• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
rps_lock(struct softnet_data * sd)221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
rps_unlock(struct softnet_data * sd)228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
netdev_name_node_alloc(struct net_device * dev,const char * name)235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
netdev_name_node_free(struct netdev_name_node * name_node)261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
netdev_name_node_del(struct netdev_name_node * name_node)273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
netdev_name_node_lookup(struct net * net,const char * name)278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
netdev_name_node_lookup_rcu(struct net * net,const char * name)290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
netdev_name_node_alt_create(struct net_device * dev,const char * name)302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
netdev_name_node_alt_flush(struct net_device * dev)349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
list_netdevice(struct net_device * dev)358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
unlist_netdevice(struct net_device * dev)377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
netdev_lock_pos(unsigned short dev_type)447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
netdev_set_addr_lockdep_class(struct net_device * dev)468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
netdev_set_addr_lockdep_class(struct net_device * dev)483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
ptype_head(const struct packet_type * pt)511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
dev_add_pack(struct packet_type * pt)533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
__dev_remove_pack(struct packet_type * pt)556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
dev_remove_pack(struct packet_type * pt)588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
dev_add_offload(struct packet_offload * po)609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
__dev_remove_offload(struct packet_offload * po)636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
dev_remove_offload(struct packet_offload * po)667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
netdev_boot_setup_add(char * name,struct ifmap * map)693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
netdev_boot_setup_check(struct net_device * dev)720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
netdev_boot_base(const char * prefix,int unit)750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
netdev_boot_setup(char * str)774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
dev_get_iflink(const struct net_device * dev)814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
__dev_get_by_name(struct net * net,const char * name)861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
dev_get_by_name_rcu(struct net * net,const char * name)882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
dev_get_by_name(struct net * net,const char * name)903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
__dev_get_by_index(struct net * net,int ifindex)928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
dev_get_by_index_rcu(struct net * net,int ifindex)952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
dev_get_by_napi_id(unsigned int napi_id)1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
netdev_get_name(struct net * net,char * name,int ifindex)1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev;
1075 
1076 	ASSERT_RTNL();
1077 	for_each_netdev(net, dev)
1078 		if (dev->type == type)
1079 			return dev;
1080 
1081 	return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 	struct net_device *dev, *ret = NULL;
1088 
1089 	rcu_read_lock();
1090 	for_each_netdev_rcu(net, dev)
1091 		if (dev->type == type) {
1092 			dev_hold(dev);
1093 			ret = dev;
1094 			break;
1095 		}
1096 	rcu_read_unlock();
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100 
1101 /**
1102  *	__dev_get_by_flags - find any device with given flags
1103  *	@net: the applicable net namespace
1104  *	@if_flags: IFF_* values
1105  *	@mask: bitmask of bits in if_flags to check
1106  *
1107  *	Search for any interface with the given flags. Returns NULL if a device
1108  *	is not found or a pointer to the device. Must be called inside
1109  *	rtnl_lock(), and result refcount is unchanged.
1110  */
1111 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 				      unsigned short mask)
1114 {
1115 	struct net_device *dev, *ret;
1116 
1117 	ASSERT_RTNL();
1118 
1119 	ret = NULL;
1120 	for_each_netdev(net, dev) {
1121 		if (((dev->flags ^ if_flags) & mask) == 0) {
1122 			ret = dev;
1123 			break;
1124 		}
1125 	}
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129 
1130 /**
1131  *	dev_valid_name - check if name is okay for network device
1132  *	@name: name string
1133  *
1134  *	Network device names need to be valid file names to
1135  *	allow sysfs to work.  We also disallow any kind of
1136  *	whitespace.
1137  */
dev_valid_name(const char * name)1138 bool dev_valid_name(const char *name)
1139 {
1140 	if (*name == '\0')
1141 		return false;
1142 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 		return false;
1144 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 		return false;
1146 
1147 	while (*name) {
1148 		if (*name == '/' || *name == ':' || isspace(*name))
1149 			return false;
1150 		name++;
1151 	}
1152 	return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155 
1156 /**
1157  *	__dev_alloc_name - allocate a name for a device
1158  *	@net: network namespace to allocate the device name in
1159  *	@name: name format string
1160  *	@buf:  scratch buffer and result name string
1161  *
1162  *	Passed a format string - eg "lt%d" it will try and find a suitable
1163  *	id. It scans list of devices to build up a free map, then chooses
1164  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1165  *	while allocating the name and adding the device in order to avoid
1166  *	duplicates.
1167  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168  *	Returns the number of the unit assigned or a negative errno code.
1169  */
1170 
__dev_alloc_name(struct net * net,const char * name,char * buf)1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 	int i = 0;
1174 	const char *p;
1175 	const int max_netdevices = 8*PAGE_SIZE;
1176 	unsigned long *inuse;
1177 	struct net_device *d;
1178 
1179 	if (!dev_valid_name(name))
1180 		return -EINVAL;
1181 
1182 	p = strchr(name, '%');
1183 	if (p) {
1184 		/*
1185 		 * Verify the string as this thing may have come from
1186 		 * the user.  There must be either one "%d" and no other "%"
1187 		 * characters.
1188 		 */
1189 		if (p[1] != 'd' || strchr(p + 2, '%'))
1190 			return -EINVAL;
1191 
1192 		/* Use one page as a bit array of possible slots */
1193 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 		if (!inuse)
1195 			return -ENOMEM;
1196 
1197 		for_each_netdev(net, d) {
1198 			struct netdev_name_node *name_node;
1199 			list_for_each_entry(name_node, &d->name_node->list, list) {
1200 				if (!sscanf(name_node->name, name, &i))
1201 					continue;
1202 				if (i < 0 || i >= max_netdevices)
1203 					continue;
1204 
1205 				/*  avoid cases where sscanf is not exact inverse of printf */
1206 				snprintf(buf, IFNAMSIZ, name, i);
1207 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1208 					set_bit(i, inuse);
1209 			}
1210 			if (!sscanf(d->name, name, &i))
1211 				continue;
1212 			if (i < 0 || i >= max_netdevices)
1213 				continue;
1214 
1215 			/*  avoid cases where sscanf is not exact inverse of printf */
1216 			snprintf(buf, IFNAMSIZ, name, i);
1217 			if (!strncmp(buf, d->name, IFNAMSIZ))
1218 				set_bit(i, inuse);
1219 		}
1220 
1221 		i = find_first_zero_bit(inuse, max_netdevices);
1222 		free_page((unsigned long) inuse);
1223 	}
1224 
1225 	snprintf(buf, IFNAMSIZ, name, i);
1226 	if (!__dev_get_by_name(net, buf))
1227 		return i;
1228 
1229 	/* It is possible to run out of possible slots
1230 	 * when the name is long and there isn't enough space left
1231 	 * for the digits, or if all bits are used.
1232 	 */
1233 	return -ENFILE;
1234 }
1235 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1236 static int dev_alloc_name_ns(struct net *net,
1237 			     struct net_device *dev,
1238 			     const char *name)
1239 {
1240 	char buf[IFNAMSIZ];
1241 	int ret;
1242 
1243 	BUG_ON(!net);
1244 	ret = __dev_alloc_name(net, name, buf);
1245 	if (ret >= 0)
1246 		strlcpy(dev->name, buf, IFNAMSIZ);
1247 	return ret;
1248 }
1249 
1250 /**
1251  *	dev_alloc_name - allocate a name for a device
1252  *	@dev: device
1253  *	@name: name format string
1254  *
1255  *	Passed a format string - eg "lt%d" it will try and find a suitable
1256  *	id. It scans list of devices to build up a free map, then chooses
1257  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1258  *	while allocating the name and adding the device in order to avoid
1259  *	duplicates.
1260  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1261  *	Returns the number of the unit assigned or a negative errno code.
1262  */
1263 
dev_alloc_name(struct net_device * dev,const char * name)1264 int dev_alloc_name(struct net_device *dev, const char *name)
1265 {
1266 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1267 }
1268 EXPORT_SYMBOL(dev_alloc_name);
1269 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1270 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1271 			      const char *name)
1272 {
1273 	BUG_ON(!net);
1274 
1275 	if (!dev_valid_name(name))
1276 		return -EINVAL;
1277 
1278 	if (strchr(name, '%'))
1279 		return dev_alloc_name_ns(net, dev, name);
1280 	else if (__dev_get_by_name(net, name))
1281 		return -EEXIST;
1282 	else if (dev->name != name)
1283 		strlcpy(dev->name, name, IFNAMSIZ);
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  *	dev_change_name - change name of a device
1290  *	@dev: device
1291  *	@newname: name (or format string) must be at least IFNAMSIZ
1292  *
1293  *	Change name of a device, can pass format strings "eth%d".
1294  *	for wildcarding.
1295  */
dev_change_name(struct net_device * dev,const char * newname)1296 int dev_change_name(struct net_device *dev, const char *newname)
1297 {
1298 	unsigned char old_assign_type;
1299 	char oldname[IFNAMSIZ];
1300 	int err = 0;
1301 	int ret;
1302 	struct net *net;
1303 
1304 	ASSERT_RTNL();
1305 	BUG_ON(!dev_net(dev));
1306 
1307 	net = dev_net(dev);
1308 
1309 	/* Some auto-enslaved devices e.g. failover slaves are
1310 	 * special, as userspace might rename the device after
1311 	 * the interface had been brought up and running since
1312 	 * the point kernel initiated auto-enslavement. Allow
1313 	 * live name change even when these slave devices are
1314 	 * up and running.
1315 	 *
1316 	 * Typically, users of these auto-enslaving devices
1317 	 * don't actually care about slave name change, as
1318 	 * they are supposed to operate on master interface
1319 	 * directly.
1320 	 */
1321 	if (dev->flags & IFF_UP &&
1322 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1323 		return -EBUSY;
1324 
1325 	down_write(&devnet_rename_sem);
1326 
1327 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1328 		up_write(&devnet_rename_sem);
1329 		return 0;
1330 	}
1331 
1332 	memcpy(oldname, dev->name, IFNAMSIZ);
1333 
1334 	err = dev_get_valid_name(net, dev, newname);
1335 	if (err < 0) {
1336 		up_write(&devnet_rename_sem);
1337 		return err;
1338 	}
1339 
1340 	if (oldname[0] && !strchr(oldname, '%'))
1341 		netdev_info(dev, "renamed from %s\n", oldname);
1342 
1343 	old_assign_type = dev->name_assign_type;
1344 	dev->name_assign_type = NET_NAME_RENAMED;
1345 
1346 rollback:
1347 	ret = device_rename(&dev->dev, dev->name);
1348 	if (ret) {
1349 		memcpy(dev->name, oldname, IFNAMSIZ);
1350 		dev->name_assign_type = old_assign_type;
1351 		up_write(&devnet_rename_sem);
1352 		return ret;
1353 	}
1354 
1355 	up_write(&devnet_rename_sem);
1356 
1357 	netdev_adjacent_rename_links(dev, oldname);
1358 
1359 	write_lock_bh(&dev_base_lock);
1360 	netdev_name_node_del(dev->name_node);
1361 	write_unlock_bh(&dev_base_lock);
1362 
1363 	synchronize_rcu();
1364 
1365 	write_lock_bh(&dev_base_lock);
1366 	netdev_name_node_add(net, dev->name_node);
1367 	write_unlock_bh(&dev_base_lock);
1368 
1369 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1370 	ret = notifier_to_errno(ret);
1371 
1372 	if (ret) {
1373 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1374 		if (err >= 0) {
1375 			err = ret;
1376 			down_write(&devnet_rename_sem);
1377 			memcpy(dev->name, oldname, IFNAMSIZ);
1378 			memcpy(oldname, newname, IFNAMSIZ);
1379 			dev->name_assign_type = old_assign_type;
1380 			old_assign_type = NET_NAME_RENAMED;
1381 			goto rollback;
1382 		} else {
1383 			pr_err("%s: name change rollback failed: %d\n",
1384 			       dev->name, ret);
1385 		}
1386 	}
1387 
1388 	return err;
1389 }
1390 
1391 /**
1392  *	dev_set_alias - change ifalias of a device
1393  *	@dev: device
1394  *	@alias: name up to IFALIASZ
1395  *	@len: limit of bytes to copy from info
1396  *
1397  *	Set ifalias for a device,
1398  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1399 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1400 {
1401 	struct dev_ifalias *new_alias = NULL;
1402 
1403 	if (len >= IFALIASZ)
1404 		return -EINVAL;
1405 
1406 	if (len) {
1407 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1408 		if (!new_alias)
1409 			return -ENOMEM;
1410 
1411 		memcpy(new_alias->ifalias, alias, len);
1412 		new_alias->ifalias[len] = 0;
1413 	}
1414 
1415 	mutex_lock(&ifalias_mutex);
1416 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1417 					mutex_is_locked(&ifalias_mutex));
1418 	mutex_unlock(&ifalias_mutex);
1419 
1420 	if (new_alias)
1421 		kfree_rcu(new_alias, rcuhead);
1422 
1423 	return len;
1424 }
1425 EXPORT_SYMBOL(dev_set_alias);
1426 
1427 /**
1428  *	dev_get_alias - get ifalias of a device
1429  *	@dev: device
1430  *	@name: buffer to store name of ifalias
1431  *	@len: size of buffer
1432  *
1433  *	get ifalias for a device.  Caller must make sure dev cannot go
1434  *	away,  e.g. rcu read lock or own a reference count to device.
1435  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1436 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1437 {
1438 	const struct dev_ifalias *alias;
1439 	int ret = 0;
1440 
1441 	rcu_read_lock();
1442 	alias = rcu_dereference(dev->ifalias);
1443 	if (alias)
1444 		ret = snprintf(name, len, "%s", alias->ifalias);
1445 	rcu_read_unlock();
1446 
1447 	return ret;
1448 }
1449 
1450 /**
1451  *	netdev_features_change - device changes features
1452  *	@dev: device to cause notification
1453  *
1454  *	Called to indicate a device has changed features.
1455  */
netdev_features_change(struct net_device * dev)1456 void netdev_features_change(struct net_device *dev)
1457 {
1458 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1459 }
1460 EXPORT_SYMBOL(netdev_features_change);
1461 
1462 /**
1463  *	netdev_state_change - device changes state
1464  *	@dev: device to cause notification
1465  *
1466  *	Called to indicate a device has changed state. This function calls
1467  *	the notifier chains for netdev_chain and sends a NEWLINK message
1468  *	to the routing socket.
1469  */
netdev_state_change(struct net_device * dev)1470 void netdev_state_change(struct net_device *dev)
1471 {
1472 	if (dev->flags & IFF_UP) {
1473 		struct netdev_notifier_change_info change_info = {
1474 			.info.dev = dev,
1475 		};
1476 
1477 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1478 					      &change_info.info);
1479 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1480 	}
1481 }
1482 EXPORT_SYMBOL(netdev_state_change);
1483 
1484 /**
1485  * netdev_notify_peers - notify network peers about existence of @dev
1486  * @dev: network device
1487  *
1488  * Generate traffic such that interested network peers are aware of
1489  * @dev, such as by generating a gratuitous ARP. This may be used when
1490  * a device wants to inform the rest of the network about some sort of
1491  * reconfiguration such as a failover event or virtual machine
1492  * migration.
1493  */
netdev_notify_peers(struct net_device * dev)1494 void netdev_notify_peers(struct net_device *dev)
1495 {
1496 	rtnl_lock();
1497 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1498 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1499 	rtnl_unlock();
1500 }
1501 EXPORT_SYMBOL(netdev_notify_peers);
1502 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1503 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1504 {
1505 	const struct net_device_ops *ops = dev->netdev_ops;
1506 	int ret;
1507 
1508 	ASSERT_RTNL();
1509 
1510 	if (!netif_device_present(dev)) {
1511 		/* may be detached because parent is runtime-suspended */
1512 		if (dev->dev.parent)
1513 			pm_runtime_resume(dev->dev.parent);
1514 		if (!netif_device_present(dev))
1515 			return -ENODEV;
1516 	}
1517 
1518 	/* Block netpoll from trying to do any rx path servicing.
1519 	 * If we don't do this there is a chance ndo_poll_controller
1520 	 * or ndo_poll may be running while we open the device
1521 	 */
1522 	netpoll_poll_disable(dev);
1523 
1524 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1525 	ret = notifier_to_errno(ret);
1526 	if (ret)
1527 		return ret;
1528 
1529 	set_bit(__LINK_STATE_START, &dev->state);
1530 
1531 	if (ops->ndo_validate_addr)
1532 		ret = ops->ndo_validate_addr(dev);
1533 
1534 	if (!ret && ops->ndo_open)
1535 		ret = ops->ndo_open(dev);
1536 
1537 	netpoll_poll_enable(dev);
1538 
1539 	if (ret)
1540 		clear_bit(__LINK_STATE_START, &dev->state);
1541 	else {
1542 		dev->flags |= IFF_UP;
1543 		dev_set_rx_mode(dev);
1544 		dev_activate(dev);
1545 		add_device_randomness(dev->dev_addr, dev->addr_len);
1546 	}
1547 
1548 	return ret;
1549 }
1550 
1551 /**
1552  *	dev_open	- prepare an interface for use.
1553  *	@dev: device to open
1554  *	@extack: netlink extended ack
1555  *
1556  *	Takes a device from down to up state. The device's private open
1557  *	function is invoked and then the multicast lists are loaded. Finally
1558  *	the device is moved into the up state and a %NETDEV_UP message is
1559  *	sent to the netdev notifier chain.
1560  *
1561  *	Calling this function on an active interface is a nop. On a failure
1562  *	a negative errno code is returned.
1563  */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1564 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1565 {
1566 	int ret;
1567 
1568 	if (dev->flags & IFF_UP)
1569 		return 0;
1570 
1571 	ret = __dev_open(dev, extack);
1572 	if (ret < 0)
1573 		return ret;
1574 
1575 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1576 	call_netdevice_notifiers(NETDEV_UP, dev);
1577 
1578 	return ret;
1579 }
1580 EXPORT_SYMBOL(dev_open);
1581 
__dev_close_many(struct list_head * head)1582 static void __dev_close_many(struct list_head *head)
1583 {
1584 	struct net_device *dev;
1585 
1586 	ASSERT_RTNL();
1587 	might_sleep();
1588 
1589 	list_for_each_entry(dev, head, close_list) {
1590 		/* Temporarily disable netpoll until the interface is down */
1591 		netpoll_poll_disable(dev);
1592 
1593 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1594 
1595 		clear_bit(__LINK_STATE_START, &dev->state);
1596 
1597 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1598 		 * can be even on different cpu. So just clear netif_running().
1599 		 *
1600 		 * dev->stop() will invoke napi_disable() on all of it's
1601 		 * napi_struct instances on this device.
1602 		 */
1603 		smp_mb__after_atomic(); /* Commit netif_running(). */
1604 	}
1605 
1606 	dev_deactivate_many(head);
1607 
1608 	list_for_each_entry(dev, head, close_list) {
1609 		const struct net_device_ops *ops = dev->netdev_ops;
1610 
1611 		/*
1612 		 *	Call the device specific close. This cannot fail.
1613 		 *	Only if device is UP
1614 		 *
1615 		 *	We allow it to be called even after a DETACH hot-plug
1616 		 *	event.
1617 		 */
1618 		if (ops->ndo_stop)
1619 			ops->ndo_stop(dev);
1620 
1621 		dev->flags &= ~IFF_UP;
1622 		netpoll_poll_enable(dev);
1623 	}
1624 }
1625 
__dev_close(struct net_device * dev)1626 static void __dev_close(struct net_device *dev)
1627 {
1628 	LIST_HEAD(single);
1629 
1630 	list_add(&dev->close_list, &single);
1631 	__dev_close_many(&single);
1632 	list_del(&single);
1633 }
1634 
dev_close_many(struct list_head * head,bool unlink)1635 void dev_close_many(struct list_head *head, bool unlink)
1636 {
1637 	struct net_device *dev, *tmp;
1638 
1639 	/* Remove the devices that don't need to be closed */
1640 	list_for_each_entry_safe(dev, tmp, head, close_list)
1641 		if (!(dev->flags & IFF_UP))
1642 			list_del_init(&dev->close_list);
1643 
1644 	__dev_close_many(head);
1645 
1646 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1647 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1648 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1649 		if (unlink)
1650 			list_del_init(&dev->close_list);
1651 	}
1652 }
1653 EXPORT_SYMBOL(dev_close_many);
1654 
1655 /**
1656  *	dev_close - shutdown an interface.
1657  *	@dev: device to shutdown
1658  *
1659  *	This function moves an active device into down state. A
1660  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1661  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1662  *	chain.
1663  */
dev_close(struct net_device * dev)1664 void dev_close(struct net_device *dev)
1665 {
1666 	if (dev->flags & IFF_UP) {
1667 		LIST_HEAD(single);
1668 
1669 		list_add(&dev->close_list, &single);
1670 		dev_close_many(&single, true);
1671 		list_del(&single);
1672 	}
1673 }
1674 EXPORT_SYMBOL(dev_close);
1675 
1676 
1677 /**
1678  *	dev_disable_lro - disable Large Receive Offload on a device
1679  *	@dev: device
1680  *
1681  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1682  *	called under RTNL.  This is needed if received packets may be
1683  *	forwarded to another interface.
1684  */
dev_disable_lro(struct net_device * dev)1685 void dev_disable_lro(struct net_device *dev)
1686 {
1687 	struct net_device *lower_dev;
1688 	struct list_head *iter;
1689 
1690 	dev->wanted_features &= ~NETIF_F_LRO;
1691 	netdev_update_features(dev);
1692 
1693 	if (unlikely(dev->features & NETIF_F_LRO))
1694 		netdev_WARN(dev, "failed to disable LRO!\n");
1695 
1696 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1697 		dev_disable_lro(lower_dev);
1698 }
1699 EXPORT_SYMBOL(dev_disable_lro);
1700 
1701 /**
1702  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1703  *	@dev: device
1704  *
1705  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1706  *	called under RTNL.  This is needed if Generic XDP is installed on
1707  *	the device.
1708  */
dev_disable_gro_hw(struct net_device * dev)1709 static void dev_disable_gro_hw(struct net_device *dev)
1710 {
1711 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1712 	netdev_update_features(dev);
1713 
1714 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1715 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1716 }
1717 
netdev_cmd_to_name(enum netdev_cmd cmd)1718 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1719 {
1720 #define N(val) 						\
1721 	case NETDEV_##val:				\
1722 		return "NETDEV_" __stringify(val);
1723 	switch (cmd) {
1724 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1725 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1726 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1727 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1728 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1729 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1730 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1731 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1732 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1733 	N(PRE_CHANGEADDR)
1734 	}
1735 #undef N
1736 	return "UNKNOWN_NETDEV_EVENT";
1737 }
1738 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1739 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1740 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1741 				   struct net_device *dev)
1742 {
1743 	struct netdev_notifier_info info = {
1744 		.dev = dev,
1745 	};
1746 
1747 	return nb->notifier_call(nb, val, &info);
1748 }
1749 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1750 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1751 					     struct net_device *dev)
1752 {
1753 	int err;
1754 
1755 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1756 	err = notifier_to_errno(err);
1757 	if (err)
1758 		return err;
1759 
1760 	if (!(dev->flags & IFF_UP))
1761 		return 0;
1762 
1763 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1764 	return 0;
1765 }
1766 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1767 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1768 						struct net_device *dev)
1769 {
1770 	if (dev->flags & IFF_UP) {
1771 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1772 					dev);
1773 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1774 	}
1775 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1776 }
1777 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1778 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1779 						 struct net *net)
1780 {
1781 	struct net_device *dev;
1782 	int err;
1783 
1784 	for_each_netdev(net, dev) {
1785 		err = call_netdevice_register_notifiers(nb, dev);
1786 		if (err)
1787 			goto rollback;
1788 	}
1789 	return 0;
1790 
1791 rollback:
1792 	for_each_netdev_continue_reverse(net, dev)
1793 		call_netdevice_unregister_notifiers(nb, dev);
1794 	return err;
1795 }
1796 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1797 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1798 						    struct net *net)
1799 {
1800 	struct net_device *dev;
1801 
1802 	for_each_netdev(net, dev)
1803 		call_netdevice_unregister_notifiers(nb, dev);
1804 }
1805 
1806 static int dev_boot_phase = 1;
1807 
1808 /**
1809  * register_netdevice_notifier - register a network notifier block
1810  * @nb: notifier
1811  *
1812  * Register a notifier to be called when network device events occur.
1813  * The notifier passed is linked into the kernel structures and must
1814  * not be reused until it has been unregistered. A negative errno code
1815  * is returned on a failure.
1816  *
1817  * When registered all registration and up events are replayed
1818  * to the new notifier to allow device to have a race free
1819  * view of the network device list.
1820  */
1821 
register_netdevice_notifier(struct notifier_block * nb)1822 int register_netdevice_notifier(struct notifier_block *nb)
1823 {
1824 	struct net *net;
1825 	int err;
1826 
1827 	/* Close race with setup_net() and cleanup_net() */
1828 	down_write(&pernet_ops_rwsem);
1829 	rtnl_lock();
1830 	err = raw_notifier_chain_register(&netdev_chain, nb);
1831 	if (err)
1832 		goto unlock;
1833 	if (dev_boot_phase)
1834 		goto unlock;
1835 	for_each_net(net) {
1836 		err = call_netdevice_register_net_notifiers(nb, net);
1837 		if (err)
1838 			goto rollback;
1839 	}
1840 
1841 unlock:
1842 	rtnl_unlock();
1843 	up_write(&pernet_ops_rwsem);
1844 	return err;
1845 
1846 rollback:
1847 	for_each_net_continue_reverse(net)
1848 		call_netdevice_unregister_net_notifiers(nb, net);
1849 
1850 	raw_notifier_chain_unregister(&netdev_chain, nb);
1851 	goto unlock;
1852 }
1853 EXPORT_SYMBOL(register_netdevice_notifier);
1854 
1855 /**
1856  * unregister_netdevice_notifier - unregister a network notifier block
1857  * @nb: notifier
1858  *
1859  * Unregister a notifier previously registered by
1860  * register_netdevice_notifier(). The notifier is unlinked into the
1861  * kernel structures and may then be reused. A negative errno code
1862  * is returned on a failure.
1863  *
1864  * After unregistering unregister and down device events are synthesized
1865  * for all devices on the device list to the removed notifier to remove
1866  * the need for special case cleanup code.
1867  */
1868 
unregister_netdevice_notifier(struct notifier_block * nb)1869 int unregister_netdevice_notifier(struct notifier_block *nb)
1870 {
1871 	struct net *net;
1872 	int err;
1873 
1874 	/* Close race with setup_net() and cleanup_net() */
1875 	down_write(&pernet_ops_rwsem);
1876 	rtnl_lock();
1877 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1878 	if (err)
1879 		goto unlock;
1880 
1881 	for_each_net(net)
1882 		call_netdevice_unregister_net_notifiers(nb, net);
1883 
1884 unlock:
1885 	rtnl_unlock();
1886 	up_write(&pernet_ops_rwsem);
1887 	return err;
1888 }
1889 EXPORT_SYMBOL(unregister_netdevice_notifier);
1890 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1891 static int __register_netdevice_notifier_net(struct net *net,
1892 					     struct notifier_block *nb,
1893 					     bool ignore_call_fail)
1894 {
1895 	int err;
1896 
1897 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1898 	if (err)
1899 		return err;
1900 	if (dev_boot_phase)
1901 		return 0;
1902 
1903 	err = call_netdevice_register_net_notifiers(nb, net);
1904 	if (err && !ignore_call_fail)
1905 		goto chain_unregister;
1906 
1907 	return 0;
1908 
1909 chain_unregister:
1910 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1911 	return err;
1912 }
1913 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1914 static int __unregister_netdevice_notifier_net(struct net *net,
1915 					       struct notifier_block *nb)
1916 {
1917 	int err;
1918 
1919 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1920 	if (err)
1921 		return err;
1922 
1923 	call_netdevice_unregister_net_notifiers(nb, net);
1924 	return 0;
1925 }
1926 
1927 /**
1928  * register_netdevice_notifier_net - register a per-netns network notifier block
1929  * @net: network namespace
1930  * @nb: notifier
1931  *
1932  * Register a notifier to be called when network device events occur.
1933  * The notifier passed is linked into the kernel structures and must
1934  * not be reused until it has been unregistered. A negative errno code
1935  * is returned on a failure.
1936  *
1937  * When registered all registration and up events are replayed
1938  * to the new notifier to allow device to have a race free
1939  * view of the network device list.
1940  */
1941 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1942 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1943 {
1944 	int err;
1945 
1946 	rtnl_lock();
1947 	err = __register_netdevice_notifier_net(net, nb, false);
1948 	rtnl_unlock();
1949 	return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_net);
1952 
1953 /**
1954  * unregister_netdevice_notifier_net - unregister a per-netns
1955  *                                     network notifier block
1956  * @net: network namespace
1957  * @nb: notifier
1958  *
1959  * Unregister a notifier previously registered by
1960  * register_netdevice_notifier(). The notifier is unlinked into the
1961  * kernel structures and may then be reused. A negative errno code
1962  * is returned on a failure.
1963  *
1964  * After unregistering unregister and down device events are synthesized
1965  * for all devices on the device list to the removed notifier to remove
1966  * the need for special case cleanup code.
1967  */
1968 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1969 int unregister_netdevice_notifier_net(struct net *net,
1970 				      struct notifier_block *nb)
1971 {
1972 	int err;
1973 
1974 	rtnl_lock();
1975 	err = __unregister_netdevice_notifier_net(net, nb);
1976 	rtnl_unlock();
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1980 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1981 int register_netdevice_notifier_dev_net(struct net_device *dev,
1982 					struct notifier_block *nb,
1983 					struct netdev_net_notifier *nn)
1984 {
1985 	int err;
1986 
1987 	rtnl_lock();
1988 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1989 	if (!err) {
1990 		nn->nb = nb;
1991 		list_add(&nn->list, &dev->net_notifier_list);
1992 	}
1993 	rtnl_unlock();
1994 	return err;
1995 }
1996 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1997 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1998 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1999 					  struct notifier_block *nb,
2000 					  struct netdev_net_notifier *nn)
2001 {
2002 	int err;
2003 
2004 	rtnl_lock();
2005 	list_del(&nn->list);
2006 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2007 	rtnl_unlock();
2008 	return err;
2009 }
2010 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2011 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2012 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2013 					     struct net *net)
2014 {
2015 	struct netdev_net_notifier *nn;
2016 
2017 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2018 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2019 		__register_netdevice_notifier_net(net, nn->nb, true);
2020 	}
2021 }
2022 
2023 /**
2024  *	call_netdevice_notifiers_info - call all network notifier blocks
2025  *	@val: value passed unmodified to notifier function
2026  *	@info: notifier information data
2027  *
2028  *	Call all network notifier blocks.  Parameters and return value
2029  *	are as for raw_notifier_call_chain().
2030  */
2031 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2032 static int call_netdevice_notifiers_info(unsigned long val,
2033 					 struct netdev_notifier_info *info)
2034 {
2035 	struct net *net = dev_net(info->dev);
2036 	int ret;
2037 
2038 	ASSERT_RTNL();
2039 
2040 	/* Run per-netns notifier block chain first, then run the global one.
2041 	 * Hopefully, one day, the global one is going to be removed after
2042 	 * all notifier block registrators get converted to be per-netns.
2043 	 */
2044 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2045 	if (ret & NOTIFY_STOP_MASK)
2046 		return ret;
2047 	return raw_notifier_call_chain(&netdev_chain, val, info);
2048 }
2049 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2050 static int call_netdevice_notifiers_extack(unsigned long val,
2051 					   struct net_device *dev,
2052 					   struct netlink_ext_ack *extack)
2053 {
2054 	struct netdev_notifier_info info = {
2055 		.dev = dev,
2056 		.extack = extack,
2057 	};
2058 
2059 	return call_netdevice_notifiers_info(val, &info);
2060 }
2061 
2062 /**
2063  *	call_netdevice_notifiers - call all network notifier blocks
2064  *      @val: value passed unmodified to notifier function
2065  *      @dev: net_device pointer passed unmodified to notifier function
2066  *
2067  *	Call all network notifier blocks.  Parameters and return value
2068  *	are as for raw_notifier_call_chain().
2069  */
2070 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2071 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2072 {
2073 	return call_netdevice_notifiers_extack(val, dev, NULL);
2074 }
2075 EXPORT_SYMBOL(call_netdevice_notifiers);
2076 
2077 /**
2078  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2079  *	@val: value passed unmodified to notifier function
2080  *	@dev: net_device pointer passed unmodified to notifier function
2081  *	@arg: additional u32 argument passed to the notifier function
2082  *
2083  *	Call all network notifier blocks.  Parameters and return value
2084  *	are as for raw_notifier_call_chain().
2085  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2086 static int call_netdevice_notifiers_mtu(unsigned long val,
2087 					struct net_device *dev, u32 arg)
2088 {
2089 	struct netdev_notifier_info_ext info = {
2090 		.info.dev = dev,
2091 		.ext.mtu = arg,
2092 	};
2093 
2094 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2095 
2096 	return call_netdevice_notifiers_info(val, &info.info);
2097 }
2098 
2099 #ifdef CONFIG_NET_INGRESS
2100 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2101 
net_inc_ingress_queue(void)2102 void net_inc_ingress_queue(void)
2103 {
2104 	static_branch_inc(&ingress_needed_key);
2105 }
2106 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2107 
net_dec_ingress_queue(void)2108 void net_dec_ingress_queue(void)
2109 {
2110 	static_branch_dec(&ingress_needed_key);
2111 }
2112 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2113 #endif
2114 
2115 #ifdef CONFIG_NET_EGRESS
2116 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2117 
net_inc_egress_queue(void)2118 void net_inc_egress_queue(void)
2119 {
2120 	static_branch_inc(&egress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2123 
net_dec_egress_queue(void)2124 void net_dec_egress_queue(void)
2125 {
2126 	static_branch_dec(&egress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2129 #endif
2130 
2131 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2132 #ifdef CONFIG_JUMP_LABEL
2133 static atomic_t netstamp_needed_deferred;
2134 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2135 static void netstamp_clear(struct work_struct *work)
2136 {
2137 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2138 	int wanted;
2139 
2140 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2141 	if (wanted > 0)
2142 		static_branch_enable(&netstamp_needed_key);
2143 	else
2144 		static_branch_disable(&netstamp_needed_key);
2145 }
2146 static DECLARE_WORK(netstamp_work, netstamp_clear);
2147 #endif
2148 
net_enable_timestamp(void)2149 void net_enable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 	int wanted;
2153 
2154 	while (1) {
2155 		wanted = atomic_read(&netstamp_wanted);
2156 		if (wanted <= 0)
2157 			break;
2158 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2159 			return;
2160 	}
2161 	atomic_inc(&netstamp_needed_deferred);
2162 	schedule_work(&netstamp_work);
2163 #else
2164 	static_branch_inc(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_enable_timestamp);
2168 
net_disable_timestamp(void)2169 void net_disable_timestamp(void)
2170 {
2171 #ifdef CONFIG_JUMP_LABEL
2172 	int wanted;
2173 
2174 	while (1) {
2175 		wanted = atomic_read(&netstamp_wanted);
2176 		if (wanted <= 1)
2177 			break;
2178 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2179 			return;
2180 	}
2181 	atomic_dec(&netstamp_needed_deferred);
2182 	schedule_work(&netstamp_work);
2183 #else
2184 	static_branch_dec(&netstamp_needed_key);
2185 #endif
2186 }
2187 EXPORT_SYMBOL(net_disable_timestamp);
2188 
net_timestamp_set(struct sk_buff * skb)2189 static inline void net_timestamp_set(struct sk_buff *skb)
2190 {
2191 	skb->tstamp = 0;
2192 	if (static_branch_unlikely(&netstamp_needed_key))
2193 		__net_timestamp(skb);
2194 }
2195 
2196 #define net_timestamp_check(COND, SKB)				\
2197 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2198 		if ((COND) && !(SKB)->tstamp)			\
2199 			__net_timestamp(SKB);			\
2200 	}							\
2201 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2202 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2203 {
2204 	unsigned int len;
2205 
2206 	if (!(dev->flags & IFF_UP))
2207 		return false;
2208 
2209 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2210 	if (skb->len <= len)
2211 		return true;
2212 
2213 	/* if TSO is enabled, we don't care about the length as the packet
2214 	 * could be forwarded without being segmented before
2215 	 */
2216 	if (skb_is_gso(skb))
2217 		return true;
2218 
2219 	return false;
2220 }
2221 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2222 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2223 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 	int ret = ____dev_forward_skb(dev, skb);
2226 
2227 	if (likely(!ret)) {
2228 		skb->protocol = eth_type_trans(skb, dev);
2229 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2230 	}
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2235 
2236 /**
2237  * dev_forward_skb - loopback an skb to another netif
2238  *
2239  * @dev: destination network device
2240  * @skb: buffer to forward
2241  *
2242  * return values:
2243  *	NET_RX_SUCCESS	(no congestion)
2244  *	NET_RX_DROP     (packet was dropped, but freed)
2245  *
2246  * dev_forward_skb can be used for injecting an skb from the
2247  * start_xmit function of one device into the receive queue
2248  * of another device.
2249  *
2250  * The receiving device may be in another namespace, so
2251  * we have to clear all information in the skb that could
2252  * impact namespace isolation.
2253  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2254 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2255 {
2256 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2257 }
2258 EXPORT_SYMBOL_GPL(dev_forward_skb);
2259 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2260 static inline int deliver_skb(struct sk_buff *skb,
2261 			      struct packet_type *pt_prev,
2262 			      struct net_device *orig_dev)
2263 {
2264 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2265 		return -ENOMEM;
2266 	refcount_inc(&skb->users);
2267 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2268 }
2269 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2270 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2271 					  struct packet_type **pt,
2272 					  struct net_device *orig_dev,
2273 					  __be16 type,
2274 					  struct list_head *ptype_list)
2275 {
2276 	struct packet_type *ptype, *pt_prev = *pt;
2277 
2278 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2279 		if (ptype->type != type)
2280 			continue;
2281 		if (pt_prev)
2282 			deliver_skb(skb, pt_prev, orig_dev);
2283 		pt_prev = ptype;
2284 	}
2285 	*pt = pt_prev;
2286 }
2287 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2288 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2289 {
2290 	if (!ptype->af_packet_priv || !skb->sk)
2291 		return false;
2292 
2293 	if (ptype->id_match)
2294 		return ptype->id_match(ptype, skb->sk);
2295 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2296 		return true;
2297 
2298 	return false;
2299 }
2300 
2301 /**
2302  * dev_nit_active - return true if any network interface taps are in use
2303  *
2304  * @dev: network device to check for the presence of taps
2305  */
dev_nit_active(struct net_device * dev)2306 bool dev_nit_active(struct net_device *dev)
2307 {
2308 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2309 }
2310 EXPORT_SYMBOL_GPL(dev_nit_active);
2311 
2312 /*
2313  *	Support routine. Sends outgoing frames to any network
2314  *	taps currently in use.
