• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/init_task.h>
49 #include <linux/kprobes.h>
50 #include <linux/kthread.h>
51 #include <linux/membarrier.h>
52 #include <linux/migrate.h>
53 #include <linux/mmu_context.h>
54 #include <linux/nmi.h>
55 #include <linux/proc_fs.h>
56 #include <linux/prefetch.h>
57 #include <linux/profile.h>
58 #include <linux/rcupdate_wait.h>
59 #include <linux/security.h>
60 #include <linux/stackprotector.h>
61 #include <linux/stop_machine.h>
62 #include <linux/suspend.h>
63 #include <linux/swait.h>
64 #include <linux/syscalls.h>
65 #include <linux/task_work.h>
66 #include <linux/tsacct_kern.h>
67 
68 #include <asm/tlb.h>
69 
70 #ifdef CONFIG_PARAVIRT
71 # include <asm/paravirt.h>
72 #endif
73 
74 #include "cpupri.h"
75 #include "cpudeadline.h"
76 
77 #ifdef CONFIG_SCHED_DEBUG
78 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
79 #else
80 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
81 #endif
82 
83 struct rq;
84 struct cpuidle_state;
85 
86 /* task_struct::on_rq states: */
87 #define TASK_ON_RQ_QUEUED	1
88 #define TASK_ON_RQ_MIGRATING	2
89 
90 extern __read_mostly int scheduler_running;
91 
92 extern unsigned long calc_load_update;
93 extern atomic_long_t calc_load_tasks;
94 
95 extern void calc_global_load_tick(struct rq *this_rq);
96 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
97 
98 #ifdef CONFIG_SMP
99 extern void cpu_load_update_active(struct rq *this_rq);
100 #else
cpu_load_update_active(struct rq * this_rq)101 static inline void cpu_load_update_active(struct rq *this_rq) { }
102 #endif
103 
104 /*
105  * Helpers for converting nanosecond timing to jiffy resolution
106  */
107 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 
109 /*
110  * Increase resolution of nice-level calculations for 64-bit architectures.
111  * The extra resolution improves shares distribution and load balancing of
112  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
113  * hierarchies, especially on larger systems. This is not a user-visible change
114  * and does not change the user-interface for setting shares/weights.
115  *
116  * We increase resolution only if we have enough bits to allow this increased
117  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
118  * are pretty high and the returns do not justify the increased costs.
119  *
120  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
121  * increase coverage and consistency always enable it on 64-bit platforms.
122  */
123 #ifdef CONFIG_64BIT
124 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load_down(w) \
127 ({ \
128 	unsigned long __w = (w); \
129 	if (__w) \
130 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
131 	__w; \
132 })
133 #else
134 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
135 # define scale_load(w)		(w)
136 # define scale_load_down(w)	(w)
137 #endif
138 
139 /*
140  * Task weight (visible to users) and its load (invisible to users) have
141  * independent resolution, but they should be well calibrated. We use
142  * scale_load() and scale_load_down(w) to convert between them. The
143  * following must be true:
144  *
145  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
146  *
147  */
148 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
149 
150 /*
151  * Single value that decides SCHED_DEADLINE internal math precision.
152  * 10 -> just above 1us
153  * 9  -> just above 0.5us
154  */
155 #define DL_SCALE		10
156 
157 /*
158  * Single value that denotes runtime == period, ie unlimited time.
159  */
160 #define RUNTIME_INF		((u64)~0ULL)
161 
idle_policy(int policy)162 static inline int idle_policy(int policy)
163 {
164 	return policy == SCHED_IDLE;
165 }
fair_policy(int policy)166 static inline int fair_policy(int policy)
167 {
168 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
169 }
170 
rt_policy(int policy)171 static inline int rt_policy(int policy)
172 {
173 	return policy == SCHED_FIFO || policy == SCHED_RR;
174 }
175 
dl_policy(int policy)176 static inline int dl_policy(int policy)
177 {
178 	return policy == SCHED_DEADLINE;
179 }
valid_policy(int policy)180 static inline bool valid_policy(int policy)
181 {
182 	return idle_policy(policy) || fair_policy(policy) ||
183 		rt_policy(policy) || dl_policy(policy);
184 }
185 
task_has_rt_policy(struct task_struct * p)186 static inline int task_has_rt_policy(struct task_struct *p)
187 {
188 	return rt_policy(p->policy);
189 }
190 
task_has_dl_policy(struct task_struct * p)191 static inline int task_has_dl_policy(struct task_struct *p)
192 {
193 	return dl_policy(p->policy);
194 }
195 
196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
197 
198 /*
199  * !! For sched_setattr_nocheck() (kernel) only !!
200  *
201  * This is actually gross. :(
202  *
203  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
204  * tasks, but still be able to sleep. We need this on platforms that cannot
205  * atomically change clock frequency. Remove once fast switching will be
206  * available on such platforms.
207  *
208  * SUGOV stands for SchedUtil GOVernor.
209  */
210 #define SCHED_FLAG_SUGOV	0x10000000
211 
dl_entity_is_special(struct sched_dl_entity * dl_se)212 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
213 {
214 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
215 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
216 #else
217 	return false;
218 #endif
219 }
220 
221 /*
222  * Tells if entity @a should preempt entity @b.
223  */
224 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)225 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
226 {
227 	return dl_entity_is_special(a) ||
228 	       dl_time_before(a->deadline, b->deadline);
229 }
230 
231 /*
232  * This is the priority-queue data structure of the RT scheduling class:
233  */
234 struct rt_prio_array {
235 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
236 	struct list_head queue[MAX_RT_PRIO];
237 };
238 
239 struct rt_bandwidth {
240 	/* nests inside the rq lock: */
241 	raw_spinlock_t		rt_runtime_lock;
242 	ktime_t			rt_period;
243 	u64			rt_runtime;
244 	struct hrtimer		rt_period_timer;
245 	unsigned int		rt_period_active;
246 };
247 
248 void __dl_clear_params(struct task_struct *p);
249 
250 /*
251  * To keep the bandwidth of -deadline tasks and groups under control
252  * we need some place where:
253  *  - store the maximum -deadline bandwidth of the system (the group);
254  *  - cache the fraction of that bandwidth that is currently allocated.
255  *
256  * This is all done in the data structure below. It is similar to the
257  * one used for RT-throttling (rt_bandwidth), with the main difference
258  * that, since here we are only interested in admission control, we
259  * do not decrease any runtime while the group "executes", neither we
260  * need a timer to replenish it.
261  *
262  * With respect to SMP, the bandwidth is given on a per-CPU basis,
263  * meaning that:
264  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
265  *  - dl_total_bw array contains, in the i-eth element, the currently
266  *    allocated bandwidth on the i-eth CPU.
267  * Moreover, groups consume bandwidth on each CPU, while tasks only
268  * consume bandwidth on the CPU they're running on.
269  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
270  * that will be shown the next time the proc or cgroup controls will
271  * be red. It on its turn can be changed by writing on its own
272  * control.
273  */
274 struct dl_bandwidth {
275 	raw_spinlock_t		dl_runtime_lock;
276 	u64			dl_runtime;
277 	u64			dl_period;
278 };
279 
dl_bandwidth_enabled(void)280 static inline int dl_bandwidth_enabled(void)
281 {
282 	return sysctl_sched_rt_runtime >= 0;
283 }
284 
285 struct dl_bw {
286 	raw_spinlock_t		lock;
287 	u64			bw;
288 	u64			total_bw;
289 };
290 
291 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
292 
293 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)294 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 	dl_b->total_bw -= tsk_bw;
297 	__dl_update(dl_b, (s32)tsk_bw / cpus);
298 }
299 
300 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)301 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
302 {
303 	dl_b->total_bw += tsk_bw;
304 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
305 }
306 
307 static inline
__dl_overflow(struct dl_bw * dl_b,int cpus,u64 old_bw,u64 new_bw)308 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
309 {
310 	return dl_b->bw != -1 &&
311 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
312 }
313 
314 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
315 extern void init_dl_bw(struct dl_bw *dl_b);
316 extern int  sched_dl_global_validate(void);
317 extern void sched_dl_do_global(void);
318 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
319 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
320 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
321 extern bool __checkparam_dl(const struct sched_attr *attr);
322 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
323 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
324 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
325 extern bool dl_cpu_busy(unsigned int cpu);
326 
327 #ifdef CONFIG_CGROUP_SCHED
328 
329 #include <linux/cgroup.h>
330 
331 struct cfs_rq;
332 struct rt_rq;
333 
334 extern struct list_head task_groups;
335 
336 struct cfs_bandwidth {
337 #ifdef CONFIG_CFS_BANDWIDTH
338 	raw_spinlock_t		lock;
339 	ktime_t			period;
340 	u64			quota;
341 	u64			runtime;
342 	s64			hierarchical_quota;
343 
344 	short			idle;
345 	short			period_active;
346 	struct hrtimer		period_timer;
347 	struct hrtimer		slack_timer;
348 	struct list_head	throttled_cfs_rq;
349 
350 	/* Statistics: */
351 	int			nr_periods;
352 	int			nr_throttled;
353 	u64			throttled_time;
354 
355 	bool                    distribute_running;
356 #endif
357 };
358 
359 /* Task group related information */
360 struct task_group {
361 	struct cgroup_subsys_state css;
362 
363 #ifdef CONFIG_FAIR_GROUP_SCHED
364 	/* schedulable entities of this group on each CPU */
365 	struct sched_entity	**se;
366 	/* runqueue "owned" by this group on each CPU */
367 	struct cfs_rq		**cfs_rq;
368 	unsigned long		shares;
369 
370 #ifdef	CONFIG_SMP
371 	/*
372 	 * load_avg can be heavily contended at clock tick time, so put
373 	 * it in its own cacheline separated from the fields above which
374 	 * will also be accessed at each tick.
