1 /* cpu_feature_enabled() cannot be used this early */
2 #define USE_EARLY_PGTABLE_L5
3
4 #include <linux/bootmem.h>
5 #include <linux/linkage.h>
6 #include <linux/bitops.h>
7 #include <linux/kernel.h>
8 #include <linux/export.h>
9 #include <linux/percpu.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/delay.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/clock.h>
15 #include <linux/sched/task.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/kgdb.h>
19 #include <linux/smp.h>
20 #include <linux/io.h>
21 #include <linux/syscore_ops.h>
22
23 #include <asm/stackprotector.h>
24 #include <asm/perf_event.h>
25 #include <asm/mmu_context.h>
26 #include <asm/archrandom.h>
27 #include <asm/hypervisor.h>
28 #include <asm/processor.h>
29 #include <asm/tlbflush.h>
30 #include <asm/debugreg.h>
31 #include <asm/sections.h>
32 #include <asm/vsyscall.h>
33 #include <linux/topology.h>
34 #include <linux/cpumask.h>
35 #include <asm/pgtable.h>
36 #include <linux/atomic.h>
37 #include <asm/proto.h>
38 #include <asm/setup.h>
39 #include <asm/apic.h>
40 #include <asm/desc.h>
41 #include <asm/fpu/internal.h>
42 #include <asm/mtrr.h>
43 #include <asm/hwcap2.h>
44 #include <linux/numa.h>
45 #include <asm/asm.h>
46 #include <asm/bugs.h>
47 #include <asm/cpu.h>
48 #include <asm/mce.h>
49 #include <asm/msr.h>
50 #include <asm/pat.h>
51 #include <asm/microcode.h>
52 #include <asm/microcode_intel.h>
53 #include <asm/intel-family.h>
54 #include <asm/cpu_device_id.h>
55
56 #ifdef CONFIG_X86_LOCAL_APIC
57 #include <asm/uv/uv.h>
58 #endif
59
60 #include "cpu.h"
61
62 u32 elf_hwcap2 __read_mostly;
63
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78
79 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)80 void __init setup_cpu_local_masks(void)
81 {
82 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83 alloc_bootmem_cpumask_var(&cpu_callin_mask);
84 alloc_bootmem_cpumask_var(&cpu_callout_mask);
85 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87
default_init(struct cpuinfo_x86 * c)88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91 cpu_detect_cache_sizes(c);
92 #else
93 /* Not much we can do here... */
94 /* Check if at least it has cpuid */
95 if (c->cpuid_level == -1) {
96 /* No cpuid. It must be an ancient CPU */
97 if (c->x86 == 4)
98 strcpy(c->x86_model_id, "486");
99 else if (c->x86 == 3)
100 strcpy(c->x86_model_id, "386");
101 }
102 #endif
103 }
104
105 static const struct cpu_dev default_cpu = {
106 .c_init = default_init,
107 .c_vendor = "Unknown",
108 .c_x86_vendor = X86_VENDOR_UNKNOWN,
109 };
110
111 static const struct cpu_dev *this_cpu = &default_cpu;
112
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115 /*
116 * We need valid kernel segments for data and code in long mode too
117 * IRET will check the segment types kkeil 2000/10/28
118 * Also sysret mandates a special GDT layout
119 *
120 * TLS descriptors are currently at a different place compared to i386.
121 * Hopefully nobody expects them at a fixed place (Wine?)
122 */
123 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134 /*
135 * Segments used for calling PnP BIOS have byte granularity.
136 * They code segments and data segments have fixed 64k limits,
137 * the transfer segment sizes are set at run time.
138 */
139 /* 32-bit code */
140 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141 /* 16-bit code */
142 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143 /* 16-bit data */
144 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145 /* 16-bit data */
146 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
147 /* 16-bit data */
148 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
149 /*
150 * The APM segments have byte granularity and their bases
151 * are set at run time. All have 64k limits.
152 */
153 /* 32-bit code */
154 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155 /* 16-bit code */
156 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157 /* data */
158 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159
160 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166
x86_mpx_setup(char * s)167 static int __init x86_mpx_setup(char *s)
168 {
169 /* require an exact match without trailing characters */
170 if (strlen(s))
171 return 0;
172
173 /* do not emit a message if the feature is not present */
174 if (!boot_cpu_has(X86_FEATURE_MPX))
175 return 1;
176
177 setup_clear_cpu_cap(X86_FEATURE_MPX);
178 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
179 return 1;
180 }
181 __setup("nompx", x86_mpx_setup);
182
183 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)184 static int __init x86_nopcid_setup(char *s)
185 {
186 /* nopcid doesn't accept parameters */
187 if (s)
188 return -EINVAL;
189
190 /* do not emit a message if the feature is not present */
191 if (!boot_cpu_has(X86_FEATURE_PCID))
192 return 0;
193
194 setup_clear_cpu_cap(X86_FEATURE_PCID);
195 pr_info("nopcid: PCID feature disabled\n");
196 return 0;
197 }
198 early_param("nopcid", x86_nopcid_setup);
199 #endif
200
x86_noinvpcid_setup(char * s)201 static int __init x86_noinvpcid_setup(char *s)
202 {
203 /* noinvpcid doesn't accept parameters */
204 if (s)
205 return -EINVAL;
206
207 /* do not emit a message if the feature is not present */
208 if (!boot_cpu_has(X86_FEATURE_INVPCID))
209 return 0;
210
211 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
212 pr_info("noinvpcid: INVPCID feature disabled\n");
213 return 0;
214 }
215 early_param("noinvpcid", x86_noinvpcid_setup);
216
217 #ifdef CONFIG_X86_32
218 static int cachesize_override = -1;
219 static int disable_x86_serial_nr = 1;
220
cachesize_setup(char * str)221 static int __init cachesize_setup(char *str)
222 {
223 get_option(&str, &cachesize_override);
224 return 1;
225 }
226 __setup("cachesize=", cachesize_setup);
227
x86_sep_setup(char * s)228 static int __init x86_sep_setup(char *s)
229 {
230 setup_clear_cpu_cap(X86_FEATURE_SEP);
231 return 1;
232 }
233 __setup("nosep", x86_sep_setup);
234
235 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)236 static inline int flag_is_changeable_p(u32 flag)
237 {
238 u32 f1, f2;
239
240 /*
241 * Cyrix and IDT cpus allow disabling of CPUID
242 * so the code below may return different results
243 * when it is executed before and after enabling
244 * the CPUID. Add "volatile" to not allow gcc to
245 * optimize the subsequent calls to this function.
