1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35
36 #include <uapi/linux/sched/types.h>
37
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/init_task.h>
49 #include <linux/kprobes.h>
50 #include <linux/kthread.h>
51 #include <linux/membarrier.h>
52 #include <linux/migrate.h>
53 #include <linux/mmu_context.h>
54 #include <linux/nmi.h>
55 #include <linux/proc_fs.h>
56 #include <linux/prefetch.h>
57 #include <linux/profile.h>
58 #include <linux/rcupdate_wait.h>
59 #include <linux/security.h>
60 #include <linux/stackprotector.h>
61 #include <linux/stop_machine.h>
62 #include <linux/suspend.h>
63 #include <linux/swait.h>
64 #include <linux/syscalls.h>
65 #include <linux/task_work.h>
66 #include <linux/tsacct_kern.h>
67
68 #include <asm/tlb.h>
69
70 #ifdef CONFIG_PARAVIRT
71 # include <asm/paravirt.h>
72 #endif
73
74 #include "cpupri.h"
75 #include "cpudeadline.h"
76
77 #ifdef CONFIG_SCHED_DEBUG
78 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
79 #else
80 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
81 #endif
82
83 struct rq;
84 struct cpuidle_state;
85
86 /* task_struct::on_rq states: */
87 #define TASK_ON_RQ_QUEUED 1
88 #define TASK_ON_RQ_MIGRATING 2
89
90 extern __read_mostly int scheduler_running;
91
92 extern unsigned long calc_load_update;
93 extern atomic_long_t calc_load_tasks;
94
95 extern void calc_global_load_tick(struct rq *this_rq);
96 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
97
98 #ifdef CONFIG_SMP
99 extern void cpu_load_update_active(struct rq *this_rq);
100 #else
cpu_load_update_active(struct rq * this_rq)101 static inline void cpu_load_update_active(struct rq *this_rq) { }
102 #endif
103
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 /*
110 * Increase resolution of nice-level calculations for 64-bit architectures.
111 * The extra resolution improves shares distribution and load balancing of
112 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
113 * hierarchies, especially on larger systems. This is not a user-visible change
114 * and does not change the user-interface for setting shares/weights.
115 *
116 * We increase resolution only if we have enough bits to allow this increased
117 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
118 * are pretty high and the returns do not justify the increased costs.
119 *
120 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
121 * increase coverage and consistency always enable it on 64-bit platforms.
122 */
123 #ifdef CONFIG_64BIT
124 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load_down(w) \
127 ({ \
128 unsigned long __w = (w); \
129 if (__w) \
130 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
131 __w; \
132 })
133 #else
134 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
135 # define scale_load(w) (w)
136 # define scale_load_down(w) (w)
137 #endif
138
139 /*
140 * Task weight (visible to users) and its load (invisible to users) have
141 * independent resolution, but they should be well calibrated. We use
142 * scale_load() and scale_load_down(w) to convert between them. The
143 * following must be true:
144 *
145 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
146 *
147 */
148 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
149
150 /*
151 * Single value that decides SCHED_DEADLINE internal math precision.
152 * 10 -> just above 1us
153 * 9 -> just above 0.5us
154 */
155 #define DL_SCALE 10
156
157 /*
158 * Single value that denotes runtime == period, ie unlimited time.
159 */
160 #define RUNTIME_INF ((u64)~0ULL)
161
idle_policy(int policy)162 static inline int idle_policy(int policy)
163 {
164 return policy == SCHED_IDLE;
165 }
fair_policy(int policy)166 static inline int fair_policy(int policy)
167 {
168 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
169 }
170
rt_policy(int policy)171 static inline int rt_policy(int policy)
172 {
173 return policy == SCHED_FIFO || policy == SCHED_RR;
174 }
175
dl_policy(int policy)176 static inline int dl_policy(int policy)
177 {
178 return policy == SCHED_DEADLINE;
179 }
valid_policy(int policy)180 static inline bool valid_policy(int policy)
181 {
182 return idle_policy(policy) || fair_policy(policy) ||
183 rt_policy(policy) || dl_policy(policy);
184 }
185
task_has_rt_policy(struct task_struct * p)186 static inline int task_has_rt_policy(struct task_struct *p)
187 {
188 return rt_policy(p->policy);
189 }
190
task_has_dl_policy(struct task_struct * p)191 static inline int task_has_dl_policy(struct task_struct *p)
192 {
193 return dl_policy(p->policy);
194 }
195
196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
197
198 /*
199 * !! For sched_setattr_nocheck() (kernel) only !!
200 *
201 * This is actually gross. :(
202 *
203 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
204 * tasks, but still be able to sleep. We need this on platforms that cannot
205 * atomically change clock frequency. Remove once fast switching will be
206 * available on such platforms.
207 *
208 * SUGOV stands for SchedUtil GOVernor.
209 */
210 #define SCHED_FLAG_SUGOV 0x10000000
211
dl_entity_is_special(struct sched_dl_entity * dl_se)212 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
213 {
214 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
215 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
216 #else
217 return false;
218 #endif
219 }
220
221 /*
222 * Tells if entity @a should preempt entity @b.
223 */
224 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)225 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
226 {
227 return dl_entity_is_special(a) ||
228 dl_time_before(a->deadline, b->deadline);
229 }
230
231 /*
232 * This is the priority-queue data structure of the RT scheduling class:
233 */
234 struct rt_prio_array {
235 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
236 struct list_head queue[MAX_RT_PRIO];
237 };
238
239 struct rt_bandwidth {
240 /* nests inside the rq lock: */
241 raw_spinlock_t rt_runtime_lock;
242 ktime_t rt_period;
243 u64 rt_runtime;
244 struct hrtimer rt_period_timer;
245 unsigned int rt_period_active;
246 };
247
248 void __dl_clear_params(struct task_struct *p);
249
250 /*
251 * To keep the bandwidth of -deadline tasks and groups under control
252 * we need some place where:
253 * - store the maximum -deadline bandwidth of the system (the group);
254 * - cache the fraction of that bandwidth that is currently allocated.
255 *
256 * This is all done in the data structure below. It is similar to the
257 * one used for RT-throttling (rt_bandwidth), with the main difference
258 * that, since here we are only interested in admission control, we
259 * do not decrease any runtime while the group "executes", neither we
260 * need a timer to replenish it.
261 *
262 * With respect to SMP, the bandwidth is given on a per-CPU basis,
263 * meaning that:
264 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
265 * - dl_total_bw array contains, in the i-eth element, the currently
266 * allocated bandwidth on the i-eth CPU.
267 * Moreover, groups consume bandwidth on each CPU, while tasks only
268 * consume bandwidth on the CPU they're running on.
269 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
270 * that will be shown the next time the proc or cgroup controls will
271 * be red. It on its turn can be changed by writing on its own
272 * control.
273 */
274 struct dl_bandwidth {
275 raw_spinlock_t dl_runtime_lock;
276 u64 dl_runtime;
277 u64 dl_period;
278 };
279
dl_bandwidth_enabled(void)280 static inline int dl_bandwidth_enabled(void)
281 {
282 return sysctl_sched_rt_runtime >= 0;
283 }
284
285 struct dl_bw {
286 raw_spinlock_t lock;
287 u64 bw;
288 u64 total_bw;
289 };
290
291 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
292
293 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)294 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 dl_b->total_bw -= tsk_bw;
297 __dl_update(dl_b, (s32)tsk_bw / cpus);
298 }
299
300 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)301 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
302 {
303 dl_b->total_bw += tsk_bw;
304 __dl_update(dl_b, -((s32)tsk_bw / cpus));
305 }
306
307 static inline
__dl_overflow(struct dl_bw * dl_b,int cpus,u64 old_bw,u64 new_bw)308 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
309 {
310 return dl_b->bw != -1 &&
311 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
312 }
313
314 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
315 extern void init_dl_bw(struct dl_bw *dl_b);
316 extern int sched_dl_global_validate(void);
317 extern void sched_dl_do_global(void);
318 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
319 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
320 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
321 extern bool __checkparam_dl(const struct sched_attr *attr);
322 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
323 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
324 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
325 extern bool dl_cpu_busy(unsigned int cpu);
326
327 #ifdef CONFIG_CGROUP_SCHED
328
329 #include <linux/cgroup.h>
330
331 struct cfs_rq;
332 struct rt_rq;
333
334 extern struct list_head task_groups;
335
336 struct cfs_bandwidth {
337 #ifdef CONFIG_CFS_BANDWIDTH
338 raw_spinlock_t lock;
339 ktime_t period;
340 u64 quota;
341 u64 runtime;
342 s64 hierarchical_quota;
343
344 short idle;
345 short period_active;
346 struct hrtimer period_timer;
347 struct hrtimer slack_timer;
348 struct list_head throttled_cfs_rq;
349
350 /* Statistics: */
351 int nr_periods;
352 int nr_throttled;
353 u64 throttled_time;
354
355 bool distribute_running;
356 #endif
357 };
358
359 /* Task group related information */
360 struct task_group {
361 struct cgroup_subsys_state css;
362
363 #ifdef CONFIG_FAIR_GROUP_SCHED
364 /* schedulable entities of this group on each CPU */
365 struct sched_entity **se;
366 /* runqueue "owned" by this group on each CPU */
367 struct cfs_rq **cfs_rq;
368 unsigned long shares;
369
370 #ifdef CONFIG_SMP
371 /*
372 * load_avg can be heavily contended at clock tick time, so put
373 * it in its own cacheline separated from the fields above which
374 * will also be accessed at each tick.
