1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active) \
37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy) \
41 for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy) \
43 for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy) \
46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor) \
51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 static char default_governor[CPUFREQ_NAME_LEN];
54
55 /*
56 * The "cpufreq driver" - the arch- or hardware-dependent low
57 * level driver of CPUFreq support, and its spinlock. This lock
58 * also protects the cpufreq_cpu_data array.
59 */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63
64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)65 bool cpufreq_supports_freq_invariance(void)
66 {
67 return static_branch_likely(&cpufreq_freq_invariance);
68 }
69
70 /* Flag to suspend/resume CPUFreq governors */
71 static bool cpufreq_suspended;
72
has_target(void)73 static inline bool has_target(void)
74 {
75 return cpufreq_driver->target_index || cpufreq_driver->target;
76 }
77
78 /* internal prototypes */
79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
80 static int cpufreq_init_governor(struct cpufreq_policy *policy);
81 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 static int cpufreq_set_policy(struct cpufreq_policy *policy,
84 struct cpufreq_governor *new_gov,
85 unsigned int new_pol);
86
87 /*
88 * Two notifier lists: the "policy" list is involved in the
89 * validation process for a new CPU frequency policy; the
90 * "transition" list for kernel code that needs to handle
91 * changes to devices when the CPU clock speed changes.
92 * The mutex locks both lists.
93 */
94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
96
97 static int off __read_mostly;
cpufreq_disabled(void)98 static int cpufreq_disabled(void)
99 {
100 return off;
101 }
disable_cpufreq(void)102 void disable_cpufreq(void)
103 {
104 off = 1;
105 }
106 static DEFINE_MUTEX(cpufreq_governor_mutex);
107
have_governor_per_policy(void)108 bool have_governor_per_policy(void)
109 {
110 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
111 }
112 EXPORT_SYMBOL_GPL(have_governor_per_policy);
113
114 static struct kobject *cpufreq_global_kobject;
115
get_governor_parent_kobj(struct cpufreq_policy * policy)116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
117 {
118 if (have_governor_per_policy())
119 return &policy->kobj;
120 else
121 return cpufreq_global_kobject;
122 }
123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
124
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
126 {
127 struct kernel_cpustat kcpustat;
128 u64 cur_wall_time;
129 u64 idle_time;
130 u64 busy_time;
131
132 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
133
134 kcpustat_cpu_fetch(&kcpustat, cpu);
135
136 busy_time = kcpustat.cpustat[CPUTIME_USER];
137 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
138 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
139 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
140 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
141 busy_time += kcpustat.cpustat[CPUTIME_NICE];
142
143 idle_time = cur_wall_time - busy_time;
144 if (wall)
145 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
146
147 return div_u64(idle_time, NSEC_PER_USEC);
148 }
149
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
151 {
152 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
153
154 if (idle_time == -1ULL)
155 return get_cpu_idle_time_jiffy(cpu, wall);
156 else if (!io_busy)
157 idle_time += get_cpu_iowait_time_us(cpu, wall);
158
159 return idle_time;
160 }
161 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
162
163 /*
164 * This is a generic cpufreq init() routine which can be used by cpufreq
165 * drivers of SMP systems. It will do following:
166 * - validate & show freq table passed
167 * - set policies transition latency
168 * - policy->cpus with all possible CPUs
169 */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 struct cpufreq_frequency_table *table,
172 unsigned int transition_latency)
173 {
174 policy->freq_table = table;
175 policy->cpuinfo.transition_latency = transition_latency;
176
177 /*
178 * The driver only supports the SMP configuration where all processors
179 * share the clock and voltage and clock.
180 */
181 cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
cpufreq_cpu_get_raw(unsigned int cpu)185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
cpufreq_generic_get(unsigned int cpu)193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197 if (!policy || IS_ERR(policy->clk)) {
198 pr_err("%s: No %s associated to cpu: %d\n",
199 __func__, policy ? "clk" : "policy", cpu);
200 return 0;
201 }
202
203 return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209 * @cpu: CPU to find the policy for.
210 *
211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212 * the kobject reference counter of that policy. Return a valid policy on
213 * success or NULL on failure.
214 *
215 * The policy returned by this function has to be released with the help of
216 * cpufreq_cpu_put() to balance its kobject reference counter properly.
217 */
cpufreq_cpu_get(unsigned int cpu)218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 struct cpufreq_policy *policy = NULL;
221 unsigned long flags;
222
223 if (WARN_ON(cpu >= nr_cpu_ids))
224 return NULL;
225
226 /* get the cpufreq driver */
227 read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229 if (cpufreq_driver) {
230 /* get the CPU */
231 policy = cpufreq_cpu_get_raw(cpu);
232 if (policy)
233 kobject_get(&policy->kobj);
234 }
235
236 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238 return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242 /**
243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244 * @policy: cpufreq policy returned by cpufreq_cpu_get().
245 */
cpufreq_cpu_put(struct cpufreq_policy * policy)246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252 /**
253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255 */
cpufreq_cpu_release(struct cpufreq_policy * policy)256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 if (WARN_ON(!policy))
259 return;
260
261 lockdep_assert_held(&policy->rwsem);
262
263 up_write(&policy->rwsem);
264
265 cpufreq_cpu_put(policy);
266 }
267
268 /**
269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270 * @cpu: CPU to find the policy for.
271 *
272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273 * if the policy returned by it is not NULL, acquire its rwsem for writing.
274 * Return the policy if it is active or release it and return NULL otherwise.
275 *
276 * The policy returned by this function has to be released with the help of
277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278 * counter properly.
279 */
cpufreq_cpu_acquire(unsigned int cpu)280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284 if (!policy)
285 return NULL;
286
287 down_write(&policy->rwsem);
288
289 if (policy_is_inactive(policy)) {
290 cpufreq_cpu_release(policy);
291 return NULL;
292 }
293
294 return policy;
295 }
296
297 /*********************************************************************
298 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
299 *********************************************************************/
300
301 /*
302 * adjust_jiffies - adjust the system "loops_per_jiffy"
303 *
304 * This function alters the system "loops_per_jiffy" for the clock
305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
306 * systems as each CPU might be scaled differently. So, use the arch
307 * per-CPU loops_per_jiffy value wherever possible.
308 */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 static unsigned long l_p_j_ref;
313 static unsigned int l_p_j_ref_freq;
314
315 if (ci->flags & CPUFREQ_CONST_LOOPS)
316 return;
317
318 if (!l_p_j_ref_freq) {
319 l_p_j_ref = loops_per_jiffy;
320 l_p_j_ref_freq = ci->old;
321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 l_p_j_ref, l_p_j_ref_freq);
323 }
324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 ci->new);
327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 loops_per_jiffy, ci->new);
329 }
330 #endif
331 }
332
333 /**
334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335 * @policy: cpufreq policy to enable fast frequency switching for.
336 * @freqs: contain details of the frequency update.
337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338 *
339 * This function calls the transition notifiers and the "adjust_jiffies"
340 * function. It is called twice on all CPU frequency changes that have
341 * external effects.
342 */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 struct cpufreq_freqs *freqs,
345 unsigned int state)
346 {
347 int cpu;
348
349 BUG_ON(irqs_disabled());
350
351 if (cpufreq_disabled())
352 return;
353
354 freqs->policy = policy;
355 freqs->flags = cpufreq_driver->flags;
356 pr_debug("notification %u of frequency transition to %u kHz\n",
357 state, freqs->new);
358
359 switch (state) {
360 case CPUFREQ_PRECHANGE:
361 /*
362 * Detect if the driver reported a value as "old frequency"
363 * which is not equal to what the cpufreq core thinks is
364 * "old frequency".
365 */
366 if (policy->cur && policy->cur != freqs->old) {
367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 freqs->old, policy->cur);
369 freqs->old = policy->cur;
370 }
371
372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 CPUFREQ_PRECHANGE, freqs);
374
375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 break;
377
378 case CPUFREQ_POSTCHANGE:
379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 cpumask_pr_args(policy->cpus));
382
383 for_each_cpu(cpu, policy->cpus)
384 trace_cpu_frequency(freqs->new, cpu);
385
386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 CPUFREQ_POSTCHANGE, freqs);
388
389 cpufreq_stats_record_transition(policy, freqs->new);
390 policy->cur = freqs->new;
391 }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 if (!transition_failed)
400 return;
401
402 swap(freqs->old, freqs->new);
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 struct cpufreq_freqs *freqs)
409 {
410
411 /*
412 * Catch double invocations of _begin() which lead to self-deadlock.
413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 * doesn't invoke _begin() on their behalf, and hence the chances of
415 * double invocations are very low. Moreover, there are scenarios
416 * where these checks can emit false-positive warnings in these
417 * drivers; so we avoid that by skipping them altogether.
418 */
419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 && current == policy->transition_task);
421
422 wait:
423 wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425 spin_lock(&policy->transition_lock);
426
427 if (unlikely(policy->transition_ongoing)) {
428 spin_unlock(&policy->transition_lock);
429 goto wait;
430 }
431
432 policy->transition_ongoing = true;
433 policy->transition_task = current;
434
435 spin_unlock(&policy->transition_lock);
436
437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 if (WARN_ON(!policy->transition_ongoing))
445 return;
446
447 cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449 arch_set_freq_scale(policy->related_cpus,
450 policy->cur,
451 policy->cpuinfo.max_freq);
452
453 policy->transition_ongoing = false;
454 policy->transition_task = NULL;
455
456 wake_up(&policy->transition_wait);
457 }
458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
459
460 /*
461 * Fast frequency switching status count. Positive means "enabled", negative
462 * means "disabled" and 0 means "not decided yet".
463 */
464 static int cpufreq_fast_switch_count;
465 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
466
cpufreq_list_transition_notifiers(void)467 static void cpufreq_list_transition_notifiers(void)
468 {
469 struct notifier_block *nb;
470
471 pr_info("Registered transition notifiers:\n");
472
473 mutex_lock(&cpufreq_transition_notifier_list.mutex);
474
475 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
476 pr_info("%pS\n", nb->notifier_call);
477
478 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
479 }
480
481 /**
482 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
483 * @policy: cpufreq policy to enable fast frequency switching for.