246 */
247 asm volatile ("pushfl \n\t"
248 "pushfl \n\t"
249 "popl %0 \n\t"
250 "movl %0, %1 \n\t"
251 "xorl %2, %0 \n\t"
252 "pushl %0 \n\t"
253 "popfl \n\t"
254 "pushfl \n\t"
255 "popl %0 \n\t"
256 "popfl \n\t"
257
258 : "=&r" (f1), "=&r" (f2)
259 : "ir" (flag));
260
261 return ((f1^f2) & flag) != 0;
262 }
263
264 /* Probe for the CPUID instruction */
have_cpuid_p(void)265 int have_cpuid_p(void)
266 {
267 return flag_is_changeable_p(X86_EFLAGS_ID);
268 }
269
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)270 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
271 {
272 unsigned long lo, hi;
273
274 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
275 return;
276
277 /* Disable processor serial number: */
278
279 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
280 lo |= 0x200000;
281 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
282
283 pr_notice("CPU serial number disabled.\n");
284 clear_cpu_cap(c, X86_FEATURE_PN);
285
286 /* Disabling the serial number may affect the cpuid level */
287 c->cpuid_level = cpuid_eax(0);
288 }
289
x86_serial_nr_setup(char * s)290 static int __init x86_serial_nr_setup(char *s)
291 {
292 disable_x86_serial_nr = 0;
293 return 1;
294 }
295 __setup("serialnumber", x86_serial_nr_setup);
296 #else
flag_is_changeable_p(u32 flag)297 static inline int flag_is_changeable_p(u32 flag)
298 {
299 return 1;
300 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)301 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
302 {
303 }
304 #endif
305
setup_disable_smep(char * arg)306 static __init int setup_disable_smep(char *arg)
307 {
308 setup_clear_cpu_cap(X86_FEATURE_SMEP);
309 /* Check for things that depend on SMEP being enabled: */
310 check_mpx_erratum(&boot_cpu_data);
311 return 1;
312 }
313 __setup("nosmep", setup_disable_smep);
314
setup_smep(struct cpuinfo_x86 * c)315 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
316 {
317 if (cpu_has(c, X86_FEATURE_SMEP))
318 cr4_set_bits(X86_CR4_SMEP);
319 }
320
setup_disable_smap(char * arg)321 static __init int setup_disable_smap(char *arg)
322 {
323 setup_clear_cpu_cap(X86_FEATURE_SMAP);
324 return 1;
325 }
326 __setup("nosmap", setup_disable_smap);
327
setup_smap(struct cpuinfo_x86 * c)328 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
329 {
330 unsigned long eflags = native_save_fl();
331
332 /* This should have been cleared long ago */
333 BUG_ON(eflags & X86_EFLAGS_AC);
334
335 if (cpu_has(c, X86_FEATURE_SMAP)) {
336 #ifdef CONFIG_X86_SMAP
337 cr4_set_bits(X86_CR4_SMAP);
338 #else
339 cr4_clear_bits(X86_CR4_SMAP);
340 #endif
341 }
342 }
343
setup_umip(struct cpuinfo_x86 * c)344 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
345 {
346 /* Check the boot processor, plus build option for UMIP. */
347 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
348 goto out;
349
350 /* Check the current processor's cpuid bits. */
351 if (!cpu_has(c, X86_FEATURE_UMIP))
352 goto out;
353
354 cr4_set_bits(X86_CR4_UMIP);
355
356 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
357
358 return;
359
360 out:
361 /*
362 * Make sure UMIP is disabled in case it was enabled in a
363 * previous boot (e.g., via kexec).
364 */
365 cr4_clear_bits(X86_CR4_UMIP);
366 }
367
368 /*
369 * Protection Keys are not available in 32-bit mode.
370 */
371 static bool pku_disabled;
372
setup_pku(struct cpuinfo_x86 * c)373 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
374 {
375 /* check the boot processor, plus compile options for PKU: */
376 if (!cpu_feature_enabled(X86_FEATURE_PKU))
377 return;
378 /* checks the actual processor's cpuid bits: */
379 if (!cpu_has(c, X86_FEATURE_PKU))
380 return;
381 if (pku_disabled)
382 return;
383
384 cr4_set_bits(X86_CR4_PKE);
385 /*
386 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
387 * cpuid bit to be set. We need to ensure that we
388 * update that bit in this CPU's "cpu_info".
389 */
390 set_cpu_cap(c, X86_FEATURE_OSPKE);
391 }
392
393 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)394 static __init int setup_disable_pku(char *arg)
395 {
396 /*
397 * Do not clear the X86_FEATURE_PKU bit. All of the
398 * runtime checks are against OSPKE so clearing the
399 * bit does nothing.
400 *
401 * This way, we will see "pku" in cpuinfo, but not
402 * "ospke", which is exactly what we want. It shows
403 * that the CPU has PKU, but the OS has not enabled it.
404 * This happens to be exactly how a system would look
405 * if we disabled the config option.
406 */
407 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
408 pku_disabled = true;
409 return 1;
410 }
411 __setup("nopku", setup_disable_pku);
412 #endif /* CONFIG_X86_64 */
413
414 /*
415 * Some CPU features depend on higher CPUID levels, which may not always
416 * be available due to CPUID level capping or broken virtualization
417 * software. Add those features to this table to auto-disable them.
418 */
419 struct cpuid_dependent_feature {
420 u32 feature;
421 u32 level;
422 };
423
424 static const struct cpuid_dependent_feature
425 cpuid_dependent_features[] = {
426 { X86_FEATURE_MWAIT, 0x00000005 },
427 { X86_FEATURE_DCA, 0x00000009 },
428 { X86_FEATURE_XSAVE, 0x0000000d },
429 { 0, 0 }
430 };
431
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)432 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
433 {
434 const struct cpuid_dependent_feature *df;
435
436 for (df = cpuid_dependent_features; df->feature; df++) {
437
438 if (!cpu_has(c, df->feature))
439 continue;
440 /*
441 * Note: cpuid_level is set to -1 if unavailable, but
442 * extended_extended_level is set to 0 if unavailable
443 * and the legitimate extended levels are all negative
444 * when signed; hence the weird messing around with
445 * signs here...
446 */
447 if (!((s32)df->level < 0 ?
448 (u32)df->level > (u32)c->extended_cpuid_level :
449 (s32)df->level > (s32)c->cpuid_level))
450 continue;
451
452 clear_cpu_cap(c, df->feature);
453 if (!warn)
454 continue;
455
456 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
457 x86_cap_flag(df->feature), df->level);
458 }
459 }
460
461 /*
462 * Naming convention should be: <Name> [(<Codename>)]
463 * This table only is used unless init_<vendor>() below doesn't set it;
464 * in particular, if CPUID levels 0x80000002..4 are supported, this
465 * isn't used
466 */
467
468 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)469 static const char *table_lookup_model(struct cpuinfo_x86 *c)
470 {
471 #ifdef CONFIG_X86_32
472 const struct legacy_cpu_model_info *info;
473
474 if (c->x86_model >= 16)
475 return NULL; /* Range check */
476
477 if (!this_cpu)
478 return NULL;
479
480 info = this_cpu->legacy_models;
481
482 while (info->family) {
483 if (info->family == c->x86)
484 return info->model_names[c->x86_model];
485 info++;
486 }
487 #endif
488 return NULL; /* Not found */
489 }
490
491 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
492 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
493
load_percpu_segment(int cpu)494 void load_percpu_segment(int cpu)
495 {
496 #ifdef CONFIG_X86_32
497 loadsegment(fs, __KERNEL_PERCPU);
498 #else
499 __loadsegment_simple(gs, 0);
500 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
501 #endif
502 load_stack_canary_segment();
503 }
504
505 #ifdef CONFIG_X86_32
506 /* The 32-bit entry code needs to find cpu_entry_area. */
507 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
508 #endif
509
510 #ifdef CONFIG_X86_64
511 /*
512 * Special IST stacks which the CPU switches to when it calls
513 * an IST-marked descriptor entry. Up to 7 stacks (hardware
514 * limit), all of them are 4K, except the debug stack which
515 * is 8K.