375 	 */
376 	atomic_long_t		load_avg ____cacheline_aligned;
377 #endif
378 #endif
379 
380 #ifdef CONFIG_RT_GROUP_SCHED
381 	struct sched_rt_entity	**rt_se;
382 	struct rt_rq		**rt_rq;
383 
384 	struct rt_bandwidth	rt_bandwidth;
385 #endif
386 
387 	struct rcu_head		rcu;
388 	struct list_head	list;
389 
390 	struct task_group	*parent;
391 	struct list_head	siblings;
392 	struct list_head	children;
393 
394 #ifdef CONFIG_SCHED_AUTOGROUP
395 	struct autogroup	*autogroup;
396 #endif
397 
398 	struct cfs_bandwidth	cfs_bandwidth;
399 };
400 
401 #ifdef CONFIG_FAIR_GROUP_SCHED
402 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
403 
404 /*
405  * A weight of 0 or 1 can cause arithmetics problems.
406  * A weight of a cfs_rq is the sum of weights of which entities
407  * are queued on this cfs_rq, so a weight of a entity should not be
408  * too large, so as the shares value of a task group.
409  * (The default weight is 1024 - so there's no practical
410  *  limitation from this.)
411  */
412 #define MIN_SHARES		(1UL <<  1)
413 #define MAX_SHARES		(1UL << 18)
414 #endif
415 
416 typedef int (*tg_visitor)(struct task_group *, void *);
417 
418 extern int walk_tg_tree_from(struct task_group *from,
419 			     tg_visitor down, tg_visitor up, void *data);
420 
421 /*
422  * Iterate the full tree, calling @down when first entering a node and @up when
423  * leaving it for the final time.
424  *
425  * Caller must hold rcu_lock or sufficient equivalent.
426  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)427 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
428 {
429 	return walk_tg_tree_from(&root_task_group, down, up, data);
430 }
431 
432 extern int tg_nop(struct task_group *tg, void *data);
433 
434 extern void free_fair_sched_group(struct task_group *tg);
435 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
436 extern void online_fair_sched_group(struct task_group *tg);
437 extern void unregister_fair_sched_group(struct task_group *tg);
438 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
439 			struct sched_entity *se, int cpu,
440 			struct sched_entity *parent);
441 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
442 
443 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
444 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
445 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
446 
447 extern void free_rt_sched_group(struct task_group *tg);
448 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
449 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
450 		struct sched_rt_entity *rt_se, int cpu,
451 		struct sched_rt_entity *parent);
452 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
453 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
454 extern long sched_group_rt_runtime(struct task_group *tg);
455 extern long sched_group_rt_period(struct task_group *tg);
456 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
457 
458 extern struct task_group *sched_create_group(struct task_group *parent);
459 extern void sched_online_group(struct task_group *tg,
460 			       struct task_group *parent);
461 extern void sched_destroy_group(struct task_group *tg);
462 extern void sched_offline_group(struct task_group *tg);
463 
464 extern void sched_move_task(struct task_struct *tsk);
465 
466 #ifdef CONFIG_FAIR_GROUP_SCHED
467 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
468 
469 #ifdef CONFIG_SMP
470 extern void set_task_rq_fair(struct sched_entity *se,
471 			     struct cfs_rq *prev, struct cfs_rq *next);
472 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)473 static inline void set_task_rq_fair(struct sched_entity *se,
474 			     struct cfs_rq *prev, struct cfs_rq *next) { }
475 #endif /* CONFIG_SMP */
476 #endif /* CONFIG_FAIR_GROUP_SCHED */
477 
478 #else /* CONFIG_CGROUP_SCHED */
479 
480 struct cfs_bandwidth { };
481 
482 #endif	/* CONFIG_CGROUP_SCHED */
483 
484 /* CFS-related fields in a runqueue */
485 struct cfs_rq {
486 	struct load_weight	load;
487 	unsigned long		runnable_weight;
488 	unsigned int		nr_running;
489 	unsigned int		h_nr_running;
490 
491 	u64			exec_clock;
492 	u64			min_vruntime;
493 #ifndef CONFIG_64BIT
494 	u64			min_vruntime_copy;
495 #endif
496 
497 	struct rb_root_cached	tasks_timeline;
498 
499 	/*
500 	 * 'curr' points to currently running entity on this cfs_rq.
501 	 * It is set to NULL otherwise (i.e when none are currently running).
502 	 */
503 	struct sched_entity	*curr;
504 	struct sched_entity	*next;
505 	struct sched_entity	*last;
506 	struct sched_entity	*skip;
507 
508 #ifdef	CONFIG_SCHED_DEBUG
509 	unsigned int		nr_spread_over;
510 #endif
511 
512 #ifdef CONFIG_SMP
513 	/*
514 	 * CFS load tracking
515 	 */
516 	struct sched_avg	avg;
517 #ifndef CONFIG_64BIT
518 	u64			load_last_update_time_copy;
519 #endif
520 	struct {
521 		raw_spinlock_t	lock ____cacheline_aligned;
522 		int		nr;
523 		unsigned long	load_avg;
524 		unsigned long	util_avg;
525 		unsigned long	runnable_sum;
526 	} removed;
527 
528 #ifdef CONFIG_FAIR_GROUP_SCHED
529 	unsigned long		tg_load_avg_contrib;
530 	long			propagate;
531 	long			prop_runnable_sum;
532 
533 	/*
534 	 *   h_load = weight * f(tg)
535 	 *
536 	 * Where f(tg) is the recursive weight fraction assigned to
537 	 * this group.
538 	 */
539 	unsigned long		h_load;
540 	u64			last_h_load_update;
541 	struct sched_entity	*h_load_next;
542 #endif /* CONFIG_FAIR_GROUP_SCHED */
543 #endif /* CONFIG_SMP */
544 
545 #ifdef CONFIG_FAIR_GROUP_SCHED
546 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
547 
548 	/*
549 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
550 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
551 	 * (like users, containers etc.)
552 	 *
553 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
554 	 * This list is used during load balance.
555 	 */
556 	int			on_list;
557 	struct list_head	leaf_cfs_rq_list;
558 	struct task_group	*tg;	/* group that "owns" this runqueue */
559 
560 #ifdef CONFIG_CFS_BANDWIDTH
561 	int			runtime_enabled;
562 	s64			runtime_remaining;
563 
564 	u64			throttled_clock;
565 	u64			throttled_clock_task;
566 	u64			throttled_clock_task_time;
567 	int			throttled;
568 	int			throttle_count;
569 	struct list_head	throttled_list;
570 #endif /* CONFIG_CFS_BANDWIDTH */
571 #endif /* CONFIG_FAIR_GROUP_SCHED */
572 };
573 
rt_bandwidth_enabled(void)574 static inline int rt_bandwidth_enabled(void)
575 {
576 	return sysctl_sched_rt_runtime >= 0;
577 }
578 
579 /* RT IPI pull logic requires IRQ_WORK */
580 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
581 # define HAVE_RT_PUSH_IPI
582 #endif
583 
584 /* Real-Time classes' related field in a runqueue: */
585 struct rt_rq {
586 	struct rt_prio_array	active;
587 	unsigned int		rt_nr_running;
588 	unsigned int		rr_nr_running;
589 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
590 	struct {
591 		int		curr; /* highest queued rt task prio */
592 #ifdef CONFIG_SMP
593 		int		next; /* next highest */
594 #endif
595 	} highest_prio;
596 #endif
597 #ifdef CONFIG_SMP
598 	unsigned long		rt_nr_migratory;
599 	unsigned long		rt_nr_total;
600 	int			overloaded;
601 	struct plist_head	pushable_tasks;
602 
603 #endif /* CONFIG_SMP */
604 	int			rt_queued;
605 
606 	int			rt_throttled;
607 	u64			rt_time;
608 	u64			rt_runtime;
609 	/* Nests inside the rq lock: */
610 	raw_spinlock_t		rt_runtime_lock;
611 
612 #ifdef CONFIG_RT_GROUP_SCHED
613 	unsigned long		rt_nr_boosted;
614 
615 	struct rq		*rq;
616 	struct task_group	*tg;
617 #endif
618 };
619 
rt_rq_is_runnable(struct rt_rq * rt_rq)620 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
621 {
622 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
623 }
624 
625 /* Deadline class' related fields in a runqueue */
626 struct dl_rq {
627 	/* runqueue is an rbtree, ordered by deadline */
628 	struct rb_root_cached	root;
629 
630 	unsigned long		dl_nr_running;
631 
632 #ifdef CONFIG_SMP
633 	/*
634 	 * Deadline values of the currently executing and the
635 	 * earliest ready task on this rq. Caching these facilitates
636 	 * the decision wether or not a ready but not running task
637 	 * should migrate somewhere else.
