel_work_sync(&cgrp->release_agent_work);
4659 
4660 		if (cgroup_parent(cgrp)) {
4661 			/*
4662 			 * We get a ref to the parent, and put the ref when
4663 			 * this cgroup is being freed, so it's guaranteed
4664 			 * that the parent won't be destroyed before its
4665 			 * children.
4666 			 */
4667 			cgroup_put(cgroup_parent(cgrp));
4668 			kernfs_put(cgrp->kn);
4669 			if (cgroup_on_dfl(cgrp))
4670 				cgroup_rstat_exit(cgrp);
4671 			kfree(cgrp);
4672 		} else {
4673 			/*
4674 			 * This is root cgroup's refcnt reaching zero,
4675 			 * which indicates that the root should be
4676 			 * released.
4677 			 */
4678 			cgroup_destroy_root(cgrp->root);
4679 		}
4680 	}
4681 }
4682 
css_release_work_fn(struct work_struct * work)4683 static void css_release_work_fn(struct work_struct *work)
4684 {
4685 	struct cgroup_subsys_state *css =
4686 		container_of(work, struct cgroup_subsys_state, destroy_work);
4687 	struct cgroup_subsys *ss = css->ss;
4688 	struct cgroup *cgrp = css->cgroup;
4689 
4690 	mutex_lock(&cgroup_mutex);
4691 
4692 	css->flags |= CSS_RELEASED;
4693 	list_del_rcu(&css->sibling);
4694 
4695 	if (ss) {
4696 		/* css release path */
4697 		if (!list_empty(&css->rstat_css_node)) {
4698 			cgroup_rstat_flush(cgrp);
4699 			list_del_rcu(&css->rstat_css_node);
4700 		}
4701 
4702 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4703 		if (ss->css_released)
4704 			ss->css_released(css);
4705 	} else {
4706 		struct cgroup *tcgrp;
4707 
4708 		/* cgroup release path */
4709 		TRACE_CGROUP_PATH(release, cgrp);
4710 
4711 		if (cgroup_on_dfl(cgrp))
4712 			cgroup_rstat_flush(cgrp);
4713 
4714 		spin_lock_irq(&css_set_lock);
4715 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4716 		     tcgrp = cgroup_parent(tcgrp))
4717 			tcgrp->nr_dying_descendants--;
4718 		spin_unlock_irq(&css_set_lock);
4719 
4720 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4721 		cgrp->id = -1;
4722 
4723 		/*
4724 		 * There are two control paths which try to determine
4725 		 * cgroup from dentry without going through kernfs -
4726 		 * cgroupstats_build() and css_tryget_online_from_dir().
4727 		 * Those are supported by RCU protecting clearing of
4728 		 * cgrp->kn->priv backpointer.
4729 		 */
4730 		if (cgrp->kn)
4731 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4732 					 NULL);
4733 
4734 		cgroup_bpf_put(cgrp);
4735 	}
4736 
4737 	mutex_unlock(&cgroup_mutex);
4738 
4739 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4740 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4741 }
4742 
css_release(struct percpu_ref * ref)4743 static void css_release(struct percpu_ref *ref)
4744 {
4745 	struct cgroup_subsys_state *css =
4746 		container_of(ref, struct cgroup_subsys_state, refcnt);
4747 
4748 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4749 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4750 }
4751 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)4752 static void init_and_link_css(struct cgroup_subsys_state *css,
4753 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4754 {
4755 	lockdep_assert_held(&cgroup_mutex);
4756 
4757 	cgroup_get_live(cgrp);
4758 
4759 	memset(css, 0, sizeof(*css));
4760 	css->cgroup = cgrp;
4761 	css->ss = ss;
4762 	css->id = -1;
4763 	INIT_LIST_HEAD(&css->sibling);
4764 	INIT_LIST_HEAD(&css->children);
4765 	INIT_LIST_HEAD(&css->rstat_css_node);
4766 	css->serial_nr = css_serial_nr_next++;
4767 	atomic_set(&css->online_cnt, 0);
4768 
4769 	if (cgroup_parent(cgrp)) {
4770 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4771 		css_get(css->parent);
4772 	}
4773 
4774 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4775 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4776 
4777 	BUG_ON(cgroup_css(cgrp, ss));
4778 }
4779 
4780 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)4781 static int online_css(struct cgroup_subsys_state *css)
4782 {
4783 	struct cgroup_subsys *ss = css->ss;
4784 	int ret = 0;
4785 
4786 	lockdep_assert_held(&cgroup_mutex);
4787 
4788 	if (ss->css_online)
4789 		ret = ss->css_online(css);
4790 	if (!ret) {
4791 		css->flags |= CSS_ONLINE;
4792 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4793 
4794 		atomic_inc(&css->online_cnt);
4795 		if (css->parent)
4796 			atomic_inc(&css->parent->online_cnt);
4797 	}
4798 	return ret;
4799 }
4800 
4801 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)4802 static void offline_css(struct cgroup_subsys_state *css)
4803 {
4804 	struct cgroup_subsys *ss = css->ss;
4805 
4806 	lockdep_assert_held(&cgroup_mutex);
4807 
4808 	if (!(css->flags & CSS_ONLINE))
4809 		return;
4810 
4811 	if (ss->css_offline)
4812 		ss->css_offline(css);
4813 
4814 	css->flags &= ~CSS_ONLINE;
4815 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4816 
4817 	wake_up_all(&css->cgroup->offline_waitq);
4818 }
4819 
4820 /**
4821  * css_create - create a cgroup_subsys_state
4822  * @cgrp: the cgroup new css will be associated with
4823  * @ss: the subsys of new css
4824  *
4825  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4826  * css is online and installed in @cgrp.  This function doesn't create the
4827  * interface files.  Returns 0 on success, -errno on failure.