375 */
376 atomic_long_t load_avg ____cacheline_aligned;
377 #endif
378 #endif
379
380 #ifdef CONFIG_RT_GROUP_SCHED
381 struct sched_rt_entity **rt_se;
382 struct rt_rq **rt_rq;
383
384 struct rt_bandwidth rt_bandwidth;
385 #endif
386
387 struct rcu_head rcu;
388 struct list_head list;
389
390 struct task_group *parent;
391 struct list_head siblings;
392 struct list_head children;
393
394 #ifdef CONFIG_SCHED_AUTOGROUP
395 struct autogroup *autogroup;
396 #endif
397
398 struct cfs_bandwidth cfs_bandwidth;
399 };
400
401 #ifdef CONFIG_FAIR_GROUP_SCHED
402 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
403
404 /*
405 * A weight of 0 or 1 can cause arithmetics problems.
406 * A weight of a cfs_rq is the sum of weights of which entities
407 * are queued on this cfs_rq, so a weight of a entity should not be
408 * too large, so as the shares value of a task group.
409 * (The default weight is 1024 - so there's no practical
410 * limitation from this.)
411 */
412 #define MIN_SHARES (1UL << 1)
413 #define MAX_SHARES (1UL << 18)
414 #endif
415
416 typedef int (*tg_visitor)(struct task_group *, void *);
417
418 extern int walk_tg_tree_from(struct task_group *from,
419 tg_visitor down, tg_visitor up, void *data);
420
421 /*
422 * Iterate the full tree, calling @down when first entering a node and @up when
423 * leaving it for the final time.
424 *
425 * Caller must hold rcu_lock or sufficient equivalent.
426 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)427 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
428 {
429 return walk_tg_tree_from(&root_task_group, down, up, data);
430 }
431
432 extern int tg_nop(struct task_group *tg, void *data);
433
434 extern void free_fair_sched_group(struct task_group *tg);
435 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
436 extern void online_fair_sched_group(struct task_group *tg);
437 extern void unregister_fair_sched_group(struct task_group *tg);
438 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
439 struct sched_entity *se, int cpu,
440 struct sched_entity *parent);
441 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
442
443 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
444 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
445 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
446
447 extern void free_rt_sched_group(struct task_group *tg);
448 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
449 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
450 struct sched_rt_entity *rt_se, int cpu,
451 struct sched_rt_entity *parent);
452 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
453 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
454 extern long sched_group_rt_runtime(struct task_group *tg);
455 extern long sched_group_rt_period(struct task_group *tg);
456 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
457
458 extern struct task_group *sched_create_group(struct task_group *parent);
459 extern void sched_online_group(struct task_group *tg,
460 struct task_group *parent);
461 extern void sched_destroy_group(struct task_group *tg);
462 extern void sched_offline_group(struct task_group *tg);
463
464 extern void sched_move_task(struct task_struct *tsk);
465
466 #ifdef CONFIG_FAIR_GROUP_SCHED
467 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
468
469 #ifdef CONFIG_SMP
470 extern void set_task_rq_fair(struct sched_entity *se,
471 struct cfs_rq *prev, struct cfs_rq *next);
472 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)473 static inline void set_task_rq_fair(struct sched_entity *se,
474 struct cfs_rq *prev, struct cfs_rq *next) { }
475 #endif /* CONFIG_SMP */
476 #endif /* CONFIG_FAIR_GROUP_SCHED */
477
478 #else /* CONFIG_CGROUP_SCHED */
479
480 struct cfs_bandwidth { };
481
482 #endif /* CONFIG_CGROUP_SCHED */
483
484 /* CFS-related fields in a runqueue */
485 struct cfs_rq {
486 struct load_weight load;
487 unsigned long runnable_weight;
488 unsigned int nr_running;
489 unsigned int h_nr_running;
490
491 u64 exec_clock;
492 u64 min_vruntime;
493 #ifndef CONFIG_64BIT
494 u64 min_vruntime_copy;
495 #endif
496
497 struct rb_root_cached tasks_timeline;
498
499 /*
500 * 'curr' points to currently running entity on this cfs_rq.
501 * It is set to NULL otherwise (i.e when none are currently running).
502 */
503 struct sched_entity *curr;
504 struct sched_entity *next;
505 struct sched_entity *last;
506 struct sched_entity *skip;
507
508 #ifdef CONFIG_SCHED_DEBUG
509 unsigned int nr_spread_over;
510 #endif
511
512 #ifdef CONFIG_SMP
513 /*
514 * CFS load tracking
515 */
516 struct sched_avg avg;
517 #ifndef CONFIG_64BIT
518 u64 load_last_update_time_copy;
519 #endif
520 struct {
521 raw_spinlock_t lock ____cacheline_aligned;
522 int nr;
523 unsigned long load_avg;
524 unsigned long util_avg;
525 unsigned long runnable_sum;
526 } removed;
527
528 #ifdef CONFIG_FAIR_GROUP_SCHED
529 unsigned long tg_load_avg_contrib;
530 long propagate;
531 long prop_runnable_sum;
532
533 /*
534 * h_load = weight * f(tg)
535 *
536 * Where f(tg) is the recursive weight fraction assigned to
537 * this group.
538 */
539 unsigned long h_load;
540 u64 last_h_load_update;
541 struct sched_entity *h_load_next;
542 #endif /* CONFIG_FAIR_GROUP_SCHED */
543 #endif /* CONFIG_SMP */
544
545 #ifdef CONFIG_FAIR_GROUP_SCHED
546 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
547
548 /*
549 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
550 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
551 * (like users, containers etc.)
552 *
553 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
554 * This list is used during load balance.
555 */
556 int on_list;
557 struct list_head leaf_cfs_rq_list;
558 struct task_group *tg; /* group that "owns" this runqueue */
559
560 #ifdef CONFIG_CFS_BANDWIDTH
561 int runtime_enabled;
562 s64 runtime_remaining;
563
564 u64 throttled_clock;
565 u64 throttled_clock_task;
566 u64 throttled_clock_task_time;
567 int throttled;
568 int throttle_count;
569 struct list_head throttled_list;
570 #endif /* CONFIG_CFS_BANDWIDTH */
571 #endif /* CONFIG_FAIR_GROUP_SCHED */
572 };
573
rt_bandwidth_enabled(void)574 static inline int rt_bandwidth_enabled(void)
575 {
576 return sysctl_sched_rt_runtime >= 0;
577 }
578
579 /* RT IPI pull logic requires IRQ_WORK */
580 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
581 # define HAVE_RT_PUSH_IPI
582 #endif
583
584 /* Real-Time classes' related field in a runqueue: */
585 struct rt_rq {
586 struct rt_prio_array active;
587 unsigned int rt_nr_running;
588 unsigned int rr_nr_running;
589 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
590 struct {
591 int curr; /* highest queued rt task prio */
592 #ifdef CONFIG_SMP
593 int next; /* next highest */
594 #endif
595 } highest_prio;
596 #endif
597 #ifdef CONFIG_SMP
598 unsigned long rt_nr_migratory;
599 unsigned long rt_nr_total;
600 int overloaded;
601 struct plist_head pushable_tasks;
602
603 #endif /* CONFIG_SMP */
604 int rt_queued;
605
606 int rt_throttled;
607 u64 rt_time;
608 u64 rt_runtime;
609 /* Nests inside the rq lock: */
610 raw_spinlock_t rt_runtime_lock;
611
612 #ifdef CONFIG_RT_GROUP_SCHED
613 unsigned long rt_nr_boosted;
614
615 struct rq *rq;
616 struct task_group *tg;
617 #endif
618 };
619
rt_rq_is_runnable(struct rt_rq * rt_rq)620 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
621 {
622 return rt_rq->rt_queued && rt_rq->rt_nr_running;
623 }
624
625 /* Deadline class' related fields in a runqueue */
626 struct dl_rq {
627 /* runqueue is an rbtree, ordered by deadline */
628 struct rb_root_cached root;
629
630 unsigned long dl_nr_running;
631
632 #ifdef CONFIG_SMP
633 /*
634 * Deadline values of the currently executing and the
635 * earliest ready task on this rq. Caching these facilitates
636 * the decision wether or not a ready but not running task
637 * should migrate somewhere else.