516 */
517 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
518 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
519 [DEBUG_STACK - 1] = DEBUG_STKSZ
520 };
521 #endif
522
523 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)524 void load_direct_gdt(int cpu)
525 {
526 struct desc_ptr gdt_descr;
527
528 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
529 gdt_descr.size = GDT_SIZE - 1;
530 load_gdt(&gdt_descr);
531 }
532 EXPORT_SYMBOL_GPL(load_direct_gdt);
533
534 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)535 void load_fixmap_gdt(int cpu)
536 {
537 struct desc_ptr gdt_descr;
538
539 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
540 gdt_descr.size = GDT_SIZE - 1;
541 load_gdt(&gdt_descr);
542 }
543 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
544
545 /*
546 * Current gdt points %fs at the "master" per-cpu area: after this,
547 * it's on the real one.
548 */
switch_to_new_gdt(int cpu)549 void switch_to_new_gdt(int cpu)
550 {
551 /* Load the original GDT */
552 load_direct_gdt(cpu);
553 /* Reload the per-cpu base */
554 load_percpu_segment(cpu);
555 }
556
557 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
558
get_model_name(struct cpuinfo_x86 * c)559 static void get_model_name(struct cpuinfo_x86 *c)
560 {
561 unsigned int *v;
562 char *p, *q, *s;
563
564 if (c->extended_cpuid_level < 0x80000004)
565 return;
566
567 v = (unsigned int *)c->x86_model_id;
568 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
569 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
570 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
571 c->x86_model_id[48] = 0;
572
573 /* Trim whitespace */
574 p = q = s = &c->x86_model_id[0];
575
576 while (*p == ' ')
577 p++;
578
579 while (*p) {
580 /* Note the last non-whitespace index */
581 if (!isspace(*p))
582 s = q;
583
584 *q++ = *p++;
585 }
586
587 *(s + 1) = '\0';
588 }
589
detect_num_cpu_cores(struct cpuinfo_x86 * c)590 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
591 {
592 unsigned int eax, ebx, ecx, edx;
593
594 c->x86_max_cores = 1;
595 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
596 return;
597
598 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
599 if (eax & 0x1f)
600 c->x86_max_cores = (eax >> 26) + 1;
601 }
602
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)603 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
604 {
605 unsigned int n, dummy, ebx, ecx, edx, l2size;
606
607 n = c->extended_cpuid_level;
608
609 if (n >= 0x80000005) {
610 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
611 c->x86_cache_size = (ecx>>24) + (edx>>24);
612 #ifdef CONFIG_X86_64
613 /* On K8 L1 TLB is inclusive, so don't count it */
614 c->x86_tlbsize = 0;
615 #endif
616 }
617
618 if (n < 0x80000006) /* Some chips just has a large L1. */
619 return;
620
621 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
622 l2size = ecx >> 16;
623
624 #ifdef CONFIG_X86_64
625 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
626 #else
627 /* do processor-specific cache resizing */
628 if (this_cpu->legacy_cache_size)
629 l2size = this_cpu->legacy_cache_size(c, l2size);
630
631 /* Allow user to override all this if necessary. */
632 if (cachesize_override != -1)
633 l2size = cachesize_override;
634
635 if (l2size == 0)
636 return; /* Again, no L2 cache is possible */
637 #endif
638
639 c->x86_cache_size = l2size;
640 }
641
642 u16 __read_mostly tlb_lli_4k[NR_INFO];
643 u16 __read_mostly tlb_lli_2m[NR_INFO];
644 u16 __read_mostly tlb_lli_4m[NR_INFO];
645 u16 __read_mostly tlb_lld_4k[NR_INFO];
646 u16 __read_mostly tlb_lld_2m[NR_INFO];
647 u16 __read_mostly tlb_lld_4m[NR_INFO];
648 u16 __read_mostly tlb_lld_1g[NR_INFO];
649
cpu_detect_tlb(struct cpuinfo_x86 * c)650 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
651 {
652 if (this_cpu->c_detect_tlb)
653 this_cpu->c_detect_tlb(c);
654
655 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
656 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
657 tlb_lli_4m[ENTRIES]);
658
659 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
660 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
661 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
662 }
663
detect_ht_early(struct cpuinfo_x86 * c)664 int detect_ht_early(struct cpuinfo_x86 *c)
665 {
666 #ifdef CONFIG_SMP
667 u32 eax, ebx, ecx, edx;
668
669 if (!cpu_has(c, X86_FEATURE_HT))
670 return -1;
671
672 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
673 return -1;
674
675 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
676 return -1;
677
678 cpuid(1, &eax, &ebx, &ecx, &edx);
679
680 smp_num_siblings = (ebx & 0xff0000) >> 16;
681 if (smp_num_siblings == 1)
682 pr_info_once("CPU0: Hyper-Threading is disabled\n");
683 #endif
684 return 0;
685 }
686
detect_ht(struct cpuinfo_x86 * c)687 void detect_ht(struct cpuinfo_x86 *c)
688 {
689 #ifdef CONFIG_SMP
690 int index_msb, core_bits;
691
692 if (detect_ht_early(c) < 0)
693 return;
694
695 index_msb = get_count_order(smp_num_siblings);
696 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
697
698 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
699
700 index_msb = get_count_order(smp_num_siblings);
701
702 core_bits = get_count_order(c->x86_max_cores);
703
704 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
705 ((1 << core_bits) - 1);
706 #endif
707 }
708
get_cpu_vendor(struct cpuinfo_x86 * c)709 static void get_cpu_vendor(struct cpuinfo_x86 *c)
710 {
711 char *v = c->x86_vendor_id;
712 int i;
713
714 for (i = 0; i < X86_VENDOR_NUM; i++) {
715 if (!cpu_devs[i])
716 break;
717
718 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
719 (cpu_devs[i]->c_ident[1] &&
720 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
721
722 this_cpu = cpu_devs[i];
723 c->x86_vendor = this_cpu->c_x86_vendor;
724 return;
725 }
726 }
727
728 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
729 "CPU: Your system may be unstable.\n", v);
730
731 c->x86_vendor = X86_VENDOR_UNKNOWN;
732 this_cpu = &default_cpu;
733 }
734
cpu_detect(struct cpuinfo_x86 * c)735 void cpu_detect(struct cpuinfo_x86 *c)
736 {
737 /* Get vendor name */
738 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
739 (unsigned int *)&c->x86_vendor_id[0],
740 (unsigned int *)&c->x86_vendor_id[8],
741 (unsigned int *)&c->x86_vendor_id[4]);
742
743 c->x86 = 4;
744 /* Intel-defined flags: level 0x00000001 */
745 if (c->cpuid_level >= 0x00000001) {
746 u32 junk, tfms, cap0, misc;
747
748 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
749 c->x86 = x86_family(tfms);
750 c->x86_model = x86_model(tfms);
751 c->x86_stepping = x86_stepping(tfms);
752
753 if (cap0 & (1<<19)) {
754 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
755 c->x86_cache_alignment = c->x86_clflush_size;
756 }
757 }
758 }
759
apply_forced_caps(struct cpuinfo_x86 * c)760 static void apply_forced_caps(struct cpuinfo_x86 *c)
761 {
762 int i;
763
764 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
765 c->x86_capability[i] &= ~cpu_caps_cleared[i];
766 c->x86_capability[i] |= cpu_caps_set[i];
767 }
768 }
769
init_speculation_control(struct cpuinfo_x86 * c)770 static void init_speculation_control(struct cpuinfo_x86 *c)
771 {
772 /*
773 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
774 * and they also have a different bit for STIBP support. Also,
775 * a hypervisor might have set the individual AMD bits even on
776 * Intel CPUs, for finer-grained selection of what's available.
