• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105 
106 #include <trace/events/sched.h>
107 
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110 
111 /*
112  * Minimum number of threads to boot the kernel
113  */
114 #define MIN_THREADS 20
115 
116 /*
117  * Maximum number of threads
118  */
119 #define MAX_THREADS FUTEX_TID_MASK
120 
121 /*
122  * Protected counters by write_lock_irq(&tasklist_lock)
123  */
124 unsigned long total_forks;	/* Handle normal Linux uptimes. */
125 int nr_threads;			/* The idle threads do not count.. */
126 
127 static int max_threads;		/* tunable limit on nr_threads */
128 
129 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
130 
131 static const char * const resident_page_types[] = {
132 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137 
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139 
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
141 
142 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)143 int lockdep_tasklist_lock_is_held(void)
144 {
145 	return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149 
nr_processes(void)150 int nr_processes(void)
151 {
152 	int cpu;
153 	int total = 0;
154 
155 	for_each_possible_cpu(cpu)
156 		total += per_cpu(process_counts, cpu);
157 
158 	return total;
159 }
160 
arch_release_task_struct(struct task_struct * tsk)161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164 
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167 
alloc_task_struct_node(int node)168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172 
free_task_struct(struct task_struct * tsk)173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 	kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178 
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180 
181 /*
182  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183  * kmemcache based allocator.
184  */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186 
187 #ifdef CONFIG_VMAP_STACK
188 /*
189  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190  * flush.  Try to minimize the number of calls by caching stacks.
191  */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194 
free_vm_stack_cache(unsigned int cpu)195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 	int i;
199 
200 	for (i = 0; i < NR_CACHED_STACKS; i++) {
201 		struct vm_struct *vm_stack = cached_vm_stacks[i];
202 
203 		if (!vm_stack)
204 			continue;
205 
206 		vfree(vm_stack->addr);
207 		cached_vm_stacks[i] = NULL;
208 	}
209 
210 	return 0;
211 }
212 #endif
213 
alloc_thread_stack_node(struct task_struct * tsk,int node)214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	void *stack;
218 	int i;
219 
220 	for (i = 0; i < NR_CACHED_STACKS; i++) {
221 		struct vm_struct *s;
222 
223 		s = this_cpu_xchg(cached_stacks[i], NULL);
224 
225 		if (!s)
226 			continue;
227 
228 		/* Clear the KASAN shadow of the stack. */
229 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
230 
231 		/* Clear stale pointers from reused stack. */
232 		memset(s->addr, 0, THREAD_SIZE);
233 
234 		tsk->stack_vm_area = s;
235 		tsk->stack = s->addr;
236 		return s->addr;
237 	}
238 
239 	/*
240 	 * Allocated stacks are cached and later reused by new threads,
241 	 * so memcg accounting is performed manually on assigning/releasing
242 	 * stacks to tasks. Drop __GFP_ACCOUNT.
243 	 */
244 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 				     VMALLOC_START, VMALLOC_END,
246 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
247 				     PAGE_KERNEL,
248 				     0, node, __builtin_return_address(0));
249 
250 	/*
251 	 * We can't call find_vm_area() in interrupt context, and
252 	 * free_thread_stack() can be called in interrupt context,
253 	 * so cache the vm_struct.
254 	 */
255 	if (stack) {
256 		tsk->stack_vm_area = find_vm_area(stack);
257 		tsk->stack = stack;
258 	}
259 	return stack;
260 #else
261 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 					     THREAD_SIZE_ORDER);
263 
264 	if (likely(page)) {
265 		tsk->stack = kasan_reset_tag(page_address(page));
266 		return tsk->stack;
267 	}
268 	return NULL;
269 #endif
270 }
271 
free_thread_stack(struct task_struct * tsk)272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 	struct vm_struct *vm = task_stack_vm_area(tsk);
276 
277 	if (vm) {
278 		int i;
279 
280 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 			memcg_kmem_uncharge_page(vm->pages[i], 0);
282 
283 		for (i = 0; i < NR_CACHED_STACKS; i++) {
284 			if (this_cpu_cmpxchg(cached_stacks[i],
285 					NULL, tsk->stack_vm_area) != NULL)
286 				continue;
287 
288 			return;
289 		}
290 
291 		vfree_atomic(tsk->stack);
292 		return;
293 	}
294 #endif
295 
296 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300 
alloc_thread_stack_node(struct task_struct * tsk,int node)301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302 						  int node)
303 {
304 	unsigned long *stack;
305 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 	stack = kasan_reset_tag(stack);
307 	tsk->stack = stack;
308 	return stack;
309 }
310 
free_thread_stack(struct task_struct * tsk)311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 	kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315 
thread_stack_cache_init(void)316 void thread_stack_cache_init(void)
317 {
318 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 					THREAD_SIZE, THREAD_SIZE, 0, 0,
320 					THREAD_SIZE, NULL);
321 	BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325 
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328 
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331 
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334 
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337 
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340 
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343 
vm_area_alloc(struct mm_struct * mm)344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 	struct vm_area_struct *vma;
347 
348 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 	if (vma)
350 		vma_init(vma, mm);
351 	return vma;
352 }
353 
vm_area_dup(struct vm_area_struct * orig)354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357 
358 	if (new) {
359 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 		/*
362 		 * orig->shared.rb may be modified concurrently, but the clone
363 		 * will be reinitialized.
364 		 */
365 		*new = data_race(*orig);
366 		INIT_LIST_HEAD(&new->anon_vma_chain);
367 		new->vm_next = new->vm_prev = NULL;
368 		dup_vma_anon_name(orig, new);
369 	}
370 	return new;
371 }
372 
vm_area_free(struct vm_area_struct * vma)373 void vm_area_free(struct vm_area_struct *vma)
374 {
375 	free_vma_anon_name(vma);
376 	kmem_cache_free(vm_area_cachep, vma);
377 }
378 
account_kernel_stack(struct task_struct * tsk,int account)379 static void account_kernel_stack(struct task_struct *tsk, int account)
380 {
381 	void *stack = task_stack_page(tsk);
382 	struct vm_struct *vm = task_stack_vm_area(tsk);
383 
384 
385 	/* All stack pages are in the same node. */
386 	if (vm)
387 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
388 				      account * (THREAD_SIZE / 1024));
389 	else
390 		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
391 				      account * (THREAD_SIZE / 1024));
392 }
393 
memcg_charge_kernel_stack(struct task_struct * tsk)394 static int memcg_charge_kernel_stack(struct task_struct *tsk)
395 {
396 #ifdef CONFIG_VMAP_STACK
397 	struct vm_struct *vm = task_stack_vm_area(tsk);
398 	int ret;
399 
400 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
401 
402 	if (vm) {
403 		int i;
404 
405 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
406 
407 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
408 			/*
409 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
410 			 * pointer is NULL, and memcg_kmem_uncharge_page() in
411 			 * free_thread_stack() will ignore this page.
412 			 */
413 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
414 						     0);
415 			if (ret)
416 				return ret;
417 		}
418 	}
419 #endif
420 	return 0;
421 }
422 
release_task_stack(struct task_struct * tsk)423 static void release_task_stack(struct task_struct *tsk)
424 {
425 	if (WARN_ON(tsk->state != TASK_DEAD))
426 		return;  /* Better to leak the stack than to free prematurely */
427 
428 	account_kernel_stack(tsk, -1);
429 	free_thread_stack(tsk);
430 	tsk->stack = NULL;
431 #ifdef CONFIG_VMAP_STACK
432 	tsk->stack_vm_area = NULL;
433 #endif
434 }
435 
436 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)437 void put_task_stack(struct task_struct *tsk)
438 {
439 	if (refcount_dec_and_test(&tsk->stack_refcount))
440 		release_task_stack(tsk);
441 }
442 #endif
443 
free_task(struct task_struct * tsk)444 void free_task(struct task_struct *tsk)
445 {
446 	scs_release(tsk);
447 
448 #ifndef CONFIG_THREAD_INFO_IN_TASK
449 	/*
450 	 * The task is finally done with both the stack and thread_info,
451 	 * so free both.
452 	 */
453 	release_task_stack(tsk);
454 #else
455 	/*
456 	 * If the task had a separate stack allocation, it should be gone
457 	 * by now.
458 	 */
459 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
460 #endif
461 	rt_mutex_debug_task_free(tsk);
462 	ftrace_graph_exit_task(tsk);
463 	arch_release_task_struct(tsk);
464 	if (tsk->flags & PF_KTHREAD)
465 		free_kthread_struct(tsk);
466 	free_task_struct(tsk);
467 }
468 EXPORT_SYMBOL(free_task);
469 
470 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)471 static __latent_entropy int dup_mmap(struct mm_struct *mm,
472 					struct mm_struct *oldmm)
473 {
474 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
475 	struct rb_node **rb_link, *rb_parent;
476 	int retval;
477 	unsigned long charge;
478 	LIST_HEAD(uf);
479 
480 	uprobe_start_dup_mmap();
481 	if (mmap_write_lock_killable(oldmm)) {
482 		retval = -EINTR;
483 		goto fail_uprobe_end;
484 	}
485 	flush_cache_dup_mm(oldmm);
486 	uprobe_dup_mmap(oldmm, mm);
487 	/*
488 	 * Not linked in yet - no deadlock potential:
489 	 */
490 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
491 
492 	/* No ordering required: file already has been exposed. */
493 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
494 
495 	mm->total_vm = oldmm->total_vm;
496 	mm->data_vm = oldmm->data_vm;
497 	mm->exec_vm = oldmm->exec_vm;
498 	mm->stack_vm = oldmm->stack_vm;
499 
500 	rb_link = &mm->mm_rb.rb_node;
501 	rb_parent = NULL;
502 	pprev = &mm->mmap;
503 	retval = ksm_fork(mm, oldmm);
504 	if (retval)
505 		goto out;
506 	retval = khugepaged_fork(mm, oldmm);
507 	if (retval)
508 		goto out;
509 
510 	prev = NULL;
511 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
512 		struct file *file;
513 
514 		if (mpnt->vm_flags & VM_DONTCOPY) {
515 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
516 			continue;
517 		}
518 		charge = 0;
519 		/*
520 		 * Don't duplicate many vmas if we've been oom-killed (for
521 		 * example)
522 		 */
523 		if (fatal_signal_pending(current)) {
524 			retval = -EINTR;
525 			goto out;
526 		}
527 		if (mpnt->vm_flags & VM_ACCOUNT) {
528 			unsigned long len = vma_pages(mpnt);
529 
530 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
531 				goto fail_nomem;
532 			charge = len;
533 		}
534 		tmp = vm_area_dup(mpnt);
535 		if (!tmp)
536 			goto fail_nomem;
537 		retval = vma_dup_policy(mpnt, tmp);
538 		if (retval)
539 			goto fail_nomem_policy;
540 		tmp->vm_mm = mm;
541 		retval = dup_userfaultfd(tmp, &uf);
542 		if (retval)
543 			goto fail_nomem_anon_vma_fork;
544 		if (tmp->vm_flags & VM_WIPEONFORK) {
545 			/*
546 			 * VM_WIPEONFORK gets a clean slate in the child.
547 			 * Don't prepare anon_vma until fault since we don't
548 			 * copy page for current vma.
549 			 */
550 			tmp->anon_vma = NULL;
551 		} else if (anon_vma_fork(tmp, mpnt))
552 			goto fail_nomem_anon_vma_fork;
553 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
554 		file = tmp->vm_file;
555 		if (file) {
556 			struct inode *inode = file_inode(file);
557 			struct address_space *mapping = file->f_mapping;
558 
559 			get_file(file);
560 			if (tmp->vm_flags & VM_DENYWRITE)
561 				put_write_access(inode);
562 			i_mmap_lock_write(mapping);
563 			if (tmp->vm_flags & VM_SHARED)
564 				mapping_allow_writable(mapping);
565 			flush_dcache_mmap_lock(mapping);
566 			/* insert tmp into the share list, just after mpnt */
567 			vma_interval_tree_insert_after(tmp, mpnt,
568 					&mapping->i_mmap);
569 			flush_dcache_mmap_unlock(mapping);
570 			i_mmap_unlock_write(mapping);
571 		}
572 
573 		/*
574 		 * Clear hugetlb-related page reserves for children. This only
575 		 * affects MAP_PRIVATE mappings. Faults generated by the child
576 		 * are not guaranteed to succeed, even if read-only
577 		 */
578 		if (is_vm_hugetlb_page(tmp))
579 			reset_vma_resv_huge_pages(tmp);
580 
581 		/*
582 		 * Link in the new vma and copy the page table entries.