638 */
639 struct {
640 u64 curr;
641 u64 next;
642 } earliest_dl;
643
644 unsigned long dl_nr_migratory;
645 int overloaded;
646
647 /*
648 * Tasks on this rq that can be pushed away. They are kept in
649 * an rb-tree, ordered by tasks' deadlines, with caching
650 * of the leftmost (earliest deadline) element.
651 */
652 struct rb_root_cached pushable_dl_tasks_root;
653 #else
654 struct dl_bw dl_bw;
655 #endif
656 /*
657 * "Active utilization" for this runqueue: increased when a
658 * task wakes up (becomes TASK_RUNNING) and decreased when a
659 * task blocks
660 */
661 u64 running_bw;
662
663 /*
664 * Utilization of the tasks "assigned" to this runqueue (including
665 * the tasks that are in runqueue and the tasks that executed on this
666 * CPU and blocked). Increased when a task moves to this runqueue, and
667 * decreased when the task moves away (migrates, changes scheduling
668 * policy, or terminates).
669 * This is needed to compute the "inactive utilization" for the
670 * runqueue (inactive utilization = this_bw - running_bw).
671 */
672 u64 this_bw;
673 u64 extra_bw;
674
675 /*
676 * Inverse of the fraction of CPU utilization that can be reclaimed
677 * by the GRUB algorithm.
678 */
679 u64 bw_ratio;
680 };
681
682 #ifdef CONFIG_FAIR_GROUP_SCHED
683 /* An entity is a task if it doesn't "own" a runqueue */
684 #define entity_is_task(se) (!se->my_q)
685 #else
686 #define entity_is_task(se) 1
687 #endif
688
689 #ifdef CONFIG_SMP
690 /*
691 * XXX we want to get rid of these helpers and use the full load resolution.
692 */
se_weight(struct sched_entity * se)693 static inline long se_weight(struct sched_entity *se)
694 {
695 return scale_load_down(se->load.weight);
696 }
697
se_runnable(struct sched_entity * se)698 static inline long se_runnable(struct sched_entity *se)
699 {
700 return scale_load_down(se->runnable_weight);
701 }
702
sched_asym_prefer(int a,int b)703 static inline bool sched_asym_prefer(int a, int b)
704 {
705 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
706 }
707
708 /*
709 * We add the notion of a root-domain which will be used to define per-domain
710 * variables. Each exclusive cpuset essentially defines an island domain by
711 * fully partitioning the member CPUs from any other cpuset. Whenever a new
712 * exclusive cpuset is created, we also create and attach a new root-domain
713 * object.
714 *
715 */
716 struct root_domain {
717 atomic_t refcount;
718 atomic_t rto_count;
719 struct rcu_head rcu;
720 cpumask_var_t span;
721 cpumask_var_t online;
722
723 /* Indicate more than one runnable task for any CPU */
724 bool overload;
725
726 /*
727 * The bit corresponding to a CPU gets set here if such CPU has more
728 * than one runnable -deadline task (as it is below for RT tasks).
729 */
730 cpumask_var_t dlo_mask;
731 atomic_t dlo_count;
732 struct dl_bw dl_bw;
733 struct cpudl cpudl;
734
735 #ifdef HAVE_RT_PUSH_IPI
736 /*
737 * For IPI pull requests, loop across the rto_mask.
738 */
739 struct irq_work rto_push_work;
740 raw_spinlock_t rto_lock;
741 /* These are only updated and read within rto_lock */
742 int rto_loop;
743 int rto_cpu;
744 /* These atomics are updated outside of a lock */
745 atomic_t rto_loop_next;
746 atomic_t rto_loop_start;
747 #endif
748 /*
749 * The "RT overload" flag: it gets set if a CPU has more than
750 * one runnable RT task.
751 */
752 cpumask_var_t rto_mask;
753 struct cpupri cpupri;
754
755 unsigned long max_cpu_capacity;
756 };
757
758 extern struct root_domain def_root_domain;
759 extern struct mutex sched_domains_mutex;
760
761 extern void init_defrootdomain(void);
762 extern int sched_init_domains(const struct cpumask *cpu_map);
763 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
764 extern void sched_get_rd(struct root_domain *rd);
765 extern void sched_put_rd(struct root_domain *rd);
766
767 #ifdef HAVE_RT_PUSH_IPI
768 extern void rto_push_irq_work_func(struct irq_work *work);
769 #endif
770 #endif /* CONFIG_SMP */
771
772 /*
773 * This is the main, per-CPU runqueue data structure.
774 *
775 * Locking rule: those places that want to lock multiple runqueues
776 * (such as the load balancing or the thread migration code), lock
777 * acquire operations must be ordered by ascending &runqueue.
778 */
779 struct rq {
780 /* runqueue lock: */
781 raw_spinlock_t lock;
782
783 /*
784 * nr_running and cpu_load should be in the same cacheline because
785 * remote CPUs use both these fields when doing load calculation.