777 */
778 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
779 set_cpu_cap(c, X86_FEATURE_IBRS);
780 set_cpu_cap(c, X86_FEATURE_IBPB);
781 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
782 }
783
784 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
785 set_cpu_cap(c, X86_FEATURE_STIBP);
786
787 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
788 cpu_has(c, X86_FEATURE_VIRT_SSBD))
789 set_cpu_cap(c, X86_FEATURE_SSBD);
790
791 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
792 set_cpu_cap(c, X86_FEATURE_IBRS);
793 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
794 }
795
796 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
797 set_cpu_cap(c, X86_FEATURE_IBPB);
798
799 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
800 set_cpu_cap(c, X86_FEATURE_STIBP);
801 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
802 }
803
804 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
805 set_cpu_cap(c, X86_FEATURE_SSBD);
806 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
807 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
808 }
809 }
810
init_cqm(struct cpuinfo_x86 * c)811 static void init_cqm(struct cpuinfo_x86 *c)
812 {
813 if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
814 c->x86_cache_max_rmid = -1;
815 c->x86_cache_occ_scale = -1;
816 return;
817 }
818
819 /* will be overridden if occupancy monitoring exists */
820 c->x86_cache_max_rmid = cpuid_ebx(0xf);
821
822 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
823 cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
824 cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
825 u32 eax, ebx, ecx, edx;
826
827 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
828 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
829
830 c->x86_cache_max_rmid = ecx;
831 c->x86_cache_occ_scale = ebx;
832 }
833 }
834
get_cpu_cap(struct cpuinfo_x86 * c)835 void get_cpu_cap(struct cpuinfo_x86 *c)
836 {
837 u32 eax, ebx, ecx, edx;
838
839 /* Intel-defined flags: level 0x00000001 */
840 if (c->cpuid_level >= 0x00000001) {
841 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
842
843 c->x86_capability[CPUID_1_ECX] = ecx;
844 c->x86_capability[CPUID_1_EDX] = edx;
845 }
846
847 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
848 if (c->cpuid_level >= 0x00000006)
849 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
850
851 /* Additional Intel-defined flags: level 0x00000007 */
852 if (c->cpuid_level >= 0x00000007) {
853 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
854 c->x86_capability[CPUID_7_0_EBX] = ebx;
855 c->x86_capability[CPUID_7_ECX] = ecx;
856 c->x86_capability[CPUID_7_EDX] = edx;
857 }
858
859 /* Extended state features: level 0x0000000d */
860 if (c->cpuid_level >= 0x0000000d) {
861 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
862
863 c->x86_capability[CPUID_D_1_EAX] = eax;
864 }
865
866 /* AMD-defined flags: level 0x80000001 */
867 eax = cpuid_eax(0x80000000);
868 c->extended_cpuid_level = eax;
869
870 if ((eax & 0xffff0000) == 0x80000000) {
871 if (eax >= 0x80000001) {
872 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
873
874 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
875 c->x86_capability[CPUID_8000_0001_EDX] = edx;
876 }
877 }
878
879 if (c->extended_cpuid_level >= 0x80000007) {
880 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
881
882 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
883 c->x86_power = edx;
884 }
885
886 if (c->extended_cpuid_level >= 0x80000008) {
887 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
888 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
889 }
890
891 if (c->extended_cpuid_level >= 0x8000000a)
892 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
893
894 init_scattered_cpuid_features(c);
895 init_speculation_control(c);
896 init_cqm(c);
897
898 /*
899 * Clear/Set all flags overridden by options, after probe.
900 * This needs to happen each time we re-probe, which may happen
901 * several times during CPU initialization.
902 */
903 apply_forced_caps(c);
904 }
905
get_cpu_address_sizes(struct cpuinfo_x86 * c)906 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
907 {
908 u32 eax, ebx, ecx, edx;
909
910 if (c->extended_cpuid_level >= 0x80000008) {
911 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
912
913 c->x86_virt_bits = (eax >> 8) & 0xff;
914 c->x86_phys_bits = eax & 0xff;
915 }
916 #ifdef CONFIG_X86_32
917 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
918 c->x86_phys_bits = 36;
919 #endif
920 c->x86_cache_bits = c->x86_phys_bits;
921 }
922
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)923 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
924 {
925 #ifdef CONFIG_X86_32
926 int i;
927
928 /*
929 * First of all, decide if this is a 486 or higher
930 * It's a 486 if we can modify the AC flag
931 */
932 if (flag_is_changeable_p(X86_EFLAGS_AC))
933 c->x86 = 4;
934 else
935 c->x86 = 3;
936
937 for (i = 0; i < X86_VENDOR_NUM; i++)
938 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
939 c->x86_vendor_id[0] = 0;
940 cpu_devs[i]->c_identify(c);
941 if (c->x86_vendor_id[0]) {
942 get_cpu_vendor(c);
943 break;
944 }
945 }
946 #endif
947 }
948
949 #define NO_SPECULATION BIT(0)
950 #define NO_MELTDOWN BIT(1)
951 #define NO_SSB BIT(2)
952 #define NO_L1TF BIT(3)
953 #define NO_MDS BIT(4)
954 #define MSBDS_ONLY BIT(5)
955 #define NO_SWAPGS BIT(6)
956 #define NO_ITLB_MULTIHIT BIT(7)
957
958 #define VULNWL(_vendor, _family, _model, _whitelist) \
959 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
960
961 #define VULNWL_INTEL(model, whitelist) \
962 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
963
964 #define VULNWL_AMD(family, whitelist) \
965 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
966
967 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
968 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
969 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
970 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
971 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
972
973 /* Intel Family 6 */
974 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
975 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
976 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
977 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
978 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
979
980 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
981 VULNWL_INTEL(ATOM_SILVERMONT_X, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
982 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
983 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
984 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
985 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
986
987 VULNWL_INTEL(CORE_YONAH, NO_SSB),
988
989 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
990
991 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
992 VULNWL_INTEL(ATOM_GOLDMONT_X, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
993 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
994
995 /*
996 * Technically, swapgs isn't serializing on AMD (despite it previously
997 * being documented as such in the APM). But according to AMD, %gs is
998 * updated non-speculatively, and the issuing of %gs-relative memory
999 * operands will be blocked until the %gs update completes, which is
1000 * good enough for our purposes.