638 	 */
639 	struct {
640 		u64		curr;
641 		u64		next;
642 	} earliest_dl;
643 
644 	unsigned long		dl_nr_migratory;
645 	int			overloaded;
646 
647 	/*
648 	 * Tasks on this rq that can be pushed away. They are kept in
649 	 * an rb-tree, ordered by tasks' deadlines, with caching
650 	 * of the leftmost (earliest deadline) element.
651 	 */
652 	struct rb_root_cached	pushable_dl_tasks_root;
653 #else
654 	struct dl_bw		dl_bw;
655 #endif
656 	/*
657 	 * "Active utilization" for this runqueue: increased when a
658 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
659 	 * task blocks
660 	 */
661 	u64			running_bw;
662 
663 	/*
664 	 * Utilization of the tasks "assigned" to this runqueue (including
665 	 * the tasks that are in runqueue and the tasks that executed on this
666 	 * CPU and blocked). Increased when a task moves to this runqueue, and
667 	 * decreased when the task moves away (migrates, changes scheduling
668 	 * policy, or terminates).
669 	 * This is needed to compute the "inactive utilization" for the
670 	 * runqueue (inactive utilization = this_bw - running_bw).
671 	 */
672 	u64			this_bw;
673 	u64			extra_bw;
674 
675 	/*
676 	 * Inverse of the fraction of CPU utilization that can be reclaimed
677 	 * by the GRUB algorithm.
678 	 */
679 	u64			bw_ratio;
680 };
681 
682 #ifdef CONFIG_FAIR_GROUP_SCHED
683 /* An entity is a task if it doesn't "own" a runqueue */
684 #define entity_is_task(se)	(!se->my_q)
685 #else
686 #define entity_is_task(se)	1
687 #endif
688 
689 #ifdef CONFIG_SMP
690 /*
691  * XXX we want to get rid of these helpers and use the full load resolution.
692  */
se_weight(struct sched_entity * se)693 static inline long se_weight(struct sched_entity *se)
694 {
695 	return scale_load_down(se->load.weight);
696 }
697 
se_runnable(struct sched_entity * se)698 static inline long se_runnable(struct sched_entity *se)
699 {
700 	return scale_load_down(se->runnable_weight);
701 }
702 
sched_asym_prefer(int a,int b)703 static inline bool sched_asym_prefer(int a, int b)
704 {
705 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
706 }
707 
708 /*
709  * We add the notion of a root-domain which will be used to define per-domain
710  * variables. Each exclusive cpuset essentially defines an island domain by
711  * fully partitioning the member CPUs from any other cpuset. Whenever a new
712  * exclusive cpuset is created, we also create and attach a new root-domain
713  * object.
714  *
715  */
716 struct root_domain {
717 	atomic_t		refcount;
718 	atomic_t		rto_count;
719 	struct rcu_head		rcu;
720 	cpumask_var_t		span;
721 	cpumask_var_t		online;
722 
723 	/* Indicate more than one runnable task for any CPU */
724 	bool			overload;
725 
726 	/*
727 	 * The bit corresponding to a CPU gets set here if such CPU has more
728 	 * than one runnable -deadline task (as it is below for RT tasks).
729 	 */
730 	cpumask_var_t		dlo_mask;
731 	atomic_t		dlo_count;
732 	struct dl_bw		dl_bw;
733 	struct cpudl		cpudl;
734 
735 #ifdef HAVE_RT_PUSH_IPI
736 	/*
737 	 * For IPI pull requests, loop across the rto_mask.
738 	 */
739 	struct irq_work		rto_push_work;
740 	raw_spinlock_t		rto_lock;
741 	/* These are only updated and read within rto_lock */
742 	int			rto_loop;
743 	int			rto_cpu;
744 	/* These atomics are updated outside of a lock */
745 	atomic_t		rto_loop_next;
746 	atomic_t		rto_loop_start;
747 #endif
748 	/*
749 	 * The "RT overload" flag: it gets set if a CPU has more than
750 	 * one runnable RT task.
751 	 */
752 	cpumask_var_t		rto_mask;
753 	struct cpupri		cpupri;
754 
755 	unsigned long		max_cpu_capacity;
756 };
757 
758 extern struct root_domain def_root_domain;
759 extern struct mutex sched_domains_mutex;
760 
761 extern void init_defrootdomain(void);
762 extern int sched_init_domains(const struct cpumask *cpu_map);
763 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
764 extern void sched_get_rd(struct root_domain *rd);
765 extern void sched_put_rd(struct root_domain *rd);
766 
767 #ifdef HAVE_RT_PUSH_IPI
768 extern void rto_push_irq_work_func(struct irq_work *work);
769 #endif
770 #endif /* CONFIG_SMP */
771 
772 /*
773  * This is the main, per-CPU runqueue data structure.
774  *
775  * Locking rule: those places that want to lock multiple runqueues
776  * (such as the load balancing or the thread migration code), lock
777  * acquire operations must be ordered by ascending &runqueue.
778  */
779 struct rq {
780 	/* runqueue lock: */
781 	raw_spinlock_t		lock;
782 
783 	/*
784 	 * nr_running and cpu_load should be in the same cacheline because
785 	 * remote CPUs use both these fields when doing load calculation.