583 		 */
584 		*pprev = tmp;
585 		pprev = &tmp->vm_next;
586 		tmp->vm_prev = prev;
587 		prev = tmp;
588 
589 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
590 		rb_link = &tmp->vm_rb.rb_right;
591 		rb_parent = &tmp->vm_rb;
592 
593 		mm->map_count++;
594 		if (!(tmp->vm_flags & VM_WIPEONFORK))
595 			retval = copy_page_range(tmp, mpnt);
596 
597 		if (tmp->vm_ops && tmp->vm_ops->open)
598 			tmp->vm_ops->open(tmp);
599 
600 		if (retval)
601 			goto out;
602 	}
603 	/* a new mm has just been created */
604 	retval = arch_dup_mmap(oldmm, mm);
605 out:
606 	mmap_write_unlock(mm);
607 	flush_tlb_mm(oldmm);
608 	mmap_write_unlock(oldmm);
609 	dup_userfaultfd_complete(&uf);
610 fail_uprobe_end:
611 	uprobe_end_dup_mmap();
612 	return retval;
613 fail_nomem_anon_vma_fork:
614 	mpol_put(vma_policy(tmp));
615 fail_nomem_policy:
616 	vm_area_free(tmp);
617 fail_nomem:
618 	retval = -ENOMEM;
619 	vm_unacct_memory(charge);
620 	goto out;
621 }
622 
mm_alloc_pgd(struct mm_struct * mm)623 static inline int mm_alloc_pgd(struct mm_struct *mm)
624 {
625 	mm->pgd = pgd_alloc(mm);
626 	if (unlikely(!mm->pgd))
627 		return -ENOMEM;
628 	return 0;
629 }
630 
mm_free_pgd(struct mm_struct * mm)631 static inline void mm_free_pgd(struct mm_struct *mm)
632 {
633 	pgd_free(mm, mm->pgd);
634 }
635 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)636 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
637 {
638 	mmap_write_lock(oldmm);
639 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
640 	mmap_write_unlock(oldmm);
641 	return 0;
642 }
643 #define mm_alloc_pgd(mm)	(0)
644 #define mm_free_pgd(mm)
645 #endif /* CONFIG_MMU */
646 
check_mm(struct mm_struct * mm)647 static void check_mm(struct mm_struct *mm)
648 {
649 	int i;
650 
651 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
652 			 "Please make sure 'struct resident_page_types[]' is updated as well");
653 
654 	for (i = 0; i < NR_MM_COUNTERS; i++) {
655 		long x = atomic_long_read(&mm->rss_stat.count[i]);
656 
657 		if (unlikely(x))
658 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
659 				 mm, resident_page_types[i], x);
660 	}
661 
662 	if (mm_pgtables_bytes(mm))
663 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
664 				mm_pgtables_bytes(mm));
665 
666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
667 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
668 #endif
669 }
670 
671 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
672 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
673 
674 /*
675  * Called when the last reference to the mm
676  * is dropped: either by a lazy thread or by
677  * mmput. Free the page directory and the mm.
678  */
__mmdrop(struct mm_struct * mm)679 void __mmdrop(struct mm_struct *mm)
680 {
681 	BUG_ON(mm == &init_mm);
682 	WARN_ON_ONCE(mm == current->mm);
683 	WARN_ON_ONCE(mm == current->active_mm);
684 	mm_free_pgd(mm);
685 	destroy_context(mm);
686 	mmu_notifier_subscriptions_destroy(mm);
687 	check_mm(mm);
688 	put_user_ns(mm->user_ns);
689 	free_mm(mm);
690 }
691 EXPORT_SYMBOL_GPL(__mmdrop);
692 
mmdrop_async_fn(struct work_struct * work)693 static void mmdrop_async_fn(struct work_struct *work)
694 {
695 	struct mm_struct *mm;
696 
697 	mm = container_of(work, struct mm_struct, async_put_work);
698 	__mmdrop(mm);
699 }
700 
mmdrop_async(struct mm_struct * mm)701 static void mmdrop_async(struct mm_struct *mm)
702 {
703 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
704 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
705 		schedule_work(&mm->async_put_work);
706 	}
707 }
708 
free_signal_struct(struct signal_struct * sig)709 static inline void free_signal_struct(struct signal_struct *sig)
710 {
711 	taskstats_tgid_free(sig);
712 	sched_autogroup_exit(sig);
713 	/*
714 	 * __mmdrop is not safe to call from softirq context on x86 due to
715 	 * pgd_dtor so postpone it to the async context
716 	 */
717 	if (sig->oom_mm)
718 		mmdrop_async(sig->oom_mm);
719 	kmem_cache_free(signal_cachep, sig);
720 }
721 
put_signal_struct(struct signal_struct * sig)722 static inline void put_signal_struct(struct signal_struct *sig)
723 {
724 	if (refcount_dec_and_test(&sig->sigcnt))
725 		free_signal_struct(sig);
726 }
727 
__put_task_struct(struct task_struct * tsk)728 void __put_task_struct(struct task_struct *tsk)
729 {
730 	WARN_ON(!tsk->exit_state);
731 	WARN_ON(refcount_read(&tsk->usage));
732 	WARN_ON(tsk == current);
733 
734 	io_uring_free(tsk);
735 	cgroup_free(tsk);
736 	task_numa_free(tsk, true);
737 	security_task_free(tsk);
738 	exit_creds(tsk);
739 	delayacct_tsk_free(tsk);
740 	put_signal_struct(tsk->signal);
741 
742 	if (!profile_handoff_task(tsk))
743 		free_task(tsk);
744 }
745 EXPORT_SYMBOL_GPL(__put_task_struct);
746 
arch_task_cache_init(void)747 void __init __weak arch_task_cache_init(void) { }
748 
749 /*
750  * set_max_threads
751  */
set_max_threads(unsigned int max_threads_suggested)752 static void set_max_threads(unsigned int max_threads_suggested)
753 {
754 	u64 threads;
755 	unsigned long nr_pages = totalram_pages();
756 
757 	/*
758 	 * The number of threads shall be limited such that the thread
759 	 * structures may only consume a small part of the available memory.
760 	 */
761 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
762 		threads = MAX_THREADS;
763 	else
764 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
765 				    (u64) THREAD_SIZE * 8UL);
766 
767 	if (threads > max_threads_suggested)
768 		threads = max_threads_suggested;
769 
770 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
771 }
772 
773 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
774 /* Initialized by the architecture: */
775 int arch_task_struct_size __read_mostly;
776 #endif
777 
778 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)779 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
780 {
781 	/* Fetch thread_struct whitelist for the architecture. */
782 	arch_thread_struct_whitelist(offset, size);
783 
784 	/*
785 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
786 	 * adjust offset to position of thread_struct in task_struct.
787 	 */
788 	if (unlikely(*size == 0))
789 		*offset = 0;
790 	else
791 		*offset += offsetof(struct task_struct, thread);
792 }
793 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
794 
fork_init(void)795 void __init fork_init(void)
796 {
797 	int i;
798 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
799 #ifndef ARCH_MIN_TASKALIGN
800 #define ARCH_MIN_TASKALIGN	0
801 #endif
802 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
803 	unsigned long useroffset, usersize;
804 
805 	/* create a slab on which task_structs can be allocated */
806 	task_struct_whitelist(&useroffset, &usersize);
807 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
808 			arch_task_struct_size, align,
809 			SLAB_PANIC|SLAB_ACCOUNT,
810 			useroffset, usersize, NULL);
811 #endif
812 
813 	/* do the arch specific task caches init */
814 	arch_task_cache_init();
815 
816 	set_max_threads(MAX_THREADS);
817 
818 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
819 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
820 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
821 		init_task.signal->rlim[RLIMIT_NPROC];
822 
823 	for (i = 0; i < UCOUNT_COUNTS; i++) {
824 		init_user_ns.ucount_max[i] = max_threads/2;
825 	}
826 
827 #ifdef CONFIG_VMAP_STACK
828 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
829 			  NULL, free_vm_stack_cache);
830 #endif
831 
832 	scs_init();
833 
834 	lockdep_init_task(&init_task);
835 	uprobes_init();
836 }
837 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)838 int __weak arch_dup_task_struct(struct task_struct *dst,
839 					       struct task_struct *src)
840 {
841 	*dst = *src;
842 	return 0;
843 }
844 
set_task_stack_end_magic(struct task_struct * tsk)845 void set_task_stack_end_magic(struct task_struct *tsk)
846 {
847 	unsigned long *stackend;
848 
849 	stackend = end_of_stack(tsk);
850 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
851 }
852 
dup_task_struct(struct task_struct * orig,int node)853 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
854 {
855 	struct task_struct *tsk;
856 	unsigned long *stack;
857 	struct vm_struct *stack_vm_area __maybe_unused;
858 	int err;
859 
860 	if (node == NUMA_NO_NODE)
861 		node = tsk_fork_get_node(orig);
862 	tsk = alloc_task_struct_node(node);
863 	if (!tsk)
864 		return NULL;
865 
866 	stack = alloc_thread_stack_node(tsk, node);
867 	if (!stack)
868 		goto free_tsk;
869 
870 	if (memcg_charge_kernel_stack(tsk))
871 		goto free_stack;
872 
873 	stack_vm_area = task_stack_vm_area(tsk);
874 
875 	err = arch_dup_task_struct(tsk, orig);
876 
877 #ifdef CONFIG_ACCESS_TOKENID
878 	tsk->token = orig->token;
879 	tsk->ftoken = 0;
880 #endif
881 	/*
882 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
883 	 * sure they're properly initialized before using any stack-related
884 	 * functions again.
885 	 */
886 	tsk->stack = stack;
887 #ifdef CONFIG_VMAP_STACK
888 	tsk->stack_vm_area = stack_vm_area;
889 #endif
890 #ifdef CONFIG_THREAD_INFO_IN_TASK
891 	refcount_set(&tsk->stack_refcount, 1);
892 #endif
893 
894 	if (err)
895 		goto free_stack;
896 
897 	err = scs_prepare(tsk, node);
898 	if (err)
899 		goto free_stack;
900 
901 #ifdef CONFIG_SECCOMP
902 	/*
903 	 * We must handle setting up seccomp filters once we're under
904 	 * the sighand lock in case orig has changed between now and
905 	 * then. Until then, filter must be NULL to avoid messing up
906 	 * the usage counts on the error path calling free_task.
907 	 */
908 	tsk->seccomp.filter = NULL;
909 #endif
910 
911 	setup_thread_stack(tsk, orig);
912 	clear_user_return_notifier(tsk);
913 	clear_tsk_need_resched(tsk);
914 	set_task_stack_end_magic(tsk);
915 
916 #ifdef CONFIG_STACKPROTECTOR
917 	tsk->stack_canary = get_random_canary();
918 #endif
919 	if (orig->cpus_ptr == &orig->cpus_mask)
920 		tsk->cpus_ptr = &tsk->cpus_mask;
921 
922 	/*
923 	 * One for the user space visible state that goes away when reaped.
924 	 * One for the scheduler.