484 *
485 * Try to enable fast frequency switching for @policy.
486 *
487 * The attempt will fail if there is at least one transition notifier registered
488 * at this point, as fast frequency switching is quite fundamentally at odds
489 * with transition notifiers. Thus if successful, it will make registration of
490 * transition notifiers fail going forward.
491 */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
493 {
494 lockdep_assert_held(&policy->rwsem);
495
496 if (!policy->fast_switch_possible)
497 return;
498
499 mutex_lock(&cpufreq_fast_switch_lock);
500 if (cpufreq_fast_switch_count >= 0) {
501 cpufreq_fast_switch_count++;
502 policy->fast_switch_enabled = true;
503 } else {
504 pr_warn("CPU%u: Fast frequency switching not enabled\n",
505 policy->cpu);
506 cpufreq_list_transition_notifiers();
507 }
508 mutex_unlock(&cpufreq_fast_switch_lock);
509 }
510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
511
512 /**
513 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
514 * @policy: cpufreq policy to disable fast frequency switching for.
515 */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
517 {
518 mutex_lock(&cpufreq_fast_switch_lock);
519 if (policy->fast_switch_enabled) {
520 policy->fast_switch_enabled = false;
521 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
522 cpufreq_fast_switch_count--;
523 }
524 mutex_unlock(&cpufreq_fast_switch_lock);
525 }
526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
527
528 /**
529 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
530 * one.
531 * @policy: associated policy to interrogate
532 * @target_freq: target frequency to resolve.
533 *
534 * The target to driver frequency mapping is cached in the policy.
535 *
536 * Return: Lowest driver-supported frequency greater than or equal to the
537 * given target_freq, subject to policy (min/max) and driver limitations.
538 */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)539 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
540 unsigned int target_freq)
541 {
542 target_freq = clamp_val(target_freq, policy->min, policy->max);
543 policy->cached_target_freq = target_freq;
544
545 if (cpufreq_driver->target_index) {
546 unsigned int idx;
547
548 idx = cpufreq_frequency_table_target(policy, target_freq,
549 CPUFREQ_RELATION_L);
550 policy->cached_resolved_idx = idx;
551 return policy->freq_table[idx].frequency;
552 }
553
554 if (cpufreq_driver->resolve_freq)
555 return cpufreq_driver->resolve_freq(policy, target_freq);
556
557 return target_freq;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
560
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
562 {
563 unsigned int latency;
564
565 if (policy->transition_delay_us)
566 return policy->transition_delay_us;
567
568 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
569 if (latency) {
570 /*
571 * For platforms that can change the frequency very fast (< 10
572 * us), the above formula gives a decent transition delay. But
573 * for platforms where transition_latency is in milliseconds, it
574 * ends up giving unrealistic values.
575 *
576 * Cap the default transition delay to 10 ms, which seems to be
577 * a reasonable amount of time after which we should reevaluate
578 * the frequency.
579 */
580 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
581 }
582
583 return LATENCY_MULTIPLIER;
584 }
585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
586
587 /*********************************************************************
588 * SYSFS INTERFACE *
589 *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)590 static ssize_t show_boost(struct kobject *kobj,
591 struct kobj_attribute *attr, char *buf)
592 {
593 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
594 }
595
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
597 const char *buf, size_t count)
598 {
599 int ret, enable;
600
601 ret = sscanf(buf, "%d", &enable);
602 if (ret != 1 || enable < 0 || enable > 1)
603 return -EINVAL;
604
605 if (cpufreq_boost_trigger_state(enable)) {
606 pr_err("%s: Cannot %s BOOST!\n",
607 __func__, enable ? "enable" : "disable");
608 return -EINVAL;
609 }
610
611 pr_debug("%s: cpufreq BOOST %s\n",
612 __func__, enable ? "enabled" : "disabled");
613
614 return count;
615 }
616 define_one_global_rw(boost);
617
find_governor(const char * str_governor)618 static struct cpufreq_governor *find_governor(const char *str_governor)
619 {
620 struct cpufreq_governor *t;
621
622 for_each_governor(t)
623 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
624 return t;
625
626 return NULL;
627 }
628
get_governor(const char * str_governor)629 static struct cpufreq_governor *get_governor(const char *str_governor)
630 {
631 struct cpufreq_governor *t;
632
633 mutex_lock(&cpufreq_governor_mutex);
634 t = find_governor(str_governor);
635 if (!t)
636 goto unlock;
637
638 if (!try_module_get(t->owner))
639 t = NULL;
640
641 unlock:
642 mutex_unlock(&cpufreq_governor_mutex);
643
644 return t;
645 }
646
cpufreq_parse_policy(char * str_governor)647 static unsigned int cpufreq_parse_policy(char *str_governor)
648 {
649 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
650 return CPUFREQ_POLICY_PERFORMANCE;
651
652 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
653 return CPUFREQ_POLICY_POWERSAVE;
654
655 return CPUFREQ_POLICY_UNKNOWN;
656 }
657
658 /**
659 * cpufreq_parse_governor - parse a governor string only for has_target()
660 * @str_governor: Governor name.
661 */
cpufreq_parse_governor(char * str_governor)662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
663 {
664 struct cpufreq_governor *t;
665
666 t = get_governor(str_governor);
667 if (t)
668 return t;
669
670 if (request_module("cpufreq_%s", str_governor))
671 return NULL;
672
673 return get_governor(str_governor);
674 }
675
676 /*
677 * cpufreq_per_cpu_attr_read() / show_##file_name() -
678 * print out cpufreq information
679 *
680 * Write out information from cpufreq_driver->policy[cpu]; object must be
681 * "unsigned int".
682 */
683
684 #define show_one(file_name, object) \
685 static ssize_t show_##file_name \
686 (struct cpufreq_policy *policy, char *buf) \
687 { \
688 return sprintf(buf, "%u\n", policy->object); \
689 }
690
691 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
692 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
694 show_one(scaling_min_freq, min);
695 show_one(scaling_max_freq, max);
696
arch_freq_get_on_cpu(int cpu)697 __weak unsigned int arch_freq_get_on_cpu(int cpu)
698 {
699 return 0;
700 }
701
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
703 {
704 ssize_t ret;
705 unsigned int freq;
706
707 freq = arch_freq_get_on_cpu(policy->cpu);
708 if (freq)
709 ret = sprintf(buf, "%u\n", freq);
710 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
711 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712 else
713 ret = sprintf(buf, "%u\n", policy->cur);
714 return ret;
715 }
716
717 /*
718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719 */
720 #define store_one(file_name, object) \
721 static ssize_t store_##file_name \
722 (struct cpufreq_policy *policy, const char *buf, size_t count) \
723 { \
724 unsigned long val; \
725 int ret; \
726 \
727 ret = sscanf(buf, "%lu", &val); \
728 if (ret != 1) \
729 return -EINVAL; \
730 \
731 ret = freq_qos_update_request(policy->object##_freq_req, val);\
732 return ret >= 0 ? count : ret; \
733 }
734
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737
738 /*
739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742 char *buf)
743 {
744 unsigned int cur_freq = __cpufreq_get(policy);
745
746 if (cur_freq)
747 return sprintf(buf, "%u\n", cur_freq);
748
749 return sprintf(buf, "<unknown>\n");
750 }
751
752 /*
753 * show_scaling_governor - show the current policy for the specified CPU
754 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758 return sprintf(buf, "powersave\n");
759 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760 return sprintf(buf, "performance\n");
761 else if (policy->governor)
762 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763 policy->governor->name);
764 return -EINVAL;
765 }
766
767 /*
768 * store_scaling_governor - store policy for the specified CPU
769 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771 const char *buf, size_t count)
772 {
773 char str_governor[16];
774 int ret;
775
776 ret = sscanf(buf, "%15s", str_governor);
777 if (ret != 1)
778 return -EINVAL;
779
780 if (cpufreq_driver->setpolicy) {
781 unsigned int new_pol;
782
783 new_pol = cpufreq_parse_policy(str_governor);
784 if (!new_pol)
785 return -EINVAL;
786
787 ret = cpufreq_set_policy(policy, NULL, new_pol);
788 } else {
789 struct cpufreq_governor *new_gov;
790
791 new_gov = cpufreq_parse_governor(str_governor);
792 if (!new_gov)
793 return -EINVAL;
794
795 ret = cpufreq_set_policy(policy, new_gov,
796 CPUFREQ_POLICY_UNKNOWN);
797
798 module_put(new_gov->owner);
799 }
800
801 return ret ? ret : count;
802 }
803
804 /*
805 * show_scaling_driver - show the cpufreq driver currently loaded
806 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811
812 /*
813 * show_scaling_available_governors - show the available CPUfreq governors
814 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816 char *buf)
817 {
818 ssize_t i = 0;
819 struct cpufreq_governor *t;
820
821 if (!has_target()) {
822 i += sprintf(buf, "performance powersave");
823 goto out;
824 }
825
826 mutex_lock(&cpufreq_governor_mutex);
827 for_each_governor(t) {
828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829 - (CPUFREQ_NAME_LEN + 2)))
830 break;
831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832 }
833 mutex_unlock(&cpufreq_governor_mutex);
834 out:
835 i += sprintf(&buf[i], "\n");
836 return i;
837 }
838
cpufreq_show_cpus(const struct cpumask * mask,char * buf)839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
840 {
841 ssize_t i = 0;
842 unsigned int cpu;
843
844 for_each_cpu(cpu, mask) {
845 if (i)
846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
848 if (i >= (PAGE_SIZE - 5))
849 break;
850 }
851 i += sprintf(&buf[i], "\n");
852 return i;
853 }
854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
855
856 /*
857 * show_related_cpus - show the CPUs affected by each transition even if
858 * hw coordination is in use
859 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