786 	 */
787 	unsigned int		nr_running;
788 #ifdef CONFIG_NUMA_BALANCING
789 	unsigned int		nr_numa_running;
790 	unsigned int		nr_preferred_running;
791 	unsigned int		numa_migrate_on;
792 #endif
793 	#define CPU_LOAD_IDX_MAX 5
794 	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
795 #ifdef CONFIG_NO_HZ_COMMON
796 #ifdef CONFIG_SMP
797 	unsigned long		last_load_update_tick;
798 	unsigned long		last_blocked_load_update_tick;
799 	unsigned int		has_blocked_load;
800 #endif /* CONFIG_SMP */
801 	unsigned int		nohz_tick_stopped;
802 	atomic_t nohz_flags;
803 #endif /* CONFIG_NO_HZ_COMMON */
804 
805 	/* capture load from *all* tasks on this CPU: */
806 	struct load_weight	load;
807 	unsigned long		nr_load_updates;
808 	u64			nr_switches;
809 
810 	struct cfs_rq		cfs;
811 	struct rt_rq		rt;
812 	struct dl_rq		dl;
813 
814 #ifdef CONFIG_FAIR_GROUP_SCHED
815 	/* list of leaf cfs_rq on this CPU: */
816 	struct list_head	leaf_cfs_rq_list;
817 	struct list_head	*tmp_alone_branch;
818 #endif /* CONFIG_FAIR_GROUP_SCHED */
819 
820 	/*
821 	 * This is part of a global counter where only the total sum
822 	 * over all CPUs matters. A task can increase this counter on
823 	 * one CPU and if it got migrated afterwards it may decrease
824 	 * it on another CPU. Always updated under the runqueue lock:
825 	 */
826 	unsigned long		nr_uninterruptible;
827 
828 	struct task_struct	*curr;
829 	struct task_struct	*idle;
830 	struct task_struct	*stop;
831 	unsigned long		next_balance;
832 	struct mm_struct	*prev_mm;
833 
834 	unsigned int		clock_update_flags;
835 	u64			clock;
836 	u64			clock_task;
837 
838 	atomic_t		nr_iowait;
839 
840 #ifdef CONFIG_SMP
841 	struct root_domain	*rd;
842 	struct sched_domain	*sd;
843 
844 	unsigned long		cpu_capacity;
845 	unsigned long		cpu_capacity_orig;
846 
847 	struct callback_head	*balance_callback;
848 
849 	unsigned char		idle_balance;
850 
851 	/* For active balancing */
852 	int			active_balance;
853 	int			push_cpu;
854 	struct cpu_stop_work	active_balance_work;
855 
856 	/* CPU of this runqueue: */
857 	int			cpu;
858 	int			online;
859 
860 	struct list_head cfs_tasks;
861 
862 	struct sched_avg	avg_rt;
863 	struct sched_avg	avg_dl;
864 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
865 	struct sched_avg	avg_irq;
866 #endif
867 	u64			idle_stamp;
868 	u64			avg_idle;
869 
870 	/* This is used to determine avg_idle's max value */
871 	u64			max_idle_balance_cost;
872 #endif
873 
874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
875 	u64			prev_irq_time;
876 #endif
877 #ifdef CONFIG_PARAVIRT
878 	u64			prev_steal_time;
879 #endif
880 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
881 	u64			prev_steal_time_rq;
882 #endif
883 
884 	/* calc_load related fields */
885 	unsigned long		calc_load_update;
886 	long			calc_load_active;
887 
888 #ifdef CONFIG_SCHED_HRTICK
889 #ifdef CONFIG_SMP
890 	int			hrtick_csd_pending;
891 	call_single_data_t	hrtick_csd;
892 #endif
893 	struct hrtimer		hrtick_timer;
894 #endif
895 
896 #ifdef CONFIG_SCHEDSTATS
897 	/* latency stats */
898 	struct sched_info	rq_sched_info;
899 	unsigned long long	rq_cpu_time;
900 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
901 
902 	/* sys_sched_yield() stats */
903 	unsigned int		yld_count;
904 
905 	/* schedule() stats */
906 	unsigned int		sched_count;
907 	unsigned int		sched_goidle;
908 
909 	/* try_to_wake_up() stats */
910 	unsigned int		ttwu_count;
911 	unsigned int		ttwu_local;
912 #endif
913 
914 #ifdef CONFIG_SMP
915 	struct llist_head	wake_list;
916 #endif
917 
918 #ifdef CONFIG_CPU_IDLE
919 	/* Must be inspected within a rcu lock section */
920 	struct cpuidle_state	*idle_state;
921 #endif
922 };
923 
cpu_of(struct rq * rq)924 static inline int cpu_of(struct rq *rq)
925 {
926 #ifdef CONFIG_SMP
927 	return rq->cpu;
928 #else
929 	return 0;
930 #endif
931 }
932 
933 
934 #ifdef CONFIG_SCHED_SMT
935 extern void __update_idle_core(struct rq *rq);
936 
update_idle_core(struct rq * rq)937 static inline void update_idle_core(struct rq *rq)
938 {
939 	if (static_branch_unlikely(&sched_smt_present))
940 		__update_idle_core(rq);
941 }
942 
943 #else
update_idle_core(struct rq * rq)944 static inline void update_idle_core(struct rq *rq) { }
945 #endif
946 
947 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
948 
949 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
950 #define this_rq()		this_cpu_ptr(&runqueues)
951 #define task_rq(p)		cpu_rq(task_cpu(p))
952 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
953 #define raw_rq()		raw_cpu_ptr(&runqueues)
954 
__rq_clock_broken(struct rq * rq)955 static inline u64 __rq_clock_broken(struct rq *rq)
956 {
957 	return READ_ONCE(rq->clock);
958 }
959 
960 /*
961  * rq::clock_update_flags bits
962  *
963  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
964  *  call to __schedule(). This is an optimisation to avoid
965  *  neighbouring rq clock updates.
966  *
967  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
968  *  in effect and calls to update_rq_clock() are being ignored.
969  *
970  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
971  *  made to update_rq_clock() since the last time rq::lock was pinned.
972  *
973  * If inside of __schedule(), clock_update_flags will have been
974  * shifted left (a left shift is a cheap operation for the fast path
975  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
976  *
977  *	if (rq-clock_update_flags >= RQCF_UPDATED)
978  *
979  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
980  * one position though, because the next rq_unpin_lock() will shift it
981  * back.
982  */
983 #define RQCF_REQ_SKIP		0x01
984 #define RQCF_ACT_SKIP		0x02
985 #define RQCF_UPDATED		0x04
986 
assert_clock_updated(struct rq * rq)987 static inline void assert_clock_updated(struct rq *rq)
988 {
989 	/*
990 	 * The only reason for not seeing a clock update since the
991 	 * last rq_pin_lock() is if we're currently skipping updates.
992 	 */
993 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
994 }
995 
rq_clock(struct rq * rq)996 static inline u64 rq_clock(struct rq *rq)
997 {
998 	lockdep_assert_held(&rq->lock);
999 	assert_clock_updated(rq);
1000 
1001 	return rq->clock;
1002 }
1003 
rq_clock_task(struct rq * rq)1004 static inline u64 rq_clock_task(struct rq *rq)
1005 {
1006 	lockdep_assert_held(&rq->lock);
1007 	assert_clock_updated(rq);
1008 
1009 	return rq->clock_task;
1010 }
1011 
rq_clock_skip_update(struct rq * rq)1012 static inline void rq_clock_skip_update(struct rq *rq)
1013 {
1014 	lockdep_assert_held(&rq->lock);
1015 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1016 }
1017 
1018 /*
1019  * See rt task throttling, which is the only time a skip
1020  * request is cancelled.
1021  */
rq_clock_cancel_skipupdate(struct rq * rq)1022 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1023 {
1024 	lockdep_assert_held(&rq->lock);
1025 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1026 }
1027 
1028 struct rq_flags {
1029 	unsigned long flags;
1030 	struct pin_cookie cookie;
1031 #ifdef CONFIG_SCHED_DEBUG
1032 	/*
1033 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1034 	 * current pin context is stashed here in case it needs to be
1035 	 * restored in rq_repin_lock().
1036 	 */
1037 	unsigned int clock_update_flags;
1038 #endif
1039 };
1040 
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1041 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1042 {
1043 	rf->cookie = lockdep_pin_lock(&rq->lock);
1044 
1045 #ifdef CONFIG_SCHED_DEBUG
1046 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1047 	rf->clock_update_flags = 0;
1048 #endif
1049 }
1050 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1051 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1052 {
1053 #ifdef CONFIG_SCHED_DEBUG
1054 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1055 		rf->clock_update_flags = RQCF_UPDATED;
1056 #endif
1057 
1058 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1059 }
1060 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1061 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1062 {
1063 	lockdep_repin_lock(&rq->lock, rf->cookie);
1064 
1065 #ifdef CONFIG_SCHED_DEBUG
1066 	/*
1067 	 * Restore the value we stashed in @rf for this pin context.
1068 	 */
1069 	rq->clock_update_flags |= rf->clock_update_flags;
1070 #endif
1071 }
1072 
1073 #ifdef CONFIG_NUMA
1074 enum numa_topology_type {
1075 	NUMA_DIRECT,
1076 	NUMA_GLUELESS_MESH,
1077 	NUMA_BACKPLANE,
1078 };
1079 extern enum numa_topology_type sched_numa_topology_type;
1080 extern int sched_max_numa_distance;
1081 extern bool find_numa_distance(int distance);
1082 #endif
1083 
1084 #ifdef CONFIG_NUMA
1085 extern void sched_init_numa(void);
1086 extern void sched_domains_numa_masks_set(unsigned int cpu);
1087 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1088 #else
sched_init_numa(void)1089 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1090 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1091 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1092 #endif
1093 
1094 #ifdef CONFIG_NUMA_BALANCING
1095 /* The regions in numa_faults array from task_struct */
1096 enum numa_faults_stats {
1097 	NUMA_MEM = 0,
1098 	NUMA_CPU,
1099 	NUMA_MEMBUF,
1100 	NUMA_CPUBUF
1101 };
1102 extern void sched_setnuma(struct task_struct *p, int node);
1103 extern int migrate_task_to(struct task_struct *p, int cpu);
1104 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1105 			int cpu, int scpu);
1106 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1107 #else
1108 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1109 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1110 {
1111 }
1112 #endif /* CONFIG_NUMA_BALANCING */
1113 
1114 #ifdef CONFIG_SMP
1115 
1116 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1117 queue_balance_callback(struct rq *rq,
1118 		       struct callback_head *head,
1119 		       void (*func)(struct rq *rq))
1120 {
1121 	lockdep_assert_held(&rq->lock);
1122 
1123 	if (unlikely(head->next))
1124 		return;
1125 
1126 	head->func = (void (*)(struct callback_head *))func;
1127 	head->next = rq->balance_callback;
1128 	rq->balance_callback = head;
1129 }
1130 
1131 extern void sched_ttwu_pending(void);
1132 
1133 #define rcu_dereference_check_sched_domain(p) \
1134 	rcu_dereference_check((p), \
1135 			      lockdep_is_held(&sched_domains_mutex))
1136 
1137 /*
1138  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1139  * See detach_destroy_domains: synchronize_sched for details.