925 	 */
926 	refcount_set(&tsk->rcu_users, 2);
927 	/* One for the rcu users */
928 	refcount_set(&tsk->usage, 1);
929 #ifdef CONFIG_BLK_DEV_IO_TRACE
930 	tsk->btrace_seq = 0;
931 #endif
932 	tsk->splice_pipe = NULL;
933 	tsk->task_frag.page = NULL;
934 	tsk->wake_q.next = NULL;
935 
936 	account_kernel_stack(tsk, 1);
937 
938 	kcov_task_init(tsk);
939 
940 #ifdef CONFIG_FAULT_INJECTION
941 	tsk->fail_nth = 0;
942 #endif
943 
944 #ifdef CONFIG_BLK_CGROUP
945 	tsk->throttle_queue = NULL;
946 	tsk->use_memdelay = 0;
947 #endif
948 
949 #ifdef CONFIG_MEMCG
950 	tsk->active_memcg = NULL;
951 #endif
952 	return tsk;
953 
954 free_stack:
955 	free_thread_stack(tsk);
956 free_tsk:
957 	free_task_struct(tsk);
958 	return NULL;
959 }
960 
961 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
962 
963 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
964 
coredump_filter_setup(char * s)965 static int __init coredump_filter_setup(char *s)
966 {
967 	default_dump_filter =
968 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
969 		MMF_DUMP_FILTER_MASK;
970 	return 1;
971 }
972 
973 __setup("coredump_filter=", coredump_filter_setup);
974 
975 #include <linux/init_task.h>
976 
mm_init_aio(struct mm_struct * mm)977 static void mm_init_aio(struct mm_struct *mm)
978 {
979 #ifdef CONFIG_AIO
980 	spin_lock_init(&mm->ioctx_lock);
981 	mm->ioctx_table = NULL;
982 #endif
983 }
984 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)985 static __always_inline void mm_clear_owner(struct mm_struct *mm,
986 					   struct task_struct *p)
987 {
988 #ifdef CONFIG_MEMCG
989 	if (mm->owner == p)
990 		WRITE_ONCE(mm->owner, NULL);
991 #endif
992 }
993 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)994 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
995 {
996 #ifdef CONFIG_MEMCG
997 	mm->owner = p;
998 #endif
999 }
1000 
mm_init_pasid(struct mm_struct * mm)1001 static void mm_init_pasid(struct mm_struct *mm)
1002 {
1003 #ifdef CONFIG_IOMMU_SUPPORT
1004 	mm->pasid = INIT_PASID;
1005 #endif
1006 }
1007 
mm_init_uprobes_state(struct mm_struct * mm)1008 static void mm_init_uprobes_state(struct mm_struct *mm)
1009 {
1010 #ifdef CONFIG_UPROBES
1011 	mm->uprobes_state.xol_area = NULL;
1012 #endif
1013 }
1014 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1015 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1016 	struct user_namespace *user_ns)
1017 {
1018 	mm->mmap = NULL;
1019 	mm->mm_rb = RB_ROOT;
1020 	mm->vmacache_seqnum = 0;
1021 	atomic_set(&mm->mm_users, 1);
1022 	atomic_set(&mm->mm_count, 1);
1023 	seqcount_init(&mm->write_protect_seq);
1024 	mmap_init_lock(mm);
1025 	INIT_LIST_HEAD(&mm->mmlist);
1026 	mm->core_state = NULL;
1027 	mm_pgtables_bytes_init(mm);
1028 	mm->map_count = 0;
1029 	mm->locked_vm = 0;
1030 	atomic_set(&mm->has_pinned, 0);
1031 	atomic64_set(&mm->pinned_vm, 0);
1032 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1033 	spin_lock_init(&mm->page_table_lock);
1034 	spin_lock_init(&mm->arg_lock);
1035 	mm_init_cpumask(mm);
1036 	mm_init_aio(mm);
1037 	mm_init_owner(mm, p);
1038 	mm_init_pasid(mm);
1039 	RCU_INIT_POINTER(mm->exe_file, NULL);
1040 	mmu_notifier_subscriptions_init(mm);
1041 	init_tlb_flush_pending(mm);
1042 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1043 	mm->pmd_huge_pte = NULL;
1044 #endif
1045 	mm_init_uprobes_state(mm);
1046 	hugetlb_count_init(mm);
1047 
1048 	if (current->mm) {
1049 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1050 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1051 	} else {
1052 		mm->flags = default_dump_filter;
1053 		mm->def_flags = 0;
1054 	}
1055 
1056 	if (mm_alloc_pgd(mm))
1057 		goto fail_nopgd;
1058 
1059 	if (init_new_context(p, mm))
1060 		goto fail_nocontext;
1061 
1062 	mm->user_ns = get_user_ns(user_ns);
1063 	return mm;
1064 
1065 fail_nocontext:
1066 	mm_free_pgd(mm);
1067 fail_nopgd:
1068 	free_mm(mm);
1069 	return NULL;
1070 }
1071 
1072 /*
1073  * Allocate and initialize an mm_struct.
1074  */
mm_alloc(void)1075 struct mm_struct *mm_alloc(void)
1076 {
1077 	struct mm_struct *mm;
1078 
1079 	mm = allocate_mm();
1080 	if (!mm)
1081 		return NULL;
1082 
1083 	memset(mm, 0, sizeof(*mm));
1084 	return mm_init(mm, current, current_user_ns());
1085 }
1086 
__mmput(struct mm_struct * mm)1087 static inline void __mmput(struct mm_struct *mm)
1088 {
1089 	VM_BUG_ON(atomic_read(&mm->mm_users));
1090 
1091 	uprobe_clear_state(mm);
1092 	exit_aio(mm);
1093 	ksm_exit(mm);
1094 	khugepaged_exit(mm); /* must run before exit_mmap */
1095 	exit_mmap(mm);
1096 	mm_put_huge_zero_page(mm);
1097 	set_mm_exe_file(mm, NULL);
1098 	if (!list_empty(&mm->mmlist)) {
1099 		spin_lock(&mmlist_lock);
1100 		list_del(&mm->mmlist);
1101 		spin_unlock(&mmlist_lock);
1102 	}
1103 	if (mm->binfmt)
1104 		module_put(mm->binfmt->module);
1105 	mmdrop(mm);
1106 }
1107 
1108 /*
1109  * Decrement the use count and release all resources for an mm.
1110  */
mmput(struct mm_struct * mm)1111 void mmput(struct mm_struct *mm)
1112 {
1113 	might_sleep();
1114 
1115 	if (atomic_dec_and_test(&mm->mm_users))
1116 		__mmput(mm);
1117 }
1118 EXPORT_SYMBOL_GPL(mmput);
1119 
1120 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1121 static void mmput_async_fn(struct work_struct *work)
1122 {
1123 	struct mm_struct *mm = container_of(work, struct mm_struct,
1124 					    async_put_work);
1125 
1126 	__mmput(mm);
1127 }
1128 
mmput_async(struct mm_struct * mm)1129 void mmput_async(struct mm_struct *mm)
1130 {
1131 	if (atomic_dec_and_test(&mm->mm_users)) {
1132 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1133 		schedule_work(&mm->async_put_work);
1134 	}
1135 }
1136 #endif
1137 
1138 /**
1139  * set_mm_exe_file - change a reference to the mm's executable file
1140  *
1141  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1142  *
1143  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1144  * invocations: in mmput() nobody alive left, in execve task is single
1145  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1146  * mm->exe_file, but does so without using set_mm_exe_file() in order
1147  * to do avoid the need for any locks.
1148  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1149 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1150 {
1151 	struct file *old_exe_file;
1152 
1153 	/*
1154 	 * It is safe to dereference the exe_file without RCU as
1155 	 * this function is only called if nobody else can access
1156 	 * this mm -- see comment above for justification.
1157 	 */
1158 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1159 
1160 	if (new_exe_file)
1161 		get_file(new_exe_file);
1162 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1163 	if (old_exe_file)
1164 		fput(old_exe_file);
1165 }
1166 
1167 /**
1168  * get_mm_exe_file - acquire a reference to the mm's executable file
1169  *
1170  * Returns %NULL if mm has no associated executable file.
1171  * User must release file via fput().
1172  */
get_mm_exe_file(struct mm_struct * mm)1173 struct file *get_mm_exe_file(struct mm_struct *mm)
1174 {
1175 	struct file *exe_file;
1176 
1177 	rcu_read_lock();
1178 	exe_file = rcu_dereference(mm->exe_file);
1179 	if (exe_file && !get_file_rcu(exe_file))
1180 		exe_file = NULL;
1181 	rcu_read_unlock();
1182 	return exe_file;
1183 }
1184 EXPORT_SYMBOL(get_mm_exe_file);
1185 
1186 /**
1187  * get_task_exe_file - acquire a reference to the task's executable file
1188  *
1189  * Returns %NULL if task's mm (if any) has no associated executable file or
1190  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1191  * User must release file via fput().
1192  */
get_task_exe_file(struct task_struct * task)1193 struct file *get_task_exe_file(struct task_struct *task)
1194 {
1195 	struct file *exe_file = NULL;
1196 	struct mm_struct *mm;
1197 
1198 	task_lock(task);
1199 	mm = task->mm;
1200 	if (mm) {
1201 		if (!(task->flags & PF_KTHREAD))
1202 			exe_file = get_mm_exe_file(mm);
1203 	}
1204 	task_unlock(task);
1205 	return exe_file;
1206 }
1207 EXPORT_SYMBOL(get_task_exe_file);
1208 
1209 /**
1210  * get_task_mm - acquire a reference to the task's mm
1211  *
1212  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1213  * this kernel workthread has transiently adopted a user mm with use_mm,
1214  * to do its AIO) is not set and if so returns a reference to it, after
1215  * bumping up the use count.  User must release the mm via mmput()
1216  * after use.  Typically used by /proc and ptrace.
1217  */
get_task_mm(struct task_struct * task)1218 struct mm_struct *get_task_mm(struct task_struct *task)
1219 {
1220 	struct mm_struct *mm;
1221 
1222 	task_lock(task);
1223 	mm = task->mm;
1224 	if (mm) {
1225 		if (task->flags & PF_KTHREAD)
1226 			mm = NULL;
1227 		else
1228 			mmget(mm);
1229 	}
1230 	task_unlock(task);
1231 	return mm;
1232 }
1233 EXPORT_SYMBOL_GPL(get_task_mm);
1234 
mm_access(struct task_struct * task,unsigned int mode)1235 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1236 {
1237 	struct mm_struct *mm;
1238 	int err;
1239 
1240 	err =  down_read_killable(&task->signal->exec_update_lock);
1241 	if (err)
1242 		return ERR_PTR(err);
1243 
1244 	mm = get_task_mm(task);
1245 	if (mm && mm != current->mm &&
1246 			!ptrace_may_access(task, mode)) {
1247 		mmput(mm);
1248 		mm = ERR_PTR(-EACCES);
1249 	}
1250 	up_read(&task->signal->exec_update_lock);
1251 
1252 	return mm;
1253 }
1254 
complete_vfork_done(struct task_struct * tsk)1255 static void complete_vfork_done(struct task_struct *tsk)
1256 {
1257 	struct completion *vfork;
1258 
1259 	task_lock(tsk);
1260 	vfork = tsk->vfork_done;
1261 	if (likely(vfork)) {
1262 		tsk->vfork_done = NULL;
1263 		complete(vfork);
1264 	}
1265 	task_unlock(tsk);
1266 }
1267 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1268 static int wait_for_vfork_done(struct task_struct *child,
1269 				struct completion *vfork)
1270 {
1271 	int killed;
1272 
1273 	freezer_do_not_count();
1274 	cgroup_enter_frozen();
1275 	killed = wait_for_completion_killable(vfork);
1276 	cgroup_leave_frozen(false);
1277 	freezer_count();
1278 
1279 	if (killed) {
1280 		task_lock(child);
1281 		child->vfork_done = NULL;
1282 		task_unlock(child);
1283 	}
1284 
1285 	put_task_struct(child);
1286 	return killed;
1287 }
1288 
1289 /* Please note the differences between mmput and mm_release.