2315  */
2316 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2317 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319 	struct packet_type *ptype;
2320 	struct sk_buff *skb2 = NULL;
2321 	struct packet_type *pt_prev = NULL;
2322 	struct list_head *ptype_list = &ptype_all;
2323 
2324 	rcu_read_lock();
2325 again:
2326 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2327 		if (ptype->ignore_outgoing)
2328 			continue;
2329 
2330 		/* Never send packets back to the socket
2331 		 * they originated from - MvS (miquels@drinkel.ow.org)
2332 		 */
2333 		if (skb_loop_sk(ptype, skb))
2334 			continue;
2335 
2336 		if (pt_prev) {
2337 			deliver_skb(skb2, pt_prev, skb->dev);
2338 			pt_prev = ptype;
2339 			continue;
2340 		}
2341 
2342 		/* need to clone skb, done only once */
2343 		skb2 = skb_clone(skb, GFP_ATOMIC);
2344 		if (!skb2)
2345 			goto out_unlock;
2346 
2347 		net_timestamp_set(skb2);
2348 
2349 		/* skb->nh should be correctly
2350 		 * set by sender, so that the second statement is
2351 		 * just protection against buggy protocols.
2352 		 */
2353 		skb_reset_mac_header(skb2);
2354 
2355 		if (skb_network_header(skb2) < skb2->data ||
2356 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2357 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2358 					     ntohs(skb2->protocol),
2359 					     dev->name);
2360 			skb_reset_network_header(skb2);
2361 		}
2362 
2363 		skb2->transport_header = skb2->network_header;
2364 		skb2->pkt_type = PACKET_OUTGOING;
2365 		pt_prev = ptype;
2366 	}
2367 
2368 	if (ptype_list == &ptype_all) {
2369 		ptype_list = &dev->ptype_all;
2370 		goto again;
2371 	}
2372 out_unlock:
2373 	if (pt_prev) {
2374 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2375 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2376 		else
2377 			kfree_skb(skb2);
2378 	}
2379 	rcu_read_unlock();
2380 }
2381 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2382 
2383 /**
2384  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2385  * @dev: Network device
2386  * @txq: number of queues available
2387  *
2388  * If real_num_tx_queues is changed the tc mappings may no longer be
2389  * valid. To resolve this verify the tc mapping remains valid and if
2390  * not NULL the mapping. With no priorities mapping to this
2391  * offset/count pair it will no longer be used. In the worst case TC0
2392  * is invalid nothing can be done so disable priority mappings. If is
2393  * expected that drivers will fix this mapping if they can before
2394  * calling netif_set_real_num_tx_queues.
2395  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2396 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2397 {
2398 	int i;
2399 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400 
2401 	/* If TC0 is invalidated disable TC mapping */
2402 	if (tc->offset + tc->count > txq) {
2403 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2404 		dev->num_tc = 0;
2405 		return;
2406 	}
2407 
2408 	/* Invalidated prio to tc mappings set to TC0 */
2409 	for (i = 1; i < TC_BITMASK + 1; i++) {
2410 		int q = netdev_get_prio_tc_map(dev, i);
2411 
2412 		tc = &dev->tc_to_txq[q];
2413 		if (tc->offset + tc->count > txq) {
2414 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2415 				i, q);
2416 			netdev_set_prio_tc_map(dev, i, 0);
2417 		}
2418 	}
2419 }
2420 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2422 {
2423 	if (dev->num_tc) {
2424 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2425 		int i;
2426 
2427 		/* walk through the TCs and see if it falls into any of them */
2428 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2429 			if ((txq - tc->offset) < tc->count)
2430 				return i;
2431 		}
2432 
2433 		/* didn't find it, just return -1 to indicate no match */
2434 		return -1;
2435 	}
2436 
2437 	return 0;
2438 }
2439 EXPORT_SYMBOL(netdev_txq_to_tc);
2440 
2441 #ifdef CONFIG_XPS
2442 struct static_key xps_needed __read_mostly;
2443 EXPORT_SYMBOL(xps_needed);
2444 struct static_key xps_rxqs_needed __read_mostly;
2445 EXPORT_SYMBOL(xps_rxqs_needed);
2446 static DEFINE_MUTEX(xps_map_mutex);
2447 #define xmap_dereference(P)		\
2448 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2449 
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2451 			     int tci, u16 index)
2452 {
2453 	struct xps_map *map = NULL;
2454 	int pos;
2455 
2456 	if (dev_maps)
2457 		map = xmap_dereference(dev_maps->attr_map[tci]);
2458 	if (!map)
2459 		return false;
2460 
2461 	for (pos = map->len; pos--;) {
2462 		if (map->queues[pos] != index)
2463 			continue;
2464 
2465 		if (map->len > 1) {
2466 			map->queues[pos] = map->queues[--map->len];
2467 			break;
2468 		}
2469 
2470 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2471 		kfree_rcu(map, rcu);
2472 		return false;
2473 	}
2474 
2475 	return true;
2476 }
2477 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2478 static bool remove_xps_queue_cpu(struct net_device *dev,
2479 				 struct xps_dev_maps *dev_maps,
2480 				 int cpu, u16 offset, u16 count)
2481 {
2482 	int num_tc = dev->num_tc ? : 1;
2483 	bool active = false;
2484 	int tci;
2485 
2486 	for (tci = cpu * num_tc; num_tc--; tci++) {
2487 		int i, j;
2488 
2489 		for (i = count, j = offset; i--; j++) {
2490 			if (!remove_xps_queue(dev_maps, tci, j))
2491 				break;
2492 		}
2493 
2494 		active |= i < 0;
2495 	}
2496 
2497 	return active;
2498 }
2499 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2500 static void reset_xps_maps(struct net_device *dev,
2501 			   struct xps_dev_maps *dev_maps,
2502 			   bool is_rxqs_map)
2503 {
2504 	if (is_rxqs_map) {
2505 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2506 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2507 	} else {
2508 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2509 	}
2510 	static_key_slow_dec_cpuslocked(&xps_needed);
2511 	kfree_rcu(dev_maps, rcu);
2512 }
2513 
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2514 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2515 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2516 			   u16 offset, u16 count, bool is_rxqs_map)
2517 {
2518 	bool active = false;
2519 	int i, j;
2520 
2521 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2522 	     j < nr_ids;)
2523 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2524 					       count);
2525 	if (!active)
2526 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2527 
2528 	if (!is_rxqs_map) {
2529 		for (i = offset + (count - 1); count--; i--) {
2530 			netdev_queue_numa_node_write(
2531 				netdev_get_tx_queue(dev, i),
2532 				NUMA_NO_NODE);
2533 		}
2534 	}
2535 }
2536 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2538 				   u16 count)
2539 {
2540 	const unsigned long *possible_mask = NULL;
2541 	struct xps_dev_maps *dev_maps;
2542 	unsigned int nr_ids;
2543 
2544 	if (!static_key_false(&xps_needed))
2545 		return;
2546 
2547 	cpus_read_lock();
2548 	mutex_lock(&xps_map_mutex);
2549 
2550 	if (static_key_false(&xps_rxqs_needed)) {
2551 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2552 		if (dev_maps) {
2553 			nr_ids = dev->num_rx_queues;
2554 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2555 				       offset, count, true);
2556 		}
2557 	}
2558 
2559 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2560 	if (!dev_maps)
2561 		goto out_no_maps;
2562 
2563 	if (num_possible_cpus() > 1)
2564 		possible_mask = cpumask_bits(cpu_possible_mask);
2565 	nr_ids = nr_cpu_ids;
2566 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2567 		       false);
2568 
2569 out_no_maps:
2570 	mutex_unlock(&xps_map_mutex);
2571 	cpus_read_unlock();
2572 }
2573 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2574 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2575 {
2576 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2577 }
2578 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2579 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2580 				      u16 index, bool is_rxqs_map)
2581 {
2582 	struct xps_map *new_map;
2583 	int alloc_len = XPS_MIN_MAP_ALLOC;
2584 	int i, pos;
2585 
2586 	for (pos = 0; map && pos < map->len; pos++) {
2587 		if (map->queues[pos] != index)
2588 			continue;
2589 		return map;
2590 	}
2591 
2592 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2593 	if (map) {
2594 		if (pos < map->alloc_len)
2595 			return map;
2596 
2597 		alloc_len = map->alloc_len * 2;
2598 	}
2599 
2600 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2601 	 *  map
2602 	 */
2603 	if (is_rxqs_map)
2604 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2605 	else
2606 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2607 				       cpu_to_node(attr_index));
2608 	if (!new_map)
2609 		return NULL;
2610 
2611 	for (i = 0; i < pos; i++)
2612 		new_map->queues[i] = map->queues[i];
2613 	new_map->alloc_len = alloc_len;
2614 	new_map->len = pos;
2615 
2616 	return new_map;
2617 }
2618 
2619 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2621 			  u16 index, bool is_rxqs_map)
2622 {
2623 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2624 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2625 	int i, j, tci, numa_node_id = -2;
2626 	int maps_sz, num_tc = 1, tc = 0;
2627 	struct xps_map *map, *new_map;
2628 	bool active = false;
2629 	unsigned int nr_ids;
2630 
2631 	if (dev->num_tc) {
2632 		/* Do not allow XPS on subordinate device directly */
2633 		num_tc = dev->num_tc;
2634 		if (num_tc < 0)
2635 			return -EINVAL;
2636 
2637 		/* If queue belongs to subordinate dev use its map */
2638 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2639 
2640 		tc = netdev_txq_to_tc(dev, index);
2641 		if (tc < 0)
2642 			return -EINVAL;
2643 	}
2644 
2645 	mutex_lock(&xps_map_mutex);
2646 	if (is_rxqs_map) {
2647 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2648 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2649 		nr_ids = dev->num_rx_queues;
2650 	} else {
2651 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2652 		if (num_possible_cpus() > 1) {
2653 			online_mask = cpumask_bits(cpu_online_mask);
2654 			possible_mask = cpumask_bits(cpu_possible_mask);
2655 		}
2656 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2657 		nr_ids = nr_cpu_ids;
2658 	}
2659 
2660 	if (maps_sz < L1_CACHE_BYTES)
2661 		maps_sz = L1_CACHE_BYTES;
2662 
2663 	/* allocate memory for queue storage */
2664 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2665 	     j < nr_ids;) {
2666 		if (!new_dev_maps)
2667 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2668 		if (!new_dev_maps) {
2669 			mutex_unlock(&xps_map_mutex);
2670 			return -ENOMEM;
2671 		}
2672 
2673 		tci = j * num_tc + tc;
2674 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2675 				 NULL;
2676 
2677 		map = expand_xps_map(map, j, index, is_rxqs_map);
2678 		if (!map)
2679 			goto error;
2680 
2681 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2682 	}
2683 
2684 	if (!new_dev_maps)
2685 		goto out_no_new_maps;
2686 
2687 	if (!dev_maps) {
2688 		/* Increment static keys at most once per type */
2689 		static_key_slow_inc_cpuslocked(&xps_needed);
2690 		if (is_rxqs_map)
2691 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2692 	}
2693 
2694 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2695 	     j < nr_ids;) {
2696 		/* copy maps belonging to foreign traffic classes */
2697 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2698 			/* fill in the new device map from the old device map */
2699 			map = xmap_dereference(dev_maps->attr_map[tci]);
2700 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2701 		}
2702 
2703 		/* We need to explicitly update tci as prevous loop
2704 		 * could break out early if dev_maps is NULL.
2705 		 */
2706 		tci = j * num_tc + tc;
2707 
2708 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2709 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2710 			/* add tx-queue to CPU/rx-queue maps */
2711 			int pos = 0;
2712 
2713 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 			while ((pos < map->len) && (map->queues[pos] != index))
2715 				pos++;
2716 
2717 			if (pos == map->len)
2718 				map->queues[map->len++] = index;
2719 #ifdef CONFIG_NUMA
2720 			if (!is_rxqs_map) {
2721 				if (numa_node_id == -2)
2722 					numa_node_id = cpu_to_node(j);
2723 				else if (numa_node_id != cpu_to_node(j))
2724 					numa_node_id = -1;
2725 			}
2726 #endif
2727 		} else if (dev_maps) {
2728 			/* fill in the new device map from the old device map */
2729 			map = xmap_dereference(dev_maps->attr_map[tci]);
2730 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731 		}
2732 
2733 		/* copy maps belonging to foreign traffic classes */
2734 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2735 			/* fill in the new device map from the old device map */
2736 			map = xmap_dereference(dev_maps->attr_map[tci]);
2737 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2738 		}
2739 	}
2740 
2741 	if (is_rxqs_map)
2742 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2743 	else
2744 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2745 
2746 	/* Cleanup old maps */
2747 	if (!dev_maps)
2748 		goto out_no_old_maps;
2749 
2750 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2751 	     j < nr_ids;) {
2752 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2753 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2754 			map = xmap_dereference(dev_maps->attr_map[tci]);
2755 			if (map && map != new_map)
2756 				kfree_rcu(map, rcu);
2757 		}
2758 	}
2759 
2760 	kfree_rcu(dev_maps, rcu);
2761 
2762 out_no_old_maps:
2763 	dev_maps = new_dev_maps;
2764 	active = true;
2765 
2766 out_no_new_maps:
2767 	if (!is_rxqs_map) {
2768 		/* update Tx queue numa node */
2769 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2770 					     (numa_node_id >= 0) ?
2771 					     numa_node_id : NUMA_NO_NODE);
2772 	}
2773 
2774 	if (!dev_maps)
2775 		goto out_no_maps;
2776 
2777 	/* removes tx-queue from unused CPUs/rx-queues */
2778 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2779 	     j < nr_ids;) {
2780 		for (i = tc, tci = j * num_tc; i--; tci++)
2781 			active |= remove_xps_queue(dev_maps, tci, index);
2782 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2783 		    !netif_attr_test_online(j, online_mask, nr_ids))
2784 			active |= remove_xps_queue(dev_maps, tci, index);
2785 		for (i = num_tc - tc, tci++; --i; tci++)
2786 			active |= remove_xps_queue(dev_maps, tci, index);
2787 	}
2788 
2789 	/* free map if not active */
2790 	if (!active)
2791 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2792 
2793 out_no_maps:
2794 	mutex_unlock(&xps_map_mutex);
2795 
2796 	return 0;
2797 error:
2798 	/* remove any maps that we added */
2799 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2800 	     j < nr_ids;) {
2801 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2802 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2803 			map = dev_maps ?
2804 			      xmap_dereference(dev_maps->attr_map[tci]) :
2805 			      NULL;
2806 			if (new_map && new_map != map)
2807 				kfree(new_map);
2808 		}
2809 	}
2810 
2811 	mutex_unlock(&xps_map_mutex);
2812 
2813 	kfree(new_dev_maps);
2814 	return -ENOMEM;
2815 }
2816 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2817 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2818 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2819 			u16 index)
2820 {
2821 	int ret;
2822 
2823 	cpus_read_lock();
2824 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2825 	cpus_read_unlock();
2826 
2827 	return ret;
2828 }
2829 EXPORT_SYMBOL(netif_set_xps_queue);
2830 
2831 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2832 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2833 {
2834 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835 
2836 	/* Unbind any subordinate channels */
2837 	while (txq-- != &dev->_tx[0]) {
2838 		if (txq->sb_dev)
2839 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2840 	}
2841 }
2842 
netdev_reset_tc(struct net_device * dev)2843 void netdev_reset_tc(struct net_device *dev)
2844 {
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(dev, 0);
2847 #endif
2848 	netdev_unbind_all_sb_channels(dev);
2849 
2850 	/* Reset TC configuration of device */
2851 	dev->num_tc = 0;
2852 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2853 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2854 }
2855 EXPORT_SYMBOL(netdev_reset_tc);
2856 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2857 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2858 {
2859 	if (tc >= dev->num_tc)
2860 		return -EINVAL;
2861 
2862 #ifdef CONFIG_XPS
2863 	netif_reset_xps_queues(dev, offset, count);
2864 #endif
2865 	dev->tc_to_txq[tc].count = count;
2866 	dev->tc_to_txq[tc].offset = offset;
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_set_tc_queue);
2870 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2871 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2872 {
2873 	if (num_tc > TC_MAX_QUEUE)
2874 		return -EINVAL;
2875 
2876 #ifdef CONFIG_XPS
2877 	netif_reset_xps_queues_gt(dev, 0);
2878 #endif
2879 	netdev_unbind_all_sb_channels(dev);
2880 
2881 	dev->num_tc = num_tc;
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(netdev_set_num_tc);
2885 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2886 void netdev_unbind_sb_channel(struct net_device *dev,
2887 			      struct net_device *sb_dev)
2888 {
2889 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2890 
2891 #ifdef CONFIG_XPS
2892 	netif_reset_xps_queues_gt(sb_dev, 0);
2893 #endif
2894 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2895 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2896 
2897 	while (txq-- != &dev->_tx[0]) {
2898 		if (txq->sb_dev == sb_dev)
2899 			txq->sb_dev = NULL;
2900 	}
2901 }
2902 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2903 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2904 int netdev_bind_sb_channel_queue(struct net_device *dev,
2905 				 struct net_device *sb_dev,
2906 				 u8 tc, u16 count, u16 offset)
2907 {
2908 	/* Make certain the sb_dev and dev are already configured */
2909 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2910 		return -EINVAL;
2911 
2912 	/* We cannot hand out queues we don't have */
2913 	if ((offset + count) > dev->real_num_tx_queues)
2914 		return -EINVAL;
2915 
2916 	/* Record the mapping */
2917 	sb_dev->tc_to_txq[tc].count = count;
2918 	sb_dev->tc_to_txq[tc].offset = offset;
2919 
2920 	/* Provide a way for Tx queue to find the tc_to_txq map or
2921 	 * XPS map for itself.
2922 	 */
2923 	while (count--)
2924 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2925 
2926 	return 0;
2927 }
2928 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2929 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2930 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2931 {
2932 	/* Do not use a multiqueue device to represent a subordinate channel */
2933 	if (netif_is_multiqueue(dev))
2934 		return -ENODEV;
2935 
2936 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2937 	 * Channel 0 is meant to be "native" mode and used only to represent
2938 	 * the main root device. We allow writing 0 to reset the device back
2939 	 * to normal mode after being used as a subordinate channel.
2940 	 */
2941 	if (channel > S16_MAX)
2942 		return -EINVAL;
2943 
2944 	dev->num_tc = -channel;
2945 
2946 	return 0;
2947 }
2948 EXPORT_SYMBOL(netdev_set_sb_channel);
2949 
2950 /*
2951  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2952  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2953  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2954 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2955 {
2956 	bool disabling;
2957 	int rc;
2958 
2959 	disabling = txq < dev->real_num_tx_queues;
2960 
2961 	if (txq < 1 || txq > dev->num_tx_queues)
2962 		return -EINVAL;
2963 
2964 	if (dev->reg_state == NETREG_REGISTERED ||
2965 	    dev->reg_state == NETREG_UNREGISTERING) {
2966 		ASSERT_RTNL();
2967 
2968 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2969 						  txq);
2970 		if (rc)
2971 			return rc;
2972 
2973 		if (dev->num_tc)
2974 			netif_setup_tc(dev, txq);
2975 
2976 		dev->real_num_tx_queues = txq;
2977 
2978 		if (disabling) {
2979 			synchronize_net();
2980 			qdisc_reset_all_tx_gt(dev, txq);
2981 #ifdef CONFIG_XPS
2982 			netif_reset_xps_queues_gt(dev, txq);
2983 #endif
2984 		}
2985 	} else {
2986 		dev->real_num_tx_queues = txq;
2987 	}
2988 
2989 	return 0;
2990 }
2991 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2992 
2993 #ifdef CONFIG_SYSFS
2994 /**
2995  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2996  *	@dev: Network device
2997  *	@rxq: Actual number of RX queues
2998  *
2999  *	This must be called either with the rtnl_lock held or before
3000  *	registration of the net device.  Returns 0 on success, or a
3001  *	negative error code.  If called before registration, it always
3002  *	succeeds.
3003  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3004 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3005 {
3006 	int rc;
3007 
3008 	if (rxq < 1 || rxq > dev->num_rx_queues)
3009 		return -EINVAL;
3010 
3011 	if (dev->reg_state == NETREG_REGISTERED) {
3012 		ASSERT_RTNL();
3013 
3014 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3015 						  rxq);
3016 		if (rc)
3017 			return rc;
3018 	}
3019 
3020 	dev->real_num_rx_queues = rxq;
3021 	return 0;
3022 }
3023 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3024 #endif
3025 
3026 /**
3027  * netif_get_num_default_rss_queues - default number of RSS queues
3028  *
3029  * This routine should set an upper limit on the number of RSS queues
3030  * used by default by multiqueue devices.
3031  */
netif_get_num_default_rss_queues(void)3032 int netif_get_num_default_rss_queues(void)
3033 {
3034 	return is_kdump_kernel() ?
3035 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036 }
3037 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038 
__netif_reschedule(struct Qdisc * q)3039 static void __netif_reschedule(struct Qdisc *q)
3040 {
3041 	struct softnet_data *sd;
3042 	unsigned long flags;
3043 
3044 	local_irq_save(flags);
3045 	sd = this_cpu_ptr(&softnet_data);
3046 	q->next_sched = NULL;
3047 	*sd->output_queue_tailp = q;
3048 	sd->output_queue_tailp = &q->next_sched;
3049 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050 	local_irq_restore(flags);
3051 }
3052 
__netif_schedule(struct Qdisc * q)3053 void __netif_schedule(struct Qdisc *q)
3054 {
3055 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056 		__netif_reschedule(q);
3057 }
3058 EXPORT_SYMBOL(__netif_schedule);
3059 
3060 struct dev_kfree_skb_cb {
3061 	enum skb_free_reason reason;
3062 };
3063 
get_kfree_skb_cb(const struct sk_buff * skb)3064 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065 {
3066 	return (struct dev_kfree_skb_cb *)skb->cb;
3067 }
3068 
netif_schedule_queue(struct netdev_queue * txq)3069 void netif_schedule_queue(struct netdev_queue *txq)
3070 {
3071 	rcu_read_lock();
3072 	if (!netif_xmit_stopped(txq)) {
3073 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3074 
3075 		__netif_schedule(q);
3076 	}
3077 	rcu_read_unlock();
3078 }
3079 EXPORT_SYMBOL(netif_schedule_queue);
3080 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3081 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082 {
3083 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084 		struct Qdisc *q;
3085 
3086 		rcu_read_lock();
3087 		q = rcu_dereference(dev_queue->qdisc);
3088 		__netif_schedule(q);
3089 		rcu_read_unlock();
3090 	}
3091 }
3092 EXPORT_SYMBOL(netif_tx_wake_queue);
3093 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3094 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095 {
3096 	unsigned long flags;
3097 
3098 	if (unlikely(!skb))
3099 		return;
3100 
3101 	if (likely(refcount_read(&skb->users) == 1)) {
3102 		smp_rmb();
3103 		refcount_set(&skb->users, 0);
3104 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3105 		return;
3106 	}
3107 	get_kfree_skb_cb(skb)->reason = reason;
3108 	local_irq_save(flags);
3109 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3110 	__this_cpu_write(softnet_data.completion_queue, skb);
3111 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112 	local_irq_restore(flags);
3113 }
3114 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3116 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117 {
3118 	if (in_irq() || irqs_disabled())
3119 		__dev_kfree_skb_irq(skb, reason);
3120 	else
3121 		dev_kfree_skb(skb);
3122 }
3123 EXPORT_SYMBOL(__dev_kfree_skb_any);
3124 
3125 
3126 /**
3127  * netif_device_detach - mark device as removed
3128  * @dev: network device
3129  *
3130  * Mark device as removed from system and therefore no longer available.
3131  */
netif_device_detach(struct net_device * dev)3132 void netif_device_detach(struct net_device *dev)
3133 {
3134 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135 	    netif_running(dev)) {
3136 		netif_tx_stop_all_queues(dev);
3137 	}
3138 }
3139 EXPORT_SYMBOL(netif_device_detach);
3140 
3141 /**
3142  * netif_device_attach - mark device as attached
3143  * @dev: network device
3144  *
3145  * Mark device as attached from system and restart if needed.
3146  */
netif_device_attach(struct net_device * dev)3147 void netif_device_attach(struct net_device *dev)
3148 {
3149 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150 	    netif_running(dev)) {
3151 		netif_tx_wake_all_queues(dev);
3152 		__netdev_watchdog_up(dev);
3153 	}
3154 }
3155 EXPORT_SYMBOL(netif_device_attach);
3156 
3157 /*
3158  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159  * to be used as a distribution range.
3160  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3161 static u16 skb_tx_hash(const struct net_device *dev,
3162 		       const struct net_device *sb_dev,
3163 		       struct sk_buff *skb)
3164 {
3165 	u32 hash;
3166 	u16 qoffset = 0;
3167 	u16 qcount = dev->real_num_tx_queues;
3168 
3169 	if (dev->num_tc) {
3170 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171 
3172 		qoffset = sb_dev->tc_to_txq[tc].offset;
3173 		qcount = sb_dev->tc_to_txq[tc].count;
3174 		if (unlikely(!qcount)) {
3175 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3176 					     sb_dev->name, qoffset, tc);
3177 			qoffset = 0;
3178 			qcount = dev->real_num_tx_queues;
3179 		}
3180 	}
3181 
3182 	if (skb_rx_queue_recorded(skb)) {
3183 		hash = skb_get_rx_queue(skb);
3184 		if (hash >= qoffset)
3185 			hash -= qoffset;
3186 		while (unlikely(hash >= qcount))
3187 			hash -= qcount;
3188 		return hash + qoffset;
3189 	}
3190 
3191 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3192 }
3193 
skb_warn_bad_offload(const struct sk_buff * skb)3194 static void skb_warn_bad_offload(const struct sk_buff *skb)
3195 {
3196 	static const netdev_features_t null_features;
3197 	struct net_device *dev = skb->dev;
3198 	const char *name = "";
3199 
3200 	if (!net_ratelimit())
3201 		return;
3202 
3203 	if (dev) {
3204 		if (dev->dev.parent)
3205 			name = dev_driver_string(dev->dev.parent);
3206 		else
3207 			name = netdev_name(dev);
3208 	}
3209 	skb_dump(KERN_WARNING, skb, false);
3210 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3211 	     name, dev ? &dev->features : &null_features,
3212 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3213 }
3214 
3215 /*
3216  * Invalidate hardware checksum when packet is to be mangled, and
3217  * complete checksum manually on outgoing path.
3218  */
skb_checksum_help(struct sk_buff * skb)3219 int skb_checksum_help(struct sk_buff *skb)
3220 {
3221 	__wsum csum;
3222 	int ret = 0, offset;
3223 
3224 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3225 		goto out_set_summed;
3226 
3227 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3228 		skb_warn_bad_offload(skb);
3229 		return -EINVAL;
3230 	}
3231 
3232 	/* Before computing a checksum, we should make sure no frag could
3233 	 * be modified by an external entity : checksum could be wrong.
3234 	 */
3235 	if (skb_has_shared_frag(skb)) {
3236 		ret = __skb_linearize(skb);
3237 		if (ret)
3238 			goto out;
3239 	}
3240 
3241 	offset = skb_checksum_start_offset(skb);
3242 	BUG_ON(offset >= skb_headlen(skb));
3243 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3244 
3245 	offset += skb->csum_offset;
3246 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3247 
3248 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249 	if (ret)
3250 		goto out;
3251 
3252 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253 out_set_summed:
3254 	skb->ip_summed = CHECKSUM_NONE;
3255 out:
3256 	return ret;
3257 }
3258 EXPORT_SYMBOL(skb_checksum_help);
3259 
skb_crc32c_csum_help(struct sk_buff * skb)3260 int skb_crc32c_csum_help(struct sk_buff *skb)
3261 {
3262 	__le32 crc32c_csum;
3263 	int ret = 0, offset, start;
3264 
3265 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 		goto out;
3267 
3268 	if (unlikely(skb_is_gso(skb)))
3269 		goto out;
3270 
3271 	/* Before computing a checksum, we should make sure no frag could
3272 	 * be modified by an external entity : checksum could be wrong.
3273 	 */
3274 	if (unlikely(skb_has_shared_frag(skb))) {
3275 		ret = __skb_linearize(skb);
3276 		if (ret)
3277 			goto out;
3278 	}
3279 	start = skb_checksum_start_offset(skb);
3280 	offset = start + offsetof(struct sctphdr, checksum);
3281 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282 		ret = -EINVAL;
3283 		goto out;
3284 	}
3285 
3286 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287 	if (ret)
3288 		goto out;
3289 
3290 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291 						  skb->len - start, ~(__u32)0,
3292 						  crc32c_csum_stub));
3293 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3294 	skb->ip_summed = CHECKSUM_NONE;
3295 	skb->csum_not_inet = 0;
3296 out:
3297 	return ret;
3298 }
3299 
skb_network_protocol(struct sk_buff * skb,int * depth)3300 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301 {
3302 	__be16 type = skb->protocol;
3303 
3304 	/* Tunnel gso handlers can set protocol to ethernet. */
3305 	if (type == htons(ETH_P_TEB)) {
3306 		struct ethhdr *eth;
3307 
3308 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309 			return 0;
3310 
3311 		eth = (struct ethhdr *)skb->data;
3312 		type = eth->h_proto;
3313 	}
3314 
3315 	return __vlan_get_protocol(skb, type, depth);
3316 }
3317 
3318 /**
3319  *	skb_mac_gso_segment - mac layer segmentation handler.
3320  *	@skb: buffer to segment
3321  *	@features: features for the output path (see dev->features)
3322  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3323 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324 				    netdev_features_t features)
3325 {
3326 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327 	struct packet_offload *ptype;
3328 	int vlan_depth = skb->mac_len;
3329 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3330 
3331 	if (unlikely(!type))
3332 		return ERR_PTR(-EINVAL);
3333 
3334 	__skb_pull(skb, vlan_depth);
3335 
3336 	rcu_read_lock();
3337 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3338 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3339 			segs = ptype->callbacks.gso_segment(skb, features);
3340 			break;
3341 		}
3342 	}
3343 	rcu_read_unlock();
3344 
3345 	__skb_push(skb, skb->data - skb_mac_header(skb));
3346 
3347 	return segs;
3348 }
3349 EXPORT_SYMBOL(skb_mac_gso_segment);
3350 
3351 
3352 /* openvswitch calls this on rx path, so we need a different check.
3353  */
skb_needs_check(struct sk_buff * skb,bool tx_path)3354 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355 {
3356 	if (tx_path)
3357 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3358 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3359 
3360 	return skb->ip_summed == CHECKSUM_NONE;
3361 }
3362 
3363 /**
3364  *	__skb_gso_segment - Perform segmentation on skb.
3365  *	@skb: buffer to segment
3366  *	@features: features for the output path (see dev->features)
3367  *	@tx_path: whether it is called in TX path
3368  *
3369  *	This function segments the given skb and returns a list of segments.
3370  *
3371  *	It may return NULL if the skb requires no segmentation.  This is
3372  *	only possible when GSO is used for verifying header integrity.
3373  *
3374  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377 				  netdev_features_t features, bool tx_path)
3378 {
3379 	struct sk_buff *segs;
3380 
3381 	if (unlikely(skb_needs_check(skb, tx_path))) {
3382 		int err;
3383 
3384 		/* We're going to init ->check field in TCP or UDP header */
3385 		err = skb_cow_head(skb, 0);
3386 		if (err < 0)
3387 			return ERR_PTR(err);
3388 	}
3389 
3390 	/* Only report GSO partial support if it will enable us to
3391 	 * support segmentation on this frame without needing additional
3392 	 * work.
3393 	 */
3394 	if (features & NETIF_F_GSO_PARTIAL) {
3395 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396 		struct net_device *dev = skb->dev;
3397 
3398 		partial_features |= dev->features & dev->gso_partial_features;
3399 		if (!skb_gso_ok(skb, features | partial_features))
3400 			features &= ~NETIF_F_GSO_PARTIAL;
3401 	}
3402 
3403 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405 
3406 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407 	SKB_GSO_CB(skb)->encap_level = 0;
3408 
3409 	skb_reset_mac_header(skb);
3410 	skb_reset_mac_len(skb);
3411 
3412 	segs = skb_mac_gso_segment(skb, features);
3413 
3414 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415 		skb_warn_bad_offload(skb);
3416 
3417 	return segs;
3418 }
3419 EXPORT_SYMBOL(__skb_gso_segment);
3420 
3421 /* Take action when hardware reception checksum errors are detected. */
3422 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3423 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424 {
3425 	if (net_ratelimit()) {
3426 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3427 		skb_dump(KERN_ERR, skb, true);
3428 		dump_stack();
3429 	}
3430 }
3431 EXPORT_SYMBOL(netdev_rx_csum_fault);
3432 #endif
3433 
3434 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3435 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3436 {
3437 #ifdef CONFIG_HIGHMEM
3438 	int i;
3439 
3440 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3441 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3442 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3443 
3444 			if (PageHighMem(skb_frag_page(frag)))
3445 				return 1;
3446 		}
3447 	}
3448 #endif
3449 	return 0;
3450 }
3451 
3452 /* If MPLS offload request, verify we are testing hardware MPLS features
3453  * instead of standard features for the netdev.
3454  */
3455 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3456 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3457 					   netdev_features_t features,
3458 					   __be16 type)
3459 {
3460 	if (eth_p_mpls(type))
3461 		features &= skb->dev->mpls_features;
3462 
3463 	return features;
3464 }
3465 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3466 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3467 					   netdev_features_t features,
3468 					   __be16 type)
3469 {
3470 	return features;
3471 }
3472 #endif
3473 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3474 static netdev_features_t harmonize_features(struct sk_buff *skb,
3475 	netdev_features_t features)
3476 {
3477 	__be16 type;
3478 
3479 	type = skb_network_protocol(skb, NULL);
3480 	features = net_mpls_features(skb, features, type);
3481 
3482 	if (skb->ip_summed != CHECKSUM_NONE &&
3483 	    !can_checksum_protocol(features, type)) {
3484 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3485 	}
3486 	if (illegal_highdma(skb->dev, skb))
3487 		features &= ~NETIF_F_SG;
3488 
3489 	return features;
3490 }
3491 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3492 netdev_features_t passthru_features_check(struct sk_buff *skb,
3493 					  struct net_device *dev,
3494 					  netdev_features_t features)
3495 {
3496 	return features;
3497 }
3498 EXPORT_SYMBOL(passthru_features_check);
3499 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3500 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3501 					     struct net_device *dev,
3502 					     netdev_features_t features)
3503 {
3504 	return vlan_features_check(skb, features);
3505 }
3506 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3507 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3508 					    struct net_device *dev,
3509 					    netdev_features_t features)
3510 {
3511 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3512 
3513 	if (gso_segs > dev->gso_max_segs)
3514 		return features & ~NETIF_F_GSO_MASK;
3515 
3516 	/* Support for GSO partial features requires software
3517 	 * intervention before we can actually process the packets
3518 	 * so we need to strip support for any partial features now
3519 	 * and we can pull them back in after we have partially
3520 	 * segmented the frame.
3521 	 */
3522 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3523 		features &= ~dev->gso_partial_features;
3524 
3525 	/* Make sure to clear the IPv4 ID mangling feature if the
3526 	 * IPv4 header has the potential to be fragmented.
3527 	 */
3528 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3529 		struct iphdr *iph = skb->encapsulation ?
3530 				    inner_ip_hdr(skb) : ip_hdr(skb);
3531 
3532 		if (!(iph->frag_off & htons(IP_DF)))
3533 			features &= ~NETIF_F_TSO_MANGLEID;
3534 	}
3535 
3536 	return features;
3537 }
3538 
netif_skb_features(struct sk_buff * skb)3539 netdev_features_t netif_skb_features(struct sk_buff *skb)
3540 {
3541 	struct net_device *dev = skb->dev;
3542 	netdev_features_t features = dev->features;
3543 
3544 	if (skb_is_gso(skb))
3545 		features = gso_features_check(skb, dev, features);
3546 
3547 	/* If encapsulation offload request, verify we are testing
3548 	 * hardware encapsulation features instead of standard
3549 	 * features for the netdev
3550 	 */
3551 	if (skb->encapsulation)
3552 		features &= dev->hw_enc_features;
3553 
3554 	if (skb_vlan_tagged(skb))
3555 		features = netdev_intersect_features(features,
3556 						     dev->vlan_features |
3557 						     NETIF_F_HW_VLAN_CTAG_TX |
3558 						     NETIF_F_HW_VLAN_STAG_TX);
3559 
3560 	if (dev->netdev_ops->ndo_features_check)
3561 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3562 								features);
3563 	else
3564 		features &= dflt_features_check(skb, dev, features);
3565 
3566 	return harmonize_features(skb, features);
3567 }
3568 EXPORT_SYMBOL(netif_skb_features);
3569 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3570 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3571 		    struct netdev_queue *txq, bool more)
3572 {
3573 	unsigned int len;
3574 	int rc;
3575 
3576 	if (dev_nit_active(dev))
3577 		dev_queue_xmit_nit(skb, dev);
3578 
3579 	len = skb->len;
3580 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3581 	trace_net_dev_start_xmit(skb, dev);
3582 	rc = netdev_start_xmit(skb, dev, txq, more);
3583 	trace_net_dev_xmit(skb, rc, dev, len);
3584 
3585 	return rc;
3586 }
3587 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3588 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3589 				    struct netdev_queue *txq, int *ret)
3590 {
3591 	struct sk_buff *skb = first;
3592 	int rc = NETDEV_TX_OK;
3593 
3594 	while (skb) {
3595 		struct sk_buff *next = skb->next;
3596 
3597 		skb_mark_not_on_list(skb);
3598 		rc = xmit_one(skb, dev, txq, next != NULL);
3599 		if (unlikely(!dev_xmit_complete(rc))) {
3600 			skb->next = next;
3601 			goto out;
3602 		}
3603 
3604 		skb = next;
3605 		if (netif_tx_queue_stopped(txq) && skb) {
3606 			rc = NETDEV_TX_BUSY;
3607 			break;
3608 		}
3609 	}
3610 
3611 out:
3612 	*ret = rc;
3613 	return skb;
3614 }
3615 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3616 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3617 					  netdev_features_t features)
3618 {
3619 	if (skb_vlan_tag_present(skb) &&
3620 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3621 		skb = __vlan_hwaccel_push_inside(skb);
3622 	return skb;
3623 }
3624 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3625 int skb_csum_hwoffload_help(struct sk_buff *skb,
3626 			    const netdev_features_t features)
3627 {
3628 	if (unlikely(skb->csum_not_inet))
3629 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3630 			skb_crc32c_csum_help(skb);
3631 
3632 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3633 }
3634 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3635 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3636 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3637 {
3638 	netdev_features_t features;
3639 
3640 	features = netif_skb_features(skb);
3641 	skb = validate_xmit_vlan(skb, features);
3642 	if (unlikely(!skb))
3643 		goto out_null;
3644 
3645 	skb = sk_validate_xmit_skb(skb, dev);
3646 	if (unlikely(!skb))
3647 		goto out_null;
3648 
3649 	if (netif_needs_gso(skb, features)) {
3650 		struct sk_buff *segs;
3651 
3652 		segs = skb_gso_segment(skb, features);
3653 		if (IS_ERR(segs)) {
3654 			goto out_kfree_skb;
3655 		} else if (segs) {
3656 			consume_skb(skb);
3657 			skb = segs;
3658 		}
3659 	} else {
3660 		if (skb_needs_linearize(skb, features) &&
3661 		    __skb_linearize(skb))
3662 			goto out_kfree_skb;
3663 
3664 		/* If packet is not checksummed and device does not
3665 		 * support checksumming for this protocol, complete
3666 		 * checksumming here.