1140  *
1141  * The domain tree of any CPU may only be accessed from within
1142  * preempt-disabled sections.
1143  */
1144 #define for_each_domain(cpu, __sd) \
1145 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1146 			__sd; __sd = __sd->parent)
1147 
1148 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1149 
1150 /**
1151  * highest_flag_domain - Return highest sched_domain containing flag.
1152  * @cpu:	The CPU whose highest level of sched domain is to
1153  *		be returned.
1154  * @flag:	The flag to check for the highest sched_domain
1155  *		for the given CPU.
1156  *
1157  * Returns the highest sched_domain of a CPU which contains the given flag.
1158  */
highest_flag_domain(int cpu,int flag)1159 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1160 {
1161 	struct sched_domain *sd, *hsd = NULL;
1162 
1163 	for_each_domain(cpu, sd) {
1164 		if (!(sd->flags & flag))
1165 			break;
1166 		hsd = sd;
1167 	}
1168 
1169 	return hsd;
1170 }
1171 
lowest_flag_domain(int cpu,int flag)1172 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1173 {
1174 	struct sched_domain *sd;
1175 
1176 	for_each_domain(cpu, sd) {
1177 		if (sd->flags & flag)
1178 			break;
1179 	}
1180 
1181 	return sd;
1182 }
1183 
1184 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1185 DECLARE_PER_CPU(int, sd_llc_size);
1186 DECLARE_PER_CPU(int, sd_llc_id);
1187 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1188 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1189 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1190 
1191 struct sched_group_capacity {
1192 	atomic_t		ref;
1193 	/*
1194 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1195 	 * for a single CPU.
1196 	 */
1197 	unsigned long		capacity;
1198 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1199 	unsigned long		next_update;
1200 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1201 
1202 #ifdef CONFIG_SCHED_DEBUG
1203 	int			id;
1204 #endif
1205 
1206 	unsigned long		cpumask[0];		/* Balance mask */
1207 };
1208 
1209 struct sched_group {
1210 	struct sched_group	*next;			/* Must be a circular list */
1211 	atomic_t		ref;
1212 
1213 	unsigned int		group_weight;
1214 	struct sched_group_capacity *sgc;
1215 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1216 
1217 	/*
1218 	 * The CPUs this group covers.
1219 	 *
1220 	 * NOTE: this field is variable length. (Allocated dynamically
1221 	 * by attaching extra space to the end of the structure,
1222 	 * depending on how many CPUs the kernel has booted up with)
1223 	 */
1224 	unsigned long		cpumask[0];
1225 };
1226 
sched_group_span(struct sched_group * sg)1227 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1228 {
1229 	return to_cpumask(sg->cpumask);
1230 }
1231 
1232 /*
1233  * See build_balance_mask().
1234  */
group_balance_mask(struct sched_group * sg)1235 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1236 {
1237 	return to_cpumask(sg->sgc->cpumask);
1238 }
1239 
1240 /**
1241  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1242  * @group: The group whose first CPU is to be returned.
1243  */
group_first_cpu(struct sched_group * group)1244 static inline unsigned int group_first_cpu(struct sched_group *group)
1245 {
1246 	return cpumask_first(sched_group_span(group));
1247 }
1248 
1249 extern int group_balance_cpu(struct sched_group *sg);
1250 
1251 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1252 void register_sched_domain_sysctl(void);
1253 void dirty_sched_domain_sysctl(int cpu);
1254 void unregister_sched_domain_sysctl(void);
1255 #else
register_sched_domain_sysctl(void)1256 static inline void register_sched_domain_sysctl(void)
1257 {
1258 }
dirty_sched_domain_sysctl(int cpu)1259 static inline void dirty_sched_domain_sysctl(int cpu)
1260 {
1261 }
unregister_sched_domain_sysctl(void)1262 static inline void unregister_sched_domain_sysctl(void)
1263 {
1264 }
1265 #endif
1266 
1267 #else
1268 
sched_ttwu_pending(void)1269 static inline void sched_ttwu_pending(void) { }
1270 
1271 #endif /* CONFIG_SMP */
1272 
1273 #include "stats.h"
1274 #include "autogroup.h"
1275 
1276 #ifdef CONFIG_CGROUP_SCHED
1277 
1278 /*
1279  * Return the group to which this tasks belongs.
1280  *
1281  * We cannot use task_css() and friends because the cgroup subsystem
1282  * changes that value before the cgroup_subsys::attach() method is called,
1283  * therefore we cannot pin it and might observe the wrong value.
1284  *
1285  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1286  * core changes this before calling sched_move_task().
1287  *
1288  * Instead we use a 'copy' which is updated from sched_move_task() while
1289  * holding both task_struct::pi_lock and rq::lock.
1290  */
task_group(struct task_struct * p)1291 static inline struct task_group *task_group(struct task_struct *p)
1292 {
1293 	return p->sched_task_group;
1294 }
1295 
1296 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1297 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1298 {
1299 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1300 	struct task_group *tg = task_group(p);
1301 #endif
1302 
1303 #ifdef CONFIG_FAIR_GROUP_SCHED
1304 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1305 	p->se.cfs_rq = tg->cfs_rq[cpu];
1306 	p->se.parent = tg->se[cpu];
1307 #endif
1308 
1309 #ifdef CONFIG_RT_GROUP_SCHED
1310 	p->rt.rt_rq  = tg->rt_rq[cpu];
1311 	p->rt.parent = tg->rt_se[cpu];
1312 #endif
1313 }
1314 
1315 #else /* CONFIG_CGROUP_SCHED */
1316 
set_task_rq(struct task_struct * p,unsigned int cpu)1317 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1318 static inline struct task_group *task_group(struct task_struct *p)
1319 {
1320 	return NULL;
1321 }
1322 
1323 #endif /* CONFIG_CGROUP_SCHED */
1324 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1325 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1326 {
1327 	set_task_rq(p, cpu);
1328 #ifdef CONFIG_SMP
1329 	/*
1330 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1331 	 * successfuly executed on another CPU. We must ensure that updates of
1332 	 * per-task data have been completed by this moment.
1333 	 */
1334 	smp_wmb();
1335 #ifdef CONFIG_THREAD_INFO_IN_TASK
1336 	WRITE_ONCE(p->cpu, cpu);
1337 #else
1338 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1339 #endif
1340 	p->wake_cpu = cpu;
1341 #endif
1342 }
1343 
1344 /*
1345  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1346  */
1347 #ifdef CONFIG_SCHED_DEBUG
1348 # include <linux/static_key.h>
1349 # define const_debug __read_mostly
1350 #else
1351 # define const_debug const
1352 #endif
1353 
1354 #define SCHED_FEAT(name, enabled)	\
1355 	__SCHED_FEAT_##name ,
1356 
1357 enum {
1358 #include "features.h"
1359 	__SCHED_FEAT_NR,
1360 };
1361 
1362 #undef SCHED_FEAT
1363 
1364 #ifdef CONFIG_SCHED_DEBUG
1365 
1366 /*
1367  * To support run-time toggling of sched features, all the translation units
1368  * (but core.c) reference the sysctl_sched_features defined in core.c.
1369  */
1370 extern const_debug unsigned int sysctl_sched_features;
1371 
1372 #ifdef CONFIG_JUMP_LABEL
1373 #define SCHED_FEAT(name, enabled)					\
1374 static __always_inline bool static_branch_##name(struct static_key *key) \
1375 {									\
1376 	return static_key_##enabled(key);				\
1377 }
1378 
1379 #include "features.h"
1380 #undef SCHED_FEAT
1381 
1382 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1383 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1384 
1385 #else /* !CONFIG_JUMP_LABEL */
1386 
1387 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1388 
1389 #endif /* CONFIG_JUMP_LABEL */
1390 
1391 #else /* !SCHED_DEBUG */
1392 
1393 /*
1394  * Each translation unit has its own copy of sysctl_sched_features to allow
1395  * constants propagation at compile time and compiler optimization based on
1396  * features default.