4828  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)4829 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4830 					      struct cgroup_subsys *ss)
4831 {
4832 	struct cgroup *parent = cgroup_parent(cgrp);
4833 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4834 	struct cgroup_subsys_state *css;
4835 	int err;
4836 
4837 	lockdep_assert_held(&cgroup_mutex);
4838 
4839 	css = ss->css_alloc(parent_css);
4840 	if (!css)
4841 		css = ERR_PTR(-ENOMEM);
4842 	if (IS_ERR(css))
4843 		return css;
4844 
4845 	init_and_link_css(css, ss, cgrp);
4846 
4847 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4848 	if (err)
4849 		goto err_free_css;
4850 
4851 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4852 	if (err < 0)
4853 		goto err_free_css;
4854 	css->id = err;
4855 
4856 	/* @css is ready to be brought online now, make it visible */
4857 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4858 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4859 
4860 	err = online_css(css);
4861 	if (err)
4862 		goto err_list_del;
4863 
4864 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4865 	    cgroup_parent(parent)) {
4866 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4867 			current->comm, current->pid, ss->name);
4868 		if (!strcmp(ss->name, "memory"))
4869 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4870 		ss->warned_broken_hierarchy = true;
4871 	}
4872 
4873 	return css;
4874 
4875 err_list_del:
4876 	list_del_rcu(&css->sibling);
4877 err_free_css:
4878 	list_del_rcu(&css->rstat_css_node);
4879 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4880 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4881 	return ERR_PTR(err);
4882 }
4883 
4884 /*
4885  * The returned cgroup is fully initialized including its control mask, but
4886  * it isn't associated with its kernfs_node and doesn't have the control
4887  * mask applied.
4888  */
cgroup_create(struct cgroup * parent)4889 static struct cgroup *cgroup_create(struct cgroup *parent)
4890 {
4891 	struct cgroup_root *root = parent->root;
4892 	struct cgroup *cgrp, *tcgrp;
4893 	int level = parent->level + 1;
4894 	int ret;
4895 
4896 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4897 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4898 		       GFP_KERNEL);
4899 	if (!cgrp)
4900 		return ERR_PTR(-ENOMEM);
4901 
4902 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4903 	if (ret)
4904 		goto out_free_cgrp;
4905 
4906 	if (cgroup_on_dfl(parent)) {
4907 		ret = cgroup_rstat_init(cgrp);
4908 		if (ret)
4909 			goto out_cancel_ref;
4910 	}
4911 
4912 	/*
4913 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4914 	 * a half-baked cgroup.
4915 	 */
4916 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4917 	if (cgrp->id < 0) {
4918 		ret = -ENOMEM;
4919 		goto out_stat_exit;
4920 	}
4921 
4922 	init_cgroup_housekeeping(cgrp);
4923 
4924 	cgrp->self.parent = &parent->self;
4925 	cgrp->root = root;
4926 	cgrp->level = level;
4927 	ret = cgroup_bpf_inherit(cgrp);
4928 	if (ret)
4929 		goto out_idr_free;
4930 
4931 	spin_lock_irq(&css_set_lock);
4932 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4933 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4934 
4935 		if (tcgrp != cgrp)
4936 			tcgrp->nr_descendants++;
4937 	}
4938 	spin_unlock_irq(&css_set_lock);
4939 
4940 	if (notify_on_release(parent))
4941 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4942 
4943 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4944 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4945 
4946 	cgrp->self.serial_nr = css_serial_nr_next++;
4947 
4948 	/* allocation complete, commit to creation */
4949 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4950 	atomic_inc(&root->nr_cgrps);
4951 	cgroup_get_live(parent);
4952 
4953 	/*
4954 	 * @cgrp is now fully operational.  If something fails after this
4955 	 * point, it'll be released via the normal destruction path.
4956 	 */
4957 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4958 
4959 	/*
4960 	 * On the default hierarchy, a child doesn't automatically inherit
4961 	 * subtree_control from the parent.  Each is configured manually.
4962 	 */
4963 	if (!cgroup_on_dfl(cgrp))
4964 		cgrp->subtree_control = cgroup_control(cgrp);
4965 
4966 	cgroup_propagate_control(cgrp);
4967 
4968 	return cgrp;
4969 
4970 out_idr_free:
4971 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4972 out_stat_exit:
4973 	if (cgroup_on_dfl(parent))
4974 		cgroup_rstat_exit(cgrp);
4975 out_cancel_ref:
4976 	percpu_ref_exit(&cgrp->self.refcnt);
4977 out_free_cgrp:
4978 	kfree(cgrp);
4979 	return ERR_PTR(ret);
4980 }
4981 
cgroup_check_hierarchy_limits(struct cgroup * parent)4982 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4983 {
4984 	struct cgroup *cgroup;
4985 	int ret = false;
4986 	int level = 1;
4987 
4988 	lockdep_assert_held(&cgroup_mutex);
4989 
4990 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4991 		if (cgroup->nr_descendants >= cgroup->max_descendants)
4992 			goto fail;
4993 
4994 		if (level > cgroup->max_depth)
4995 			goto fail;
4996 
4997 		level++;
4998 	}
4999 
5000 	ret = true;
5001 fail:
5002 	return ret;
5003 }
5004 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5005 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5006 {
5007 	struct cgroup *parent, *cgrp;
5008 	struct kernfs_node *kn;
5009 	int ret;
5010 
5011 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5012 	if (strchr(name, '\n'))
5013 		return -EINVAL;
5014 
5015 	parent = cgroup_kn_lock_live(parent_kn, false);
5016 	if (!parent)
5017 		return -ENODEV;
5018 
5019 	if (!cgroup_check_hierarchy_limits(parent)) {
5020 		ret = -EAGAIN;
5021 		goto out_unlock;
5022 	}
5023 
5024 	cgrp = cgroup_create(parent);
5025 	if (IS_ERR(cgrp)) {
5026 		ret = PTR_ERR(cgrp);
5027 		goto out_unlock;
5028 	}
5029 
5030 	/* create the directory */
5031 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5032 	if (IS_ERR(kn)) {
5033 		ret = PTR_ERR(kn);
5034 		goto out_destroy;
5035 	}
5036 	cgrp->kn = kn;
5037 
5038 	/*
5039 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5040 	 * that @cgrp->kn is always accessible.