3667 		 */
3668 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3669 			if (skb->encapsulation)
3670 				skb_set_inner_transport_header(skb,
3671 							       skb_checksum_start_offset(skb));
3672 			else
3673 				skb_set_transport_header(skb,
3674 							 skb_checksum_start_offset(skb));
3675 			if (skb_csum_hwoffload_help(skb, features))
3676 				goto out_kfree_skb;
3677 		}
3678 	}
3679 
3680 	skb = validate_xmit_xfrm(skb, features, again);
3681 
3682 	return skb;
3683 
3684 out_kfree_skb:
3685 	kfree_skb(skb);
3686 out_null:
3687 	atomic_long_inc(&dev->tx_dropped);
3688 	return NULL;
3689 }
3690 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3691 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3692 {
3693 	struct sk_buff *next, *head = NULL, *tail;
3694 
3695 	for (; skb != NULL; skb = next) {
3696 		next = skb->next;
3697 		skb_mark_not_on_list(skb);
3698 
3699 		/* in case skb wont be segmented, point to itself */
3700 		skb->prev = skb;
3701 
3702 		skb = validate_xmit_skb(skb, dev, again);
3703 		if (!skb)
3704 			continue;
3705 
3706 		if (!head)
3707 			head = skb;
3708 		else
3709 			tail->next = skb;
3710 		/* If skb was segmented, skb->prev points to
3711 		 * the last segment. If not, it still contains skb.
3712 		 */
3713 		tail = skb->prev;
3714 	}
3715 	return head;
3716 }
3717 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3718 
qdisc_pkt_len_init(struct sk_buff * skb)3719 static void qdisc_pkt_len_init(struct sk_buff *skb)
3720 {
3721 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3722 
3723 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3724 
3725 	/* To get more precise estimation of bytes sent on wire,
3726 	 * we add to pkt_len the headers size of all segments
3727 	 */
3728 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3729 		unsigned int hdr_len;
3730 		u16 gso_segs = shinfo->gso_segs;
3731 
3732 		/* mac layer + network layer */
3733 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3734 
3735 		/* + transport layer */
3736 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3737 			const struct tcphdr *th;
3738 			struct tcphdr _tcphdr;
3739 
3740 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3741 						sizeof(_tcphdr), &_tcphdr);
3742 			if (likely(th))
3743 				hdr_len += __tcp_hdrlen(th);
3744 		} else {
3745 			struct udphdr _udphdr;
3746 
3747 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3748 					       sizeof(_udphdr), &_udphdr))
3749 				hdr_len += sizeof(struct udphdr);
3750 		}
3751 
3752 		if (shinfo->gso_type & SKB_GSO_DODGY)
3753 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3754 						shinfo->gso_size);
3755 
3756 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3757 	}
3758 }
3759 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3760 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3761 				 struct net_device *dev,
3762 				 struct netdev_queue *txq)
3763 {
3764 	spinlock_t *root_lock = qdisc_lock(q);
3765 	struct sk_buff *to_free = NULL;
3766 	bool contended;
3767 	int rc;
3768 
3769 	qdisc_calculate_pkt_len(skb, q);
3770 
3771 	if (q->flags & TCQ_F_NOLOCK) {
3772 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3773 		if (likely(!netif_xmit_frozen_or_stopped(txq)))
3774 			qdisc_run(q);
3775 
3776 		if (unlikely(to_free))
3777 			kfree_skb_list(to_free);
3778 		return rc;
3779 	}
3780 
3781 	/*
3782 	 * Heuristic to force contended enqueues to serialize on a
3783 	 * separate lock before trying to get qdisc main lock.
3784 	 * This permits qdisc->running owner to get the lock more
3785 	 * often and dequeue packets faster.
3786 	 */
3787 	contended = qdisc_is_running(q);
3788 	if (unlikely(contended))
3789 		spin_lock(&q->busylock);
3790 
3791 	spin_lock(root_lock);
3792 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3793 		__qdisc_drop(skb, &to_free);
3794 		rc = NET_XMIT_DROP;
3795 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3796 		   qdisc_run_begin(q)) {
3797 		/*
3798 		 * This is a work-conserving queue; there are no old skbs
3799 		 * waiting to be sent out; and the qdisc is not running -
3800 		 * xmit the skb directly.
3801 		 */
3802 
3803 		qdisc_bstats_update(q, skb);
3804 
3805 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3806 			if (unlikely(contended)) {
3807 				spin_unlock(&q->busylock);
3808 				contended = false;
3809 			}
3810 			__qdisc_run(q);
3811 		}
3812 
3813 		qdisc_run_end(q);
3814 		rc = NET_XMIT_SUCCESS;
3815 	} else {
3816 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3817 		if (qdisc_run_begin(q)) {
3818 			if (unlikely(contended)) {
3819 				spin_unlock(&q->busylock);
3820 				contended = false;
3821 			}
3822 			__qdisc_run(q);
3823 			qdisc_run_end(q);
3824 		}
3825 	}
3826 	spin_unlock(root_lock);
3827 	if (unlikely(to_free))
3828 		kfree_skb_list(to_free);
3829 	if (unlikely(contended))
3830 		spin_unlock(&q->busylock);
3831 	return rc;
3832 }
3833 
3834 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3835 static void skb_update_prio(struct sk_buff *skb)
3836 {
3837 	const struct netprio_map *map;
3838 	const struct sock *sk;
3839 	unsigned int prioidx;
3840 
3841 	if (skb->priority)
3842 		return;
3843 	map = rcu_dereference_bh(skb->dev->priomap);
3844 	if (!map)
3845 		return;
3846 	sk = skb_to_full_sk(skb);
3847 	if (!sk)
3848 		return;
3849 
3850 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3851 
3852 	if (prioidx < map->priomap_len)
3853 		skb->priority = map->priomap[prioidx];
3854 }
3855 #else
3856 #define skb_update_prio(skb)
3857 #endif
3858 
3859 /**
3860  *	dev_loopback_xmit - loop back @skb
3861  *	@net: network namespace this loopback is happening in
3862  *	@sk:  sk needed to be a netfilter okfn
3863  *	@skb: buffer to transmit
3864  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3865 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3866 {
3867 	skb_reset_mac_header(skb);
3868 	__skb_pull(skb, skb_network_offset(skb));
3869 	skb->pkt_type = PACKET_LOOPBACK;
3870 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3871 	WARN_ON(!skb_dst(skb));
3872 	skb_dst_force(skb);
3873 	netif_rx_ni(skb);
3874 	return 0;
3875 }
3876 EXPORT_SYMBOL(dev_loopback_xmit);
3877 
3878 #ifdef CONFIG_NET_EGRESS
3879 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3880 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3881 {
3882 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3883 	struct tcf_result cl_res;
3884 
3885 	if (!miniq)
3886 		return skb;
3887 
3888 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3889 	qdisc_skb_cb(skb)->mru = 0;
3890 	mini_qdisc_bstats_cpu_update(miniq, skb);
3891 
3892 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3893 	case TC_ACT_OK:
3894 	case TC_ACT_RECLASSIFY:
3895 		skb->tc_index = TC_H_MIN(cl_res.classid);
3896 		break;
3897 	case TC_ACT_SHOT:
3898 		mini_qdisc_qstats_cpu_drop(miniq);
3899 		*ret = NET_XMIT_DROP;
3900 		kfree_skb(skb);
3901 		return NULL;
3902 	case TC_ACT_STOLEN:
3903 	case TC_ACT_QUEUED:
3904 	case TC_ACT_TRAP:
3905 		*ret = NET_XMIT_SUCCESS;
3906 		consume_skb(skb);
3907 		return NULL;
3908 	case TC_ACT_REDIRECT:
3909 		/* No need to push/pop skb's mac_header here on egress! */
3910 		skb_do_redirect(skb);
3911 		*ret = NET_XMIT_SUCCESS;
3912 		return NULL;
3913 	default:
3914 		break;
3915 	}
3916 
3917 	return skb;
3918 }
3919 #endif /* CONFIG_NET_EGRESS */
3920 
3921 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3922 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3923 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3924 {
3925 	struct xps_map *map;
3926 	int queue_index = -1;
3927 
3928 	if (dev->num_tc) {
3929 		tci *= dev->num_tc;
3930 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3931 	}
3932 
3933 	map = rcu_dereference(dev_maps->attr_map[tci]);
3934 	if (map) {
3935 		if (map->len == 1)
3936 			queue_index = map->queues[0];
3937 		else
3938 			queue_index = map->queues[reciprocal_scale(
3939 						skb_get_hash(skb), map->len)];
3940 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3941 			queue_index = -1;
3942 	}
3943 	return queue_index;
3944 }
3945 #endif
3946 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3947 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3948 			 struct sk_buff *skb)
3949 {
3950 #ifdef CONFIG_XPS
3951 	struct xps_dev_maps *dev_maps;
3952 	struct sock *sk = skb->sk;
3953 	int queue_index = -1;
3954 
3955 	if (!static_key_false(&xps_needed))
3956 		return -1;
3957 
3958 	rcu_read_lock();
3959 	if (!static_key_false(&xps_rxqs_needed))
3960 		goto get_cpus_map;
3961 
3962 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3963 	if (dev_maps) {
3964 		int tci = sk_rx_queue_get(sk);
3965 
3966 		if (tci >= 0 && tci < dev->num_rx_queues)
3967 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3968 							  tci);
3969 	}
3970 
3971 get_cpus_map:
3972 	if (queue_index < 0) {
3973 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3974 		if (dev_maps) {
3975 			unsigned int tci = skb->sender_cpu - 1;
3976 
3977 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3978 							  tci);
3979 		}
3980 	}
3981 	rcu_read_unlock();
3982 
3983 	return queue_index;
3984 #else
3985 	return -1;
3986 #endif
3987 }
3988 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3989 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3990 		     struct net_device *sb_dev)
3991 {
3992 	return 0;
3993 }
3994 EXPORT_SYMBOL(dev_pick_tx_zero);
3995 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3996 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3997 		       struct net_device *sb_dev)
3998 {
3999 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4000 }
4001 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4002 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4003 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4004 		     struct net_device *sb_dev)
4005 {
4006 	struct sock *sk = skb->sk;
4007 	int queue_index = sk_tx_queue_get(sk);
4008 
4009 	sb_dev = sb_dev ? : dev;
4010 
4011 	if (queue_index < 0 || skb->ooo_okay ||
4012 	    queue_index >= dev->real_num_tx_queues) {
4013 		int new_index = get_xps_queue(dev, sb_dev, skb);
4014 
4015 		if (new_index < 0)
4016 			new_index = skb_tx_hash(dev, sb_dev, skb);
4017 
4018 		if (queue_index != new_index && sk &&
4019 		    sk_fullsock(sk) &&
4020 		    rcu_access_pointer(sk->sk_dst_cache))
4021 			sk_tx_queue_set(sk, new_index);
4022 
4023 		queue_index = new_index;
4024 	}
4025 
4026 	return queue_index;
4027 }
4028 EXPORT_SYMBOL(netdev_pick_tx);
4029 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4030 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4031 					 struct sk_buff *skb,
4032 					 struct net_device *sb_dev)
4033 {
4034 	int queue_index = 0;
4035 
4036 #ifdef CONFIG_XPS
4037 	u32 sender_cpu = skb->sender_cpu - 1;
4038 
4039 	if (sender_cpu >= (u32)NR_CPUS)
4040 		skb->sender_cpu = raw_smp_processor_id() + 1;
4041 #endif
4042 
4043 	if (dev->real_num_tx_queues != 1) {
4044 		const struct net_device_ops *ops = dev->netdev_ops;
4045 
4046 		if (ops->ndo_select_queue)
4047 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4048 		else
4049 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4050 
4051 		queue_index = netdev_cap_txqueue(dev, queue_index);
4052 	}
4053 
4054 	skb_set_queue_mapping(skb, queue_index);
4055 	return netdev_get_tx_queue(dev, queue_index);
4056 }
4057 
4058 /**
4059  *	__dev_queue_xmit - transmit a buffer
4060  *	@skb: buffer to transmit
4061  *	@sb_dev: suboordinate device used for L2 forwarding offload
4062  *
4063  *	Queue a buffer for transmission to a network device. The caller must
4064  *	have set the device and priority and built the buffer before calling
4065  *	this function. The function can be called from an interrupt.
4066  *
4067  *	A negative errno code is returned on a failure. A success does not
4068  *	guarantee the frame will be transmitted as it may be dropped due
4069  *	to congestion or traffic shaping.
4070  *
4071  * -----------------------------------------------------------------------------------
4072  *      I notice this method can also return errors from the queue disciplines,
4073  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4074  *      be positive.
4075  *
4076  *      Regardless of the return value, the skb is consumed, so it is currently
4077  *      difficult to retry a send to this method.  (You can bump the ref count
4078  *      before sending to hold a reference for retry if you are careful.)
4079  *
4080  *      When calling this method, interrupts MUST be enabled.  This is because
4081  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4082  *          --BLG
4083  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4084 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4085 {
4086 	struct net_device *dev = skb->dev;
4087 	struct netdev_queue *txq;
4088 	struct Qdisc *q;
4089 	int rc = -ENOMEM;
4090 	bool again = false;
4091 
4092 	skb_reset_mac_header(skb);
4093 
4094 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4095 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4096 
4097 	/* Disable soft irqs for various locks below. Also
4098 	 * stops preemption for RCU.
4099 	 */
4100 	rcu_read_lock_bh();
4101 
4102 	skb_update_prio(skb);
4103 
4104 	qdisc_pkt_len_init(skb);
4105 #ifdef CONFIG_NET_CLS_ACT
4106 	skb->tc_at_ingress = 0;
4107 # ifdef CONFIG_NET_EGRESS
4108 	if (static_branch_unlikely(&egress_needed_key)) {
4109 		skb = sch_handle_egress(skb, &rc, dev);
4110 		if (!skb)
4111 			goto out;
4112 	}
4113 # endif
4114 #endif
4115 	/* If device/qdisc don't need skb->dst, release it right now while
4116 	 * its hot in this cpu cache.
4117 	 */
4118 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4119 		skb_dst_drop(skb);
4120 	else
4121 		skb_dst_force(skb);
4122 
4123 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4124 	q = rcu_dereference_bh(txq->qdisc);
4125 
4126 	trace_net_dev_queue(skb);
4127 	if (q->enqueue) {
4128 		rc = __dev_xmit_skb(skb, q, dev, txq);
4129 		goto out;
4130 	}
4131 
4132 	/* The device has no queue. Common case for software devices:
4133 	 * loopback, all the sorts of tunnels...
4134 
4135 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4136 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4137 	 * counters.)
4138 	 * However, it is possible, that they rely on protection
4139 	 * made by us here.
4140 
4141 	 * Check this and shot the lock. It is not prone from deadlocks.
4142 	 *Either shot noqueue qdisc, it is even simpler 8)
4143 	 */
4144 	if (dev->flags & IFF_UP) {
4145 		int cpu = smp_processor_id(); /* ok because BHs are off */
4146 
4147 		if (txq->xmit_lock_owner != cpu) {
4148 			if (dev_xmit_recursion())
4149 				goto recursion_alert;
4150 
4151 			skb = validate_xmit_skb(skb, dev, &again);
4152 			if (!skb)
4153 				goto out;
4154 
4155 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4156 			HARD_TX_LOCK(dev, txq, cpu);
4157 
4158 			if (!netif_xmit_stopped(txq)) {
4159 				dev_xmit_recursion_inc();
4160 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4161 				dev_xmit_recursion_dec();
4162 				if (dev_xmit_complete(rc)) {
4163 					HARD_TX_UNLOCK(dev, txq);
4164 					goto out;
4165 				}
4166 			}
4167 			HARD_TX_UNLOCK(dev, txq);
4168 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4169 					     dev->name);
4170 		} else {
4171 			/* Recursion is detected! It is possible,
4172 			 * unfortunately
4173 			 */
4174 recursion_alert:
4175 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4176 					     dev->name);
4177 		}
4178 	}
4179 
4180 	rc = -ENETDOWN;
4181 	rcu_read_unlock_bh();
4182 
4183 	atomic_long_inc(&dev->tx_dropped);
4184 	kfree_skb_list(skb);
4185 	return rc;
4186 out:
4187 	rcu_read_unlock_bh();
4188 	return rc;
4189 }
4190 
dev_queue_xmit(struct sk_buff * skb)4191 int dev_queue_xmit(struct sk_buff *skb)
4192 {
4193 	return __dev_queue_xmit(skb, NULL);
4194 }
4195 EXPORT_SYMBOL(dev_queue_xmit);
4196 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4197 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4198 {
4199 	return __dev_queue_xmit(skb, sb_dev);
4200 }
4201 EXPORT_SYMBOL(dev_queue_xmit_accel);
4202 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4203 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4204 {
4205 	struct net_device *dev = skb->dev;
4206 	struct sk_buff *orig_skb = skb;
4207 	struct netdev_queue *txq;
4208 	int ret = NETDEV_TX_BUSY;
4209 	bool again = false;
4210 
4211 	if (unlikely(!netif_running(dev) ||
4212 		     !netif_carrier_ok(dev)))
4213 		goto drop;
4214 
4215 	skb = validate_xmit_skb_list(skb, dev, &again);
4216 	if (skb != orig_skb)
4217 		goto drop;
4218 
4219 	skb_set_queue_mapping(skb, queue_id);
4220 	txq = skb_get_tx_queue(dev, skb);
4221 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4222 
4223 	local_bh_disable();
4224 
4225 	dev_xmit_recursion_inc();
4226 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4227 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4228 		ret = netdev_start_xmit(skb, dev, txq, false);
4229 	HARD_TX_UNLOCK(dev, txq);
4230 	dev_xmit_recursion_dec();
4231 
4232 	local_bh_enable();
4233 	return ret;
4234 drop:
4235 	atomic_long_inc(&dev->tx_dropped);
4236 	kfree_skb_list(skb);
4237 	return NET_XMIT_DROP;
4238 }
4239 EXPORT_SYMBOL(__dev_direct_xmit);
4240 
4241 /*************************************************************************
4242  *			Receiver routines
4243  *************************************************************************/
4244 
4245 int netdev_max_backlog __read_mostly = 1000;
4246 EXPORT_SYMBOL(netdev_max_backlog);
4247 
4248 int netdev_tstamp_prequeue __read_mostly = 1;
4249 int netdev_budget __read_mostly = 300;
4250 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4251 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4252 int weight_p __read_mostly = 64;           /* old backlog weight */
4253 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4254 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4255 int dev_rx_weight __read_mostly = 64;
4256 int dev_tx_weight __read_mostly = 64;
4257 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4258 int gro_normal_batch __read_mostly = 8;
4259 
4260 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4261 static inline void ____napi_schedule(struct softnet_data *sd,
4262 				     struct napi_struct *napi)
4263 {
4264 	list_add_tail(&napi->poll_list, &sd->poll_list);
4265 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4266 }
4267 
4268 #ifdef CONFIG_RPS
4269 
4270 /* One global table that all flow-based protocols share. */
4271 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4272 EXPORT_SYMBOL(rps_sock_flow_table);
4273 u32 rps_cpu_mask __read_mostly;
4274 EXPORT_SYMBOL(rps_cpu_mask);
4275 
4276 struct static_key_false rps_needed __read_mostly;
4277 EXPORT_SYMBOL(rps_needed);
4278 struct static_key_false rfs_needed __read_mostly;
4279 EXPORT_SYMBOL(rfs_needed);
4280 
4281 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4282 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4283 	    struct rps_dev_flow *rflow, u16 next_cpu)
4284 {
4285 	if (next_cpu < nr_cpu_ids) {
4286 #ifdef CONFIG_RFS_ACCEL
4287 		struct netdev_rx_queue *rxqueue;
4288 		struct rps_dev_flow_table *flow_table;
4289 		struct rps_dev_flow *old_rflow;
4290 		u32 flow_id;
4291 		u16 rxq_index;
4292 		int rc;
4293 
4294 		/* Should we steer this flow to a different hardware queue? */
4295 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4296 		    !(dev->features & NETIF_F_NTUPLE))
4297 			goto out;
4298 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4299 		if (rxq_index == skb_get_rx_queue(skb))
4300 			goto out;
4301 
4302 		rxqueue = dev->_rx + rxq_index;
4303 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4304 		if (!flow_table)
4305 			goto out;
4306 		flow_id = skb_get_hash(skb) & flow_table->mask;
4307 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4308 							rxq_index, flow_id);
4309 		if (rc < 0)
4310 			goto out;
4311 		old_rflow = rflow;
4312 		rflow = &flow_table->flows[flow_id];
4313 		rflow->filter = rc;
4314 		if (old_rflow->filter == rflow->filter)
4315 			old_rflow->filter = RPS_NO_FILTER;
4316 	out:
4317 #endif
4318 		rflow->last_qtail =
4319 			per_cpu(softnet_data, next_cpu).input_queue_head;
4320 	}
4321 
4322 	rflow->cpu = next_cpu;
4323 	return rflow;
4324 }
4325 
4326 /*
4327  * get_rps_cpu is called from netif_receive_skb and returns the target
4328  * CPU from the RPS map of the receiving queue for a given skb.
4329  * rcu_read_lock must be held on entry.
4330  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4331 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4332 		       struct rps_dev_flow **rflowp)
4333 {
4334 	const struct rps_sock_flow_table *sock_flow_table;
4335 	struct netdev_rx_queue *rxqueue = dev->_rx;
4336 	struct rps_dev_flow_table *flow_table;
4337 	struct rps_map *map;
4338 	int cpu = -1;
4339 	u32 tcpu;
4340 	u32 hash;
4341 
4342 	if (skb_rx_queue_recorded(skb)) {
4343 		u16 index = skb_get_rx_queue(skb);
4344 
4345 		if (unlikely(index >= dev->real_num_rx_queues)) {
4346 			WARN_ONCE(dev->real_num_rx_queues > 1,
4347 				  "%s received packet on queue %u, but number "
4348 				  "of RX queues is %u\n",
4349 				  dev->name, index, dev->real_num_rx_queues);
4350 			goto done;
4351 		}
4352 		rxqueue += index;
4353 	}
4354 
4355 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4356 
4357 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4358 	map = rcu_dereference(rxqueue->rps_map);
4359 	if (!flow_table && !map)
4360 		goto done;
4361 
4362 	skb_reset_network_header(skb);
4363 	hash = skb_get_hash(skb);
4364 	if (!hash)
4365 		goto done;
4366 
4367 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4368 	if (flow_table && sock_flow_table) {
4369 		struct rps_dev_flow *rflow;
4370 		u32 next_cpu;
4371 		u32 ident;
4372 
4373 		/* First check into global flow table if there is a match */
4374 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4375 		if ((ident ^ hash) & ~rps_cpu_mask)
4376 			goto try_rps;
4377 
4378 		next_cpu = ident & rps_cpu_mask;
4379 
4380 		/* OK, now we know there is a match,
4381 		 * we can look at the local (per receive queue) flow table
4382 		 */
4383 		rflow = &flow_table->flows[hash & flow_table->mask];
4384 		tcpu = rflow->cpu;
4385 
4386 		/*
4387 		 * If the desired CPU (where last recvmsg was done) is
4388 		 * different from current CPU (one in the rx-queue flow
4389 		 * table entry), switch if one of the following holds:
4390 		 *   - Current CPU is unset (>= nr_cpu_ids).
4391 		 *   - Current CPU is offline.
4392 		 *   - The current CPU's queue tail has advanced beyond the
4393 		 *     last packet that was enqueued using this table entry.
4394 		 *     This guarantees that all previous packets for the flow
4395 		 *     have been dequeued, thus preserving in order delivery.
4396 		 */
4397 		if (unlikely(tcpu != next_cpu) &&
4398 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4399 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4400 		      rflow->last_qtail)) >= 0)) {
4401 			tcpu = next_cpu;
4402 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4403 		}
4404 
4405 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4406 			*rflowp = rflow;
4407 			cpu = tcpu;
4408 			goto done;
4409 		}
4410 	}
4411 
4412 try_rps:
4413 
4414 	if (map) {
4415 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4416 		if (cpu_online(tcpu)) {
4417 			cpu = tcpu;
4418 			goto done;
4419 		}
4420 	}
4421 
4422 done:
4423 	return cpu;
4424 }
4425 
4426 #ifdef CONFIG_RFS_ACCEL
4427 
4428 /**
4429  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4430  * @dev: Device on which the filter was set
4431  * @rxq_index: RX queue index
4432  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4433  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4434  *
4435  * Drivers that implement ndo_rx_flow_steer() should periodically call
4436  * this function for each installed filter and remove the filters for
4437  * which it returns %true.
4438  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4439 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4440 			 u32 flow_id, u16 filter_id)
4441 {
4442 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4443 	struct rps_dev_flow_table *flow_table;
4444 	struct rps_dev_flow *rflow;
4445 	bool expire = true;
4446 	unsigned int cpu;
4447 
4448 	rcu_read_lock();
4449 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4450 	if (flow_table && flow_id <= flow_table->mask) {
4451 		rflow = &flow_table->flows[flow_id];
4452 		cpu = READ_ONCE(rflow->cpu);
4453 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4454 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4455 			   rflow->last_qtail) <
4456 		     (int)(10 * flow_table->mask)))
4457 			expire = false;
4458 	}
4459 	rcu_read_unlock();
4460 	return expire;
4461 }
4462 EXPORT_SYMBOL(rps_may_expire_flow);
4463 
4464 #endif /* CONFIG_RFS_ACCEL */
4465 
4466 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4467 static void rps_trigger_softirq(void *data)
4468 {
4469 	struct softnet_data *sd = data;
4470 
4471 	____napi_schedule(sd, &sd->backlog);
4472 	sd->received_rps++;
4473 }
4474 
4475 #endif /* CONFIG_RPS */
4476 
4477 /*
4478  * Check if this softnet_data structure is another cpu one
4479  * If yes, queue it to our IPI list and return 1
4480  * If no, return 0
4481  */
rps_ipi_queued(struct softnet_data * sd)4482 static int rps_ipi_queued(struct softnet_data *sd)
4483 {
4484 #ifdef CONFIG_RPS
4485 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4486 
4487 	if (sd != mysd) {
4488 		sd->rps_ipi_next = mysd->rps_ipi_list;
4489 		mysd->rps_ipi_list = sd;
4490 
4491 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4492 		return 1;
4493 	}
4494 #endif /* CONFIG_RPS */
4495 	return 0;
4496 }
4497 
4498 #ifdef CONFIG_NET_FLOW_LIMIT
4499 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4500 #endif
4501 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4502 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4503 {
4504 #ifdef CONFIG_NET_FLOW_LIMIT
4505 	struct sd_flow_limit *fl;
4506 	struct softnet_data *sd;
4507 	unsigned int old_flow, new_flow;
4508 
4509 	if (qlen < (netdev_max_backlog >> 1))
4510 		return false;
4511 
4512 	sd = this_cpu_ptr(&softnet_data);
4513 
4514 	rcu_read_lock();
4515 	fl = rcu_dereference(sd->flow_limit);
4516 	if (fl) {
4517 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4518 		old_flow = fl->history[fl->history_head];
4519 		fl->history[fl->history_head] = new_flow;
4520 
4521 		fl->history_head++;
4522 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4523 
4524 		if (likely(fl->buckets[old_flow]))
4525 			fl->buckets[old_flow]--;
4526 
4527 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4528 			fl->count++;
4529 			rcu_read_unlock();
4530 			return true;
4531 		}
4532 	}
4533 	rcu_read_unlock();
4534 #endif
4535 	return false;
4536 }
4537 
4538 /*
4539  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4540  * queue (may be a remote CPU queue).
4541  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4542 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4543 			      unsigned int *qtail)
4544 {
4545 	struct softnet_data *sd;
4546 	unsigned long flags;
4547 	unsigned int qlen;
4548 
4549 	sd = &per_cpu(softnet_data, cpu);
4550 
4551 	local_irq_save(flags);
4552 
4553 	rps_lock(sd);
4554 	if (!netif_running(skb->dev))
4555 		goto drop;
4556 	qlen = skb_queue_len(&sd->input_pkt_queue);
4557 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4558 		if (qlen) {
4559 enqueue:
4560 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4561 			input_queue_tail_incr_save(sd, qtail);
4562 			rps_unlock(sd);
4563 			local_irq_restore(flags);
4564 			return NET_RX_SUCCESS;
4565 		}
4566 
4567 		/* Schedule NAPI for backlog device
4568 		 * We can use non atomic operation since we own the queue lock
4569 		 */
4570 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4571 			if (!rps_ipi_queued(sd))
4572 				____napi_schedule(sd, &sd->backlog);
4573 		}
4574 		goto enqueue;
4575 	}
4576 
4577 drop:
4578 	sd->dropped++;
4579 	rps_unlock(sd);
4580 
4581 	local_irq_restore(flags);
4582 
4583 	atomic_long_inc(&skb->dev->rx_dropped);
4584 	kfree_skb(skb);
4585 	return NET_RX_DROP;
4586 }
4587 
netif_get_rxqueue(struct sk_buff * skb)4588 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4589 {
4590 	struct net_device *dev = skb->dev;
4591 	struct netdev_rx_queue *rxqueue;
4592 
4593 	rxqueue = dev->_rx;
4594 
4595 	if (skb_rx_queue_recorded(skb)) {
4596 		u16 index = skb_get_rx_queue(skb);
4597 
4598 		if (unlikely(index >= dev->real_num_rx_queues)) {
4599 			WARN_ONCE(dev->real_num_rx_queues > 1,
4600 				  "%s received packet on queue %u, but number "
4601 				  "of RX queues is %u\n",
4602 				  dev->name, index, dev->real_num_rx_queues);
4603 
4604 			return rxqueue; /* Return first rxqueue */
4605 		}
4606 		rxqueue += index;
4607 	}
4608 	return rxqueue;
4609 }
4610 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4611 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4612 				     struct xdp_buff *xdp,
4613 				     struct bpf_prog *xdp_prog)
4614 {
4615 	struct netdev_rx_queue *rxqueue;
4616 	void *orig_data, *orig_data_end;
4617 	u32 metalen, act = XDP_DROP;
4618 	__be16 orig_eth_type;
4619 	struct ethhdr *eth;
4620 	bool orig_bcast;
4621 	int hlen, off;
4622 	u32 mac_len;
4623 
4624 	/* Reinjected packets coming from act_mirred or similar should
4625 	 * not get XDP generic processing.
4626 	 */
4627 	if (skb_is_redirected(skb))
4628 		return XDP_PASS;
4629 
4630 	/* XDP packets must be linear and must have sufficient headroom
4631 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4632 	 * native XDP provides, thus we need to do it here as well.
4633 	 */
4634 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4635 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4636 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4637 		int troom = skb->tail + skb->data_len - skb->end;
4638 
4639 		/* In case we have to go down the path and also linearize,
4640 		 * then lets do the pskb_expand_head() work just once here.
4641 		 */
4642 		if (pskb_expand_head(skb,
4643 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4644 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4645 			goto do_drop;
4646 		if (skb_linearize(skb))
4647 			goto do_drop;
4648 	}
4649 
4650 	/* The XDP program wants to see the packet starting at the MAC
4651 	 * header.
4652 	 */
4653 	mac_len = skb->data - skb_mac_header(skb);
4654 	hlen = skb_headlen(skb) + mac_len;
4655 	xdp->data = skb->data - mac_len;
4656 	xdp->data_meta = xdp->data;
4657 	xdp->data_end = xdp->data + hlen;
4658 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4659 
4660 	/* SKB "head" area always have tailroom for skb_shared_info */
4661 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4662 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4663 
4664 	orig_data_end = xdp->data_end;
4665 	orig_data = xdp->data;
4666 	eth = (struct ethhdr *)xdp->data;
4667 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4668 	orig_eth_type = eth->h_proto;
4669 
4670 	rxqueue = netif_get_rxqueue(skb);
4671 	xdp->rxq = &rxqueue->xdp_rxq;
4672 
4673 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4674 
4675 	/* check if bpf_xdp_adjust_head was used */
4676 	off = xdp->data - orig_data;
4677 	if (off) {
4678 		if (off > 0)
4679 			__skb_pull(skb, off);
4680 		else if (off < 0)
4681 			__skb_push(skb, -off);
4682 
4683 		skb->mac_header += off;
4684 		skb_reset_network_header(skb);
4685 	}
4686 
4687 	/* check if bpf_xdp_adjust_tail was used */
4688 	off = xdp->data_end - orig_data_end;
4689 	if (off != 0) {
4690 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4691 		skb->len += off; /* positive on grow, negative on shrink */
4692 	}
4693 
4694 	/* check if XDP changed eth hdr such SKB needs update */
4695 	eth = (struct ethhdr *)xdp->data;
4696 	if ((orig_eth_type != eth->h_proto) ||
4697 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4698 		__skb_push(skb, ETH_HLEN);
4699 		skb->protocol = eth_type_trans(skb, skb->dev);
4700 	}
4701 
4702 	switch (act) {
4703 	case XDP_REDIRECT:
4704 	case XDP_TX:
4705 		__skb_push(skb, mac_len);
4706 		break;
4707 	case XDP_PASS:
4708 		metalen = xdp->data - xdp->data_meta;
4709 		if (metalen)
4710 			skb_metadata_set(skb, metalen);
4711 		break;
4712 	default:
4713 		bpf_warn_invalid_xdp_action(act);
4714 		fallthrough;
4715 	case XDP_ABORTED:
4716 		trace_xdp_exception(skb->dev, xdp_prog, act);
4717 		fallthrough;
4718 	case XDP_DROP:
4719 	do_drop:
4720 		kfree_skb(skb);
4721 		break;
4722 	}
4723 
4724 	return act;
4725 }
4726 
4727 /* When doing generic XDP we have to bypass the qdisc layer and the
4728  * network taps in order to match in-driver-XDP behavior.
4729  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4730 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4731 {
4732 	struct net_device *dev = skb->dev;
4733 	struct netdev_queue *txq;
4734 	bool free_skb = true;
4735 	int cpu, rc;
4736 
4737 	txq = netdev_core_pick_tx(dev, skb, NULL);
4738 	cpu = smp_processor_id();
4739 	HARD_TX_LOCK(dev, txq, cpu);
4740 	if (!netif_xmit_stopped(txq)) {
4741 		rc = netdev_start_xmit(skb, dev, txq, 0);
4742 		if (dev_xmit_complete(rc))
4743 			free_skb = false;
4744 	}
4745 	HARD_TX_UNLOCK(dev, txq);
4746 	if (free_skb) {
4747 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4748 		kfree_skb(skb);
4749 	}
4750 }
4751 
4752 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4753 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4754 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4755 {
4756 	if (xdp_prog) {
4757 		struct xdp_buff xdp;
4758 		u32 act;
4759 		int err;
4760 
4761 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4762 		if (act != XDP_PASS) {
4763 			switch (act) {
4764 			case XDP_REDIRECT:
4765 				err = xdp_do_generic_redirect(skb->dev, skb,
4766 							      &xdp, xdp_prog);
4767 				if (err)
4768 					goto out_redir;
4769 				break;
4770 			case XDP_TX:
4771 				generic_xdp_tx(skb, xdp_prog);
4772 				break;
4773 			}
4774 			return XDP_DROP;
4775 		}
4776 	}
4777 	return XDP_PASS;
4778 out_redir:
4779 	kfree_skb(skb);
4780 	return XDP_DROP;
4781 }
4782 EXPORT_SYMBOL_GPL(do_xdp_generic);
4783 
netif_rx_internal(struct sk_buff * skb)4784 static int netif_rx_internal(struct sk_buff *skb)
4785 {
4786 	int ret;
4787 
4788 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4789 
4790 	trace_netif_rx(skb);
4791 
4792 #ifdef CONFIG_RPS
4793 	if (static_branch_unlikely(&rps_needed)) {
4794 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4795 		int cpu;
4796 
4797 		preempt_disable();
4798 		rcu_read_lock();
4799 
4800 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4801 		if (cpu < 0)
4802 			cpu = smp_processor_id();
4803 
4804 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4805 
4806 		rcu_read_unlock();
4807 		preempt_enable();
4808 	} else
4809 #endif
4810 	{
4811 		unsigned int qtail;
4812 
4813 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4814 		put_cpu();
4815 	}
4816 	return ret;
4817 }
4818 
4819 /**
4820  *	netif_rx	-	post buffer to the network code
4821  *	@skb: buffer to post
4822  *
4823  *	This function receives a packet from a device driver and queues it for
4824  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4825  *	may be dropped during processing for congestion control or by the
4826  *	protocol layers.