1001 */
1002
1003 VULNWL_INTEL(ATOM_TREMONT_X, NO_ITLB_MULTIHIT),
1004
1005 /* AMD Family 0xf - 0x12 */
1006 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1007 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1008 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1009 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1010
1011 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1012 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1013 {}
1014 };
1015
1016 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1017 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1018 INTEL_FAM6_##model, steppings, \
1019 X86_FEATURE_ANY, issues)
1020
1021 #define SRBDS BIT(0)
1022
1023 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1024 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1025 VULNBL_INTEL_STEPPINGS(HASWELL_CORE, X86_STEPPING_ANY, SRBDS),
1026 VULNBL_INTEL_STEPPINGS(HASWELL_ULT, X86_STEPPING_ANY, SRBDS),
1027 VULNBL_INTEL_STEPPINGS(HASWELL_GT3E, X86_STEPPING_ANY, SRBDS),
1028 VULNBL_INTEL_STEPPINGS(BROADWELL_GT3E, X86_STEPPING_ANY, SRBDS),
1029 VULNBL_INTEL_STEPPINGS(BROADWELL_CORE, X86_STEPPING_ANY, SRBDS),
1030 VULNBL_INTEL_STEPPINGS(SKYLAKE_MOBILE, X86_STEPPING_ANY, SRBDS),
1031 VULNBL_INTEL_STEPPINGS(SKYLAKE_DESKTOP, X86_STEPPING_ANY, SRBDS),
1032 VULNBL_INTEL_STEPPINGS(KABYLAKE_MOBILE, X86_STEPPINGS(0x0, 0xC), SRBDS),
1033 VULNBL_INTEL_STEPPINGS(KABYLAKE_DESKTOP,X86_STEPPINGS(0x0, 0xD), SRBDS),
1034 {}
1035 };
1036
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1037 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1038 {
1039 const struct x86_cpu_id *m = x86_match_cpu(table);
1040
1041 return m && !!(m->driver_data & which);
1042 }
1043
x86_read_arch_cap_msr(void)1044 u64 x86_read_arch_cap_msr(void)
1045 {
1046 u64 ia32_cap = 0;
1047
1048 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1049 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1050
1051 return ia32_cap;
1052 }
1053
cpu_set_bug_bits(struct cpuinfo_x86 * c)1054 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1055 {
1056 u64 ia32_cap = x86_read_arch_cap_msr();
1057
1058 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1059 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1060 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1061 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1062
1063 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1064 return;
1065
1066 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1067 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1068
1069 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1070 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1071 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1072 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1073
1074 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1075 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1076
1077 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1078 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1079 setup_force_cpu_bug(X86_BUG_MDS);
1080 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1081 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1082 }
1083
1084 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1085 setup_force_cpu_bug(X86_BUG_SWAPGS);
1086
1087 /*
1088 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1089 * - TSX is supported or
1090 * - TSX_CTRL is present
1091 *
1092 * TSX_CTRL check is needed for cases when TSX could be disabled before
1093 * the kernel boot e.g. kexec.
1094 * TSX_CTRL check alone is not sufficient for cases when the microcode
1095 * update is not present or running as guest that don't get TSX_CTRL.
1096 */
1097 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1098 (cpu_has(c, X86_FEATURE_RTM) ||
1099 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1100 setup_force_cpu_bug(X86_BUG_TAA);
1101
1102 /*
1103 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1104 * in the vulnerability blacklist.
1105 */
1106 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1107 cpu_has(c, X86_FEATURE_RDSEED)) &&
1108 cpu_matches(cpu_vuln_blacklist, SRBDS))
1109 setup_force_cpu_bug(X86_BUG_SRBDS);
1110
1111 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1112 return;
1113
1114 /* Rogue Data Cache Load? No! */
1115 if (ia32_cap & ARCH_CAP_RDCL_NO)
1116 return;
1117
1118 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1119
1120 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1121 return;
1122
1123 setup_force_cpu_bug(X86_BUG_L1TF);
1124 }
1125
1126 /*
1127 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1128 * unfortunately, that's not true in practice because of early VIA
1129 * chips and (more importantly) broken virtualizers that are not easy
1130 * to detect. In the latter case it doesn't even *fail* reliably, so
1131 * probing for it doesn't even work. Disable it completely on 32-bit
1132 * unless we can find a reliable way to detect all the broken cases.
1133 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1134 */
detect_nopl(void)1135 static void detect_nopl(void)
1136 {
1137 #ifdef CONFIG_X86_32
1138 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1139 #else
1140 setup_force_cpu_cap(X86_FEATURE_NOPL);
1141 #endif
1142 }
1143
1144 /*
1145 * Do minimum CPU detection early.
1146 * Fields really needed: vendor, cpuid_level, family, model, mask,
1147 * cache alignment.
1148 * The others are not touched to avoid unwanted side effects.
1149 *
1150 * WARNING: this function is only called on the boot CPU. Don't add code
1151 * here that is supposed to run on all CPUs.
1152 */
early_identify_cpu(struct cpuinfo_x86 * c)1153 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1154 {
1155 #ifdef CONFIG_X86_64
1156 c->x86_clflush_size = 64;
1157 c->x86_phys_bits = 36;
1158 c->x86_virt_bits = 48;
1159 #else
1160 c->x86_clflush_size = 32;
1161 c->x86_phys_bits = 32;
1162 c->x86_virt_bits = 32;
1163 #endif
1164 c->x86_cache_alignment = c->x86_clflush_size;
1165
1166 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1167 c->extended_cpuid_level = 0;
1168
1169 if (!have_cpuid_p())
1170 identify_cpu_without_cpuid(c);
1171
1172 /* cyrix could have cpuid enabled via c_identify()*/
1173 if (have_cpuid_p()) {
1174 cpu_detect(c);
1175 get_cpu_vendor(c);
1176 get_cpu_cap(c);
1177 get_cpu_address_sizes(c);
1178 setup_force_cpu_cap(X86_FEATURE_CPUID);
1179
1180 if (this_cpu->c_early_init)
1181 this_cpu->c_early_init(c);
1182
1183 c->cpu_index = 0;
1184 filter_cpuid_features(c, false);
1185
1186 if (this_cpu->c_bsp_init)
1187 this_cpu->c_bsp_init(c);
1188 } else {
1189 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1190 }
1191
1192 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1193
1194 cpu_set_bug_bits(c);
1195
1196 fpu__init_system(c);
1197
1198 #ifdef CONFIG_X86_32
1199 /*
1200 * Regardless of whether PCID is enumerated, the SDM says
1201 * that it can't be enabled in 32-bit mode.
1202 */
1203 setup_clear_cpu_cap(X86_FEATURE_PCID);
1204 #endif
1205
1206 /*
1207 * Later in the boot process pgtable_l5_enabled() relies on
1208 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1209 * enabled by this point we need to clear the feature bit to avoid
1210 * false-positives at the later stage.
1211 *
1212 * pgtable_l5_enabled() can be false here for several reasons:
1213 * - 5-level paging is disabled compile-time;
1214 * - it's 32-bit kernel;
1215 * - machine doesn't support 5-level paging;
1216 * - user specified 'no5lvl' in kernel command line.
1217 */
1218 if (!pgtable_l5_enabled())
1219 setup_clear_cpu_cap(X86_FEATURE_LA57);
1220
1221 detect_nopl();
1222 }
1223
early_cpu_init(void)1224 void __init early_cpu_init(void)
1225 {
1226 const struct cpu_dev *const *cdev;
1227 int count = 0;
1228
1229 #ifdef CONFIG_PROCESSOR_SELECT
1230 pr_info("KERNEL supported cpus:\n");
1231 #endif
1232
1233 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1234 const struct cpu_dev *cpudev = *cdev;
1235
1236 if (count >= X86_VENDOR_NUM)
1237 break;
1238 cpu_devs[count] = cpudev;
1239 count++;
1240
1241 #ifdef CONFIG_PROCESSOR_SELECT
1242 {
1243 unsigned int j;
1244
1245 for (j = 0; j < 2; j++) {
1246 if (!cpudev->c_ident[j])
1247 continue;
1248 pr_info(" %s %s\n", cpudev->c_vendor,
1249 cpudev->c_ident[j]);
1250 }
1251 }
1252 #endif
1253 }
1254 early_identify_cpu(&boot_cpu_data);
1255 }
1256
detect_null_seg_behavior(struct cpuinfo_x86 * c)1257 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1258 {
1259 #ifdef CONFIG_X86_64
1260 /*
1261 * Empirically, writing zero to a segment selector on AMD does
1262 * not clear the base, whereas writing zero to a segment
1263 * selector on Intel does clear the base. Intel's behavior
1264 * allows slightly faster context switches in the common case
1265 * where GS is unused by the prev and next threads.