5041 	 */
5042 	kernfs_get(kn);
5043 
5044 	ret = cgroup_kn_set_ugid(kn);
5045 	if (ret)
5046 		goto out_destroy;
5047 
5048 	ret = css_populate_dir(&cgrp->self);
5049 	if (ret)
5050 		goto out_destroy;
5051 
5052 	ret = cgroup_apply_control_enable(cgrp);
5053 	if (ret)
5054 		goto out_destroy;
5055 
5056 	TRACE_CGROUP_PATH(mkdir, cgrp);
5057 
5058 	/* let's create and online css's */
5059 	kernfs_activate(kn);
5060 
5061 	ret = 0;
5062 	goto out_unlock;
5063 
5064 out_destroy:
5065 	cgroup_destroy_locked(cgrp);
5066 out_unlock:
5067 	cgroup_kn_unlock(parent_kn);
5068 	return ret;
5069 }
5070 
5071 /*
5072  * This is called when the refcnt of a css is confirmed to be killed.
5073  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5074  * initate destruction and put the css ref from kill_css().
5075  */
css_killed_work_fn(struct work_struct * work)5076 static void css_killed_work_fn(struct work_struct *work)
5077 {
5078 	struct cgroup_subsys_state *css =
5079 		container_of(work, struct cgroup_subsys_state, destroy_work);
5080 
5081 	mutex_lock(&cgroup_mutex);
5082 
5083 	do {
5084 		offline_css(css);
5085 		css_put(css);
5086 		/* @css can't go away while we're holding cgroup_mutex */
5087 		css = css->parent;
5088 	} while (css && atomic_dec_and_test(&css->online_cnt));
5089 
5090 	mutex_unlock(&cgroup_mutex);
5091 }
5092 
5093 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5094 static void css_killed_ref_fn(struct percpu_ref *ref)
5095 {
5096 	struct cgroup_subsys_state *css =
5097 		container_of(ref, struct cgroup_subsys_state, refcnt);
5098 
5099 	if (atomic_dec_and_test(&css->online_cnt)) {
5100 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5101 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5102 	}
5103 }
5104 
5105 /**
5106  * kill_css - destroy a css
5107  * @css: css to destroy
5108  *
5109  * This function initiates destruction of @css by removing cgroup interface
5110  * files and putting its base reference.  ->css_offline() will be invoked
5111  * asynchronously once css_tryget_online() is guaranteed to fail and when
5112  * the reference count reaches zero, @css will be released.
5113  */
kill_css(struct cgroup_subsys_state * css)5114 static void kill_css(struct cgroup_subsys_state *css)
5115 {
5116 	lockdep_assert_held(&cgroup_mutex);
5117 
5118 	if (css->flags & CSS_DYING)
5119 		return;
5120 
5121 	css->flags |= CSS_DYING;
5122 
5123 	/*
5124 	 * This must happen before css is disassociated with its cgroup.
5125 	 * See seq_css() for details.
5126 	 */
5127 	css_clear_dir(css);
5128 
5129 	/*
5130 	 * Killing would put the base ref, but we need to keep it alive
5131 	 * until after ->css_offline().
5132 	 */
5133 	css_get(css);
5134 
5135 	/*
5136 	 * cgroup core guarantees that, by the time ->css_offline() is
5137 	 * invoked, no new css reference will be given out via
5138 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5139 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5140 	 * guarantee that the ref is seen as killed on all CPUs on return.
5141 	 *
5142 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5143 	 * css is confirmed to be seen as killed on all CPUs.
5144 	 */
5145 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5146 }
5147 
5148 /**
5149  * cgroup_destroy_locked - the first stage of cgroup destruction
5150  * @cgrp: cgroup to be destroyed
5151  *
5152  * css's make use of percpu refcnts whose killing latency shouldn't be
5153  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5154  * guarantee that css_tryget_online() won't succeed by the time
5155  * ->css_offline() is invoked.  To satisfy all the requirements,
5156  * destruction is implemented in the following two steps.
5157  *
5158  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5159  *     userland visible parts and start killing the percpu refcnts of
5160  *     css's.  Set up so that the next stage will be kicked off once all
5161  *     the percpu refcnts are confirmed to be killed.
5162  *
5163  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5164  *     rest of destruction.  Once all cgroup references are gone, the
5165  *     cgroup is RCU-freed.
5166  *
5167  * This function implements s1.  After this step, @cgrp is gone as far as
5168  * the userland is concerned and a new cgroup with the same name may be
5169  * created.  As cgroup doesn't care about the names internally, this
5170  * doesn't cause any problem.
5171  */
cgroup_destroy_locked(struct cgroup * cgrp)5172 static int cgroup_destroy_locked(struct cgroup *cgrp)
5173 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5174 {
5175 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5176 	struct cgroup_subsys_state *css;
5177 	struct cgrp_cset_link *link;
5178 	int ssid;
5179 
5180 	lockdep_assert_held(&cgroup_mutex);
5181 
5182 	/*
5183 	 * Only migration can raise populated from zero and we're already
5184 	 * holding cgroup_mutex.