4827  *
4828  *	return values:
4829  *	NET_RX_SUCCESS	(no congestion)
4830  *	NET_RX_DROP     (packet was dropped)
4831  *
4832  */
4833 
netif_rx(struct sk_buff * skb)4834 int netif_rx(struct sk_buff *skb)
4835 {
4836 	int ret;
4837 
4838 	trace_netif_rx_entry(skb);
4839 
4840 	ret = netif_rx_internal(skb);
4841 	trace_netif_rx_exit(ret);
4842 
4843 	return ret;
4844 }
4845 EXPORT_SYMBOL(netif_rx);
4846 
netif_rx_ni(struct sk_buff * skb)4847 int netif_rx_ni(struct sk_buff *skb)
4848 {
4849 	int err;
4850 
4851 	trace_netif_rx_ni_entry(skb);
4852 
4853 	preempt_disable();
4854 	err = netif_rx_internal(skb);
4855 	if (local_softirq_pending())
4856 		do_softirq();
4857 	preempt_enable();
4858 	trace_netif_rx_ni_exit(err);
4859 
4860 	return err;
4861 }
4862 EXPORT_SYMBOL(netif_rx_ni);
4863 
netif_rx_any_context(struct sk_buff * skb)4864 int netif_rx_any_context(struct sk_buff *skb)
4865 {
4866 	/*
4867 	 * If invoked from contexts which do not invoke bottom half
4868 	 * processing either at return from interrupt or when softrqs are
4869 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4870 	 * directly.
4871 	 */
4872 	if (in_interrupt())
4873 		return netif_rx(skb);
4874 	else
4875 		return netif_rx_ni(skb);
4876 }
4877 EXPORT_SYMBOL(netif_rx_any_context);
4878 
net_tx_action(struct softirq_action * h)4879 static __latent_entropy void net_tx_action(struct softirq_action *h)
4880 {
4881 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4882 
4883 	if (sd->completion_queue) {
4884 		struct sk_buff *clist;
4885 
4886 		local_irq_disable();
4887 		clist = sd->completion_queue;
4888 		sd->completion_queue = NULL;
4889 		local_irq_enable();
4890 
4891 		while (clist) {
4892 			struct sk_buff *skb = clist;
4893 
4894 			clist = clist->next;
4895 
4896 			WARN_ON(refcount_read(&skb->users));
4897 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4898 				trace_consume_skb(skb);
4899 			else
4900 				trace_kfree_skb(skb, net_tx_action);
4901 
4902 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4903 				__kfree_skb(skb);
4904 			else
4905 				__kfree_skb_defer(skb);
4906 		}
4907 
4908 		__kfree_skb_flush();
4909 	}
4910 
4911 	if (sd->output_queue) {
4912 		struct Qdisc *head;
4913 
4914 		local_irq_disable();
4915 		head = sd->output_queue;
4916 		sd->output_queue = NULL;
4917 		sd->output_queue_tailp = &sd->output_queue;
4918 		local_irq_enable();
4919 
4920 		rcu_read_lock();
4921 
4922 		while (head) {
4923 			struct Qdisc *q = head;
4924 			spinlock_t *root_lock = NULL;
4925 
4926 			head = head->next_sched;
4927 
4928 			/* We need to make sure head->next_sched is read
4929 			 * before clearing __QDISC_STATE_SCHED
4930 			 */
4931 			smp_mb__before_atomic();
4932 
4933 			if (!(q->flags & TCQ_F_NOLOCK)) {
4934 				root_lock = qdisc_lock(q);
4935 				spin_lock(root_lock);
4936 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4937 						     &q->state))) {
4938 				/* There is a synchronize_net() between
4939 				 * STATE_DEACTIVATED flag being set and
4940 				 * qdisc_reset()/some_qdisc_is_busy() in
4941 				 * dev_deactivate(), so we can safely bail out
4942 				 * early here to avoid data race between
4943 				 * qdisc_deactivate() and some_qdisc_is_busy()
4944 				 * for lockless qdisc.
4945 				 */
4946 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4947 				continue;
4948 			}
4949 
4950 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4951 			qdisc_run(q);
4952 			if (root_lock)
4953 				spin_unlock(root_lock);
4954 		}
4955 
4956 		rcu_read_unlock();
4957 	}
4958 
4959 	xfrm_dev_backlog(sd);
4960 }
4961 
4962 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4963 /* This hook is defined here for ATM LANE */
4964 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4965 			     unsigned char *addr) __read_mostly;
4966 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4967 #endif
4968 
4969 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4970 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4971 		   struct net_device *orig_dev, bool *another)
4972 {
4973 #ifdef CONFIG_NET_CLS_ACT
4974 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4975 	struct tcf_result cl_res;
4976 
4977 	/* If there's at least one ingress present somewhere (so
4978 	 * we get here via enabled static key), remaining devices
4979 	 * that are not configured with an ingress qdisc will bail
4980 	 * out here.
4981 	 */
4982 	if (!miniq)
4983 		return skb;
4984 
4985 	if (*pt_prev) {
4986 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4987 		*pt_prev = NULL;
4988 	}
4989 
4990 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4991 	qdisc_skb_cb(skb)->mru = 0;
4992 	skb->tc_at_ingress = 1;
4993 	mini_qdisc_bstats_cpu_update(miniq, skb);
4994 
4995 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4996 				     &cl_res, false)) {
4997 	case TC_ACT_OK:
4998 	case TC_ACT_RECLASSIFY:
4999 		skb->tc_index = TC_H_MIN(cl_res.classid);
5000 		break;
5001 	case TC_ACT_SHOT:
5002 		mini_qdisc_qstats_cpu_drop(miniq);
5003 		kfree_skb(skb);
5004 		return NULL;
5005 	case TC_ACT_STOLEN:
5006 	case TC_ACT_QUEUED:
5007 	case TC_ACT_TRAP:
5008 		consume_skb(skb);
5009 		return NULL;
5010 	case TC_ACT_REDIRECT:
5011 		/* skb_mac_header check was done by cls/act_bpf, so
5012 		 * we can safely push the L2 header back before
5013 		 * redirecting to another netdev
5014 		 */
5015 		__skb_push(skb, skb->mac_len);
5016 		if (skb_do_redirect(skb) == -EAGAIN) {
5017 			__skb_pull(skb, skb->mac_len);
5018 			*another = true;
5019 			break;
5020 		}
5021 		return NULL;
5022 	case TC_ACT_CONSUMED:
5023 		return NULL;
5024 	default:
5025 		break;
5026 	}
5027 #endif /* CONFIG_NET_CLS_ACT */
5028 	return skb;
5029 }
5030 
5031 /**
5032  *	netdev_is_rx_handler_busy - check if receive handler is registered
5033  *	@dev: device to check
5034  *
5035  *	Check if a receive handler is already registered for a given device.
5036  *	Return true if there one.
5037  *
5038  *	The caller must hold the rtnl_mutex.
5039  */
netdev_is_rx_handler_busy(struct net_device * dev)5040 bool netdev_is_rx_handler_busy(struct net_device *dev)
5041 {
5042 	ASSERT_RTNL();
5043 	return dev && rtnl_dereference(dev->rx_handler);
5044 }
5045 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5046 
5047 /**
5048  *	netdev_rx_handler_register - register receive handler
5049  *	@dev: device to register a handler for
5050  *	@rx_handler: receive handler to register
5051  *	@rx_handler_data: data pointer that is used by rx handler
5052  *
5053  *	Register a receive handler for a device. This handler will then be
5054  *	called from __netif_receive_skb. A negative errno code is returned
5055  *	on a failure.
5056  *
5057  *	The caller must hold the rtnl_mutex.
5058  *
5059  *	For a general description of rx_handler, see enum rx_handler_result.
5060  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5061 int netdev_rx_handler_register(struct net_device *dev,
5062 			       rx_handler_func_t *rx_handler,
5063 			       void *rx_handler_data)
5064 {
5065 	if (netdev_is_rx_handler_busy(dev))
5066 		return -EBUSY;
5067 
5068 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5069 		return -EINVAL;
5070 
5071 	/* Note: rx_handler_data must be set before rx_handler */
5072 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5073 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5074 
5075 	return 0;
5076 }
5077 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5078 
5079 /**
5080  *	netdev_rx_handler_unregister - unregister receive handler
5081  *	@dev: device to unregister a handler from
5082  *
5083  *	Unregister a receive handler from a device.
5084  *
5085  *	The caller must hold the rtnl_mutex.
5086  */
netdev_rx_handler_unregister(struct net_device * dev)5087 void netdev_rx_handler_unregister(struct net_device *dev)
5088 {
5089 
5090 	ASSERT_RTNL();
5091 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5092 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5093 	 * section has a guarantee to see a non NULL rx_handler_data
5094 	 * as well.
5095 	 */
5096 	synchronize_net();
5097 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5098 }
5099 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5100 
5101 /*
5102  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5103  * the special handling of PFMEMALLOC skbs.
5104  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5105 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5106 {
5107 	switch (skb->protocol) {
5108 	case htons(ETH_P_ARP):
5109 	case htons(ETH_P_IP):
5110 	case htons(ETH_P_IPV6):
5111 	case htons(ETH_P_8021Q):
5112 	case htons(ETH_P_8021AD):
5113 		return true;
5114 	default:
5115 		return false;
5116 	}
5117 }
5118 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5119 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5120 			     int *ret, struct net_device *orig_dev)
5121 {
5122 	if (nf_hook_ingress_active(skb)) {
5123 		int ingress_retval;
5124 
5125 		if (*pt_prev) {
5126 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5127 			*pt_prev = NULL;
5128 		}
5129 
5130 		rcu_read_lock();
5131 		ingress_retval = nf_hook_ingress(skb);
5132 		rcu_read_unlock();
5133 		return ingress_retval;
5134 	}
5135 	return 0;
5136 }
5137 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5138 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5139 				    struct packet_type **ppt_prev)
5140 {
5141 	struct packet_type *ptype, *pt_prev;
5142 	rx_handler_func_t *rx_handler;
5143 	struct sk_buff *skb = *pskb;
5144 	struct net_device *orig_dev;
5145 	bool deliver_exact = false;
5146 	int ret = NET_RX_DROP;
5147 	__be16 type;
5148 
5149 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5150 
5151 	trace_netif_receive_skb(skb);
5152 
5153 	orig_dev = skb->dev;
5154 
5155 	skb_reset_network_header(skb);
5156 	if (!skb_transport_header_was_set(skb))
5157 		skb_reset_transport_header(skb);
5158 	skb_reset_mac_len(skb);
5159 
5160 	pt_prev = NULL;
5161 
5162 another_round:
5163 	skb->skb_iif = skb->dev->ifindex;
5164 
5165 	__this_cpu_inc(softnet_data.processed);
5166 
5167 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5168 		int ret2;
5169 
5170 		preempt_disable();
5171 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5172 		preempt_enable();
5173 
5174 		if (ret2 != XDP_PASS) {
5175 			ret = NET_RX_DROP;
5176 			goto out;
5177 		}
5178 		skb_reset_mac_len(skb);
5179 	}
5180 
5181 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5182 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5183 		skb = skb_vlan_untag(skb);
5184 		if (unlikely(!skb))
5185 			goto out;
5186 	}
5187 
5188 	if (skb_skip_tc_classify(skb))
5189 		goto skip_classify;
5190 
5191 	if (pfmemalloc)
5192 		goto skip_taps;
5193 
5194 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5195 		if (pt_prev)
5196 			ret = deliver_skb(skb, pt_prev, orig_dev);
5197 		pt_prev = ptype;
5198 	}
5199 
5200 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5201 		if (pt_prev)
5202 			ret = deliver_skb(skb, pt_prev, orig_dev);
5203 		pt_prev = ptype;
5204 	}
5205 
5206 skip_taps:
5207 #ifdef CONFIG_NET_INGRESS
5208 	if (static_branch_unlikely(&ingress_needed_key)) {
5209 		bool another = false;
5210 
5211 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5212 					 &another);
5213 		if (another)
5214 			goto another_round;
5215 		if (!skb)
5216 			goto out;
5217 
5218 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5219 			goto out;
5220 	}
5221 #endif
5222 	skb_reset_redirect(skb);
5223 skip_classify:
5224 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5225 		goto drop;
5226 
5227 	if (skb_vlan_tag_present(skb)) {
5228 		if (pt_prev) {
5229 			ret = deliver_skb(skb, pt_prev, orig_dev);
5230 			pt_prev = NULL;
5231 		}
5232 		if (vlan_do_receive(&skb))
5233 			goto another_round;
5234 		else if (unlikely(!skb))
5235 			goto out;
5236 	}
5237 
5238 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5239 	if (rx_handler) {
5240 		if (pt_prev) {
5241 			ret = deliver_skb(skb, pt_prev, orig_dev);
5242 			pt_prev = NULL;
5243 		}
5244 		switch (rx_handler(&skb)) {
5245 		case RX_HANDLER_CONSUMED:
5246 			ret = NET_RX_SUCCESS;
5247 			goto out;
5248 		case RX_HANDLER_ANOTHER:
5249 			goto another_round;
5250 		case RX_HANDLER_EXACT:
5251 			deliver_exact = true;
5252 		case RX_HANDLER_PASS:
5253 			break;
5254 		default:
5255 			BUG();
5256 		}
5257 	}
5258 
5259 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5260 check_vlan_id:
5261 		if (skb_vlan_tag_get_id(skb)) {
5262 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5263 			 * find vlan device.
5264 			 */
5265 			skb->pkt_type = PACKET_OTHERHOST;
5266 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5267 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5268 			/* Outer header is 802.1P with vlan 0, inner header is
5269 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5270 			 * not find vlan dev for vlan id 0.
5271 			 */
5272 			__vlan_hwaccel_clear_tag(skb);
5273 			skb = skb_vlan_untag(skb);
5274 			if (unlikely(!skb))
5275 				goto out;
5276 			if (vlan_do_receive(&skb))
5277 				/* After stripping off 802.1P header with vlan 0
5278 				 * vlan dev is found for inner header.
5279 				 */
5280 				goto another_round;
5281 			else if (unlikely(!skb))
5282 				goto out;
5283 			else
5284 				/* We have stripped outer 802.1P vlan 0 header.
5285 				 * But could not find vlan dev.
5286 				 * check again for vlan id to set OTHERHOST.
5287 				 */
5288 				goto check_vlan_id;
5289 		}
5290 		/* Note: we might in the future use prio bits
5291 		 * and set skb->priority like in vlan_do_receive()
5292 		 * For the time being, just ignore Priority Code Point
5293 		 */
5294 		__vlan_hwaccel_clear_tag(skb);
5295 	}
5296 
5297 	type = skb->protocol;
5298 
5299 	/* deliver only exact match when indicated */
5300 	if (likely(!deliver_exact)) {
5301 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5302 				       &ptype_base[ntohs(type) &
5303 						   PTYPE_HASH_MASK]);
5304 	}
5305 
5306 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5307 			       &orig_dev->ptype_specific);
5308 
5309 	if (unlikely(skb->dev != orig_dev)) {
5310 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5311 				       &skb->dev->ptype_specific);
5312 	}
5313 
5314 	if (pt_prev) {
5315 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5316 			goto drop;
5317 		*ppt_prev = pt_prev;
5318 	} else {
5319 drop:
5320 		if (!deliver_exact)
5321 			atomic_long_inc(&skb->dev->rx_dropped);
5322 		else
5323 			atomic_long_inc(&skb->dev->rx_nohandler);
5324 		kfree_skb(skb);
5325 		/* Jamal, now you will not able to escape explaining
5326 		 * me how you were going to use this. :-)
5327 		 */
5328 		ret = NET_RX_DROP;
5329 	}
5330 
5331 out:
5332 	/* The invariant here is that if *ppt_prev is not NULL
5333 	 * then skb should also be non-NULL.
5334 	 *
5335 	 * Apparently *ppt_prev assignment above holds this invariant due to
5336 	 * skb dereferencing near it.
5337 	 */
5338 	*pskb = skb;
5339 	return ret;
5340 }
5341 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5342 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5343 {
5344 	struct net_device *orig_dev = skb->dev;
5345 	struct packet_type *pt_prev = NULL;
5346 	int ret;
5347 
5348 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5349 	if (pt_prev)
5350 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5351 					 skb->dev, pt_prev, orig_dev);
5352 	return ret;
5353 }
5354 
5355 /**
5356  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5357  *	@skb: buffer to process
5358  *
5359  *	More direct receive version of netif_receive_skb().  It should
5360  *	only be used by callers that have a need to skip RPS and Generic XDP.
5361  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5362  *
5363  *	This function may only be called from softirq context and interrupts
5364  *	should be enabled.
5365  *
5366  *	Return values (usually ignored):
5367  *	NET_RX_SUCCESS: no congestion
5368  *	NET_RX_DROP: packet was dropped
5369  */
netif_receive_skb_core(struct sk_buff * skb)5370 int netif_receive_skb_core(struct sk_buff *skb)
5371 {
5372 	int ret;
5373 
5374 	rcu_read_lock();
5375 	ret = __netif_receive_skb_one_core(skb, false);
5376 	rcu_read_unlock();
5377 
5378 	return ret;
5379 }
5380 EXPORT_SYMBOL(netif_receive_skb_core);
5381 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5382 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5383 						  struct packet_type *pt_prev,
5384 						  struct net_device *orig_dev)
5385 {
5386 	struct sk_buff *skb, *next;
5387 
5388 	if (!pt_prev)
5389 		return;
5390 	if (list_empty(head))
5391 		return;
5392 	if (pt_prev->list_func != NULL)
5393 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5394 				   ip_list_rcv, head, pt_prev, orig_dev);
5395 	else
5396 		list_for_each_entry_safe(skb, next, head, list) {
5397 			skb_list_del_init(skb);
5398 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5399 		}
5400 }
5401 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5402 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5403 {
5404 	/* Fast-path assumptions:
5405 	 * - There is no RX handler.
5406 	 * - Only one packet_type matches.
5407 	 * If either of these fails, we will end up doing some per-packet
5408 	 * processing in-line, then handling the 'last ptype' for the whole
5409 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5410 	 * because the 'last ptype' must be constant across the sublist, and all
5411 	 * other ptypes are handled per-packet.
5412 	 */
5413 	/* Current (common) ptype of sublist */
5414 	struct packet_type *pt_curr = NULL;
5415 	/* Current (common) orig_dev of sublist */
5416 	struct net_device *od_curr = NULL;
5417 	struct list_head sublist;
5418 	struct sk_buff *skb, *next;
5419 
5420 	INIT_LIST_HEAD(&sublist);
5421 	list_for_each_entry_safe(skb, next, head, list) {
5422 		struct net_device *orig_dev = skb->dev;
5423 		struct packet_type *pt_prev = NULL;
5424 
5425 		skb_list_del_init(skb);
5426 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5427 		if (!pt_prev)
5428 			continue;
5429 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5430 			/* dispatch old sublist */
5431 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5432 			/* start new sublist */
5433 			INIT_LIST_HEAD(&sublist);
5434 			pt_curr = pt_prev;
5435 			od_curr = orig_dev;
5436 		}
5437 		list_add_tail(&skb->list, &sublist);
5438 	}
5439 
5440 	/* dispatch final sublist */
5441 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5442 }
5443 
__netif_receive_skb(struct sk_buff * skb)5444 static int __netif_receive_skb(struct sk_buff *skb)
5445 {
5446 	int ret;
5447 
5448 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5449 		unsigned int noreclaim_flag;
5450 
5451 		/*
5452 		 * PFMEMALLOC skbs are special, they should
5453 		 * - be delivered to SOCK_MEMALLOC sockets only
5454 		 * - stay away from userspace
5455 		 * - have bounded memory usage
5456 		 *
5457 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5458 		 * context down to all allocation sites.
5459 		 */
5460 		noreclaim_flag = memalloc_noreclaim_save();
5461 		ret = __netif_receive_skb_one_core(skb, true);
5462 		memalloc_noreclaim_restore(noreclaim_flag);
5463 	} else
5464 		ret = __netif_receive_skb_one_core(skb, false);
5465 
5466 	return ret;
5467 }
5468 
__netif_receive_skb_list(struct list_head * head)5469 static void __netif_receive_skb_list(struct list_head *head)
5470 {
5471 	unsigned long noreclaim_flag = 0;
5472 	struct sk_buff *skb, *next;
5473 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5474 
5475 	list_for_each_entry_safe(skb, next, head, list) {
5476 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5477 			struct list_head sublist;
5478 
5479 			/* Handle the previous sublist */
5480 			list_cut_before(&sublist, head, &skb->list);
5481 			if (!list_empty(&sublist))
5482 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5483 			pfmemalloc = !pfmemalloc;
5484 			/* See comments in __netif_receive_skb */
5485 			if (pfmemalloc)
5486 				noreclaim_flag = memalloc_noreclaim_save();
5487 			else
5488 				memalloc_noreclaim_restore(noreclaim_flag);
5489 		}
5490 	}
5491 	/* Handle the remaining sublist */
5492 	if (!list_empty(head))
5493 		__netif_receive_skb_list_core(head, pfmemalloc);
5494 	/* Restore pflags */
5495 	if (pfmemalloc)
5496 		memalloc_noreclaim_restore(noreclaim_flag);
5497 }
5498 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5499 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5500 {
5501 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5502 	struct bpf_prog *new = xdp->prog;
5503 	int ret = 0;
5504 
5505 	if (new) {
5506 		u32 i;
5507 
5508 		mutex_lock(&new->aux->used_maps_mutex);
5509 
5510 		/* generic XDP does not work with DEVMAPs that can
5511 		 * have a bpf_prog installed on an entry
5512 		 */
5513 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5514 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5515 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5516 				mutex_unlock(&new->aux->used_maps_mutex);
5517 				return -EINVAL;
5518 			}
5519 		}
5520 
5521 		mutex_unlock(&new->aux->used_maps_mutex);
5522 	}
5523 
5524 	switch (xdp->command) {
5525 	case XDP_SETUP_PROG:
5526 		rcu_assign_pointer(dev->xdp_prog, new);
5527 		if (old)
5528 			bpf_prog_put(old);
5529 
5530 		if (old && !new) {
5531 			static_branch_dec(&generic_xdp_needed_key);
5532 		} else if (new && !old) {
5533 			static_branch_inc(&generic_xdp_needed_key);
5534 			dev_disable_lro(dev);
5535 			dev_disable_gro_hw(dev);
5536 		}
5537 		break;
5538 
5539 	default:
5540 		ret = -EINVAL;
5541 		break;
5542 	}
5543 
5544 	return ret;
5545 }
5546 
netif_receive_skb_internal(struct sk_buff * skb)5547 static int netif_receive_skb_internal(struct sk_buff *skb)
5548 {
5549 	int ret;
5550 
5551 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5552 
5553 	if (skb_defer_rx_timestamp(skb))
5554 		return NET_RX_SUCCESS;
5555 
5556 	rcu_read_lock();
5557 #ifdef CONFIG_RPS
5558 	if (static_branch_unlikely(&rps_needed)) {
5559 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5560 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5561 
5562 		if (cpu >= 0) {
5563 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5564 			rcu_read_unlock();
5565 			return ret;
5566 		}
5567 	}
5568 #endif
5569 	ret = __netif_receive_skb(skb);
5570 	rcu_read_unlock();
5571 	return ret;
5572 }
5573 
netif_receive_skb_list_internal(struct list_head * head)5574 static void netif_receive_skb_list_internal(struct list_head *head)
5575 {
5576 	struct sk_buff *skb, *next;
5577 	struct list_head sublist;
5578 
5579 	INIT_LIST_HEAD(&sublist);
5580 	list_for_each_entry_safe(skb, next, head, list) {
5581 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5582 		skb_list_del_init(skb);
5583 		if (!skb_defer_rx_timestamp(skb))
5584 			list_add_tail(&skb->list, &sublist);
5585 	}
5586 	list_splice_init(&sublist, head);
5587 
5588 	rcu_read_lock();
5589 #ifdef CONFIG_RPS
5590 	if (static_branch_unlikely(&rps_needed)) {
5591 		list_for_each_entry_safe(skb, next, head, list) {
5592 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5593 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5594 
5595 			if (cpu >= 0) {
5596 				/* Will be handled, remove from list */
5597 				skb_list_del_init(skb);
5598 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5599 			}
5600 		}
5601 	}
5602 #endif
5603 	__netif_receive_skb_list(head);
5604 	rcu_read_unlock();
5605 }
5606 
5607 /**
5608  *	netif_receive_skb - process receive buffer from network
5609  *	@skb: buffer to process
5610  *
5611  *	netif_receive_skb() is the main receive data processing function.
5612  *	It always succeeds. The buffer may be dropped during processing
5613  *	for congestion control or by the protocol layers.
5614  *
5615  *	This function may only be called from softirq context and interrupts
5616  *	should be enabled.
5617  *
5618  *	Return values (usually ignored):
5619  *	NET_RX_SUCCESS: no congestion
5620  *	NET_RX_DROP: packet was dropped
5621  */
netif_receive_skb(struct sk_buff * skb)5622 int netif_receive_skb(struct sk_buff *skb)
5623 {
5624 	int ret;
5625 
5626 	trace_netif_receive_skb_entry(skb);
5627 
5628 	ret = netif_receive_skb_internal(skb);
5629 	trace_netif_receive_skb_exit(ret);
5630 
5631 	return ret;
5632 }
5633 EXPORT_SYMBOL(netif_receive_skb);
5634 
5635 /**
5636  *	netif_receive_skb_list - process many receive buffers from network
5637  *	@head: list of skbs to process.
5638  *
5639  *	Since return value of netif_receive_skb() is normally ignored, and
5640  *	wouldn't be meaningful for a list, this function returns void.
5641  *
5642  *	This function may only be called from softirq context and interrupts
5643  *	should be enabled.
5644  */
netif_receive_skb_list(struct list_head * head)5645 void netif_receive_skb_list(struct list_head *head)
5646 {
5647 	struct sk_buff *skb;
5648 
5649 	if (list_empty(head))
5650 		return;
5651 	if (trace_netif_receive_skb_list_entry_enabled()) {
5652 		list_for_each_entry(skb, head, list)
5653 			trace_netif_receive_skb_list_entry(skb);
5654 	}
5655 	netif_receive_skb_list_internal(head);
5656 	trace_netif_receive_skb_list_exit(0);
5657 }
5658 EXPORT_SYMBOL(netif_receive_skb_list);
5659 
5660 static DEFINE_PER_CPU(struct work_struct, flush_works);
5661 
5662 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5663 static void flush_backlog(struct work_struct *work)
5664 {
5665 	struct sk_buff *skb, *tmp;
5666 	struct softnet_data *sd;
5667 
5668 	local_bh_disable();
5669 	sd = this_cpu_ptr(&softnet_data);
5670 
5671 	local_irq_disable();
5672 	rps_lock(sd);
5673 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5674 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5675 			__skb_unlink(skb, &sd->input_pkt_queue);
5676 			dev_kfree_skb_irq(skb);
5677 			input_queue_head_incr(sd);
5678 		}
5679 	}
5680 	rps_unlock(sd);
5681 	local_irq_enable();
5682 
5683 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5684 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5685 			__skb_unlink(skb, &sd->process_queue);
5686 			kfree_skb(skb);
5687 			input_queue_head_incr(sd);
5688 		}
5689 	}
5690 	local_bh_enable();
5691 }
5692 
flush_required(int cpu)5693 static bool flush_required(int cpu)
5694 {
5695 #if IS_ENABLED(CONFIG_RPS)
5696 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5697 	bool do_flush;
5698 
5699 	local_irq_disable();
5700 	rps_lock(sd);
5701 
5702 	/* as insertion into process_queue happens with the rps lock held,
5703 	 * process_queue access may race only with dequeue
5704 	 */
5705 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5706 		   !skb_queue_empty_lockless(&sd->process_queue);
5707 	rps_unlock(sd);
5708 	local_irq_enable();
5709 
5710 	return do_flush;
5711 #endif
5712 	/* without RPS we can't safely check input_pkt_queue: during a
5713 	 * concurrent remote skb_queue_splice() we can detect as empty both
5714 	 * input_pkt_queue and process_queue even if the latter could end-up
5715 	 * containing a lot of packets.
5716 	 */
5717 	return true;
5718 }
5719 
flush_all_backlogs(void)5720 static void flush_all_backlogs(void)
5721 {
5722 	static cpumask_t flush_cpus;
5723 	unsigned int cpu;
5724 
5725 	/* since we are under rtnl lock protection we can use static data
5726 	 * for the cpumask and avoid allocating on stack the possibly
5727 	 * large mask
5728 	 */
5729 	ASSERT_RTNL();
5730 
5731 	get_online_cpus();
5732 
5733 	cpumask_clear(&flush_cpus);
5734 	for_each_online_cpu(cpu) {
5735 		if (flush_required(cpu)) {
5736 			queue_work_on(cpu, system_highpri_wq,
5737 				      per_cpu_ptr(&flush_works, cpu));
5738 			cpumask_set_cpu(cpu, &flush_cpus);
5739 		}
5740 	}
5741 
5742 	/* we can have in flight packet[s] on the cpus we are not flushing,
5743 	 * synchronize_net() in rollback_registered_many() will take care of
5744 	 * them
5745 	 */
5746 	for_each_cpu(cpu, &flush_cpus)
5747 		flush_work(per_cpu_ptr(&flush_works, cpu));
5748 
5749 	put_online_cpus();
5750 }
5751 
5752 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5753 static void gro_normal_list(struct napi_struct *napi)
5754 {
5755 	if (!napi->rx_count)
5756 		return;
5757 	netif_receive_skb_list_internal(&napi->rx_list);
5758 	INIT_LIST_HEAD(&napi->rx_list);
5759 	napi->rx_count = 0;
5760 }
5761 
5762 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5763  * pass the whole batch up to the stack.
5764  */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5765 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5766 {
5767 	list_add_tail(&skb->list, &napi->rx_list);
5768 	napi->rx_count += segs;
5769 	if (napi->rx_count >= gro_normal_batch)
5770 		gro_normal_list(napi);
5771 }
5772 
5773 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5774 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5775 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5776 {
5777 	struct packet_offload *ptype;
5778 	__be16 type = skb->protocol;
5779 	struct list_head *head = &offload_base;
5780 	int err = -ENOENT;
5781 
5782 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5783 
5784 	if (NAPI_GRO_CB(skb)->count == 1) {
5785 		skb_shinfo(skb)->gso_size = 0;
5786 		goto out;
5787 	}
5788 
5789 	rcu_read_lock();
5790 	list_for_each_entry_rcu(ptype, head, list) {
5791 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5792 			continue;
5793 
5794 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5795 					 ipv6_gro_complete, inet_gro_complete,
5796 					 skb, 0);
5797 		break;
5798 	}
5799 	rcu_read_unlock();
5800 
5801 	if (err) {
5802 		WARN_ON(&ptype->list == head);
5803 		kfree_skb(skb);
5804 		return NET_RX_SUCCESS;
5805 	}
5806 
5807 out:
5808 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5809 	return NET_RX_SUCCESS;
5810 }
5811 
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5812 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5813 				   bool flush_old)
5814 {
5815 	struct list_head *head = &napi->gro_hash[index].list;
5816 	struct sk_buff *skb, *p;
5817 
5818 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5819 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5820 			return;
5821 		skb_list_del_init(skb);
5822 		napi_gro_complete(napi, skb);
5823 		napi->gro_hash[index].count--;
5824 	}
5825 
5826 	if (!napi->gro_hash[index].count)
5827 		__clear_bit(index, &napi->gro_bitmask);
5828 }
5829 
5830 /* napi->gro_hash[].list contains packets ordered by age.
5831  * youngest packets at the head of it.
5832  * Complete skbs in reverse order to reduce latencies.
5833  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5834 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5835 {
5836 	unsigned long bitmask = napi->gro_bitmask;
5837 	unsigned int i, base = ~0U;
5838 
5839 	while ((i = ffs(bitmask)) != 0) {
5840 		bitmask >>= i;
5841 		base += i;
5842 		__napi_gro_flush_chain(napi, base, flush_old);
5843 	}
5844 }
5845 EXPORT_SYMBOL(napi_gro_flush);
5846 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5847 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5848 					  struct sk_buff *skb)
5849 {
5850 	unsigned int maclen = skb->dev->hard_header_len;
5851 	u32 hash = skb_get_hash_raw(skb);
5852 	struct list_head *head;
5853 	struct sk_buff *p;
5854 
5855 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5856 	list_for_each_entry(p, head, list) {
5857 		unsigned long diffs;
5858 
5859 		NAPI_GRO_CB(p)->flush = 0;
5860 
5861 		if (hash != skb_get_hash_raw(p)) {
5862 			NAPI_GRO_CB(p)->same_flow = 0;
5863 			continue;
5864 		}
5865 
5866 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5867 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5868 		if (skb_vlan_tag_present(p))
5869 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5870 		diffs |= skb_metadata_dst_cmp(p, skb);
5871 		diffs |= skb_metadata_differs(p, skb);
5872 		if (maclen == ETH_HLEN)
5873 			diffs |= compare_ether_header(skb_mac_header(p),
5874 						      skb_mac_header(skb));
5875 		else if (!diffs)
5876 			diffs = memcmp(skb_mac_header(p),
5877 				       skb_mac_header(skb),
5878 				       maclen);
5879 
5880 		diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5881 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5882 		if (!diffs) {
5883 			struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5884 			struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5885 
5886 			diffs |= (!!p_ext) ^ (!!skb_ext);
5887 			if (!diffs && unlikely(skb_ext))
5888 				diffs |= p_ext->chain ^ skb_ext->chain;
5889 		}
5890 #endif
5891 
5892 		NAPI_GRO_CB(p)->same_flow = !diffs;
5893 	}
5894 
5895 	return head;
5896 }
5897 
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5898 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5899 {
5900 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5901 	const skb_frag_t *frag0 = &pinfo->frags[0];
5902 
5903 	NAPI_GRO_CB(skb)->data_offset = 0;
5904 	NAPI_GRO_CB(skb)->frag0 = NULL;
5905 	NAPI_GRO_CB(skb)->frag0_len = 0;
5906 
5907 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5908 	    !PageHighMem(skb_frag_page(frag0)) &&
5909 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5910 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5911 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5912 						    skb_frag_size(frag0),
5913 						    skb->end - skb->tail);
5914 	}
5915 }
5916 
gro_pull_from_frag0(struct sk_buff * skb,int grow)5917 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5918 {
5919 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5920 
5921 	BUG_ON(skb->end - skb->tail < grow);
5922 
5923 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5924 
5925 	skb->data_len -= grow;
5926 	skb->tail += grow;
5927 
5928 	skb_frag_off_add(&pinfo->frags[0], grow);
5929 	skb_frag_size_sub(&pinfo->frags[0], grow);
5930 
5931 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5932 		skb_frag_unref(skb, 0);
5933 		memmove(pinfo->frags, pinfo->frags + 1,
5934 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5935 	}
5936 }
5937 
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5938 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5939 {
5940 	struct sk_buff *oldest;
5941 
5942 	oldest = list_last_entry(head, struct sk_buff, list);
5943 
5944 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5945 	 * impossible.
5946 	 */
5947 	if (WARN_ON_ONCE(!oldest))
5948 		return;
5949 
5950 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5951 	 * SKB to the chain.