1397  */
1398 #define SCHED_FEAT(name, enabled)	\
1399 	(1UL << __SCHED_FEAT_##name) * enabled |
1400 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1401 #include "features.h"
1402 	0;
1403 #undef SCHED_FEAT
1404 
1405 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1406 
1407 #endif /* SCHED_DEBUG */
1408 
1409 extern struct static_key_false sched_numa_balancing;
1410 extern struct static_key_false sched_schedstats;
1411 
global_rt_period(void)1412 static inline u64 global_rt_period(void)
1413 {
1414 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1415 }
1416 
global_rt_runtime(void)1417 static inline u64 global_rt_runtime(void)
1418 {
1419 	if (sysctl_sched_rt_runtime < 0)
1420 		return RUNTIME_INF;
1421 
1422 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1423 }
1424 
task_current(struct rq * rq,struct task_struct * p)1425 static inline int task_current(struct rq *rq, struct task_struct *p)
1426 {
1427 	return rq->curr == p;
1428 }
1429 
task_running(struct rq * rq,struct task_struct * p)1430 static inline int task_running(struct rq *rq, struct task_struct *p)
1431 {
1432 #ifdef CONFIG_SMP
1433 	return p->on_cpu;
1434 #else
1435 	return task_current(rq, p);
1436 #endif
1437 }
1438 
task_on_rq_queued(struct task_struct * p)1439 static inline int task_on_rq_queued(struct task_struct *p)
1440 {
1441 	return p->on_rq == TASK_ON_RQ_QUEUED;
1442 }
1443 
task_on_rq_migrating(struct task_struct * p)1444 static inline int task_on_rq_migrating(struct task_struct *p)
1445 {
1446 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1447 }
1448 
1449 /*
1450  * wake flags
1451  */
1452 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1453 #define WF_FORK			0x02		/* Child wakeup after fork */
1454 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1455 
1456 /*
1457  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1458  * of tasks with abnormal "nice" values across CPUs the contribution that
1459  * each task makes to its run queue's load is weighted according to its
1460  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1461  * scaled version of the new time slice allocation that they receive on time
1462  * slice expiry etc.
1463  */
1464 
1465 #define WEIGHT_IDLEPRIO		3
1466 #define WMULT_IDLEPRIO		1431655765
1467 
1468 extern const int		sched_prio_to_weight[40];
1469 extern const u32		sched_prio_to_wmult[40];
1470 
1471 /*
1472  * {de,en}queue flags:
1473  *
1474  * DEQUEUE_SLEEP  - task is no longer runnable
1475  * ENQUEUE_WAKEUP - task just became runnable
1476  *
1477  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1478  *                are in a known state which allows modification. Such pairs
1479  *                should preserve as much state as possible.
1480  *
1481  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1482  *        in the runqueue.
1483  *
1484  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1485  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1486  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1487  *
1488  */
1489 
1490 #define DEQUEUE_SLEEP		0x01
1491 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1492 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1493 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1494 
1495 #define ENQUEUE_WAKEUP		0x01
1496 #define ENQUEUE_RESTORE		0x02
1497 #define ENQUEUE_MOVE		0x04
1498 #define ENQUEUE_NOCLOCK		0x08
1499 
1500 #define ENQUEUE_HEAD		0x10
1501 #define ENQUEUE_REPLENISH	0x20
1502 #ifdef CONFIG_SMP
1503 #define ENQUEUE_MIGRATED	0x40
1504 #else
1505 #define ENQUEUE_MIGRATED	0x00
1506 #endif
1507 
1508 #define RETRY_TASK		((void *)-1UL)
1509 
1510 struct sched_class {
1511 	const struct sched_class *next;
1512 
1513 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1514 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1515 	void (*yield_task)   (struct rq *rq);
1516 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1517 
1518 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1519 
1520 	/*
1521 	 * It is the responsibility of the pick_next_task() method that will
1522 	 * return the next task to call put_prev_task() on the @prev task or
1523 	 * something equivalent.
1524 	 *
1525 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1526 	 * tasks.
1527 	 */
1528 	struct task_struct * (*pick_next_task)(struct rq *rq,
1529 					       struct task_struct *prev,
1530 					       struct rq_flags *rf);
1531 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1532 
1533 #ifdef CONFIG_SMP
1534 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1535 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1536 
1537 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1538 
1539 	void (*set_cpus_allowed)(struct task_struct *p,
1540 				 const struct cpumask *newmask);
1541 
1542 	void (*rq_online)(struct rq *rq);
1543 	void (*rq_offline)(struct rq *rq);
1544 #endif
1545 
1546 	void (*set_curr_task)(struct rq *rq);
1547 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1548 	void (*task_fork)(struct task_struct *p);
1549 	void (*task_dead)(struct task_struct *p);
1550 
1551 	/*
1552 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1553 	 * cannot assume the switched_from/switched_to pair is serliazed by
1554 	 * rq->lock. They are however serialized by p->pi_lock.
1555 	 */
1556 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1557 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1558 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1559 			      int oldprio);
1560 
1561 	unsigned int (*get_rr_interval)(struct rq *rq,
1562 					struct task_struct *task);
1563 
1564 	void (*update_curr)(struct rq *rq);
1565 
1566 #define TASK_SET_GROUP		0
1567 #define TASK_MOVE_GROUP		1
1568 
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570 	void (*task_change_group)(struct task_struct *p, int type);
1571 #endif
1572 };
1573 
put_prev_task(struct rq * rq,struct task_struct * prev)1574 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1575 {
1576 	prev->sched_class->put_prev_task(rq, prev);
1577 }
1578 
set_curr_task(struct rq * rq,struct task_struct * curr)1579 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1580 {
1581 	curr->sched_class->set_curr_task(rq);
1582 }
1583 
1584 #ifdef CONFIG_SMP
1585 #define sched_class_highest (&stop_sched_class)
1586 #else
1587 #define sched_class_highest (&dl_sched_class)
1588 #endif
1589 #define for_each_class(class) \
1590    for (class = sched_class_highest; class; class = class->next)
1591 
1592 extern const struct sched_class stop_sched_class;
1593 extern const struct sched_class dl_sched_class;
1594 extern const struct sched_class rt_sched_class;
1595 extern const struct sched_class fair_sched_class;
1596 extern const struct sched_class idle_sched_class;
1597 
1598 
1599 #ifdef CONFIG_SMP
1600 
1601 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1602 
1603 extern void trigger_load_balance(struct rq *rq);
1604 
1605 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1606 
1607 #endif
1608 
1609 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1610 static inline void idle_set_state(struct rq *rq,
1611 				  struct cpuidle_state *idle_state)
1612 {
1613 	rq->idle_state = idle_state;
1614 }
1615 
idle_get_state(struct rq * rq)1616 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1617 {
1618 	SCHED_WARN_ON(!rcu_read_lock_held());
1619 
1620 	return rq->idle_state;
1621 }
1622 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1623 static inline void idle_set_state(struct rq *rq,
1624 				  struct cpuidle_state *idle_state)
1625 {
1626 }
1627 
idle_get_state(struct rq * rq)1628 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1629 {
1630 	return NULL;
1631 }
1632 #endif
1633 
1634 extern void schedule_idle(void);
1635 
1636 extern void sysrq_sched_debug_show(void);
1637 extern void sched_init_granularity(void);
1638 extern void update_max_interval(void);
1639 
1640 extern void init_sched_dl_class(void);
1641 extern void init_sched_rt_class(void);
1642 extern void init_sched_fair_class(void);
1643 
1644 extern void reweight_task(struct task_struct *p, int prio);
1645 
1646 extern void resched_curr(struct rq *rq);
1647 extern void resched_cpu(int cpu);
1648 
1649 extern struct rt_bandwidth def_rt_bandwidth;
1650 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1651 
1652 extern struct dl_bandwidth def_dl_bandwidth;
1653 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1654 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1655 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1656 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1657 
1658 #define BW_SHIFT		20
1659 #define BW_UNIT			(1 << BW_SHIFT)
1660 #define RATIO_SHIFT		8
1661 unsigned long to_ratio(u64 period, u64 runtime);
1662 
1663 extern void init_entity_runnable_average(struct sched_entity *se);
1664 extern void post_init_entity_util_avg(struct sched_entity *se);
1665 
1666 #ifdef CONFIG_NO_HZ_FULL
1667 extern bool sched_can_stop_tick(struct rq *rq);
1668 extern int __init sched_tick_offload_init(void);
1669 
1670 /*
1671  * Tick may be needed by tasks in the runqueue depending on their policy and
1672  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1673  * nohz mode if necessary.