861 {
862 return cpufreq_show_cpus(policy->related_cpus, buf);
863 }
864
865 /*
866 * show_affected_cpus - show the CPUs affected by each transition
867 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
869 {
870 return cpufreq_show_cpus(policy->cpus, buf);
871 }
872
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
874 const char *buf, size_t count)
875 {
876 unsigned int freq = 0;
877 unsigned int ret;
878
879 if (!policy->governor || !policy->governor->store_setspeed)
880 return -EINVAL;
881
882 ret = sscanf(buf, "%u", &freq);
883 if (ret != 1)
884 return -EINVAL;
885
886 policy->governor->store_setspeed(policy, freq);
887
888 return count;
889 }
890
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
892 {
893 if (!policy->governor || !policy->governor->show_setspeed)
894 return sprintf(buf, "<unsupported>\n");
895
896 return policy->governor->show_setspeed(policy, buf);
897 }
898
899 /*
900 * show_bios_limit - show the current cpufreq HW/BIOS limitation
901 */
show_bios_limit(struct cpufreq_policy * policy,char * buf)902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
903 {
904 unsigned int limit;
905 int ret;
906 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
907 if (!ret)
908 return sprintf(buf, "%u\n", limit);
909 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
910 }
911
912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
913 cpufreq_freq_attr_ro(cpuinfo_min_freq);
914 cpufreq_freq_attr_ro(cpuinfo_max_freq);
915 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
916 cpufreq_freq_attr_ro(scaling_available_governors);
917 cpufreq_freq_attr_ro(scaling_driver);
918 cpufreq_freq_attr_ro(scaling_cur_freq);
919 cpufreq_freq_attr_ro(bios_limit);
920 cpufreq_freq_attr_ro(related_cpus);
921 cpufreq_freq_attr_ro(affected_cpus);
922 cpufreq_freq_attr_rw(scaling_min_freq);
923 cpufreq_freq_attr_rw(scaling_max_freq);
924 cpufreq_freq_attr_rw(scaling_governor);
925 cpufreq_freq_attr_rw(scaling_setspeed);
926
927 static struct attribute *default_attrs[] = {
928 &cpuinfo_min_freq.attr,
929 &cpuinfo_max_freq.attr,
930 &cpuinfo_transition_latency.attr,
931 &scaling_min_freq.attr,
932 &scaling_max_freq.attr,
933 &affected_cpus.attr,
934 &related_cpus.attr,
935 &scaling_governor.attr,
936 &scaling_driver.attr,
937 &scaling_available_governors.attr,
938 &scaling_setspeed.attr,
939 NULL
940 };
941
942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
943 #define to_attr(a) container_of(a, struct freq_attr, attr)
944
show(struct kobject * kobj,struct attribute * attr,char * buf)945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
946 {
947 struct cpufreq_policy *policy = to_policy(kobj);
948 struct freq_attr *fattr = to_attr(attr);
949 ssize_t ret;
950
951 if (!fattr->show)
952 return -EIO;
953
954 down_read(&policy->rwsem);
955 ret = fattr->show(policy, buf);
956 up_read(&policy->rwsem);
957
958 return ret;
959 }
960
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)961 static ssize_t store(struct kobject *kobj, struct attribute *attr,
962 const char *buf, size_t count)
963 {
964 struct cpufreq_policy *policy = to_policy(kobj);
965 struct freq_attr *fattr = to_attr(attr);
966 ssize_t ret = -EINVAL;
967
968 if (!fattr->store)
969 return -EIO;
970
971 /*
972 * cpus_read_trylock() is used here to work around a circular lock
973 * dependency problem with respect to the cpufreq_register_driver().
974 */
975 if (!cpus_read_trylock())
976 return -EBUSY;
977
978 if (cpu_online(policy->cpu)) {
979 down_write(&policy->rwsem);
980 ret = fattr->store(policy, buf, count);
981 up_write(&policy->rwsem);
982 }
983
984 cpus_read_unlock();
985
986 return ret;
987 }
988
cpufreq_sysfs_release(struct kobject * kobj)989 static void cpufreq_sysfs_release(struct kobject *kobj)
990 {
991 struct cpufreq_policy *policy = to_policy(kobj);
992 pr_debug("last reference is dropped\n");
993 complete(&policy->kobj_unregister);
994 }
995
996 static const struct sysfs_ops sysfs_ops = {
997 .show = show,
998 .store = store,
999 };
1000
1001 static struct kobj_type ktype_cpufreq = {
1002 .sysfs_ops = &sysfs_ops,
1003 .default_attrs = default_attrs,
1004 .release = cpufreq_sysfs_release,
1005 };
1006
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu)1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1008 {
1009 struct device *dev = get_cpu_device(cpu);
1010
1011 if (unlikely(!dev))
1012 return;
1013
1014 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1015 return;
1016
1017 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1018 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1019 dev_err(dev, "cpufreq symlink creation failed\n");
1020 }
1021
remove_cpu_dev_symlink(struct cpufreq_policy * policy,struct device * dev)1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1023 struct device *dev)
1024 {
1025 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1026 sysfs_remove_link(&dev->kobj, "cpufreq");
1027 }
1028
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1030 {
1031 struct freq_attr **drv_attr;
1032 int ret = 0;
1033
1034 /* set up files for this cpu device */
1035 drv_attr = cpufreq_driver->attr;
1036 while (drv_attr && *drv_attr) {
1037 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1038 if (ret)
1039 return ret;
1040 drv_attr++;
1041 }
1042 if (cpufreq_driver->get) {
1043 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1044 if (ret)
1045 return ret;
1046 }
1047
1048 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1049 if (ret)
1050 return ret;
1051
1052 if (cpufreq_driver->bios_limit) {
1053 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1054 if (ret)
1055 return ret;
1056 }
1057
1058 return 0;
1059 }
1060
cpufreq_init_policy(struct cpufreq_policy * policy)1061 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1062 {
1063 struct cpufreq_governor *gov = NULL;
1064 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1065 int ret;
1066
1067 if (has_target()) {
1068 /* Update policy governor to the one used before hotplug. */
1069 gov = get_governor(policy->last_governor);
1070 if (gov) {
1071 pr_debug("Restoring governor %s for cpu %d\n",
1072 gov->name, policy->cpu);
1073 } else {
1074 gov = get_governor(default_governor);
1075 }
1076
1077 if (!gov) {
1078 gov = cpufreq_default_governor();
1079 __module_get(gov->owner);
1080 }
1081
1082 } else {
1083
1084 /* Use the default policy if there is no last_policy. */
1085 if (policy->last_policy) {
1086 pol = policy->last_policy;
1087 } else {
1088 pol = cpufreq_parse_policy(default_governor);
1089 /*
1090 * In case the default governor is neither "performance"
1091 * nor "powersave", fall back to the initial policy
1092 * value set by the driver.
1093 */
1094 if (pol == CPUFREQ_POLICY_UNKNOWN)
1095 pol = policy->policy;
1096 }
1097 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1098 pol != CPUFREQ_POLICY_POWERSAVE)
1099 return -ENODATA;
1100 }
1101
1102 ret = cpufreq_set_policy(policy, gov, pol);
1103 if (gov)
1104 module_put(gov->owner);
1105
1106 return ret;
1107 }
1108
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1110 {
1111 int ret = 0;
1112
1113 /* Has this CPU been taken care of already? */
1114 if (cpumask_test_cpu(cpu, policy->cpus))
1115 return 0;
1116
1117 down_write(&policy->rwsem);
1118 if (has_target())
1119 cpufreq_stop_governor(policy);
1120
1121 cpumask_set_cpu(cpu, policy->cpus);
1122
1123 if (has_target()) {
1124 ret = cpufreq_start_governor(policy);
1125 if (ret)
1126 pr_err("%s: Failed to start governor\n", __func__);
1127 }
1128 up_write(&policy->rwsem);
1129 return ret;
1130 }
1131
refresh_frequency_limits(struct cpufreq_policy * policy)1132 void refresh_frequency_limits(struct cpufreq_policy *policy)
1133 {
1134 if (!policy_is_inactive(policy)) {
1135 pr_debug("updating policy for CPU %u\n", policy->cpu);
1136
1137 cpufreq_set_policy(policy, policy->governor, policy->policy);
1138 }
1139 }
1140 EXPORT_SYMBOL(refresh_frequency_limits);
1141
handle_update(struct work_struct * work)1142 static void handle_update(struct work_struct *work)
1143 {
1144 struct cpufreq_policy *policy =
1145 container_of(work, struct cpufreq_policy, update);
1146
1147 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1148 down_write(&policy->rwsem);
1149 refresh_frequency_limits(policy);
1150 up_write(&policy->rwsem);
1151 }
1152
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1154 void *data)
1155 {
1156 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1157
1158 schedule_work(&policy->update);
1159 return 0;
1160 }
1161
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1163 void *data)
1164 {
1165 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1166
1167 schedule_work(&policy->update);
1168 return 0;
1169 }
1170
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1172 {
1173 struct kobject *kobj;
1174 struct completion *cmp;
1175
1176 down_write(&policy->rwsem);
1177 cpufreq_stats_free_table(policy);
1178 kobj = &policy->kobj;
1179 cmp = &policy->kobj_unregister;
1180 up_write(&policy->rwsem);
1181 kobject_put(kobj);
1182
1183 /*
1184 * We need to make sure that the underlying kobj is
1185 * actually not referenced anymore by anybody before we
1186 * proceed with unloading.
1187 */
1188 pr_debug("waiting for dropping of refcount\n");
1189 wait_for_completion(cmp);
1190 pr_debug("wait complete\n");
1191 }
1192
cpufreq_policy_alloc(unsigned int cpu)1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1194 {
1195 struct cpufreq_policy *policy;
1196 struct device *dev = get_cpu_device(cpu);
1197 int ret;
1198
1199 if (!dev)
1200 return NULL;
1201
1202 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1203 if (!policy)
1204 return NULL;
1205
1206 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1207 goto err_free_policy;
1208
1209 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1210 goto err_free_cpumask;
1211
1212 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1213 goto err_free_rcpumask;
1214
1215 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1216 cpufreq_global_kobject, "policy%u", cpu);
1217 if (ret) {
1218 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1219 /*
1220 * The entire policy object will be freed below, but the extra
1221 * memory allocated for the kobject name needs to be freed by
1222 * releasing the kobject.