5952 	 */
5953 	skb_list_del_init(oldest);
5954 	napi_gro_complete(napi, oldest);
5955 }
5956 
5957 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5958 							   struct sk_buff *));
5959 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5960 							   struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5961 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5962 {
5963 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5964 	struct list_head *head = &offload_base;
5965 	struct packet_offload *ptype;
5966 	__be16 type = skb->protocol;
5967 	struct list_head *gro_head;
5968 	struct sk_buff *pp = NULL;
5969 	enum gro_result ret;
5970 	int same_flow;
5971 	int grow;
5972 
5973 	if (netif_elide_gro(skb->dev))
5974 		goto normal;
5975 
5976 	gro_head = gro_list_prepare(napi, skb);
5977 
5978 	rcu_read_lock();
5979 	list_for_each_entry_rcu(ptype, head, list) {
5980 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5981 			continue;
5982 
5983 		skb_set_network_header(skb, skb_gro_offset(skb));
5984 		skb_reset_mac_len(skb);
5985 		NAPI_GRO_CB(skb)->same_flow = 0;
5986 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5987 		NAPI_GRO_CB(skb)->free = 0;
5988 		NAPI_GRO_CB(skb)->encap_mark = 0;
5989 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5990 		NAPI_GRO_CB(skb)->is_fou = 0;
5991 		NAPI_GRO_CB(skb)->is_atomic = 1;
5992 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5993 
5994 		/* Setup for GRO checksum validation */
5995 		switch (skb->ip_summed) {
5996 		case CHECKSUM_COMPLETE:
5997 			NAPI_GRO_CB(skb)->csum = skb->csum;
5998 			NAPI_GRO_CB(skb)->csum_valid = 1;
5999 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6000 			break;
6001 		case CHECKSUM_UNNECESSARY:
6002 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6003 			NAPI_GRO_CB(skb)->csum_valid = 0;
6004 			break;
6005 		default:
6006 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6007 			NAPI_GRO_CB(skb)->csum_valid = 0;
6008 		}
6009 
6010 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6011 					ipv6_gro_receive, inet_gro_receive,
6012 					gro_head, skb);
6013 		break;
6014 	}
6015 	rcu_read_unlock();
6016 
6017 	if (&ptype->list == head)
6018 		goto normal;
6019 
6020 	if (PTR_ERR(pp) == -EINPROGRESS) {
6021 		ret = GRO_CONSUMED;
6022 		goto ok;
6023 	}
6024 
6025 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6026 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6027 
6028 	if (pp) {
6029 		skb_list_del_init(pp);
6030 		napi_gro_complete(napi, pp);
6031 		napi->gro_hash[hash].count--;
6032 	}
6033 
6034 	if (same_flow)
6035 		goto ok;
6036 
6037 	if (NAPI_GRO_CB(skb)->flush)
6038 		goto normal;
6039 
6040 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6041 		gro_flush_oldest(napi, gro_head);
6042 	} else {
6043 		napi->gro_hash[hash].count++;
6044 	}
6045 	NAPI_GRO_CB(skb)->count = 1;
6046 	NAPI_GRO_CB(skb)->age = jiffies;
6047 	NAPI_GRO_CB(skb)->last = skb;
6048 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6049 	list_add(&skb->list, gro_head);
6050 	ret = GRO_HELD;
6051 
6052 pull:
6053 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6054 	if (grow > 0)
6055 		gro_pull_from_frag0(skb, grow);
6056 ok:
6057 	if (napi->gro_hash[hash].count) {
6058 		if (!test_bit(hash, &napi->gro_bitmask))
6059 			__set_bit(hash, &napi->gro_bitmask);
6060 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6061 		__clear_bit(hash, &napi->gro_bitmask);
6062 	}
6063 
6064 	return ret;
6065 
6066 normal:
6067 	ret = GRO_NORMAL;
6068 	goto pull;
6069 }
6070 
gro_find_receive_by_type(__be16 type)6071 struct packet_offload *gro_find_receive_by_type(__be16 type)
6072 {
6073 	struct list_head *offload_head = &offload_base;
6074 	struct packet_offload *ptype;
6075 
6076 	list_for_each_entry_rcu(ptype, offload_head, list) {
6077 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6078 			continue;
6079 		return ptype;
6080 	}
6081 	return NULL;
6082 }
6083 EXPORT_SYMBOL(gro_find_receive_by_type);
6084 
gro_find_complete_by_type(__be16 type)6085 struct packet_offload *gro_find_complete_by_type(__be16 type)
6086 {
6087 	struct list_head *offload_head = &offload_base;
6088 	struct packet_offload *ptype;
6089 
6090 	list_for_each_entry_rcu(ptype, offload_head, list) {
6091 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6092 			continue;
6093 		return ptype;
6094 	}
6095 	return NULL;
6096 }
6097 EXPORT_SYMBOL(gro_find_complete_by_type);
6098 
napi_skb_free_stolen_head(struct sk_buff * skb)6099 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6100 {
6101 	skb_dst_drop(skb);
6102 	skb_ext_put(skb);
6103 	kmem_cache_free(skbuff_head_cache, skb);
6104 }
6105 
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6106 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6107 				    struct sk_buff *skb,
6108 				    gro_result_t ret)
6109 {
6110 	switch (ret) {
6111 	case GRO_NORMAL:
6112 		gro_normal_one(napi, skb, 1);
6113 		break;
6114 
6115 	case GRO_DROP:
6116 		kfree_skb(skb);
6117 		break;
6118 
6119 	case GRO_MERGED_FREE:
6120 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6121 			napi_skb_free_stolen_head(skb);
6122 		else
6123 			__kfree_skb(skb);
6124 		break;
6125 
6126 	case GRO_HELD:
6127 	case GRO_MERGED:
6128 	case GRO_CONSUMED:
6129 		break;
6130 	}
6131 
6132 	return ret;
6133 }
6134 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6135 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6136 {
6137 	gro_result_t ret;
6138 
6139 	skb_mark_napi_id(skb, napi);
6140 	trace_napi_gro_receive_entry(skb);
6141 
6142 	skb_gro_reset_offset(skb, 0);
6143 
6144 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6145 	trace_napi_gro_receive_exit(ret);
6146 
6147 	return ret;
6148 }
6149 EXPORT_SYMBOL(napi_gro_receive);
6150 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6151 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6152 {
6153 	if (unlikely(skb->pfmemalloc)) {
6154 		consume_skb(skb);
6155 		return;
6156 	}
6157 	__skb_pull(skb, skb_headlen(skb));
6158 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6159 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6160 	__vlan_hwaccel_clear_tag(skb);
6161 	skb->dev = napi->dev;
6162 	skb->skb_iif = 0;
6163 
6164 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6165 	skb->pkt_type = PACKET_HOST;
6166 
6167 	skb->encapsulation = 0;
6168 	skb_shinfo(skb)->gso_type = 0;
6169 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6170 	skb_ext_reset(skb);
6171 	nf_reset_ct(skb);
6172 
6173 	napi->skb = skb;
6174 }
6175 
napi_get_frags(struct napi_struct * napi)6176 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6177 {
6178 	struct sk_buff *skb = napi->skb;
6179 
6180 	if (!skb) {
6181 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6182 		if (skb) {
6183 			napi->skb = skb;
6184 			skb_mark_napi_id(skb, napi);
6185 		}
6186 	}
6187 	return skb;
6188 }
6189 EXPORT_SYMBOL(napi_get_frags);
6190 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6191 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6192 				      struct sk_buff *skb,
6193 				      gro_result_t ret)
6194 {
6195 	switch (ret) {
6196 	case GRO_NORMAL:
6197 	case GRO_HELD:
6198 		__skb_push(skb, ETH_HLEN);
6199 		skb->protocol = eth_type_trans(skb, skb->dev);
6200 		if (ret == GRO_NORMAL)
6201 			gro_normal_one(napi, skb, 1);
6202 		break;
6203 
6204 	case GRO_DROP:
6205 		napi_reuse_skb(napi, skb);
6206 		break;
6207 
6208 	case GRO_MERGED_FREE:
6209 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6210 			napi_skb_free_stolen_head(skb);
6211 		else
6212 			napi_reuse_skb(napi, skb);
6213 		break;
6214 
6215 	case GRO_MERGED:
6216 	case GRO_CONSUMED:
6217 		break;
6218 	}
6219 
6220 	return ret;
6221 }
6222 
6223 /* Upper GRO stack assumes network header starts at gro_offset=0
6224  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6225  * We copy ethernet header into skb->data to have a common layout.
6226  */
napi_frags_skb(struct napi_struct * napi)6227 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6228 {
6229 	struct sk_buff *skb = napi->skb;
6230 	const struct ethhdr *eth;
6231 	unsigned int hlen = sizeof(*eth);
6232 
6233 	napi->skb = NULL;
6234 
6235 	skb_reset_mac_header(skb);
6236 	skb_gro_reset_offset(skb, hlen);
6237 
6238 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6239 		eth = skb_gro_header_slow(skb, hlen, 0);
6240 		if (unlikely(!eth)) {
6241 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6242 					     __func__, napi->dev->name);
6243 			napi_reuse_skb(napi, skb);
6244 			return NULL;
6245 		}
6246 	} else {
6247 		eth = (const struct ethhdr *)skb->data;
6248 		gro_pull_from_frag0(skb, hlen);
6249 		NAPI_GRO_CB(skb)->frag0 += hlen;
6250 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6251 	}
6252 	__skb_pull(skb, hlen);
6253 
6254 	/*
6255 	 * This works because the only protocols we care about don't require
6256 	 * special handling.
6257 	 * We'll fix it up properly in napi_frags_finish()
6258 	 */
6259 	skb->protocol = eth->h_proto;
6260 
6261 	return skb;
6262 }
6263 
napi_gro_frags(struct napi_struct * napi)6264 gro_result_t napi_gro_frags(struct napi_struct *napi)
6265 {
6266 	gro_result_t ret;
6267 	struct sk_buff *skb = napi_frags_skb(napi);
6268 
6269 	if (!skb)
6270 		return GRO_DROP;
6271 
6272 	trace_napi_gro_frags_entry(skb);
6273 
6274 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6275 	trace_napi_gro_frags_exit(ret);
6276 
6277 	return ret;
6278 }
6279 EXPORT_SYMBOL(napi_gro_frags);
6280 
6281 /* Compute the checksum from gro_offset and return the folded value
6282  * after adding in any pseudo checksum.
6283  */
__skb_gro_checksum_complete(struct sk_buff * skb)6284 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6285 {
6286 	__wsum wsum;
6287 	__sum16 sum;
6288 
6289 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6290 
6291 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6292 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6293 	/* See comments in __skb_checksum_complete(). */
6294 	if (likely(!sum)) {
6295 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6296 		    !skb->csum_complete_sw)
6297 			netdev_rx_csum_fault(skb->dev, skb);
6298 	}
6299 
6300 	NAPI_GRO_CB(skb)->csum = wsum;
6301 	NAPI_GRO_CB(skb)->csum_valid = 1;
6302 
6303 	return sum;
6304 }
6305 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6306 
net_rps_send_ipi(struct softnet_data * remsd)6307 static void net_rps_send_ipi(struct softnet_data *remsd)
6308 {
6309 #ifdef CONFIG_RPS
6310 	while (remsd) {
6311 		struct softnet_data *next = remsd->rps_ipi_next;
6312 
6313 		if (cpu_online(remsd->cpu))
6314 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6315 		remsd = next;
6316 	}
6317 #endif
6318 }
6319 
6320 /*
6321  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6322  * Note: called with local irq disabled, but exits with local irq enabled.
6323  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6324 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6325 {
6326 #ifdef CONFIG_RPS
6327 	struct softnet_data *remsd = sd->rps_ipi_list;
6328 
6329 	if (remsd) {
6330 		sd->rps_ipi_list = NULL;
6331 
6332 		local_irq_enable();
6333 
6334 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6335 		net_rps_send_ipi(remsd);
6336 	} else
6337 #endif
6338 		local_irq_enable();
6339 }
6340 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6341 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6342 {
6343 #ifdef CONFIG_RPS
6344 	return sd->rps_ipi_list != NULL;
6345 #else
6346 	return false;
6347 #endif
6348 }
6349 
process_backlog(struct napi_struct * napi,int quota)6350 static int process_backlog(struct napi_struct *napi, int quota)
6351 {
6352 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6353 	bool again = true;
6354 	int work = 0;
6355 
6356 	/* Check if we have pending ipi, its better to send them now,
6357 	 * not waiting net_rx_action() end.
6358 	 */
6359 	if (sd_has_rps_ipi_waiting(sd)) {
6360 		local_irq_disable();
6361 		net_rps_action_and_irq_enable(sd);
6362 	}
6363 
6364 	napi->weight = dev_rx_weight;
6365 	while (again) {
6366 		struct sk_buff *skb;
6367 
6368 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6369 			rcu_read_lock();
6370 			__netif_receive_skb(skb);
6371 			rcu_read_unlock();
6372 			input_queue_head_incr(sd);
6373 			if (++work >= quota)
6374 				return work;
6375 
6376 		}
6377 
6378 		local_irq_disable();
6379 		rps_lock(sd);
6380 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6381 			/*
6382 			 * Inline a custom version of __napi_complete().
6383 			 * only current cpu owns and manipulates this napi,
6384 			 * and NAPI_STATE_SCHED is the only possible flag set
6385 			 * on backlog.
6386 			 * We can use a plain write instead of clear_bit(),
6387 			 * and we dont need an smp_mb() memory barrier.
6388 			 */
6389 			napi->state = 0;
6390 			again = false;
6391 		} else {
6392 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6393 						   &sd->process_queue);
6394 		}
6395 		rps_unlock(sd);
6396 		local_irq_enable();
6397 	}
6398 
6399 	return work;
6400 }
6401 
6402 /**
6403  * __napi_schedule - schedule for receive
6404  * @n: entry to schedule
6405  *
6406  * The entry's receive function will be scheduled to run.
6407  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6408  */
__napi_schedule(struct napi_struct * n)6409 void __napi_schedule(struct napi_struct *n)
6410 {
6411 	unsigned long flags;
6412 
6413 	local_irq_save(flags);
6414 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6415 	local_irq_restore(flags);
6416 }
6417 EXPORT_SYMBOL(__napi_schedule);
6418 
6419 /**
6420  *	napi_schedule_prep - check if napi can be scheduled
6421  *	@n: napi context
6422  *
6423  * Test if NAPI routine is already running, and if not mark
6424  * it as running.  This is used as a condition variable to
6425  * insure only one NAPI poll instance runs.  We also make
6426  * sure there is no pending NAPI disable.
6427  */
napi_schedule_prep(struct napi_struct * n)6428 bool napi_schedule_prep(struct napi_struct *n)
6429 {
6430 	unsigned long val, new;
6431 
6432 	do {
6433 		val = READ_ONCE(n->state);
6434 		if (unlikely(val & NAPIF_STATE_DISABLE))
6435 			return false;
6436 		new = val | NAPIF_STATE_SCHED;
6437 
6438 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6439 		 * This was suggested by Alexander Duyck, as compiler
6440 		 * emits better code than :
6441 		 * if (val & NAPIF_STATE_SCHED)
6442 		 *     new |= NAPIF_STATE_MISSED;
6443 		 */
6444 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6445 						   NAPIF_STATE_MISSED;
6446 	} while (cmpxchg(&n->state, val, new) != val);
6447 
6448 	return !(val & NAPIF_STATE_SCHED);
6449 }
6450 EXPORT_SYMBOL(napi_schedule_prep);
6451 
6452 /**
6453  * __napi_schedule_irqoff - schedule for receive
6454  * @n: entry to schedule
6455  *
6456  * Variant of __napi_schedule() assuming hard irqs are masked.
6457  *
6458  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6459  * because the interrupt disabled assumption might not be true
6460  * due to force-threaded interrupts and spinlock substitution.
6461  */
__napi_schedule_irqoff(struct napi_struct * n)6462 void __napi_schedule_irqoff(struct napi_struct *n)
6463 {
6464 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6465 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6466 	else
6467 		__napi_schedule(n);
6468 }
6469 EXPORT_SYMBOL(__napi_schedule_irqoff);
6470 
napi_complete_done(struct napi_struct * n,int work_done)6471 bool napi_complete_done(struct napi_struct *n, int work_done)
6472 {
6473 	unsigned long flags, val, new, timeout = 0;
6474 	bool ret = true;
6475 
6476 	/*
6477 	 * 1) Don't let napi dequeue from the cpu poll list
6478 	 *    just in case its running on a different cpu.
6479 	 * 2) If we are busy polling, do nothing here, we have
6480 	 *    the guarantee we will be called later.
6481 	 */
6482 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6483 				 NAPIF_STATE_IN_BUSY_POLL)))
6484 		return false;
6485 
6486 	if (work_done) {
6487 		if (n->gro_bitmask)
6488 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6489 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6490 	}
6491 	if (n->defer_hard_irqs_count > 0) {
6492 		n->defer_hard_irqs_count--;
6493 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6494 		if (timeout)
6495 			ret = false;
6496 	}
6497 	if (n->gro_bitmask) {
6498 		/* When the NAPI instance uses a timeout and keeps postponing
6499 		 * it, we need to bound somehow the time packets are kept in
6500 		 * the GRO layer
6501 		 */
6502 		napi_gro_flush(n, !!timeout);
6503 	}
6504 
6505 	gro_normal_list(n);
6506 
6507 	if (unlikely(!list_empty(&n->poll_list))) {
6508 		/* If n->poll_list is not empty, we need to mask irqs */
6509 		local_irq_save(flags);
6510 		list_del_init(&n->poll_list);
6511 		local_irq_restore(flags);
6512 	}
6513 
6514 	do {
6515 		val = READ_ONCE(n->state);
6516 
6517 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6518 
6519 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6520 
6521 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6522 		 * because we will call napi->poll() one more time.
6523 		 * This C code was suggested by Alexander Duyck to help gcc.
6524 		 */
6525 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6526 						    NAPIF_STATE_SCHED;
6527 	} while (cmpxchg(&n->state, val, new) != val);
6528 
6529 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6530 		__napi_schedule(n);
6531 		return false;
6532 	}
6533 
6534 	if (timeout)
6535 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6536 			      HRTIMER_MODE_REL_PINNED);
6537 	return ret;
6538 }
6539 EXPORT_SYMBOL(napi_complete_done);
6540 
6541 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6542 static struct napi_struct *napi_by_id(unsigned int napi_id)
6543 {
6544 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6545 	struct napi_struct *napi;
6546 
6547 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6548 		if (napi->napi_id == napi_id)
6549 			return napi;
6550 
6551 	return NULL;
6552 }
6553 
6554 #if defined(CONFIG_NET_RX_BUSY_POLL)
6555 
6556 #define BUSY_POLL_BUDGET 8
6557 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6558 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6559 {
6560 	int rc;
6561 
6562 	/* Busy polling means there is a high chance device driver hard irq
6563 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6564 	 * set in napi_schedule_prep().
6565 	 * Since we are about to call napi->poll() once more, we can safely
6566 	 * clear NAPI_STATE_MISSED.
6567 	 *
6568 	 * Note: x86 could use a single "lock and ..." instruction
6569 	 * to perform these two clear_bit()
6570 	 */
6571 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6572 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6573 
6574 	local_bh_disable();
6575 
6576 	/* All we really want here is to re-enable device interrupts.
6577 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6578 	 */
6579 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6580 	/* We can't gro_normal_list() here, because napi->poll() might have
6581 	 * rearmed the napi (napi_complete_done()) in which case it could
6582 	 * already be running on another CPU.
6583 	 */
6584 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6585 	netpoll_poll_unlock(have_poll_lock);
6586 	if (rc == BUSY_POLL_BUDGET) {
6587 		/* As the whole budget was spent, we still own the napi so can
6588 		 * safely handle the rx_list.
6589 		 */
6590 		gro_normal_list(napi);
6591 		__napi_schedule(napi);
6592 	}
6593 	local_bh_enable();
6594 }
6595 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6596 void napi_busy_loop(unsigned int napi_id,
6597 		    bool (*loop_end)(void *, unsigned long),
6598 		    void *loop_end_arg)
6599 {
6600 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6601 	int (*napi_poll)(struct napi_struct *napi, int budget);
6602 	void *have_poll_lock = NULL;
6603 	struct napi_struct *napi;
6604 
6605 restart:
6606 	napi_poll = NULL;
6607 
6608 	rcu_read_lock();
6609 
6610 	napi = napi_by_id(napi_id);
6611 	if (!napi)
6612 		goto out;
6613 
6614 	preempt_disable();
6615 	for (;;) {
6616 		int work = 0;
6617 
6618 		local_bh_disable();
6619 		if (!napi_poll) {
6620 			unsigned long val = READ_ONCE(napi->state);
6621 
6622 			/* If multiple threads are competing for this napi,
6623 			 * we avoid dirtying napi->state as much as we can.
6624 			 */
6625 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6626 				   NAPIF_STATE_IN_BUSY_POLL))
6627 				goto count;
6628 			if (cmpxchg(&napi->state, val,
6629 				    val | NAPIF_STATE_IN_BUSY_POLL |
6630 					  NAPIF_STATE_SCHED) != val)
6631 				goto count;
6632 			have_poll_lock = netpoll_poll_lock(napi);
6633 			napi_poll = napi->poll;
6634 		}
6635 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6636 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6637 		gro_normal_list(napi);
6638 count:
6639 		if (work > 0)
6640 			__NET_ADD_STATS(dev_net(napi->dev),
6641 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6642 		local_bh_enable();
6643 
6644 		if (!loop_end || loop_end(loop_end_arg, start_time))
6645 			break;
6646 
6647 		if (unlikely(need_resched())) {
6648 			if (napi_poll)
6649 				busy_poll_stop(napi, have_poll_lock);
6650 			preempt_enable();
6651 			rcu_read_unlock();
6652 			cond_resched();
6653 			if (loop_end(loop_end_arg, start_time))
6654 				return;
6655 			goto restart;
6656 		}
6657 		cpu_relax();
6658 	}
6659 	if (napi_poll)
6660 		busy_poll_stop(napi, have_poll_lock);
6661 	preempt_enable();
6662 out:
6663 	rcu_read_unlock();
6664 }
6665 EXPORT_SYMBOL(napi_busy_loop);
6666 
6667 #endif /* CONFIG_NET_RX_BUSY_POLL */
6668 
napi_hash_add(struct napi_struct * napi)6669 static void napi_hash_add(struct napi_struct *napi)
6670 {
6671 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6672 		return;
6673 
6674 	spin_lock(&napi_hash_lock);
6675 
6676 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6677 	do {
6678 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6679 			napi_gen_id = MIN_NAPI_ID;
6680 	} while (napi_by_id(napi_gen_id));
6681 	napi->napi_id = napi_gen_id;
6682 
6683 	hlist_add_head_rcu(&napi->napi_hash_node,
6684 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6685 
6686 	spin_unlock(&napi_hash_lock);
6687 }
6688 
6689 /* Warning : caller is responsible to make sure rcu grace period
6690  * is respected before freeing memory containing @napi
6691  */
napi_hash_del(struct napi_struct * napi)6692 static void napi_hash_del(struct napi_struct *napi)
6693 {
6694 	spin_lock(&napi_hash_lock);
6695 
6696 	hlist_del_init_rcu(&napi->napi_hash_node);
6697 
6698 	spin_unlock(&napi_hash_lock);
6699 }
6700 
napi_watchdog(struct hrtimer * timer)6701 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6702 {
6703 	struct napi_struct *napi;
6704 
6705 	napi = container_of(timer, struct napi_struct, timer);
6706 
6707 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6708 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6709 	 */
6710 	if (!napi_disable_pending(napi) &&
6711 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6712 		__napi_schedule_irqoff(napi);
6713 
6714 	return HRTIMER_NORESTART;
6715 }
6716 
init_gro_hash(struct napi_struct * napi)6717 static void init_gro_hash(struct napi_struct *napi)
6718 {
6719 	int i;
6720 
6721 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6722 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6723 		napi->gro_hash[i].count = 0;
6724 	}
6725 	napi->gro_bitmask = 0;
6726 }
6727 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6728 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6729 		    int (*poll)(struct napi_struct *, int), int weight)
6730 {
6731 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6732 		return;
6733 
6734 	INIT_LIST_HEAD(&napi->poll_list);
6735 	INIT_HLIST_NODE(&napi->napi_hash_node);
6736 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6737 	napi->timer.function = napi_watchdog;
6738 	init_gro_hash(napi);
6739 	napi->skb = NULL;
6740 	INIT_LIST_HEAD(&napi->rx_list);
6741 	napi->rx_count = 0;
6742 	napi->poll = poll;
6743 	if (weight > NAPI_POLL_WEIGHT)
6744 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6745 				weight);
6746 	napi->weight = weight;
6747 	napi->dev = dev;
6748 #ifdef CONFIG_NETPOLL
6749 	napi->poll_owner = -1;
6750 #endif
6751 	set_bit(NAPI_STATE_SCHED, &napi->state);
6752 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6753 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6754 	napi_hash_add(napi);
6755 }
6756 EXPORT_SYMBOL(netif_napi_add);
6757 
napi_disable(struct napi_struct * n)6758 void napi_disable(struct napi_struct *n)
6759 {
6760 	might_sleep();
6761 	set_bit(NAPI_STATE_DISABLE, &n->state);
6762 
6763 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6764 		msleep(1);
6765 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6766 		msleep(1);
6767 
6768 	hrtimer_cancel(&n->timer);
6769 
6770 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6771 }
6772 EXPORT_SYMBOL(napi_disable);
6773 
flush_gro_hash(struct napi_struct * napi)6774 static void flush_gro_hash(struct napi_struct *napi)
6775 {
6776 	int i;
6777 
6778 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6779 		struct sk_buff *skb, *n;
6780 
6781 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6782 			kfree_skb(skb);
6783 		napi->gro_hash[i].count = 0;
6784 	}
6785 }
6786 
6787 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6788 void __netif_napi_del(struct napi_struct *napi)
6789 {
6790 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6791 		return;
6792 
6793 	napi_hash_del(napi);
6794 	list_del_rcu(&napi->dev_list);
6795 	napi_free_frags(napi);
6796 
6797 	flush_gro_hash(napi);
6798 	napi->gro_bitmask = 0;
6799 }
6800 EXPORT_SYMBOL(__netif_napi_del);
6801 
napi_poll(struct napi_struct * n,struct list_head * repoll)6802 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6803 {
6804 	void *have;
6805 	int work, weight;
6806 
6807 	list_del_init(&n->poll_list);
6808 
6809 	have = netpoll_poll_lock(n);
6810 
6811 	weight = n->weight;
6812 
6813 	/* This NAPI_STATE_SCHED test is for avoiding a race
6814 	 * with netpoll's poll_napi().  Only the entity which
6815 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6816 	 * actually make the ->poll() call.  Therefore we avoid
6817 	 * accidentally calling ->poll() when NAPI is not scheduled.
6818 	 */
6819 	work = 0;
6820 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6821 		work = n->poll(n, weight);
6822 		trace_napi_poll(n, work, weight);
6823 	}
6824 
6825 	if (unlikely(work > weight))
6826 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6827 			    n->poll, work, weight);
6828 
6829 	if (likely(work < weight))
6830 		goto out_unlock;
6831 
6832 	/* Drivers must not modify the NAPI state if they
6833 	 * consume the entire weight.  In such cases this code
6834 	 * still "owns" the NAPI instance and therefore can
6835 	 * move the instance around on the list at-will.
6836 	 */
6837 	if (unlikely(napi_disable_pending(n))) {
6838 		napi_complete(n);
6839 		goto out_unlock;
6840 	}
6841 
6842 	if (n->gro_bitmask) {
6843 		/* flush too old packets
6844 		 * If HZ < 1000, flush all packets.
6845 		 */
6846 		napi_gro_flush(n, HZ >= 1000);
6847 	}
6848 
6849 	gro_normal_list(n);
6850 
6851 	/* Some drivers may have called napi_schedule
6852 	 * prior to exhausting their budget.
6853 	 */
6854 	if (unlikely(!list_empty(&n->poll_list))) {
6855 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6856 			     n->dev ? n->dev->name : "backlog");
6857 		goto out_unlock;
6858 	}
6859 
6860 	list_add_tail(&n->poll_list, repoll);
6861 
6862 out_unlock:
6863 	netpoll_poll_unlock(have);
6864 
6865 	return work;
6866 }
6867 
net_rx_action(struct softirq_action * h)6868 static __latent_entropy void net_rx_action(struct softirq_action *h)
6869 {
6870 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6871 	unsigned long time_limit = jiffies +
6872 		usecs_to_jiffies(netdev_budget_usecs);
6873 	int budget = netdev_budget;
6874 	LIST_HEAD(list);
6875 	LIST_HEAD(repoll);
6876 
6877 	local_irq_disable();
6878 	list_splice_init(&sd->poll_list, &list);
6879 	local_irq_enable();
6880 
6881 	for (;;) {
6882 		struct napi_struct *n;
6883 
6884 		if (list_empty(&list)) {
6885 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6886 				goto out;
6887 			break;
6888 		}
6889 
6890 		n = list_first_entry(&list, struct napi_struct, poll_list);
6891 		budget -= napi_poll(n, &repoll);
6892 
6893 		/* If softirq window is exhausted then punt.
6894 		 * Allow this to run for 2 jiffies since which will allow
6895 		 * an average latency of 1.5/HZ.
6896 		 */
6897 		if (unlikely(budget <= 0 ||
6898 			     time_after_eq(jiffies, time_limit))) {
6899 			sd->time_squeeze++;
6900 			break;
6901 		}
6902 	}
6903 
6904 	local_irq_disable();
6905 
6906 	list_splice_tail_init(&sd->poll_list, &list);
6907 	list_splice_tail(&repoll, &list);
6908 	list_splice(&list, &sd->poll_list);
6909 	if (!list_empty(&sd->poll_list))
6910 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6911 
6912 	net_rps_action_and_irq_enable(sd);
6913 out:
6914 	__kfree_skb_flush();
6915 }
6916 
6917 struct netdev_adjacent {
6918 	struct net_device *dev;
6919 
6920 	/* upper master flag, there can only be one master device per list */
6921 	bool master;
6922 
6923 	/* lookup ignore flag */
6924 	bool ignore;
6925 
6926 	/* counter for the number of times this device was added to us */
6927 	u16 ref_nr;
6928 
6929 	/* private field for the users */
6930 	void *private;
6931 
6932 	struct list_head list;
6933 	struct rcu_head rcu;
6934 };
6935 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6936 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6937 						 struct list_head *adj_list)
6938 {
6939 	struct netdev_adjacent *adj;
6940 
6941 	list_for_each_entry(adj, adj_list, list) {
6942 		if (adj->dev == adj_dev)
6943 			return adj;
6944 	}
6945 	return NULL;
6946 }
6947 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6948 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6949 				    struct netdev_nested_priv *priv)
6950 {
6951 	struct net_device *dev = (struct net_device *)priv->data;
6952 
6953 	return upper_dev == dev;
6954 }
6955 
6956 /**
6957  * netdev_has_upper_dev - Check if device is linked to an upper device
6958  * @dev: device
6959  * @upper_dev: upper device to check
6960  *
6961  * Find out if a device is linked to specified upper device and return true
6962  * in case it is. Note that this checks only immediate upper device,
6963  * not through a complete stack of devices. The caller must hold the RTNL lock.
6964  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6965 bool netdev_has_upper_dev(struct net_device *dev,
6966 			  struct net_device *upper_dev)
6967 {
6968 	struct netdev_nested_priv priv = {
6969 		.data = (void *)upper_dev,
6970 	};
6971 
6972 	ASSERT_RTNL();
6973 
6974 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6975 					     &priv);
6976 }
6977 EXPORT_SYMBOL(netdev_has_upper_dev);
6978 
6979 /**
6980  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6981  * @dev: device
6982  * @upper_dev: upper device to check
6983  *
6984  * Find out if a device is linked to specified upper device and return true
6985  * in case it is. Note that this checks the entire upper device chain.
6986  * The caller must hold rcu lock.
6987  */
6988 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6989 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6990 				  struct net_device *upper_dev)
6991 {
6992 	struct netdev_nested_priv priv = {
6993 		.data = (void *)upper_dev,
6994 	};
6995 
6996 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6997 					       &priv);
6998 }
6999 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7000 
7001 /**
7002  * netdev_has_any_upper_dev - Check if device is linked to some device
7003  * @dev: device
7004  *
7005  * Find out if a device is linked to an upper device and return true in case
7006  * it is. The caller must hold the RTNL lock.
7007  */
netdev_has_any_upper_dev(struct net_device * dev)7008 bool netdev_has_any_upper_dev(struct net_device *dev)
7009 {
7010 	ASSERT_RTNL();
7011 
7012 	return !list_empty(&dev->adj_list.upper);
7013 }
7014 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7015 
7016 /**
7017  * netdev_master_upper_dev_get - Get master upper device
7018  * @dev: device
7019  *
7020  * Find a master upper device and return pointer to it or NULL in case
7021  * it's not there. The caller must hold the RTNL lock.
7022  */
netdev_master_upper_dev_get(struct net_device * dev)7023 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7024 {
7025 	struct netdev_adjacent *upper;
7026 
7027 	ASSERT_RTNL();
7028 
7029 	if (list_empty(&dev->adj_list.upper))
7030 		return NULL;
7031 
7032 	upper = list_first_entry(&dev->adj_list.upper,
7033 				 struct netdev_adjacent, list);
7034 	if (likely(upper->master))
7035 		return upper->dev;
7036 	return NULL;
7037 }
7038 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7039 
__netdev_master_upper_dev_get(struct net_device * dev)7040 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7041 {
7042 	struct netdev_adjacent *upper;
7043 
7044 	ASSERT_RTNL();
7045 
7046 	if (list_empty(&dev->adj_list.upper))
7047 		return NULL;
7048 
7049 	upper = list_first_entry(&dev->adj_list.upper,
7050 				 struct netdev_adjacent, list);
7051 	if (likely(upper->master) && !upper->ignore)
7052 		return upper->dev;
7053 	return NULL;
7054 }
7055 
7056 /**
7057  * netdev_has_any_lower_dev - Check if device is linked to some device
7058  * @dev: device
7059  *
7060  * Find out if a device is linked to a lower device and return true in case
7061  * it is. The caller must hold the RTNL lock.
7062  */
netdev_has_any_lower_dev(struct net_device * dev)7063 static bool netdev_has_any_lower_dev(struct net_device *dev)
7064 {
7065 	ASSERT_RTNL();
7066 
7067 	return !list_empty(&dev->adj_list.lower);
7068 }
7069 
netdev_adjacent_get_private(struct list_head * adj_list)7070 void *netdev_adjacent_get_private(struct list_head *adj_list)
7071 {
7072 	struct netdev_adjacent *adj;
7073 
7074 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7075 
7076 	return adj->private;
7077 }
7078 EXPORT_SYMBOL(netdev_adjacent_get_private);
7079 
7080 /**
7081  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7082  * @dev: device
7083  * @iter: list_head ** of the current position
7084  *
7085  * Gets the next device from the dev's upper list, starting from iter
7086  * position. The caller must hold RCU read lock.
7087  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7088 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7089 						 struct list_head **iter)
7090 {
7091 	struct netdev_adjacent *upper;
7092 
7093 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7094 
7095 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7096 
7097 	if (&upper->list == &dev->adj_list.upper)
7098 		return NULL;
7099 
7100 	*iter = &upper->list;
7101 
7102 	return upper->dev;
7103 }
7104 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7105 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7106 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7107 						  struct list_head **iter,
7108 						  bool *ignore)
7109 {
7110 	struct netdev_adjacent *upper;
7111 
7112 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7113 
7114 	if (&upper->list == &dev->adj_list.upper)
7115 		return NULL;
7116 
7117 	*iter = &upper->list;
7118 	*ignore = upper->ignore;
7119 
7120 	return upper->dev;
7121 }
7122 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7123 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7124 						    struct list_head **iter)
7125 {
7126 	struct netdev_adjacent *upper;
7127 
7128 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7129 
7130 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7131 
7132 	if (&upper->list == &dev->adj_list.upper)
7133 		return NULL;
7134 
7135 	*iter = &upper->list;
7136 
7137 	return upper->dev;
7138 }
7139 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7140 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7141 				       int (*fn)(struct net_device *dev,
7142 					 struct netdev_nested_priv *priv),
7143 				       struct netdev_nested_priv *priv)
7144 {
7145 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7146 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7147 	int ret, cur = 0;
7148 	bool ignore;
7149 
7150 	now = dev;
7151 	iter = &dev->adj_list.upper;
7152 
7153 	while (1) {
7154 		if (now != dev) {
7155 			ret = fn(now, priv);
7156 			if (ret)
7157 				return ret;
7158 		}
7159 
7160 		next = NULL;
7161 		while (1) {
7162 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7163 			if (!udev)
7164 				break;
7165 			if (ignore)
7166 				continue;
7167 
7168 			next = udev;
7169 			niter = &udev->adj_list.upper;
7170 			dev_stack[cur] = now;
7171 			iter_stack[cur++] = iter;
7172 			break;
7173 		}
7174 
7175 		if (!next) {
7176 			if (!cur)
7177 				return 0;
7178 			next = dev_stack[--cur];
7179 			niter = iter_stack[cur];
7180 		}
7181 
7182 		now = next;
7183 		iter = niter;
7184 	}
7185 
7186 	return 0;
7187 }
7188 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7189 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7190 				  int (*fn)(struct net_device *dev,
7191 					    struct netdev_nested_priv *priv),
7192 				  struct netdev_nested_priv *priv)
7193 {
7194 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7195 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7196 	int ret, cur = 0;
7197 
7198 	now = dev;
7199 	iter = &dev->adj_list.upper;
7200 
7201 	while (1) {
7202 		if (now != dev) {
7203 			ret = fn(now, priv);
7204 			if (ret)
7205 				return ret;
7206 		}
7207 
7208 		next = NULL;
7209 		while (1) {
7210 			udev = netdev_next_upper_dev_rcu(now, &iter);
7211 			if (!udev)
7212 				break;
7213 
7214 			next = udev;
7215 			niter = &udev->adj_list.upper;
7216 			dev_stack[cur] = now;
7217 			iter_stack[cur++] = iter;
7218 			break;
7219 		}
7220 
7221 		if (!next) {
7222 			if (!cur)
7223 				return 0;
7224 			next = dev_stack[--cur];
7225 			niter = iter_stack[cur];
7226 		}
7227 
7228 		now = next;
7229 		iter = niter;
7230 	}
7231 
7232 	return 0;
7233 }
7234 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7235 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7236 static bool __netdev_has_upper_dev(struct net_device *dev,
7237 				   struct net_device *upper_dev)
7238 {
7239 	struct netdev_nested_priv priv = {
7240 		.flags = 0,
7241 		.data = (void *)upper_dev,
7242 	};
7243 
7244 	ASSERT_RTNL();
7245 
7246 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7247 					   &priv);
7248 }
7249 
7250 /**
7251  * netdev_lower_get_next_private - Get the next ->private from the
7252  *				   lower neighbour list
7253  * @dev: device
7254  * @iter: list_head ** of the current position
7255  *
7256  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7257  * list, starting from iter position. The caller must hold either hold the
7258  * RTNL lock or its own locking that guarantees that the neighbour lower
7259  * list will remain unchanged.
7260  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7261 void *netdev_lower_get_next_private(struct net_device *dev,
7262 				    struct list_head **iter)
7263 {
7264 	struct netdev_adjacent *lower;
7265 
7266 	lower = list_entry(*iter, struct netdev_adjacent, list);
7267 
7268 	if (&lower->list == &dev->adj_list.lower)
7269 		return NULL;
7270 
7271 	*iter = lower->list.next;
7272 
7273 	return lower->private;
7274 }
7275 EXPORT_SYMBOL(netdev_lower_get_next_private);
7276 
7277 /**
7278  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7279  *				       lower neighbour list, RCU
7280  *				       variant
7281  * @dev: device
7282  * @iter: list_head ** of the current position
7283  *
7284  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7285  * list, starting from iter position. The caller must hold RCU read lock.
7286  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7287 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7288 					struct list_head **iter)
7289 {
7290 	struct netdev_adjacent *lower;
7291 
7292 	WARN_ON_ONCE(!rcu_read_lock_held());
7293 
7294 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7295 
7296 	if (&lower->list == &dev->adj_list.lower)
7297 		return NULL;
7298 
7299 	*iter = &lower->list;
7300 
7301 	return lower->private;
7302 }
7303 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7304 
7305 /**
7306  * netdev_lower_get_next - Get the next device from the lower neighbour
7307  *                         list
7308  * @dev: device
7309  * @iter: list_head ** of the current position
7310  *
7311  * Gets the next netdev_adjacent from the dev's lower neighbour
7312  * list, starting from iter position. The caller must hold RTNL lock or
7313  * its own locking that guarantees that the neighbour lower
7314  * list will remain unchanged.