1674  */
sched_update_tick_dependency(struct rq * rq)1675 static inline void sched_update_tick_dependency(struct rq *rq)
1676 {
1677 	int cpu;
1678 
1679 	if (!tick_nohz_full_enabled())
1680 		return;
1681 
1682 	cpu = cpu_of(rq);
1683 
1684 	if (!tick_nohz_full_cpu(cpu))
1685 		return;
1686 
1687 	if (sched_can_stop_tick(rq))
1688 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1689 	else
1690 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1691 }
1692 #else
sched_tick_offload_init(void)1693 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)1694 static inline void sched_update_tick_dependency(struct rq *rq) { }
1695 #endif
1696 
add_nr_running(struct rq * rq,unsigned count)1697 static inline void add_nr_running(struct rq *rq, unsigned count)
1698 {
1699 	unsigned prev_nr = rq->nr_running;
1700 
1701 	rq->nr_running = prev_nr + count;
1702 
1703 	if (prev_nr < 2 && rq->nr_running >= 2) {
1704 #ifdef CONFIG_SMP
1705 		if (!rq->rd->overload)
1706 			rq->rd->overload = true;
1707 #endif
1708 	}
1709 
1710 	sched_update_tick_dependency(rq);
1711 }
1712 
sub_nr_running(struct rq * rq,unsigned count)1713 static inline void sub_nr_running(struct rq *rq, unsigned count)
1714 {
1715 	rq->nr_running -= count;
1716 	/* Check if we still need preemption */
1717 	sched_update_tick_dependency(rq);
1718 }
1719 
1720 extern void update_rq_clock(struct rq *rq);
1721 
1722 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1723 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1724 
1725 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1726 
1727 extern const_debug unsigned int sysctl_sched_nr_migrate;
1728 extern const_debug unsigned int sysctl_sched_migration_cost;
1729 
1730 #ifdef CONFIG_SCHED_HRTICK
1731 
1732 /*
1733  * Use hrtick when:
1734  *  - enabled by features
1735  *  - hrtimer is actually high res
1736  */
hrtick_enabled(struct rq * rq)1737 static inline int hrtick_enabled(struct rq *rq)
1738 {
1739 	if (!sched_feat(HRTICK))
1740 		return 0;
1741 	if (!cpu_active(cpu_of(rq)))
1742 		return 0;
1743 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1744 }
1745 
1746 void hrtick_start(struct rq *rq, u64 delay);
1747 
1748 #else
1749 
hrtick_enabled(struct rq * rq)1750 static inline int hrtick_enabled(struct rq *rq)
1751 {
1752 	return 0;
1753 }
1754 
1755 #endif /* CONFIG_SCHED_HRTICK */
1756 
1757 #ifndef arch_scale_freq_capacity
1758 static __always_inline
arch_scale_freq_capacity(int cpu)1759 unsigned long arch_scale_freq_capacity(int cpu)
1760 {
1761 	return SCHED_CAPACITY_SCALE;
1762 }
1763 #endif
1764 
1765 #ifdef CONFIG_SMP
1766 #ifndef arch_scale_cpu_capacity
1767 static __always_inline
arch_scale_cpu_capacity(struct sched_domain * sd,int cpu)1768 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1769 {
1770 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1771 		return sd->smt_gain / sd->span_weight;
1772 
1773 	return SCHED_CAPACITY_SCALE;
1774 }
1775 #endif
1776 #else
1777 #ifndef arch_scale_cpu_capacity
1778 static __always_inline
arch_scale_cpu_capacity(void __always_unused * sd,int cpu)1779 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1780 {
1781 	return SCHED_CAPACITY_SCALE;
1782 }
1783 #endif
1784 #endif
1785 
1786 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1787 	__acquires(rq->lock);
1788 
1789 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1790 	__acquires(p->pi_lock)
1791 	__acquires(rq->lock);
1792 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1793 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1794 	__releases(rq->lock)
1795 {
1796 	rq_unpin_lock(rq, rf);
1797 	raw_spin_unlock(&rq->lock);
1798 }
1799 
1800 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1801 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1802 	__releases(rq->lock)
1803 	__releases(p->pi_lock)
1804 {
1805 	rq_unpin_lock(rq, rf);
1806 	raw_spin_unlock(&rq->lock);
1807 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1808 }
1809 
1810 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1811 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1812 	__acquires(rq->lock)
1813 {
1814 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1815 	rq_pin_lock(rq, rf);
1816 }
1817 
1818 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1819 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1820 	__acquires(rq->lock)
1821 {
1822 	raw_spin_lock_irq(&rq->lock);
1823 	rq_pin_lock(rq, rf);
1824 }
1825 
1826 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1827 rq_lock(struct rq *rq, struct rq_flags *rf)
1828 	__acquires(rq->lock)
1829 {
1830 	raw_spin_lock(&rq->lock);
1831 	rq_pin_lock(rq, rf);
1832 }
1833 
1834 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1835 rq_relock(struct rq *rq, struct rq_flags *rf)
1836 	__acquires(rq->lock)
1837 {
1838 	raw_spin_lock(&rq->lock);
1839 	rq_repin_lock(rq, rf);
1840 }
1841 
1842 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1843 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1844 	__releases(rq->lock)
1845 {
1846 	rq_unpin_lock(rq, rf);
1847 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1848 }
1849 
1850 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1851 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1852 	__releases(rq->lock)
1853 {
1854 	rq_unpin_lock(rq, rf);
1855 	raw_spin_unlock_irq(&rq->lock);
1856 }
1857 
1858 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1859 rq_unlock(struct rq *rq, struct rq_flags *rf)
1860 	__releases(rq->lock)
1861 {
1862 	rq_unpin_lock(rq, rf);
1863 	raw_spin_unlock(&rq->lock);
1864 }
1865 
1866 #ifdef CONFIG_SMP
1867 #ifdef CONFIG_PREEMPT
1868 
1869 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1870 
1871 /*
1872  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1873  * way at the expense of forcing extra atomic operations in all
1874  * invocations.  This assures that the double_lock is acquired using the
1875  * same underlying policy as the spinlock_t on this architecture, which
1876  * reduces latency compared to the unfair variant below.  However, it
1877  * also adds more overhead and therefore may reduce throughput.
1878  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1879 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1880 	__releases(this_rq->lock)
1881 	__acquires(busiest->lock)
1882 	__acquires(this_rq->lock)
1883 {
1884 	raw_spin_unlock(&this_rq->lock);
1885 	double_rq_lock(this_rq, busiest);
1886 
1887 	return 1;
1888 }
1889 
1890 #else
1891 /*
1892  * Unfair double_lock_balance: Optimizes throughput at the expense of
1893  * latency by eliminating extra atomic operations when the locks are
1894  * already in proper order on entry.  This favors lower CPU-ids and will
1895  * grant the double lock to lower CPUs over higher ids under contention,
1896  * regardless of entry order into the function.
1897  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1898 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1899 	__releases(this_rq->lock)
1900 	__acquires(busiest->lock)
1901 	__acquires(this_rq->lock)
1902 {
1903 	int ret = 0;
1904 
1905 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1906 		if (busiest < this_rq) {
1907 			raw_spin_unlock(&this_rq->lock);
1908 			raw_spin_lock(&busiest->lock);
1909 			raw_spin_lock_nested(&this_rq->lock,
1910 					      SINGLE_DEPTH_NESTING);
1911 			ret = 1;
1912 		} else
1913 			raw_spin_lock_nested(&busiest->lock,
1914 					      SINGLE_DEPTH_NESTING);
1915 	}
1916 	return ret;
1917 }
1918 
1919 #endif /* CONFIG_PREEMPT */
1920 
1921 /*
1922  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1923  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1924 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1925 {
1926 	if (unlikely(!irqs_disabled())) {
1927 		/* printk() doesn't work well under rq->lock */
1928 		raw_spin_unlock(&this_rq->lock);
1929 		BUG_ON(1);
1930 	}
1931 
1932 	return _double_lock_balance(this_rq, busiest);
1933 }
1934 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1935 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1936 	__releases(busiest->lock)
1937 {
1938 	raw_spin_unlock(&busiest->lock);
1939 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1940 }
1941 
double_lock(spinlock_t * l1,spinlock_t * l2)1942 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1943 {
1944 	if (l1 > l2)
1945 		swap(l1, l2);
1946 
1947 	spin_lock(l1);
1948 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1949 }
1950 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)1951 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1952 {
1953 	if (l1 > l2)
1954 		swap(l1, l2);
1955 
1956 	spin_lock_irq(l1);
1957 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1958 }
1959 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)1960 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1961 {
1962 	if (l1 > l2)
1963 		swap(l1, l2);
1964 
1965 	raw_spin_lock(l1);
1966 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1967 }
1968 
1969 /*
1970  * double_rq_lock - safely lock two runqueues
1971  *
1972  * Note this does not disable interrupts like task_rq_lock,
1973  * you need to do so manually before calling.
