• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct file_ra_state;
39 struct user_struct;
40 struct writeback_control;
41 struct bdi_writeback;
42 struct pt_regs;
43 
44 extern int sysctl_page_lock_unfairness;
45 
46 void init_mm_internals(void);
47 
48 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
50 
set_max_mapnr(unsigned long limit)51 static inline void set_max_mapnr(unsigned long limit)
52 {
53 	max_mapnr = limit;
54 }
55 #else
set_max_mapnr(unsigned long limit)56 static inline void set_max_mapnr(unsigned long limit) { }
57 #endif
58 
59 extern atomic_long_t _totalram_pages;
totalram_pages(void)60 static inline unsigned long totalram_pages(void)
61 {
62 	return (unsigned long)atomic_long_read(&_totalram_pages);
63 }
64 
totalram_pages_inc(void)65 static inline void totalram_pages_inc(void)
66 {
67 	atomic_long_inc(&_totalram_pages);
68 }
69 
totalram_pages_dec(void)70 static inline void totalram_pages_dec(void)
71 {
72 	atomic_long_dec(&_totalram_pages);
73 }
74 
totalram_pages_add(long count)75 static inline void totalram_pages_add(long count)
76 {
77 	atomic_long_add(count, &_totalram_pages);
78 }
79 
80 extern void * high_memory;
81 extern int page_cluster;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern const int mmap_rnd_bits_max;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 /*
104  * Architectures that support memory tagging (assigning tags to memory regions,
105  * embedding these tags into addresses that point to these memory regions, and
106  * checking that the memory and the pointer tags match on memory accesses)
107  * redefine this macro to strip tags from pointers.
108  * It's defined as noop for arcitectures that don't support memory tagging.
109  */
110 #ifndef untagged_addr
111 #define untagged_addr(addr) (addr)
112 #endif
113 
114 #ifndef __pa_symbol
115 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
116 #endif
117 
118 #ifndef page_to_virt
119 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
120 #endif
121 
122 #ifndef lm_alias
123 #define lm_alias(x)	__va(__pa_symbol(x))
124 #endif
125 
126 /*
127  * To prevent common memory management code establishing
128  * a zero page mapping on a read fault.
129  * This macro should be defined within <asm/pgtable.h>.
130  * s390 does this to prevent multiplexing of hardware bits
131  * related to the physical page in case of virtualization.
132  */
133 #ifndef mm_forbids_zeropage
134 #define mm_forbids_zeropage(X)	(0)
135 #endif
136 
137 /*
138  * On some architectures it is expensive to call memset() for small sizes.
139  * If an architecture decides to implement their own version of
140  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141  * define their own version of this macro in <asm/pgtable.h>
142  */
143 #if BITS_PER_LONG == 64
144 /* This function must be updated when the size of struct page grows above 80
145  * or reduces below 56. The idea that compiler optimizes out switch()
146  * statement, and only leaves move/store instructions. Also the compiler can
147  * combine write statments if they are both assignments and can be reordered,
148  * this can result in several of the writes here being dropped.
149  */
150 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)151 static inline void __mm_zero_struct_page(struct page *page)
152 {
153 	unsigned long *_pp = (void *)page;
154 
155 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 	BUILD_BUG_ON(sizeof(struct page) & 7);
157 	BUILD_BUG_ON(sizeof(struct page) < 56);
158 	BUILD_BUG_ON(sizeof(struct page) > 80);
159 
160 	switch (sizeof(struct page)) {
161 	case 80:
162 		_pp[9] = 0;
163 		fallthrough;
164 	case 72:
165 		_pp[8] = 0;
166 		fallthrough;
167 	case 64:
168 		_pp[7] = 0;
169 		fallthrough;
170 	case 56:
171 		_pp[6] = 0;
172 		_pp[5] = 0;
173 		_pp[4] = 0;
174 		_pp[3] = 0;
175 		_pp[2] = 0;
176 		_pp[1] = 0;
177 		_pp[0] = 0;
178 	}
179 }
180 #else
181 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
182 #endif
183 
184 /*
185  * Default maximum number of active map areas, this limits the number of vmas
186  * per mm struct. Users can overwrite this number by sysctl but there is a
187  * problem.
188  *
189  * When a program's coredump is generated as ELF format, a section is created
190  * per a vma. In ELF, the number of sections is represented in unsigned short.
191  * This means the number of sections should be smaller than 65535 at coredump.
192  * Because the kernel adds some informative sections to a image of program at
193  * generating coredump, we need some margin. The number of extra sections is
194  * 1-3 now and depends on arch. We use "5" as safe margin, here.
195  *
196  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197  * not a hard limit any more. Although some userspace tools can be surprised by
198  * that.
199  */
200 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
201 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202 
203 extern int sysctl_max_map_count;
204 
205 extern unsigned long sysctl_user_reserve_kbytes;
206 extern unsigned long sysctl_admin_reserve_kbytes;
207 
208 extern int sysctl_overcommit_memory;
209 extern int sysctl_overcommit_ratio;
210 extern unsigned long sysctl_overcommit_kbytes;
211 
212 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
213 		loff_t *);
214 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
215 		loff_t *);
216 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
217 		loff_t *);
218 
219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220 
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223 
224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
226 
227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228 
229 /*
230  * Linux kernel virtual memory manager primitives.
231  * The idea being to have a "virtual" mm in the same way
232  * we have a virtual fs - giving a cleaner interface to the
233  * mm details, and allowing different kinds of memory mappings
234  * (from shared memory to executable loading to arbitrary
235  * mmap() functions).
236  */
237 
238 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
239 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240 void vm_area_free(struct vm_area_struct *);
241 
242 #ifndef CONFIG_MMU
243 extern struct rb_root nommu_region_tree;
244 extern struct rw_semaphore nommu_region_sem;
245 
246 extern unsigned int kobjsize(const void *objp);
247 #endif
248 
249 /*
250  * vm_flags in vm_area_struct, see mm_types.h.
251  * When changing, update also include/trace/events/mmflags.h
252  */
253 #define VM_NONE		0x00000000
254 
255 #define VM_READ		0x00000001	/* currently active flags */
256 #define VM_WRITE	0x00000002
257 #define VM_EXEC		0x00000004
258 #define VM_SHARED	0x00000008
259 
260 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
261 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
262 #define VM_MAYWRITE	0x00000020
263 #define VM_MAYEXEC	0x00000040
264 #define VM_MAYSHARE	0x00000080
265 
266 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
267 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
268 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
269 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
270 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
271 
272 #define VM_LOCKED	0x00002000
273 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
274 
275 					/* Used by sys_madvise() */
276 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
277 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
278 
279 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
283 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
284 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
285 #define VM_SYNC		0x00800000	/* Synchronous page faults */
286 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
287 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
288 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
289 
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
292 #else
293 # define VM_SOFTDIRTY	0
294 #endif
295 
296 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
300 
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
308 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
309 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
310 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
311 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
312 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
313 
314 #ifdef CONFIG_ARCH_HAS_PKEYS
315 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
316 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
317 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
318 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
319 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
320 #ifdef CONFIG_PPC
321 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
322 #else
323 # define VM_PKEY_BIT4  0
324 #endif
325 #endif /* CONFIG_ARCH_HAS_PKEYS */
326 
327 #if defined(CONFIG_X86)
328 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
329 #elif defined(CONFIG_PPC)
330 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
331 #elif defined(CONFIG_PARISC)
332 # define VM_GROWSUP	VM_ARCH_1
333 #elif defined(CONFIG_IA64)
334 # define VM_GROWSUP	VM_ARCH_1
335 #elif defined(CONFIG_SPARC64)
336 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
337 # define VM_ARCH_CLEAR	VM_SPARC_ADI
338 #elif defined(CONFIG_ARM64)
339 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
340 # define VM_ARCH_CLEAR	VM_ARM64_BTI
341 #elif !defined(CONFIG_MMU)
342 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
343 #endif
344 
345 #if defined(CONFIG_ARM64_MTE)
346 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
347 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
348 #else
349 # define VM_MTE		VM_NONE
350 # define VM_MTE_ALLOWED	VM_NONE
351 #endif
352 
353 #ifndef VM_GROWSUP
354 # define VM_GROWSUP	VM_NONE
355 #endif
356 
357 /* Bits set in the VMA until the stack is in its final location */
358 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
359 
360 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
361 
362 /* Common data flag combinations */
363 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
364 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
365 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
366 				 VM_MAYWRITE | VM_MAYEXEC)
367 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
368 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
369 
370 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
371 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
372 #endif
373 
374 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
375 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
376 #endif
377 
378 #ifdef CONFIG_STACK_GROWSUP
379 #define VM_STACK	VM_GROWSUP
380 #else
381 #define VM_STACK	VM_GROWSDOWN
382 #endif
383 
384 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
385 
386 /* VMA basic access permission flags */
387 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
388 
389 
390 /*
391  * Special vmas that are non-mergable, non-mlock()able.
392  */
393 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
394 
395 /* This mask prevents VMA from being scanned with khugepaged */
396 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
397 
398 /* This mask defines which mm->def_flags a process can inherit its parent */
399 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
400 
401 /* This mask is used to clear all the VMA flags used by mlock */
402 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
403 
404 /* Arch-specific flags to clear when updating VM flags on protection change */
405 #ifndef VM_ARCH_CLEAR
406 # define VM_ARCH_CLEAR	VM_NONE
407 #endif
408 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
409 
410 /*
411  * mapping from the currently active vm_flags protection bits (the
412  * low four bits) to a page protection mask..
413  */
414 extern pgprot_t protection_map[16];
415 
416 /**
417  * Fault flag definitions.
418  *
419  * @FAULT_FLAG_WRITE: Fault was a write fault.
420  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
421  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
422  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
423  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
424  * @FAULT_FLAG_TRIED: The fault has been tried once.
425  * @FAULT_FLAG_USER: The fault originated in userspace.
426  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
427  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
428  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
429  *
430  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
431  * whether we would allow page faults to retry by specifying these two
432  * fault flags correctly.  Currently there can be three legal combinations:
433  *
434  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
435  *                              this is the first try
436  *
437  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
438  *                              we've already tried at least once
439  *
440  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
441  *
442  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
443  * be used.  Note that page faults can be allowed to retry for multiple times,
444  * in which case we'll have an initial fault with flags (a) then later on
445  * continuous faults with flags (b).  We should always try to detect pending
446  * signals before a retry to make sure the continuous page faults can still be
447  * interrupted if necessary.
448  */
449 #define FAULT_FLAG_WRITE			0x01
450 #define FAULT_FLAG_MKWRITE			0x02
451 #define FAULT_FLAG_ALLOW_RETRY			0x04
452 #define FAULT_FLAG_RETRY_NOWAIT			0x08
453 #define FAULT_FLAG_KILLABLE			0x10
454 #define FAULT_FLAG_TRIED			0x20
455 #define FAULT_FLAG_USER				0x40
456 #define FAULT_FLAG_REMOTE			0x80
457 #define FAULT_FLAG_INSTRUCTION  		0x100
458 #define FAULT_FLAG_INTERRUPTIBLE		0x200
459 
460 /*
461  * The default fault flags that should be used by most of the
462  * arch-specific page fault handlers.
463  */
464 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
465 			     FAULT_FLAG_KILLABLE | \
466 			     FAULT_FLAG_INTERRUPTIBLE)
467 
468 /**
469  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
470  *
471  * This is mostly used for places where we want to try to avoid taking
472  * the mmap_lock for too long a time when waiting for another condition
473  * to change, in which case we can try to be polite to release the
474  * mmap_lock in the first round to avoid potential starvation of other
475  * processes that would also want the mmap_lock.
476  *
477  * Return: true if the page fault allows retry and this is the first
478  * attempt of the fault handling; false otherwise.
479  */
fault_flag_allow_retry_first(unsigned int flags)480 static inline bool fault_flag_allow_retry_first(unsigned int flags)
481 {
482 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
483 	    (!(flags & FAULT_FLAG_TRIED));
484 }
485 
486 #define FAULT_FLAG_TRACE \
487 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
488 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
489 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
490 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
491 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
492 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
493 	{ FAULT_FLAG_USER,		"USER" }, \
494 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
495 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
496 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
497 
498 /*
499  * vm_fault is filled by the pagefault handler and passed to the vma's
500  * ->fault function. The vma's ->fault is responsible for returning a bitmask
501  * of VM_FAULT_xxx flags that give details about how the fault was handled.