1266 *
1267 * Since neither vendor documents this anywhere that I can see,
1268 * detect it directly instead of hardcoding the choice by
1269 * vendor.
1270 *
1271 * I've designated AMD's behavior as the "bug" because it's
1272 * counterintuitive and less friendly.
1273 */
1274
1275 unsigned long old_base, tmp;
1276 rdmsrl(MSR_FS_BASE, old_base);
1277 wrmsrl(MSR_FS_BASE, 1);
1278 loadsegment(fs, 0);
1279 rdmsrl(MSR_FS_BASE, tmp);
1280 if (tmp != 0)
1281 set_cpu_bug(c, X86_BUG_NULL_SEG);
1282 wrmsrl(MSR_FS_BASE, old_base);
1283 #endif
1284 }
1285
generic_identify(struct cpuinfo_x86 * c)1286 static void generic_identify(struct cpuinfo_x86 *c)
1287 {
1288 c->extended_cpuid_level = 0;
1289
1290 if (!have_cpuid_p())
1291 identify_cpu_without_cpuid(c);
1292
1293 /* cyrix could have cpuid enabled via c_identify()*/
1294 if (!have_cpuid_p())
1295 return;
1296
1297 cpu_detect(c);
1298
1299 get_cpu_vendor(c);
1300
1301 get_cpu_cap(c);
1302
1303 get_cpu_address_sizes(c);
1304
1305 if (c->cpuid_level >= 0x00000001) {
1306 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1307 #ifdef CONFIG_X86_32
1308 # ifdef CONFIG_SMP
1309 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1310 # else
1311 c->apicid = c->initial_apicid;
1312 # endif
1313 #endif
1314 c->phys_proc_id = c->initial_apicid;
1315 }
1316
1317 get_model_name(c); /* Default name */
1318
1319 detect_null_seg_behavior(c);
1320
1321 /*
1322 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1323 * systems that run Linux at CPL > 0 may or may not have the
1324 * issue, but, even if they have the issue, there's absolutely
1325 * nothing we can do about it because we can't use the real IRET
1326 * instruction.
1327 *
1328 * NB: For the time being, only 32-bit kernels support
1329 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1330 * whether to apply espfix using paravirt hooks. If any
1331 * non-paravirt system ever shows up that does *not* have the
1332 * ESPFIX issue, we can change this.
1333 */
1334 #ifdef CONFIG_X86_32
1335 # ifdef CONFIG_PARAVIRT
1336 do {
1337 extern void native_iret(void);
1338 if (pv_cpu_ops.iret == native_iret)
1339 set_cpu_bug(c, X86_BUG_ESPFIX);
1340 } while (0);
1341 # else
1342 set_cpu_bug(c, X86_BUG_ESPFIX);
1343 # endif
1344 #endif
1345 }
1346
x86_init_cache_qos(struct cpuinfo_x86 * c)1347 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1348 {
1349 /*
1350 * The heavy lifting of max_rmid and cache_occ_scale are handled
1351 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1352 * in case CQM bits really aren't there in this CPU.
1353 */
1354 if (c != &boot_cpu_data) {
1355 boot_cpu_data.x86_cache_max_rmid =
1356 min(boot_cpu_data.x86_cache_max_rmid,
1357 c->x86_cache_max_rmid);
1358 }
1359 }
1360
1361 /*
1362 * Validate that ACPI/mptables have the same information about the
1363 * effective APIC id and update the package map.
1364 */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1365 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1366 {
1367 #ifdef CONFIG_SMP
1368 unsigned int apicid, cpu = smp_processor_id();
1369
1370 apicid = apic->cpu_present_to_apicid(cpu);
1371
1372 if (apicid != c->apicid) {
1373 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1374 cpu, apicid, c->initial_apicid);
1375 }
1376 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1377 #else
1378 c->logical_proc_id = 0;
1379 #endif
1380 }
1381
1382 /*
1383 * This does the hard work of actually picking apart the CPU stuff...
1384 */
identify_cpu(struct cpuinfo_x86 * c)1385 static void identify_cpu(struct cpuinfo_x86 *c)
1386 {
1387 int i;
1388
1389 c->loops_per_jiffy = loops_per_jiffy;
1390 c->x86_cache_size = 0;
1391 c->x86_vendor = X86_VENDOR_UNKNOWN;
1392 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1393 c->x86_vendor_id[0] = '\0'; /* Unset */
1394 c->x86_model_id[0] = '\0'; /* Unset */
1395 c->x86_max_cores = 1;
1396 c->x86_coreid_bits = 0;
1397 c->cu_id = 0xff;
1398 #ifdef CONFIG_X86_64
1399 c->x86_clflush_size = 64;
1400 c->x86_phys_bits = 36;
1401 c->x86_virt_bits = 48;
1402 #else
1403 c->cpuid_level = -1; /* CPUID not detected */
1404 c->x86_clflush_size = 32;
1405 c->x86_phys_bits = 32;
1406 c->x86_virt_bits = 32;
1407 #endif
1408 c->x86_cache_alignment = c->x86_clflush_size;
1409 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1410
1411 generic_identify(c);
1412
1413 if (this_cpu->c_identify)
1414 this_cpu->c_identify(c);
1415
1416 /* Clear/Set all flags overridden by options, after probe */
1417 apply_forced_caps(c);
1418
1419 #ifdef CONFIG_X86_64
1420 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1421 #endif
1422
1423 /*
1424 * Vendor-specific initialization. In this section we
1425 * canonicalize the feature flags, meaning if there are
1426 * features a certain CPU supports which CPUID doesn't
1427 * tell us, CPUID claiming incorrect flags, or other bugs,
1428 * we handle them here.
1429 *
1430 * At the end of this section, c->x86_capability better
1431 * indicate the features this CPU genuinely supports!
1432 */
1433 if (this_cpu->c_init)
1434 this_cpu->c_init(c);
1435
1436 /* Disable the PN if appropriate */
1437 squash_the_stupid_serial_number(c);
1438
1439 /* Set up SMEP/SMAP/UMIP */
1440 setup_smep(c);
1441 setup_smap(c);
1442 setup_umip(c);
1443
1444 /*
1445 * The vendor-specific functions might have changed features.
1446 * Now we do "generic changes."
1447 */
1448
1449 /* Filter out anything that depends on CPUID levels we don't have */
1450 filter_cpuid_features(c, true);
1451
1452 /* If the model name is still unset, do table lookup. */
1453 if (!c->x86_model_id[0]) {
1454 const char *p;
1455 p = table_lookup_model(c);
1456 if (p)
1457 strcpy(c->x86_model_id, p);
1458 else
1459 /* Last resort... */
1460 sprintf(c->x86_model_id, "%02x/%02x",
1461 c->x86, c->x86_model);
1462 }
1463
1464 #ifdef CONFIG_X86_64
1465 detect_ht(c);
1466 #endif
1467
1468 x86_init_rdrand(c);
1469 x86_init_cache_qos(c);
1470 setup_pku(c);
1471
1472 /*
1473 * Clear/Set all flags overridden by options, need do it
1474 * before following smp all cpus cap AND.