7315  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7316 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7317 {
7318 	struct netdev_adjacent *lower;
7319 
7320 	lower = list_entry(*iter, struct netdev_adjacent, list);
7321 
7322 	if (&lower->list == &dev->adj_list.lower)
7323 		return NULL;
7324 
7325 	*iter = lower->list.next;
7326 
7327 	return lower->dev;
7328 }
7329 EXPORT_SYMBOL(netdev_lower_get_next);
7330 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7331 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7332 						struct list_head **iter)
7333 {
7334 	struct netdev_adjacent *lower;
7335 
7336 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7337 
7338 	if (&lower->list == &dev->adj_list.lower)
7339 		return NULL;
7340 
7341 	*iter = &lower->list;
7342 
7343 	return lower->dev;
7344 }
7345 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7346 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7347 						  struct list_head **iter,
7348 						  bool *ignore)
7349 {
7350 	struct netdev_adjacent *lower;
7351 
7352 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7353 
7354 	if (&lower->list == &dev->adj_list.lower)
7355 		return NULL;
7356 
7357 	*iter = &lower->list;
7358 	*ignore = lower->ignore;
7359 
7360 	return lower->dev;
7361 }
7362 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7363 int netdev_walk_all_lower_dev(struct net_device *dev,
7364 			      int (*fn)(struct net_device *dev,
7365 					struct netdev_nested_priv *priv),
7366 			      struct netdev_nested_priv *priv)
7367 {
7368 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7369 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7370 	int ret, cur = 0;
7371 
7372 	now = dev;
7373 	iter = &dev->adj_list.lower;
7374 
7375 	while (1) {
7376 		if (now != dev) {
7377 			ret = fn(now, priv);
7378 			if (ret)
7379 				return ret;
7380 		}
7381 
7382 		next = NULL;
7383 		while (1) {
7384 			ldev = netdev_next_lower_dev(now, &iter);
7385 			if (!ldev)
7386 				break;
7387 
7388 			next = ldev;
7389 			niter = &ldev->adj_list.lower;
7390 			dev_stack[cur] = now;
7391 			iter_stack[cur++] = iter;
7392 			break;
7393 		}
7394 
7395 		if (!next) {
7396 			if (!cur)
7397 				return 0;
7398 			next = dev_stack[--cur];
7399 			niter = iter_stack[cur];
7400 		}
7401 
7402 		now = next;
7403 		iter = niter;
7404 	}
7405 
7406 	return 0;
7407 }
7408 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7409 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7410 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7411 				       int (*fn)(struct net_device *dev,
7412 					 struct netdev_nested_priv *priv),
7413 				       struct netdev_nested_priv *priv)
7414 {
7415 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7416 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7417 	int ret, cur = 0;
7418 	bool ignore;
7419 
7420 	now = dev;
7421 	iter = &dev->adj_list.lower;
7422 
7423 	while (1) {
7424 		if (now != dev) {
7425 			ret = fn(now, priv);
7426 			if (ret)
7427 				return ret;
7428 		}
7429 
7430 		next = NULL;
7431 		while (1) {
7432 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7433 			if (!ldev)
7434 				break;
7435 			if (ignore)
7436 				continue;
7437 
7438 			next = ldev;
7439 			niter = &ldev->adj_list.lower;
7440 			dev_stack[cur] = now;
7441 			iter_stack[cur++] = iter;
7442 			break;
7443 		}
7444 
7445 		if (!next) {
7446 			if (!cur)
7447 				return 0;
7448 			next = dev_stack[--cur];
7449 			niter = iter_stack[cur];
7450 		}
7451 
7452 		now = next;
7453 		iter = niter;
7454 	}
7455 
7456 	return 0;
7457 }
7458 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7459 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7460 					     struct list_head **iter)
7461 {
7462 	struct netdev_adjacent *lower;
7463 
7464 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7465 	if (&lower->list == &dev->adj_list.lower)
7466 		return NULL;
7467 
7468 	*iter = &lower->list;
7469 
7470 	return lower->dev;
7471 }
7472 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7473 
__netdev_upper_depth(struct net_device * dev)7474 static u8 __netdev_upper_depth(struct net_device *dev)
7475 {
7476 	struct net_device *udev;
7477 	struct list_head *iter;
7478 	u8 max_depth = 0;
7479 	bool ignore;
7480 
7481 	for (iter = &dev->adj_list.upper,
7482 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7483 	     udev;
7484 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7485 		if (ignore)
7486 			continue;
7487 		if (max_depth < udev->upper_level)
7488 			max_depth = udev->upper_level;
7489 	}
7490 
7491 	return max_depth;
7492 }
7493 
__netdev_lower_depth(struct net_device * dev)7494 static u8 __netdev_lower_depth(struct net_device *dev)
7495 {
7496 	struct net_device *ldev;
7497 	struct list_head *iter;
7498 	u8 max_depth = 0;
7499 	bool ignore;
7500 
7501 	for (iter = &dev->adj_list.lower,
7502 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7503 	     ldev;
7504 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7505 		if (ignore)
7506 			continue;
7507 		if (max_depth < ldev->lower_level)
7508 			max_depth = ldev->lower_level;
7509 	}
7510 
7511 	return max_depth;
7512 }
7513 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7514 static int __netdev_update_upper_level(struct net_device *dev,
7515 				       struct netdev_nested_priv *__unused)
7516 {
7517 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7518 	return 0;
7519 }
7520 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7521 static int __netdev_update_lower_level(struct net_device *dev,
7522 				       struct netdev_nested_priv *priv)
7523 {
7524 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7525 
7526 #ifdef CONFIG_LOCKDEP
7527 	if (!priv)
7528 		return 0;
7529 
7530 	if (priv->flags & NESTED_SYNC_IMM)
7531 		dev->nested_level = dev->lower_level - 1;
7532 	if (priv->flags & NESTED_SYNC_TODO)
7533 		net_unlink_todo(dev);
7534 #endif
7535 	return 0;
7536 }
7537 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7538 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7539 				  int (*fn)(struct net_device *dev,
7540 					    struct netdev_nested_priv *priv),
7541 				  struct netdev_nested_priv *priv)
7542 {
7543 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7544 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7545 	int ret, cur = 0;
7546 
7547 	now = dev;
7548 	iter = &dev->adj_list.lower;
7549 
7550 	while (1) {
7551 		if (now != dev) {
7552 			ret = fn(now, priv);
7553 			if (ret)
7554 				return ret;
7555 		}
7556 
7557 		next = NULL;
7558 		while (1) {
7559 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7560 			if (!ldev)
7561 				break;
7562 
7563 			next = ldev;
7564 			niter = &ldev->adj_list.lower;
7565 			dev_stack[cur] = now;
7566 			iter_stack[cur++] = iter;
7567 			break;
7568 		}
7569 
7570 		if (!next) {
7571 			if (!cur)
7572 				return 0;
7573 			next = dev_stack[--cur];
7574 			niter = iter_stack[cur];
7575 		}
7576 
7577 		now = next;
7578 		iter = niter;
7579 	}
7580 
7581 	return 0;
7582 }
7583 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7584 
7585 /**
7586  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7587  *				       lower neighbour list, RCU
7588  *				       variant
7589  * @dev: device
7590  *
7591  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7592  * list. The caller must hold RCU read lock.
7593  */
netdev_lower_get_first_private_rcu(struct net_device * dev)7594 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7595 {
7596 	struct netdev_adjacent *lower;
7597 
7598 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7599 			struct netdev_adjacent, list);
7600 	if (lower)
7601 		return lower->private;
7602 	return NULL;
7603 }
7604 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7605 
7606 /**
7607  * netdev_master_upper_dev_get_rcu - Get master upper device
7608  * @dev: device
7609  *
7610  * Find a master upper device and return pointer to it or NULL in case
7611  * it's not there. The caller must hold the RCU read lock.
7612  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7613 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7614 {
7615 	struct netdev_adjacent *upper;
7616 
7617 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7618 				       struct netdev_adjacent, list);
7619 	if (upper && likely(upper->master))
7620 		return upper->dev;
7621 	return NULL;
7622 }
7623 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7624 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7625 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7626 			      struct net_device *adj_dev,
7627 			      struct list_head *dev_list)
7628 {
7629 	char linkname[IFNAMSIZ+7];
7630 
7631 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7632 		"upper_%s" : "lower_%s", adj_dev->name);
7633 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7634 				 linkname);
7635 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7636 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7637 			       char *name,
7638 			       struct list_head *dev_list)
7639 {
7640 	char linkname[IFNAMSIZ+7];
7641 
7642 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7643 		"upper_%s" : "lower_%s", name);
7644 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7645 }
7646 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7647 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7648 						 struct net_device *adj_dev,
7649 						 struct list_head *dev_list)
7650 {
7651 	return (dev_list == &dev->adj_list.upper ||
7652 		dev_list == &dev->adj_list.lower) &&
7653 		net_eq(dev_net(dev), dev_net(adj_dev));
7654 }
7655 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7656 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7657 					struct net_device *adj_dev,
7658 					struct list_head *dev_list,
7659 					void *private, bool master)
7660 {
7661 	struct netdev_adjacent *adj;
7662 	int ret;
7663 
7664 	adj = __netdev_find_adj(adj_dev, dev_list);
7665 
7666 	if (adj) {
7667 		adj->ref_nr += 1;
7668 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7669 			 dev->name, adj_dev->name, adj->ref_nr);
7670 
7671 		return 0;
7672 	}
7673 
7674 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7675 	if (!adj)
7676 		return -ENOMEM;
7677 
7678 	adj->dev = adj_dev;
7679 	adj->master = master;
7680 	adj->ref_nr = 1;
7681 	adj->private = private;
7682 	adj->ignore = false;
7683 	dev_hold(adj_dev);
7684 
7685 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7686 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7687 
7688 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7689 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7690 		if (ret)
7691 			goto free_adj;
7692 	}
7693 
7694 	/* Ensure that master link is always the first item in list. */
7695 	if (master) {
7696 		ret = sysfs_create_link(&(dev->dev.kobj),
7697 					&(adj_dev->dev.kobj), "master");
7698 		if (ret)
7699 			goto remove_symlinks;
7700 
7701 		list_add_rcu(&adj->list, dev_list);
7702 	} else {
7703 		list_add_tail_rcu(&adj->list, dev_list);
7704 	}
7705 
7706 	return 0;
7707 
7708 remove_symlinks:
7709 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7710 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7711 free_adj:
7712 	kfree(adj);
7713 	dev_put(adj_dev);
7714 
7715 	return ret;
7716 }
7717 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7718 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7719 					 struct net_device *adj_dev,
7720 					 u16 ref_nr,
7721 					 struct list_head *dev_list)
7722 {
7723 	struct netdev_adjacent *adj;
7724 
7725 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7726 		 dev->name, adj_dev->name, ref_nr);
7727 
7728 	adj = __netdev_find_adj(adj_dev, dev_list);
7729 
7730 	if (!adj) {
7731 		pr_err("Adjacency does not exist for device %s from %s\n",
7732 		       dev->name, adj_dev->name);
7733 		WARN_ON(1);
7734 		return;
7735 	}
7736 
7737 	if (adj->ref_nr > ref_nr) {
7738 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7739 			 dev->name, adj_dev->name, ref_nr,
7740 			 adj->ref_nr - ref_nr);
7741 		adj->ref_nr -= ref_nr;
7742 		return;
7743 	}
7744 
7745 	if (adj->master)
7746 		sysfs_remove_link(&(dev->dev.kobj), "master");
7747 
7748 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7749 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7750 
7751 	list_del_rcu(&adj->list);
7752 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7753 		 adj_dev->name, dev->name, adj_dev->name);
7754 	dev_put(adj_dev);
7755 	kfree_rcu(adj, rcu);
7756 }
7757 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7758 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7759 					    struct net_device *upper_dev,
7760 					    struct list_head *up_list,
7761 					    struct list_head *down_list,
7762 					    void *private, bool master)
7763 {
7764 	int ret;
7765 
7766 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7767 					   private, master);
7768 	if (ret)
7769 		return ret;
7770 
7771 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7772 					   private, false);
7773 	if (ret) {
7774 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7775 		return ret;
7776 	}
7777 
7778 	return 0;
7779 }
7780 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7781 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7782 					       struct net_device *upper_dev,
7783 					       u16 ref_nr,
7784 					       struct list_head *up_list,
7785 					       struct list_head *down_list)
7786 {
7787 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7788 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7789 }
7790 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7791 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7792 						struct net_device *upper_dev,
7793 						void *private, bool master)
7794 {
7795 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7796 						&dev->adj_list.upper,
7797 						&upper_dev->adj_list.lower,
7798 						private, master);
7799 }
7800 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7801 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7802 						   struct net_device *upper_dev)
7803 {
7804 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7805 					   &dev->adj_list.upper,
7806 					   &upper_dev->adj_list.lower);
7807 }
7808 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7809 static int __netdev_upper_dev_link(struct net_device *dev,
7810 				   struct net_device *upper_dev, bool master,
7811 				   void *upper_priv, void *upper_info,
7812 				   struct netdev_nested_priv *priv,
7813 				   struct netlink_ext_ack *extack)
7814 {
7815 	struct netdev_notifier_changeupper_info changeupper_info = {
7816 		.info = {
7817 			.dev = dev,
7818 			.extack = extack,
7819 		},
7820 		.upper_dev = upper_dev,
7821 		.master = master,
7822 		.linking = true,
7823 		.upper_info = upper_info,
7824 	};
7825 	struct net_device *master_dev;
7826 	int ret = 0;
7827 
7828 	ASSERT_RTNL();
7829 
7830 	if (dev == upper_dev)
7831 		return -EBUSY;
7832 
7833 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7834 	if (__netdev_has_upper_dev(upper_dev, dev))
7835 		return -EBUSY;
7836 
7837 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7838 		return -EMLINK;
7839 
7840 	if (!master) {
7841 		if (__netdev_has_upper_dev(dev, upper_dev))
7842 			return -EEXIST;
7843 	} else {
7844 		master_dev = __netdev_master_upper_dev_get(dev);
7845 		if (master_dev)
7846 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7847 	}
7848 
7849 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7850 					    &changeupper_info.info);
7851 	ret = notifier_to_errno(ret);
7852 	if (ret)
7853 		return ret;
7854 
7855 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7856 						   master);
7857 	if (ret)
7858 		return ret;
7859 
7860 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7861 					    &changeupper_info.info);
7862 	ret = notifier_to_errno(ret);
7863 	if (ret)
7864 		goto rollback;
7865 
7866 	__netdev_update_upper_level(dev, NULL);
7867 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7868 
7869 	__netdev_update_lower_level(upper_dev, priv);
7870 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7871 				    priv);
7872 
7873 	return 0;
7874 
7875 rollback:
7876 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7877 
7878 	return ret;
7879 }
7880 
7881 /**
7882  * netdev_upper_dev_link - Add a link to the upper device
7883  * @dev: device
7884  * @upper_dev: new upper device
7885  * @extack: netlink extended ack
7886  *
7887  * Adds a link to device which is upper to this one. The caller must hold
7888  * the RTNL lock. On a failure a negative errno code is returned.
7889  * On success the reference counts are adjusted and the function
7890  * returns zero.
7891  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7892 int netdev_upper_dev_link(struct net_device *dev,
7893 			  struct net_device *upper_dev,
7894 			  struct netlink_ext_ack *extack)
7895 {
7896 	struct netdev_nested_priv priv = {
7897 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7898 		.data = NULL,
7899 	};
7900 
7901 	return __netdev_upper_dev_link(dev, upper_dev, false,
7902 				       NULL, NULL, &priv, extack);
7903 }
7904 EXPORT_SYMBOL(netdev_upper_dev_link);
7905 
7906 /**
7907  * netdev_master_upper_dev_link - Add a master link to the upper device
7908  * @dev: device
7909  * @upper_dev: new upper device
7910  * @upper_priv: upper device private
7911  * @upper_info: upper info to be passed down via notifier
7912  * @extack: netlink extended ack
7913  *
7914  * Adds a link to device which is upper to this one. In this case, only
7915  * one master upper device can be linked, although other non-master devices
7916  * might be linked as well. The caller must hold the RTNL lock.
7917  * On a failure a negative errno code is returned. On success the reference
7918  * counts are adjusted and the function returns zero.
7919  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7920 int netdev_master_upper_dev_link(struct net_device *dev,
7921 				 struct net_device *upper_dev,
7922 				 void *upper_priv, void *upper_info,
7923 				 struct netlink_ext_ack *extack)
7924 {
7925 	struct netdev_nested_priv priv = {
7926 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7927 		.data = NULL,
7928 	};
7929 
7930 	return __netdev_upper_dev_link(dev, upper_dev, true,
7931 				       upper_priv, upper_info, &priv, extack);
7932 }
7933 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7934 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7935 static void __netdev_upper_dev_unlink(struct net_device *dev,
7936 				      struct net_device *upper_dev,
7937 				      struct netdev_nested_priv *priv)
7938 {
7939 	struct netdev_notifier_changeupper_info changeupper_info = {
7940 		.info = {
7941 			.dev = dev,
7942 		},
7943 		.upper_dev = upper_dev,
7944 		.linking = false,
7945 	};
7946 
7947 	ASSERT_RTNL();
7948 
7949 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7950 
7951 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7952 				      &changeupper_info.info);
7953 
7954 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7955 
7956 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7957 				      &changeupper_info.info);
7958 
7959 	__netdev_update_upper_level(dev, NULL);
7960 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7961 
7962 	__netdev_update_lower_level(upper_dev, priv);
7963 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7964 				    priv);
7965 }
7966 
7967 /**
7968  * netdev_upper_dev_unlink - Removes a link to upper device
7969  * @dev: device
7970  * @upper_dev: new upper device
7971  *
7972  * Removes a link to device which is upper to this one. The caller must hold
7973  * the RTNL lock.
7974  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7975 void netdev_upper_dev_unlink(struct net_device *dev,
7976 			     struct net_device *upper_dev)
7977 {
7978 	struct netdev_nested_priv priv = {
7979 		.flags = NESTED_SYNC_TODO,
7980 		.data = NULL,
7981 	};
7982 
7983 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7984 }
7985 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7986 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7987 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7988 				      struct net_device *lower_dev,
7989 				      bool val)
7990 {
7991 	struct netdev_adjacent *adj;
7992 
7993 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7994 	if (adj)
7995 		adj->ignore = val;
7996 
7997 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7998 	if (adj)
7999 		adj->ignore = val;
8000 }
8001 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8002 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8003 					struct net_device *lower_dev)
8004 {
8005 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8006 }
8007 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8008 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8009 				       struct net_device *lower_dev)
8010 {
8011 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8012 }
8013 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8014 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8015 				   struct net_device *new_dev,
8016 				   struct net_device *dev,
8017 				   struct netlink_ext_ack *extack)
8018 {
8019 	struct netdev_nested_priv priv = {
8020 		.flags = 0,
8021 		.data = NULL,
8022 	};
8023 	int err;
8024 
8025 	if (!new_dev)
8026 		return 0;
8027 
8028 	if (old_dev && new_dev != old_dev)
8029 		netdev_adjacent_dev_disable(dev, old_dev);
8030 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8031 				      extack);
8032 	if (err) {
8033 		if (old_dev && new_dev != old_dev)
8034 			netdev_adjacent_dev_enable(dev, old_dev);
8035 		return err;
8036 	}
8037 
8038 	return 0;
8039 }
8040 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8041 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8042 void netdev_adjacent_change_commit(struct net_device *old_dev,
8043 				   struct net_device *new_dev,
8044 				   struct net_device *dev)
8045 {
8046 	struct netdev_nested_priv priv = {
8047 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8048 		.data = NULL,
8049 	};
8050 
8051 	if (!new_dev || !old_dev)
8052 		return;
8053 
8054 	if (new_dev == old_dev)
8055 		return;
8056 
8057 	netdev_adjacent_dev_enable(dev, old_dev);
8058 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8059 }
8060 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8061 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8062 void netdev_adjacent_change_abort(struct net_device *old_dev,
8063 				  struct net_device *new_dev,
8064 				  struct net_device *dev)
8065 {
8066 	struct netdev_nested_priv priv = {
8067 		.flags = 0,
8068 		.data = NULL,
8069 	};
8070 
8071 	if (!new_dev)
8072 		return;
8073 
8074 	if (old_dev && new_dev != old_dev)
8075 		netdev_adjacent_dev_enable(dev, old_dev);
8076 
8077 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8078 }
8079 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8080 
8081 /**
8082  * netdev_bonding_info_change - Dispatch event about slave change
8083  * @dev: device
8084  * @bonding_info: info to dispatch
8085  *
8086  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8087  * The caller must hold the RTNL lock.
8088  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8089 void netdev_bonding_info_change(struct net_device *dev,
8090 				struct netdev_bonding_info *bonding_info)
8091 {
8092 	struct netdev_notifier_bonding_info info = {
8093 		.info.dev = dev,
8094 	};
8095 
8096 	memcpy(&info.bonding_info, bonding_info,
8097 	       sizeof(struct netdev_bonding_info));
8098 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8099 				      &info.info);
8100 }
8101 EXPORT_SYMBOL(netdev_bonding_info_change);
8102 
8103 /**
8104  * netdev_get_xmit_slave - Get the xmit slave of master device
8105  * @dev: device
8106  * @skb: The packet
8107  * @all_slaves: assume all the slaves are active
8108  *
8109  * The reference counters are not incremented so the caller must be
8110  * careful with locks. The caller must hold RCU lock.
8111  * %NULL is returned if no slave is found.
8112  */
8113 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8114 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8115 					 struct sk_buff *skb,
8116 					 bool all_slaves)
8117 {
8118 	const struct net_device_ops *ops = dev->netdev_ops;
8119 
8120 	if (!ops->ndo_get_xmit_slave)
8121 		return NULL;
8122 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8123 }
8124 EXPORT_SYMBOL(netdev_get_xmit_slave);
8125 
netdev_adjacent_add_links(struct net_device * dev)8126 static void netdev_adjacent_add_links(struct net_device *dev)
8127 {
8128 	struct netdev_adjacent *iter;
8129 
8130 	struct net *net = dev_net(dev);
8131 
8132 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8133 		if (!net_eq(net, dev_net(iter->dev)))
8134 			continue;
8135 		netdev_adjacent_sysfs_add(iter->dev, dev,
8136 					  &iter->dev->adj_list.lower);
8137 		netdev_adjacent_sysfs_add(dev, iter->dev,
8138 					  &dev->adj_list.upper);
8139 	}
8140 
8141 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8142 		if (!net_eq(net, dev_net(iter->dev)))
8143 			continue;
8144 		netdev_adjacent_sysfs_add(iter->dev, dev,
8145 					  &iter->dev->adj_list.upper);
8146 		netdev_adjacent_sysfs_add(dev, iter->dev,
8147 					  &dev->adj_list.lower);
8148 	}
8149 }
8150 
netdev_adjacent_del_links(struct net_device * dev)8151 static void netdev_adjacent_del_links(struct net_device *dev)
8152 {
8153 	struct netdev_adjacent *iter;
8154 
8155 	struct net *net = dev_net(dev);
8156 
8157 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8158 		if (!net_eq(net, dev_net(iter->dev)))
8159 			continue;
8160 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8161 					  &iter->dev->adj_list.lower);
8162 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8163 					  &dev->adj_list.upper);
8164 	}
8165 
8166 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8167 		if (!net_eq(net, dev_net(iter->dev)))
8168 			continue;
8169 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8170 					  &iter->dev->adj_list.upper);
8171 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8172 					  &dev->adj_list.lower);
8173 	}
8174 }
8175 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8176 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8177 {
8178 	struct netdev_adjacent *iter;
8179 
8180 	struct net *net = dev_net(dev);
8181 
8182 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8183 		if (!net_eq(net, dev_net(iter->dev)))
8184 			continue;
8185 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8186 					  &iter->dev->adj_list.lower);
8187 		netdev_adjacent_sysfs_add(iter->dev, dev,
8188 					  &iter->dev->adj_list.lower);
8189 	}
8190 
8191 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8192 		if (!net_eq(net, dev_net(iter->dev)))
8193 			continue;
8194 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8195 					  &iter->dev->adj_list.upper);
8196 		netdev_adjacent_sysfs_add(iter->dev, dev,
8197 					  &iter->dev->adj_list.upper);
8198 	}
8199 }
8200 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8201 void *netdev_lower_dev_get_private(struct net_device *dev,
8202 				   struct net_device *lower_dev)
8203 {
8204 	struct netdev_adjacent *lower;
8205 
8206 	if (!lower_dev)
8207 		return NULL;
8208 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8209 	if (!lower)
8210 		return NULL;
8211 
8212 	return lower->private;
8213 }
8214 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8215 
8216 
8217 /**
8218  * netdev_lower_change - Dispatch event about lower device state change
8219  * @lower_dev: device
8220  * @lower_state_info: state to dispatch
8221  *
8222  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8223  * The caller must hold the RTNL lock.
8224  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8225 void netdev_lower_state_changed(struct net_device *lower_dev,
8226 				void *lower_state_info)
8227 {
8228 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8229 		.info.dev = lower_dev,
8230 	};
8231 
8232 	ASSERT_RTNL();
8233 	changelowerstate_info.lower_state_info = lower_state_info;
8234 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8235 				      &changelowerstate_info.info);
8236 }
8237 EXPORT_SYMBOL(netdev_lower_state_changed);
8238 
dev_change_rx_flags(struct net_device * dev,int flags)8239 static void dev_change_rx_flags(struct net_device *dev, int flags)
8240 {
8241 	const struct net_device_ops *ops = dev->netdev_ops;
8242 
8243 	if (ops->ndo_change_rx_flags)
8244 		ops->ndo_change_rx_flags(dev, flags);
8245 }
8246 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8247 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8248 {
8249 	unsigned int old_flags = dev->flags;
8250 	kuid_t uid;
8251 	kgid_t gid;
8252 
8253 	ASSERT_RTNL();
8254 
8255 	dev->flags |= IFF_PROMISC;
8256 	dev->promiscuity += inc;
8257 	if (dev->promiscuity == 0) {
8258 		/*
8259 		 * Avoid overflow.
8260 		 * If inc causes overflow, untouch promisc and return error.
8261 		 */
8262 		if (inc < 0)
8263 			dev->flags &= ~IFF_PROMISC;
8264 		else {
8265 			dev->promiscuity -= inc;
8266 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8267 				dev->name);
8268 			return -EOVERFLOW;
8269 		}
8270 	}
8271 	if (dev->flags != old_flags) {
8272 		pr_info("device %s %s promiscuous mode\n",
8273 			dev->name,
8274 			dev->flags & IFF_PROMISC ? "entered" : "left");
8275 		if (audit_enabled) {
8276 			current_uid_gid(&uid, &gid);
8277 			audit_log(audit_context(), GFP_ATOMIC,
8278 				  AUDIT_ANOM_PROMISCUOUS,
8279 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8280 				  dev->name, (dev->flags & IFF_PROMISC),
8281 				  (old_flags & IFF_PROMISC),
8282 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8283 				  from_kuid(&init_user_ns, uid),
8284 				  from_kgid(&init_user_ns, gid),
8285 				  audit_get_sessionid(current));
8286 		}
8287 
8288 		dev_change_rx_flags(dev, IFF_PROMISC);
8289 	}
8290 	if (notify)
8291 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8292 	return 0;
8293 }
8294 
8295 /**
8296  *	dev_set_promiscuity	- update promiscuity count on a device
8297  *	@dev: device
8298  *	@inc: modifier
8299  *
8300  *	Add or remove promiscuity from a device. While the count in the device
8301  *	remains above zero the interface remains promiscuous. Once it hits zero
8302  *	the device reverts back to normal filtering operation. A negative inc
8303  *	value is used to drop promiscuity on the device.
8304  *	Return 0 if successful or a negative errno code on error.
8305  */
dev_set_promiscuity(struct net_device * dev,int inc)8306 int dev_set_promiscuity(struct net_device *dev, int inc)
8307 {
8308 	unsigned int old_flags = dev->flags;
8309 	int err;
8310 
8311 	err = __dev_set_promiscuity(dev, inc, true);
8312 	if (err < 0)
8313 		return err;
8314 	if (dev->flags != old_flags)
8315 		dev_set_rx_mode(dev);
8316 	return err;
8317 }
8318 EXPORT_SYMBOL(dev_set_promiscuity);
8319 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8320 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8321 {
8322 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8323 
8324 	ASSERT_RTNL();
8325 
8326 	dev->flags |= IFF_ALLMULTI;
8327 	dev->allmulti += inc;
8328 	if (dev->allmulti == 0) {
8329 		/*
8330 		 * Avoid overflow.
8331 		 * If inc causes overflow, untouch allmulti and return error.
8332 		 */
8333 		if (inc < 0)
8334 			dev->flags &= ~IFF_ALLMULTI;
8335 		else {
8336 			dev->allmulti -= inc;
8337 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8338 				dev->name);
8339 			return -EOVERFLOW;
8340 		}
8341 	}
8342 	if (dev->flags ^ old_flags) {
8343 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8344 		dev_set_rx_mode(dev);
8345 		if (notify)
8346 			__dev_notify_flags(dev, old_flags,
8347 					   dev->gflags ^ old_gflags);
8348 	}
8349 	return 0;
8350 }
8351 
8352 /**
8353  *	dev_set_allmulti	- update allmulti count on a device
8354  *	@dev: device
8355  *	@inc: modifier
8356  *
8357  *	Add or remove reception of all multicast frames to a device. While the
8358  *	count in the device remains above zero the interface remains listening
8359  *	to all interfaces. Once it hits zero the device reverts back to normal
8360  *	filtering operation. A negative @inc value is used to drop the counter
8361  *	when releasing a resource needing all multicasts.
8362  *	Return 0 if successful or a negative errno code on error.
8363  */
8364 
dev_set_allmulti(struct net_device * dev,int inc)8365 int dev_set_allmulti(struct net_device *dev, int inc)
8366 {
8367 	return __dev_set_allmulti(dev, inc, true);
8368 }
8369 EXPORT_SYMBOL(dev_set_allmulti);
8370 
8371 /*
8372  *	Upload unicast and multicast address lists to device and
8373  *	configure RX filtering. When the device doesn't support unicast
8374  *	filtering it is put in promiscuous mode while unicast addresses
8375  *	are present.
8376  */
__dev_set_rx_mode(struct net_device * dev)8377 void __dev_set_rx_mode(struct net_device *dev)
8378 {
8379 	const struct net_device_ops *ops = dev->netdev_ops;
8380 
8381 	/* dev_open will call this function so the list will stay sane. */
8382 	if (!(dev->flags&IFF_UP))
8383 		return;
8384 
8385 	if (!netif_device_present(dev))
8386 		return;
8387 
8388 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8389 		/* Unicast addresses changes may only happen under the rtnl,
8390 		 * therefore calling __dev_set_promiscuity here is safe.
8391 		 */
8392 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8393 			__dev_set_promiscuity(dev, 1, false);
8394 			dev->uc_promisc = true;
8395 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8396 			__dev_set_promiscuity(dev, -1, false);
8397 			dev->uc_promisc = false;
8398 		}
8399 	}
8400 
8401 	if (ops->ndo_set_rx_mode)
8402 		ops->ndo_set_rx_mode(dev);
8403 }
8404 
dev_set_rx_mode(struct net_device * dev)8405 void dev_set_rx_mode(struct net_device *dev)
8406 {
8407 	netif_addr_lock_bh(dev);
8408 	__dev_set_rx_mode(dev);
8409 	netif_addr_unlock_bh(dev);
8410 }
8411 
8412 /**
8413  *	dev_get_flags - get flags reported to userspace
8414  *	@dev: device
8415  *
8416  *	Get the combination of flag bits exported through APIs to userspace.
8417  */
dev_get_flags(const struct net_device * dev)8418 unsigned int dev_get_flags(const struct net_device *dev)
8419 {
8420 	unsigned int flags;
8421 
8422 	flags = (dev->flags & ~(IFF_PROMISC |
8423 				IFF_ALLMULTI |
8424 				IFF_RUNNING |
8425 				IFF_LOWER_UP |
8426 				IFF_DORMANT)) |
8427 		(dev->gflags & (IFF_PROMISC |
8428 				IFF_ALLMULTI));
8429 
8430 	if (netif_running(dev)) {
8431 		if (netif_oper_up(dev))
8432 			flags |= IFF_RUNNING;
8433 		if (netif_carrier_ok(dev))
8434 			flags |= IFF_LOWER_UP;
8435 		if (netif_dormant(dev))
8436 			flags |= IFF_DORMANT;
8437 	}
8438 
8439 	return flags;
8440 }
8441 EXPORT_SYMBOL(dev_get_flags);
8442 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8443 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8444 		       struct netlink_ext_ack *extack)
8445 {
8446 	unsigned int old_flags = dev->flags;
8447 	int ret;
8448 
8449 	ASSERT_RTNL();
8450 
8451 	/*
8452 	 *	Set the flags on our device.
8453 	 */
8454 
8455 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8456 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8457 			       IFF_AUTOMEDIA)) |
8458 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8459 				    IFF_ALLMULTI));
8460 
8461 	/*
8462 	 *	Load in the correct multicast list now the flags have changed.
8463 	 */
8464 
8465 	if ((old_flags ^ flags) & IFF_MULTICAST)
8466 		dev_change_rx_flags(dev, IFF_MULTICAST);
8467 
8468 	dev_set_rx_mode(dev);
8469 
8470 	/*
8471 	 *	Have we downed the interface. We handle IFF_UP ourselves
8472 	 *	according to user attempts to set it, rather than blindly
8473 	 *	setting it.
8474 	 */
8475 
8476 	ret = 0;
8477 	if ((old_flags ^ flags) & IFF_UP) {
8478 		if (old_flags & IFF_UP)
8479 			__dev_close(dev);
8480 		else
8481 			ret = __dev_open(dev, extack);
8482 	}
8483 
8484 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8485 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8486 		unsigned int old_flags = dev->flags;
8487 
8488 		dev->gflags ^= IFF_PROMISC;
8489 
8490 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8491 			if (dev->flags != old_flags)
8492 				dev_set_rx_mode(dev);
8493 	}
8494 
8495 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8496 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8497 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8498 	 */
8499 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8500 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8501 
8502 		dev->gflags ^= IFF_ALLMULTI;
8503 		__dev_set_allmulti(dev, inc, false);
8504 	}
8505 
8506 	return ret;
8507 }
8508 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8509 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8510 			unsigned int gchanges)
8511 {
8512 	unsigned int changes = dev->flags ^ old_flags;
8513 
8514 	if (gchanges)
8515 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8516 
8517 	if (changes & IFF_UP) {
8518 		if (dev->flags & IFF_UP)
8519 			call_netdevice_notifiers(NETDEV_UP, dev);
8520 		else
8521 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8522 	}
8523 
8524 	if (dev->flags & IFF_UP &&
8525 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8526 		struct netdev_notifier_change_info change_info = {
8527 			.info = {
8528 				.dev = dev,
8529 			},
8530 			.flags_changed = changes,
8531 		};
8532 
8533 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8534 	}
8535 }
8536 
8537 /**
8538  *	dev_change_flags - change device settings
8539  *	@dev: device
8540  *	@flags: device state flags
8541  *	@extack: netlink extended ack
8542  *
8543  *	Change settings on device based state flags. The flags are
8544  *	in the userspace exported format.
8545  */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8546 int dev_change_flags(struct net_device *dev, unsigned int flags,
8547 		     struct netlink_ext_ack *extack)
8548 {
8549 	int ret;
8550 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8551 
8552 	ret = __dev_change_flags(dev, flags, extack);
8553 	if (ret < 0)
8554 		return ret;
8555 
8556 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8557 	__dev_notify_flags(dev, old_flags, changes);
8558 	return ret;
8559 }
8560 EXPORT_SYMBOL(dev_change_flags);
8561 
__dev_set_mtu(struct net_device * dev,int new_mtu)8562 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8563 {
8564 	const struct net_device_ops *ops = dev->netdev_ops;
8565 
8566 	if (ops->ndo_change_mtu)
8567 		return ops->ndo_change_mtu(dev, new_mtu);
8568 
8569 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8570 	WRITE_ONCE(dev->mtu, new_mtu);
8571 	return 0;
8572 }
8573 EXPORT_SYMBOL(__dev_set_mtu);
8574 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8575 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8576 		     struct netlink_ext_ack *extack)
8577 {
8578 	/* MTU must be positive, and in range */
8579 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8580 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8581 		return -EINVAL;
8582 	}
8583 
8584 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8585 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8586 		return -EINVAL;
8587 	}
8588 	return 0;
8589 }
8590 
8591 /**
8592  *	dev_set_mtu_ext - Change maximum transfer unit
8593  *	@dev: device
8594  *	@new_mtu: new transfer unit
8595  *	@extack: netlink extended ack
8596  *
8597  *	Change the maximum transfer size of the network device.
8598  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8599 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8600 		    struct netlink_ext_ack *extack)
8601 {
8602 	int err, orig_mtu;
8603 
8604 	if (new_mtu == dev->mtu)
8605 		return 0;
8606 
8607 	err = dev_validate_mtu(dev, new_mtu, extack);
8608 	if (err)
8609 		return err;
8610 
8611 	if (!netif_device_present(dev))
8612 		return -ENODEV;
8613 
8614 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8615 	err = notifier_to_errno(err);
8616 	if (err)
8617 		return err;
8618 
8619 	orig_mtu = dev->mtu;
8620 	err = __dev_set_mtu(dev, new_mtu);
8621 
8622 	if (!err) {
8623 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8624 						   orig_mtu);
8625 		err = notifier_to_errno(err);
8626 		if (err) {
8627 			/* setting mtu back and notifying everyone again,
8628 			 * so that they have a chance to revert changes.