502  *
503  * MM layer fills up gfp_mask for page allocations but fault handler might
504  * alter it if its implementation requires a different allocation context.
505  *
506  * pgoff should be used in favour of virtual_address, if possible.
507  */
508 struct vm_fault {
509 	struct vm_area_struct *vma;	/* Target VMA */
510 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
511 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
512 	pgoff_t pgoff;			/* Logical page offset based on vma */
513 	unsigned long address;		/* Faulting virtual address */
514 	pmd_t *pmd;			/* Pointer to pmd entry matching
515 					 * the 'address' */
516 	pud_t *pud;			/* Pointer to pud entry matching
517 					 * the 'address'
518 					 */
519 	pte_t orig_pte;			/* Value of PTE at the time of fault */
520 
521 	struct page *cow_page;		/* Page handler may use for COW fault */
522 	struct page *page;		/* ->fault handlers should return a
523 					 * page here, unless VM_FAULT_NOPAGE
524 					 * is set (which is also implied by
525 					 * VM_FAULT_ERROR).
526 					 */
527 	/* These three entries are valid only while holding ptl lock */
528 	pte_t *pte;			/* Pointer to pte entry matching
529 					 * the 'address'. NULL if the page
530 					 * table hasn't been allocated.
531 					 */
532 	spinlock_t *ptl;		/* Page table lock.
533 					 * Protects pte page table if 'pte'
534 					 * is not NULL, otherwise pmd.
535 					 */
536 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
537 					 * vm_ops->map_pages() calls
538 					 * alloc_set_pte() from atomic context.
539 					 * do_fault_around() pre-allocates
540 					 * page table to avoid allocation from
541 					 * atomic context.
542 					 */
543 };
544 
545 /* page entry size for vm->huge_fault() */
546 enum page_entry_size {
547 	PE_SIZE_PTE = 0,
548 	PE_SIZE_PMD,
549 	PE_SIZE_PUD,
550 };
551 
552 /*
553  * These are the virtual MM functions - opening of an area, closing and
554  * unmapping it (needed to keep files on disk up-to-date etc), pointer
555  * to the functions called when a no-page or a wp-page exception occurs.
556  */
557 struct vm_operations_struct {
558 	void (*open)(struct vm_area_struct * area);
559 	void (*close)(struct vm_area_struct * area);
560 	int (*split)(struct vm_area_struct * area, unsigned long addr);
561 	int (*mremap)(struct vm_area_struct * area);
562 	vm_fault_t (*fault)(struct vm_fault *vmf);
563 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 			enum page_entry_size pe_size);
565 	void (*map_pages)(struct vm_fault *vmf,
566 			pgoff_t start_pgoff, pgoff_t end_pgoff);
567 	unsigned long (*pagesize)(struct vm_area_struct * area);
568 
569 	/* notification that a previously read-only page is about to become
570 	 * writable, if an error is returned it will cause a SIGBUS */
571 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
572 
573 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
574 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
575 
576 	/* called by access_process_vm when get_user_pages() fails, typically
577 	 * for use by special VMAs that can switch between memory and hardware
578 	 */
579 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
580 		      void *buf, int len, int write);
581 
582 	/* Called by the /proc/PID/maps code to ask the vma whether it
583 	 * has a special name.  Returning non-NULL will also cause this
584 	 * vma to be dumped unconditionally. */
585 	const char *(*name)(struct vm_area_struct *vma);
586 
587 #ifdef CONFIG_NUMA
588 	/*
589 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
590 	 * to hold the policy upon return.  Caller should pass NULL @new to
591 	 * remove a policy and fall back to surrounding context--i.e. do not
592 	 * install a MPOL_DEFAULT policy, nor the task or system default
593 	 * mempolicy.
594 	 */
595 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
596 
597 	/*
598 	 * get_policy() op must add reference [mpol_get()] to any policy at
599 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
600 	 * in mm/mempolicy.c will do this automatically.
601 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
602 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
603 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
604 	 * must return NULL--i.e., do not "fallback" to task or system default
605 	 * policy.
606 	 */
607 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
608 					unsigned long addr);
609 #endif
610 	/*
611 	 * Called by vm_normal_page() for special PTEs to find the
612 	 * page for @addr.  This is useful if the default behavior
613 	 * (using pte_page()) would not find the correct page.
614 	 */
615 	struct page *(*find_special_page)(struct vm_area_struct *vma,
616 					  unsigned long addr);
617 };
618 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)619 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
620 {
621 	static const struct vm_operations_struct dummy_vm_ops = {};
622 
623 	memset(vma, 0, sizeof(*vma));
624 	vma->vm_mm = mm;
625 	vma->vm_ops = &dummy_vm_ops;
626 	INIT_LIST_HEAD(&vma->anon_vma_chain);
627 }
628 
vma_set_anonymous(struct vm_area_struct * vma)629 static inline void vma_set_anonymous(struct vm_area_struct *vma)
630 {
631 	vma->vm_ops = NULL;
632 }
633 
vma_is_anonymous(struct vm_area_struct * vma)634 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
635 {
636 	return !vma->vm_ops;
637 }
638 
vma_is_temporary_stack(struct vm_area_struct * vma)639 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
640 {
641 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
642 
643 	if (!maybe_stack)
644 		return false;
645 
646 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
647 						VM_STACK_INCOMPLETE_SETUP)
648 		return true;
649 
650 	return false;
651 }
652 
vma_is_foreign(struct vm_area_struct * vma)653 static inline bool vma_is_foreign(struct vm_area_struct *vma)
654 {
655 	if (!current->mm)
656 		return true;
657 
658 	if (current->mm != vma->vm_mm)
659 		return true;
660 
661 	return false;
662 }
663 
vma_is_accessible(struct vm_area_struct * vma)664 static inline bool vma_is_accessible(struct vm_area_struct *vma)
665 {
666 	return vma->vm_flags & VM_ACCESS_FLAGS;
667 }
668 
669 #ifdef CONFIG_SHMEM
670 /*
671  * The vma_is_shmem is not inline because it is used only by slow
672  * paths in userfault.
673  */
674 bool vma_is_shmem(struct vm_area_struct *vma);
675 #else
vma_is_shmem(struct vm_area_struct * vma)676 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
677 #endif
678 
679 int vma_is_stack_for_current(struct vm_area_struct *vma);
680 
681 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
682 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
683 
684 struct mmu_gather;
685 struct inode;
686 
687 #include <linux/huge_mm.h>
688 
689 /*
690  * Methods to modify the page usage count.
691  *
692  * What counts for a page usage:
693  * - cache mapping   (page->mapping)
694  * - private data    (page->private)
695  * - page mapped in a task's page tables, each mapping
696  *   is counted separately
697  *
698  * Also, many kernel routines increase the page count before a critical
699  * routine so they can be sure the page doesn't go away from under them.
700  */
701 
702 /*
703  * Drop a ref, return true if the refcount fell to zero (the page has no users)
704  */
put_page_testzero(struct page * page)705 static inline int put_page_testzero(struct page *page)
706 {
707 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
708 	return page_ref_dec_and_test(page);
709 }
710 
711 /*
712  * Try to grab a ref unless the page has a refcount of zero, return false if
713  * that is the case.
714  * This can be called when MMU is off so it must not access
715  * any of the virtual mappings.
716  */
get_page_unless_zero(struct page * page)717 static inline int get_page_unless_zero(struct page *page)
718 {
719 	return page_ref_add_unless(page, 1, 0);
720 }
721 
722 extern int page_is_ram(unsigned long pfn);
723 
724 enum {
725 	REGION_INTERSECTS,
726 	REGION_DISJOINT,
727 	REGION_MIXED,
728 };
729 
730 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
731 		      unsigned long desc);
732 
733 /* Support for virtually mapped pages */
734 struct page *vmalloc_to_page(const void *addr);
735 unsigned long vmalloc_to_pfn(const void *addr);
736 
737 /*
738  * Determine if an address is within the vmalloc range
739  *
740  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
741  * is no special casing required.
742  */
743 
744 #ifndef is_ioremap_addr
745 #define is_ioremap_addr(x) is_vmalloc_addr(x)
746 #endif
747 
748 #ifdef CONFIG_MMU
749 extern bool is_vmalloc_addr(const void *x);
750 extern int is_vmalloc_or_module_addr(const void *x);
751 #else
is_vmalloc_addr(const void * x)752 static inline bool is_vmalloc_addr(const void *x)
753 {
754 	return false;
755 }
is_vmalloc_or_module_addr(const void * x)756 static inline int is_vmalloc_or_module_addr(const void *x)
757 {
758 	return 0;
759 }
760 #endif
761 
762 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)763 static inline void *kvmalloc(size_t size, gfp_t flags)
764 {
765 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
766 }
kvzalloc_node(size_t size,gfp_t flags,int node)767 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
768 {
769 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
770 }
kvzalloc(size_t size,gfp_t flags)771 static inline void *kvzalloc(size_t size, gfp_t flags)
772 {
773 	return kvmalloc(size, flags | __GFP_ZERO);
774 }
775 
kvmalloc_array(size_t n,size_t size,gfp_t flags)776 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
777 {
778 	size_t bytes;
779 
780 	if (unlikely(check_mul_overflow(n, size, &bytes)))
781 		return NULL;
782 
783 	return kvmalloc(bytes, flags);
784 }
785 
kvcalloc(size_t n,size_t size,gfp_t flags)786 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
787 {
788 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
789 }
790 
791 extern void kvfree(const void *addr);
792 extern void kvfree_sensitive(const void *addr, size_t len);
793 
head_compound_mapcount(struct page * head)794 static inline int head_compound_mapcount(struct page *head)
795 {
796 	return atomic_read(compound_mapcount_ptr(head)) + 1;
797 }
798 
799 /*
800  * Mapcount of compound page as a whole, does not include mapped sub-pages.
801  *
802  * Must be called only for compound pages or any their tail sub-pages.
803  */
compound_mapcount(struct page * page)804 static inline int compound_mapcount(struct page *page)
805 {
806 	VM_BUG_ON_PAGE(!PageCompound(page), page);
807 	page = compound_head(page);
808 	return head_compound_mapcount(page);
809 }
810 
811 /*
812  * The atomic page->_mapcount, starts from -1: so that transitions
813  * both from it and to it can be tracked, using atomic_inc_and_test
814  * and atomic_add_negative(-1).
815  */
page_mapcount_reset(struct page * page)816 static inline void page_mapcount_reset(struct page *page)
817 {
818 	atomic_set(&(page)->_mapcount, -1);
819 }
820 
821 int __page_mapcount(struct page *page);
822 
823 /*
824  * Mapcount of 0-order page; when compound sub-page, includes
825  * compound_mapcount().
826  *
827  * Result is undefined for pages which cannot be mapped into userspace.
828  * For example SLAB or special types of pages. See function page_has_type().
829  * They use this place in struct page differently.
830  */
page_mapcount(struct page * page)831 static inline int page_mapcount(struct page *page)
832 {
833 	if (unlikely(PageCompound(page)))
834 		return __page_mapcount(page);
835 	return atomic_read(&page->_mapcount) + 1;
836 }
837 
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839 int total_mapcount(struct page *page);
840 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
841 #else
total_mapcount(struct page * page)842 static inline int total_mapcount(struct page *page)
843 {
844 	return page_mapcount(page);
845 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)846 static inline int page_trans_huge_mapcount(struct page *page,
847 					   int *total_mapcount)
848 {
849 	int mapcount = page_mapcount(page);
850 	if (total_mapcount)
851 		*total_mapcount = mapcount;
852 	return mapcount;
853 }
854 #endif
855 
virt_to_head_page(const void * x)856 static inline struct page *virt_to_head_page(const void *x)
857 {
858 	struct page *page = virt_to_page(x);
859 
860 	return compound_head(page);
861 }
862 
863 void __put_page(struct page *page);
864 
865 void put_pages_list(struct list_head *pages);
866 
867 void split_page(struct page *page, unsigned int order);
868 
869 /*
870  * Compound pages have a destructor function.  Provide a
871  * prototype for that function and accessor functions.
872  * These are _only_ valid on the head of a compound page.