786 */
787 unsigned int nr_running;
788 #ifdef CONFIG_NUMA_BALANCING
789 unsigned int nr_numa_running;
790 unsigned int nr_preferred_running;
791 unsigned int numa_migrate_on;
792 #endif
793 #define CPU_LOAD_IDX_MAX 5
794 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
795 #ifdef CONFIG_NO_HZ_COMMON
796 #ifdef CONFIG_SMP
797 unsigned long last_load_update_tick;
798 unsigned long last_blocked_load_update_tick;
799 unsigned int has_blocked_load;
800 #endif /* CONFIG_SMP */
801 unsigned int nohz_tick_stopped;
802 atomic_t nohz_flags;
803 #endif /* CONFIG_NO_HZ_COMMON */
804
805 /* capture load from *all* tasks on this CPU: */
806 struct load_weight load;
807 unsigned long nr_load_updates;
808 u64 nr_switches;
809
810 struct cfs_rq cfs;
811 struct rt_rq rt;
812 struct dl_rq dl;
813
814 #ifdef CONFIG_FAIR_GROUP_SCHED
815 /* list of leaf cfs_rq on this CPU: */
816 struct list_head leaf_cfs_rq_list;
817 struct list_head *tmp_alone_branch;
818 #endif /* CONFIG_FAIR_GROUP_SCHED */
819
820 /*
821 * This is part of a global counter where only the total sum
822 * over all CPUs matters. A task can increase this counter on
823 * one CPU and if it got migrated afterwards it may decrease
824 * it on another CPU. Always updated under the runqueue lock:
825 */
826 unsigned long nr_uninterruptible;
827
828 struct task_struct *curr;
829 struct task_struct *idle;
830 struct task_struct *stop;
831 unsigned long next_balance;
832 struct mm_struct *prev_mm;
833
834 unsigned int clock_update_flags;
835 u64 clock;
836 u64 clock_task;
837
838 atomic_t nr_iowait;
839
840 #ifdef CONFIG_SMP
841 struct root_domain *rd;
842 struct sched_domain *sd;
843
844 unsigned long cpu_capacity;
845 unsigned long cpu_capacity_orig;
846
847 struct callback_head *balance_callback;
848
849 unsigned char idle_balance;
850
851 /* For active balancing */
852 int active_balance;
853 int push_cpu;
854 struct cpu_stop_work active_balance_work;
855
856 /* CPU of this runqueue: */
857 int cpu;
858 int online;
859
860 struct list_head cfs_tasks;
861
862 struct sched_avg avg_rt;
863 struct sched_avg avg_dl;
864 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
865 struct sched_avg avg_irq;
866 #endif
867 u64 idle_stamp;
868 u64 avg_idle;
869
870 /* This is used to determine avg_idle's max value */
871 u64 max_idle_balance_cost;
872 #endif
873
874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
875 u64 prev_irq_time;
876 #endif
877 #ifdef CONFIG_PARAVIRT
878 u64 prev_steal_time;
879 #endif
880 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
881 u64 prev_steal_time_rq;
882 #endif
883
884 /* calc_load related fields */
885 unsigned long calc_load_update;
886 long calc_load_active;
887
888 #ifdef CONFIG_SCHED_HRTICK
889 #ifdef CONFIG_SMP
890 int hrtick_csd_pending;
891 call_single_data_t hrtick_csd;
892 #endif
893 struct hrtimer hrtick_timer;
894 #endif
895
896 #ifdef CONFIG_SCHEDSTATS
897 /* latency stats */
898 struct sched_info rq_sched_info;
899 unsigned long long rq_cpu_time;
900 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
901
902 /* sys_sched_yield() stats */
903 unsigned int yld_count;
904
905 /* schedule() stats */
906 unsigned int sched_count;
907 unsigned int sched_goidle;
908
909 /* try_to_wake_up() stats */
910 unsigned int ttwu_count;
911 unsigned int ttwu_local;
912 #endif
913
914 #ifdef CONFIG_SMP
915 struct llist_head wake_list;
916 #endif
917
918 #ifdef CONFIG_CPU_IDLE
919 /* Must be inspected within a rcu lock section */
920 struct cpuidle_state *idle_state;
921 #endif
922 };
923
cpu_of(struct rq * rq)924 static inline int cpu_of(struct rq *rq)
925 {
926 #ifdef CONFIG_SMP
927 return rq->cpu;
928 #else
929 return 0;
930 #endif
931 }
932
933
934 #ifdef CONFIG_SCHED_SMT
935 extern void __update_idle_core(struct rq *rq);
936
update_idle_core(struct rq * rq)937 static inline void update_idle_core(struct rq *rq)
938 {
939 if (static_branch_unlikely(&sched_smt_present))
940 __update_idle_core(rq);
941 }
942
943 #else
update_idle_core(struct rq * rq)944 static inline void update_idle_core(struct rq *rq) { }
945 #endif
946
947 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
948
949 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
950 #define this_rq() this_cpu_ptr(&runqueues)
951 #define task_rq(p) cpu_rq(task_cpu(p))
952 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
953 #define raw_rq() raw_cpu_ptr(&runqueues)
954
__rq_clock_broken(struct rq * rq)955 static inline u64 __rq_clock_broken(struct rq *rq)
956 {
957 return READ_ONCE(rq->clock);
958 }
959
960 /*
961 * rq::clock_update_flags bits
962 *
963 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
964 * call to __schedule(). This is an optimisation to avoid
965 * neighbouring rq clock updates.
966 *
967 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
968 * in effect and calls to update_rq_clock() are being ignored.
969 *
970 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
971 * made to update_rq_clock() since the last time rq::lock was pinned.
972 *
973 * If inside of __schedule(), clock_update_flags will have been
974 * shifted left (a left shift is a cheap operation for the fast path
975 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
976 *
977 * if (rq-clock_update_flags >= RQCF_UPDATED)
978 *
979 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
980 * one position though, because the next rq_unpin_lock() will shift it
981 * back.
982 */
983 #define RQCF_REQ_SKIP 0x01
984 #define RQCF_ACT_SKIP 0x02
985 #define RQCF_UPDATED 0x04
986
assert_clock_updated(struct rq * rq)987 static inline void assert_clock_updated(struct rq *rq)
988 {
989 /*
990 * The only reason for not seeing a clock update since the
991 * last rq_pin_lock() is if we're currently skipping updates.
992 */
993 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
994 }
995
rq_clock(struct rq * rq)996 static inline u64 rq_clock(struct rq *rq)
997 {
998 lockdep_assert_held(&rq->lock);
999 assert_clock_updated(rq);
1000
1001 return rq->clock;
1002 }
1003
rq_clock_task(struct rq * rq)1004 static inline u64 rq_clock_task(struct rq *rq)
1005 {
1006 lockdep_assert_held(&rq->lock);
1007 assert_clock_updated(rq);
1008
1009 return rq->clock_task;
1010 }
1011
rq_clock_skip_update(struct rq * rq)1012 static inline void rq_clock_skip_update(struct rq *rq)
1013 {
1014 lockdep_assert_held(&rq->lock);
1015 rq->clock_update_flags |= RQCF_REQ_SKIP;
1016 }
1017
1018 /*
1019 * See rt task throttling, which is the only time a skip
1020 * request is cancelled.
1021 */
rq_clock_cancel_skipupdate(struct rq * rq)1022 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1023 {
1024 lockdep_assert_held(&rq->lock);
1025 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1026 }
1027
1028 struct rq_flags {
1029 unsigned long flags;
1030 struct pin_cookie cookie;
1031 #ifdef CONFIG_SCHED_DEBUG
1032 /*
1033 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1034 * current pin context is stashed here in case it needs to be
1035 * restored in rq_repin_lock().
1036 */
1037 unsigned int clock_update_flags;
1038 #endif
1039 };
1040
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1041 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1042 {
1043 rf->cookie = lockdep_pin_lock(&rq->lock);
1044
1045 #ifdef CONFIG_SCHED_DEBUG
1046 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1047 rf->clock_update_flags = 0;
1048 #endif
1049 }
1050
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1051 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1052 {
1053 #ifdef CONFIG_SCHED_DEBUG
1054 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1055 rf->clock_update_flags = RQCF_UPDATED;
1056 #endif
1057
1058 lockdep_unpin_lock(&rq->lock, rf->cookie);
1059 }
1060
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1061 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1062 {
1063 lockdep_repin_lock(&rq->lock, rf->cookie);
1064
1065 #ifdef CONFIG_SCHED_DEBUG
1066 /*
1067 * Restore the value we stashed in @rf for this pin context.
1068 */
1069 rq->clock_update_flags |= rf->clock_update_flags;
1070 #endif
1071 }
1072
1073 #ifdef CONFIG_NUMA
1074 enum numa_topology_type {
1075 NUMA_DIRECT,
1076 NUMA_GLUELESS_MESH,
1077 NUMA_BACKPLANE,
1078 };
1079 extern enum numa_topology_type sched_numa_topology_type;
1080 extern int sched_max_numa_distance;
1081 extern bool find_numa_distance(int distance);
1082 #endif
1083
1084 #ifdef CONFIG_NUMA
1085 extern void sched_init_numa(void);
1086 extern void sched_domains_numa_masks_set(unsigned int cpu);
1087 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1088 #else
sched_init_numa(void)1089 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1090 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1091 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1092 #endif
1093
1094 #ifdef CONFIG_NUMA_BALANCING
1095 /* The regions in numa_faults array from task_struct */
1096 enum numa_faults_stats {
1097 NUMA_MEM = 0,
1098 NUMA_CPU,
1099 NUMA_MEMBUF,
1100 NUMA_CPUBUF
1101 };
1102 extern void sched_setnuma(struct task_struct *p, int node);
1103 extern int migrate_task_to(struct task_struct *p, int cpu);
1104 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1105 int cpu, int scpu);
1106 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1107 #else
1108 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1109 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1110 {
1111 }
1112 #endif /* CONFIG_NUMA_BALANCING */
1113
1114 #ifdef CONFIG_SMP
1115
1116 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1117 queue_balance_callback(struct rq *rq,
1118 struct callback_head *head,
1119 void (*func)(struct rq *rq))
1120 {
1121 lockdep_assert_held(&rq->lock);
1122
1123 if (unlikely(head->next))
1124 return;
1125
1126 head->func = (void (*)(struct callback_head *))func;
1127 head->next = rq->balance_callback;
1128 rq->balance_callback = head;
1129 }
1130
1131 extern void sched_ttwu_pending(void);
1132
1133 #define rcu_dereference_check_sched_domain(p) \
1134 rcu_dereference_check((p), \
1135 lockdep_is_held(&sched_domains_mutex))
1136
1137 /*
1138 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1139 * See detach_destroy_domains: synchronize_sched for details.