8629 			 */
8630 			__dev_set_mtu(dev, orig_mtu);
8631 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8632 						     new_mtu);
8633 		}
8634 	}
8635 	return err;
8636 }
8637 
dev_set_mtu(struct net_device * dev,int new_mtu)8638 int dev_set_mtu(struct net_device *dev, int new_mtu)
8639 {
8640 	struct netlink_ext_ack extack;
8641 	int err;
8642 
8643 	memset(&extack, 0, sizeof(extack));
8644 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8645 	if (err && extack._msg)
8646 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8647 	return err;
8648 }
8649 EXPORT_SYMBOL(dev_set_mtu);
8650 
8651 /**
8652  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8653  *	@dev: device
8654  *	@new_len: new tx queue length
8655  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8656 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8657 {
8658 	unsigned int orig_len = dev->tx_queue_len;
8659 	int res;
8660 
8661 	if (new_len != (unsigned int)new_len)
8662 		return -ERANGE;
8663 
8664 	if (new_len != orig_len) {
8665 		dev->tx_queue_len = new_len;
8666 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8667 		res = notifier_to_errno(res);
8668 		if (res)
8669 			goto err_rollback;
8670 		res = dev_qdisc_change_tx_queue_len(dev);
8671 		if (res)
8672 			goto err_rollback;
8673 	}
8674 
8675 	return 0;
8676 
8677 err_rollback:
8678 	netdev_err(dev, "refused to change device tx_queue_len\n");
8679 	dev->tx_queue_len = orig_len;
8680 	return res;
8681 }
8682 
8683 /**
8684  *	dev_set_group - Change group this device belongs to
8685  *	@dev: device
8686  *	@new_group: group this device should belong to
8687  */
dev_set_group(struct net_device * dev,int new_group)8688 void dev_set_group(struct net_device *dev, int new_group)
8689 {
8690 	dev->group = new_group;
8691 }
8692 EXPORT_SYMBOL(dev_set_group);
8693 
8694 /**
8695  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8696  *	@dev: device
8697  *	@addr: new address
8698  *	@extack: netlink extended ack
8699  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8700 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8701 			      struct netlink_ext_ack *extack)
8702 {
8703 	struct netdev_notifier_pre_changeaddr_info info = {
8704 		.info.dev = dev,
8705 		.info.extack = extack,
8706 		.dev_addr = addr,
8707 	};
8708 	int rc;
8709 
8710 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8711 	return notifier_to_errno(rc);
8712 }
8713 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8714 
8715 /**
8716  *	dev_set_mac_address - Change Media Access Control Address
8717  *	@dev: device
8718  *	@sa: new address
8719  *	@extack: netlink extended ack
8720  *
8721  *	Change the hardware (MAC) address of the device
8722  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8723 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8724 			struct netlink_ext_ack *extack)
8725 {
8726 	const struct net_device_ops *ops = dev->netdev_ops;
8727 	int err;
8728 
8729 	if (!ops->ndo_set_mac_address)
8730 		return -EOPNOTSUPP;
8731 	if (sa->sa_family != dev->type)
8732 		return -EINVAL;
8733 	if (!netif_device_present(dev))
8734 		return -ENODEV;
8735 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8736 	if (err)
8737 		return err;
8738 	err = ops->ndo_set_mac_address(dev, sa);
8739 	if (err)
8740 		return err;
8741 	dev->addr_assign_type = NET_ADDR_SET;
8742 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8743 	add_device_randomness(dev->dev_addr, dev->addr_len);
8744 	return 0;
8745 }
8746 EXPORT_SYMBOL(dev_set_mac_address);
8747 
8748 static DECLARE_RWSEM(dev_addr_sem);
8749 
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8750 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8751 			     struct netlink_ext_ack *extack)
8752 {
8753 	int ret;
8754 
8755 	down_write(&dev_addr_sem);
8756 	ret = dev_set_mac_address(dev, sa, extack);
8757 	up_write(&dev_addr_sem);
8758 	return ret;
8759 }
8760 EXPORT_SYMBOL(dev_set_mac_address_user);
8761 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8762 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8763 {
8764 	size_t size = sizeof(sa->sa_data);
8765 	struct net_device *dev;
8766 	int ret = 0;
8767 
8768 	down_read(&dev_addr_sem);
8769 	rcu_read_lock();
8770 
8771 	dev = dev_get_by_name_rcu(net, dev_name);
8772 	if (!dev) {
8773 		ret = -ENODEV;
8774 		goto unlock;
8775 	}
8776 	if (!dev->addr_len)
8777 		memset(sa->sa_data, 0, size);
8778 	else
8779 		memcpy(sa->sa_data, dev->dev_addr,
8780 		       min_t(size_t, size, dev->addr_len));
8781 	sa->sa_family = dev->type;
8782 
8783 unlock:
8784 	rcu_read_unlock();
8785 	up_read(&dev_addr_sem);
8786 	return ret;
8787 }
8788 EXPORT_SYMBOL(dev_get_mac_address);
8789 
8790 /**
8791  *	dev_change_carrier - Change device carrier
8792  *	@dev: device
8793  *	@new_carrier: new value
8794  *
8795  *	Change device carrier
8796  */
dev_change_carrier(struct net_device * dev,bool new_carrier)8797 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8798 {
8799 	const struct net_device_ops *ops = dev->netdev_ops;
8800 
8801 	if (!ops->ndo_change_carrier)
8802 		return -EOPNOTSUPP;
8803 	if (!netif_device_present(dev))
8804 		return -ENODEV;
8805 	return ops->ndo_change_carrier(dev, new_carrier);
8806 }
8807 EXPORT_SYMBOL(dev_change_carrier);
8808 
8809 /**
8810  *	dev_get_phys_port_id - Get device physical port ID
8811  *	@dev: device
8812  *	@ppid: port ID
8813  *
8814  *	Get device physical port ID
8815  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8816 int dev_get_phys_port_id(struct net_device *dev,
8817 			 struct netdev_phys_item_id *ppid)
8818 {
8819 	const struct net_device_ops *ops = dev->netdev_ops;
8820 
8821 	if (!ops->ndo_get_phys_port_id)
8822 		return -EOPNOTSUPP;
8823 	return ops->ndo_get_phys_port_id(dev, ppid);
8824 }
8825 EXPORT_SYMBOL(dev_get_phys_port_id);
8826 
8827 /**
8828  *	dev_get_phys_port_name - Get device physical port name
8829  *	@dev: device
8830  *	@name: port name
8831  *	@len: limit of bytes to copy to name
8832  *
8833  *	Get device physical port name
8834  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8835 int dev_get_phys_port_name(struct net_device *dev,
8836 			   char *name, size_t len)
8837 {
8838 	const struct net_device_ops *ops = dev->netdev_ops;
8839 	int err;
8840 
8841 	if (ops->ndo_get_phys_port_name) {
8842 		err = ops->ndo_get_phys_port_name(dev, name, len);
8843 		if (err != -EOPNOTSUPP)
8844 			return err;
8845 	}
8846 	return devlink_compat_phys_port_name_get(dev, name, len);
8847 }
8848 EXPORT_SYMBOL(dev_get_phys_port_name);
8849 
8850 /**
8851  *	dev_get_port_parent_id - Get the device's port parent identifier
8852  *	@dev: network device
8853  *	@ppid: pointer to a storage for the port's parent identifier
8854  *	@recurse: allow/disallow recursion to lower devices
8855  *
8856  *	Get the devices's port parent identifier
8857  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8858 int dev_get_port_parent_id(struct net_device *dev,
8859 			   struct netdev_phys_item_id *ppid,
8860 			   bool recurse)
8861 {
8862 	const struct net_device_ops *ops = dev->netdev_ops;
8863 	struct netdev_phys_item_id first = { };
8864 	struct net_device *lower_dev;
8865 	struct list_head *iter;
8866 	int err;
8867 
8868 	if (ops->ndo_get_port_parent_id) {
8869 		err = ops->ndo_get_port_parent_id(dev, ppid);
8870 		if (err != -EOPNOTSUPP)
8871 			return err;
8872 	}
8873 
8874 	err = devlink_compat_switch_id_get(dev, ppid);
8875 	if (!err || err != -EOPNOTSUPP)
8876 		return err;
8877 
8878 	if (!recurse)
8879 		return -EOPNOTSUPP;
8880 
8881 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8882 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8883 		if (err)
8884 			break;
8885 		if (!first.id_len)
8886 			first = *ppid;
8887 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8888 			return -EOPNOTSUPP;
8889 	}
8890 
8891 	return err;
8892 }
8893 EXPORT_SYMBOL(dev_get_port_parent_id);
8894 
8895 /**
8896  *	netdev_port_same_parent_id - Indicate if two network devices have
8897  *	the same port parent identifier
8898  *	@a: first network device
8899  *	@b: second network device
8900  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8901 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8902 {
8903 	struct netdev_phys_item_id a_id = { };
8904 	struct netdev_phys_item_id b_id = { };
8905 
8906 	if (dev_get_port_parent_id(a, &a_id, true) ||
8907 	    dev_get_port_parent_id(b, &b_id, true))
8908 		return false;
8909 
8910 	return netdev_phys_item_id_same(&a_id, &b_id);
8911 }
8912 EXPORT_SYMBOL(netdev_port_same_parent_id);
8913 
8914 /**
8915  *	dev_change_proto_down - update protocol port state information
8916  *	@dev: device
8917  *	@proto_down: new value
8918  *
8919  *	This info can be used by switch drivers to set the phys state of the
8920  *	port.
8921  */
dev_change_proto_down(struct net_device * dev,bool proto_down)8922 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8923 {
8924 	const struct net_device_ops *ops = dev->netdev_ops;
8925 
8926 	if (!ops->ndo_change_proto_down)
8927 		return -EOPNOTSUPP;
8928 	if (!netif_device_present(dev))
8929 		return -ENODEV;
8930 	return ops->ndo_change_proto_down(dev, proto_down);
8931 }
8932 EXPORT_SYMBOL(dev_change_proto_down);
8933 
8934 /**
8935  *	dev_change_proto_down_generic - generic implementation for
8936  * 	ndo_change_proto_down that sets carrier according to
8937  * 	proto_down.
8938  *
8939  *	@dev: device
8940  *	@proto_down: new value
8941  */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8942 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8943 {
8944 	if (proto_down)
8945 		netif_carrier_off(dev);
8946 	else
8947 		netif_carrier_on(dev);
8948 	dev->proto_down = proto_down;
8949 	return 0;
8950 }
8951 EXPORT_SYMBOL(dev_change_proto_down_generic);
8952 
8953 /**
8954  *	dev_change_proto_down_reason - proto down reason
8955  *
8956  *	@dev: device
8957  *	@mask: proto down mask
8958  *	@value: proto down value
8959  */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8960 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8961 				  u32 value)
8962 {
8963 	int b;
8964 
8965 	if (!mask) {
8966 		dev->proto_down_reason = value;
8967 	} else {
8968 		for_each_set_bit(b, &mask, 32) {
8969 			if (value & (1 << b))
8970 				dev->proto_down_reason |= BIT(b);
8971 			else
8972 				dev->proto_down_reason &= ~BIT(b);
8973 		}
8974 	}
8975 }
8976 EXPORT_SYMBOL(dev_change_proto_down_reason);
8977 
8978 struct bpf_xdp_link {
8979 	struct bpf_link link;
8980 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8981 	int flags;
8982 };
8983 
dev_xdp_mode(struct net_device * dev,u32 flags)8984 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8985 {
8986 	if (flags & XDP_FLAGS_HW_MODE)
8987 		return XDP_MODE_HW;
8988 	if (flags & XDP_FLAGS_DRV_MODE)
8989 		return XDP_MODE_DRV;
8990 	if (flags & XDP_FLAGS_SKB_MODE)
8991 		return XDP_MODE_SKB;
8992 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8993 }
8994 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)8995 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8996 {
8997 	switch (mode) {
8998 	case XDP_MODE_SKB:
8999 		return generic_xdp_install;
9000 	case XDP_MODE_DRV:
9001 	case XDP_MODE_HW:
9002 		return dev->netdev_ops->ndo_bpf;
9003 	default:
9004 		return NULL;
9005 	};
9006 }
9007 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9008 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9009 					 enum bpf_xdp_mode mode)
9010 {
9011 	return dev->xdp_state[mode].link;
9012 }
9013 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9014 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9015 				     enum bpf_xdp_mode mode)
9016 {
9017 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9018 
9019 	if (link)
9020 		return link->link.prog;
9021 	return dev->xdp_state[mode].prog;
9022 }
9023 
dev_xdp_prog_count(struct net_device * dev)9024 static u8 dev_xdp_prog_count(struct net_device *dev)
9025 {
9026 	u8 count = 0;
9027 	int i;
9028 
9029 	for (i = 0; i < __MAX_XDP_MODE; i++)
9030 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9031 			count++;
9032 	return count;
9033 }
9034 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9035 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9036 {
9037 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9038 
9039 	return prog ? prog->aux->id : 0;
9040 }
9041 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9042 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9043 			     struct bpf_xdp_link *link)
9044 {
9045 	dev->xdp_state[mode].link = link;
9046 	dev->xdp_state[mode].prog = NULL;
9047 }
9048 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9049 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9050 			     struct bpf_prog *prog)
9051 {
9052 	dev->xdp_state[mode].link = NULL;
9053 	dev->xdp_state[mode].prog = prog;
9054 }
9055 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9056 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9057 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9058 			   u32 flags, struct bpf_prog *prog)
9059 {
9060 	struct netdev_bpf xdp;
9061 	int err;
9062 
9063 	memset(&xdp, 0, sizeof(xdp));
9064 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9065 	xdp.extack = extack;
9066 	xdp.flags = flags;
9067 	xdp.prog = prog;
9068 
9069 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9070 	 * "moved" into driver), so they don't increment it on their own, but
9071 	 * they do decrement refcnt when program is detached or replaced.
9072 	 * Given net_device also owns link/prog, we need to bump refcnt here
9073 	 * to prevent drivers from underflowing it.
9074 	 */
9075 	if (prog)
9076 		bpf_prog_inc(prog);
9077 	err = bpf_op(dev, &xdp);
9078 	if (err) {
9079 		if (prog)
9080 			bpf_prog_put(prog);
9081 		return err;
9082 	}
9083 
9084 	if (mode != XDP_MODE_HW)
9085 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9086 
9087 	return 0;
9088 }
9089 
dev_xdp_uninstall(struct net_device * dev)9090 static void dev_xdp_uninstall(struct net_device *dev)
9091 {
9092 	struct bpf_xdp_link *link;
9093 	struct bpf_prog *prog;
9094 	enum bpf_xdp_mode mode;
9095 	bpf_op_t bpf_op;
9096 
9097 	ASSERT_RTNL();
9098 
9099 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9100 		prog = dev_xdp_prog(dev, mode);
9101 		if (!prog)
9102 			continue;
9103 
9104 		bpf_op = dev_xdp_bpf_op(dev, mode);
9105 		if (!bpf_op)
9106 			continue;
9107 
9108 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9109 
9110 		/* auto-detach link from net device */
9111 		link = dev_xdp_link(dev, mode);
9112 		if (link)
9113 			link->dev = NULL;
9114 		else
9115 			bpf_prog_put(prog);
9116 
9117 		dev_xdp_set_link(dev, mode, NULL);
9118 	}
9119 }
9120 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9121 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9122 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9123 			  struct bpf_prog *old_prog, u32 flags)
9124 {
9125 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9126 	struct bpf_prog *cur_prog;
9127 	enum bpf_xdp_mode mode;
9128 	bpf_op_t bpf_op;
9129 	int err;
9130 
9131 	ASSERT_RTNL();
9132 
9133 	/* either link or prog attachment, never both */
9134 	if (link && (new_prog || old_prog))
9135 		return -EINVAL;
9136 	/* link supports only XDP mode flags */
9137 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9138 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9139 		return -EINVAL;
9140 	}
9141 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9142 	if (num_modes > 1) {
9143 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9144 		return -EINVAL;
9145 	}
9146 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9147 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9148 		NL_SET_ERR_MSG(extack,
9149 			       "More than one program loaded, unset mode is ambiguous");
9150 		return -EINVAL;
9151 	}
9152 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9153 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9154 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9155 		return -EINVAL;
9156 	}
9157 
9158 	mode = dev_xdp_mode(dev, flags);
9159 	/* can't replace attached link */
9160 	if (dev_xdp_link(dev, mode)) {
9161 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9162 		return -EBUSY;
9163 	}
9164 
9165 	cur_prog = dev_xdp_prog(dev, mode);
9166 	/* can't replace attached prog with link */
9167 	if (link && cur_prog) {
9168 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9169 		return -EBUSY;
9170 	}
9171 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9172 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9173 		return -EEXIST;
9174 	}
9175 
9176 	/* put effective new program into new_prog */
9177 	if (link)
9178 		new_prog = link->link.prog;
9179 
9180 	if (new_prog) {
9181 		bool offload = mode == XDP_MODE_HW;
9182 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9183 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9184 
9185 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9186 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9187 			return -EBUSY;
9188 		}
9189 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9190 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9191 			return -EEXIST;
9192 		}
9193 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9194 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9195 			return -EINVAL;
9196 		}
9197 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9198 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9199 			return -EINVAL;
9200 		}
9201 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9202 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9203 			return -EINVAL;
9204 		}
9205 	}
9206 
9207 	/* don't call drivers if the effective program didn't change */
9208 	if (new_prog != cur_prog) {
9209 		bpf_op = dev_xdp_bpf_op(dev, mode);
9210 		if (!bpf_op) {
9211 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9212 			return -EOPNOTSUPP;
9213 		}
9214 
9215 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9216 		if (err)
9217 			return err;
9218 	}
9219 
9220 	if (link)
9221 		dev_xdp_set_link(dev, mode, link);
9222 	else
9223 		dev_xdp_set_prog(dev, mode, new_prog);
9224 	if (cur_prog)
9225 		bpf_prog_put(cur_prog);
9226 
9227 	return 0;
9228 }
9229 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9230 static int dev_xdp_attach_link(struct net_device *dev,
9231 			       struct netlink_ext_ack *extack,
9232 			       struct bpf_xdp_link *link)
9233 {
9234 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9235 }
9236 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9237 static int dev_xdp_detach_link(struct net_device *dev,
9238 			       struct netlink_ext_ack *extack,
9239 			       struct bpf_xdp_link *link)
9240 {
9241 	enum bpf_xdp_mode mode;
9242 	bpf_op_t bpf_op;
9243 
9244 	ASSERT_RTNL();
9245 
9246 	mode = dev_xdp_mode(dev, link->flags);
9247 	if (dev_xdp_link(dev, mode) != link)
9248 		return -EINVAL;
9249 
9250 	bpf_op = dev_xdp_bpf_op(dev, mode);
9251 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9252 	dev_xdp_set_link(dev, mode, NULL);
9253 	return 0;
9254 }
9255 
bpf_xdp_link_release(struct bpf_link * link)9256 static void bpf_xdp_link_release(struct bpf_link *link)
9257 {
9258 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9259 
9260 	rtnl_lock();
9261 
9262 	/* if racing with net_device's tear down, xdp_link->dev might be
9263 	 * already NULL, in which case link was already auto-detached
9264 	 */
9265 	if (xdp_link->dev) {
9266 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9267 		xdp_link->dev = NULL;
9268 	}
9269 
9270 	rtnl_unlock();
9271 }
9272 
bpf_xdp_link_detach(struct bpf_link * link)9273 static int bpf_xdp_link_detach(struct bpf_link *link)
9274 {
9275 	bpf_xdp_link_release(link);
9276 	return 0;
9277 }
9278 
bpf_xdp_link_dealloc(struct bpf_link * link)9279 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9280 {
9281 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9282 
9283 	kfree(xdp_link);
9284 }
9285 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9286 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9287 				     struct seq_file *seq)
9288 {
9289 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9290 	u32 ifindex = 0;
9291 
9292 	rtnl_lock();
9293 	if (xdp_link->dev)
9294 		ifindex = xdp_link->dev->ifindex;
9295 	rtnl_unlock();
9296 
9297 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9298 }
9299 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9300 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9301 				       struct bpf_link_info *info)
9302 {
9303 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9304 	u32 ifindex = 0;
9305 
9306 	rtnl_lock();
9307 	if (xdp_link->dev)
9308 		ifindex = xdp_link->dev->ifindex;
9309 	rtnl_unlock();
9310 
9311 	info->xdp.ifindex = ifindex;
9312 	return 0;
9313 }
9314 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9315 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9316 			       struct bpf_prog *old_prog)
9317 {
9318 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9319 	enum bpf_xdp_mode mode;
9320 	bpf_op_t bpf_op;
9321 	int err = 0;
9322 
9323 	rtnl_lock();
9324 
9325 	/* link might have been auto-released already, so fail */
9326 	if (!xdp_link->dev) {
9327 		err = -ENOLINK;
9328 		goto out_unlock;
9329 	}
9330 
9331 	if (old_prog && link->prog != old_prog) {
9332 		err = -EPERM;
9333 		goto out_unlock;
9334 	}
9335 	old_prog = link->prog;
9336 	if (old_prog == new_prog) {
9337 		/* no-op, don't disturb drivers */
9338 		bpf_prog_put(new_prog);
9339 		goto out_unlock;
9340 	}
9341 
9342 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9343 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9344 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9345 			      xdp_link->flags, new_prog);
9346 	if (err)
9347 		goto out_unlock;
9348 
9349 	old_prog = xchg(&link->prog, new_prog);
9350 	bpf_prog_put(old_prog);
9351 
9352 out_unlock:
9353 	rtnl_unlock();
9354 	return err;
9355 }
9356 
9357 static const struct bpf_link_ops bpf_xdp_link_lops = {
9358 	.release = bpf_xdp_link_release,
9359 	.dealloc = bpf_xdp_link_dealloc,
9360 	.detach = bpf_xdp_link_detach,
9361 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9362 	.fill_link_info = bpf_xdp_link_fill_link_info,
9363 	.update_prog = bpf_xdp_link_update,
9364 };
9365 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9366 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9367 {
9368 	struct net *net = current->nsproxy->net_ns;
9369 	struct bpf_link_primer link_primer;
9370 	struct bpf_xdp_link *link;
9371 	struct net_device *dev;
9372 	int err, fd;
9373 
9374 	rtnl_lock();
9375 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9376 	if (!dev) {
9377 		rtnl_unlock();
9378 		return -EINVAL;
9379 	}
9380 
9381 	link = kzalloc(sizeof(*link), GFP_USER);
9382 	if (!link) {
9383 		err = -ENOMEM;
9384 		goto unlock;
9385 	}
9386 
9387 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9388 	link->dev = dev;
9389 	link->flags = attr->link_create.flags;
9390 
9391 	err = bpf_link_prime(&link->link, &link_primer);
9392 	if (err) {
9393 		kfree(link);
9394 		goto unlock;
9395 	}
9396 
9397 	err = dev_xdp_attach_link(dev, NULL, link);
9398 	rtnl_unlock();
9399 
9400 	if (err) {
9401 		link->dev = NULL;
9402 		bpf_link_cleanup(&link_primer);
9403 		goto out_put_dev;
9404 	}
9405 
9406 	fd = bpf_link_settle(&link_primer);
9407 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9408 	dev_put(dev);
9409 	return fd;
9410 
9411 unlock:
9412 	rtnl_unlock();
9413 
9414 out_put_dev:
9415 	dev_put(dev);
9416 	return err;
9417 }
9418 
9419 /**
9420  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9421  *	@dev: device
9422  *	@extack: netlink extended ack
9423  *	@fd: new program fd or negative value to clear
9424  *	@expected_fd: old program fd that userspace expects to replace or clear
9425  *	@flags: xdp-related flags
9426  *
9427  *	Set or clear a bpf program for a device
9428  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9429 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9430 		      int fd, int expected_fd, u32 flags)
9431 {
9432 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9433 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9434 	int err;
9435 
9436 	ASSERT_RTNL();
9437 
9438 	if (fd >= 0) {
9439 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9440 						 mode != XDP_MODE_SKB);
9441 		if (IS_ERR(new_prog))
9442 			return PTR_ERR(new_prog);
9443 	}
9444 
9445 	if (expected_fd >= 0) {
9446 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9447 						 mode != XDP_MODE_SKB);
9448 		if (IS_ERR(old_prog)) {
9449 			err = PTR_ERR(old_prog);
9450 			old_prog = NULL;
9451 			goto err_out;
9452 		}
9453 	}
9454 
9455 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9456 
9457 err_out:
9458 	if (err && new_prog)
9459 		bpf_prog_put(new_prog);
9460 	if (old_prog)
9461 		bpf_prog_put(old_prog);
9462 	return err;
9463 }
9464 
9465 /**
9466  *	dev_new_index	-	allocate an ifindex
9467  *	@net: the applicable net namespace
9468  *
9469  *	Returns a suitable unique value for a new device interface
9470  *	number.  The caller must hold the rtnl semaphore or the
9471  *	dev_base_lock to be sure it remains unique.
9472  */
dev_new_index(struct net * net)9473 static int dev_new_index(struct net *net)
9474 {
9475 	int ifindex = net->ifindex;
9476 
9477 	for (;;) {
9478 		if (++ifindex <= 0)
9479 			ifindex = 1;
9480 		if (!__dev_get_by_index(net, ifindex))
9481 			return net->ifindex = ifindex;
9482 	}
9483 }
9484 
9485 /* Delayed registration/unregisteration */
9486 static LIST_HEAD(net_todo_list);
9487 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9488 
net_set_todo(struct net_device * dev)9489 static void net_set_todo(struct net_device *dev)
9490 {
9491 	list_add_tail(&dev->todo_list, &net_todo_list);
9492 	dev_net(dev)->dev_unreg_count++;
9493 }
9494 
rollback_registered_many(struct list_head * head)9495 static void rollback_registered_many(struct list_head *head)
9496 {
9497 	struct net_device *dev, *tmp;
9498 	LIST_HEAD(close_head);
9499 
9500 	BUG_ON(dev_boot_phase);
9501 	ASSERT_RTNL();
9502 
9503 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9504 		/* Some devices call without registering
9505 		 * for initialization unwind. Remove those
9506 		 * devices and proceed with the remaining.
9507 		 */
9508 		if (dev->reg_state == NETREG_UNINITIALIZED) {
9509 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9510 				 dev->name, dev);
9511 
9512 			WARN_ON(1);
9513 			list_del(&dev->unreg_list);
9514 			continue;
9515 		}
9516 		dev->dismantle = true;
9517 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
9518 	}
9519 
9520 	/* If device is running, close it first. */
9521 	list_for_each_entry(dev, head, unreg_list)
9522 		list_add_tail(&dev->close_list, &close_head);
9523 	dev_close_many(&close_head, true);
9524 
9525 	list_for_each_entry(dev, head, unreg_list) {
9526 		/* And unlink it from device chain. */
9527 		unlist_netdevice(dev);
9528 
9529 		dev->reg_state = NETREG_UNREGISTERING;
9530 	}
9531 	flush_all_backlogs();
9532 
9533 	synchronize_net();
9534 
9535 	list_for_each_entry(dev, head, unreg_list) {
9536 		struct sk_buff *skb = NULL;
9537 
9538 		/* Shutdown queueing discipline. */
9539 		dev_shutdown(dev);
9540 
9541 		dev_xdp_uninstall(dev);
9542 
9543 		/* Notify protocols, that we are about to destroy
9544 		 * this device. They should clean all the things.
9545 		 */
9546 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9547 
9548 		if (!dev->rtnl_link_ops ||
9549 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9550 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9551 						     GFP_KERNEL, NULL, 0);
9552 
9553 		/*
9554 		 *	Flush the unicast and multicast chains
9555 		 */
9556 		dev_uc_flush(dev);
9557 		dev_mc_flush(dev);
9558 
9559 		netdev_name_node_alt_flush(dev);
9560 		netdev_name_node_free(dev->name_node);
9561 
9562 		if (dev->netdev_ops->ndo_uninit)
9563 			dev->netdev_ops->ndo_uninit(dev);
9564 
9565 		if (skb)
9566 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9567 
9568 		/* Notifier chain MUST detach us all upper devices. */
9569 		WARN_ON(netdev_has_any_upper_dev(dev));
9570 		WARN_ON(netdev_has_any_lower_dev(dev));
9571 
9572 		/* Remove entries from kobject tree */
9573 		netdev_unregister_kobject(dev);
9574 #ifdef CONFIG_XPS
9575 		/* Remove XPS queueing entries */
9576 		netif_reset_xps_queues_gt(dev, 0);
9577 #endif
9578 	}
9579 
9580 	synchronize_net();
9581 
9582 	list_for_each_entry(dev, head, unreg_list)
9583 		dev_put(dev);
9584 }
9585 
rollback_registered(struct net_device * dev)9586 static void rollback_registered(struct net_device *dev)
9587 {
9588 	LIST_HEAD(single);
9589 
9590 	list_add(&dev->unreg_list, &single);
9591 	rollback_registered_many(&single);
9592 	list_del(&single);
9593 }
9594 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9595 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9596 	struct net_device *upper, netdev_features_t features)
9597 {
9598 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9599 	netdev_features_t feature;
9600 	int feature_bit;
9601 
9602 	for_each_netdev_feature(upper_disables, feature_bit) {
9603 		feature = __NETIF_F_BIT(feature_bit);
9604 		if (!(upper->wanted_features & feature)
9605 		    && (features & feature)) {
9606 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9607 				   &feature, upper->name);
9608 			features &= ~feature;
9609 		}
9610 	}
9611 
9612 	return features;
9613 }
9614 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9615 static void netdev_sync_lower_features(struct net_device *upper,
9616 	struct net_device *lower, netdev_features_t features)
9617 {
9618 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9619 	netdev_features_t feature;
9620 	int feature_bit;
9621 
9622 	for_each_netdev_feature(upper_disables, feature_bit) {
9623 		feature = __NETIF_F_BIT(feature_bit);
9624 		if (!(features & feature) && (lower->features & feature)) {
9625 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9626 				   &feature, lower->name);
9627 			lower->wanted_features &= ~feature;
9628 			__netdev_update_features(lower);
9629 
9630 			if (unlikely(lower->features & feature))
9631 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9632 					    &feature, lower->name);
9633 			else
9634 				netdev_features_change(lower);
9635 		}
9636 	}
9637 }
9638 
netdev_fix_features(struct net_device * dev,netdev_features_t features)9639 static netdev_features_t netdev_fix_features(struct net_device *dev,
9640 	netdev_features_t features)
9641 {
9642 	/* Fix illegal checksum combinations */
9643 	if ((features & NETIF_F_HW_CSUM) &&
9644 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9645 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9646 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9647 	}
9648 
9649 	/* TSO requires that SG is present as well. */
9650 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9651 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9652 		features &= ~NETIF_F_ALL_TSO;
9653 	}
9654 
9655 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9656 					!(features & NETIF_F_IP_CSUM)) {
9657 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9658 		features &= ~NETIF_F_TSO;
9659 		features &= ~NETIF_F_TSO_ECN;
9660 	}
9661 
9662 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9663 					 !(features & NETIF_F_IPV6_CSUM)) {
9664 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9665 		features &= ~NETIF_F_TSO6;
9666 	}
9667 
9668 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9669 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9670 		features &= ~NETIF_F_TSO_MANGLEID;
9671 
9672 	/* TSO ECN requires that TSO is present as well. */
9673 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9674 		features &= ~NETIF_F_TSO_ECN;
9675 
9676 	/* Software GSO depends on SG. */
9677 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9678 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9679 		features &= ~NETIF_F_GSO;
9680 	}
9681 
9682 	/* GSO partial features require GSO partial be set */
9683 	if ((features & dev->gso_partial_features) &&
9684 	    !(features & NETIF_F_GSO_PARTIAL)) {
9685 		netdev_dbg(dev,
9686 			   "Dropping partially supported GSO features since no GSO partial.\n");
9687 		features &= ~dev->gso_partial_features;
9688 	}
9689 
9690 	if (!(features & NETIF_F_RXCSUM)) {
9691 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9692 		 * successfully merged by hardware must also have the
9693 		 * checksum verified by hardware.  If the user does not
9694 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9695 		 */
9696 		if (features & NETIF_F_GRO_HW) {
9697 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9698 			features &= ~NETIF_F_GRO_HW;
9699 		}
9700 	}
9701 
9702 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9703 	if (features & NETIF_F_RXFCS) {
9704 		if (features & NETIF_F_LRO) {
9705 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9706 			features &= ~NETIF_F_LRO;
9707 		}
9708 
9709 		if (features & NETIF_F_GRO_HW) {
9710 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9711 			features &= ~NETIF_F_GRO_HW;
9712 		}
9713 	}
9714 
9715 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9716 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9717 		features &= ~NETIF_F_HW_TLS_RX;
9718 	}
9719 
9720 	return features;
9721 }
9722 
__netdev_update_features(struct net_device * dev)9723 int __netdev_update_features(struct net_device *dev)
9724 {
9725 	struct net_device *upper, *lower;
9726 	netdev_features_t features;
9727 	struct list_head *iter;
9728 	int err = -1;
9729 
9730 	ASSERT_RTNL();
9731 
9732 	features = netdev_get_wanted_features(dev);
9733 
9734 	if (dev->netdev_ops->ndo_fix_features)
9735 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9736 
9737 	/* driver might be less strict about feature dependencies */
9738 	features = netdev_fix_features(dev, features);
9739 
9740 	/* some features can't be enabled if they're off on an upper device */
9741 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9742 		features = netdev_sync_upper_features(dev, upper, features);
9743 
9744 	if (dev->features == features)
9745 		goto sync_lower;
9746 
9747 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9748 		&dev->features, &features);
9749 
9750 	if (dev->netdev_ops->ndo_set_features)
9751 		err = dev->netdev_ops->ndo_set_features(dev, features);
9752 	else
9753 		err = 0;
9754 
9755 	if (unlikely(err < 0)) {
9756 		netdev_err(dev,
9757 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9758 			err, &features, &dev->features);
9759 		/* return non-0 since some features might have changed and
9760 		 * it's better to fire a spurious notification than miss it
9761 		 */
9762 		return -1;
9763 	}
9764 
9765 sync_lower:
9766 	/* some features must be disabled on lower devices when disabled
9767 	 * on an upper device (think: bonding master or bridge)
9768 	 */
9769 	netdev_for_each_lower_dev(dev, lower, iter)
9770 		netdev_sync_lower_features(dev, lower, features);
9771 
9772 	if (!err) {
9773 		netdev_features_t diff = features ^ dev->features;
9774 
9775 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9776 			/* udp_tunnel_{get,drop}_rx_info both need
9777 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9778 			 * device, or they won't do anything.
9779 			 * Thus we need to update dev->features
9780 			 * *before* calling udp_tunnel_get_rx_info,
9781 			 * but *after* calling udp_tunnel_drop_rx_info.
9782 			 */
9783 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9784 				dev->features = features;
9785 				udp_tunnel_get_rx_info(dev);
9786 			} else {
9787 				udp_tunnel_drop_rx_info(dev);
9788 			}
9789 		}
9790 
9791 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9792 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9793 				dev->features = features;
9794 				err |= vlan_get_rx_ctag_filter_info(dev);
9795 			} else {
9796 				vlan_drop_rx_ctag_filter_info(dev);
9797 			}
9798 		}
9799 
9800 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9801 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9802 				dev->features = features;
9803 				err |= vlan_get_rx_stag_filter_info(dev);
9804 			} else {
9805 				vlan_drop_rx_stag_filter_info(dev);
9806 			}
9807 		}
9808 
9809 		dev->features = features;
9810 	}
9811 
9812 	return err < 0 ? 0 : 1;
9813 }
9814 
9815 /**
9816  *	netdev_update_features - recalculate device features
9817  *	@dev: the device to check
9818  *
9819  *	Recalculate dev->features set and send notifications if it
9820  *	has changed. Should be called after driver or hardware dependent
9821  *	conditions might have changed that influence the features.
9822  */
netdev_update_features(struct net_device * dev)9823 void netdev_update_features(struct net_device *dev)
9824 {
9825 	if (__netdev_update_features(dev))
9826 		netdev_features_change(dev);
9827 }
9828 EXPORT_SYMBOL(netdev_update_features);
9829 
9830 /**
9831  *	netdev_change_features - recalculate device features
9832  *	@dev: the device to check
9833  *
9834  *	Recalculate dev->features set and send notifications even
9835  *	if they have not changed. Should be called instead of
9836  *	netdev_update_features() if also dev->vlan_features might
9837  *	have changed to allow the changes to be propagated to stacked
9838  *	VLAN devices.
9839  */
netdev_change_features(struct net_device * dev)9840 void netdev_change_features(struct net_device *dev)
9841 {
9842 	__netdev_update_features(dev);
9843 	netdev_features_change(dev);
9844 }
9845 EXPORT_SYMBOL(netdev_change_features);
9846 
9847 /**
9848  *	netif_stacked_transfer_operstate -	transfer operstate
9849  *	@rootdev: the root or lower level device to transfer state from
9850  *	@dev: the device to transfer operstate to
9851  *
9852  *	Transfer operational state from root to device. This is normally
9853  *	called when a stacking relationship exists between the root
9854  *	device and the device(a leaf device).
9855  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9856 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9857 					struct net_device *dev)
9858 {
9859 	if (rootdev->operstate == IF_OPER_DORMANT)
9860 		netif_dormant_on(dev);
9861 	else
9862 		netif_dormant_off(dev);
9863 
9864 	if (rootdev->operstate == IF_OPER_TESTING)
9865 		netif_testing_on(dev);
9866 	else
9867 		netif_testing_off(dev);
9868 
9869 	if (netif_carrier_ok(rootdev))
9870 		netif_carrier_on(dev);
9871 	else
9872 		netif_carrier_off(dev);
9873 }
9874 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9875 
netif_alloc_rx_queues(struct net_device * dev)9876 static int netif_alloc_rx_queues(struct net_device *dev)
9877 {
9878 	unsigned int i, count = dev->num_rx_queues;
9879 	struct netdev_rx_queue *rx;
9880 	size_t sz = count * sizeof(*rx);
9881 	int err = 0;
9882 
9883 	BUG_ON(count < 1);
9884 
9885 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9886 	if (!rx)
9887 		return -ENOMEM;
9888 
9889 	dev->_rx = rx;
9890 
9891 	for (i = 0; i < count; i++) {
9892 		rx[i].dev = dev;
9893 
9894 		/* XDP RX-queue setup */
9895 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9896 		if (err < 0)
9897 			goto err_rxq_info;
9898 	}
9899 	return 0;
9900 
9901 err_rxq_info:
9902 	/* Rollback successful reg's and free other resources */
9903 	while (i--)
9904 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9905 	kvfree(dev->_rx);
9906 	dev->_rx = NULL;
9907 	return err;
9908 }
9909 
netif_free_rx_queues(struct net_device * dev)9910 static void netif_free_rx_queues(struct net_device *dev)
9911 {
9912 	unsigned int i, count = dev->num_rx_queues;
9913 
9914 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9915 	if (!dev->_rx)
9916 		return;
9917 
9918 	for (i = 0; i < count; i++)
9919 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9920 
9921 	kvfree(dev->_rx);
9922 }
9923 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9924 static void netdev_init_one_queue(struct net_device *dev,
9925 				  struct netdev_queue *queue, void *_unused)
9926 {
9927 	/* Initialize queue lock */
9928 	spin_lock_init(&queue->_xmit_lock);
9929 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9930 	queue->xmit_lock_owner = -1;
9931 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9932 	queue->dev = dev;
9933 #ifdef CONFIG_BQL
9934 	dql_init(&queue->dql, HZ);
9935 #endif
9936 }
9937 
netif_free_tx_queues(struct net_device * dev)9938 static void netif_free_tx_queues(struct net_device *dev)
9939 {
9940 	kvfree(dev->_tx);
9941 }
9942 
netif_alloc_netdev_queues(struct net_device * dev)9943 static int netif_alloc_netdev_queues(struct net_device *dev)
9944 {
9945 	unsigned int count = dev->num_tx_queues;
9946 	struct netdev_queue *tx;
9947 	size_t sz = count * sizeof(*tx);
9948 
9949 	if (count < 1 || count > 0xffff)
9950 		return -EINVAL;
9951 
9952 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9953 	if (!tx)
9954 		return -ENOMEM;
9955 
9956 	dev->_tx = tx;
9957 
9958 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9959 	spin_lock_init(&dev->tx_global_lock);
9960 
9961 	return 0;
9962 }
9963 
netif_tx_stop_all_queues(struct net_device * dev)9964 void netif_tx_stop_all_queues(struct net_device *dev)
9965 {
9966 	unsigned int i;
9967 
9968 	for (i = 0; i < dev->num_tx_queues; i++) {
9969 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9970 
9971 		netif_tx_stop_queue(txq);
9972 	}
9973 }
9974 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9975 
9976 /**
9977  *	register_netdevice	- register a network device
9978  *	@dev: device to register
9979  *
9980  *	Take a completed network device structure and add it to the kernel
9981  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9982  *	chain. 0 is returned on success. A negative errno code is returned
9983  *	on a failure to set up the device, or if the name is a duplicate.