873  */
874 typedef void compound_page_dtor(struct page *);
875 
876 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
877 enum compound_dtor_id {
878 	NULL_COMPOUND_DTOR,
879 	COMPOUND_PAGE_DTOR,
880 #ifdef CONFIG_HUGETLB_PAGE
881 	HUGETLB_PAGE_DTOR,
882 #endif
883 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
884 	TRANSHUGE_PAGE_DTOR,
885 #endif
886 	NR_COMPOUND_DTORS,
887 };
888 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
889 
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)890 static inline void set_compound_page_dtor(struct page *page,
891 		enum compound_dtor_id compound_dtor)
892 {
893 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
894 	page[1].compound_dtor = compound_dtor;
895 }
896 
destroy_compound_page(struct page * page)897 static inline void destroy_compound_page(struct page *page)
898 {
899 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
900 	compound_page_dtors[page[1].compound_dtor](page);
901 }
902 
compound_order(struct page * page)903 static inline unsigned int compound_order(struct page *page)
904 {
905 	if (!PageHead(page))
906 		return 0;
907 	return page[1].compound_order;
908 }
909 
hpage_pincount_available(struct page * page)910 static inline bool hpage_pincount_available(struct page *page)
911 {
912 	/*
913 	 * Can the page->hpage_pinned_refcount field be used? That field is in
914 	 * the 3rd page of the compound page, so the smallest (2-page) compound
915 	 * pages cannot support it.
916 	 */
917 	page = compound_head(page);
918 	return PageCompound(page) && compound_order(page) > 1;
919 }
920 
head_compound_pincount(struct page * head)921 static inline int head_compound_pincount(struct page *head)
922 {
923 	return atomic_read(compound_pincount_ptr(head));
924 }
925 
compound_pincount(struct page * page)926 static inline int compound_pincount(struct page *page)
927 {
928 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
929 	page = compound_head(page);
930 	return head_compound_pincount(page);
931 }
932 
set_compound_order(struct page * page,unsigned int order)933 static inline void set_compound_order(struct page *page, unsigned int order)
934 {
935 	page[1].compound_order = order;
936 	page[1].compound_nr = 1U << order;
937 }
938 
939 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)940 static inline unsigned long compound_nr(struct page *page)
941 {
942 	if (!PageHead(page))
943 		return 1;
944 	return page[1].compound_nr;
945 }
946 
947 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)948 static inline unsigned long page_size(struct page *page)
949 {
950 	return PAGE_SIZE << compound_order(page);
951 }
952 
953 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)954 static inline unsigned int page_shift(struct page *page)
955 {
956 	return PAGE_SHIFT + compound_order(page);
957 }
958 
959 void free_compound_page(struct page *page);
960 
961 #ifdef CONFIG_MMU
962 /*
963  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
964  * servicing faults for write access.  In the normal case, do always want
965  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
966  * that do not have writing enabled, when used by access_process_vm.
967  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)968 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
969 {
970 	if (likely(vma->vm_flags & VM_WRITE))
971 		pte = pte_mkwrite(pte);
972 	return pte;
973 }
974 
975 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
976 vm_fault_t finish_fault(struct vm_fault *vmf);
977 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
978 #endif
979 
980 /*
981  * Multiple processes may "see" the same page. E.g. for untouched
982  * mappings of /dev/null, all processes see the same page full of
983  * zeroes, and text pages of executables and shared libraries have
984  * only one copy in memory, at most, normally.
985  *
986  * For the non-reserved pages, page_count(page) denotes a reference count.
987  *   page_count() == 0 means the page is free. page->lru is then used for
988  *   freelist management in the buddy allocator.
989  *   page_count() > 0  means the page has been allocated.
990  *
991  * Pages are allocated by the slab allocator in order to provide memory
992  * to kmalloc and kmem_cache_alloc. In this case, the management of the
993  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
994  * unless a particular usage is carefully commented. (the responsibility of
995  * freeing the kmalloc memory is the caller's, of course).
996  *
997  * A page may be used by anyone else who does a __get_free_page().
998  * In this case, page_count still tracks the references, and should only
999  * be used through the normal accessor functions. The top bits of page->flags
1000  * and page->virtual store page management information, but all other fields
1001  * are unused and could be used privately, carefully. The management of this
1002  * page is the responsibility of the one who allocated it, and those who have
1003  * subsequently been given references to it.
1004  *
1005  * The other pages (we may call them "pagecache pages") are completely
1006  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1007  * The following discussion applies only to them.
1008  *
1009  * A pagecache page contains an opaque `private' member, which belongs to the
1010  * page's address_space. Usually, this is the address of a circular list of
1011  * the page's disk buffers. PG_private must be set to tell the VM to call
1012  * into the filesystem to release these pages.
1013  *
1014  * A page may belong to an inode's memory mapping. In this case, page->mapping
1015  * is the pointer to the inode, and page->index is the file offset of the page,
1016  * in units of PAGE_SIZE.
1017  *
1018  * If pagecache pages are not associated with an inode, they are said to be
1019  * anonymous pages. These may become associated with the swapcache, and in that
1020  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1021  *
1022  * In either case (swapcache or inode backed), the pagecache itself holds one
1023  * reference to the page. Setting PG_private should also increment the
1024  * refcount. The each user mapping also has a reference to the page.
1025  *
1026  * The pagecache pages are stored in a per-mapping radix tree, which is
1027  * rooted at mapping->i_pages, and indexed by offset.
1028  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1029  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1030  *
1031  * All pagecache pages may be subject to I/O:
1032  * - inode pages may need to be read from disk,
1033  * - inode pages which have been modified and are MAP_SHARED may need
1034  *   to be written back to the inode on disk,
1035  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1036  *   modified may need to be swapped out to swap space and (later) to be read
1037  *   back into memory.
1038  */
1039 
1040 /*
1041  * The zone field is never updated after free_area_init_core()
1042  * sets it, so none of the operations on it need to be atomic.
1043  */
1044 
1045 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1046 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1047 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1048 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1049 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1050 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1051 
1052 /*
1053  * Define the bit shifts to access each section.  For non-existent
1054  * sections we define the shift as 0; that plus a 0 mask ensures
1055  * the compiler will optimise away reference to them.
1056  */
1057 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1058 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1059 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1060 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1061 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1062 
1063 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1064 #ifdef NODE_NOT_IN_PAGE_FLAGS
1065 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1066 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1067 						SECTIONS_PGOFF : ZONES_PGOFF)
1068 #else
1069 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1070 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1071 						NODES_PGOFF : ZONES_PGOFF)
1072 #endif
1073 
1074 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1075 
1076 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1077 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1078 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1079 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1080 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1081 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1082 
page_zonenum(const struct page * page)1083 static inline enum zone_type page_zonenum(const struct page *page)
1084 {
1085 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1086 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1087 }
1088 
1089 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1090 static inline bool is_zone_device_page(const struct page *page)
1091 {
1092 	return page_zonenum(page) == ZONE_DEVICE;
1093 }
1094 extern void memmap_init_zone_device(struct zone *, unsigned long,
1095 				    unsigned long, struct dev_pagemap *);
1096 #else
is_zone_device_page(const struct page * page)1097 static inline bool is_zone_device_page(const struct page *page)
1098 {
1099 	return false;
1100 }
1101 #endif
1102 
1103 #ifdef CONFIG_DEV_PAGEMAP_OPS
1104 void free_devmap_managed_page(struct page *page);
1105 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1106 
page_is_devmap_managed(struct page * page)1107 static inline bool page_is_devmap_managed(struct page *page)
1108 {
1109 	if (!static_branch_unlikely(&devmap_managed_key))
1110 		return false;
1111 	if (!is_zone_device_page(page))
1112 		return false;
1113 	switch (page->pgmap->type) {
1114 	case MEMORY_DEVICE_PRIVATE:
1115 	case MEMORY_DEVICE_FS_DAX:
1116 		return true;
1117 	default:
1118 		break;
1119 	}
1120 	return false;
1121 }
1122 
1123 void put_devmap_managed_page(struct page *page);
1124 
1125 #else /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1126 static inline bool page_is_devmap_managed(struct page *page)
1127 {
1128 	return false;
1129 }
1130 
put_devmap_managed_page(struct page * page)1131 static inline void put_devmap_managed_page(struct page *page)
1132 {
1133 }
1134 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1135 
is_device_private_page(const struct page * page)1136 static inline bool is_device_private_page(const struct page *page)
1137 {
1138 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1139 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1140 		is_zone_device_page(page) &&
1141 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1142 }
1143 
is_pci_p2pdma_page(const struct page * page)1144 static inline bool is_pci_p2pdma_page(const struct page *page)
1145 {
1146 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1147 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1148 		is_zone_device_page(page) &&
1149 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1150 }
1151 
1152 /* 127: arbitrary random number, small enough to assemble well */
1153 #define page_ref_zero_or_close_to_overflow(page) \
1154 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1155 
get_page(struct page * page)1156 static inline void get_page(struct page *page)
1157 {
1158 	page = compound_head(page);
1159 	/*
1160 	 * Getting a normal page or the head of a compound page
1161 	 * requires to already have an elevated page->_refcount.
1162 	 */
1163 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1164 	page_ref_inc(page);
1165 }
1166 
1167 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1168 
try_get_page(struct page * page)1169 static inline __must_check bool try_get_page(struct page *page)
1170 {
1171 	page = compound_head(page);
1172 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1173 		return false;
1174 	page_ref_inc(page);
1175 	return true;
1176 }
1177 
put_page(struct page * page)1178 static inline void put_page(struct page *page)
1179 {
1180 	page = compound_head(page);
1181 
1182 	/*
1183 	 * For devmap managed pages we need to catch refcount transition from
1184 	 * 2 to 1, when refcount reach one it means the page is free and we
1185 	 * need to inform the device driver through callback. See
1186 	 * include/linux/memremap.h and HMM for details.
1187 	 */
1188 	if (page_is_devmap_managed(page)) {
1189 		put_devmap_managed_page(page);
1190 		return;
1191 	}
1192 
1193 	if (put_page_testzero(page))
1194 		__put_page(page);
1195 }
1196 
1197 /*
1198  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1199  * the page's refcount so that two separate items are tracked: the original page
1200  * reference count, and also a new count of how many pin_user_pages() calls were
1201  * made against the page. ("gup-pinned" is another term for the latter).
1202  *
1203  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1204  * distinct from normal pages. As such, the unpin_user_page() call (and its
1205  * variants) must be used in order to release gup-pinned pages.
1206  *
1207  * Choice of value:
1208  *
1209  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1210  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1211  * simpler, due to the fact that adding an even power of two to the page
1212  * refcount has the effect of using only the upper N bits, for the code that
1213  * counts up using the bias value. This means that the lower bits are left for
1214  * the exclusive use of the original code that increments and decrements by one
1215  * (or at least, by much smaller values than the bias value).
1216  *
1217  * Of course, once the lower bits overflow into the upper bits (and this is
1218  * OK, because subtraction recovers the original values), then visual inspection
1219  * no longer suffices to directly view the separate counts. However, for normal
1220  * applications that don't have huge page reference counts, this won't be an
1221  * issue.
1222  *
1223  * Locking: the lockless algorithm described in page_cache_get_speculative()
1224  * and page_cache_gup_pin_speculative() provides safe operation for
1225  * get_user_pages and page_mkclean and other calls that race to set up page
1226  * table entries.
1227  */
1228 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1229 
1230 void unpin_user_page(struct page *page);
1231 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1232 				 bool make_dirty);
1233 void unpin_user_pages(struct page **pages, unsigned long npages);
1234 
1235 /**
1236  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1237  *
1238  * This function checks if a page has been pinned via a call to
1239  * pin_user_pages*().
1240  *
1241  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1242  * because it means "definitely not pinned for DMA", but true means "probably
1243  * pinned for DMA, but possibly a false positive due to having at least
1244  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1245  *
1246  * False positives are OK, because: a) it's unlikely for a page to get that many
1247  * refcounts, and b) all the callers of this routine are expected to be able to
1248  * deal gracefully with a false positive.
1249  *
1250  * For huge pages, the result will be exactly correct. That's because we have
1251  * more tracking data available: the 3rd struct page in the compound page is
1252  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1253  * scheme).
1254  *
1255  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1256  *
1257  * @page:	pointer to page to be queried.
1258  * @Return:	True, if it is likely that the page has been "dma-pinned".
1259  *		False, if the page is definitely not dma-pinned.