1475 */
1476 apply_forced_caps(c);
1477
1478 /*
1479 * On SMP, boot_cpu_data holds the common feature set between
1480 * all CPUs; so make sure that we indicate which features are
1481 * common between the CPUs. The first time this routine gets
1482 * executed, c == &boot_cpu_data.
1483 */
1484 if (c != &boot_cpu_data) {
1485 /* AND the already accumulated flags with these */
1486 for (i = 0; i < NCAPINTS; i++)
1487 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1488
1489 /* OR, i.e. replicate the bug flags */
1490 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1491 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1492 }
1493
1494 /* Init Machine Check Exception if available. */
1495 mcheck_cpu_init(c);
1496
1497 select_idle_routine(c);
1498
1499 #ifdef CONFIG_NUMA
1500 numa_add_cpu(smp_processor_id());
1501 #endif
1502 }
1503
1504 /*
1505 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1506 * on 32-bit kernels:
1507 */
1508 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1509 void enable_sep_cpu(void)
1510 {
1511 struct tss_struct *tss;
1512 int cpu;
1513
1514 if (!boot_cpu_has(X86_FEATURE_SEP))
1515 return;
1516
1517 cpu = get_cpu();
1518 tss = &per_cpu(cpu_tss_rw, cpu);
1519
1520 /*
1521 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1522 * see the big comment in struct x86_hw_tss's definition.
1523 */
1524
1525 tss->x86_tss.ss1 = __KERNEL_CS;
1526 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1527 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1528 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1529
1530 put_cpu();
1531 }
1532 #endif
1533
identify_boot_cpu(void)1534 void __init identify_boot_cpu(void)
1535 {
1536 identify_cpu(&boot_cpu_data);
1537 #ifdef CONFIG_X86_32
1538 sysenter_setup();
1539 enable_sep_cpu();
1540 #endif
1541 cpu_detect_tlb(&boot_cpu_data);
1542 tsx_init();
1543 }
1544
identify_secondary_cpu(struct cpuinfo_x86 * c)1545 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1546 {
1547 BUG_ON(c == &boot_cpu_data);
1548 identify_cpu(c);
1549 #ifdef CONFIG_X86_32
1550 enable_sep_cpu();
1551 #endif
1552 mtrr_ap_init();
1553 validate_apic_and_package_id(c);
1554 x86_spec_ctrl_setup_ap();
1555 update_srbds_msr();
1556 }
1557
setup_noclflush(char * arg)1558 static __init int setup_noclflush(char *arg)
1559 {
1560 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1561 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1562 return 1;
1563 }
1564 __setup("noclflush", setup_noclflush);
1565
print_cpu_info(struct cpuinfo_x86 * c)1566 void print_cpu_info(struct cpuinfo_x86 *c)
1567 {
1568 const char *vendor = NULL;
1569
1570 if (c->x86_vendor < X86_VENDOR_NUM) {
1571 vendor = this_cpu->c_vendor;
1572 } else {
1573 if (c->cpuid_level >= 0)
1574 vendor = c->x86_vendor_id;
1575 }
1576
1577 if (vendor && !strstr(c->x86_model_id, vendor))
1578 pr_cont("%s ", vendor);
1579
1580 if (c->x86_model_id[0])
1581 pr_cont("%s", c->x86_model_id);
1582 else
1583 pr_cont("%d86", c->x86);
1584
1585 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1586
1587 if (c->x86_stepping || c->cpuid_level >= 0)
1588 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1589 else
1590 pr_cont(")\n");
1591 }
1592
1593 /*
1594 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1595 * But we need to keep a dummy __setup around otherwise it would
1596 * show up as an environment variable for init.
1597 */
setup_clearcpuid(char * arg)1598 static __init int setup_clearcpuid(char *arg)
1599 {
1600 return 1;
1601 }
1602 __setup("clearcpuid=", setup_clearcpuid);
1603
1604 #ifdef CONFIG_X86_64
1605 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1606 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1607 EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union);
1608
1609 /*
1610 * The following percpu variables are hot. Align current_task to
1611 * cacheline size such that they fall in the same cacheline.
1612 */
1613 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1614 &init_task;
1615 EXPORT_PER_CPU_SYMBOL(current_task);
1616
1617 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1618 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1619
1620 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1621
1622 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1623 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1624
1625 /* May not be marked __init: used by software suspend */
syscall_init(void)1626 void syscall_init(void)
1627 {
1628 extern char _entry_trampoline[];
1629 extern char entry_SYSCALL_64_trampoline[];
1630
1631 int cpu = smp_processor_id();
1632 unsigned long SYSCALL64_entry_trampoline =
1633 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1634 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1635
1636 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1637 if (static_cpu_has(X86_FEATURE_PTI))
1638 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1639 else
1640 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1641
1642 #ifdef CONFIG_IA32_EMULATION
1643 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1644 /*
1645 * This only works on Intel CPUs.
1646 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1647 * This does not cause SYSENTER to jump to the wrong location, because
1648 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1649 */
1650 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1651 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1652 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1653 #else
1654 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1655 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1656 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1657 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1658 #endif
1659
1660 /* Flags to clear on syscall */
1661 wrmsrl(MSR_SYSCALL_MASK,
1662 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1663 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1664 }
1665
1666 /*
1667 * Copies of the original ist values from the tss are only accessed during
1668 * debugging, no special alignment required.
1669 */
1670 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1671
1672 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1673 DEFINE_PER_CPU(int, debug_stack_usage);
1674
is_debug_stack(unsigned long addr)1675 int is_debug_stack(unsigned long addr)
1676 {
1677 return __this_cpu_read(debug_stack_usage) ||
1678 (addr <= __this_cpu_read(debug_stack_addr) &&
1679 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1680 }
1681 NOKPROBE_SYMBOL(is_debug_stack);
1682
1683 DEFINE_PER_CPU(u32, debug_idt_ctr);
1684
debug_stack_set_zero(void)1685 void debug_stack_set_zero(void)
1686 {
1687 this_cpu_inc(debug_idt_ctr);
1688 load_current_idt();
1689 }
1690 NOKPROBE_SYMBOL(debug_stack_set_zero);
1691
debug_stack_reset(void)1692 void debug_stack_reset(void)
1693 {
1694 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1695 return;
1696 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1697 load_current_idt();
1698 }
1699 NOKPROBE_SYMBOL(debug_stack_reset);
1700
1701 #else /* CONFIG_X86_64 */
1702
1703 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1704 EXPORT_PER_CPU_SYMBOL(current_task);
1705 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1706 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1707
1708 /*
1709 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1710 * the top of the kernel stack. Use an extra percpu variable to track the
1711 * top of the kernel stack directly.
1712 */
1713 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1714 (unsigned long)&init_thread_union + THREAD_SIZE;
1715 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1716
1717 #ifdef CONFIG_STACKPROTECTOR
1718 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1719 #endif
1720
1721 #endif /* CONFIG_X86_64 */
1722
1723 /*
1724 * Clear all 6 debug registers:
1725 */
clear_all_debug_regs(void)1726 static void clear_all_debug_regs(void)
1727 {
1728 int i;
1729
1730 for (i = 0; i < 8; i++) {
1731 /* Ignore db4, db5 */
1732 if ((i == 4) || (i == 5))
1733 continue;
1734
1735 set_debugreg(0, i);
1736 }
1737 }
1738
1739 #ifdef CONFIG_KGDB
1740 /*
1741 * Restore debug regs if using kgdbwait and you have a kernel debugger
1742 * connection established.