5185 	 */
5186 	if (cgroup_is_populated(cgrp))
5187 		return -EBUSY;
5188 
5189 	/*
5190 	 * Make sure there's no live children.  We can't test emptiness of
5191 	 * ->self.children as dead children linger on it while being
5192 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5193 	 */
5194 	if (css_has_online_children(&cgrp->self))
5195 		return -EBUSY;
5196 
5197 	/*
5198 	 * Mark @cgrp and the associated csets dead.  The former prevents
5199 	 * further task migration and child creation by disabling
5200 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5201 	 * the migration path.
5202 	 */
5203 	cgrp->self.flags &= ~CSS_ONLINE;
5204 
5205 	spin_lock_irq(&css_set_lock);
5206 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5207 		link->cset->dead = true;
5208 	spin_unlock_irq(&css_set_lock);
5209 
5210 	/* initiate massacre of all css's */
5211 	for_each_css(css, ssid, cgrp)
5212 		kill_css(css);
5213 
5214 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5215 	css_clear_dir(&cgrp->self);
5216 	kernfs_remove(cgrp->kn);
5217 
5218 	if (parent && cgroup_is_threaded(cgrp))
5219 		parent->nr_threaded_children--;
5220 
5221 	spin_lock_irq(&css_set_lock);
5222 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5223 		tcgrp->nr_descendants--;
5224 		tcgrp->nr_dying_descendants++;
5225 	}
5226 	spin_unlock_irq(&css_set_lock);
5227 
5228 	cgroup1_check_for_release(parent);
5229 
5230 	/* put the base reference */
5231 	percpu_ref_kill(&cgrp->self.refcnt);
5232 
5233 	return 0;
5234 };
5235 
cgroup_rmdir(struct kernfs_node * kn)5236 int cgroup_rmdir(struct kernfs_node *kn)
5237 {
5238 	struct cgroup *cgrp;
5239 	int ret = 0;
5240 
5241 	cgrp = cgroup_kn_lock_live(kn, false);
5242 	if (!cgrp)
5243 		return 0;
5244 
5245 	ret = cgroup_destroy_locked(cgrp);
5246 	if (!ret)
5247 		TRACE_CGROUP_PATH(rmdir, cgrp);
5248 
5249 	cgroup_kn_unlock(kn);
5250 	return ret;
5251 }
5252 
5253 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5254 	.show_options		= cgroup_show_options,
5255 	.remount_fs		= cgroup_remount,
5256 	.mkdir			= cgroup_mkdir,
5257 	.rmdir			= cgroup_rmdir,
5258 	.show_path		= cgroup_show_path,
5259 };
5260 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5261 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5262 {
5263 	struct cgroup_subsys_state *css;
5264 
5265 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5266 
5267 	mutex_lock(&cgroup_mutex);
5268 
5269 	idr_init(&ss->css_idr);
5270 	INIT_LIST_HEAD(&ss->cfts);
5271 
5272 	/* Create the root cgroup state for this subsystem */
5273 	ss->root = &cgrp_dfl_root;
5274 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5275 	/* We don't handle early failures gracefully */
5276 	BUG_ON(IS_ERR(css));
5277 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5278 
5279 	/*
5280 	 * Root csses are never destroyed and we can't initialize
5281 	 * percpu_ref during early init.  Disable refcnting.
5282 	 */
5283 	css->flags |= CSS_NO_REF;
5284 
5285 	if (early) {
5286 		/* allocation can't be done safely during early init */
5287 		css->id = 1;
5288 	} else {
5289 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5290 		BUG_ON(css->id < 0);
5291 	}
5292 
5293 	/* Update the init_css_set to contain a subsys
5294 	 * pointer to this state - since the subsystem is
5295 	 * newly registered, all tasks and hence the
5296 	 * init_css_set is in the subsystem's root cgroup. */
5297 	init_css_set.subsys[ss->id] = css;
5298 
5299 	have_fork_callback |= (bool)ss->fork << ss->id;
5300 	have_exit_callback |= (bool)ss->exit << ss->id;
5301 	have_release_callback |= (bool)ss->release << ss->id;
5302 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5303 
5304 	/* At system boot, before all subsystems have been
5305 	 * registered, no tasks have been forked, so we don't
5306 	 * need to invoke fork callbacks here. */
5307 	BUG_ON(!list_empty(&init_task.tasks));
5308 
5309 	BUG_ON(online_css(css));
5310 
5311 	mutex_unlock(&cgroup_mutex);
5312 }
5313 
5314 /**
5315  * cgroup_init_early - cgroup initialization at system boot
5316  *
5317  * Initialize cgroups at system boot, and initialize any
5318  * subsystems that request early init.
5319  */
cgroup_init_early(void)5320 int __init cgroup_init_early(void)
5321 {
5322 	static struct cgroup_sb_opts __initdata opts;
5323 	struct cgroup_subsys *ss;
5324 	int i;
5325 
5326 	init_cgroup_root(&cgrp_dfl_root, &opts);
5327 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5328 
5329 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5330 
5331 	for_each_subsys(ss, i) {
5332 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5333 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5334 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5335 		     ss->id, ss->name);
5336 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5337 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5338 
5339 		ss->id = i;
5340 		ss->name = cgroup_subsys_name[i];
5341 		if (!ss->legacy_name)
5342 			ss->legacy_name = cgroup_subsys_name[i];
5343 
5344 		if (ss->early_init)
5345 			cgroup_init_subsys(ss, true);
5346 	}
5347 	return 0;
5348 }
5349 
5350 static u16 cgroup_disable_mask __initdata;
5351 
5352 /**
5353  * cgroup_init - cgroup initialization
5354  *
5355  * Register cgroup filesystem and /proc file, and initialize
5356  * any subsystems that didn't request early init.
5357  */
cgroup_init(void)5358 int __init cgroup_init(void)
5359 {
5360 	struct cgroup_subsys *ss;
5361 	int ssid;
5362 
5363 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5364 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5365 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5366 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5367 
5368 	cgroup_rstat_boot();
5369 
5370 	/*
5371 	 * The latency of the synchronize_sched() is too high for cgroups,
5372 	 * avoid it at the cost of forcing all readers into the slow path.