1260  */
page_maybe_dma_pinned(struct page * page)1261 static inline bool page_maybe_dma_pinned(struct page *page)
1262 {
1263 	if (hpage_pincount_available(page))
1264 		return compound_pincount(page) > 0;
1265 
1266 	/*
1267 	 * page_ref_count() is signed. If that refcount overflows, then
1268 	 * page_ref_count() returns a negative value, and callers will avoid
1269 	 * further incrementing the refcount.
1270 	 *
1271 	 * Here, for that overflow case, use the signed bit to count a little
1272 	 * bit higher via unsigned math, and thus still get an accurate result.
1273 	 */
1274 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1275 		GUP_PIN_COUNTING_BIAS;
1276 }
1277 
1278 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1279 #define SECTION_IN_PAGE_FLAGS
1280 #endif
1281 
1282 /*
1283  * The identification function is mainly used by the buddy allocator for
1284  * determining if two pages could be buddies. We are not really identifying
1285  * the zone since we could be using the section number id if we do not have
1286  * node id available in page flags.
1287  * We only guarantee that it will return the same value for two combinable
1288  * pages in a zone.
1289  */
page_zone_id(struct page * page)1290 static inline int page_zone_id(struct page *page)
1291 {
1292 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1293 }
1294 
1295 #ifdef NODE_NOT_IN_PAGE_FLAGS
1296 extern int page_to_nid(const struct page *page);
1297 #else
page_to_nid(const struct page * page)1298 static inline int page_to_nid(const struct page *page)
1299 {
1300 	struct page *p = (struct page *)page;
1301 
1302 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1303 }
1304 #endif
1305 
1306 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1307 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1308 {
1309 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1310 }
1311 
cpupid_to_pid(int cpupid)1312 static inline int cpupid_to_pid(int cpupid)
1313 {
1314 	return cpupid & LAST__PID_MASK;
1315 }
1316 
cpupid_to_cpu(int cpupid)1317 static inline int cpupid_to_cpu(int cpupid)
1318 {
1319 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1320 }
1321 
cpupid_to_nid(int cpupid)1322 static inline int cpupid_to_nid(int cpupid)
1323 {
1324 	return cpu_to_node(cpupid_to_cpu(cpupid));
1325 }
1326 
cpupid_pid_unset(int cpupid)1327 static inline bool cpupid_pid_unset(int cpupid)
1328 {
1329 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1330 }
1331 
cpupid_cpu_unset(int cpupid)1332 static inline bool cpupid_cpu_unset(int cpupid)
1333 {
1334 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1335 }
1336 
__cpupid_match_pid(pid_t task_pid,int cpupid)1337 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1338 {
1339 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1340 }
1341 
1342 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1343 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1344 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1345 {
1346 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1347 }
1348 
page_cpupid_last(struct page * page)1349 static inline int page_cpupid_last(struct page *page)
1350 {
1351 	return page->_last_cpupid;
1352 }
page_cpupid_reset_last(struct page * page)1353 static inline void page_cpupid_reset_last(struct page *page)
1354 {
1355 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1356 }
1357 #else
page_cpupid_last(struct page * page)1358 static inline int page_cpupid_last(struct page *page)
1359 {
1360 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1361 }
1362 
1363 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1364 
page_cpupid_reset_last(struct page * page)1365 static inline void page_cpupid_reset_last(struct page *page)
1366 {
1367 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1368 }
1369 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1370 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1371 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1372 {
1373 	return page_to_nid(page); /* XXX */
1374 }
1375 
page_cpupid_last(struct page * page)1376 static inline int page_cpupid_last(struct page *page)
1377 {
1378 	return page_to_nid(page); /* XXX */
1379 }
1380 
cpupid_to_nid(int cpupid)1381 static inline int cpupid_to_nid(int cpupid)
1382 {
1383 	return -1;
1384 }
1385 
cpupid_to_pid(int cpupid)1386 static inline int cpupid_to_pid(int cpupid)
1387 {
1388 	return -1;
1389 }
1390 
cpupid_to_cpu(int cpupid)1391 static inline int cpupid_to_cpu(int cpupid)
1392 {
1393 	return -1;
1394 }
1395 
cpu_pid_to_cpupid(int nid,int pid)1396 static inline int cpu_pid_to_cpupid(int nid, int pid)
1397 {
1398 	return -1;
1399 }
1400 
cpupid_pid_unset(int cpupid)1401 static inline bool cpupid_pid_unset(int cpupid)
1402 {
1403 	return true;
1404 }
1405 
page_cpupid_reset_last(struct page * page)1406 static inline void page_cpupid_reset_last(struct page *page)
1407 {
1408 }
1409 
cpupid_match_pid(struct task_struct * task,int cpupid)1410 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1411 {
1412 	return false;
1413 }
1414 #endif /* CONFIG_NUMA_BALANCING */
1415 
1416 #ifdef CONFIG_KASAN_SW_TAGS
1417 
1418 /*
1419  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1420  * setting tags for all pages to native kernel tag value 0xff, as the default
1421  * value 0x00 maps to 0xff.
1422  */
1423 
page_kasan_tag(const struct page * page)1424 static inline u8 page_kasan_tag(const struct page *page)
1425 {
1426 	u8 tag;
1427 
1428 	tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1429 	tag ^= 0xff;
1430 
1431 	return tag;
1432 }
1433 
page_kasan_tag_set(struct page * page,u8 tag)1434 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1435 {
1436 	tag ^= 0xff;
1437 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1438 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1439 }
1440 
page_kasan_tag_reset(struct page * page)1441 static inline void page_kasan_tag_reset(struct page *page)
1442 {
1443 	page_kasan_tag_set(page, 0xff);
1444 }
1445 #else
page_kasan_tag(const struct page * page)1446 static inline u8 page_kasan_tag(const struct page *page)
1447 {
1448 	return 0xff;
1449 }
1450 
page_kasan_tag_set(struct page * page,u8 tag)1451 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1452 static inline void page_kasan_tag_reset(struct page *page) { }
1453 #endif
1454 
page_zone(const struct page * page)1455 static inline struct zone *page_zone(const struct page *page)
1456 {
1457 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1458 }
1459 
page_pgdat(const struct page * page)1460 static inline pg_data_t *page_pgdat(const struct page *page)
1461 {
1462 	return NODE_DATA(page_to_nid(page));
1463 }
1464 
1465 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1466 static inline void set_page_section(struct page *page, unsigned long section)
1467 {
1468 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1469 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1470 }
1471 
page_to_section(const struct page * page)1472 static inline unsigned long page_to_section(const struct page *page)
1473 {
1474 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1475 }
1476 #endif
1477 
set_page_zone(struct page * page,enum zone_type zone)1478 static inline void set_page_zone(struct page *page, enum zone_type zone)
1479 {
1480 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1481 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1482 }
1483 
set_page_node(struct page * page,unsigned long node)1484 static inline void set_page_node(struct page *page, unsigned long node)
1485 {
1486 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1487 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1488 }
1489 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1490 static inline void set_page_links(struct page *page, enum zone_type zone,
1491 	unsigned long node, unsigned long pfn)
1492 {
1493 	set_page_zone(page, zone);
1494 	set_page_node(page, node);
1495 #ifdef SECTION_IN_PAGE_FLAGS
1496 	set_page_section(page, pfn_to_section_nr(pfn));
1497 #endif
1498 }
1499 
1500 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1501 static inline struct mem_cgroup *page_memcg(struct page *page)
1502 {
1503 	return page->mem_cgroup;
1504 }
page_memcg_rcu(struct page * page)1505 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1506 {
1507 	WARN_ON_ONCE(!rcu_read_lock_held());
1508 	return READ_ONCE(page->mem_cgroup);
1509 }
1510 #else
page_memcg(struct page * page)1511 static inline struct mem_cgroup *page_memcg(struct page *page)
1512 {
1513 	return NULL;
1514 }
page_memcg_rcu(struct page * page)1515 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1516 {
1517 	WARN_ON_ONCE(!rcu_read_lock_held());
1518 	return NULL;
1519 }
1520 #endif
1521 
1522 /*
1523  * Some inline functions in vmstat.h depend on page_zone()
1524  */
1525 #include <linux/vmstat.h>
1526 
lowmem_page_address(const struct page * page)1527 static __always_inline void *lowmem_page_address(const struct page *page)
1528 {
1529 	return page_to_virt(page);
1530 }
1531 
1532 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1533 #define HASHED_PAGE_VIRTUAL
1534 #endif
1535 
1536 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1537 static inline void *page_address(const struct page *page)
1538 {
1539 	return page->virtual;
1540 }
set_page_address(struct page * page,void * address)1541 static inline void set_page_address(struct page *page, void *address)
1542 {
1543 	page->virtual = address;
1544 }
1545 #define page_address_init()  do { } while(0)
1546 #endif
1547 
1548 #if defined(HASHED_PAGE_VIRTUAL)
1549 void *page_address(const struct page *page);
1550 void set_page_address(struct page *page, void *virtual);
1551 void page_address_init(void);
1552 #endif
1553 
1554 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1555 #define page_address(page) lowmem_page_address(page)
1556 #define set_page_address(page, address)  do { } while(0)
1557 #define page_address_init()  do { } while(0)
1558 #endif
1559 
1560 extern void *page_rmapping(struct page *page);
1561 extern struct anon_vma *page_anon_vma(struct page *page);
1562 extern struct address_space *page_mapping(struct page *page);
1563 
1564 extern struct address_space *__page_file_mapping(struct page *);
1565 
1566 static inline
page_file_mapping(struct page * page)1567 struct address_space *page_file_mapping(struct page *page)
1568 {
1569 	if (unlikely(PageSwapCache(page)))
1570 		return __page_file_mapping(page);
1571 
1572 	return page->mapping;
1573 }
1574 
1575 extern pgoff_t __page_file_index(struct page *page);
1576 
1577 /*
1578  * Return the pagecache index of the passed page.  Regular pagecache pages
1579  * use ->index whereas swapcache pages use swp_offset(->private)
1580  */
page_index(struct page * page)1581 static inline pgoff_t page_index(struct page *page)
1582 {
1583 	if (unlikely(PageSwapCache(page)))
1584 		return __page_file_index(page);
1585 	return page->index;
1586 }
1587 
1588 bool page_mapped(struct page *page);
1589 struct address_space *page_mapping(struct page *page);
1590 struct address_space *page_mapping_file(struct page *page);
1591 
1592 /*
1593  * Return true only if the page has been allocated with
1594  * ALLOC_NO_WATERMARKS and the low watermark was not
1595  * met implying that the system is under some pressure.
1596  */
page_is_pfmemalloc(struct page * page)1597 static inline bool page_is_pfmemalloc(struct page *page)
1598 {
1599 	/*
1600 	 * Page index cannot be this large so this must be
1601 	 * a pfmemalloc page.
1602 	 */
1603 	return page->index == -1UL;
1604 }
1605 
1606 /*
1607  * Only to be called by the page allocator on a freshly allocated
1608  * page.
1609  */
set_page_pfmemalloc(struct page * page)1610 static inline void set_page_pfmemalloc(struct page *page)
1611 {
1612 	page->index = -1UL;
1613 }
1614 
clear_page_pfmemalloc(struct page * page)1615 static inline void clear_page_pfmemalloc(struct page *page)
1616 {
1617 	page->index = 0;
1618 }
1619 
1620 /*
1621  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1622  */
1623 extern void pagefault_out_of_memory(void);
1624 
1625 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1626 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1627 
1628 /*
1629  * Flags passed to show_mem() and show_free_areas() to suppress output in
1630  * various contexts.
1631  */
1632 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1633 
1634 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1635 
1636 #ifdef CONFIG_MMU
1637 extern bool can_do_mlock(void);
1638 #else
can_do_mlock(void)1639 static inline bool can_do_mlock(void) { return false; }
1640 #endif
1641 extern int user_shm_lock(size_t, struct user_struct *);
1642 extern void user_shm_unlock(size_t, struct user_struct *);
1643 
1644 /*
1645  * Parameter block passed down to zap_pte_range in exceptional cases.