1223 */
1224 kobject_put(&policy->kobj);
1225 goto err_free_real_cpus;
1226 }
1227
1228 freq_constraints_init(&policy->constraints);
1229
1230 policy->nb_min.notifier_call = cpufreq_notifier_min;
1231 policy->nb_max.notifier_call = cpufreq_notifier_max;
1232
1233 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1234 &policy->nb_min);
1235 if (ret) {
1236 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1237 ret, cpumask_pr_args(policy->cpus));
1238 goto err_kobj_remove;
1239 }
1240
1241 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1242 &policy->nb_max);
1243 if (ret) {
1244 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1245 ret, cpumask_pr_args(policy->cpus));
1246 goto err_min_qos_notifier;
1247 }
1248
1249 INIT_LIST_HEAD(&policy->policy_list);
1250 init_rwsem(&policy->rwsem);
1251 spin_lock_init(&policy->transition_lock);
1252 init_waitqueue_head(&policy->transition_wait);
1253 init_completion(&policy->kobj_unregister);
1254 INIT_WORK(&policy->update, handle_update);
1255
1256 policy->cpu = cpu;
1257 return policy;
1258
1259 err_min_qos_notifier:
1260 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1261 &policy->nb_min);
1262 err_kobj_remove:
1263 cpufreq_policy_put_kobj(policy);
1264 err_free_real_cpus:
1265 free_cpumask_var(policy->real_cpus);
1266 err_free_rcpumask:
1267 free_cpumask_var(policy->related_cpus);
1268 err_free_cpumask:
1269 free_cpumask_var(policy->cpus);
1270 err_free_policy:
1271 kfree(policy);
1272
1273 return NULL;
1274 }
1275
cpufreq_policy_free(struct cpufreq_policy * policy)1276 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1277 {
1278 unsigned long flags;
1279 int cpu;
1280
1281 /* Remove policy from list */
1282 write_lock_irqsave(&cpufreq_driver_lock, flags);
1283 list_del(&policy->policy_list);
1284
1285 for_each_cpu(cpu, policy->related_cpus)
1286 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1287 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1288
1289 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1290 &policy->nb_max);
1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1292 &policy->nb_min);
1293
1294 /* Cancel any pending policy->update work before freeing the policy. */
1295 cancel_work_sync(&policy->update);
1296
1297 if (policy->max_freq_req) {
1298 /*
1299 * CPUFREQ_CREATE_POLICY notification is sent only after
1300 * successfully adding max_freq_req request.
1301 */
1302 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1303 CPUFREQ_REMOVE_POLICY, policy);
1304 freq_qos_remove_request(policy->max_freq_req);
1305 }
1306
1307 freq_qos_remove_request(policy->min_freq_req);
1308 kfree(policy->min_freq_req);
1309
1310 cpufreq_policy_put_kobj(policy);
1311 free_cpumask_var(policy->real_cpus);
1312 free_cpumask_var(policy->related_cpus);
1313 free_cpumask_var(policy->cpus);
1314 kfree(policy);
1315 }
1316
cpufreq_online(unsigned int cpu)1317 static int cpufreq_online(unsigned int cpu)
1318 {
1319 struct cpufreq_policy *policy;
1320 bool new_policy;
1321 unsigned long flags;
1322 unsigned int j;
1323 int ret;
1324
1325 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1326
1327 /* Check if this CPU already has a policy to manage it */
1328 policy = per_cpu(cpufreq_cpu_data, cpu);
1329 if (policy) {
1330 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1331 if (!policy_is_inactive(policy))
1332 return cpufreq_add_policy_cpu(policy, cpu);
1333
1334 /* This is the only online CPU for the policy. Start over. */
1335 new_policy = false;
1336 down_write(&policy->rwsem);
1337 policy->cpu = cpu;
1338 policy->governor = NULL;
1339 up_write(&policy->rwsem);
1340 } else {
1341 new_policy = true;
1342 policy = cpufreq_policy_alloc(cpu);
1343 if (!policy)
1344 return -ENOMEM;
1345 }
1346
1347 if (!new_policy && cpufreq_driver->online) {
1348 ret = cpufreq_driver->online(policy);
1349 if (ret) {
1350 pr_debug("%s: %d: initialization failed\n", __func__,
1351 __LINE__);
1352 goto out_exit_policy;
1353 }
1354
1355 /* Recover policy->cpus using related_cpus */
1356 cpumask_copy(policy->cpus, policy->related_cpus);
1357 } else {
1358 cpumask_copy(policy->cpus, cpumask_of(cpu));
1359
1360 /*
1361 * Call driver. From then on the cpufreq must be able
1362 * to accept all calls to ->verify and ->setpolicy for this CPU.
1363 */
1364 ret = cpufreq_driver->init(policy);
1365 if (ret) {
1366 pr_debug("%s: %d: initialization failed\n", __func__,
1367 __LINE__);
1368 goto out_free_policy;
1369 }
1370
1371 /*
1372 * The initialization has succeeded and the policy is online.
1373 * If there is a problem with its frequency table, take it
1374 * offline and drop it.
1375 */
1376 ret = cpufreq_table_validate_and_sort(policy);
1377 if (ret)
1378 goto out_offline_policy;
1379
1380 /* related_cpus should at least include policy->cpus. */
1381 cpumask_copy(policy->related_cpus, policy->cpus);
1382 }
1383
1384 down_write(&policy->rwsem);
1385 /*
1386 * affected cpus must always be the one, which are online. We aren't
1387 * managing offline cpus here.
1388 */
1389 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1390
1391 if (new_policy) {
1392 for_each_cpu(j, policy->related_cpus) {
1393 per_cpu(cpufreq_cpu_data, j) = policy;
1394 add_cpu_dev_symlink(policy, j);
1395 }
1396
1397 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1398 GFP_KERNEL);
1399 if (!policy->min_freq_req)
1400 goto out_destroy_policy;
1401
1402 ret = freq_qos_add_request(&policy->constraints,
1403 policy->min_freq_req, FREQ_QOS_MIN,
1404 policy->min);
1405 if (ret < 0) {
1406 /*
1407 * So we don't call freq_qos_remove_request() for an
1408 * uninitialized request.
1409 */
1410 kfree(policy->min_freq_req);
1411 policy->min_freq_req = NULL;
1412 goto out_destroy_policy;
1413 }
1414
1415 /*
1416 * This must be initialized right here to avoid calling
1417 * freq_qos_remove_request() on uninitialized request in case
1418 * of errors.
1419 */
1420 policy->max_freq_req = policy->min_freq_req + 1;
1421
1422 ret = freq_qos_add_request(&policy->constraints,
1423 policy->max_freq_req, FREQ_QOS_MAX,
1424 policy->max);
1425 if (ret < 0) {
1426 policy->max_freq_req = NULL;
1427 goto out_destroy_policy;
1428 }
1429
1430 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1431 CPUFREQ_CREATE_POLICY, policy);
1432 }
1433
1434 if (cpufreq_driver->get && has_target()) {
1435 policy->cur = cpufreq_driver->get(policy->cpu);
1436 if (!policy->cur) {
1437 pr_err("%s: ->get() failed\n", __func__);
1438 goto out_destroy_policy;
1439 }
1440 }
1441
1442 /*
1443 * Sometimes boot loaders set CPU frequency to a value outside of
1444 * frequency table present with cpufreq core. In such cases CPU might be
1445 * unstable if it has to run on that frequency for long duration of time
1446 * and so its better to set it to a frequency which is specified in
1447 * freq-table. This also makes cpufreq stats inconsistent as
1448 * cpufreq-stats would fail to register because current frequency of CPU
1449 * isn't found in freq-table.
1450 *
1451 * Because we don't want this change to effect boot process badly, we go
1452 * for the next freq which is >= policy->cur ('cur' must be set by now,
1453 * otherwise we will end up setting freq to lowest of the table as 'cur'
1454 * is initialized to zero).
1455 *
1456 * We are passing target-freq as "policy->cur - 1" otherwise
1457 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1458 * equal to target-freq.
1459 */
1460 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1461 && has_target()) {
1462 unsigned int old_freq = policy->cur;
1463
1464 /* Are we running at unknown frequency ? */
1465 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1466 if (ret == -EINVAL) {
1467 ret = __cpufreq_driver_target(policy, old_freq - 1,
1468 CPUFREQ_RELATION_L);
1469
1470 /*
1471 * Reaching here after boot in a few seconds may not
1472 * mean that system will remain stable at "unknown"
1473 * frequency for longer duration. Hence, a BUG_ON().
1474 */
1475 BUG_ON(ret);
1476 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1477 __func__, policy->cpu, old_freq, policy->cur);
1478 }
1479 }
1480
1481 if (new_policy) {
1482 ret = cpufreq_add_dev_interface(policy);
1483 if (ret)
1484 goto out_destroy_policy;
1485
1486 cpufreq_stats_create_table(policy);
1487
1488 write_lock_irqsave(&cpufreq_driver_lock, flags);
1489 list_add(&policy->policy_list, &cpufreq_policy_list);
1490 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1491 }
1492
1493 ret = cpufreq_init_policy(policy);
1494 if (ret) {
1495 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1496 __func__, cpu, ret);
1497 goto out_destroy_policy;
1498 }
1499
1500 up_write(&policy->rwsem);
1501
1502 kobject_uevent(&policy->kobj, KOBJ_ADD);
1503
1504 /* Callback for handling stuff after policy is ready */
1505 if (cpufreq_driver->ready)
1506 cpufreq_driver->ready(policy);
1507
1508 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1509 policy->cdev = of_cpufreq_cooling_register(policy);
1510
1511 pr_debug("initialization complete\n");
1512
1513 return 0;
1514
1515 out_destroy_policy:
1516 for_each_cpu(j, policy->real_cpus)
1517 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1518
1519 up_write(&policy->rwsem);
1520
1521 out_offline_policy:
1522 if (cpufreq_driver->offline)
1523 cpufreq_driver->offline(policy);
1524
1525 out_exit_policy:
1526 if (cpufreq_driver->exit)
1527 cpufreq_driver->exit(policy);
1528
1529 out_free_policy:
1530 cpufreq_policy_free(policy);
1531 return ret;
1532 }
1533
1534 /**
1535 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1536 * @dev: CPU device.