1743 */
dbg_restore_debug_regs(void)1744 static void dbg_restore_debug_regs(void)
1745 {
1746 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1747 arch_kgdb_ops.correct_hw_break();
1748 }
1749 #else /* ! CONFIG_KGDB */
1750 #define dbg_restore_debug_regs()
1751 #endif /* ! CONFIG_KGDB */
1752
wait_for_master_cpu(int cpu)1753 static void wait_for_master_cpu(int cpu)
1754 {
1755 #ifdef CONFIG_SMP
1756 /*
1757 * wait for ACK from master CPU before continuing
1758 * with AP initialization
1759 */
1760 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1761 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1762 cpu_relax();
1763 #endif
1764 }
1765
1766 /*
1767 * cpu_init() initializes state that is per-CPU. Some data is already
1768 * initialized (naturally) in the bootstrap process, such as the GDT
1769 * and IDT. We reload them nevertheless, this function acts as a
1770 * 'CPU state barrier', nothing should get across.
1771 * A lot of state is already set up in PDA init for 64 bit
1772 */
1773 #ifdef CONFIG_X86_64
1774
cpu_init(void)1775 void cpu_init(void)
1776 {
1777 struct orig_ist *oist;
1778 struct task_struct *me;
1779 struct tss_struct *t;
1780 unsigned long v;
1781 int cpu = raw_smp_processor_id();
1782 int i;
1783
1784 wait_for_master_cpu(cpu);
1785
1786 /*
1787 * Initialize the CR4 shadow before doing anything that could
1788 * try to read it.
1789 */
1790 cr4_init_shadow();
1791
1792 if (cpu)
1793 load_ucode_ap();
1794
1795 t = &per_cpu(cpu_tss_rw, cpu);
1796 oist = &per_cpu(orig_ist, cpu);
1797
1798 #ifdef CONFIG_NUMA
1799 if (this_cpu_read(numa_node) == 0 &&
1800 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1801 set_numa_node(early_cpu_to_node(cpu));
1802 #endif
1803
1804 me = current;
1805
1806 pr_debug("Initializing CPU#%d\n", cpu);
1807
1808 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1809
1810 /*
1811 * Initialize the per-CPU GDT with the boot GDT,
1812 * and set up the GDT descriptor:
1813 */
1814
1815 switch_to_new_gdt(cpu);
1816 loadsegment(fs, 0);
1817
1818 load_current_idt();
1819
1820 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1821 syscall_init();
1822
1823 wrmsrl(MSR_FS_BASE, 0);
1824 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1825 barrier();
1826
1827 x86_configure_nx();
1828 x2apic_setup();
1829
1830 /*
1831 * set up and load the per-CPU TSS
1832 */
1833 if (!oist->ist[0]) {
1834 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1835
1836 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1837 estacks += exception_stack_sizes[v];
1838 oist->ist[v] = t->x86_tss.ist[v] =
1839 (unsigned long)estacks;
1840 if (v == DEBUG_STACK-1)
1841 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1842 }
1843 }
1844
1845 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1846
1847 /*
1848 * <= is required because the CPU will access up to
1849 * 8 bits beyond the end of the IO permission bitmap.
1850 */
1851 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1852 t->io_bitmap[i] = ~0UL;
1853
1854 mmgrab(&init_mm);
1855 me->active_mm = &init_mm;
1856 BUG_ON(me->mm);
1857 initialize_tlbstate_and_flush();
1858 enter_lazy_tlb(&init_mm, me);
1859
1860 /*
1861 * Initialize the TSS. sp0 points to the entry trampoline stack
1862 * regardless of what task is running.
1863 */
1864 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1865 load_TR_desc();
1866 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1867
1868 load_mm_ldt(&init_mm);
1869
1870 clear_all_debug_regs();
1871 dbg_restore_debug_regs();
1872
1873 fpu__init_cpu();
1874
1875 if (is_uv_system())
1876 uv_cpu_init();
1877
1878 load_fixmap_gdt(cpu);
1879 }
1880
1881 #else
1882
cpu_init(void)1883 void cpu_init(void)
1884 {
1885 int cpu = smp_processor_id();
1886 struct task_struct *curr = current;
1887 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1888
1889 wait_for_master_cpu(cpu);
1890
1891 /*
1892 * Initialize the CR4 shadow before doing anything that could
1893 * try to read it.
1894 */
1895 cr4_init_shadow();
1896
1897 show_ucode_info_early();
1898
1899 pr_info("Initializing CPU#%d\n", cpu);
1900
1901 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1902 boot_cpu_has(X86_FEATURE_TSC) ||
1903 boot_cpu_has(X86_FEATURE_DE))
1904 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1905
1906 load_current_idt();
1907 switch_to_new_gdt(cpu);
1908
1909 /*
1910 * Set up and load the per-CPU TSS and LDT
1911 */
1912 mmgrab(&init_mm);
1913 curr->active_mm = &init_mm;
1914 BUG_ON(curr->mm);
1915 initialize_tlbstate_and_flush();
1916 enter_lazy_tlb(&init_mm, curr);
1917
1918 /*
1919 * Initialize the TSS. sp0 points to the entry trampoline stack
1920 * regardless of what task is running.
1921 */
1922 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1923 load_TR_desc();
1924 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1925
1926 load_mm_ldt(&init_mm);
1927
1928 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1929
1930 #ifdef CONFIG_DOUBLEFAULT
1931 /* Set up doublefault TSS pointer in the GDT */
1932 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1933 #endif
1934
1935 clear_all_debug_regs();
1936 dbg_restore_debug_regs();
1937
1938 fpu__init_cpu();
1939
1940 load_fixmap_gdt(cpu);
1941 }
1942 #endif
1943
bsp_resume(void)1944 static void bsp_resume(void)
1945 {
1946 if (this_cpu->c_bsp_resume)
1947 this_cpu->c_bsp_resume(&boot_cpu_data);
1948 }
1949
1950 static struct syscore_ops cpu_syscore_ops = {
1951 .resume = bsp_resume,
1952 };
1953
init_cpu_syscore(void)1954 static int __init init_cpu_syscore(void)
1955 {
1956 register_syscore_ops(&cpu_syscore_ops);
1957 return 0;
1958 }
1959 core_initcall(init_cpu_syscore);
1960
1961 /*
1962 * The microcode loader calls this upon late microcode load to recheck features,
1963 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1964 * hotplug lock.
1965 */
microcode_check(void)1966 void microcode_check(void)
1967 {
1968 struct cpuinfo_x86 info;
1969
1970 perf_check_microcode();
1971
1972 /* Reload CPUID max function as it might've changed. */
1973 info.cpuid_level = cpuid_eax(0);
1974
1975 /*
1976 * Copy all capability leafs to pick up the synthetic ones so that
1977 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1978 * get overwritten in get_cpu_cap().
1979 */
1980 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1981
1982 get_cpu_cap(&info);
1983
1984 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1985 return;
1986
1987 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1988 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1989 }
1990