1646  */
1647 struct zap_details {
1648 	struct address_space *check_mapping;	/* Check page->mapping if set */
1649 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1650 	pgoff_t last_index;			/* Highest page->index to unmap */
1651 	struct page *single_page;		/* Locked page to be unmapped */
1652 };
1653 
1654 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1655 			     pte_t pte);
1656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1657 				pmd_t pmd);
1658 
1659 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1660 		  unsigned long size);
1661 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1662 		    unsigned long size);
1663 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1664 		unsigned long start, unsigned long end);
1665 
1666 struct mmu_notifier_range;
1667 
1668 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1669 		unsigned long end, unsigned long floor, unsigned long ceiling);
1670 int
1671 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1672 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1673 			  struct mmu_notifier_range *range, pte_t **ptepp,
1674 			  pmd_t **pmdpp, spinlock_t **ptlp);
1675 int follow_pte(struct mm_struct *mm, unsigned long address,
1676 	       pte_t **ptepp, spinlock_t **ptlp);
1677 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1678 	unsigned long *pfn);
1679 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1680 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1681 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1682 			void *buf, int len, int write);
1683 
1684 extern void truncate_pagecache(struct inode *inode, loff_t new);
1685 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1686 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1687 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1688 int truncate_inode_page(struct address_space *mapping, struct page *page);
1689 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1690 int invalidate_inode_page(struct page *page);
1691 
1692 #ifdef CONFIG_MMU
1693 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1694 				  unsigned long address, unsigned int flags,
1695 				  struct pt_regs *regs);
1696 extern int fixup_user_fault(struct mm_struct *mm,
1697 			    unsigned long address, unsigned int fault_flags,
1698 			    bool *unlocked);
1699 void unmap_mapping_page(struct page *page);
1700 void unmap_mapping_pages(struct address_space *mapping,
1701 		pgoff_t start, pgoff_t nr, bool even_cows);
1702 void unmap_mapping_range(struct address_space *mapping,
1703 		loff_t const holebegin, loff_t const holelen, int even_cows);
1704 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1705 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1706 					 unsigned long address, unsigned int flags,
1707 					 struct pt_regs *regs)
1708 {
1709 	/* should never happen if there's no MMU */
1710 	BUG();
1711 	return VM_FAULT_SIGBUS;
1712 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1713 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1714 		unsigned int fault_flags, bool *unlocked)
1715 {
1716 	/* should never happen if there's no MMU */
1717 	BUG();
1718 	return -EFAULT;
1719 }
unmap_mapping_page(struct page * page)1720 static inline void unmap_mapping_page(struct page *page) { }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1721 static inline void unmap_mapping_pages(struct address_space *mapping,
1722 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1723 static inline void unmap_mapping_range(struct address_space *mapping,
1724 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1725 #endif
1726 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1727 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1728 		loff_t const holebegin, loff_t const holelen)
1729 {
1730 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1731 }
1732 
1733 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1734 		void *buf, int len, unsigned int gup_flags);
1735 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1736 		void *buf, int len, unsigned int gup_flags);
1737 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1738 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1739 
1740 long get_user_pages_remote(struct mm_struct *mm,
1741 			    unsigned long start, unsigned long nr_pages,
1742 			    unsigned int gup_flags, struct page **pages,
1743 			    struct vm_area_struct **vmas, int *locked);
1744 long pin_user_pages_remote(struct mm_struct *mm,
1745 			   unsigned long start, unsigned long nr_pages,
1746 			   unsigned int gup_flags, struct page **pages,
1747 			   struct vm_area_struct **vmas, int *locked);
1748 long get_user_pages(unsigned long start, unsigned long nr_pages,
1749 			    unsigned int gup_flags, struct page **pages,
1750 			    struct vm_area_struct **vmas);
1751 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1752 		    unsigned int gup_flags, struct page **pages,
1753 		    struct vm_area_struct **vmas);
1754 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1755 		    unsigned int gup_flags, struct page **pages, int *locked);
1756 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1757 		    unsigned int gup_flags, struct page **pages, int *locked);
1758 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1759 		    struct page **pages, unsigned int gup_flags);
1760 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1761 		    struct page **pages, unsigned int gup_flags);
1762 
1763 int get_user_pages_fast(unsigned long start, int nr_pages,
1764 			unsigned int gup_flags, struct page **pages);
1765 int pin_user_pages_fast(unsigned long start, int nr_pages,
1766 			unsigned int gup_flags, struct page **pages);
1767 
1768 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1769 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1770 			struct task_struct *task, bool bypass_rlim);
1771 
1772 /* Container for pinned pfns / pages */
1773 struct frame_vector {
1774 	unsigned int nr_allocated;	/* Number of frames we have space for */
1775 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1776 	bool got_ref;		/* Did we pin pages by getting page ref? */
1777 	bool is_pfns;		/* Does array contain pages or pfns? */
1778 	void *ptrs[];		/* Array of pinned pfns / pages. Use
1779 				 * pfns_vector_pages() or pfns_vector_pfns()
1780 				 * for access */
1781 };
1782 
1783 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1784 void frame_vector_destroy(struct frame_vector *vec);
1785 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1786 		     unsigned int gup_flags, struct frame_vector *vec);
1787 void put_vaddr_frames(struct frame_vector *vec);
1788 int frame_vector_to_pages(struct frame_vector *vec);
1789 void frame_vector_to_pfns(struct frame_vector *vec);
1790 
frame_vector_count(struct frame_vector * vec)1791 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1792 {
1793 	return vec->nr_frames;
1794 }
1795 
frame_vector_pages(struct frame_vector * vec)1796 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1797 {
1798 	if (vec->is_pfns) {
1799 		int err = frame_vector_to_pages(vec);
1800 
1801 		if (err)
1802 			return ERR_PTR(err);
1803 	}
1804 	return (struct page **)(vec->ptrs);
1805 }
1806 
frame_vector_pfns(struct frame_vector * vec)1807 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1808 {
1809 	if (!vec->is_pfns)
1810 		frame_vector_to_pfns(vec);
1811 	return (unsigned long *)(vec->ptrs);
1812 }
1813 
1814 struct kvec;
1815 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1816 			struct page **pages);
1817 int get_kernel_page(unsigned long start, int write, struct page **pages);
1818 struct page *get_dump_page(unsigned long addr);
1819 
1820 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1821 extern void do_invalidatepage(struct page *page, unsigned int offset,
1822 			      unsigned int length);
1823 
1824 void __set_page_dirty(struct page *, struct address_space *, int warn);
1825 int __set_page_dirty_nobuffers(struct page *page);
1826 int __set_page_dirty_no_writeback(struct page *page);
1827 int redirty_page_for_writepage(struct writeback_control *wbc,
1828 				struct page *page);
1829 void account_page_dirtied(struct page *page, struct address_space *mapping);
1830 void account_page_cleaned(struct page *page, struct address_space *mapping,
1831 			  struct bdi_writeback *wb);
1832 int set_page_dirty(struct page *page);
1833 int set_page_dirty_lock(struct page *page);
1834 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1835 static inline void cancel_dirty_page(struct page *page)
1836 {
1837 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1838 	if (PageDirty(page))
1839 		__cancel_dirty_page(page);
1840 }
1841 int clear_page_dirty_for_io(struct page *page);
1842 
1843 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1844 
1845 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1846 		unsigned long old_addr, struct vm_area_struct *new_vma,
1847 		unsigned long new_addr, unsigned long len,
1848 		bool need_rmap_locks);
1849 
1850 /*
1851  * Flags used by change_protection().  For now we make it a bitmap so
1852  * that we can pass in multiple flags just like parameters.  However
1853  * for now all the callers are only use one of the flags at the same
1854  * time.
1855  */
1856 /* Whether we should allow dirty bit accounting */
1857 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1858 /* Whether this protection change is for NUMA hints */
1859 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1860 /* Whether this change is for write protecting */
1861 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1862 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1863 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1864 					    MM_CP_UFFD_WP_RESOLVE)
1865 
1866 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1867 			      unsigned long end, pgprot_t newprot,
1868 			      unsigned long cp_flags);
1869 extern int mprotect_fixup(struct vm_area_struct *vma,
1870 			  struct vm_area_struct **pprev, unsigned long start,
1871 			  unsigned long end, unsigned long newflags);
1872 
1873 /*
1874  * doesn't attempt to fault and will return short.
1875  */
1876 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1877 			     unsigned int gup_flags, struct page **pages);
1878 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1879 			     unsigned int gup_flags, struct page **pages);
1880 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)1881 static inline bool get_user_page_fast_only(unsigned long addr,
1882 			unsigned int gup_flags, struct page **pagep)
1883 {
1884 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1885 }
1886 /*
1887  * per-process(per-mm_struct) statistics.
1888  */
get_mm_counter(struct mm_struct * mm,int member)1889 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1890 {
1891 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1892 
1893 #ifdef SPLIT_RSS_COUNTING
1894 	/*
1895 	 * counter is updated in asynchronous manner and may go to minus.
1896 	 * But it's never be expected number for users.
1897 	 */
1898 	if (val < 0)
1899 		val = 0;
1900 #endif
1901 	return (unsigned long)val;
1902 }
1903 
1904 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1905 
add_mm_counter(struct mm_struct * mm,int member,long value)1906 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1907 {
1908 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1909 
1910 	mm_trace_rss_stat(mm, member, count);
1911 }
1912 
inc_mm_counter(struct mm_struct * mm,int member)1913 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1914 {
1915 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1916 
1917 	mm_trace_rss_stat(mm, member, count);
1918 }
1919 
dec_mm_counter(struct mm_struct * mm,int member)1920 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1921 {
1922 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1923 
1924 	mm_trace_rss_stat(mm, member, count);
1925 }
1926 
1927 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1928 static inline int mm_counter_file(struct page *page)
1929 {
1930 	if (PageSwapBacked(page))
1931 		return MM_SHMEMPAGES;
1932 	return MM_FILEPAGES;
1933 }
1934 
mm_counter(struct page * page)1935 static inline int mm_counter(struct page *page)
1936 {
1937 	if (PageAnon(page))
1938 		return MM_ANONPAGES;
1939 	return mm_counter_file(page);
1940 }
1941 
get_mm_rss(struct mm_struct * mm)1942 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1943 {
1944 	return get_mm_counter(mm, MM_FILEPAGES) +
1945 		get_mm_counter(mm, MM_ANONPAGES) +
1946 		get_mm_counter(mm, MM_SHMEMPAGES);
1947 }
1948 
get_mm_hiwater_rss(struct mm_struct * mm)1949 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1950 {
1951 	return max(mm->hiwater_rss, get_mm_rss(mm));
1952 }
1953 
get_mm_hiwater_vm(struct mm_struct * mm)1954 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1955 {
1956 	return max(mm->hiwater_vm, mm->total_vm);
1957 }
1958 
update_hiwater_rss(struct mm_struct * mm)1959 static inline void update_hiwater_rss(struct mm_struct *mm)
1960 {
1961 	unsigned long _rss = get_mm_rss(mm);
1962 
1963 	if ((mm)->hiwater_rss < _rss)
1964 		(mm)->hiwater_rss = _rss;
1965 }
1966 
update_hiwater_vm(struct mm_struct * mm)1967 static inline void update_hiwater_vm(struct mm_struct *mm)
1968 {
1969 	if (mm->hiwater_vm < mm->total_vm)
1970 		mm->hiwater_vm = mm->total_vm;
1971 }
1972 
reset_mm_hiwater_rss(struct mm_struct * mm)1973 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1974 {
1975 	mm->hiwater_rss = get_mm_rss(mm);
1976 }
1977 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1978 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1979 					 struct mm_struct *mm)
1980 {
1981 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1982 
1983 	if (*maxrss < hiwater_rss)
1984 		*maxrss = hiwater_rss;
1985 }
1986 
1987 #if defined(SPLIT_RSS_COUNTING)
1988 void sync_mm_rss(struct mm_struct *mm);
1989 #else