1290  * mmput is called whenever we stop holding onto a mm_struct,
1291  * error success whatever.
1292  *
1293  * mm_release is called after a mm_struct has been removed
1294  * from the current process.
1295  *
1296  * This difference is important for error handling, when we
1297  * only half set up a mm_struct for a new process and need to restore
1298  * the old one.  Because we mmput the new mm_struct before
1299  * restoring the old one. . .
1300  * Eric Biederman 10 January 1998
1301  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1302 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1303 {
1304 	uprobe_free_utask(tsk);
1305 
1306 	/* Get rid of any cached register state */
1307 	deactivate_mm(tsk, mm);
1308 
1309 	/*
1310 	 * Signal userspace if we're not exiting with a core dump
1311 	 * because we want to leave the value intact for debugging
1312 	 * purposes.
1313 	 */
1314 	if (tsk->clear_child_tid) {
1315 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1316 		    atomic_read(&mm->mm_users) > 1) {
1317 			/*
1318 			 * We don't check the error code - if userspace has
1319 			 * not set up a proper pointer then tough luck.
1320 			 */
1321 			put_user(0, tsk->clear_child_tid);
1322 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1323 					1, NULL, NULL, 0, 0);
1324 		}
1325 		tsk->clear_child_tid = NULL;
1326 	}
1327 
1328 	/*
1329 	 * All done, finally we can wake up parent and return this mm to him.
1330 	 * Also kthread_stop() uses this completion for synchronization.
1331 	 */
1332 	if (tsk->vfork_done)
1333 		complete_vfork_done(tsk);
1334 }
1335 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1336 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1337 {
1338 	futex_exit_release(tsk);
1339 	mm_release(tsk, mm);
1340 }
1341 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1342 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1343 {
1344 	futex_exec_release(tsk);
1345 	mm_release(tsk, mm);
1346 }
1347 
1348 /**
1349  * dup_mm() - duplicates an existing mm structure
1350  * @tsk: the task_struct with which the new mm will be associated.
1351  * @oldmm: the mm to duplicate.
1352  *
1353  * Allocates a new mm structure and duplicates the provided @oldmm structure
1354  * content into it.
1355  *
1356  * Return: the duplicated mm or NULL on failure.
1357  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1358 static struct mm_struct *dup_mm(struct task_struct *tsk,
1359 				struct mm_struct *oldmm)
1360 {
1361 	struct mm_struct *mm;
1362 	int err;
1363 
1364 	mm = allocate_mm();
1365 	if (!mm)
1366 		goto fail_nomem;
1367 
1368 	memcpy(mm, oldmm, sizeof(*mm));
1369 
1370 	if (!mm_init(mm, tsk, mm->user_ns))
1371 		goto fail_nomem;
1372 
1373 	err = dup_mmap(mm, oldmm);
1374 	if (err)
1375 		goto free_pt;
1376 
1377 	mm->hiwater_rss = get_mm_rss(mm);
1378 	mm->hiwater_vm = mm->total_vm;
1379 
1380 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1381 		goto free_pt;
1382 
1383 	return mm;
1384 
1385 free_pt:
1386 	/* don't put binfmt in mmput, we haven't got module yet */
1387 	mm->binfmt = NULL;
1388 	mm_init_owner(mm, NULL);
1389 	mmput(mm);
1390 
1391 fail_nomem:
1392 	return NULL;
1393 }
1394 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1395 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1396 {
1397 	struct mm_struct *mm, *oldmm;
1398 	int retval;
1399 
1400 	tsk->min_flt = tsk->maj_flt = 0;
1401 	tsk->nvcsw = tsk->nivcsw = 0;
1402 #ifdef CONFIG_DETECT_HUNG_TASK
1403 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1404 	tsk->last_switch_time = 0;
1405 #endif
1406 
1407 	tsk->mm = NULL;
1408 	tsk->active_mm = NULL;
1409 
1410 	/*
1411 	 * Are we cloning a kernel thread?
1412 	 *
1413 	 * We need to steal a active VM for that..
1414 	 */
1415 	oldmm = current->mm;
1416 	if (!oldmm)
1417 		return 0;
1418 
1419 	/* initialize the new vmacache entries */
1420 	vmacache_flush(tsk);
1421 
1422 	if (clone_flags & CLONE_VM) {
1423 		mmget(oldmm);
1424 		mm = oldmm;
1425 		goto good_mm;
1426 	}
1427 
1428 	retval = -ENOMEM;
1429 	mm = dup_mm(tsk, current->mm);
1430 	if (!mm)
1431 		goto fail_nomem;
1432 
1433 good_mm:
1434 	tsk->mm = mm;
1435 	tsk->active_mm = mm;
1436 	return 0;
1437 
1438 fail_nomem:
1439 	return retval;
1440 }
1441 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1442 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1443 {
1444 	struct fs_struct *fs = current->fs;
1445 	if (clone_flags & CLONE_FS) {
1446 		/* tsk->fs is already what we want */
1447 		spin_lock(&fs->lock);
1448 		if (fs->in_exec) {
1449 			spin_unlock(&fs->lock);
1450 			return -EAGAIN;
1451 		}
1452 		fs->users++;
1453 		spin_unlock(&fs->lock);
1454 		return 0;
1455 	}
1456 	tsk->fs = copy_fs_struct(fs);
1457 	if (!tsk->fs)
1458 		return -ENOMEM;
1459 	return 0;
1460 }
1461 
copy_files(unsigned long clone_flags,struct task_struct * tsk)1462 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1463 {
1464 	struct files_struct *oldf, *newf;
1465 	int error = 0;
1466 
1467 	/*
1468 	 * A background process may not have any files ...
1469 	 */
1470 	oldf = current->files;
1471 	if (!oldf)
1472 		goto out;
1473 
1474 	if (clone_flags & CLONE_FILES) {
1475 		atomic_inc(&oldf->count);
1476 		goto out;
1477 	}
1478 
1479 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1480 	if (!newf)
1481 		goto out;
1482 
1483 	tsk->files = newf;
1484 	error = 0;
1485 out:
1486 	return error;
1487 }
1488 
copy_io(unsigned long clone_flags,struct task_struct * tsk)1489 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1490 {
1491 #ifdef CONFIG_BLOCK
1492 	struct io_context *ioc = current->io_context;
1493 	struct io_context *new_ioc;
1494 
1495 	if (!ioc)
1496 		return 0;
1497 	/*
1498 	 * Share io context with parent, if CLONE_IO is set
1499 	 */
1500 	if (clone_flags & CLONE_IO) {
1501 		ioc_task_link(ioc);
1502 		tsk->io_context = ioc;
1503 	} else if (ioprio_valid(ioc->ioprio)) {
1504 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1505 		if (unlikely(!new_ioc))
1506 			return -ENOMEM;
1507 
1508 		new_ioc->ioprio = ioc->ioprio;
1509 		put_io_context(new_ioc);
1510 	}
1511 #endif
1512 	return 0;
1513 }
1514 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1515 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1516 {
1517 	struct sighand_struct *sig;
1518 
1519 	if (clone_flags & CLONE_SIGHAND) {
1520 		refcount_inc(&current->sighand->count);
1521 		return 0;
1522 	}
1523 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1524 	RCU_INIT_POINTER(tsk->sighand, sig);
1525 	if (!sig)
1526 		return -ENOMEM;
1527 
1528 	refcount_set(&sig->count, 1);
1529 	spin_lock_irq(&current->sighand->siglock);
1530 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1531 	spin_unlock_irq(&current->sighand->siglock);
1532 
1533 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1534 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1535 		flush_signal_handlers(tsk, 0);
1536 
1537 	return 0;
1538 }
1539 
__cleanup_sighand(struct sighand_struct * sighand)1540 void __cleanup_sighand(struct sighand_struct *sighand)
1541 {
1542 	if (refcount_dec_and_test(&sighand->count)) {
1543 		signalfd_cleanup(sighand);
1544 		/*
1545 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1546 		 * without an RCU grace period, see __lock_task_sighand().
1547 		 */
1548 		kmem_cache_free(sighand_cachep, sighand);
1549 	}
1550 }
1551 
1552 /*
1553  * Initialize POSIX timer handling for a thread group.
1554  */
posix_cpu_timers_init_group(struct signal_struct * sig)1555 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1556 {
1557 	struct posix_cputimers *pct = &sig->posix_cputimers;
1558 	unsigned long cpu_limit;
1559 
1560 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1561 	posix_cputimers_group_init(pct, cpu_limit);
1562 }
1563 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1564 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1565 {
1566 	struct signal_struct *sig;
1567 
1568 	if (clone_flags & CLONE_THREAD)
1569 		return 0;
1570 
1571 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1572 	tsk->signal = sig;
1573 	if (!sig)
1574 		return -ENOMEM;
1575 
1576 	sig->nr_threads = 1;
1577 	atomic_set(&sig->live, 1);
1578 	refcount_set(&sig->sigcnt, 1);
1579 
1580 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1581 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1582 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1583 
1584 	init_waitqueue_head(&sig->wait_chldexit);
1585 	sig->curr_target = tsk;
1586 	init_sigpending(&sig->shared_pending);
1587 	INIT_HLIST_HEAD(&sig->multiprocess);
1588 	seqlock_init(&sig->stats_lock);
1589 	prev_cputime_init(&sig->prev_cputime);
1590 
1591 #ifdef CONFIG_POSIX_TIMERS
1592 	INIT_LIST_HEAD(&sig->posix_timers);
1593 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1594 	sig->real_timer.function = it_real_fn;
1595 #endif
1596 
1597 	task_lock(current->group_leader);
1598 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1599 	task_unlock(current->group_leader);
1600 
1601 	posix_cpu_timers_init_group(sig);
1602 
1603 	tty_audit_fork(sig);
1604 	sched_autogroup_fork(sig);
1605 
1606 	sig->oom_score_adj = current->signal->oom_score_adj;
1607 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1608 
1609 	mutex_init(&sig->cred_guard_mutex);
1610 	init_rwsem(&sig->exec_update_lock);
1611 
1612 	return 0;
1613 }
1614 
copy_seccomp(struct task_struct * p)1615 static void copy_seccomp(struct task_struct *p)
1616 {
1617 #ifdef CONFIG_SECCOMP
1618 	/*
1619 	 * Must be called with sighand->lock held, which is common to
1620 	 * all threads in the group. Holding cred_guard_mutex is not
1621 	 * needed because this new task is not yet running and cannot
1622 	 * be racing exec.
1623 	 */
1624 	assert_spin_locked(&current->sighand->siglock);
1625 
1626 	/* Ref-count the new filter user, and assign it. */
1627 	get_seccomp_filter(current);
1628 	p->seccomp = current->seccomp;
1629 
1630 	/*
1631 	 * Explicitly enable no_new_privs here in case it got set
1632 	 * between the task_struct being duplicated and holding the
1633 	 * sighand lock. The seccomp state and nnp must be in sync.
1634 	 */
1635 	if (task_no_new_privs(current))
1636 		task_set_no_new_privs(p);
1637 
1638 	/*
1639 	 * If the parent gained a seccomp mode after copying thread
1640 	 * flags and between before we held the sighand lock, we have
1641 	 * to manually enable the seccomp thread flag here.