1140 *
1141 * The domain tree of any CPU may only be accessed from within
1142 * preempt-disabled sections.
1143 */
1144 #define for_each_domain(cpu, __sd) \
1145 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1146 __sd; __sd = __sd->parent)
1147
1148 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1149
1150 /**
1151 * highest_flag_domain - Return highest sched_domain containing flag.
1152 * @cpu: The CPU whose highest level of sched domain is to
1153 * be returned.
1154 * @flag: The flag to check for the highest sched_domain
1155 * for the given CPU.
1156 *
1157 * Returns the highest sched_domain of a CPU which contains the given flag.
1158 */
highest_flag_domain(int cpu,int flag)1159 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1160 {
1161 struct sched_domain *sd, *hsd = NULL;
1162
1163 for_each_domain(cpu, sd) {
1164 if (!(sd->flags & flag))
1165 break;
1166 hsd = sd;
1167 }
1168
1169 return hsd;
1170 }
1171
lowest_flag_domain(int cpu,int flag)1172 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1173 {
1174 struct sched_domain *sd;
1175
1176 for_each_domain(cpu, sd) {
1177 if (sd->flags & flag)
1178 break;
1179 }
1180
1181 return sd;
1182 }
1183
1184 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1185 DECLARE_PER_CPU(int, sd_llc_size);
1186 DECLARE_PER_CPU(int, sd_llc_id);
1187 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1188 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1189 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1190
1191 struct sched_group_capacity {
1192 atomic_t ref;
1193 /*
1194 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1195 * for a single CPU.
1196 */
1197 unsigned long capacity;
1198 unsigned long min_capacity; /* Min per-CPU capacity in group */
1199 unsigned long next_update;
1200 int imbalance; /* XXX unrelated to capacity but shared group state */
1201
1202 #ifdef CONFIG_SCHED_DEBUG
1203 int id;
1204 #endif
1205
1206 unsigned long cpumask[0]; /* Balance mask */
1207 };
1208
1209 struct sched_group {
1210 struct sched_group *next; /* Must be a circular list */
1211 atomic_t ref;
1212
1213 unsigned int group_weight;
1214 struct sched_group_capacity *sgc;
1215 int asym_prefer_cpu; /* CPU of highest priority in group */
1216
1217 /*
1218 * The CPUs this group covers.
1219 *
1220 * NOTE: this field is variable length. (Allocated dynamically
1221 * by attaching extra space to the end of the structure,
1222 * depending on how many CPUs the kernel has booted up with)
1223 */
1224 unsigned long cpumask[0];
1225 };
1226
sched_group_span(struct sched_group * sg)1227 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1228 {
1229 return to_cpumask(sg->cpumask);
1230 }
1231
1232 /*
1233 * See build_balance_mask().
1234 */
group_balance_mask(struct sched_group * sg)1235 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1236 {
1237 return to_cpumask(sg->sgc->cpumask);
1238 }
1239
1240 /**
1241 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1242 * @group: The group whose first CPU is to be returned.
1243 */
group_first_cpu(struct sched_group * group)1244 static inline unsigned int group_first_cpu(struct sched_group *group)
1245 {
1246 return cpumask_first(sched_group_span(group));
1247 }
1248
1249 extern int group_balance_cpu(struct sched_group *sg);
1250
1251 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1252 void register_sched_domain_sysctl(void);
1253 void dirty_sched_domain_sysctl(int cpu);
1254 void unregister_sched_domain_sysctl(void);
1255 #else
register_sched_domain_sysctl(void)1256 static inline void register_sched_domain_sysctl(void)
1257 {
1258 }
dirty_sched_domain_sysctl(int cpu)1259 static inline void dirty_sched_domain_sysctl(int cpu)
1260 {
1261 }
unregister_sched_domain_sysctl(void)1262 static inline void unregister_sched_domain_sysctl(void)
1263 {
1264 }
1265 #endif
1266
1267 #else
1268
sched_ttwu_pending(void)1269 static inline void sched_ttwu_pending(void) { }
1270
1271 #endif /* CONFIG_SMP */
1272
1273 #include "stats.h"
1274 #include "autogroup.h"
1275
1276 #ifdef CONFIG_CGROUP_SCHED
1277
1278 /*
1279 * Return the group to which this tasks belongs.
1280 *
1281 * We cannot use task_css() and friends because the cgroup subsystem
1282 * changes that value before the cgroup_subsys::attach() method is called,
1283 * therefore we cannot pin it and might observe the wrong value.
1284 *
1285 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1286 * core changes this before calling sched_move_task().
1287 *
1288 * Instead we use a 'copy' which is updated from sched_move_task() while
1289 * holding both task_struct::pi_lock and rq::lock.
1290 */
task_group(struct task_struct * p)1291 static inline struct task_group *task_group(struct task_struct *p)
1292 {
1293 return p->sched_task_group;
1294 }
1295
1296 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1297 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1298 {
1299 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1300 struct task_group *tg = task_group(p);
1301 #endif
1302
1303 #ifdef CONFIG_FAIR_GROUP_SCHED
1304 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1305 p->se.cfs_rq = tg->cfs_rq[cpu];
1306 p->se.parent = tg->se[cpu];
1307 #endif
1308
1309 #ifdef CONFIG_RT_GROUP_SCHED
1310 p->rt.rt_rq = tg->rt_rq[cpu];
1311 p->rt.parent = tg->rt_se[cpu];
1312 #endif
1313 }
1314
1315 #else /* CONFIG_CGROUP_SCHED */
1316
set_task_rq(struct task_struct * p,unsigned int cpu)1317 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1318 static inline struct task_group *task_group(struct task_struct *p)
1319 {
1320 return NULL;
1321 }
1322
1323 #endif /* CONFIG_CGROUP_SCHED */
1324
__set_task_cpu(struct task_struct * p,unsigned int cpu)1325 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1326 {
1327 set_task_rq(p, cpu);
1328 #ifdef CONFIG_SMP
1329 /*
1330 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1331 * successfuly executed on another CPU. We must ensure that updates of
1332 * per-task data have been completed by this moment.
1333 */
1334 smp_wmb();
1335 #ifdef CONFIG_THREAD_INFO_IN_TASK
1336 WRITE_ONCE(p->cpu, cpu);
1337 #else
1338 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1339 #endif
1340 p->wake_cpu = cpu;
1341 #endif
1342 }
1343
1344 /*
1345 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1346 */
1347 #ifdef CONFIG_SCHED_DEBUG
1348 # include <linux/static_key.h>
1349 # define const_debug __read_mostly
1350 #else
1351 # define const_debug const
1352 #endif
1353
1354 #define SCHED_FEAT(name, enabled) \
1355 __SCHED_FEAT_##name ,
1356
1357 enum {
1358 #include "features.h"
1359 __SCHED_FEAT_NR,
1360 };
1361
1362 #undef SCHED_FEAT
1363
1364 #ifdef CONFIG_SCHED_DEBUG
1365
1366 /*
1367 * To support run-time toggling of sched features, all the translation units
1368 * (but core.c) reference the sysctl_sched_features defined in core.c.
1369 */
1370 extern const_debug unsigned int sysctl_sched_features;
1371
1372 #ifdef CONFIG_JUMP_LABEL
1373 #define SCHED_FEAT(name, enabled) \
1374 static __always_inline bool static_branch_##name(struct static_key *key) \
1375 { \
1376 return static_key_##enabled(key); \
1377 }
1378
1379 #include "features.h"
1380 #undef SCHED_FEAT
1381
1382 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1383 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1384
1385 #else /* !CONFIG_JUMP_LABEL */
1386
1387 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1388
1389 #endif /* CONFIG_JUMP_LABEL */
1390
1391 #else /* !SCHED_DEBUG */
1392
1393 /*
1394 * Each translation unit has its own copy of sysctl_sched_features to allow
1395 * constants propagation at compile time and compiler optimization based on
1396 * features default.