sync_mm_rss(struct mm_struct * mm)1990 static inline void sync_mm_rss(struct mm_struct *mm)
1991 {
1992 }
1993 #endif
1994 
1995 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)1996 static inline int pte_special(pte_t pte)
1997 {
1998 	return 0;
1999 }
2000 
pte_mkspecial(pte_t pte)2001 static inline pte_t pte_mkspecial(pte_t pte)
2002 {
2003 	return pte;
2004 }
2005 #endif
2006 
2007 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2008 static inline int pte_devmap(pte_t pte)
2009 {
2010 	return 0;
2011 }
2012 #endif
2013 
2014 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2015 
2016 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2017 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2018 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2019 				    spinlock_t **ptl)
2020 {
2021 	pte_t *ptep;
2022 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2023 	return ptep;
2024 }
2025 
2026 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2027 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2028 						unsigned long address)
2029 {
2030 	return 0;
2031 }
2032 #else
2033 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2034 #endif
2035 
2036 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2037 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2038 						unsigned long address)
2039 {
2040 	return 0;
2041 }
mm_inc_nr_puds(struct mm_struct * mm)2042 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2043 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2044 
2045 #else
2046 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2047 
mm_inc_nr_puds(struct mm_struct * mm)2048 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2049 {
2050 	if (mm_pud_folded(mm))
2051 		return;
2052 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2053 }
2054 
mm_dec_nr_puds(struct mm_struct * mm)2055 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2056 {
2057 	if (mm_pud_folded(mm))
2058 		return;
2059 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2060 }
2061 #endif
2062 
2063 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2064 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2065 						unsigned long address)
2066 {
2067 	return 0;
2068 }
2069 
mm_inc_nr_pmds(struct mm_struct * mm)2070 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2071 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2072 
2073 #else
2074 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2075 
mm_inc_nr_pmds(struct mm_struct * mm)2076 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2077 {
2078 	if (mm_pmd_folded(mm))
2079 		return;
2080 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2081 }
2082 
mm_dec_nr_pmds(struct mm_struct * mm)2083 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2084 {
2085 	if (mm_pmd_folded(mm))
2086 		return;
2087 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2088 }
2089 #endif
2090 
2091 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2092 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2093 {
2094 	atomic_long_set(&mm->pgtables_bytes, 0);
2095 }
2096 
mm_pgtables_bytes(const struct mm_struct * mm)2097 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2098 {
2099 	return atomic_long_read(&mm->pgtables_bytes);
2100 }
2101 
mm_inc_nr_ptes(struct mm_struct * mm)2102 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2103 {
2104 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2105 }
2106 
mm_dec_nr_ptes(struct mm_struct * mm)2107 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2108 {
2109 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2110 }
2111 #else
2112 
mm_pgtables_bytes_init(struct mm_struct * mm)2113 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2114 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2115 {
2116 	return 0;
2117 }
2118 
mm_inc_nr_ptes(struct mm_struct * mm)2119 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2120 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2121 #endif
2122 
2123 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2124 int __pte_alloc_kernel(pmd_t *pmd);
2125 
2126 #if defined(CONFIG_MMU)
2127 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2128 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2129 		unsigned long address)
2130 {
2131 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2132 		NULL : p4d_offset(pgd, address);
2133 }
2134 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2135 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2136 		unsigned long address)
2137 {
2138 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2139 		NULL : pud_offset(p4d, address);
2140 }
2141 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2142 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2143 {
2144 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2145 		NULL: pmd_offset(pud, address);
2146 }
2147 #endif /* CONFIG_MMU */
2148 
2149 #if USE_SPLIT_PTE_PTLOCKS
2150 #if ALLOC_SPLIT_PTLOCKS
2151 void __init ptlock_cache_init(void);
2152 extern bool ptlock_alloc(struct page *page);
2153 extern void ptlock_free(struct page *page);
2154 
ptlock_ptr(struct page * page)2155 static inline spinlock_t *ptlock_ptr(struct page *page)
2156 {
2157 	return page->ptl;
2158 }
2159 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2160 static inline void ptlock_cache_init(void)
2161 {
2162 }
2163 
ptlock_alloc(struct page * page)2164 static inline bool ptlock_alloc(struct page *page)
2165 {
2166 	return true;
2167 }
2168 
ptlock_free(struct page * page)2169 static inline void ptlock_free(struct page *page)
2170 {
2171 }
2172 
ptlock_ptr(struct page * page)2173 static inline spinlock_t *ptlock_ptr(struct page *page)
2174 {
2175 	return &page->ptl;
2176 }
2177 #endif /* ALLOC_SPLIT_PTLOCKS */
2178 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2179 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2180 {
2181 	return ptlock_ptr(pmd_page(*pmd));
2182 }
2183 
ptlock_init(struct page * page)2184 static inline bool ptlock_init(struct page *page)
2185 {
2186 	/*
2187 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2188 	 * with 0. Make sure nobody took it in use in between.
2189 	 *
2190 	 * It can happen if arch try to use slab for page table allocation:
2191 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2192 	 */
2193 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2194 	if (!ptlock_alloc(page))
2195 		return false;
2196 	spin_lock_init(ptlock_ptr(page));
2197 	return true;
2198 }
2199 
2200 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2201 /*
2202  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2203  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2204 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2205 {
2206 	return &mm->page_table_lock;
2207 }
ptlock_cache_init(void)2208 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2209 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2210 static inline void ptlock_free(struct page *page) {}
2211 #endif /* USE_SPLIT_PTE_PTLOCKS */
2212 
pgtable_init(void)2213 static inline void pgtable_init(void)
2214 {
2215 	ptlock_cache_init();
2216 	pgtable_cache_init();
2217 }
2218 
pgtable_pte_page_ctor(struct page * page)2219 static inline bool pgtable_pte_page_ctor(struct page *page)
2220 {
2221 	if (!ptlock_init(page))
2222 		return false;
2223 	__SetPageTable(page);
2224 	inc_zone_page_state(page, NR_PAGETABLE);
2225 	return true;
2226 }
2227 
pgtable_pte_page_dtor(struct page * page)2228 static inline void pgtable_pte_page_dtor(struct page *page)
2229 {
2230 	ptlock_free(page);
2231 	__ClearPageTable(page);
2232 	dec_zone_page_state(page, NR_PAGETABLE);
2233 }
2234 
2235 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2236 ({							\
2237 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2238 	pte_t *__pte = pte_offset_map(pmd, address);	\
2239 	*(ptlp) = __ptl;				\
2240 	spin_lock(__ptl);				\
2241 	__pte;						\
2242 })
2243 
2244 #define pte_unmap_unlock(pte, ptl)	do {		\
2245 	spin_unlock(ptl);				\
2246 	pte_unmap(pte);					\
2247 } while (0)
2248 
2249 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2250 
2251 #define pte_alloc_map(mm, pmd, address)			\
2252 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2253 
2254 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2255 	(pte_alloc(mm, pmd) ?			\
2256 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2257 
2258 #define pte_alloc_kernel(pmd, address)			\
2259 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2260 		NULL: pte_offset_kernel(pmd, address))
2261 
2262 #if USE_SPLIT_PMD_PTLOCKS
2263 
pmd_to_page(pmd_t * pmd)2264 static struct page *pmd_to_page(pmd_t *pmd)
2265 {
2266 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2267 	return virt_to_page((void *)((unsigned long) pmd & mask));
2268 }
2269 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2270 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2271 {
2272 	return ptlock_ptr(pmd_to_page(pmd));
2273 }
2274 
pmd_ptlock_init(struct page * page)2275 static inline bool pmd_ptlock_init(struct page *page)
2276 {
2277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2278 	page->pmd_huge_pte = NULL;
2279 #endif
2280 	return ptlock_init(page);
2281 }
2282 
pmd_ptlock_free(struct page * page)2283 static inline void pmd_ptlock_free(struct page *page)
2284 {
2285 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2286 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2287 #endif
2288 	ptlock_free(page);
2289 }
2290 
2291 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2292 
2293 #else
2294 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2295 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2296 {
2297 	return &mm->page_table_lock;
2298 }
2299 
pmd_ptlock_init(struct page * page)2300 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2301 static inline void pmd_ptlock_free(struct page *page) {}
2302 
2303 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2304 
2305 #endif
2306 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2307 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2308 {
2309 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2310 	spin_lock(ptl);
2311 	return ptl;
2312 }
2313 
pgtable_pmd_page_ctor(struct page * page)2314 static inline bool pgtable_pmd_page_ctor(struct page *page)
2315 {
2316 	if (!pmd_ptlock_init(page))
2317 		return false;
2318 	__SetPageTable(page);
2319 	inc_zone_page_state(page, NR_PAGETABLE);
2320 	return true;
2321 }
2322 
pgtable_pmd_page_dtor(struct page * page)2323 static inline void pgtable_pmd_page_dtor(struct page *page)
2324 {
2325 	pmd_ptlock_free(page);
2326 	__ClearPageTable(page);
2327 	dec_zone_page_state(page, NR_PAGETABLE);
2328 }
2329 
2330 /*
2331  * No scalability reason to split PUD locks yet, but follow the same pattern
2332  * as the PMD locks to make it easier if we decide to.  The VM should not be
2333  * considered ready to switch to split PUD locks yet; there may be places
2334  * which need to be converted from page_table_lock.
2335  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2336 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2337 {
2338 	return &mm->page_table_lock;
2339 }
2340 
pud_lock(struct mm_struct * mm,pud_t * pud)2341 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2342 {
2343 	spinlock_t *ptl = pud_lockptr(mm, pud);
2344 
2345 	spin_lock(ptl);
2346 	return ptl;
2347 }
2348 
2349 extern void __init pagecache_init(void);
2350 extern void __init free_area_init_memoryless_node(int nid);
2351 extern void free_initmem(void);
2352 
2353 /*
2354  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2355  * into the buddy system. The freed pages will be poisoned with pattern
2356  * "poison" if it's within range [0, UCHAR_MAX].
2357  * Return pages freed into the buddy system.
2358  */
2359 extern unsigned long free_reserved_area(void *start, void *end,
2360 					int poison, const char *s);
2361 
2362 #ifdef	CONFIG_HIGHMEM
2363 /*
2364  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2365  * and totalram_pages.
2366  */
2367 extern void free_highmem_page(struct page *page);
2368 #endif
2369 
2370 extern void adjust_managed_page_count(struct page *page, long count);
2371 extern void mem_init_print_info(const char *str);
2372 
2373 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2374 
2375 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2376 static inline void __free_reserved_page(struct page *page)
2377 {
2378 	ClearPageReserved(page);
2379 	init_page_count(page);
2380 	__free_page(page);
2381 }
2382 
free_reserved_page(struct page * page)2383 static inline void free_reserved_page(struct page *page)
2384 {
2385 	__free_reserved_page(page);
2386 	adjust_managed_page_count(page, 1);
2387 }
2388 
mark_page_reserved(struct page * page)2389 static inline void mark_page_reserved(struct page *page)
2390 {
2391 	SetPageReserved(page);
2392 	adjust_managed_page_count(page, -1);
2393 }
2394 
2395 /*
2396  * Default method to free all the __init memory into the buddy system.
2397  * The freed pages will be poisoned with pattern "poison" if it's within
2398  * range [0, UCHAR_MAX].
2399  * Return pages freed into the buddy system.
2400  */
free_initmem_default(int poison)2401 static inline unsigned long free_initmem_default(int poison)
2402 {
2403 	extern char __init_begin[], __init_end[];
2404 
2405 	return free_reserved_area(&__init_begin, &__init_end,
2406 				  poison, "unused kernel");
2407 }
2408 
get_num_physpages(void)2409 static inline unsigned long get_num_physpages(void)
2410 {
2411 	int nid;
2412 	unsigned long phys_pages = 0;
2413 
2414 	for_each_online_node(nid)
2415 		phys_pages += node_present_pages(nid);
2416 
2417 	return phys_pages;
2418 }
2419 
2420 /*
2421  * Using memblock node mappings, an architecture may initialise its
2422  * zones, allocate the backing mem_map and account for memory holes in an
2423  * architecture independent manner.