1642 	 */
1643 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1644 		set_tsk_thread_flag(p, TIF_SECCOMP);
1645 #endif
1646 }
1647 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1648 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1649 {
1650 	current->clear_child_tid = tidptr;
1651 
1652 	return task_pid_vnr(current);
1653 }
1654 
rt_mutex_init_task(struct task_struct * p)1655 static void rt_mutex_init_task(struct task_struct *p)
1656 {
1657 	raw_spin_lock_init(&p->pi_lock);
1658 #ifdef CONFIG_RT_MUTEXES
1659 	p->pi_waiters = RB_ROOT_CACHED;
1660 	p->pi_top_task = NULL;
1661 	p->pi_blocked_on = NULL;
1662 #endif
1663 }
1664 
init_task_pid_links(struct task_struct * task)1665 static inline void init_task_pid_links(struct task_struct *task)
1666 {
1667 	enum pid_type type;
1668 
1669 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1670 		INIT_HLIST_NODE(&task->pid_links[type]);
1671 	}
1672 }
1673 
1674 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1675 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1676 {
1677 	if (type == PIDTYPE_PID)
1678 		task->thread_pid = pid;
1679 	else
1680 		task->signal->pids[type] = pid;
1681 }
1682 
rcu_copy_process(struct task_struct * p)1683 static inline void rcu_copy_process(struct task_struct *p)
1684 {
1685 #ifdef CONFIG_PREEMPT_RCU
1686 	p->rcu_read_lock_nesting = 0;
1687 	p->rcu_read_unlock_special.s = 0;
1688 	p->rcu_blocked_node = NULL;
1689 	INIT_LIST_HEAD(&p->rcu_node_entry);
1690 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1691 #ifdef CONFIG_TASKS_RCU
1692 	p->rcu_tasks_holdout = false;
1693 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1694 	p->rcu_tasks_idle_cpu = -1;
1695 #endif /* #ifdef CONFIG_TASKS_RCU */
1696 #ifdef CONFIG_TASKS_TRACE_RCU
1697 	p->trc_reader_nesting = 0;
1698 	p->trc_reader_special.s = 0;
1699 	INIT_LIST_HEAD(&p->trc_holdout_list);
1700 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1701 }
1702 
pidfd_pid(const struct file * file)1703 struct pid *pidfd_pid(const struct file *file)
1704 {
1705 	if (file->f_op == &pidfd_fops)
1706 		return file->private_data;
1707 
1708 	return ERR_PTR(-EBADF);
1709 }
1710 
pidfd_release(struct inode * inode,struct file * file)1711 static int pidfd_release(struct inode *inode, struct file *file)
1712 {
1713 	struct pid *pid = file->private_data;
1714 
1715 	file->private_data = NULL;
1716 	put_pid(pid);
1717 	return 0;
1718 }
1719 
1720 #ifdef CONFIG_PROC_FS
1721 /**
1722  * pidfd_show_fdinfo - print information about a pidfd
1723  * @m: proc fdinfo file
1724  * @f: file referencing a pidfd
1725  *
1726  * Pid:
1727  * This function will print the pid that a given pidfd refers to in the
1728  * pid namespace of the procfs instance.
1729  * If the pid namespace of the process is not a descendant of the pid
1730  * namespace of the procfs instance 0 will be shown as its pid. This is
1731  * similar to calling getppid() on a process whose parent is outside of
1732  * its pid namespace.
1733  *
1734  * NSpid:
1735  * If pid namespaces are supported then this function will also print
1736  * the pid of a given pidfd refers to for all descendant pid namespaces
1737  * starting from the current pid namespace of the instance, i.e. the
1738  * Pid field and the first entry in the NSpid field will be identical.
1739  * If the pid namespace of the process is not a descendant of the pid
1740  * namespace of the procfs instance 0 will be shown as its first NSpid
1741  * entry and no others will be shown.
1742  * Note that this differs from the Pid and NSpid fields in
1743  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1744  * the  pid namespace of the procfs instance. The difference becomes
1745  * obvious when sending around a pidfd between pid namespaces from a
1746  * different branch of the tree, i.e. where no ancestoral relation is
1747  * present between the pid namespaces:
1748  * - create two new pid namespaces ns1 and ns2 in the initial pid
1749  *   namespace (also take care to create new mount namespaces in the
1750  *   new pid namespace and mount procfs)
1751  * - create a process with a pidfd in ns1
1752  * - send pidfd from ns1 to ns2
1753  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1754  *   have exactly one entry, which is 0
1755  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1756 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1757 {
1758 	struct pid *pid = f->private_data;
1759 	struct pid_namespace *ns;
1760 	pid_t nr = -1;
1761 
1762 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1763 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1764 		nr = pid_nr_ns(pid, ns);
1765 	}
1766 
1767 	seq_put_decimal_ll(m, "Pid:\t", nr);
1768 
1769 #ifdef CONFIG_PID_NS
1770 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1771 	if (nr > 0) {
1772 		int i;
1773 
1774 		/* If nr is non-zero it means that 'pid' is valid and that
1775 		 * ns, i.e. the pid namespace associated with the procfs
1776 		 * instance, is in the pid namespace hierarchy of pid.
1777 		 * Start at one below the already printed level.
1778 		 */
1779 		for (i = ns->level + 1; i <= pid->level; i++)
1780 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1781 	}
1782 #endif
1783 	seq_putc(m, '\n');
1784 }
1785 #endif
1786 
1787 /*
1788  * Poll support for process exit notification.
1789  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1790 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1791 {
1792 	struct pid *pid = file->private_data;
1793 	__poll_t poll_flags = 0;
1794 
1795 	poll_wait(file, &pid->wait_pidfd, pts);
1796 
1797 	/*
1798 	 * Inform pollers only when the whole thread group exits.
1799 	 * If the thread group leader exits before all other threads in the
1800 	 * group, then poll(2) should block, similar to the wait(2) family.
1801 	 */
1802 	if (thread_group_exited(pid))
1803 		poll_flags = EPOLLIN | EPOLLRDNORM;
1804 
1805 	return poll_flags;
1806 }
1807 
1808 const struct file_operations pidfd_fops = {
1809 	.release = pidfd_release,
1810 	.poll = pidfd_poll,
1811 #ifdef CONFIG_PROC_FS
1812 	.show_fdinfo = pidfd_show_fdinfo,
1813 #endif
1814 };
1815 
__delayed_free_task(struct rcu_head * rhp)1816 static void __delayed_free_task(struct rcu_head *rhp)
1817 {
1818 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1819 
1820 	free_task(tsk);
1821 }
1822 
delayed_free_task(struct task_struct * tsk)1823 static __always_inline void delayed_free_task(struct task_struct *tsk)
1824 {
1825 	if (IS_ENABLED(CONFIG_MEMCG))
1826 		call_rcu(&tsk->rcu, __delayed_free_task);
1827 	else
1828 		free_task(tsk);
1829 }
1830 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1831 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1832 {
1833 	/* Skip if kernel thread */
1834 	if (!tsk->mm)
1835 		return;
1836 
1837 	/* Skip if spawning a thread or using vfork */
1838 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1839 		return;
1840 
1841 	/* We need to synchronize with __set_oom_adj */
1842 	mutex_lock(&oom_adj_mutex);
1843 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1844 	/* Update the values in case they were changed after copy_signal */
1845 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1846 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1847 	mutex_unlock(&oom_adj_mutex);
1848 }
1849 
1850 /*
1851  * This creates a new process as a copy of the old one,
1852  * but does not actually start it yet.
1853  *
1854  * It copies the registers, and all the appropriate
1855  * parts of the process environment (as per the clone
1856  * flags). The actual kick-off is left to the caller.
1857  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1858 static __latent_entropy struct task_struct *copy_process(
1859 					struct pid *pid,
1860 					int trace,
1861 					int node,
1862 					struct kernel_clone_args *args)
1863 {
1864 	int pidfd = -1, retval;
1865 	struct task_struct *p;
1866 	struct multiprocess_signals delayed;
1867 	struct file *pidfile = NULL;
1868 	u64 clone_flags = args->flags;
1869 	struct nsproxy *nsp = current->nsproxy;
1870 
1871 	/*
1872 	 * Don't allow sharing the root directory with processes in a different
1873 	 * namespace
1874 	 */
1875 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1876 		return ERR_PTR(-EINVAL);
1877 
1878 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1879 		return ERR_PTR(-EINVAL);
1880 
1881 	/*
1882 	 * Thread groups must share signals as well, and detached threads
1883 	 * can only be started up within the thread group.
1884 	 */
1885 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1886 		return ERR_PTR(-EINVAL);
1887 
1888 	/*
1889 	 * Shared signal handlers imply shared VM. By way of the above,
1890 	 * thread groups also imply shared VM. Blocking this case allows
1891 	 * for various simplifications in other code.
1892 	 */
1893 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1894 		return ERR_PTR(-EINVAL);
1895 
1896 	/*
1897 	 * Siblings of global init remain as zombies on exit since they are
1898 	 * not reaped by their parent (swapper). To solve this and to avoid
1899 	 * multi-rooted process trees, prevent global and container-inits
1900 	 * from creating siblings.
1901 	 */
1902 	if ((clone_flags & CLONE_PARENT) &&
1903 				current->signal->flags & SIGNAL_UNKILLABLE)
1904 		return ERR_PTR(-EINVAL);
1905 
1906 	/*
1907 	 * If the new process will be in a different pid or user namespace
1908 	 * do not allow it to share a thread group with the forking task.
1909 	 */
1910 	if (clone_flags & CLONE_THREAD) {
1911 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1912 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1913 			return ERR_PTR(-EINVAL);
1914 	}
1915 
1916 	/*
1917 	 * If the new process will be in a different time namespace
1918 	 * do not allow it to share VM or a thread group with the forking task.
1919 	 */
1920 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1921 		if (nsp->time_ns != nsp->time_ns_for_children)
1922 			return ERR_PTR(-EINVAL);
1923 	}
1924 
1925 	if (clone_flags & CLONE_PIDFD) {
1926 		/*
1927 		 * - CLONE_DETACHED is blocked so that we can potentially
1928 		 *   reuse it later for CLONE_PIDFD.
1929 		 * - CLONE_THREAD is blocked until someone really needs it.
1930 		 */
1931 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1932 			return ERR_PTR(-EINVAL);
1933 	}
1934 
1935 	/*
1936 	 * Force any signals received before this point to be delivered
1937 	 * before the fork happens.  Collect up signals sent to multiple
1938 	 * processes that happen during the fork and delay them so that
1939 	 * they appear to happen after the fork.
1940 	 */
1941 	sigemptyset(&delayed.signal);
1942 	INIT_HLIST_NODE(&delayed.node);
1943 
1944 	spin_lock_irq(&current->sighand->siglock);
1945 	if (!(clone_flags & CLONE_THREAD))
1946 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1947 	recalc_sigpending();
1948 	spin_unlock_irq(&current->sighand->siglock);
1949 	retval = -ERESTARTNOINTR;
1950 	if (signal_pending(current))
1951 		goto fork_out;
1952 
1953 	retval = -ENOMEM;
1954 	p = dup_task_struct(current, node);
1955 	if (!p)
1956 		goto fork_out;
1957 
1958 	/*
1959 	 * This _must_ happen before we call free_task(), i.e. before we jump
1960 	 * to any of the bad_fork_* labels. This is to avoid freeing
1961 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1962 	 * kernel threads (PF_KTHREAD).
1963 	 */
1964 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1965 	/*
1966 	 * Clear TID on mm_release()?
1967 	 */
1968 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1969 
1970 	ftrace_graph_init_task(p);
1971 
1972 	rt_mutex_init_task(p);
1973 
1974 	lockdep_assert_irqs_enabled();
1975 #ifdef CONFIG_PROVE_LOCKING
1976 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1977 #endif
1978 	retval = -EAGAIN;
1979 	if (atomic_read(&p->real_cred->user->processes) >=
1980 			task_rlimit(p, RLIMIT_NPROC)) {
1981 		if (p->real_cred->user != INIT_USER &&
1982 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1983 			goto bad_fork_free;
1984 	}
1985 	current->flags &= ~PF_NPROC_EXCEEDED;
1986 
1987 	retval = copy_creds(p, clone_flags);
1988 	if (retval < 0)
1989 		goto bad_fork_free;
1990 
1991 	/*
1992 	 * If multiple threads are within copy_process(), then this check
1993 	 * triggers too late. This doesn't hurt, the check is only there
1994 	 * to stop root fork bombs.