5373 	 */
5374 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5375 
5376 	get_user_ns(init_cgroup_ns.user_ns);
5377 
5378 	mutex_lock(&cgroup_mutex);
5379 
5380 	/*
5381 	 * Add init_css_set to the hash table so that dfl_root can link to
5382 	 * it during init.
5383 	 */
5384 	hash_add(css_set_table, &init_css_set.hlist,
5385 		 css_set_hash(init_css_set.subsys));
5386 
5387 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5388 
5389 	mutex_unlock(&cgroup_mutex);
5390 
5391 	for_each_subsys(ss, ssid) {
5392 		if (ss->early_init) {
5393 			struct cgroup_subsys_state *css =
5394 				init_css_set.subsys[ss->id];
5395 
5396 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5397 						   GFP_KERNEL);
5398 			BUG_ON(css->id < 0);
5399 		} else {
5400 			cgroup_init_subsys(ss, false);
5401 		}
5402 
5403 		list_add_tail(&init_css_set.e_cset_node[ssid],
5404 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5405 
5406 		/*
5407 		 * Setting dfl_root subsys_mask needs to consider the
5408 		 * disabled flag and cftype registration needs kmalloc,
5409 		 * both of which aren't available during early_init.
5410 		 */
5411 		if (cgroup_disable_mask & (1 << ssid)) {
5412 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5413 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5414 			       ss->name);
5415 			continue;
5416 		}
5417 
5418 		if (cgroup1_ssid_disabled(ssid))
5419 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5420 			       ss->name);
5421 
5422 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5423 
5424 		/* implicit controllers must be threaded too */
5425 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5426 
5427 		if (ss->implicit_on_dfl)
5428 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5429 		else if (!ss->dfl_cftypes)
5430 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5431 
5432 		if (ss->threaded)
5433 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5434 
5435 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5436 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5437 		} else {
5438 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5439 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5440 		}
5441 
5442 		if (ss->bind)
5443 			ss->bind(init_css_set.subsys[ssid]);
5444 
5445 		mutex_lock(&cgroup_mutex);
5446 		css_populate_dir(init_css_set.subsys[ssid]);
5447 		mutex_unlock(&cgroup_mutex);
5448 	}
5449 
5450 	/* init_css_set.subsys[] has been updated, re-hash */
5451 	hash_del(&init_css_set.hlist);
5452 	hash_add(css_set_table, &init_css_set.hlist,
5453 		 css_set_hash(init_css_set.subsys));
5454 
5455 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5456 	WARN_ON(register_filesystem(&cgroup_fs_type));
5457 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5458 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5459 
5460 	return 0;
5461 }
5462 
cgroup_wq_init(void)5463 static int __init cgroup_wq_init(void)
5464 {
5465 	/*
5466 	 * There isn't much point in executing destruction path in
5467 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5468 	 * Use 1 for @max_active.
5469 	 *
5470 	 * We would prefer to do this in cgroup_init() above, but that
5471 	 * is called before init_workqueues(): so leave this until after.
5472 	 */
5473 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5474 	BUG_ON(!cgroup_destroy_wq);
5475 	return 0;
5476 }
5477 core_initcall(cgroup_wq_init);
5478 
cgroup_path_from_kernfs_id(const union kernfs_node_id * id,char * buf,size_t buflen)5479 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5480 					char *buf, size_t buflen)
5481 {
5482 	struct kernfs_node *kn;
5483 
5484 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5485 	if (!kn)
5486 		return;
5487 	kernfs_path(kn, buf, buflen);
5488 	kernfs_put(kn);
5489 }
5490 
5491 /*
5492  * proc_cgroup_show()
5493  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5494  *  - Used for /proc/<pid>/cgroup.
5495  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5496 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5497 		     struct pid *pid, struct task_struct *tsk)
5498 {
5499 	char *buf;
5500 	int retval;
5501 	struct cgroup_root *root;
5502 
5503 	retval = -ENOMEM;
5504 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5505 	if (!buf)
5506 		goto out;
5507 
5508 	mutex_lock(&cgroup_mutex);
5509 	spin_lock_irq(&css_set_lock);
5510 
5511 	for_each_root(root) {
5512 		struct cgroup_subsys *ss;
5513 		struct cgroup *cgrp;
5514 		int ssid, count = 0;
5515 
5516 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5517 			continue;
5518 
5519 		seq_printf(m, "%d:", root->hierarchy_id);
5520 		if (root != &cgrp_dfl_root)
5521 			for_each_subsys(ss, ssid)
5522 				if (root->subsys_mask & (1 << ssid))
5523 					seq_printf(m, "%s%s", count++ ? "," : "",
5524 						   ss->legacy_name);
5525 		if (strlen(root->name))
5526 			seq_printf(m, "%sname=%s", count ? "," : "",
5527 				   root->name);
5528 		seq_putc(m, ':');
5529 
5530 		cgrp = task_cgroup_from_root(tsk, root);
5531 
5532 		/*
5533 		 * On traditional hierarchies, all zombie tasks show up as
5534 		 * belonging to the root cgroup.  On the default hierarchy,
5535 		 * while a zombie doesn't show up in "cgroup.procs" and
5536 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5537 		 * reporting the cgroup it belonged to before exiting.  If
5538 		 * the cgroup is removed before the zombie is reaped,
5539 		 * " (deleted)" is appended to the cgroup path.