1397 */
1398 #define SCHED_FEAT(name, enabled) \
1399 (1UL << __SCHED_FEAT_##name) * enabled |
1400 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1401 #include "features.h"
1402 0;
1403 #undef SCHED_FEAT
1404
1405 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1406
1407 #endif /* SCHED_DEBUG */
1408
1409 extern struct static_key_false sched_numa_balancing;
1410 extern struct static_key_false sched_schedstats;
1411
global_rt_period(void)1412 static inline u64 global_rt_period(void)
1413 {
1414 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1415 }
1416
global_rt_runtime(void)1417 static inline u64 global_rt_runtime(void)
1418 {
1419 if (sysctl_sched_rt_runtime < 0)
1420 return RUNTIME_INF;
1421
1422 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1423 }
1424
task_current(struct rq * rq,struct task_struct * p)1425 static inline int task_current(struct rq *rq, struct task_struct *p)
1426 {
1427 return rq->curr == p;
1428 }
1429
task_running(struct rq * rq,struct task_struct * p)1430 static inline int task_running(struct rq *rq, struct task_struct *p)
1431 {
1432 #ifdef CONFIG_SMP
1433 return p->on_cpu;
1434 #else
1435 return task_current(rq, p);
1436 #endif
1437 }
1438
task_on_rq_queued(struct task_struct * p)1439 static inline int task_on_rq_queued(struct task_struct *p)
1440 {
1441 return p->on_rq == TASK_ON_RQ_QUEUED;
1442 }
1443
task_on_rq_migrating(struct task_struct * p)1444 static inline int task_on_rq_migrating(struct task_struct *p)
1445 {
1446 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1447 }
1448
1449 /*
1450 * wake flags
1451 */
1452 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1453 #define WF_FORK 0x02 /* Child wakeup after fork */
1454 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1455
1456 /*
1457 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1458 * of tasks with abnormal "nice" values across CPUs the contribution that
1459 * each task makes to its run queue's load is weighted according to its
1460 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1461 * scaled version of the new time slice allocation that they receive on time
1462 * slice expiry etc.
1463 */
1464
1465 #define WEIGHT_IDLEPRIO 3
1466 #define WMULT_IDLEPRIO 1431655765
1467
1468 extern const int sched_prio_to_weight[40];
1469 extern const u32 sched_prio_to_wmult[40];
1470
1471 /*
1472 * {de,en}queue flags:
1473 *
1474 * DEQUEUE_SLEEP - task is no longer runnable
1475 * ENQUEUE_WAKEUP - task just became runnable
1476 *
1477 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1478 * are in a known state which allows modification. Such pairs
1479 * should preserve as much state as possible.
1480 *
1481 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1482 * in the runqueue.
1483 *
1484 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1485 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1486 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1487 *
1488 */
1489
1490 #define DEQUEUE_SLEEP 0x01
1491 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1492 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1493 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1494
1495 #define ENQUEUE_WAKEUP 0x01
1496 #define ENQUEUE_RESTORE 0x02
1497 #define ENQUEUE_MOVE 0x04
1498 #define ENQUEUE_NOCLOCK 0x08
1499
1500 #define ENQUEUE_HEAD 0x10
1501 #define ENQUEUE_REPLENISH 0x20
1502 #ifdef CONFIG_SMP
1503 #define ENQUEUE_MIGRATED 0x40
1504 #else
1505 #define ENQUEUE_MIGRATED 0x00
1506 #endif
1507
1508 #define RETRY_TASK ((void *)-1UL)
1509
1510 struct sched_class {
1511 const struct sched_class *next;
1512
1513 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1514 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1515 void (*yield_task) (struct rq *rq);
1516 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1517
1518 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1519
1520 /*
1521 * It is the responsibility of the pick_next_task() method that will
1522 * return the next task to call put_prev_task() on the @prev task or
1523 * something equivalent.
1524 *
1525 * May return RETRY_TASK when it finds a higher prio class has runnable
1526 * tasks.
1527 */
1528 struct task_struct * (*pick_next_task)(struct rq *rq,
1529 struct task_struct *prev,
1530 struct rq_flags *rf);
1531 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1532
1533 #ifdef CONFIG_SMP
1534 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1535 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1536
1537 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1538
1539 void (*set_cpus_allowed)(struct task_struct *p,
1540 const struct cpumask *newmask);
1541
1542 void (*rq_online)(struct rq *rq);
1543 void (*rq_offline)(struct rq *rq);
1544 #endif
1545
1546 void (*set_curr_task)(struct rq *rq);
1547 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1548 void (*task_fork)(struct task_struct *p);
1549 void (*task_dead)(struct task_struct *p);
1550
1551 /*
1552 * The switched_from() call is allowed to drop rq->lock, therefore we
1553 * cannot assume the switched_from/switched_to pair is serliazed by
1554 * rq->lock. They are however serialized by p->pi_lock.
1555 */
1556 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1557 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1558 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1559 int oldprio);
1560
1561 unsigned int (*get_rr_interval)(struct rq *rq,
1562 struct task_struct *task);
1563
1564 void (*update_curr)(struct rq *rq);
1565
1566 #define TASK_SET_GROUP 0
1567 #define TASK_MOVE_GROUP 1
1568
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570 void (*task_change_group)(struct task_struct *p, int type);
1571 #endif
1572 };
1573
put_prev_task(struct rq * rq,struct task_struct * prev)1574 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1575 {
1576 prev->sched_class->put_prev_task(rq, prev);
1577 }
1578
set_curr_task(struct rq * rq,struct task_struct * curr)1579 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1580 {
1581 curr->sched_class->set_curr_task(rq);
1582 }
1583
1584 #ifdef CONFIG_SMP
1585 #define sched_class_highest (&stop_sched_class)
1586 #else
1587 #define sched_class_highest (&dl_sched_class)
1588 #endif
1589 #define for_each_class(class) \
1590 for (class = sched_class_highest; class; class = class->next)
1591
1592 extern const struct sched_class stop_sched_class;
1593 extern const struct sched_class dl_sched_class;
1594 extern const struct sched_class rt_sched_class;
1595 extern const struct sched_class fair_sched_class;
1596 extern const struct sched_class idle_sched_class;
1597
1598
1599 #ifdef CONFIG_SMP
1600
1601 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1602
1603 extern void trigger_load_balance(struct rq *rq);
1604
1605 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1606
1607 #endif
1608
1609 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1610 static inline void idle_set_state(struct rq *rq,
1611 struct cpuidle_state *idle_state)
1612 {
1613 rq->idle_state = idle_state;
1614 }
1615
idle_get_state(struct rq * rq)1616 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1617 {
1618 SCHED_WARN_ON(!rcu_read_lock_held());
1619
1620 return rq->idle_state;
1621 }
1622 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1623 static inline void idle_set_state(struct rq *rq,
1624 struct cpuidle_state *idle_state)
1625 {
1626 }
1627
idle_get_state(struct rq * rq)1628 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1629 {
1630 return NULL;
1631 }
1632 #endif
1633
1634 extern void schedule_idle(void);
1635
1636 extern void sysrq_sched_debug_show(void);
1637 extern void sched_init_granularity(void);
1638 extern void update_max_interval(void);
1639
1640 extern void init_sched_dl_class(void);
1641 extern void init_sched_rt_class(void);
1642 extern void init_sched_fair_class(void);
1643
1644 extern void reweight_task(struct task_struct *p, int prio);
1645
1646 extern void resched_curr(struct rq *rq);
1647 extern void resched_cpu(int cpu);
1648
1649 extern struct rt_bandwidth def_rt_bandwidth;
1650 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1651
1652 extern struct dl_bandwidth def_dl_bandwidth;
1653 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1654 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1655 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1656 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1657
1658 #define BW_SHIFT 20
1659 #define BW_UNIT (1 << BW_SHIFT)
1660 #define RATIO_SHIFT 8
1661 unsigned long to_ratio(u64 period, u64 runtime);
1662
1663 extern void init_entity_runnable_average(struct sched_entity *se);
1664 extern void post_init_entity_util_avg(struct sched_entity *se);
1665
1666 #ifdef CONFIG_NO_HZ_FULL
1667 extern bool sched_can_stop_tick(struct rq *rq);
1668 extern int __init sched_tick_offload_init(void);
1669
1670 /*
1671 * Tick may be needed by tasks in the runqueue depending on their policy and
1672 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1673 * nohz mode if necessary.