1995 	 */
1996 	retval = -EAGAIN;
1997 	if (data_race(nr_threads >= max_threads))
1998 		goto bad_fork_cleanup_count;
1999 
2000 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2001 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2002 	p->flags |= PF_FORKNOEXEC;
2003 	INIT_LIST_HEAD(&p->children);
2004 	INIT_LIST_HEAD(&p->sibling);
2005 	rcu_copy_process(p);
2006 	p->vfork_done = NULL;
2007 	spin_lock_init(&p->alloc_lock);
2008 
2009 	init_sigpending(&p->pending);
2010 
2011 	p->utime = p->stime = p->gtime = 0;
2012 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2013 	p->utimescaled = p->stimescaled = 0;
2014 #endif
2015 	prev_cputime_init(&p->prev_cputime);
2016 
2017 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2018 	seqcount_init(&p->vtime.seqcount);
2019 	p->vtime.starttime = 0;
2020 	p->vtime.state = VTIME_INACTIVE;
2021 #endif
2022 
2023 #ifdef CONFIG_IO_URING
2024 	p->io_uring = NULL;
2025 #endif
2026 
2027 #if defined(SPLIT_RSS_COUNTING)
2028 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2029 #endif
2030 
2031 	p->default_timer_slack_ns = current->timer_slack_ns;
2032 
2033 #ifdef CONFIG_PSI
2034 	p->psi_flags = 0;
2035 #endif
2036 
2037 	task_io_accounting_init(&p->ioac);
2038 	acct_clear_integrals(p);
2039 
2040 	posix_cputimers_init(&p->posix_cputimers);
2041 
2042 	p->io_context = NULL;
2043 	audit_set_context(p, NULL);
2044 	cgroup_fork(p);
2045 #ifdef CONFIG_NUMA
2046 	p->mempolicy = mpol_dup(p->mempolicy);
2047 	if (IS_ERR(p->mempolicy)) {
2048 		retval = PTR_ERR(p->mempolicy);
2049 		p->mempolicy = NULL;
2050 		goto bad_fork_cleanup_threadgroup_lock;
2051 	}
2052 #endif
2053 #ifdef CONFIG_CPUSETS
2054 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2055 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2056 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2057 #endif
2058 #ifdef CONFIG_TRACE_IRQFLAGS
2059 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2060 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2061 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2062 	p->softirqs_enabled		= 1;
2063 	p->softirq_context		= 0;
2064 #endif
2065 
2066 	p->pagefault_disabled = 0;
2067 
2068 #ifdef CONFIG_LOCKDEP
2069 	lockdep_init_task(p);
2070 #endif
2071 
2072 #ifdef CONFIG_DEBUG_MUTEXES
2073 	p->blocked_on = NULL; /* not blocked yet */
2074 #endif
2075 #ifdef CONFIG_BCACHE
2076 	p->sequential_io	= 0;
2077 	p->sequential_io_avg	= 0;
2078 #endif
2079 #ifdef CONFIG_BPF_SYSCALL
2080 	p->bpf_ctx = NULL;
2081 #endif
2082 
2083 	/* Perform scheduler related setup. Assign this task to a CPU. */
2084 	retval = sched_fork(clone_flags, p);
2085 	if (retval)
2086 		goto bad_fork_cleanup_policy;
2087 
2088 	retval = perf_event_init_task(p);
2089 	if (retval)
2090 		goto bad_fork_cleanup_policy;
2091 	retval = audit_alloc(p);
2092 	if (retval)
2093 		goto bad_fork_cleanup_perf;
2094 	/* copy all the process information */
2095 	shm_init_task(p);
2096 	retval = security_task_alloc(p, clone_flags);
2097 	if (retval)
2098 		goto bad_fork_cleanup_audit;
2099 	retval = copy_semundo(clone_flags, p);
2100 	if (retval)
2101 		goto bad_fork_cleanup_security;
2102 	retval = copy_files(clone_flags, p);
2103 	if (retval)
2104 		goto bad_fork_cleanup_semundo;
2105 	retval = copy_fs(clone_flags, p);
2106 	if (retval)
2107 		goto bad_fork_cleanup_files;
2108 	retval = copy_sighand(clone_flags, p);
2109 	if (retval)
2110 		goto bad_fork_cleanup_fs;
2111 	retval = copy_signal(clone_flags, p);
2112 	if (retval)
2113 		goto bad_fork_cleanup_sighand;
2114 	retval = copy_mm(clone_flags, p);
2115 	if (retval)
2116 		goto bad_fork_cleanup_signal;
2117 	retval = copy_namespaces(clone_flags, p);
2118 	if (retval)
2119 		goto bad_fork_cleanup_mm;
2120 	retval = copy_io(clone_flags, p);
2121 	if (retval)
2122 		goto bad_fork_cleanup_namespaces;
2123 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2124 	if (retval)
2125 		goto bad_fork_cleanup_io;
2126 
2127 	stackleak_task_init(p);
2128 
2129 	if (pid != &init_struct_pid) {
2130 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2131 				args->set_tid_size);
2132 		if (IS_ERR(pid)) {
2133 			retval = PTR_ERR(pid);
2134 			goto bad_fork_cleanup_thread;
2135 		}
2136 	}
2137 
2138 	/*
2139 	 * This has to happen after we've potentially unshared the file
2140 	 * descriptor table (so that the pidfd doesn't leak into the child
2141 	 * if the fd table isn't shared).
2142 	 */
2143 	if (clone_flags & CLONE_PIDFD) {
2144 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2145 		if (retval < 0)
2146 			goto bad_fork_free_pid;
2147 
2148 		pidfd = retval;
2149 
2150 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2151 					      O_RDWR | O_CLOEXEC);
2152 		if (IS_ERR(pidfile)) {
2153 			put_unused_fd(pidfd);
2154 			retval = PTR_ERR(pidfile);
2155 			goto bad_fork_free_pid;
2156 		}
2157 		get_pid(pid);	/* held by pidfile now */
2158 
2159 		retval = put_user(pidfd, args->pidfd);
2160 		if (retval)
2161 			goto bad_fork_put_pidfd;
2162 	}
2163 
2164 #ifdef CONFIG_BLOCK
2165 	p->plug = NULL;
2166 #endif
2167 	futex_init_task(p);
2168 
2169 	/*
2170 	 * sigaltstack should be cleared when sharing the same VM
2171 	 */
2172 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2173 		sas_ss_reset(p);
2174 
2175 	/*
2176 	 * Syscall tracing and stepping should be turned off in the
2177 	 * child regardless of CLONE_PTRACE.
2178 	 */
2179 	user_disable_single_step(p);
2180 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2181 #ifdef TIF_SYSCALL_EMU
2182 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2183 #endif
2184 	clear_tsk_latency_tracing(p);
2185 
2186 	/* ok, now we should be set up.. */
2187 	p->pid = pid_nr(pid);
2188 	if (clone_flags & CLONE_THREAD) {
2189 		p->group_leader = current->group_leader;
2190 		p->tgid = current->tgid;
2191 	} else {
2192 		p->group_leader = p;
2193 		p->tgid = p->pid;
2194 	}
2195 
2196 	p->nr_dirtied = 0;
2197 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2198 	p->dirty_paused_when = 0;
2199 
2200 	p->pdeath_signal = 0;
2201 	INIT_LIST_HEAD(&p->thread_group);
2202 	p->task_works = NULL;
2203 
2204 	/*
2205 	 * Ensure that the cgroup subsystem policies allow the new process to be
2206 	 * forked. It should be noted that the new process's css_set can be changed
2207 	 * between here and cgroup_post_fork() if an organisation operation is in
2208 	 * progress.
2209 	 */
2210 	retval = cgroup_can_fork(p, args);
2211 	if (retval)
2212 		goto bad_fork_put_pidfd;
2213 
2214 	/*
2215 	 * From this point on we must avoid any synchronous user-space
2216 	 * communication until we take the tasklist-lock. In particular, we do
2217 	 * not want user-space to be able to predict the process start-time by
2218 	 * stalling fork(2) after we recorded the start_time but before it is
2219 	 * visible to the system.
2220 	 */
2221 
2222 	p->start_time = ktime_get_ns();
2223 	p->start_boottime = ktime_get_boottime_ns();
2224 
2225 	/*
2226 	 * Make it visible to the rest of the system, but dont wake it up yet.
2227 	 * Need tasklist lock for parent etc handling!
2228 	 */
2229 	write_lock_irq(&tasklist_lock);
2230 
2231 	/* CLONE_PARENT re-uses the old parent */
2232 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2233 		p->real_parent = current->real_parent;
2234 		p->parent_exec_id = current->parent_exec_id;
2235 		if (clone_flags & CLONE_THREAD)
2236 			p->exit_signal = -1;
2237 		else
2238 			p->exit_signal = current->group_leader->exit_signal;
2239 	} else {
2240 		p->real_parent = current;
2241 		p->parent_exec_id = current->self_exec_id;
2242 		p->exit_signal = args->exit_signal;
2243 	}
2244 
2245 	klp_copy_process(p);
2246 
2247 	spin_lock(&current->sighand->siglock);
2248 
2249 	/*
2250 	 * Copy seccomp details explicitly here, in case they were changed
2251 	 * before holding sighand lock.
2252 	 */
2253 	copy_seccomp(p);
2254 
2255 	rseq_fork(p, clone_flags);
2256 
2257 	/* Don't start children in a dying pid namespace */
2258 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2259 		retval = -ENOMEM;
2260 		goto bad_fork_cancel_cgroup;
2261 	}
2262 
2263 	/* Let kill terminate clone/fork in the middle */
2264 	if (fatal_signal_pending(current)) {
2265 		retval = -EINTR;
2266 		goto bad_fork_cancel_cgroup;
2267 	}
2268 
2269 	/* past the last point of failure */
2270 	if (pidfile)
2271 		fd_install(pidfd, pidfile);
2272 
2273 	init_task_pid_links(p);
2274 	if (likely(p->pid)) {
2275 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2276 
2277 		init_task_pid(p, PIDTYPE_PID, pid);
2278 		if (thread_group_leader(p)) {
2279 			init_task_pid(p, PIDTYPE_TGID, pid);
2280 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2281 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2282 
2283 			if (is_child_reaper(pid)) {
2284 				ns_of_pid(pid)->child_reaper = p;
2285 				p->signal->flags |= SIGNAL_UNKILLABLE;
2286 			}
2287 			p->signal->shared_pending.signal = delayed.signal;
2288 			p->signal->tty = tty_kref_get(current->signal->tty);
2289 			/*
2290 			 * Inherit has_child_subreaper flag under the same
2291 			 * tasklist_lock with adding child to the process tree
2292 			 * for propagate_has_child_subreaper optimization.