1537 * @sif: Subsystem interface structure pointer (not used)
1538 */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1539 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1540 {
1541 struct cpufreq_policy *policy;
1542 unsigned cpu = dev->id;
1543 int ret;
1544
1545 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1546
1547 if (cpu_online(cpu)) {
1548 ret = cpufreq_online(cpu);
1549 if (ret)
1550 return ret;
1551 }
1552
1553 /* Create sysfs link on CPU registration */
1554 policy = per_cpu(cpufreq_cpu_data, cpu);
1555 if (policy)
1556 add_cpu_dev_symlink(policy, cpu);
1557
1558 return 0;
1559 }
1560
cpufreq_offline(unsigned int cpu)1561 static int cpufreq_offline(unsigned int cpu)
1562 {
1563 struct cpufreq_policy *policy;
1564 int ret;
1565
1566 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1567
1568 policy = cpufreq_cpu_get_raw(cpu);
1569 if (!policy) {
1570 pr_debug("%s: No cpu_data found\n", __func__);
1571 return 0;
1572 }
1573
1574 down_write(&policy->rwsem);
1575 if (has_target())
1576 cpufreq_stop_governor(policy);
1577
1578 cpumask_clear_cpu(cpu, policy->cpus);
1579
1580 if (policy_is_inactive(policy)) {
1581 if (has_target())
1582 strncpy(policy->last_governor, policy->governor->name,
1583 CPUFREQ_NAME_LEN);
1584 else
1585 policy->last_policy = policy->policy;
1586 } else if (cpu == policy->cpu) {
1587 /* Nominate new CPU */
1588 policy->cpu = cpumask_any(policy->cpus);
1589 }
1590
1591 /* Start governor again for active policy */
1592 if (!policy_is_inactive(policy)) {
1593 if (has_target()) {
1594 ret = cpufreq_start_governor(policy);
1595 if (ret)
1596 pr_err("%s: Failed to start governor\n", __func__);
1597 }
1598
1599 goto unlock;
1600 }
1601
1602 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1603 cpufreq_cooling_unregister(policy->cdev);
1604 policy->cdev = NULL;
1605 }
1606
1607 if (cpufreq_driver->stop_cpu)
1608 cpufreq_driver->stop_cpu(policy);
1609
1610 if (has_target())
1611 cpufreq_exit_governor(policy);
1612
1613 /*
1614 * Perform the ->offline() during light-weight tear-down, as
1615 * that allows fast recovery when the CPU comes back.
1616 */
1617 if (cpufreq_driver->offline) {
1618 cpufreq_driver->offline(policy);
1619 } else if (cpufreq_driver->exit) {
1620 cpufreq_driver->exit(policy);
1621 policy->freq_table = NULL;
1622 }
1623
1624 unlock:
1625 up_write(&policy->rwsem);
1626 return 0;
1627 }
1628
1629 /*
1630 * cpufreq_remove_dev - remove a CPU device
1631 *
1632 * Removes the cpufreq interface for a CPU device.
1633 */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1634 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1635 {
1636 unsigned int cpu = dev->id;
1637 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1638
1639 if (!policy)
1640 return;
1641
1642 if (cpu_online(cpu))
1643 cpufreq_offline(cpu);
1644
1645 cpumask_clear_cpu(cpu, policy->real_cpus);
1646 remove_cpu_dev_symlink(policy, dev);
1647
1648 if (cpumask_empty(policy->real_cpus)) {
1649 /* We did light-weight exit earlier, do full tear down now */
1650 if (cpufreq_driver->offline)
1651 cpufreq_driver->exit(policy);
1652
1653 cpufreq_policy_free(policy);
1654 }
1655 }
1656
1657 /**
1658 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1659 * in deep trouble.
1660 * @policy: policy managing CPUs
1661 * @new_freq: CPU frequency the CPU actually runs at
1662 *
1663 * We adjust to current frequency first, and need to clean up later.
1664 * So either call to cpufreq_update_policy() or schedule handle_update()).
1665 */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1666 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1667 unsigned int new_freq)
1668 {
1669 struct cpufreq_freqs freqs;
1670
1671 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1672 policy->cur, new_freq);
1673
1674 freqs.old = policy->cur;
1675 freqs.new = new_freq;
1676
1677 cpufreq_freq_transition_begin(policy, &freqs);
1678 cpufreq_freq_transition_end(policy, &freqs, 0);
1679 }
1680
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1681 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1682 {
1683 unsigned int new_freq;
1684
1685 new_freq = cpufreq_driver->get(policy->cpu);
1686 if (!new_freq)
1687 return 0;
1688
1689 /*
1690 * If fast frequency switching is used with the given policy, the check
1691 * against policy->cur is pointless, so skip it in that case.
1692 */
1693 if (policy->fast_switch_enabled || !has_target())
1694 return new_freq;
1695
1696 if (policy->cur != new_freq) {
1697 cpufreq_out_of_sync(policy, new_freq);
1698 if (update)
1699 schedule_work(&policy->update);
1700 }
1701
1702 return new_freq;
1703 }
1704
1705 /**
1706 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1707 * @cpu: CPU number
1708 *
1709 * This is the last known freq, without actually getting it from the driver.
1710 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1711 */
cpufreq_quick_get(unsigned int cpu)1712 unsigned int cpufreq_quick_get(unsigned int cpu)
1713 {
1714 struct cpufreq_policy *policy;
1715 unsigned int ret_freq = 0;
1716 unsigned long flags;
1717
1718 read_lock_irqsave(&cpufreq_driver_lock, flags);
1719
1720 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1721 ret_freq = cpufreq_driver->get(cpu);
1722 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1723 return ret_freq;
1724 }
1725
1726 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1727
1728 policy = cpufreq_cpu_get(cpu);
1729 if (policy) {
1730 ret_freq = policy->cur;
1731 cpufreq_cpu_put(policy);
1732 }
1733
1734 return ret_freq;
1735 }
1736 EXPORT_SYMBOL(cpufreq_quick_get);
1737
1738 /**
1739 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1740 * @cpu: CPU number
1741 *
1742 * Just return the max possible frequency for a given CPU.
1743 */
cpufreq_quick_get_max(unsigned int cpu)1744 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1745 {
1746 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1747 unsigned int ret_freq = 0;
1748
1749 if (policy) {
1750 ret_freq = policy->max;
1751 cpufreq_cpu_put(policy);
1752 }
1753
1754 return ret_freq;
1755 }
1756 EXPORT_SYMBOL(cpufreq_quick_get_max);
1757
1758 /**
1759 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1760 * @cpu: CPU number
1761 *
1762 * The default return value is the max_freq field of cpuinfo.
1763 */
cpufreq_get_hw_max_freq(unsigned int cpu)1764 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1765 {
1766 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1767 unsigned int ret_freq = 0;
1768
1769 if (policy) {
1770 ret_freq = policy->cpuinfo.max_freq;
1771 cpufreq_cpu_put(policy);
1772 }
1773
1774 return ret_freq;
1775 }
1776 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1777
__cpufreq_get(struct cpufreq_policy * policy)1778 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1779 {
1780 if (unlikely(policy_is_inactive(policy)))
1781 return 0;
1782
1783 return cpufreq_verify_current_freq(policy, true);
1784 }
1785
1786 /**
1787 * cpufreq_get - get the current CPU frequency (in kHz)
1788 * @cpu: CPU number
1789 *
1790 * Get the CPU current (static) CPU frequency
1791 */
cpufreq_get(unsigned int cpu)1792 unsigned int cpufreq_get(unsigned int cpu)
1793 {
1794 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1795 unsigned int ret_freq = 0;
1796
1797 if (policy) {
1798 down_read(&policy->rwsem);
1799 if (cpufreq_driver->get)
1800 ret_freq = __cpufreq_get(policy);
1801 up_read(&policy->rwsem);
1802
1803 cpufreq_cpu_put(policy);
1804 }
1805
1806 return ret_freq;
1807 }
1808 EXPORT_SYMBOL(cpufreq_get);
1809
1810 static struct subsys_interface cpufreq_interface = {
1811 .name = "cpufreq",
1812 .subsys = &cpu_subsys,
1813 .add_dev = cpufreq_add_dev,
1814 .remove_dev = cpufreq_remove_dev,
1815 };
1816
1817 /*
1818 * In case platform wants some specific frequency to be configured
1819 * during suspend..
1820 */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1821 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1822 {
1823 int ret;
1824
1825 if (!policy->suspend_freq) {
1826 pr_debug("%s: suspend_freq not defined\n", __func__);
1827 return 0;
1828 }
1829
1830 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1831 policy->suspend_freq);
1832
1833 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1834 CPUFREQ_RELATION_H);
1835 if (ret)
1836 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1837 __func__, policy->suspend_freq, ret);
1838
1839 return ret;
1840 }
1841 EXPORT_SYMBOL(cpufreq_generic_suspend);
1842
1843 /**
1844 * cpufreq_suspend() - Suspend CPUFreq governors
1845 *
1846 * Called during system wide Suspend/Hibernate cycles for suspending governors
1847 * as some platforms can't change frequency after this point in suspend cycle.
1848 * Because some of the devices (like: i2c, regulators, etc) they use for
1849 * changing frequency are suspended quickly after this point.