2424  *
2425  * An architecture is expected to register range of page frames backed by
2426  * physical memory with memblock_add[_node]() before calling
2427  * free_area_init() passing in the PFN each zone ends at. At a basic
2428  * usage, an architecture is expected to do something like
2429  *
2430  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2431  * 							 max_highmem_pfn};
2432  * for_each_valid_physical_page_range()
2433  * 	memblock_add_node(base, size, nid)
2434  * free_area_init(max_zone_pfns);
2435  */
2436 void free_area_init(unsigned long *max_zone_pfn);
2437 unsigned long node_map_pfn_alignment(void);
2438 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2439 						unsigned long end_pfn);
2440 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2441 						unsigned long end_pfn);
2442 extern void get_pfn_range_for_nid(unsigned int nid,
2443 			unsigned long *start_pfn, unsigned long *end_pfn);
2444 extern unsigned long find_min_pfn_with_active_regions(void);
2445 
2446 #ifndef CONFIG_NEED_MULTIPLE_NODES
early_pfn_to_nid(unsigned long pfn)2447 static inline int early_pfn_to_nid(unsigned long pfn)
2448 {
2449 	return 0;
2450 }
2451 #else
2452 /* please see mm/page_alloc.c */
2453 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2454 /* there is a per-arch backend function. */
2455 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2456 					struct mminit_pfnnid_cache *state);
2457 #endif
2458 
2459 extern void set_dma_reserve(unsigned long new_dma_reserve);
2460 extern void memmap_init_zone(unsigned long, int, unsigned long,
2461 		unsigned long, unsigned long, enum meminit_context,
2462 		struct vmem_altmap *, int migratetype);
2463 extern void setup_per_zone_wmarks(void);
2464 extern int __meminit init_per_zone_wmark_min(void);
2465 extern void mem_init(void);
2466 extern void __init mmap_init(void);
2467 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2468 extern long si_mem_available(void);
2469 extern void si_meminfo(struct sysinfo * val);
2470 extern void si_meminfo_node(struct sysinfo *val, int nid);
2471 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2472 extern unsigned long arch_reserved_kernel_pages(void);
2473 #endif
2474 
2475 extern __printf(3, 4)
2476 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2477 
2478 extern void setup_per_cpu_pageset(void);
2479 
2480 /* page_alloc.c */
2481 extern int min_free_kbytes;
2482 extern int watermark_boost_factor;
2483 extern int watermark_scale_factor;
2484 extern bool arch_has_descending_max_zone_pfns(void);
2485 
2486 /* nommu.c */
2487 extern atomic_long_t mmap_pages_allocated;
2488 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2489 
2490 /* interval_tree.c */
2491 void vma_interval_tree_insert(struct vm_area_struct *node,
2492 			      struct rb_root_cached *root);
2493 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2494 				    struct vm_area_struct *prev,
2495 				    struct rb_root_cached *root);
2496 void vma_interval_tree_remove(struct vm_area_struct *node,
2497 			      struct rb_root_cached *root);
2498 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2499 				unsigned long start, unsigned long last);
2500 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2501 				unsigned long start, unsigned long last);
2502 
2503 #define vma_interval_tree_foreach(vma, root, start, last)		\
2504 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2505 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2506 
2507 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2508 				   struct rb_root_cached *root);
2509 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2510 				   struct rb_root_cached *root);
2511 struct anon_vma_chain *
2512 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2513 				  unsigned long start, unsigned long last);
2514 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2515 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2516 #ifdef CONFIG_DEBUG_VM_RB
2517 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2518 #endif
2519 
2520 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2521 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2522 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2523 
2524 /* mmap.c */
2525 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2526 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2527 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2528 	struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2529 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2530 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2531 {
2532 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2533 }
2534 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2535 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2536 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2537 	struct mempolicy *, struct vm_userfaultfd_ctx, const char *);
2538 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2539 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2540 	unsigned long addr, int new_below);
2541 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2542 	unsigned long addr, int new_below);
2543 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2544 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2545 	struct rb_node **, struct rb_node *);
2546 extern void unlink_file_vma(struct vm_area_struct *);
2547 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2548 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2549 	bool *need_rmap_locks);
2550 extern void exit_mmap(struct mm_struct *);
2551 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2552 static inline int check_data_rlimit(unsigned long rlim,
2553 				    unsigned long new,
2554 				    unsigned long start,
2555 				    unsigned long end_data,
2556 				    unsigned long start_data)
2557 {
2558 	if (rlim < RLIM_INFINITY) {
2559 		if (((new - start) + (end_data - start_data)) > rlim)
2560 			return -ENOSPC;
2561 	}
2562 
2563 	return 0;
2564 }
2565 
2566 extern int mm_take_all_locks(struct mm_struct *mm);
2567 extern void mm_drop_all_locks(struct mm_struct *mm);
2568 
2569 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2570 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2571 extern struct file *get_task_exe_file(struct task_struct *task);
2572 
2573 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2574 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2575 
2576 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2577 				   const struct vm_special_mapping *sm);
2578 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2579 				   unsigned long addr, unsigned long len,
2580 				   unsigned long flags,
2581 				   const struct vm_special_mapping *spec);
2582 /* This is an obsolete alternative to _install_special_mapping. */
2583 extern int install_special_mapping(struct mm_struct *mm,
2584 				   unsigned long addr, unsigned long len,
2585 				   unsigned long flags, struct page **pages);
2586 
2587 unsigned long randomize_stack_top(unsigned long stack_top);
2588 
2589 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2590 
2591 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2592 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2593 	struct list_head *uf);
2594 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2595 	unsigned long len, unsigned long prot, unsigned long flags,
2596 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2597 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2598 		       struct list_head *uf, bool downgrade);
2599 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2600 		     struct list_head *uf);
2601 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2602 
2603 #ifdef CONFIG_MMU
2604 extern int __mm_populate(unsigned long addr, unsigned long len,
2605 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2606 static inline void mm_populate(unsigned long addr, unsigned long len)
2607 {
2608 	/* Ignore errors */
2609 	(void) __mm_populate(addr, len, 1);
2610 }
2611 #else
mm_populate(unsigned long addr,unsigned long len)2612 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2613 #endif
2614 
2615 /* These take the mm semaphore themselves */
2616 extern int __must_check vm_brk(unsigned long, unsigned long);
2617 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2618 extern int vm_munmap(unsigned long, size_t);
2619 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2620         unsigned long, unsigned long,
2621         unsigned long, unsigned long);
2622 
2623 struct vm_unmapped_area_info {
2624 #define VM_UNMAPPED_AREA_TOPDOWN 1
2625 	unsigned long flags;
2626 	unsigned long length;
2627 	unsigned long low_limit;
2628 	unsigned long high_limit;
2629 	unsigned long align_mask;
2630 	unsigned long align_offset;
2631 };
2632 
2633 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2634 
2635 /* truncate.c */
2636 extern void truncate_inode_pages(struct address_space *, loff_t);
2637 extern void truncate_inode_pages_range(struct address_space *,
2638 				       loff_t lstart, loff_t lend);
2639 extern void truncate_inode_pages_final(struct address_space *);
2640 
2641 /* generic vm_area_ops exported for stackable file systems */
2642 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2643 extern void filemap_map_pages(struct vm_fault *vmf,
2644 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2645 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2646 
2647 /* mm/page-writeback.c */
2648 int __must_check write_one_page(struct page *page);
2649 void task_dirty_inc(struct task_struct *tsk);
2650 
2651 extern unsigned long stack_guard_gap;
2652 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2653 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2654 
2655 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2656 extern int expand_downwards(struct vm_area_struct *vma,
2657 		unsigned long address);
2658 #if VM_GROWSUP
2659 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2660 #else
2661   #define expand_upwards(vma, address) (0)
2662 #endif
2663 
2664 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2665 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2666 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2667 					     struct vm_area_struct **pprev);
2668 
2669 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2670    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2671 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2672 {
2673 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2674 
2675 	if (vma && end_addr <= vma->vm_start)
2676 		vma = NULL;
2677 	return vma;
2678 }
2679 
vm_start_gap(struct vm_area_struct * vma)2680 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2681 {
2682 	unsigned long vm_start = vma->vm_start;
2683 
2684 	if (vma->vm_flags & VM_GROWSDOWN) {
2685 		vm_start -= stack_guard_gap;
2686 		if (vm_start > vma->vm_start)
2687 			vm_start = 0;
2688 	}
2689 	return vm_start;
2690 }
2691 
vm_end_gap(struct vm_area_struct * vma)2692 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2693 {
2694 	unsigned long vm_end = vma->vm_end;
2695 
2696 	if (vma->vm_flags & VM_GROWSUP) {
2697 		vm_end += stack_guard_gap;
2698 		if (vm_end < vma->vm_end)
2699 			vm_end = -PAGE_SIZE;
2700 	}
2701 	return vm_end;
2702 }
2703 
vma_pages(struct vm_area_struct * vma)2704 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2705 {
2706 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2707 }
2708 
2709 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2710 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2711 				unsigned long vm_start, unsigned long vm_end)
2712 {
2713 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2714 
2715 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2716 		vma = NULL;
2717 
2718 	return vma;
2719 }
2720 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2721 static inline bool range_in_vma(struct vm_area_struct *vma,
2722 				unsigned long start, unsigned long end)
2723 {
2724 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2725 }
2726 
2727 #ifdef CONFIG_MMU
2728 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2729 void vma_set_page_prot(struct vm_area_struct *vma);
2730 #else
vm_get_page_prot(unsigned long vm_flags)2731 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2732 {
2733 	return __pgprot(0);
2734 }
vma_set_page_prot(struct vm_area_struct * vma)2735 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2736 {
2737 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2738 }
2739 #endif
2740 
2741 #ifdef CONFIG_NUMA_BALANCING
2742 unsigned long change_prot_numa(struct vm_area_struct *vma,
2743 			unsigned long start, unsigned long end);
2744 #endif
2745 
2746 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2747 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2748 			unsigned long pfn, unsigned long size, pgprot_t);
2749 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2750 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2751 			struct page **pages, unsigned long *num);
2752 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2753 				unsigned long num);
2754 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2755 				unsigned long num);
2756 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2757 			unsigned long pfn);
2758 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2759 			unsigned long pfn, pgprot_t pgprot);
2760 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2761 			pfn_t pfn);
2762 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2763 			pfn_t pfn, pgprot_t pgprot);
2764 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2765 		unsigned long addr, pfn_t pfn);
2766 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2767 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2768 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2769 				unsigned long addr, struct page *page)
2770 {
2771 	int err = vm_insert_page(vma, addr, page);
2772 
2773 	if (err == -ENOMEM)
2774 		return VM_FAULT_OOM;
2775 	if (err < 0 && err != -EBUSY)
2776 		return VM_FAULT_SIGBUS;
2777 
2778 	return VM_FAULT_NOPAGE;
2779 }
2780 
2781 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2782 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2783 				     unsigned long addr, unsigned long pfn,
2784 				     unsigned long size, pgprot_t prot)
2785 {
2786 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2787 }
2788 #endif
2789 
vmf_error(int err)2790 static inline vm_fault_t vmf_error(int err)
2791 {
2792 	if (err == -ENOMEM)
2793 		return VM_FAULT_OOM;
2794 	return VM_FAULT_SIGBUS;
2795 }
2796 
2797 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2798 			 unsigned int foll_flags);
2799 
2800 #define FOLL_WRITE	0x01	/* check pte is writable */
2801 #define FOLL_TOUCH	0x02	/* mark page accessed */
2802 #define FOLL_GET	0x04	/* do get_page on page */
2803 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2804 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2805 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2806 				 * and return without waiting upon it */
2807 #define FOLL_POPULATE	0x40	/* fault in page */
2808 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2809 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2810 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2811 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2812 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2813 #define FOLL_MLOCK	0x1000	/* lock present pages */
2814 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2815 #define FOLL_COW	0x4000	/* internal GUP flag */
2816 #define FOLL_ANON	0x8000	/* don't do file mappings */
2817 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2818 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2819 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2820 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2821 
2822 /*
2823  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2824  * other. Here is what they mean, and how to use them:
2825  *
2826  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2827  * period _often_ under userspace control.  This is in contrast to
2828  * iov_iter_get_pages(), whose usages are transient.
2829  *
2830  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2831  * lifetime enforced by the filesystem and we need guarantees that longterm
2832  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2833  * the filesystem.  Ideas for this coordination include revoking the longterm
2834  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2835  * added after the problem with filesystems was found FS DAX VMAs are
2836  * specifically failed.  Filesystem pages are still subject to bugs and use of
2837  * FOLL_LONGTERM should be avoided on those pages.
2838  *
2839  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2840  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2841  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2842  * is due to an incompatibility with the FS DAX check and
2843  * FAULT_FLAG_ALLOW_RETRY.
2844  *
2845  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2846  * that region.  And so, CMA attempts to migrate the page before pinning, when
2847  * FOLL_LONGTERM is specified.
2848  *
2849  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2850  * but an additional pin counting system) will be invoked. This is intended for
2851  * anything that gets a page reference and then touches page data (for example,
2852  * Direct IO). This lets the filesystem know that some non-file-system entity is
2853  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2854  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2855  * a call to unpin_user_page().
2856  *
2857  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2858  * and separate refcounting mechanisms, however, and that means that each has
2859  * its own acquire and release mechanisms:
2860  *
2861  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2862  *
2863  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2864  *
2865  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2866  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2867  * calls applied to them, and that's perfectly OK. This is a constraint on the
2868  * callers, not on the pages.)