2293 			 */
2294 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2295 							 p->real_parent->signal->is_child_subreaper;
2296 			list_add_tail(&p->sibling, &p->real_parent->children);
2297 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2298 			attach_pid(p, PIDTYPE_TGID);
2299 			attach_pid(p, PIDTYPE_PGID);
2300 			attach_pid(p, PIDTYPE_SID);
2301 			__this_cpu_inc(process_counts);
2302 		} else {
2303 			current->signal->nr_threads++;
2304 			atomic_inc(&current->signal->live);
2305 			refcount_inc(&current->signal->sigcnt);
2306 			task_join_group_stop(p);
2307 			list_add_tail_rcu(&p->thread_group,
2308 					  &p->group_leader->thread_group);
2309 			list_add_tail_rcu(&p->thread_node,
2310 					  &p->signal->thread_head);
2311 		}
2312 		attach_pid(p, PIDTYPE_PID);
2313 		nr_threads++;
2314 	}
2315 	total_forks++;
2316 	hlist_del_init(&delayed.node);
2317 	spin_unlock(&current->sighand->siglock);
2318 	syscall_tracepoint_update(p);
2319 	write_unlock_irq(&tasklist_lock);
2320 
2321 	proc_fork_connector(p);
2322 	sched_post_fork(p);
2323 	cgroup_post_fork(p, args);
2324 	perf_event_fork(p);
2325 
2326 	trace_task_newtask(p, clone_flags);
2327 	uprobe_copy_process(p, clone_flags);
2328 
2329 	copy_oom_score_adj(clone_flags, p);
2330 
2331 	return p;
2332 
2333 bad_fork_cancel_cgroup:
2334 	spin_unlock(&current->sighand->siglock);
2335 	write_unlock_irq(&tasklist_lock);
2336 	cgroup_cancel_fork(p, args);
2337 bad_fork_put_pidfd:
2338 	if (clone_flags & CLONE_PIDFD) {
2339 		fput(pidfile);
2340 		put_unused_fd(pidfd);
2341 	}
2342 bad_fork_free_pid:
2343 	if (pid != &init_struct_pid)
2344 		free_pid(pid);
2345 bad_fork_cleanup_thread:
2346 	exit_thread(p);
2347 bad_fork_cleanup_io:
2348 	if (p->io_context)
2349 		exit_io_context(p);
2350 bad_fork_cleanup_namespaces:
2351 	exit_task_namespaces(p);
2352 bad_fork_cleanup_mm:
2353 	if (p->mm) {
2354 		mm_clear_owner(p->mm, p);
2355 		mmput(p->mm);
2356 	}
2357 bad_fork_cleanup_signal:
2358 	if (!(clone_flags & CLONE_THREAD))
2359 		free_signal_struct(p->signal);
2360 bad_fork_cleanup_sighand:
2361 	__cleanup_sighand(p->sighand);
2362 bad_fork_cleanup_fs:
2363 	exit_fs(p); /* blocking */
2364 bad_fork_cleanup_files:
2365 	exit_files(p); /* blocking */
2366 bad_fork_cleanup_semundo:
2367 	exit_sem(p);
2368 bad_fork_cleanup_security:
2369 	security_task_free(p);
2370 bad_fork_cleanup_audit:
2371 	audit_free(p);
2372 bad_fork_cleanup_perf:
2373 	perf_event_free_task(p);
2374 bad_fork_cleanup_policy:
2375 	lockdep_free_task(p);
2376 	free_task_load_ptrs(p);
2377 #ifdef CONFIG_NUMA
2378 	mpol_put(p->mempolicy);
2379 bad_fork_cleanup_threadgroup_lock:
2380 #endif
2381 	delayacct_tsk_free(p);
2382 bad_fork_cleanup_count:
2383 	atomic_dec(&p->cred->user->processes);
2384 	exit_creds(p);
2385 bad_fork_free:
2386 	p->state = TASK_DEAD;
2387 	put_task_stack(p);
2388 	delayed_free_task(p);
2389 fork_out:
2390 	spin_lock_irq(&current->sighand->siglock);
2391 	hlist_del_init(&delayed.node);
2392 	spin_unlock_irq(&current->sighand->siglock);
2393 	return ERR_PTR(retval);
2394 }
2395 
init_idle_pids(struct task_struct * idle)2396 static inline void init_idle_pids(struct task_struct *idle)
2397 {
2398 	enum pid_type type;
2399 
2400 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2401 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2402 		init_task_pid(idle, type, &init_struct_pid);
2403 	}
2404 }
2405 
fork_idle(int cpu)2406 struct task_struct * __init fork_idle(int cpu)
2407 {
2408 	struct task_struct *task;
2409 	struct kernel_clone_args args = {
2410 		.flags = CLONE_VM,
2411 	};
2412 
2413 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2414 	if (!IS_ERR(task)) {
2415 		init_idle_pids(task);
2416 		init_idle(task, cpu);
2417 	}
2418 
2419 	return task;
2420 }
2421 
copy_init_mm(void)2422 struct mm_struct *copy_init_mm(void)
2423 {
2424 	return dup_mm(NULL, &init_mm);
2425 }
2426 
2427 /*
2428  *  Ok, this is the main fork-routine.
2429  *
2430  * It copies the process, and if successful kick-starts
2431  * it and waits for it to finish using the VM if required.
2432  *
2433  * args->exit_signal is expected to be checked for sanity by the caller.
2434  */
kernel_clone(struct kernel_clone_args * args)2435 pid_t kernel_clone(struct kernel_clone_args *args)
2436 {
2437 	u64 clone_flags = args->flags;
2438 	struct completion vfork;
2439 	struct pid *pid;
2440 	struct task_struct *p;
2441 	int trace = 0;
2442 	pid_t nr;
2443 
2444 	/*
2445 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2446 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2447 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2448 	 * field in struct clone_args and it still doesn't make sense to have
2449 	 * them both point at the same memory location. Performing this check
2450 	 * here has the advantage that we don't need to have a separate helper
2451 	 * to check for legacy clone().
2452 	 */
2453 	if ((args->flags & CLONE_PIDFD) &&
2454 	    (args->flags & CLONE_PARENT_SETTID) &&
2455 	    (args->pidfd == args->parent_tid))
2456 		return -EINVAL;
2457 
2458 	/*
2459 	 * Determine whether and which event to report to ptracer.  When
2460 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2461 	 * requested, no event is reported; otherwise, report if the event
2462 	 * for the type of forking is enabled.
2463 	 */
2464 	if (!(clone_flags & CLONE_UNTRACED)) {
2465 		if (clone_flags & CLONE_VFORK)
2466 			trace = PTRACE_EVENT_VFORK;
2467 		else if (args->exit_signal != SIGCHLD)
2468 			trace = PTRACE_EVENT_CLONE;
2469 		else
2470 			trace = PTRACE_EVENT_FORK;
2471 
2472 		if (likely(!ptrace_event_enabled(current, trace)))
2473 			trace = 0;
2474 	}
2475 
2476 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2477 	add_latent_entropy();
2478 
2479 	if (IS_ERR(p))
2480 		return PTR_ERR(p);
2481 
2482 	/*
2483 	 * Do this prior waking up the new thread - the thread pointer
2484 	 * might get invalid after that point, if the thread exits quickly.
2485 	 */
2486 	trace_sched_process_fork(current, p);
2487 
2488 	pid = get_task_pid(p, PIDTYPE_PID);
2489 	nr = pid_vnr(pid);
2490 
2491 	if (clone_flags & CLONE_PARENT_SETTID)
2492 		put_user(nr, args->parent_tid);
2493 
2494 	if (clone_flags & CLONE_VFORK) {
2495 		p->vfork_done = &vfork;
2496 		init_completion(&vfork);
2497 		get_task_struct(p);
2498 	}
2499 
2500 	wake_up_new_task(p);
2501 
2502 	/* forking complete and child started to run, tell ptracer */
2503 	if (unlikely(trace))
2504 		ptrace_event_pid(trace, pid);
2505 
2506 	if (clone_flags & CLONE_VFORK) {
2507 		if (!wait_for_vfork_done(p, &vfork))
2508 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2509 	}
2510 
2511 	put_pid(pid);
2512 	return nr;
2513 }
2514 
2515 /*
2516  * Create a kernel thread.
2517  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2518 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2519 {
2520 	struct kernel_clone_args args = {
2521 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2522 				    CLONE_UNTRACED) & ~CSIGNAL),
2523 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2524 		.stack		= (unsigned long)fn,
2525 		.stack_size	= (unsigned long)arg,
2526 	};
2527 
2528 	return kernel_clone(&args);
2529 }
2530 
2531 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2532 SYSCALL_DEFINE0(fork)
2533 {
2534 #ifdef CONFIG_MMU
2535 	struct kernel_clone_args args = {
2536 		.exit_signal = SIGCHLD,
2537 	};
2538 
2539 	return kernel_clone(&args);
2540 #else
2541 	/* can not support in nommu mode */
2542 	return -EINVAL;
2543 #endif
2544 }
2545 #endif
2546 
2547 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2548 SYSCALL_DEFINE0(vfork)
2549 {
2550 	struct kernel_clone_args args = {
2551 		.flags		= CLONE_VFORK | CLONE_VM,
2552 		.exit_signal	= SIGCHLD,
2553 	};
2554 
2555 	return kernel_clone(&args);
2556 }
2557 #endif
2558 
2559 #ifdef __ARCH_WANT_SYS_CLONE
2560 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2561 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2562 		 int __user *, parent_tidptr,
2563 		 unsigned long, tls,
2564 		 int __user *, child_tidptr)
2565 #elif defined(CONFIG_CLONE_BACKWARDS2)
2566 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2567 		 int __user *, parent_tidptr,
2568 		 int __user *, child_tidptr,
2569 		 unsigned long, tls)
2570 #elif defined(CONFIG_CLONE_BACKWARDS3)
2571 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2572 		int, stack_size,
2573 		int __user *, parent_tidptr,
2574 		int __user *, child_tidptr,
2575 		unsigned long, tls)
2576 #else
2577 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2578 		 int __user *, parent_tidptr,
2579 		 int __user *, child_tidptr,
2580 		 unsigned long, tls)
2581 #endif
2582 {
2583 	struct kernel_clone_args args = {
2584 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2585 		.pidfd		= parent_tidptr,
2586 		.child_tid	= child_tidptr,
2587 		.parent_tid	= parent_tidptr,
2588 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2589 		.stack		= newsp,
2590 		.tls		= tls,
2591 	};
2592 
2593 	return kernel_clone(&args);
2594 }
2595 #endif
2596 
2597 #ifdef __ARCH_WANT_SYS_CLONE3
2598 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2599 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2600 					      struct clone_args __user *uargs,
2601 					      size_t usize)
2602 {
2603 	int err;
2604 	struct clone_args args;
2605 	pid_t *kset_tid = kargs->set_tid;
2606 
2607 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2608 		     CLONE_ARGS_SIZE_VER0);
2609 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2610 		     CLONE_ARGS_SIZE_VER1);
2611 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2612 		     CLONE_ARGS_SIZE_VER2);
2613 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2614 
2615 	if (unlikely(usize > PAGE_SIZE))
2616 		return -E2BIG;
2617 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2618 		return -EINVAL;
2619 
2620 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2621 	if (err)
2622 		return err;
2623 
2624 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2625 		return -EINVAL;
2626 
2627 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2628 		return -EINVAL;
2629 
2630 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2631 		return -EINVAL;
2632 
2633 	/*
2634 	 * Verify that higher 32bits of exit_signal are unset and that
2635 	 * it is a valid signal
2636 	 */
2637 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2638 		     !valid_signal(args.exit_signal)))
2639 		return -EINVAL;
2640 
2641 	if ((args.flags & CLONE_INTO_CGROUP) &&
2642 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2643 		return -EINVAL;
2644 
2645 	*kargs = (struct kernel_clone_args){
2646 		.flags		= args.flags,
2647 		.pidfd		= u64_to_user_ptr(args.pidfd),
2648 		.child_tid	= u64_to_user_ptr(args.child_tid),
2649 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2650 		.exit_signal	= args.exit_signal,
2651 		.stack		= args.stack,
2652 		.stack_size	= args.stack_size,
2653 		.tls		= args.tls,
2654 		.set_tid_size	= args.set_tid_size,
2655 		.cgroup		= args.cgroup,
2656 	};
2657 
2658 	if (args.set_tid &&
2659 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2660 			(kargs->set_tid_size * sizeof(pid_t))))
2661 		return -EFAULT;
2662 
2663 	kargs->set_tid = kset_tid;
2664 
2665 	return 0;
2666 }
2667 
2668 /**
2669  * clone3_stack_valid - check and prepare stack
2670  * @kargs: kernel clone args
2671  *
2672  * Verify that the stack arguments userspace gave us are sane.
2673  * In addition, set the stack direction for userspace since it's easy for us to
2674  * determine.