1850 */
cpufreq_suspend(void)1851 void cpufreq_suspend(void)
1852 {
1853 struct cpufreq_policy *policy;
1854
1855 if (!cpufreq_driver)
1856 return;
1857
1858 if (!has_target() && !cpufreq_driver->suspend)
1859 goto suspend;
1860
1861 pr_debug("%s: Suspending Governors\n", __func__);
1862
1863 for_each_active_policy(policy) {
1864 if (has_target()) {
1865 down_write(&policy->rwsem);
1866 cpufreq_stop_governor(policy);
1867 up_write(&policy->rwsem);
1868 }
1869
1870 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1871 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1872 cpufreq_driver->name);
1873 }
1874
1875 suspend:
1876 cpufreq_suspended = true;
1877 }
1878
1879 /**
1880 * cpufreq_resume() - Resume CPUFreq governors
1881 *
1882 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1883 * are suspended with cpufreq_suspend().
1884 */
cpufreq_resume(void)1885 void cpufreq_resume(void)
1886 {
1887 struct cpufreq_policy *policy;
1888 int ret;
1889
1890 if (!cpufreq_driver)
1891 return;
1892
1893 if (unlikely(!cpufreq_suspended))
1894 return;
1895
1896 cpufreq_suspended = false;
1897
1898 if (!has_target() && !cpufreq_driver->resume)
1899 return;
1900
1901 pr_debug("%s: Resuming Governors\n", __func__);
1902
1903 for_each_active_policy(policy) {
1904 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1905 pr_err("%s: Failed to resume driver: %p\n", __func__,
1906 policy);
1907 } else if (has_target()) {
1908 down_write(&policy->rwsem);
1909 ret = cpufreq_start_governor(policy);
1910 up_write(&policy->rwsem);
1911
1912 if (ret)
1913 pr_err("%s: Failed to start governor for policy: %p\n",
1914 __func__, policy);
1915 }
1916 }
1917 }
1918
1919 /**
1920 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1921 * @flags: Flags to test against the current cpufreq driver's flags.
1922 *
1923 * Assumes that the driver is there, so callers must ensure that this is the
1924 * case.
1925 */
cpufreq_driver_test_flags(u16 flags)1926 bool cpufreq_driver_test_flags(u16 flags)
1927 {
1928 return !!(cpufreq_driver->flags & flags);
1929 }
1930
1931 /**
1932 * cpufreq_get_current_driver - return current driver's name
1933 *
1934 * Return the name string of the currently loaded cpufreq driver
1935 * or NULL, if none.
1936 */
cpufreq_get_current_driver(void)1937 const char *cpufreq_get_current_driver(void)
1938 {
1939 if (cpufreq_driver)
1940 return cpufreq_driver->name;
1941
1942 return NULL;
1943 }
1944 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1945
1946 /**
1947 * cpufreq_get_driver_data - return current driver data
1948 *
1949 * Return the private data of the currently loaded cpufreq
1950 * driver, or NULL if no cpufreq driver is loaded.
1951 */
cpufreq_get_driver_data(void)1952 void *cpufreq_get_driver_data(void)
1953 {
1954 if (cpufreq_driver)
1955 return cpufreq_driver->driver_data;
1956
1957 return NULL;
1958 }
1959 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1960
1961 /*********************************************************************
1962 * NOTIFIER LISTS INTERFACE *
1963 *********************************************************************/
1964
1965 /**
1966 * cpufreq_register_notifier - register a driver with cpufreq
1967 * @nb: notifier function to register
1968 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1969 *
1970 * Add a driver to one of two lists: either a list of drivers that
1971 * are notified about clock rate changes (once before and once after
1972 * the transition), or a list of drivers that are notified about
1973 * changes in cpufreq policy.
1974 *
1975 * This function may sleep, and has the same return conditions as
1976 * blocking_notifier_chain_register.
1977 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)1978 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1979 {
1980 int ret;
1981
1982 if (cpufreq_disabled())
1983 return -EINVAL;
1984
1985 switch (list) {
1986 case CPUFREQ_TRANSITION_NOTIFIER:
1987 mutex_lock(&cpufreq_fast_switch_lock);
1988
1989 if (cpufreq_fast_switch_count > 0) {
1990 mutex_unlock(&cpufreq_fast_switch_lock);
1991 return -EBUSY;
1992 }
1993 ret = srcu_notifier_chain_register(
1994 &cpufreq_transition_notifier_list, nb);
1995 if (!ret)
1996 cpufreq_fast_switch_count--;
1997
1998 mutex_unlock(&cpufreq_fast_switch_lock);
1999 break;
2000 case CPUFREQ_POLICY_NOTIFIER:
2001 ret = blocking_notifier_chain_register(
2002 &cpufreq_policy_notifier_list, nb);
2003 break;
2004 default:
2005 ret = -EINVAL;
2006 }
2007
2008 return ret;
2009 }
2010 EXPORT_SYMBOL(cpufreq_register_notifier);
2011
2012 /**
2013 * cpufreq_unregister_notifier - unregister a driver with cpufreq
2014 * @nb: notifier block to be unregistered
2015 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
2016 *
2017 * Remove a driver from the CPU frequency notifier list.
2018 *
2019 * This function may sleep, and has the same return conditions as
2020 * blocking_notifier_chain_unregister.
2021 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2022 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2023 {
2024 int ret;
2025
2026 if (cpufreq_disabled())
2027 return -EINVAL;
2028
2029 switch (list) {
2030 case CPUFREQ_TRANSITION_NOTIFIER:
2031 mutex_lock(&cpufreq_fast_switch_lock);
2032
2033 ret = srcu_notifier_chain_unregister(
2034 &cpufreq_transition_notifier_list, nb);
2035 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2036 cpufreq_fast_switch_count++;
2037
2038 mutex_unlock(&cpufreq_fast_switch_lock);
2039 break;
2040 case CPUFREQ_POLICY_NOTIFIER:
2041 ret = blocking_notifier_chain_unregister(
2042 &cpufreq_policy_notifier_list, nb);
2043 break;
2044 default:
2045 ret = -EINVAL;
2046 }
2047
2048 return ret;
2049 }
2050 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2051
2052
2053 /*********************************************************************
2054 * GOVERNORS *
2055 *********************************************************************/
2056
2057 /**
2058 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2059 * @policy: cpufreq policy to switch the frequency for.
2060 * @target_freq: New frequency to set (may be approximate).
2061 *
2062 * Carry out a fast frequency switch without sleeping.
2063 *
2064 * The driver's ->fast_switch() callback invoked by this function must be
2065 * suitable for being called from within RCU-sched read-side critical sections
2066 * and it is expected to select the minimum available frequency greater than or
2067 * equal to @target_freq (CPUFREQ_RELATION_L).
2068 *
2069 * This function must not be called if policy->fast_switch_enabled is unset.
2070 *
2071 * Governors calling this function must guarantee that it will never be invoked
2072 * twice in parallel for the same policy and that it will never be called in
2073 * parallel with either ->target() or ->target_index() for the same policy.
2074 *
2075 * Returns the actual frequency set for the CPU.
2076 *
2077 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2078 * error condition, the hardware configuration must be preserved.
2079 */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2080 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2081 unsigned int target_freq)
2082 {
2083 unsigned int freq;
2084 int cpu;
2085
2086 target_freq = clamp_val(target_freq, policy->min, policy->max);
2087 freq = cpufreq_driver->fast_switch(policy, target_freq);
2088
2089 if (!freq)
2090 return 0;
2091
2092 policy->cur = freq;
2093 arch_set_freq_scale(policy->related_cpus, freq,
2094 policy->cpuinfo.max_freq);
2095 cpufreq_stats_record_transition(policy, freq);
2096
2097 if (trace_cpu_frequency_enabled()) {
2098 for_each_cpu(cpu, policy->cpus)
2099 trace_cpu_frequency(freq, cpu);
2100 }
2101
2102 return freq;
2103 }
2104 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2105
2106 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2107 static int __target_intermediate(struct cpufreq_policy *policy,
2108 struct cpufreq_freqs *freqs, int index)
2109 {
2110 int ret;
2111
2112 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2113
2114 /* We don't need to switch to intermediate freq */
2115 if (!freqs->new)
2116 return 0;
2117
2118 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2119 __func__, policy->cpu, freqs->old, freqs->new);
2120
2121 cpufreq_freq_transition_begin(policy, freqs);
2122 ret = cpufreq_driver->target_intermediate(policy, index);
2123 cpufreq_freq_transition_end(policy, freqs, ret);
2124
2125 if (ret)
2126 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2127 __func__, ret);
2128
2129 return ret;
2130 }
2131
__target_index(struct cpufreq_policy * policy,int index)2132 static int __target_index(struct cpufreq_policy *policy, int index)
2133 {
2134 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2135 unsigned int intermediate_freq = 0;
2136 unsigned int newfreq = policy->freq_table[index].frequency;
2137 int retval = -EINVAL;
2138 bool notify;
2139
2140 if (newfreq == policy->cur)
2141 return 0;
2142
2143 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2144 if (notify) {
2145 /* Handle switching to intermediate frequency */
2146 if (cpufreq_driver->get_intermediate) {
2147 retval = __target_intermediate(policy, &freqs, index);
2148 if (retval)
2149 return retval;
2150
2151 intermediate_freq = freqs.new;
2152 /* Set old freq to intermediate */
2153 if (intermediate_freq)
2154 freqs.old = freqs.new;
2155 }
2156
2157 freqs.new = newfreq;
2158 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2159 __func__, policy->cpu, freqs.old, freqs.new);
2160
2161 cpufreq_freq_transition_begin(policy, &freqs);
2162 }
2163
2164 retval = cpufreq_driver->target_index(policy, index);
2165 if (retval)
2166 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2167 retval);
2168
2169 if (notify) {
2170 cpufreq_freq_transition_end(policy, &freqs, retval);
2171
2172 /*
2173 * Failed after setting to intermediate freq? Driver should have
2174 * reverted back to initial frequency and so should we. Check
2175 * here for intermediate_freq instead of get_intermediate, in
2176 * case we haven't switched to intermediate freq at all.