5540 		 */
5541 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5542 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5543 						current->nsproxy->cgroup_ns);
5544 			if (retval >= PATH_MAX)
5545 				retval = -ENAMETOOLONG;
5546 			if (retval < 0)
5547 				goto out_unlock;
5548 
5549 			seq_puts(m, buf);
5550 		} else {
5551 			seq_puts(m, "/");
5552 		}
5553 
5554 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5555 			seq_puts(m, " (deleted)\n");
5556 		else
5557 			seq_putc(m, '\n');
5558 	}
5559 
5560 	retval = 0;
5561 out_unlock:
5562 	spin_unlock_irq(&css_set_lock);
5563 	mutex_unlock(&cgroup_mutex);
5564 	kfree(buf);
5565 out:
5566 	return retval;
5567 }
5568 
5569 /**
5570  * cgroup_fork - initialize cgroup related fields during copy_process()
5571  * @child: pointer to task_struct of forking parent process.
5572  *
5573  * A task is associated with the init_css_set until cgroup_post_fork()
5574  * attaches it to the parent's css_set.  Empty cg_list indicates that
5575  * @child isn't holding reference to its css_set.
5576  */
cgroup_fork(struct task_struct * child)5577 void cgroup_fork(struct task_struct *child)
5578 {
5579 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5580 	INIT_LIST_HEAD(&child->cg_list);
5581 }
5582 
5583 /**
5584  * cgroup_can_fork - called on a new task before the process is exposed
5585  * @child: the task in question.
5586  *
5587  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5588  * returns an error, the fork aborts with that error code. This allows for
5589  * a cgroup subsystem to conditionally allow or deny new forks.
5590  */
cgroup_can_fork(struct task_struct * child)5591 int cgroup_can_fork(struct task_struct *child)
5592 {
5593 	struct cgroup_subsys *ss;
5594 	int i, j, ret;
5595 
5596 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5597 		ret = ss->can_fork(child);
5598 		if (ret)
5599 			goto out_revert;
5600 	} while_each_subsys_mask();
5601 
5602 	return 0;
5603 
5604 out_revert:
5605 	for_each_subsys(ss, j) {
5606 		if (j >= i)
5607 			break;
5608 		if (ss->cancel_fork)
5609 			ss->cancel_fork(child);
5610 	}
5611 
5612 	return ret;
5613 }
5614 
5615 /**
5616  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5617  * @child: the task in question
5618  *
5619  * This calls the cancel_fork() callbacks if a fork failed *after*
5620  * cgroup_can_fork() succeded.
5621  */
cgroup_cancel_fork(struct task_struct * child)5622 void cgroup_cancel_fork(struct task_struct *child)
5623 {
5624 	struct cgroup_subsys *ss;
5625 	int i;
5626 
5627 	for_each_subsys(ss, i)
5628 		if (ss->cancel_fork)
5629 			ss->cancel_fork(child);
5630 }
5631 
5632 /**
5633  * cgroup_post_fork - called on a new task after adding it to the task list
5634  * @child: the task in question
5635  *
5636  * Adds the task to the list running through its css_set if necessary and
5637  * call the subsystem fork() callbacks.  Has to be after the task is
5638  * visible on the task list in case we race with the first call to
5639  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5640  * list.
5641  */
cgroup_post_fork(struct task_struct * child)5642 void cgroup_post_fork(struct task_struct *child)
5643 {
5644 	struct cgroup_subsys *ss;
5645 	int i;
5646 
5647 	/*
5648 	 * This may race against cgroup_enable_task_cg_lists().  As that
5649 	 * function sets use_task_css_set_links before grabbing
5650 	 * tasklist_lock and we just went through tasklist_lock to add
5651 	 * @child, it's guaranteed that either we see the set
5652 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5653 	 * @child during its iteration.
5654 	 *
5655 	 * If we won the race, @child is associated with %current's
5656 	 * css_set.  Grabbing css_set_lock guarantees both that the
5657 	 * association is stable, and, on completion of the parent's
5658 	 * migration, @child is visible in the source of migration or
5659 	 * already in the destination cgroup.  This guarantee is necessary
5660 	 * when implementing operations which need to migrate all tasks of
5661 	 * a cgroup to another.
5662 	 *
5663 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5664 	 * will remain in init_css_set.  This is safe because all tasks are
5665 	 * in the init_css_set before cg_links is enabled and there's no
5666 	 * operation which transfers all tasks out of init_css_set.
5667 	 */
5668 	if (use_task_css_set_links) {
5669 		struct css_set *cset;
5670 
5671 		spin_lock_irq(&css_set_lock);
5672 		cset = task_css_set(current);
5673 		if (list_empty(&child->cg_list)) {
5674 			get_css_set(cset);
5675 			cset->nr_tasks++;
5676 			css_set_move_task(child, NULL, cset, false);
5677 		}
5678 		spin_unlock_irq(&css_set_lock);
5679 	}
5680 
5681 	/*
5682 	 * Call ss->fork().  This must happen after @child is linked on
5683 	 * css_set; otherwise, @child might change state between ->fork()
5684 	 * and addition to css_set.
5685 	 */
5686 	do_each_subsys_mask(ss, i, have_fork_callback) {
5687 		ss->fork(child);
5688 	} while_each_subsys_mask();
5689 }
5690 
5691 /**
5692  * cgroup_exit - detach cgroup from exiting task
5693  * @tsk: pointer to task_struct of exiting process
5694  *
5695  * Description: Detach cgroup from @tsk and release it.
5696  *
5697  * Note that cgroups marked notify_on_release force every task in
5698  * them to take the global cgroup_mutex mutex when exiting.
5699  * This could impact scaling on very large systems.  Be reluctant to
5700  * use notify_on_release cgroups where very high task exit scaling
5701  * is required on large systems.
5702  *
5703  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5704  * call cgroup_exit() while the task is still competent to handle
5705  * notify_on_release(), then leave the task attached to the root cgroup in
5706  * each hierarchy for the remainder of its exit.  No need to bother with
5707  * init_css_set refcnting.  init_css_set never goes away and we can't race
5708  * with migration path - PF_EXITING is visible to migration path.