2869  *
2870  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2871  * directly by the caller. That's in order to help avoid mismatches when
2872  * releasing pages: get_user_pages*() pages must be released via put_page(),
2873  * while pin_user_pages*() pages must be released via unpin_user_page().
2874  *
2875  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2876  */
2877 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2878 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2879 {
2880 	if (vm_fault & VM_FAULT_OOM)
2881 		return -ENOMEM;
2882 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2883 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2884 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2885 		return -EFAULT;
2886 	return 0;
2887 }
2888 
2889 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2890 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2891 			       unsigned long size, pte_fn_t fn, void *data);
2892 extern int apply_to_existing_page_range(struct mm_struct *mm,
2893 				   unsigned long address, unsigned long size,
2894 				   pte_fn_t fn, void *data);
2895 
2896 #ifdef CONFIG_PAGE_POISONING
2897 extern bool page_poisoning_enabled(void);
2898 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2899 #else
page_poisoning_enabled(void)2900 static inline bool page_poisoning_enabled(void) { return false; }
kernel_poison_pages(struct page * page,int numpages,int enable)2901 static inline void kernel_poison_pages(struct page *page, int numpages,
2902 					int enable) { }
2903 #endif
2904 
2905 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2906 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2907 #else
2908 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2909 #endif
want_init_on_alloc(gfp_t flags)2910 static inline bool want_init_on_alloc(gfp_t flags)
2911 {
2912 	if (static_branch_unlikely(&init_on_alloc) &&
2913 	    !page_poisoning_enabled())
2914 		return true;
2915 	return flags & __GFP_ZERO;
2916 }
2917 
2918 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2919 DECLARE_STATIC_KEY_TRUE(init_on_free);
2920 #else
2921 DECLARE_STATIC_KEY_FALSE(init_on_free);
2922 #endif
want_init_on_free(void)2923 static inline bool want_init_on_free(void)
2924 {
2925 	return static_branch_unlikely(&init_on_free) &&
2926 	       !page_poisoning_enabled();
2927 }
2928 
2929 #ifdef CONFIG_DEBUG_PAGEALLOC
2930 extern void init_debug_pagealloc(void);
2931 #else
init_debug_pagealloc(void)2932 static inline void init_debug_pagealloc(void) {}
2933 #endif
2934 extern bool _debug_pagealloc_enabled_early;
2935 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2936 
debug_pagealloc_enabled(void)2937 static inline bool debug_pagealloc_enabled(void)
2938 {
2939 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2940 		_debug_pagealloc_enabled_early;
2941 }
2942 
2943 /*
2944  * For use in fast paths after init_debug_pagealloc() has run, or when a
2945  * false negative result is not harmful when called too early.
2946  */
debug_pagealloc_enabled_static(void)2947 static inline bool debug_pagealloc_enabled_static(void)
2948 {
2949 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2950 		return false;
2951 
2952 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2953 }
2954 
2955 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2956 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2957 
2958 /*
2959  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2960  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2961  */
2962 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2963 kernel_map_pages(struct page *page, int numpages, int enable)
2964 {
2965 	__kernel_map_pages(page, numpages, enable);
2966 }
2967 #ifdef CONFIG_HIBERNATION
2968 extern bool kernel_page_present(struct page *page);
2969 #endif	/* CONFIG_HIBERNATION */
2970 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2971 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2972 kernel_map_pages(struct page *page, int numpages, int enable) {}
2973 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2974 static inline bool kernel_page_present(struct page *page) { return true; }
2975 #endif	/* CONFIG_HIBERNATION */
2976 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2977 
2978 #ifdef __HAVE_ARCH_GATE_AREA
2979 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2980 extern int in_gate_area_no_mm(unsigned long addr);
2981 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2982 #else
get_gate_vma(struct mm_struct * mm)2983 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2984 {
2985 	return NULL;
2986 }
in_gate_area_no_mm(unsigned long addr)2987 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2988 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2989 {
2990 	return 0;
2991 }
2992 #endif	/* __HAVE_ARCH_GATE_AREA */
2993 
2994 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2995 
2996 #ifdef CONFIG_SYSCTL
2997 extern int sysctl_drop_caches;
2998 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2999 		loff_t *);
3000 #endif
3001 
3002 void drop_slab(void);
3003 void drop_slab_node(int nid);
3004 
3005 #ifndef CONFIG_MMU
3006 #define randomize_va_space 0
3007 #else
3008 extern int randomize_va_space;
3009 #endif
3010 
3011 const char * arch_vma_name(struct vm_area_struct *vma);
3012 #ifdef CONFIG_MMU
3013 void print_vma_addr(char *prefix, unsigned long rip);
3014 #else
print_vma_addr(char * prefix,unsigned long rip)3015 static inline void print_vma_addr(char *prefix, unsigned long rip)
3016 {
3017 }
3018 #endif
3019 
3020 void *sparse_buffer_alloc(unsigned long size);
3021 struct page * __populate_section_memmap(unsigned long pfn,
3022 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3023 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3024 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3025 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3026 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3027 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3028 			    struct vmem_altmap *altmap);
3029 void *vmemmap_alloc_block(unsigned long size, int node);
3030 struct vmem_altmap;
3031 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3032 			      struct vmem_altmap *altmap);
3033 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3034 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3035 			       int node, struct vmem_altmap *altmap);
3036 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3037 		struct vmem_altmap *altmap);
3038 void vmemmap_populate_print_last(void);
3039 #ifdef CONFIG_MEMORY_HOTPLUG
3040 void vmemmap_free(unsigned long start, unsigned long end,
3041 		struct vmem_altmap *altmap);
3042 #endif
3043 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3044 				  unsigned long nr_pages);
3045 
3046 enum mf_flags {
3047 	MF_COUNT_INCREASED = 1 << 0,
3048 	MF_ACTION_REQUIRED = 1 << 1,
3049 	MF_MUST_KILL = 1 << 2,
3050 	MF_SOFT_OFFLINE = 1 << 3,
3051 };
3052 extern int memory_failure(unsigned long pfn, int flags);
3053 extern void memory_failure_queue(unsigned long pfn, int flags);
3054 extern void memory_failure_queue_kick(int cpu);
3055 extern int unpoison_memory(unsigned long pfn);
3056 extern int sysctl_memory_failure_early_kill;
3057 extern int sysctl_memory_failure_recovery;
3058 extern void shake_page(struct page *p, int access);
3059 extern atomic_long_t num_poisoned_pages __read_mostly;
3060 extern int soft_offline_page(unsigned long pfn, int flags);
3061 
3062 
3063 /*
3064  * Error handlers for various types of pages.
3065  */
3066 enum mf_result {
3067 	MF_IGNORED,	/* Error: cannot be handled */
3068 	MF_FAILED,	/* Error: handling failed */
3069 	MF_DELAYED,	/* Will be handled later */
3070 	MF_RECOVERED,	/* Successfully recovered */
3071 };
3072 
3073 enum mf_action_page_type {
3074 	MF_MSG_KERNEL,
3075 	MF_MSG_KERNEL_HIGH_ORDER,
3076 	MF_MSG_SLAB,
3077 	MF_MSG_DIFFERENT_COMPOUND,
3078 	MF_MSG_POISONED_HUGE,
3079 	MF_MSG_HUGE,
3080 	MF_MSG_FREE_HUGE,
3081 	MF_MSG_NON_PMD_HUGE,
3082 	MF_MSG_UNMAP_FAILED,
3083 	MF_MSG_DIRTY_SWAPCACHE,
3084 	MF_MSG_CLEAN_SWAPCACHE,
3085 	MF_MSG_DIRTY_MLOCKED_LRU,
3086 	MF_MSG_CLEAN_MLOCKED_LRU,
3087 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3088 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3089 	MF_MSG_DIRTY_LRU,
3090 	MF_MSG_CLEAN_LRU,
3091 	MF_MSG_TRUNCATED_LRU,
3092 	MF_MSG_BUDDY,
3093 	MF_MSG_BUDDY_2ND,
3094 	MF_MSG_DAX,
3095 	MF_MSG_UNSPLIT_THP,
3096 	MF_MSG_UNKNOWN,
3097 };
3098 
3099 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3100 extern void clear_huge_page(struct page *page,
3101 			    unsigned long addr_hint,
3102 			    unsigned int pages_per_huge_page);
3103 extern void copy_user_huge_page(struct page *dst, struct page *src,
3104 				unsigned long addr_hint,
3105 				struct vm_area_struct *vma,
3106 				unsigned int pages_per_huge_page);
3107 extern long copy_huge_page_from_user(struct page *dst_page,
3108 				const void __user *usr_src,
3109 				unsigned int pages_per_huge_page,
3110 				bool allow_pagefault);
3111 
3112 /**
3113  * vma_is_special_huge - Are transhuge page-table entries considered special?
3114  * @vma: Pointer to the struct vm_area_struct to consider
3115  *
3116  * Whether transhuge page-table entries are considered "special" following
3117  * the definition in vm_normal_page().
3118  *
3119  * Return: true if transhuge page-table entries should be considered special,
3120  * false otherwise.
3121  */
vma_is_special_huge(const struct vm_area_struct * vma)3122 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3123 {
3124 	return vma_is_dax(vma) || (vma->vm_file &&
3125 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3126 }
3127 
3128 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3129 
3130 #ifdef CONFIG_DEBUG_PAGEALLOC
3131 extern unsigned int _debug_guardpage_minorder;
3132 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3133 
debug_guardpage_minorder(void)3134 static inline unsigned int debug_guardpage_minorder(void)
3135 {
3136 	return _debug_guardpage_minorder;
3137 }
3138 
debug_guardpage_enabled(void)3139 static inline bool debug_guardpage_enabled(void)
3140 {
3141 	return static_branch_unlikely(&_debug_guardpage_enabled);
3142 }
3143 
page_is_guard(struct page * page)3144 static inline bool page_is_guard(struct page *page)
3145 {
3146 	if (!debug_guardpage_enabled())
3147 		return false;
3148 
3149 	return PageGuard(page);
3150 }
3151 #else
debug_guardpage_minorder(void)3152 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3153 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3154 static inline bool page_is_guard(struct page *page) { return false; }
3155 #endif /* CONFIG_DEBUG_PAGEALLOC */
3156 
3157 #if MAX_NUMNODES > 1
3158 void __init setup_nr_node_ids(void);
3159 #else
setup_nr_node_ids(void)3160 static inline void setup_nr_node_ids(void) {}
3161 #endif
3162 
3163 extern int memcmp_pages(struct page *page1, struct page *page2);
3164 
pages_identical(struct page * page1,struct page * page2)3165 static inline int pages_identical(struct page *page1, struct page *page2)
3166 {
3167 	return !memcmp_pages(page1, page2);
3168 }
3169 
3170 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3171 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3172 						pgoff_t first_index, pgoff_t nr,
3173 						pgoff_t bitmap_pgoff,
3174 						unsigned long *bitmap,
3175 						pgoff_t *start,
3176 						pgoff_t *end);
3177 
3178 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3179 				      pgoff_t first_index, pgoff_t nr);
3180 #endif
3181 
3182 extern int sysctl_nr_trim_pages;
3183 
3184 /**
3185  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3186  * @seals: the seals to check
3187  * @vma: the vma to operate on
3188  *
3189  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3190  * the vma flags.  Return 0 if check pass, or <0 for errors.
3191  */
seal_check_future_write(int seals,struct vm_area_struct * vma)3192 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3193 {
3194 	if (seals & F_SEAL_FUTURE_WRITE) {
3195 		/*
3196 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3197 		 * "future write" seal active.
3198 		 */
3199 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3200 			return -EPERM;
3201 
3202 		/*
3203 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3204 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3205 		 * revert protections on such mappings. Do this only for shared
3206 		 * mappings. For private mappings, don't need to mask
3207 		 * VM_MAYWRITE as we still want them to be COW-writable.
3208 		 */
3209 		if (vma->vm_flags & VM_SHARED)
3210 			vma->vm_flags &= ~(VM_MAYWRITE);
3211 	}
3212 
3213 	return 0;
3214 }
3215 
3216 #ifdef CONFIG_ANON_VMA_NAME
3217 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3218 			  unsigned long len_in, const char *name);
3219 #else
3220 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,const char * name)3221 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3222 		      unsigned long len_in, const char *name) {
3223 	return 0;
3224 }
3225 #endif
3226 
3227 #endif /* __KERNEL__ */
3228 #endif /* _LINUX_MM_H */
3229