2177 */
2178 if (unlikely(retval && intermediate_freq)) {
2179 freqs.old = intermediate_freq;
2180 freqs.new = policy->restore_freq;
2181 cpufreq_freq_transition_begin(policy, &freqs);
2182 cpufreq_freq_transition_end(policy, &freqs, 0);
2183 }
2184 }
2185
2186 return retval;
2187 }
2188
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2189 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2190 unsigned int target_freq,
2191 unsigned int relation)
2192 {
2193 unsigned int old_target_freq = target_freq;
2194 int index;
2195
2196 if (cpufreq_disabled())
2197 return -ENODEV;
2198
2199 /* Make sure that target_freq is within supported range */
2200 target_freq = clamp_val(target_freq, policy->min, policy->max);
2201
2202 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2203 policy->cpu, target_freq, relation, old_target_freq);
2204
2205 /*
2206 * This might look like a redundant call as we are checking it again
2207 * after finding index. But it is left intentionally for cases where
2208 * exactly same freq is called again and so we can save on few function
2209 * calls.
2210 */
2211 if (target_freq == policy->cur &&
2212 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2213 return 0;
2214
2215 /* Save last value to restore later on errors */
2216 policy->restore_freq = policy->cur;
2217
2218 if (cpufreq_driver->target)
2219 return cpufreq_driver->target(policy, target_freq, relation);
2220
2221 if (!cpufreq_driver->target_index)
2222 return -EINVAL;
2223
2224 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2225
2226 return __target_index(policy, index);
2227 }
2228 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2229
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2230 int cpufreq_driver_target(struct cpufreq_policy *policy,
2231 unsigned int target_freq,
2232 unsigned int relation)
2233 {
2234 int ret;
2235
2236 down_write(&policy->rwsem);
2237
2238 ret = __cpufreq_driver_target(policy, target_freq, relation);
2239
2240 up_write(&policy->rwsem);
2241
2242 return ret;
2243 }
2244 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2245
cpufreq_fallback_governor(void)2246 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2247 {
2248 return NULL;
2249 }
2250
cpufreq_init_governor(struct cpufreq_policy * policy)2251 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2252 {
2253 int ret;
2254
2255 /* Don't start any governor operations if we are entering suspend */
2256 if (cpufreq_suspended)
2257 return 0;
2258 /*
2259 * Governor might not be initiated here if ACPI _PPC changed
2260 * notification happened, so check it.
2261 */
2262 if (!policy->governor)
2263 return -EINVAL;
2264
2265 /* Platform doesn't want dynamic frequency switching ? */
2266 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2267 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2268 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2269
2270 if (gov) {
2271 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2272 policy->governor->name, gov->name);
2273 policy->governor = gov;
2274 } else {
2275 return -EINVAL;
2276 }
2277 }
2278
2279 if (!try_module_get(policy->governor->owner))
2280 return -EINVAL;
2281
2282 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2283
2284 if (policy->governor->init) {
2285 ret = policy->governor->init(policy);
2286 if (ret) {
2287 module_put(policy->governor->owner);
2288 return ret;
2289 }
2290 }
2291
2292 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2293
2294 return 0;
2295 }
2296
cpufreq_exit_governor(struct cpufreq_policy * policy)2297 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2298 {
2299 if (cpufreq_suspended || !policy->governor)
2300 return;
2301
2302 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2303
2304 if (policy->governor->exit)
2305 policy->governor->exit(policy);
2306
2307 module_put(policy->governor->owner);
2308 }
2309
cpufreq_start_governor(struct cpufreq_policy * policy)2310 int cpufreq_start_governor(struct cpufreq_policy *policy)
2311 {
2312 int ret;
2313
2314 if (cpufreq_suspended)
2315 return 0;
2316
2317 if (!policy->governor)
2318 return -EINVAL;
2319
2320 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2321
2322 if (cpufreq_driver->get)
2323 cpufreq_verify_current_freq(policy, false);
2324
2325 if (policy->governor->start) {
2326 ret = policy->governor->start(policy);
2327 if (ret)
2328 return ret;
2329 }
2330
2331 if (policy->governor->limits)
2332 policy->governor->limits(policy);
2333
2334 return 0;
2335 }
2336
cpufreq_stop_governor(struct cpufreq_policy * policy)2337 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2338 {
2339 if (cpufreq_suspended || !policy->governor)
2340 return;
2341
2342 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2343
2344 if (policy->governor->stop)
2345 policy->governor->stop(policy);
2346 }
2347
cpufreq_governor_limits(struct cpufreq_policy * policy)2348 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2349 {
2350 if (cpufreq_suspended || !policy->governor)
2351 return;
2352
2353 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2354
2355 if (policy->governor->limits)
2356 policy->governor->limits(policy);
2357 }
2358
cpufreq_register_governor(struct cpufreq_governor * governor)2359 int cpufreq_register_governor(struct cpufreq_governor *governor)
2360 {
2361 int err;
2362
2363 if (!governor)
2364 return -EINVAL;
2365
2366 if (cpufreq_disabled())
2367 return -ENODEV;
2368
2369 mutex_lock(&cpufreq_governor_mutex);
2370
2371 err = -EBUSY;
2372 if (!find_governor(governor->name)) {
2373 err = 0;
2374 list_add(&governor->governor_list, &cpufreq_governor_list);
2375 }
2376
2377 mutex_unlock(&cpufreq_governor_mutex);
2378 return err;
2379 }
2380 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2381
cpufreq_unregister_governor(struct cpufreq_governor * governor)2382 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2383 {
2384 struct cpufreq_policy *policy;
2385 unsigned long flags;
2386
2387 if (!governor)
2388 return;
2389
2390 if (cpufreq_disabled())
2391 return;
2392
2393 /* clear last_governor for all inactive policies */
2394 read_lock_irqsave(&cpufreq_driver_lock, flags);
2395 for_each_inactive_policy(policy) {
2396 if (!strcmp(policy->last_governor, governor->name)) {
2397 policy->governor = NULL;
2398 strcpy(policy->last_governor, "\0");
2399 }
2400 }
2401 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2402
2403 mutex_lock(&cpufreq_governor_mutex);
2404 list_del(&governor->governor_list);
2405 mutex_unlock(&cpufreq_governor_mutex);
2406 }
2407 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2408
2409
2410 /*********************************************************************
2411 * POLICY INTERFACE *
2412 *********************************************************************/
2413
2414 /**
2415 * cpufreq_get_policy - get the current cpufreq_policy
2416 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2417 * is written
2418 * @cpu: CPU to find the policy for
2419 *
2420 * Reads the current cpufreq policy.
2421 */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2422 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2423 {
2424 struct cpufreq_policy *cpu_policy;
2425 if (!policy)
2426 return -EINVAL;
2427
2428 cpu_policy = cpufreq_cpu_get(cpu);
2429 if (!cpu_policy)
2430 return -EINVAL;
2431
2432 memcpy(policy, cpu_policy, sizeof(*policy));
2433
2434 cpufreq_cpu_put(cpu_policy);
2435 return 0;
2436 }
2437 EXPORT_SYMBOL(cpufreq_get_policy);
2438
2439 /**
2440 * cpufreq_set_policy - Modify cpufreq policy parameters.
2441 * @policy: Policy object to modify.
2442 * @new_gov: Policy governor pointer.
2443 * @new_pol: Policy value (for drivers with built-in governors).
2444 *
2445 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2446 * limits to be set for the policy, update @policy with the verified limits
2447 * values and either invoke the driver's ->setpolicy() callback (if present) or
2448 * carry out a governor update for @policy. That is, run the current governor's
2449 * ->limits() callback (if @new_gov points to the same object as the one in
2450 * @policy) or replace the governor for @policy with @new_gov.
2451 *
2452 * The cpuinfo part of @policy is not updated by this function.
2453 */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2454 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2455 struct cpufreq_governor *new_gov,
2456 unsigned int new_pol)
2457 {
2458 struct cpufreq_policy_data new_data;
2459 struct cpufreq_governor *old_gov;
2460 int ret;
2461
2462 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2463 new_data.freq_table = policy->freq_table;
2464 new_data.cpu = policy->cpu;
2465 /*
2466 * PM QoS framework collects all the requests from users and provide us
2467 * the final aggregated value here.
2468 */
2469 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2470 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2471
2472 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2473 new_data.cpu, new_data.min, new_data.max);
2474
2475 /*
2476 * Verify that the CPU speed can be set within these limits and make sure
2477 * that min <= max.
2478 */
2479 ret = cpufreq_driver->verify(&new_data);
2480 if (ret)
2481 return ret;
2482
2483 policy->min = new_data.min;
2484 policy->max = new_data.max;
2485 trace_cpu_frequency_limits(policy);
2486
2487 policy->cached_target_freq = UINT_MAX;
2488
2489 pr_debug("new min and max freqs are %u - %u kHz\n",
2490 policy->min, policy->max);
2491
2492 if (cpufreq_driver->setpolicy) {
2493 policy->policy = new_pol;
2494 pr_debug("setting range\n");
2495 return cpufreq_driver->setpolicy(policy);
2496 }
2497
2498 if (new_gov == policy->governor) {
2499 pr_debug("governor limits update\n");
2500 cpufreq_governor_limits(policy);
2501 return 0;
2502 }
2503
2504 pr_debug("governor switch\n");
2505
2506 /* save old, working values */
2507 old_gov = policy->governor;
2508 /* end old governor */
2509 if (old_gov) {
2510 cpufreq_stop_governor(policy);
2511 cpufreq_exit_governor(policy);
2512 }
2513
2514 /* start new governor */
2515 policy->governor = new_gov;
2516 ret = cpufreq_init_governor(policy);
2517 if (!ret) {
2518 ret = cpufreq_start_governor(policy);
2519 if (!ret) {
2520 pr_debug("governor change\n");
2521 sched_cpufreq_governor_change(policy, old_gov);
2522 return 0;
2523 }
2524 cpufreq_exit_governor(policy);
2525 }
2526
2527 /* new governor failed, so re-start old one */
2528 pr_debug("starting governor %s failed\n", policy->governor->name);
2529 if (old_gov) {
2530 policy->governor = old_gov;
2531 if (cpufreq_init_governor(policy))
2532 policy->governor = NULL;
2533 else
2534 cpufreq_start_governor(policy);
2535 }
2536
2537 return ret;
2538 }
2539
2540 /**
2541 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2542 * @cpu: CPU to re-evaluate the policy for.