1674 */
sched_update_tick_dependency(struct rq * rq)1675 static inline void sched_update_tick_dependency(struct rq *rq)
1676 {
1677 int cpu;
1678
1679 if (!tick_nohz_full_enabled())
1680 return;
1681
1682 cpu = cpu_of(rq);
1683
1684 if (!tick_nohz_full_cpu(cpu))
1685 return;
1686
1687 if (sched_can_stop_tick(rq))
1688 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1689 else
1690 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1691 }
1692 #else
sched_tick_offload_init(void)1693 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)1694 static inline void sched_update_tick_dependency(struct rq *rq) { }
1695 #endif
1696
add_nr_running(struct rq * rq,unsigned count)1697 static inline void add_nr_running(struct rq *rq, unsigned count)
1698 {
1699 unsigned prev_nr = rq->nr_running;
1700
1701 rq->nr_running = prev_nr + count;
1702
1703 if (prev_nr < 2 && rq->nr_running >= 2) {
1704 #ifdef CONFIG_SMP
1705 if (!rq->rd->overload)
1706 rq->rd->overload = true;
1707 #endif
1708 }
1709
1710 sched_update_tick_dependency(rq);
1711 }
1712
sub_nr_running(struct rq * rq,unsigned count)1713 static inline void sub_nr_running(struct rq *rq, unsigned count)
1714 {
1715 rq->nr_running -= count;
1716 /* Check if we still need preemption */
1717 sched_update_tick_dependency(rq);
1718 }
1719
1720 extern void update_rq_clock(struct rq *rq);
1721
1722 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1723 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1724
1725 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1726
1727 extern const_debug unsigned int sysctl_sched_nr_migrate;
1728 extern const_debug unsigned int sysctl_sched_migration_cost;
1729
1730 #ifdef CONFIG_SCHED_HRTICK
1731
1732 /*
1733 * Use hrtick when:
1734 * - enabled by features
1735 * - hrtimer is actually high res
1736 */
hrtick_enabled(struct rq * rq)1737 static inline int hrtick_enabled(struct rq *rq)
1738 {
1739 if (!sched_feat(HRTICK))
1740 return 0;
1741 if (!cpu_active(cpu_of(rq)))
1742 return 0;
1743 return hrtimer_is_hres_active(&rq->hrtick_timer);
1744 }
1745
1746 void hrtick_start(struct rq *rq, u64 delay);
1747
1748 #else
1749
hrtick_enabled(struct rq * rq)1750 static inline int hrtick_enabled(struct rq *rq)
1751 {
1752 return 0;
1753 }
1754
1755 #endif /* CONFIG_SCHED_HRTICK */
1756
1757 #ifndef arch_scale_freq_capacity
1758 static __always_inline
arch_scale_freq_capacity(int cpu)1759 unsigned long arch_scale_freq_capacity(int cpu)
1760 {
1761 return SCHED_CAPACITY_SCALE;
1762 }
1763 #endif
1764
1765 #ifdef CONFIG_SMP
1766 #ifndef arch_scale_cpu_capacity
1767 static __always_inline
arch_scale_cpu_capacity(struct sched_domain * sd,int cpu)1768 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1769 {
1770 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1771 return sd->smt_gain / sd->span_weight;
1772
1773 return SCHED_CAPACITY_SCALE;
1774 }
1775 #endif
1776 #else
1777 #ifndef arch_scale_cpu_capacity
1778 static __always_inline
arch_scale_cpu_capacity(void __always_unused * sd,int cpu)1779 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1780 {
1781 return SCHED_CAPACITY_SCALE;
1782 }
1783 #endif
1784 #endif
1785
1786 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1787 __acquires(rq->lock);
1788
1789 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1790 __acquires(p->pi_lock)
1791 __acquires(rq->lock);
1792
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1793 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1794 __releases(rq->lock)
1795 {
1796 rq_unpin_lock(rq, rf);
1797 raw_spin_unlock(&rq->lock);
1798 }
1799
1800 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1801 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1802 __releases(rq->lock)
1803 __releases(p->pi_lock)
1804 {
1805 rq_unpin_lock(rq, rf);
1806 raw_spin_unlock(&rq->lock);
1807 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1808 }
1809
1810 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1811 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1812 __acquires(rq->lock)
1813 {
1814 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1815 rq_pin_lock(rq, rf);
1816 }
1817
1818 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1819 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1820 __acquires(rq->lock)
1821 {
1822 raw_spin_lock_irq(&rq->lock);
1823 rq_pin_lock(rq, rf);
1824 }
1825
1826 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1827 rq_lock(struct rq *rq, struct rq_flags *rf)
1828 __acquires(rq->lock)
1829 {
1830 raw_spin_lock(&rq->lock);
1831 rq_pin_lock(rq, rf);
1832 }
1833
1834 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1835 rq_relock(struct rq *rq, struct rq_flags *rf)
1836 __acquires(rq->lock)
1837 {
1838 raw_spin_lock(&rq->lock);
1839 rq_repin_lock(rq, rf);
1840 }
1841
1842 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1843 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1844 __releases(rq->lock)
1845 {
1846 rq_unpin_lock(rq, rf);
1847 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1848 }
1849
1850 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1851 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1852 __releases(rq->lock)
1853 {
1854 rq_unpin_lock(rq, rf);
1855 raw_spin_unlock_irq(&rq->lock);
1856 }
1857
1858 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1859 rq_unlock(struct rq *rq, struct rq_flags *rf)
1860 __releases(rq->lock)
1861 {
1862 rq_unpin_lock(rq, rf);
1863 raw_spin_unlock(&rq->lock);
1864 }
1865
1866 #ifdef CONFIG_SMP
1867 #ifdef CONFIG_PREEMPT
1868
1869 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1870
1871 /*
1872 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1873 * way at the expense of forcing extra atomic operations in all
1874 * invocations. This assures that the double_lock is acquired using the
1875 * same underlying policy as the spinlock_t on this architecture, which
1876 * reduces latency compared to the unfair variant below. However, it
1877 * also adds more overhead and therefore may reduce throughput.
1878 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1879 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1880 __releases(this_rq->lock)
1881 __acquires(busiest->lock)
1882 __acquires(this_rq->lock)
1883 {
1884 raw_spin_unlock(&this_rq->lock);
1885 double_rq_lock(this_rq, busiest);
1886
1887 return 1;
1888 }
1889
1890 #else
1891 /*
1892 * Unfair double_lock_balance: Optimizes throughput at the expense of
1893 * latency by eliminating extra atomic operations when the locks are
1894 * already in proper order on entry. This favors lower CPU-ids and will
1895 * grant the double lock to lower CPUs over higher ids under contention,
1896 * regardless of entry order into the function.
1897 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1898 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1899 __releases(this_rq->lock)
1900 __acquires(busiest->lock)
1901 __acquires(this_rq->lock)
1902 {
1903 int ret = 0;
1904
1905 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1906 if (busiest < this_rq) {
1907 raw_spin_unlock(&this_rq->lock);
1908 raw_spin_lock(&busiest->lock);
1909 raw_spin_lock_nested(&this_rq->lock,
1910 SINGLE_DEPTH_NESTING);
1911 ret = 1;
1912 } else
1913 raw_spin_lock_nested(&busiest->lock,
1914 SINGLE_DEPTH_NESTING);
1915 }
1916 return ret;
1917 }
1918
1919 #endif /* CONFIG_PREEMPT */
1920
1921 /*
1922 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1923 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1924 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1925 {
1926 if (unlikely(!irqs_disabled())) {
1927 /* printk() doesn't work well under rq->lock */
1928 raw_spin_unlock(&this_rq->lock);
1929 BUG_ON(1);
1930 }
1931
1932 return _double_lock_balance(this_rq, busiest);
1933 }
1934
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1935 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1936 __releases(busiest->lock)
1937 {
1938 raw_spin_unlock(&busiest->lock);
1939 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1940 }
1941
double_lock(spinlock_t * l1,spinlock_t * l2)1942 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1943 {
1944 if (l1 > l2)
1945 swap(l1, l2);
1946
1947 spin_lock(l1);
1948 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1949 }
1950
double_lock_irq(spinlock_t * l1,spinlock_t * l2)1951 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1952 {
1953 if (l1 > l2)
1954 swap(l1, l2);
1955
1956 spin_lock_irq(l1);
1957 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1958 }
1959
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)1960 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1961 {
1962 if (l1 > l2)
1963 swap(l1, l2);
1964
1965 raw_spin_lock(l1);
1966 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1967 }
1968
1969 /*
1970 * double_rq_lock - safely lock two runqueues
1971 *
1972 * Note this does not disable interrupts like task_rq_lock,
1973 * you need to do so manually before calling.