5709  */
cgroup_exit(struct task_struct * tsk)5710 void cgroup_exit(struct task_struct *tsk)
5711 {
5712 	struct cgroup_subsys *ss;
5713 	struct css_set *cset;
5714 	int i;
5715 
5716 	/*
5717 	 * Unlink from @tsk from its css_set.  As migration path can't race
5718 	 * with us, we can check css_set and cg_list without synchronization.
5719 	 */
5720 	cset = task_css_set(tsk);
5721 
5722 	if (!list_empty(&tsk->cg_list)) {
5723 		spin_lock_irq(&css_set_lock);
5724 		css_set_move_task(tsk, cset, NULL, false);
5725 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
5726 		cset->nr_tasks--;
5727 		spin_unlock_irq(&css_set_lock);
5728 	} else {
5729 		get_css_set(cset);
5730 	}
5731 
5732 	/* see cgroup_post_fork() for details */
5733 	do_each_subsys_mask(ss, i, have_exit_callback) {
5734 		ss->exit(tsk);
5735 	} while_each_subsys_mask();
5736 }
5737 
cgroup_release(struct task_struct * task)5738 void cgroup_release(struct task_struct *task)
5739 {
5740 	struct cgroup_subsys *ss;
5741 	int ssid;
5742 
5743 	do_each_subsys_mask(ss, ssid, have_release_callback) {
5744 		ss->release(task);
5745 	} while_each_subsys_mask();
5746 
5747 	if (use_task_css_set_links) {
5748 		spin_lock_irq(&css_set_lock);
5749 		css_set_skip_task_iters(task_css_set(task), task);
5750 		list_del_init(&task->cg_list);
5751 		spin_unlock_irq(&css_set_lock);
5752 	}
5753 }
5754 
cgroup_free(struct task_struct * task)5755 void cgroup_free(struct task_struct *task)
5756 {
5757 	struct css_set *cset = task_css_set(task);
5758 	put_css_set(cset);
5759 }
5760 
cgroup_disable(char * str)5761 static int __init cgroup_disable(char *str)
5762 {
5763 	struct cgroup_subsys *ss;
5764 	char *token;
5765 	int i;
5766 
5767 	while ((token = strsep(&str, ",")) != NULL) {
5768 		if (!*token)
5769 			continue;
5770 
5771 		for_each_subsys(ss, i) {
5772 			if (strcmp(token, ss->name) &&
5773 			    strcmp(token, ss->legacy_name))
5774 				continue;
5775 			cgroup_disable_mask |= 1 << i;
5776 		}
5777 	}
5778 	return 1;
5779 }
5780 __setup("cgroup_disable=", cgroup_disable);
5781 
5782 /**
5783  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5784  * @dentry: directory dentry of interest
5785  * @ss: subsystem of interest
5786  *
5787  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5788  * to get the corresponding css and return it.  If such css doesn't exist
5789  * or can't be pinned, an ERR_PTR value is returned.
5790  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)5791 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5792 						       struct cgroup_subsys *ss)
5793 {
5794 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5795 	struct file_system_type *s_type = dentry->d_sb->s_type;
5796 	struct cgroup_subsys_state *css = NULL;
5797 	struct cgroup *cgrp;
5798 
5799 	/* is @dentry a cgroup dir? */
5800 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5801 	    !kn || kernfs_type(kn) != KERNFS_DIR)
5802 		return ERR_PTR(-EBADF);
5803 
5804 	rcu_read_lock();
5805 
5806 	/*
5807 	 * This path doesn't originate from kernfs and @kn could already
5808 	 * have been or be removed at any point.  @kn->priv is RCU
5809 	 * protected for this access.  See css_release_work_fn() for details.
5810 	 */
5811 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5812 	if (cgrp)
5813 		css = cgroup_css(cgrp, ss);
5814 
5815 	if (!css || !css_tryget_online(css))
5816 		css = ERR_PTR(-ENOENT);
5817 
5818 	rcu_read_unlock();
5819 	return css;
5820 }
5821 
5822 /**
5823  * css_from_id - lookup css by id
5824  * @id: the cgroup id
5825  * @ss: cgroup subsys to be looked into
5826  *
5827  * Returns the css if there's valid one with @id, otherwise returns NULL.
5828  * Should be called under rcu_read_lock().
5829  */
css_from_id(int id,struct cgroup_subsys * ss)5830 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5831 {
5832 	WARN_ON_ONCE(!rcu_read_lock_held());
5833 	return idr_find(&ss->css_idr, id);
5834 }
5835 
5836 /**
5837  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5838  * @path: path on the default hierarchy
5839  *
5840  * Find the cgroup at @path on the default hierarchy, increment its
5841  * reference count and return it.  Returns pointer to the found cgroup on
5842  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5843  * if @path points to a non-directory.
5844  */
cgroup_get_from_path(const char * path)5845 struct cgroup *cgroup_get_from_path(const char *path)
5846 {
5847 	struct kernfs_node *kn;
5848 	struct cgroup *cgrp;
5849 
5850 	mutex_lock(&cgroup_mutex);
5851 
5852 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5853 	if (kn) {
5854 		if (kernfs_type(kn) == KERNFS_DIR) {
5855 			cgrp = kn->priv;
5856 			cgroup_get_live(cgrp);
5857 		} else {
5858 			cgrp = ERR_PTR(-ENOTDIR);
5859 		}
5860 		kernfs_put(kn);
5861 	} else {
5862 		cgrp = ERR_PTR(-ENOENT);
5863 	}
5864 
5865 	mutex_unlock(&cgroup_mutex);
5866 	return cgrp;
5867 }
5868 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5869 
5870 /**
5871  * cgroup_get_from_fd - get a cgroup pointer from a fd
5872  * @fd: fd obtained by open(cgroup2_dir)
5873  *
5874  * Find the cgroup from a fd which should be obtained
5875  * by opening a cgroup directory.  Returns a pointer to the
5876  * cgroup on success. ERR_PTR is returned if the cgroup
5877  * cannot be found.