2675  */
clone3_stack_valid(struct kernel_clone_args * kargs)2676 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2677 {
2678 	if (kargs->stack == 0) {
2679 		if (kargs->stack_size > 0)
2680 			return false;
2681 	} else {
2682 		if (kargs->stack_size == 0)
2683 			return false;
2684 
2685 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2686 			return false;
2687 
2688 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2689 		kargs->stack += kargs->stack_size;
2690 #endif
2691 	}
2692 
2693 	return true;
2694 }
2695 
clone3_args_valid(struct kernel_clone_args * kargs)2696 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2697 {
2698 	/* Verify that no unknown flags are passed along. */
2699 	if (kargs->flags &
2700 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2701 		return false;
2702 
2703 	/*
2704 	 * - make the CLONE_DETACHED bit reuseable for clone3
2705 	 * - make the CSIGNAL bits reuseable for clone3
2706 	 */
2707 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2708 		return false;
2709 
2710 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2711 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2712 		return false;
2713 
2714 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2715 	    kargs->exit_signal)
2716 		return false;
2717 
2718 	if (!clone3_stack_valid(kargs))
2719 		return false;
2720 
2721 	return true;
2722 }
2723 
2724 /**
2725  * clone3 - create a new process with specific properties
2726  * @uargs: argument structure
2727  * @size:  size of @uargs
2728  *
2729  * clone3() is the extensible successor to clone()/clone2().
2730  * It takes a struct as argument that is versioned by its size.
2731  *
2732  * Return: On success, a positive PID for the child process.
2733  *         On error, a negative errno number.
2734  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2735 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2736 {
2737 	int err;
2738 
2739 	struct kernel_clone_args kargs;
2740 	pid_t set_tid[MAX_PID_NS_LEVEL];
2741 
2742 	kargs.set_tid = set_tid;
2743 
2744 	err = copy_clone_args_from_user(&kargs, uargs, size);
2745 	if (err)
2746 		return err;
2747 
2748 	if (!clone3_args_valid(&kargs))
2749 		return -EINVAL;
2750 
2751 	return kernel_clone(&kargs);
2752 }
2753 #endif
2754 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2755 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2756 {
2757 	struct task_struct *leader, *parent, *child;
2758 	int res;
2759 
2760 	read_lock(&tasklist_lock);
2761 	leader = top = top->group_leader;
2762 down:
2763 	for_each_thread(leader, parent) {
2764 		list_for_each_entry(child, &parent->children, sibling) {
2765 			res = visitor(child, data);
2766 			if (res) {
2767 				if (res < 0)
2768 					goto out;
2769 				leader = child;
2770 				goto down;
2771 			}
2772 up:
2773 			;
2774 		}
2775 	}
2776 
2777 	if (leader != top) {
2778 		child = leader;
2779 		parent = child->real_parent;
2780 		leader = parent->group_leader;
2781 		goto up;
2782 	}
2783 out:
2784 	read_unlock(&tasklist_lock);
2785 }
2786 
2787 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2788 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2789 #endif
2790 
sighand_ctor(void * data)2791 static void sighand_ctor(void *data)
2792 {
2793 	struct sighand_struct *sighand = data;
2794 
2795 	spin_lock_init(&sighand->siglock);
2796 	init_waitqueue_head(&sighand->signalfd_wqh);
2797 }
2798 
proc_caches_init(void)2799 void __init proc_caches_init(void)
2800 {
2801 	unsigned int mm_size;
2802 
2803 	sighand_cachep = kmem_cache_create("sighand_cache",
2804 			sizeof(struct sighand_struct), 0,
2805 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2806 			SLAB_ACCOUNT, sighand_ctor);
2807 	signal_cachep = kmem_cache_create("signal_cache",
2808 			sizeof(struct signal_struct), 0,
2809 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2810 			NULL);
2811 	files_cachep = kmem_cache_create("files_cache",
2812 			sizeof(struct files_struct), 0,
2813 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2814 			NULL);
2815 	fs_cachep = kmem_cache_create("fs_cache",
2816 			sizeof(struct fs_struct), 0,
2817 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2818 			NULL);
2819 
2820 	/*
2821 	 * The mm_cpumask is located at the end of mm_struct, and is
2822 	 * dynamically sized based on the maximum CPU number this system
2823 	 * can have, taking hotplug into account (nr_cpu_ids).
2824 	 */
2825 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2826 
2827 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2828 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2829 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2830 			offsetof(struct mm_struct, saved_auxv),
2831 			sizeof_field(struct mm_struct, saved_auxv),
2832 			NULL);
2833 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2834 	mmap_init();
2835 	nsproxy_cache_init();
2836 }
2837 
2838 /*
2839  * Check constraints on flags passed to the unshare system call.
2840  */
check_unshare_flags(unsigned long unshare_flags)2841 static int check_unshare_flags(unsigned long unshare_flags)
2842 {
2843 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2844 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2845 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2846 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2847 				CLONE_NEWTIME))
2848 		return -EINVAL;
2849 	/*
2850 	 * Not implemented, but pretend it works if there is nothing
2851 	 * to unshare.  Note that unsharing the address space or the
2852 	 * signal handlers also need to unshare the signal queues (aka
2853 	 * CLONE_THREAD).
2854 	 */
2855 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2856 		if (!thread_group_empty(current))
2857 			return -EINVAL;
2858 	}
2859 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2860 		if (refcount_read(&current->sighand->count) > 1)
2861 			return -EINVAL;
2862 	}
2863 	if (unshare_flags & CLONE_VM) {
2864 		if (!current_is_single_threaded())
2865 			return -EINVAL;
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 /*
2872  * Unshare the filesystem structure if it is being shared
2873  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2874 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2875 {
2876 	struct fs_struct *fs = current->fs;
2877 
2878 	if (!(unshare_flags & CLONE_FS) || !fs)
2879 		return 0;
2880 
2881 	/* don't need lock here; in the worst case we'll do useless copy */
2882 	if (fs->users == 1)
2883 		return 0;
2884 
2885 	*new_fsp = copy_fs_struct(fs);
2886 	if (!*new_fsp)
2887 		return -ENOMEM;
2888 
2889 	return 0;
2890 }
2891 
2892 /*
2893  * Unshare file descriptor table if it is being shared
2894  */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2895 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2896 	       struct files_struct **new_fdp)
2897 {
2898 	struct files_struct *fd = current->files;
2899 	int error = 0;
2900 
2901 	if ((unshare_flags & CLONE_FILES) &&
2902 	    (fd && atomic_read(&fd->count) > 1)) {
2903 		*new_fdp = dup_fd(fd, max_fds, &error);
2904 		if (!*new_fdp)
2905 			return error;
2906 	}
2907 
2908 	return 0;
2909 }
2910 
2911 /*
2912  * unshare allows a process to 'unshare' part of the process
2913  * context which was originally shared using clone.  copy_*
2914  * functions used by kernel_clone() cannot be used here directly
2915  * because they modify an inactive task_struct that is being
2916  * constructed. Here we are modifying the current, active,
2917  * task_struct.
2918  */
ksys_unshare(unsigned long unshare_flags)2919 int ksys_unshare(unsigned long unshare_flags)
2920 {
2921 	struct fs_struct *fs, *new_fs = NULL;
2922 	struct files_struct *fd, *new_fd = NULL;
2923 	struct cred *new_cred = NULL;
2924 	struct nsproxy *new_nsproxy = NULL;
2925 	int do_sysvsem = 0;
2926 	int err;
2927 
2928 	/*
2929 	 * If unsharing a user namespace must also unshare the thread group
2930 	 * and unshare the filesystem root and working directories.
2931 	 */
2932 	if (unshare_flags & CLONE_NEWUSER)
2933 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2934 	/*
2935 	 * If unsharing vm, must also unshare signal handlers.
2936 	 */
2937 	if (unshare_flags & CLONE_VM)
2938 		unshare_flags |= CLONE_SIGHAND;
2939 	/*
2940 	 * If unsharing a signal handlers, must also unshare the signal queues.
2941 	 */
2942 	if (unshare_flags & CLONE_SIGHAND)
2943 		unshare_flags |= CLONE_THREAD;
2944 	/*
2945 	 * If unsharing namespace, must also unshare filesystem information.
2946 	 */
2947 	if (unshare_flags & CLONE_NEWNS)
2948 		unshare_flags |= CLONE_FS;
2949 
2950 	err = check_unshare_flags(unshare_flags);
2951 	if (err)
2952 		goto bad_unshare_out;
2953 	/*
2954 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2955 	 * to a new ipc namespace, the semaphore arrays from the old
2956 	 * namespace are unreachable.
2957 	 */
2958 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2959 		do_sysvsem = 1;
2960 	err = unshare_fs(unshare_flags, &new_fs);
2961 	if (err)
2962 		goto bad_unshare_out;
2963 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2964 	if (err)
2965 		goto bad_unshare_cleanup_fs;
2966 	err = unshare_userns(unshare_flags, &new_cred);
2967 	if (err)
2968 		goto bad_unshare_cleanup_fd;
2969 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2970 					 new_cred, new_fs);
2971 	if (err)
2972 		goto bad_unshare_cleanup_cred;
2973 
2974 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2975 		if (do_sysvsem) {
2976 			/*
2977 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2978 			 */
2979 			exit_sem(current);
2980 		}
2981 		if (unshare_flags & CLONE_NEWIPC) {
2982 			/* Orphan segments in old ns (see sem above). */
2983 			exit_shm(current);
2984 			shm_init_task(current);
2985 		}
2986 
2987 		if (new_nsproxy)
2988 			switch_task_namespaces(current, new_nsproxy);
2989 
2990 		task_lock(current);
2991 
2992 		if (new_fs) {
2993 			fs = current->fs;
2994 			spin_lock(&fs->lock);
2995 			current->fs = new_fs;
2996 			if (--fs->users)
2997 				new_fs = NULL;
2998 			else
2999 				new_fs = fs;
3000 			spin_unlock(&fs->lock);
3001 		}
3002 
3003 		if (new_fd) {
3004 			fd = current->files;
3005 			current->files = new_fd;
3006 			new_fd = fd;
3007 		}
3008 
3009 		task_unlock(current);
3010 
3011 		if (new_cred) {
3012 			/* Install the new user namespace */
3013 			commit_creds(new_cred);
3014 			new_cred = NULL;
3015 		}
3016 	}
3017 
3018 	perf_event_namespaces(current);
3019 
3020 bad_unshare_cleanup_cred:
3021 	if (new_cred)
3022 		put_cred(new_cred);
3023 bad_unshare_cleanup_fd:
3024 	if (new_fd)
3025 		put_files_struct(new_fd);
3026 
3027 bad_unshare_cleanup_fs:
3028 	if (new_fs)
3029 		free_fs_struct(new_fs);
3030 
3031 bad_unshare_out:
3032 	return err;
3033 }
3034 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3035 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3036 {
3037 	return ksys_unshare(unshare_flags);
3038 }
3039 
3040 /*
3041  *	Helper to unshare the files of the current task.
3042  *	We don't want to expose copy_files internals to
3043  *	the exec layer of the kernel.
3044  */
3045 
unshare_files(struct files_struct ** displaced)3046 int unshare_files(struct files_struct **displaced)
3047 {
3048 	struct task_struct *task = current;
3049 	struct files_struct *copy = NULL;
3050 	int error;
3051 
3052 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3053 	if (error || !copy) {
3054 		*displaced = NULL;
3055 		return error;
3056 	}
3057 	*displaced = task->files;
3058 	task_lock(task);
3059 	task->files = copy;
3060 	task_unlock(task);
3061 	return 0;
3062 }
3063 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3064 int sysctl_max_threads(struct ctl_table *table, int write,
3065 		       void *buffer, size_t *lenp, loff_t *ppos)
3066 {
3067 	struct ctl_table t;
3068 	int ret;
3069 	int threads = max_threads;
3070 	int min = 1;
3071 	int max = MAX_THREADS;
3072 
3073 	t = *table;
3074 	t.data = &threads;
3075 	t.extra1 = &min;
3076 	t.extra2 = &max;
3077 
3078 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3079 	if (ret || !write)
3080 		return ret;
3081 
3082 	max_threads = threads;
3083 
3084 	return 0;
3085 }
3086