1974 */
double_rq_lock(struct rq * rq1,struct rq * rq2)1975 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1976 __acquires(rq1->lock)
1977 __acquires(rq2->lock)
1978 {
1979 BUG_ON(!irqs_disabled());
1980 if (rq1 == rq2) {
1981 raw_spin_lock(&rq1->lock);
1982 __acquire(rq2->lock); /* Fake it out ;) */
1983 } else {
1984 if (rq1 < rq2) {
1985 raw_spin_lock(&rq1->lock);
1986 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1987 } else {
1988 raw_spin_lock(&rq2->lock);
1989 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1990 }
1991 }
1992 }
1993
1994 /*
1995 * double_rq_unlock - safely unlock two runqueues
1996 *
1997 * Note this does not restore interrupts like task_rq_unlock,
1998 * you need to do so manually after calling.
1999 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2000 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2001 __releases(rq1->lock)
2002 __releases(rq2->lock)
2003 {
2004 raw_spin_unlock(&rq1->lock);
2005 if (rq1 != rq2)
2006 raw_spin_unlock(&rq2->lock);
2007 else
2008 __release(rq2->lock);
2009 }
2010
2011 extern void set_rq_online (struct rq *rq);
2012 extern void set_rq_offline(struct rq *rq);
2013 extern bool sched_smp_initialized;
2014
2015 #else /* CONFIG_SMP */
2016
2017 /*
2018 * double_rq_lock - safely lock two runqueues
2019 *
2020 * Note this does not disable interrupts like task_rq_lock,
2021 * you need to do so manually before calling.
2022 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2023 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2024 __acquires(rq1->lock)
2025 __acquires(rq2->lock)
2026 {
2027 BUG_ON(!irqs_disabled());
2028 BUG_ON(rq1 != rq2);
2029 raw_spin_lock(&rq1->lock);
2030 __acquire(rq2->lock); /* Fake it out ;) */
2031 }
2032
2033 /*
2034 * double_rq_unlock - safely unlock two runqueues
2035 *
2036 * Note this does not restore interrupts like task_rq_unlock,
2037 * you need to do so manually after calling.
2038 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2039 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2040 __releases(rq1->lock)
2041 __releases(rq2->lock)
2042 {
2043 BUG_ON(rq1 != rq2);
2044 raw_spin_unlock(&rq1->lock);
2045 __release(rq2->lock);
2046 }
2047
2048 #endif
2049
2050 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2051 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2052
2053 #ifdef CONFIG_SCHED_DEBUG
2054 extern bool sched_debug_enabled;
2055
2056 extern void print_cfs_stats(struct seq_file *m, int cpu);
2057 extern void print_rt_stats(struct seq_file *m, int cpu);
2058 extern void print_dl_stats(struct seq_file *m, int cpu);
2059 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2060 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2061 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2062 #ifdef CONFIG_NUMA_BALANCING
2063 extern void
2064 show_numa_stats(struct task_struct *p, struct seq_file *m);
2065 extern void
2066 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2067 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2068 #endif /* CONFIG_NUMA_BALANCING */
2069 #endif /* CONFIG_SCHED_DEBUG */
2070
2071 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2072 extern void init_rt_rq(struct rt_rq *rt_rq);
2073 extern void init_dl_rq(struct dl_rq *dl_rq);
2074
2075 extern void cfs_bandwidth_usage_inc(void);
2076 extern void cfs_bandwidth_usage_dec(void);
2077
2078 #ifdef CONFIG_NO_HZ_COMMON
2079 #define NOHZ_BALANCE_KICK_BIT 0
2080 #define NOHZ_STATS_KICK_BIT 1
2081
2082 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2083 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2084
2085 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2086
2087 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2088
2089 extern void nohz_balance_exit_idle(struct rq *rq);
2090 #else
nohz_balance_exit_idle(struct rq * rq)2091 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2092 #endif
2093
2094
2095 #ifdef CONFIG_SMP
2096 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2097 void __dl_update(struct dl_bw *dl_b, s64 bw)
2098 {
2099 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2100 int i;
2101
2102 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2103 "sched RCU must be held");
2104 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2105 struct rq *rq = cpu_rq(i);
2106
2107 rq->dl.extra_bw += bw;
2108 }
2109 }
2110 #else
2111 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2112 void __dl_update(struct dl_bw *dl_b, s64 bw)
2113 {
2114 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2115
2116 dl->extra_bw += bw;
2117 }
2118 #endif
2119
2120
2121 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2122 struct irqtime {
2123 u64 total;
2124 u64 tick_delta;
2125 u64 irq_start_time;
2126 struct u64_stats_sync sync;
2127 };
2128
2129 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2130
2131 /*
2132 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2133 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2134 * and never move forward.
2135 */
irq_time_read(int cpu)2136 static inline u64 irq_time_read(int cpu)
2137 {
2138 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2139 unsigned int seq;
2140 u64 total;
2141
2142 do {
2143 seq = __u64_stats_fetch_begin(&irqtime->sync);
2144 total = irqtime->total;
2145 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2146
2147 return total;
2148 }
2149 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2150
2151 #ifdef CONFIG_CPU_FREQ
2152 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2153
2154 /**
2155 * cpufreq_update_util - Take a note about CPU utilization changes.
2156 * @rq: Runqueue to carry out the update for.
2157 * @flags: Update reason flags.
2158 *
2159 * This function is called by the scheduler on the CPU whose utilization is
2160 * being updated.
2161 *
2162 * It can only be called from RCU-sched read-side critical sections.
2163 *
2164 * The way cpufreq is currently arranged requires it to evaluate the CPU
2165 * performance state (frequency/voltage) on a regular basis to prevent it from
2166 * being stuck in a completely inadequate performance level for too long.
2167 * That is not guaranteed to happen if the updates are only triggered from CFS
2168 * and DL, though, because they may not be coming in if only RT tasks are
2169 * active all the time (or there are RT tasks only).
2170 *
2171 * As a workaround for that issue, this function is called periodically by the
2172 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2173 * but that really is a band-aid. Going forward it should be replaced with
2174 * solutions targeted more specifically at RT tasks.
2175 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2176 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2177 {
2178 struct update_util_data *data;
2179
2180 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2181 cpu_of(rq)));
2182 if (data)
2183 data->func(data, rq_clock(rq), flags);
2184 }
2185 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2186 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2187 #endif /* CONFIG_CPU_FREQ */
2188
2189 #ifdef arch_scale_freq_capacity
2190 # ifndef arch_scale_freq_invariant
2191 # define arch_scale_freq_invariant() true
2192 # endif
2193 #else
2194 # define arch_scale_freq_invariant() false
2195 #endif
2196
2197 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
cpu_bw_dl(struct rq * rq)2198 static inline unsigned long cpu_bw_dl(struct rq *rq)
2199 {
2200 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2201 }
2202
cpu_util_dl(struct rq * rq)2203 static inline unsigned long cpu_util_dl(struct rq *rq)
2204 {
2205 return READ_ONCE(rq->avg_dl.util_avg);
2206 }
2207
cpu_util_cfs(struct rq * rq)2208 static inline unsigned long cpu_util_cfs(struct rq *rq)
2209 {
2210 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2211
2212 if (sched_feat(UTIL_EST)) {
2213 util = max_t(unsigned long, util,
2214 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2215 }
2216
2217 return util;
2218 }
2219
cpu_util_rt(struct rq * rq)2220 static inline unsigned long cpu_util_rt(struct rq *rq)
2221 {
2222 return READ_ONCE(rq->avg_rt.util_avg);
2223 }
2224 #endif
2225
2226 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2227 static inline unsigned long cpu_util_irq(struct rq *rq)
2228 {
2229 return rq->avg_irq.util_avg;
2230 }
2231
2232 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2233 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2234 {
2235 util *= (max - irq);
2236 util /= max;
2237
2238 return util;
2239
2240 }
2241 #else
cpu_util_irq(struct rq * rq)2242 static inline unsigned long cpu_util_irq(struct rq *rq)
2243 {
2244 return 0;
2245 }
2246
2247 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2248 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2249 {
2250 return util;
2251 }
2252 #endif
2253