1974  */
double_rq_lock(struct rq * rq1,struct rq * rq2)1975 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1976 	__acquires(rq1->lock)
1977 	__acquires(rq2->lock)
1978 {
1979 	BUG_ON(!irqs_disabled());
1980 	if (rq1 == rq2) {
1981 		raw_spin_lock(&rq1->lock);
1982 		__acquire(rq2->lock);	/* Fake it out ;) */
1983 	} else {
1984 		if (rq1 < rq2) {
1985 			raw_spin_lock(&rq1->lock);
1986 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1987 		} else {
1988 			raw_spin_lock(&rq2->lock);
1989 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1990 		}
1991 	}
1992 }
1993 
1994 /*
1995  * double_rq_unlock - safely unlock two runqueues
1996  *
1997  * Note this does not restore interrupts like task_rq_unlock,
1998  * you need to do so manually after calling.
1999  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2000 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2001 	__releases(rq1->lock)
2002 	__releases(rq2->lock)
2003 {
2004 	raw_spin_unlock(&rq1->lock);
2005 	if (rq1 != rq2)
2006 		raw_spin_unlock(&rq2->lock);
2007 	else
2008 		__release(rq2->lock);
2009 }
2010 
2011 extern void set_rq_online (struct rq *rq);
2012 extern void set_rq_offline(struct rq *rq);
2013 extern bool sched_smp_initialized;
2014 
2015 #else /* CONFIG_SMP */
2016 
2017 /*
2018  * double_rq_lock - safely lock two runqueues
2019  *
2020  * Note this does not disable interrupts like task_rq_lock,
2021  * you need to do so manually before calling.
2022  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2023 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2024 	__acquires(rq1->lock)
2025 	__acquires(rq2->lock)
2026 {
2027 	BUG_ON(!irqs_disabled());
2028 	BUG_ON(rq1 != rq2);
2029 	raw_spin_lock(&rq1->lock);
2030 	__acquire(rq2->lock);	/* Fake it out ;) */
2031 }
2032 
2033 /*
2034  * double_rq_unlock - safely unlock two runqueues
2035  *
2036  * Note this does not restore interrupts like task_rq_unlock,
2037  * you need to do so manually after calling.
2038  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2039 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2040 	__releases(rq1->lock)
2041 	__releases(rq2->lock)
2042 {
2043 	BUG_ON(rq1 != rq2);
2044 	raw_spin_unlock(&rq1->lock);
2045 	__release(rq2->lock);
2046 }
2047 
2048 #endif
2049 
2050 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2051 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2052 
2053 #ifdef	CONFIG_SCHED_DEBUG
2054 extern bool sched_debug_enabled;
2055 
2056 extern void print_cfs_stats(struct seq_file *m, int cpu);
2057 extern void print_rt_stats(struct seq_file *m, int cpu);
2058 extern void print_dl_stats(struct seq_file *m, int cpu);
2059 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2060 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2061 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2062 #ifdef CONFIG_NUMA_BALANCING
2063 extern void
2064 show_numa_stats(struct task_struct *p, struct seq_file *m);
2065 extern void
2066 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2067 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2068 #endif /* CONFIG_NUMA_BALANCING */
2069 #endif /* CONFIG_SCHED_DEBUG */
2070 
2071 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2072 extern void init_rt_rq(struct rt_rq *rt_rq);
2073 extern void init_dl_rq(struct dl_rq *dl_rq);
2074 
2075 extern void cfs_bandwidth_usage_inc(void);
2076 extern void cfs_bandwidth_usage_dec(void);
2077 
2078 #ifdef CONFIG_NO_HZ_COMMON
2079 #define NOHZ_BALANCE_KICK_BIT	0
2080 #define NOHZ_STATS_KICK_BIT	1
2081 
2082 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2083 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2084 
2085 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2086 
2087 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2088 
2089 extern void nohz_balance_exit_idle(struct rq *rq);
2090 #else
nohz_balance_exit_idle(struct rq * rq)2091 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2092 #endif
2093 
2094 
2095 #ifdef CONFIG_SMP
2096 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2097 void __dl_update(struct dl_bw *dl_b, s64 bw)
2098 {
2099 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2100 	int i;
2101 
2102 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2103 			 "sched RCU must be held");
2104 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2105 		struct rq *rq = cpu_rq(i);
2106 
2107 		rq->dl.extra_bw += bw;
2108 	}
2109 }
2110 #else
2111 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2112 void __dl_update(struct dl_bw *dl_b, s64 bw)
2113 {
2114 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2115 
2116 	dl->extra_bw += bw;
2117 }
2118 #endif
2119 
2120 
2121 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2122 struct irqtime {
2123 	u64			total;
2124 	u64			tick_delta;
2125 	u64			irq_start_time;
2126 	struct u64_stats_sync	sync;
2127 };
2128 
2129 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2130 
2131 /*
2132  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2133  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2134  * and never move forward.
2135  */
irq_time_read(int cpu)2136 static inline u64 irq_time_read(int cpu)
2137 {
2138 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2139 	unsigned int seq;
2140 	u64 total;
2141 
2142 	do {
2143 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2144 		total = irqtime->total;
2145 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2146 
2147 	return total;
2148 }
2149 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2150 
2151 #ifdef CONFIG_CPU_FREQ
2152 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2153 
2154 /**
2155  * cpufreq_update_util - Take a note about CPU utilization changes.
2156  * @rq: Runqueue to carry out the update for.
2157  * @flags: Update reason flags.
2158  *
2159  * This function is called by the scheduler on the CPU whose utilization is
2160  * being updated.
2161  *
2162  * It can only be called from RCU-sched read-side critical sections.
2163  *
2164  * The way cpufreq is currently arranged requires it to evaluate the CPU
2165  * performance state (frequency/voltage) on a regular basis to prevent it from
2166  * being stuck in a completely inadequate performance level for too long.
2167  * That is not guaranteed to happen if the updates are only triggered from CFS
2168  * and DL, though, because they may not be coming in if only RT tasks are
2169  * active all the time (or there are RT tasks only).
2170  *
2171  * As a workaround for that issue, this function is called periodically by the
2172  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2173  * but that really is a band-aid.  Going forward it should be replaced with
2174  * solutions targeted more specifically at RT tasks.
2175  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2176 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2177 {
2178 	struct update_util_data *data;
2179 
2180 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2181 						  cpu_of(rq)));
2182 	if (data)
2183 		data->func(data, rq_clock(rq), flags);
2184 }
2185 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2186 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2187 #endif /* CONFIG_CPU_FREQ */
2188 
2189 #ifdef arch_scale_freq_capacity
2190 # ifndef arch_scale_freq_invariant
2191 #  define arch_scale_freq_invariant()	true
2192 # endif
2193 #else
2194 # define arch_scale_freq_invariant()	false
2195 #endif
2196 
2197 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
cpu_bw_dl(struct rq * rq)2198 static inline unsigned long cpu_bw_dl(struct rq *rq)
2199 {
2200 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2201 }
2202 
cpu_util_dl(struct rq * rq)2203 static inline unsigned long cpu_util_dl(struct rq *rq)
2204 {
2205 	return READ_ONCE(rq->avg_dl.util_avg);
2206 }
2207 
cpu_util_cfs(struct rq * rq)2208 static inline unsigned long cpu_util_cfs(struct rq *rq)
2209 {
2210 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2211 
2212 	if (sched_feat(UTIL_EST)) {
2213 		util = max_t(unsigned long, util,
2214 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2215 	}
2216 
2217 	return util;
2218 }
2219 
cpu_util_rt(struct rq * rq)2220 static inline unsigned long cpu_util_rt(struct rq *rq)
2221 {
2222 	return READ_ONCE(rq->avg_rt.util_avg);
2223 }
2224 #endif
2225 
2226 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2227 static inline unsigned long cpu_util_irq(struct rq *rq)
2228 {
2229 	return rq->avg_irq.util_avg;
2230 }
2231 
2232 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2233 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2234 {
2235 	util *= (max - irq);
2236 	util /= max;
2237 
2238 	return util;
2239 
2240 }
2241 #else
cpu_util_irq(struct rq * rq)2242 static inline unsigned long cpu_util_irq(struct rq *rq)
2243 {
2244 	return 0;
2245 }
2246 
2247 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2248 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2249 {
2250 	return util;
2251 }
2252 #endif
2253