2543 *
2544 * Update the current frequency for the cpufreq policy of @cpu and use
2545 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2546 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2547 * for the policy in question, among other things.
2548 */
cpufreq_update_policy(unsigned int cpu)2549 void cpufreq_update_policy(unsigned int cpu)
2550 {
2551 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2552
2553 if (!policy)
2554 return;
2555
2556 /*
2557 * BIOS might change freq behind our back
2558 * -> ask driver for current freq and notify governors about a change
2559 */
2560 if (cpufreq_driver->get && has_target() &&
2561 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2562 goto unlock;
2563
2564 refresh_frequency_limits(policy);
2565
2566 unlock:
2567 cpufreq_cpu_release(policy);
2568 }
2569 EXPORT_SYMBOL(cpufreq_update_policy);
2570
2571 /**
2572 * cpufreq_update_limits - Update policy limits for a given CPU.
2573 * @cpu: CPU to update the policy limits for.
2574 *
2575 * Invoke the driver's ->update_limits callback if present or call
2576 * cpufreq_update_policy() for @cpu.
2577 */
cpufreq_update_limits(unsigned int cpu)2578 void cpufreq_update_limits(unsigned int cpu)
2579 {
2580 if (cpufreq_driver->update_limits)
2581 cpufreq_driver->update_limits(cpu);
2582 else
2583 cpufreq_update_policy(cpu);
2584 }
2585 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2586
2587 /*********************************************************************
2588 * BOOST *
2589 *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2590 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2591 {
2592 int ret;
2593
2594 if (!policy->freq_table)
2595 return -ENXIO;
2596
2597 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2598 if (ret) {
2599 pr_err("%s: Policy frequency update failed\n", __func__);
2600 return ret;
2601 }
2602
2603 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2604 if (ret < 0)
2605 return ret;
2606
2607 return 0;
2608 }
2609
cpufreq_boost_trigger_state(int state)2610 int cpufreq_boost_trigger_state(int state)
2611 {
2612 struct cpufreq_policy *policy;
2613 unsigned long flags;
2614 int ret = 0;
2615
2616 if (cpufreq_driver->boost_enabled == state)
2617 return 0;
2618
2619 write_lock_irqsave(&cpufreq_driver_lock, flags);
2620 cpufreq_driver->boost_enabled = state;
2621 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2622
2623 get_online_cpus();
2624 for_each_active_policy(policy) {
2625 ret = cpufreq_driver->set_boost(policy, state);
2626 if (ret)
2627 goto err_reset_state;
2628 }
2629 put_online_cpus();
2630
2631 return 0;
2632
2633 err_reset_state:
2634 put_online_cpus();
2635
2636 write_lock_irqsave(&cpufreq_driver_lock, flags);
2637 cpufreq_driver->boost_enabled = !state;
2638 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2639
2640 pr_err("%s: Cannot %s BOOST\n",
2641 __func__, state ? "enable" : "disable");
2642
2643 return ret;
2644 }
2645
cpufreq_boost_supported(void)2646 static bool cpufreq_boost_supported(void)
2647 {
2648 return cpufreq_driver->set_boost;
2649 }
2650
create_boost_sysfs_file(void)2651 static int create_boost_sysfs_file(void)
2652 {
2653 int ret;
2654
2655 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2656 if (ret)
2657 pr_err("%s: cannot register global BOOST sysfs file\n",
2658 __func__);
2659
2660 return ret;
2661 }
2662
remove_boost_sysfs_file(void)2663 static void remove_boost_sysfs_file(void)
2664 {
2665 if (cpufreq_boost_supported())
2666 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2667 }
2668
cpufreq_enable_boost_support(void)2669 int cpufreq_enable_boost_support(void)
2670 {
2671 if (!cpufreq_driver)
2672 return -EINVAL;
2673
2674 if (cpufreq_boost_supported())
2675 return 0;
2676
2677 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2678
2679 /* This will get removed on driver unregister */
2680 return create_boost_sysfs_file();
2681 }
2682 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2683
cpufreq_boost_enabled(void)2684 int cpufreq_boost_enabled(void)
2685 {
2686 return cpufreq_driver->boost_enabled;
2687 }
2688 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2689
2690 /*********************************************************************
2691 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2692 *********************************************************************/
2693 static enum cpuhp_state hp_online;
2694
cpuhp_cpufreq_online(unsigned int cpu)2695 static int cpuhp_cpufreq_online(unsigned int cpu)
2696 {
2697 cpufreq_online(cpu);
2698
2699 return 0;
2700 }
2701
cpuhp_cpufreq_offline(unsigned int cpu)2702 static int cpuhp_cpufreq_offline(unsigned int cpu)
2703 {
2704 cpufreq_offline(cpu);
2705
2706 return 0;
2707 }
2708
2709 /**
2710 * cpufreq_register_driver - register a CPU Frequency driver
2711 * @driver_data: A struct cpufreq_driver containing the values#
2712 * submitted by the CPU Frequency driver.
2713 *
2714 * Registers a CPU Frequency driver to this core code. This code
2715 * returns zero on success, -EEXIST when another driver got here first
2716 * (and isn't unregistered in the meantime).
2717 *
2718 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2719 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2720 {
2721 unsigned long flags;
2722 int ret;
2723
2724 if (cpufreq_disabled())
2725 return -ENODEV;
2726
2727 /*
2728 * The cpufreq core depends heavily on the availability of device
2729 * structure, make sure they are available before proceeding further.
2730 */
2731 if (!get_cpu_device(0))
2732 return -EPROBE_DEFER;
2733
2734 if (!driver_data || !driver_data->verify || !driver_data->init ||
2735 !(driver_data->setpolicy || driver_data->target_index ||
2736 driver_data->target) ||
2737 (driver_data->setpolicy && (driver_data->target_index ||
2738 driver_data->target)) ||
2739 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2740 (!driver_data->online != !driver_data->offline))
2741 return -EINVAL;
2742
2743 pr_debug("trying to register driver %s\n", driver_data->name);
2744
2745 /* Protect against concurrent CPU online/offline. */
2746 cpus_read_lock();
2747
2748 write_lock_irqsave(&cpufreq_driver_lock, flags);
2749 if (cpufreq_driver) {
2750 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2751 ret = -EEXIST;
2752 goto out;
2753 }
2754 cpufreq_driver = driver_data;
2755 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2756
2757 /*
2758 * Mark support for the scheduler's frequency invariance engine for
2759 * drivers that implement target(), target_index() or fast_switch().
2760 */
2761 if (!cpufreq_driver->setpolicy) {
2762 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2763 pr_debug("supports frequency invariance");
2764 }
2765
2766 if (driver_data->setpolicy)
2767 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2768
2769 if (cpufreq_boost_supported()) {
2770 ret = create_boost_sysfs_file();
2771 if (ret)
2772 goto err_null_driver;
2773 }
2774
2775 ret = subsys_interface_register(&cpufreq_interface);
2776 if (ret)
2777 goto err_boost_unreg;
2778
2779 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2780 list_empty(&cpufreq_policy_list)) {
2781 /* if all ->init() calls failed, unregister */
2782 ret = -ENODEV;
2783 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2784 driver_data->name);
2785 goto err_if_unreg;
2786 }
2787
2788 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2789 "cpufreq:online",
2790 cpuhp_cpufreq_online,
2791 cpuhp_cpufreq_offline);
2792 if (ret < 0)
2793 goto err_if_unreg;
2794 hp_online = ret;
2795 ret = 0;
2796
2797 pr_debug("driver %s up and running\n", driver_data->name);
2798 goto out;
2799
2800 err_if_unreg:
2801 subsys_interface_unregister(&cpufreq_interface);
2802 err_boost_unreg:
2803 remove_boost_sysfs_file();
2804 err_null_driver:
2805 write_lock_irqsave(&cpufreq_driver_lock, flags);
2806 cpufreq_driver = NULL;
2807 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2808 out:
2809 cpus_read_unlock();
2810 return ret;
2811 }
2812 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2813
2814 /*
2815 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2816 *
2817 * Unregister the current CPUFreq driver. Only call this if you have
2818 * the right to do so, i.e. if you have succeeded in initialising before!
2819 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2820 * currently not initialised.
2821 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2822 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2823 {
2824 unsigned long flags;
2825
2826 if (!cpufreq_driver || (driver != cpufreq_driver))
2827 return -EINVAL;
2828
2829 pr_debug("unregistering driver %s\n", driver->name);
2830
2831 /* Protect against concurrent cpu hotplug */
2832 cpus_read_lock();
2833 subsys_interface_unregister(&cpufreq_interface);
2834 remove_boost_sysfs_file();
2835 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2836 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2837
2838 write_lock_irqsave(&cpufreq_driver_lock, flags);
2839
2840 cpufreq_driver = NULL;
2841
2842 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2843 cpus_read_unlock();
2844
2845 return 0;
2846 }
2847 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2848
cpufreq_core_init(void)2849 static int __init cpufreq_core_init(void)
2850 {
2851 struct cpufreq_governor *gov = cpufreq_default_governor();
2852
2853 if (cpufreq_disabled())
2854 return -ENODEV;
2855
2856 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2857 BUG_ON(!cpufreq_global_kobject);
2858
2859 if (!strlen(default_governor))
2860 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2861
2862 return 0;
2863 }
2864 module_param(off, int, 0444);
2865 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2866 core_initcall(cpufreq_core_init);
2867