5878  */
cgroup_get_from_fd(int fd)5879 struct cgroup *cgroup_get_from_fd(int fd)
5880 {
5881 	struct cgroup_subsys_state *css;
5882 	struct cgroup *cgrp;
5883 	struct file *f;
5884 
5885 	f = fget_raw(fd);
5886 	if (!f)
5887 		return ERR_PTR(-EBADF);
5888 
5889 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5890 	fput(f);
5891 	if (IS_ERR(css))
5892 		return ERR_CAST(css);
5893 
5894 	cgrp = css->cgroup;
5895 	if (!cgroup_on_dfl(cgrp)) {
5896 		cgroup_put(cgrp);
5897 		return ERR_PTR(-EBADF);
5898 	}
5899 
5900 	return cgrp;
5901 }
5902 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5903 
5904 /*
5905  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5906  * definition in cgroup-defs.h.
5907  */
5908 #ifdef CONFIG_SOCK_CGROUP_DATA
5909 
5910 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5911 
5912 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5913 static bool cgroup_sk_alloc_disabled __read_mostly;
5914 
cgroup_sk_alloc_disable(void)5915 void cgroup_sk_alloc_disable(void)
5916 {
5917 	if (cgroup_sk_alloc_disabled)
5918 		return;
5919 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5920 	cgroup_sk_alloc_disabled = true;
5921 }
5922 
5923 #else
5924 
5925 #define cgroup_sk_alloc_disabled	false
5926 
5927 #endif
5928 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)5929 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5930 {
5931 	if (cgroup_sk_alloc_disabled) {
5932 		skcd->no_refcnt = 1;
5933 		return;
5934 	}
5935 
5936 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
5937 	if (in_interrupt())
5938 		return;
5939 
5940 	rcu_read_lock();
5941 
5942 	while (true) {
5943 		struct css_set *cset;
5944 
5945 		cset = task_css_set(current);
5946 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5947 			skcd->val = (unsigned long)cset->dfl_cgrp;
5948 			break;
5949 		}
5950 		cpu_relax();
5951 	}
5952 
5953 	rcu_read_unlock();
5954 }
5955 
cgroup_sk_clone(struct sock_cgroup_data * skcd)5956 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
5957 {
5958 	/* Socket clone path */
5959 	if (skcd->val) {
5960 		if (skcd->no_refcnt)
5961 			return;
5962 		/*
5963 		 * We might be cloning a socket which is left in an empty
5964 		 * cgroup and the cgroup might have already been rmdir'd.
5965 		 * Don't use cgroup_get_live().
5966 		 */
5967 		cgroup_get(sock_cgroup_ptr(skcd));
5968 	}
5969 }
5970 
cgroup_sk_free(struct sock_cgroup_data * skcd)5971 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5972 {
5973 	if (skcd->no_refcnt)
5974 		return;
5975 
5976 	cgroup_put(sock_cgroup_ptr(skcd));
5977 }
5978 
5979 #endif	/* CONFIG_SOCK_CGROUP_DATA */
5980 
5981 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)5982 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5983 		      enum bpf_attach_type type, u32 flags)
5984 {
5985 	int ret;
5986 
5987 	mutex_lock(&cgroup_mutex);
5988 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5989 	mutex_unlock(&cgroup_mutex);
5990 	return ret;
5991 }
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)5992 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5993 		      enum bpf_attach_type type, u32 flags)
5994 {
5995 	int ret;
5996 
5997 	mutex_lock(&cgroup_mutex);
5998 	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5999 	mutex_unlock(&cgroup_mutex);
6000 	return ret;
6001 }
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6002 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6003 		     union bpf_attr __user *uattr)
6004 {
6005 	int ret;
6006 
6007 	mutex_lock(&cgroup_mutex);
6008 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6009 	mutex_unlock(&cgroup_mutex);
6010 	return ret;
6011 }
6012 #endif /* CONFIG_CGROUP_BPF */
6013 
6014 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6015 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6016 				      ssize_t size, const char *prefix)
6017 {
6018 	struct cftype *cft;
6019 	ssize_t ret = 0;
6020 
6021 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6022 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6023 			continue;
6024 
6025 		if (prefix)
6026 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6027 
6028 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6029 
6030 		if (unlikely(ret >= size)) {
6031 			WARN_ON(1);
6032 			break;
6033 		}
6034 	}
6035 
6036 	return ret;
6037 }
6038 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6039 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6040 			      char *buf)
6041 {
6042 	struct cgroup_subsys *ss;
6043 	int ssid;
6044 	ssize_t ret = 0;
6045 
6046 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6047 				     NULL);
6048 
6049 	for_each_subsys(ss, ssid)
6050 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6051 					      PAGE_SIZE - ret,
6052 					      cgroup_subsys_name[ssid]);
6053 
6054 	return ret;
6055 }
6056 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6057 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6058 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6059 			     char *buf)
6060 {
6061 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6062 }
6063 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6064 
6065 static struct attribute *cgroup_sysfs_attrs[] = {
6066 	&cgroup_delegate_attr.attr,
6067 	&cgroup_features_attr.attr,
6068 	NULL,
6069 };
6070 
6071 static const struct attribute_group cgroup_sysfs_attr_group = {
6072 	.attrs = cgroup_sysfs_attrs,
6073 	.name = "cgroup",
6074 };
6075 
cgroup_sysfs_init(void)6076 static int __init cgroup_sysfs_init(void)
6077 {
6078 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6079 }
6080 subsys_initcall(cgroup_sysfs_init);
6081 #endif /* CONFIG_SYSFS */
6082