9984  *
9985  *	Callers must hold the rtnl semaphore. You may want
9986  *	register_netdev() instead of this.
9987  *
9988  *	BUGS:
9989  *	The locking appears insufficient to guarantee two parallel registers
9990  *	will not get the same name.
9991  */
9992 
register_netdevice(struct net_device * dev)9993 int register_netdevice(struct net_device *dev)
9994 {
9995 	int ret;
9996 	struct net *net = dev_net(dev);
9997 
9998 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9999 		     NETDEV_FEATURE_COUNT);
10000 	BUG_ON(dev_boot_phase);
10001 	ASSERT_RTNL();
10002 
10003 	might_sleep();
10004 
10005 	/* When net_device's are persistent, this will be fatal. */
10006 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10007 	BUG_ON(!net);
10008 
10009 	ret = ethtool_check_ops(dev->ethtool_ops);
10010 	if (ret)
10011 		return ret;
10012 
10013 	spin_lock_init(&dev->addr_list_lock);
10014 	netdev_set_addr_lockdep_class(dev);
10015 
10016 	ret = dev_get_valid_name(net, dev, dev->name);
10017 	if (ret < 0)
10018 		goto out;
10019 
10020 	ret = -ENOMEM;
10021 	dev->name_node = netdev_name_node_head_alloc(dev);
10022 	if (!dev->name_node)
10023 		goto out;
10024 
10025 	/* Init, if this function is available */
10026 	if (dev->netdev_ops->ndo_init) {
10027 		ret = dev->netdev_ops->ndo_init(dev);
10028 		if (ret) {
10029 			if (ret > 0)
10030 				ret = -EIO;
10031 			goto err_free_name;
10032 		}
10033 	}
10034 
10035 	if (((dev->hw_features | dev->features) &
10036 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10037 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10038 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10039 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10040 		ret = -EINVAL;
10041 		goto err_uninit;
10042 	}
10043 
10044 	ret = -EBUSY;
10045 	if (!dev->ifindex)
10046 		dev->ifindex = dev_new_index(net);
10047 	else if (__dev_get_by_index(net, dev->ifindex))
10048 		goto err_uninit;
10049 
10050 	/* Transfer changeable features to wanted_features and enable
10051 	 * software offloads (GSO and GRO).
10052 	 */
10053 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10054 	dev->features |= NETIF_F_SOFT_FEATURES;
10055 
10056 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
10057 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10058 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10059 	}
10060 
10061 	dev->wanted_features = dev->features & dev->hw_features;
10062 
10063 	if (!(dev->flags & IFF_LOOPBACK))
10064 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10065 
10066 	/* If IPv4 TCP segmentation offload is supported we should also
10067 	 * allow the device to enable segmenting the frame with the option
10068 	 * of ignoring a static IP ID value.  This doesn't enable the
10069 	 * feature itself but allows the user to enable it later.
10070 	 */
10071 	if (dev->hw_features & NETIF_F_TSO)
10072 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10073 	if (dev->vlan_features & NETIF_F_TSO)
10074 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10075 	if (dev->mpls_features & NETIF_F_TSO)
10076 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10077 	if (dev->hw_enc_features & NETIF_F_TSO)
10078 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10079 
10080 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10081 	 */
10082 	dev->vlan_features |= NETIF_F_HIGHDMA;
10083 
10084 	/* Make NETIF_F_SG inheritable to tunnel devices.
10085 	 */
10086 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10087 
10088 	/* Make NETIF_F_SG inheritable to MPLS.
10089 	 */
10090 	dev->mpls_features |= NETIF_F_SG;
10091 
10092 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10093 	ret = notifier_to_errno(ret);
10094 	if (ret)
10095 		goto err_uninit;
10096 
10097 	ret = netdev_register_kobject(dev);
10098 	if (ret) {
10099 		dev->reg_state = NETREG_UNREGISTERED;
10100 		goto err_uninit;
10101 	}
10102 	dev->reg_state = NETREG_REGISTERED;
10103 
10104 	__netdev_update_features(dev);
10105 
10106 	/*
10107 	 *	Default initial state at registry is that the
10108 	 *	device is present.
10109 	 */
10110 
10111 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10112 
10113 	linkwatch_init_dev(dev);
10114 
10115 	dev_init_scheduler(dev);
10116 	dev_hold(dev);
10117 	list_netdevice(dev);
10118 	add_device_randomness(dev->dev_addr, dev->addr_len);
10119 
10120 	/* If the device has permanent device address, driver should
10121 	 * set dev_addr and also addr_assign_type should be set to
10122 	 * NET_ADDR_PERM (default value).
10123 	 */
10124 	if (dev->addr_assign_type == NET_ADDR_PERM)
10125 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10126 
10127 	/* Notify protocols, that a new device appeared. */
10128 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10129 	ret = notifier_to_errno(ret);
10130 	if (ret) {
10131 		/* Expect explicit free_netdev() on failure */
10132 		dev->needs_free_netdev = false;
10133 		rollback_registered(dev);
10134 		net_set_todo(dev);
10135 		goto out;
10136 	}
10137 	/*
10138 	 *	Prevent userspace races by waiting until the network
10139 	 *	device is fully setup before sending notifications.
10140 	 */
10141 	if (!dev->rtnl_link_ops ||
10142 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10143 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10144 
10145 out:
10146 	return ret;
10147 
10148 err_uninit:
10149 	if (dev->netdev_ops->ndo_uninit)
10150 		dev->netdev_ops->ndo_uninit(dev);
10151 	if (dev->priv_destructor)
10152 		dev->priv_destructor(dev);
10153 err_free_name:
10154 	netdev_name_node_free(dev->name_node);
10155 	goto out;
10156 }
10157 EXPORT_SYMBOL(register_netdevice);
10158 
10159 /**
10160  *	init_dummy_netdev	- init a dummy network device for NAPI
10161  *	@dev: device to init
10162  *
10163  *	This takes a network device structure and initialize the minimum
10164  *	amount of fields so it can be used to schedule NAPI polls without
10165  *	registering a full blown interface. This is to be used by drivers
10166  *	that need to tie several hardware interfaces to a single NAPI
10167  *	poll scheduler due to HW limitations.
10168  */
init_dummy_netdev(struct net_device * dev)10169 int init_dummy_netdev(struct net_device *dev)
10170 {
10171 	/* Clear everything. Note we don't initialize spinlocks
10172 	 * are they aren't supposed to be taken by any of the
10173 	 * NAPI code and this dummy netdev is supposed to be
10174 	 * only ever used for NAPI polls
10175 	 */
10176 	memset(dev, 0, sizeof(struct net_device));
10177 
10178 	/* make sure we BUG if trying to hit standard
10179 	 * register/unregister code path
10180 	 */
10181 	dev->reg_state = NETREG_DUMMY;
10182 
10183 	/* NAPI wants this */
10184 	INIT_LIST_HEAD(&dev->napi_list);
10185 
10186 	/* a dummy interface is started by default */
10187 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10188 	set_bit(__LINK_STATE_START, &dev->state);
10189 
10190 	/* napi_busy_loop stats accounting wants this */
10191 	dev_net_set(dev, &init_net);
10192 
10193 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10194 	 * because users of this 'device' dont need to change
10195 	 * its refcount.
10196 	 */
10197 
10198 	return 0;
10199 }
10200 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10201 
10202 
10203 /**
10204  *	register_netdev	- register a network device
10205  *	@dev: device to register
10206  *
10207  *	Take a completed network device structure and add it to the kernel
10208  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10209  *	chain. 0 is returned on success. A negative errno code is returned
10210  *	on a failure to set up the device, or if the name is a duplicate.
10211  *
10212  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10213  *	and expands the device name if you passed a format string to
10214  *	alloc_netdev.
10215  */
register_netdev(struct net_device * dev)10216 int register_netdev(struct net_device *dev)
10217 {
10218 	int err;
10219 
10220 	if (rtnl_lock_killable())
10221 		return -EINTR;
10222 	err = register_netdevice(dev);
10223 	rtnl_unlock();
10224 	return err;
10225 }
10226 EXPORT_SYMBOL(register_netdev);
10227 
netdev_refcnt_read(const struct net_device * dev)10228 int netdev_refcnt_read(const struct net_device *dev)
10229 {
10230 	int i, refcnt = 0;
10231 
10232 	for_each_possible_cpu(i)
10233 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10234 	return refcnt;
10235 }
10236 EXPORT_SYMBOL(netdev_refcnt_read);
10237 
10238 #define WAIT_REFS_MIN_MSECS 1
10239 #define WAIT_REFS_MAX_MSECS 250
10240 /**
10241  * netdev_wait_allrefs - wait until all references are gone.
10242  * @dev: target net_device
10243  *
10244  * This is called when unregistering network devices.
10245  *
10246  * Any protocol or device that holds a reference should register
10247  * for netdevice notification, and cleanup and put back the
10248  * reference if they receive an UNREGISTER event.
10249  * We can get stuck here if buggy protocols don't correctly
10250  * call dev_put.
10251  */
netdev_wait_allrefs(struct net_device * dev)10252 static void netdev_wait_allrefs(struct net_device *dev)
10253 {
10254 	unsigned long rebroadcast_time, warning_time;
10255 	int wait = 0, refcnt;
10256 
10257 	linkwatch_forget_dev(dev);
10258 
10259 	rebroadcast_time = warning_time = jiffies;
10260 	refcnt = netdev_refcnt_read(dev);
10261 
10262 	while (refcnt != 0) {
10263 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10264 			rtnl_lock();
10265 
10266 			/* Rebroadcast unregister notification */
10267 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10268 
10269 			__rtnl_unlock();
10270 			rcu_barrier();
10271 			rtnl_lock();
10272 
10273 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10274 				     &dev->state)) {
10275 				/* We must not have linkwatch events
10276 				 * pending on unregister. If this
10277 				 * happens, we simply run the queue
10278 				 * unscheduled, resulting in a noop
10279 				 * for this device.
10280 				 */
10281 				linkwatch_run_queue();
10282 			}
10283 
10284 			__rtnl_unlock();
10285 
10286 			rebroadcast_time = jiffies;
10287 		}
10288 
10289 		if (!wait) {
10290 			rcu_barrier();
10291 			wait = WAIT_REFS_MIN_MSECS;
10292 		} else {
10293 			msleep(wait);
10294 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10295 		}
10296 
10297 		refcnt = netdev_refcnt_read(dev);
10298 
10299 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10300 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10301 				 dev->name, refcnt);
10302 			warning_time = jiffies;
10303 		}
10304 	}
10305 }
10306 
10307 /* The sequence is:
10308  *
10309  *	rtnl_lock();
10310  *	...
10311  *	register_netdevice(x1);
10312  *	register_netdevice(x2);
10313  *	...
10314  *	unregister_netdevice(y1);
10315  *	unregister_netdevice(y2);
10316  *      ...
10317  *	rtnl_unlock();
10318  *	free_netdev(y1);
10319  *	free_netdev(y2);
10320  *
10321  * We are invoked by rtnl_unlock().
10322  * This allows us to deal with problems:
10323  * 1) We can delete sysfs objects which invoke hotplug
10324  *    without deadlocking with linkwatch via keventd.
10325  * 2) Since we run with the RTNL semaphore not held, we can sleep
10326  *    safely in order to wait for the netdev refcnt to drop to zero.
10327  *
10328  * We must not return until all unregister events added during
10329  * the interval the lock was held have been completed.
10330  */
netdev_run_todo(void)10331 void netdev_run_todo(void)
10332 {
10333 	struct list_head list;
10334 #ifdef CONFIG_LOCKDEP
10335 	struct list_head unlink_list;
10336 
10337 	list_replace_init(&net_unlink_list, &unlink_list);
10338 
10339 	while (!list_empty(&unlink_list)) {
10340 		struct net_device *dev = list_first_entry(&unlink_list,
10341 							  struct net_device,
10342 							  unlink_list);
10343 		list_del_init(&dev->unlink_list);
10344 		dev->nested_level = dev->lower_level - 1;
10345 	}
10346 #endif
10347 
10348 	/* Snapshot list, allow later requests */
10349 	list_replace_init(&net_todo_list, &list);
10350 
10351 	__rtnl_unlock();
10352 
10353 
10354 	/* Wait for rcu callbacks to finish before next phase */
10355 	if (!list_empty(&list))
10356 		rcu_barrier();
10357 
10358 	while (!list_empty(&list)) {
10359 		struct net_device *dev
10360 			= list_first_entry(&list, struct net_device, todo_list);
10361 		list_del(&dev->todo_list);
10362 
10363 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10364 			pr_err("network todo '%s' but state %d\n",
10365 			       dev->name, dev->reg_state);
10366 			dump_stack();
10367 			continue;
10368 		}
10369 
10370 		dev->reg_state = NETREG_UNREGISTERED;
10371 
10372 		netdev_wait_allrefs(dev);
10373 
10374 		/* paranoia */
10375 		BUG_ON(netdev_refcnt_read(dev));
10376 		BUG_ON(!list_empty(&dev->ptype_all));
10377 		BUG_ON(!list_empty(&dev->ptype_specific));
10378 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10379 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10380 #if IS_ENABLED(CONFIG_DECNET)
10381 		WARN_ON(dev->dn_ptr);
10382 #endif
10383 		if (dev->priv_destructor)
10384 			dev->priv_destructor(dev);
10385 		if (dev->needs_free_netdev)
10386 			free_netdev(dev);
10387 
10388 		/* Report a network device has been unregistered */
10389 		rtnl_lock();
10390 		dev_net(dev)->dev_unreg_count--;
10391 		__rtnl_unlock();
10392 		wake_up(&netdev_unregistering_wq);
10393 
10394 		/* Free network device */
10395 		kobject_put(&dev->dev.kobj);
10396 	}
10397 }
10398 
10399 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10400  * all the same fields in the same order as net_device_stats, with only
10401  * the type differing, but rtnl_link_stats64 may have additional fields
10402  * at the end for newer counters.
10403  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10404 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10405 			     const struct net_device_stats *netdev_stats)
10406 {
10407 #if BITS_PER_LONG == 64
10408 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10409 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10410 	/* zero out counters that only exist in rtnl_link_stats64 */
10411 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10412 	       sizeof(*stats64) - sizeof(*netdev_stats));
10413 #else
10414 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10415 	const unsigned long *src = (const unsigned long *)netdev_stats;
10416 	u64 *dst = (u64 *)stats64;
10417 
10418 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10419 	for (i = 0; i < n; i++)
10420 		dst[i] = src[i];
10421 	/* zero out counters that only exist in rtnl_link_stats64 */
10422 	memset((char *)stats64 + n * sizeof(u64), 0,
10423 	       sizeof(*stats64) - n * sizeof(u64));
10424 #endif
10425 }
10426 EXPORT_SYMBOL(netdev_stats_to_stats64);
10427 
10428 /**
10429  *	dev_get_stats	- get network device statistics
10430  *	@dev: device to get statistics from
10431  *	@storage: place to store stats
10432  *
10433  *	Get network statistics from device. Return @storage.
10434  *	The device driver may provide its own method by setting
10435  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10436  *	otherwise the internal statistics structure is used.
10437  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10438 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10439 					struct rtnl_link_stats64 *storage)
10440 {
10441 	const struct net_device_ops *ops = dev->netdev_ops;
10442 
10443 	if (ops->ndo_get_stats64) {
10444 		memset(storage, 0, sizeof(*storage));
10445 		ops->ndo_get_stats64(dev, storage);
10446 	} else if (ops->ndo_get_stats) {
10447 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10448 	} else {
10449 		netdev_stats_to_stats64(storage, &dev->stats);
10450 	}
10451 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10452 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10453 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10454 	return storage;
10455 }
10456 EXPORT_SYMBOL(dev_get_stats);
10457 
10458 /**
10459  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10460  *	@s: place to store stats
10461  *	@netstats: per-cpu network stats to read from
10462  *
10463  *	Read per-cpu network statistics and populate the related fields in @s.
10464  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10465 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10466 			   const struct pcpu_sw_netstats __percpu *netstats)
10467 {
10468 	int cpu;
10469 
10470 	for_each_possible_cpu(cpu) {
10471 		const struct pcpu_sw_netstats *stats;
10472 		struct pcpu_sw_netstats tmp;
10473 		unsigned int start;
10474 
10475 		stats = per_cpu_ptr(netstats, cpu);
10476 		do {
10477 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10478 			tmp.rx_packets = stats->rx_packets;
10479 			tmp.rx_bytes   = stats->rx_bytes;
10480 			tmp.tx_packets = stats->tx_packets;
10481 			tmp.tx_bytes   = stats->tx_bytes;
10482 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10483 
10484 		s->rx_packets += tmp.rx_packets;
10485 		s->rx_bytes   += tmp.rx_bytes;
10486 		s->tx_packets += tmp.tx_packets;
10487 		s->tx_bytes   += tmp.tx_bytes;
10488 	}
10489 }
10490 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10491 
dev_ingress_queue_create(struct net_device * dev)10492 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10493 {
10494 	struct netdev_queue *queue = dev_ingress_queue(dev);
10495 
10496 #ifdef CONFIG_NET_CLS_ACT
10497 	if (queue)
10498 		return queue;
10499 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10500 	if (!queue)
10501 		return NULL;
10502 	netdev_init_one_queue(dev, queue, NULL);
10503 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10504 	queue->qdisc_sleeping = &noop_qdisc;
10505 	rcu_assign_pointer(dev->ingress_queue, queue);
10506 #endif
10507 	return queue;
10508 }
10509 
10510 static const struct ethtool_ops default_ethtool_ops;
10511 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10512 void netdev_set_default_ethtool_ops(struct net_device *dev,
10513 				    const struct ethtool_ops *ops)
10514 {
10515 	if (dev->ethtool_ops == &default_ethtool_ops)
10516 		dev->ethtool_ops = ops;
10517 }
10518 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10519 
netdev_freemem(struct net_device * dev)10520 void netdev_freemem(struct net_device *dev)
10521 {
10522 	char *addr = (char *)dev - dev->padded;
10523 
10524 	kvfree(addr);
10525 }
10526 
10527 /**
10528  * alloc_netdev_mqs - allocate network device
10529  * @sizeof_priv: size of private data to allocate space for
10530  * @name: device name format string
10531  * @name_assign_type: origin of device name
10532  * @setup: callback to initialize device
10533  * @txqs: the number of TX subqueues to allocate
10534  * @rxqs: the number of RX subqueues to allocate
10535  *
10536  * Allocates a struct net_device with private data area for driver use
10537  * and performs basic initialization.  Also allocates subqueue structs
10538  * for each queue on the device.
10539  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10540 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10541 		unsigned char name_assign_type,
10542 		void (*setup)(struct net_device *),
10543 		unsigned int txqs, unsigned int rxqs)
10544 {
10545 	struct net_device *dev;
10546 	unsigned int alloc_size;
10547 	struct net_device *p;
10548 
10549 	BUG_ON(strlen(name) >= sizeof(dev->name));
10550 
10551 	if (txqs < 1) {
10552 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10553 		return NULL;
10554 	}
10555 
10556 	if (rxqs < 1) {
10557 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10558 		return NULL;
10559 	}
10560 
10561 	alloc_size = sizeof(struct net_device);
10562 	if (sizeof_priv) {
10563 		/* ensure 32-byte alignment of private area */
10564 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10565 		alloc_size += sizeof_priv;
10566 	}
10567 	/* ensure 32-byte alignment of whole construct */
10568 	alloc_size += NETDEV_ALIGN - 1;
10569 
10570 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10571 	if (!p)
10572 		return NULL;
10573 
10574 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10575 	dev->padded = (char *)dev - (char *)p;
10576 
10577 	dev->pcpu_refcnt = alloc_percpu(int);
10578 	if (!dev->pcpu_refcnt)
10579 		goto free_dev;
10580 
10581 	if (dev_addr_init(dev))
10582 		goto free_pcpu;
10583 
10584 	dev_mc_init(dev);
10585 	dev_uc_init(dev);
10586 
10587 	dev_net_set(dev, &init_net);
10588 
10589 	dev->gso_max_size = GSO_MAX_SIZE;
10590 	dev->gso_max_segs = GSO_MAX_SEGS;
10591 	dev->upper_level = 1;
10592 	dev->lower_level = 1;
10593 #ifdef CONFIG_LOCKDEP
10594 	dev->nested_level = 0;
10595 	INIT_LIST_HEAD(&dev->unlink_list);
10596 #endif
10597 
10598 	INIT_LIST_HEAD(&dev->napi_list);
10599 	INIT_LIST_HEAD(&dev->unreg_list);
10600 	INIT_LIST_HEAD(&dev->close_list);
10601 	INIT_LIST_HEAD(&dev->link_watch_list);
10602 	INIT_LIST_HEAD(&dev->adj_list.upper);
10603 	INIT_LIST_HEAD(&dev->adj_list.lower);
10604 	INIT_LIST_HEAD(&dev->ptype_all);
10605 	INIT_LIST_HEAD(&dev->ptype_specific);
10606 	INIT_LIST_HEAD(&dev->net_notifier_list);
10607 #ifdef CONFIG_NET_SCHED
10608 	hash_init(dev->qdisc_hash);
10609 #endif
10610 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10611 	setup(dev);
10612 
10613 	if (!dev->tx_queue_len) {
10614 		dev->priv_flags |= IFF_NO_QUEUE;
10615 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10616 	}
10617 
10618 	dev->num_tx_queues = txqs;
10619 	dev->real_num_tx_queues = txqs;
10620 	if (netif_alloc_netdev_queues(dev))
10621 		goto free_all;
10622 
10623 	dev->num_rx_queues = rxqs;
10624 	dev->real_num_rx_queues = rxqs;
10625 	if (netif_alloc_rx_queues(dev))
10626 		goto free_all;
10627 
10628 	strcpy(dev->name, name);
10629 	dev->name_assign_type = name_assign_type;
10630 	dev->group = INIT_NETDEV_GROUP;
10631 	if (!dev->ethtool_ops)
10632 		dev->ethtool_ops = &default_ethtool_ops;
10633 
10634 	nf_hook_ingress_init(dev);
10635 
10636 	return dev;
10637 
10638 free_all:
10639 	free_netdev(dev);
10640 	return NULL;
10641 
10642 free_pcpu:
10643 	free_percpu(dev->pcpu_refcnt);
10644 free_dev:
10645 	netdev_freemem(dev);
10646 	return NULL;
10647 }
10648 EXPORT_SYMBOL(alloc_netdev_mqs);
10649 
10650 /**
10651  * free_netdev - free network device
10652  * @dev: device
10653  *
10654  * This function does the last stage of destroying an allocated device
10655  * interface. The reference to the device object is released. If this
10656  * is the last reference then it will be freed.Must be called in process
10657  * context.
10658  */
free_netdev(struct net_device * dev)10659 void free_netdev(struct net_device *dev)
10660 {
10661 	struct napi_struct *p, *n;
10662 
10663 	might_sleep();
10664 
10665 	/* When called immediately after register_netdevice() failed the unwind
10666 	 * handling may still be dismantling the device. Handle that case by
10667 	 * deferring the free.
10668 	 */
10669 	if (dev->reg_state == NETREG_UNREGISTERING) {
10670 		ASSERT_RTNL();
10671 		dev->needs_free_netdev = true;
10672 		return;
10673 	}
10674 
10675 	netif_free_tx_queues(dev);
10676 	netif_free_rx_queues(dev);
10677 
10678 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10679 
10680 	/* Flush device addresses */
10681 	dev_addr_flush(dev);
10682 
10683 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10684 		netif_napi_del(p);
10685 
10686 	free_percpu(dev->pcpu_refcnt);
10687 	dev->pcpu_refcnt = NULL;
10688 	free_percpu(dev->xdp_bulkq);
10689 	dev->xdp_bulkq = NULL;
10690 
10691 	/*  Compatibility with error handling in drivers */
10692 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10693 		netdev_freemem(dev);
10694 		return;
10695 	}
10696 
10697 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10698 	dev->reg_state = NETREG_RELEASED;
10699 
10700 	/* will free via device release */
10701 	put_device(&dev->dev);
10702 }
10703 EXPORT_SYMBOL(free_netdev);
10704 
10705 /**
10706  *	synchronize_net -  Synchronize with packet receive processing
10707  *
10708  *	Wait for packets currently being received to be done.
10709  *	Does not block later packets from starting.
10710  */
synchronize_net(void)10711 void synchronize_net(void)
10712 {
10713 	might_sleep();
10714 	if (rtnl_is_locked())
10715 		synchronize_rcu_expedited();
10716 	else
10717 		synchronize_rcu();
10718 }
10719 EXPORT_SYMBOL(synchronize_net);
10720 
10721 /**
10722  *	unregister_netdevice_queue - remove device from the kernel
10723  *	@dev: device
10724  *	@head: list
10725  *
10726  *	This function shuts down a device interface and removes it
10727  *	from the kernel tables.
10728  *	If head not NULL, device is queued to be unregistered later.
10729  *
10730  *	Callers must hold the rtnl semaphore.  You may want
10731  *	unregister_netdev() instead of this.
10732  */
10733 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10734 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10735 {
10736 	ASSERT_RTNL();
10737 
10738 	if (head) {
10739 		list_move_tail(&dev->unreg_list, head);
10740 	} else {
10741 		rollback_registered(dev);
10742 		/* Finish processing unregister after unlock */
10743 		net_set_todo(dev);
10744 	}
10745 }
10746 EXPORT_SYMBOL(unregister_netdevice_queue);
10747 
10748 /**
10749  *	unregister_netdevice_many - unregister many devices
10750  *	@head: list of devices
10751  *
10752  *  Note: As most callers use a stack allocated list_head,
10753  *  we force a list_del() to make sure stack wont be corrupted later.
10754  */
unregister_netdevice_many(struct list_head * head)10755 void unregister_netdevice_many(struct list_head *head)
10756 {
10757 	struct net_device *dev;
10758 
10759 	if (!list_empty(head)) {
10760 		rollback_registered_many(head);
10761 		list_for_each_entry(dev, head, unreg_list)
10762 			net_set_todo(dev);
10763 		list_del(head);
10764 	}
10765 }
10766 EXPORT_SYMBOL(unregister_netdevice_many);
10767 
10768 /**
10769  *	unregister_netdev - remove device from the kernel
10770  *	@dev: device
10771  *
10772  *	This function shuts down a device interface and removes it
10773  *	from the kernel tables.
10774  *
10775  *	This is just a wrapper for unregister_netdevice that takes
10776  *	the rtnl semaphore.  In general you want to use this and not
10777  *	unregister_netdevice.
10778  */
unregister_netdev(struct net_device * dev)10779 void unregister_netdev(struct net_device *dev)
10780 {
10781 	rtnl_lock();
10782 	unregister_netdevice(dev);
10783 	rtnl_unlock();
10784 }
10785 EXPORT_SYMBOL(unregister_netdev);
10786 
10787 /**
10788  *	dev_change_net_namespace - move device to different nethost namespace
10789  *	@dev: device
10790  *	@net: network namespace
10791  *	@pat: If not NULL name pattern to try if the current device name
10792  *	      is already taken in the destination network namespace.
10793  *
10794  *	This function shuts down a device interface and moves it
10795  *	to a new network namespace. On success 0 is returned, on
10796  *	a failure a netagive errno code is returned.
10797  *
10798  *	Callers must hold the rtnl semaphore.
10799  */
10800 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10801 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10802 {
10803 	struct net *net_old = dev_net(dev);
10804 	int err, new_nsid, new_ifindex;
10805 
10806 	ASSERT_RTNL();
10807 
10808 	/* Don't allow namespace local devices to be moved. */
10809 	err = -EINVAL;
10810 	if (dev->features & NETIF_F_NETNS_LOCAL)
10811 		goto out;
10812 
10813 	/* Ensure the device has been registrered */
10814 	if (dev->reg_state != NETREG_REGISTERED)
10815 		goto out;
10816 
10817 	/* Get out if there is nothing todo */
10818 	err = 0;
10819 	if (net_eq(net_old, net))
10820 		goto out;
10821 
10822 	/* Pick the destination device name, and ensure
10823 	 * we can use it in the destination network namespace.
10824 	 */
10825 	err = -EEXIST;
10826 	if (__dev_get_by_name(net, dev->name)) {
10827 		/* We get here if we can't use the current device name */
10828 		if (!pat)
10829 			goto out;
10830 		err = dev_get_valid_name(net, dev, pat);
10831 		if (err < 0)
10832 			goto out;
10833 	}
10834 
10835 	/*
10836 	 * And now a mini version of register_netdevice unregister_netdevice.
10837 	 */
10838 
10839 	/* If device is running close it first. */
10840 	dev_close(dev);
10841 
10842 	/* And unlink it from device chain */
10843 	unlist_netdevice(dev);
10844 
10845 	synchronize_net();
10846 
10847 	/* Shutdown queueing discipline. */
10848 	dev_shutdown(dev);
10849 
10850 	/* Notify protocols, that we are about to destroy
10851 	 * this device. They should clean all the things.
10852 	 *
10853 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10854 	 * This is wanted because this way 8021q and macvlan know
10855 	 * the device is just moving and can keep their slaves up.
10856 	 */
10857 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10858 	rcu_barrier();
10859 
10860 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10861 	/* If there is an ifindex conflict assign a new one */
10862 	if (__dev_get_by_index(net, dev->ifindex))
10863 		new_ifindex = dev_new_index(net);
10864 	else
10865 		new_ifindex = dev->ifindex;
10866 
10867 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10868 			    new_ifindex);
10869 
10870 	/*
10871 	 *	Flush the unicast and multicast chains
10872 	 */
10873 	dev_uc_flush(dev);
10874 	dev_mc_flush(dev);
10875 
10876 	/* Send a netdev-removed uevent to the old namespace */
10877 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10878 	netdev_adjacent_del_links(dev);
10879 
10880 	/* Move per-net netdevice notifiers that are following the netdevice */
10881 	move_netdevice_notifiers_dev_net(dev, net);
10882 
10883 	/* Actually switch the network namespace */
10884 	dev_net_set(dev, net);
10885 	dev->ifindex = new_ifindex;
10886 
10887 	/* Send a netdev-add uevent to the new namespace */
10888 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10889 	netdev_adjacent_add_links(dev);
10890 
10891 	/* Fixup kobjects */
10892 	err = device_rename(&dev->dev, dev->name);
10893 	WARN_ON(err);
10894 
10895 	/* Adapt owner in case owning user namespace of target network
10896 	 * namespace is different from the original one.
10897 	 */
10898 	err = netdev_change_owner(dev, net_old, net);
10899 	WARN_ON(err);
10900 
10901 	/* Add the device back in the hashes */
10902 	list_netdevice(dev);
10903 
10904 	/* Notify protocols, that a new device appeared. */
10905 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10906 
10907 	/*
10908 	 *	Prevent userspace races by waiting until the network
10909 	 *	device is fully setup before sending notifications.
10910 	 */
10911 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10912 
10913 	synchronize_net();
10914 	err = 0;
10915 out:
10916 	return err;
10917 }
10918 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10919 
dev_cpu_dead(unsigned int oldcpu)10920 static int dev_cpu_dead(unsigned int oldcpu)
10921 {
10922 	struct sk_buff **list_skb;
10923 	struct sk_buff *skb;
10924 	unsigned int cpu;
10925 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10926 
10927 	local_irq_disable();
10928 	cpu = smp_processor_id();
10929 	sd = &per_cpu(softnet_data, cpu);
10930 	oldsd = &per_cpu(softnet_data, oldcpu);
10931 
10932 	/* Find end of our completion_queue. */
10933 	list_skb = &sd->completion_queue;
10934 	while (*list_skb)
10935 		list_skb = &(*list_skb)->next;
10936 	/* Append completion queue from offline CPU. */
10937 	*list_skb = oldsd->completion_queue;
10938 	oldsd->completion_queue = NULL;
10939 
10940 	/* Append output queue from offline CPU. */
10941 	if (oldsd->output_queue) {
10942 		*sd->output_queue_tailp = oldsd->output_queue;
10943 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10944 		oldsd->output_queue = NULL;
10945 		oldsd->output_queue_tailp = &oldsd->output_queue;
10946 	}
10947 	/* Append NAPI poll list from offline CPU, with one exception :
10948 	 * process_backlog() must be called by cpu owning percpu backlog.
10949 	 * We properly handle process_queue & input_pkt_queue later.
10950 	 */
10951 	while (!list_empty(&oldsd->poll_list)) {
10952 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10953 							    struct napi_struct,
10954 							    poll_list);
10955 
10956 		list_del_init(&napi->poll_list);
10957 		if (napi->poll == process_backlog)
10958 			napi->state = 0;
10959 		else
10960 			____napi_schedule(sd, napi);
10961 	}
10962 
10963 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10964 	local_irq_enable();
10965 
10966 #ifdef CONFIG_RPS
10967 	remsd = oldsd->rps_ipi_list;
10968 	oldsd->rps_ipi_list = NULL;
10969 #endif
10970 	/* send out pending IPI's on offline CPU */
10971 	net_rps_send_ipi(remsd);
10972 
10973 	/* Process offline CPU's input_pkt_queue */
10974 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10975 		netif_rx_ni(skb);
10976 		input_queue_head_incr(oldsd);
10977 	}
10978 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10979 		netif_rx_ni(skb);
10980 		input_queue_head_incr(oldsd);
10981 	}
10982 
10983 	return 0;
10984 }
10985 
10986 /**
10987  *	netdev_increment_features - increment feature set by one
10988  *	@all: current feature set
10989  *	@one: new feature set
10990  *	@mask: mask feature set
10991  *
10992  *	Computes a new feature set after adding a device with feature set
10993  *	@one to the master device with current feature set @all.  Will not
10994  *	enable anything that is off in @mask. Returns the new feature set.
10995  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)10996 netdev_features_t netdev_increment_features(netdev_features_t all,
10997 	netdev_features_t one, netdev_features_t mask)
10998 {
10999 	if (mask & NETIF_F_HW_CSUM)
11000 		mask |= NETIF_F_CSUM_MASK;
11001 	mask |= NETIF_F_VLAN_CHALLENGED;
11002 
11003 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11004 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11005 
11006 	/* If one device supports hw checksumming, set for all. */
11007 	if (all & NETIF_F_HW_CSUM)
11008 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11009 
11010 	return all;
11011 }
11012 EXPORT_SYMBOL(netdev_increment_features);
11013 
netdev_create_hash(void)11014 static struct hlist_head * __net_init netdev_create_hash(void)
11015 {
11016 	int i;
11017 	struct hlist_head *hash;
11018 
11019 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11020 	if (hash != NULL)
11021 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11022 			INIT_HLIST_HEAD(&hash[i]);
11023 
11024 	return hash;
11025 }
11026 
11027 /* Initialize per network namespace state */
netdev_init(struct net * net)11028 static int __net_init netdev_init(struct net *net)
11029 {
11030 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11031 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11032 
11033 	if (net != &init_net)
11034 		INIT_LIST_HEAD(&net->dev_base_head);
11035 
11036 	net->dev_name_head = netdev_create_hash();
11037 	if (net->dev_name_head == NULL)
11038 		goto err_name;
11039 
11040 	net->dev_index_head = netdev_create_hash();
11041 	if (net->dev_index_head == NULL)
11042 		goto err_idx;
11043 
11044 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11045 
11046 	return 0;
11047 
11048 err_idx:
11049 	kfree(net->dev_name_head);
11050 err_name:
11051 	return -ENOMEM;
11052 }
11053 
11054 /**
11055  *	netdev_drivername - network driver for the device
11056  *	@dev: network device
11057  *
11058  *	Determine network driver for device.
11059  */
netdev_drivername(const struct net_device * dev)11060 const char *netdev_drivername(const struct net_device *dev)
11061 {
11062 	const struct device_driver *driver;
11063 	const struct device *parent;
11064 	const char *empty = "";
11065 
11066 	parent = dev->dev.parent;
11067 	if (!parent)
11068 		return empty;
11069 
11070 	driver = parent->driver;
11071 	if (driver && driver->name)
11072 		return driver->name;
11073 	return empty;
11074 }
11075 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11076 static void __netdev_printk(const char *level, const struct net_device *dev,
11077 			    struct va_format *vaf)
11078 {
11079 	if (dev && dev->dev.parent) {
11080 		dev_printk_emit(level[1] - '0',
11081 				dev->dev.parent,
11082 				"%s %s %s%s: %pV",
11083 				dev_driver_string(dev->dev.parent),
11084 				dev_name(dev->dev.parent),
11085 				netdev_name(dev), netdev_reg_state(dev),
11086 				vaf);
11087 	} else if (dev) {
11088 		printk("%s%s%s: %pV",
11089 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11090 	} else {
11091 		printk("%s(NULL net_device): %pV", level, vaf);
11092 	}
11093 }
11094 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11095 void netdev_printk(const char *level, const struct net_device *dev,
11096 		   const char *format, ...)
11097 {
11098 	struct va_format vaf;
11099 	va_list args;
11100 
11101 	va_start(args, format);
11102 
11103 	vaf.fmt = format;
11104 	vaf.va = &args;
11105 
11106 	__netdev_printk(level, dev, &vaf);
11107 
11108 	va_end(args);
11109 }
11110 EXPORT_SYMBOL(netdev_printk);
11111 
11112 #define define_netdev_printk_level(func, level)			\
11113 void func(const struct net_device *dev, const char *fmt, ...)	\
11114 {								\
11115 	struct va_format vaf;					\
11116 	va_list args;						\
11117 								\
11118 	va_start(args, fmt);					\
11119 								\
11120 	vaf.fmt = fmt;						\
11121 	vaf.va = &args;						\
11122 								\
11123 	__netdev_printk(level, dev, &vaf);			\
11124 								\
11125 	va_end(args);						\
11126 }								\
11127 EXPORT_SYMBOL(func);
11128 
11129 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11130 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11131 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11132 define_netdev_printk_level(netdev_err, KERN_ERR);
11133 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11134 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11135 define_netdev_printk_level(netdev_info, KERN_INFO);
11136 
netdev_exit(struct net * net)11137 static void __net_exit netdev_exit(struct net *net)
11138 {
11139 	kfree(net->dev_name_head);
11140 	kfree(net->dev_index_head);
11141 	if (net != &init_net)
11142 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11143 }
11144 
11145 static struct pernet_operations __net_initdata netdev_net_ops = {
11146 	.init = netdev_init,
11147 	.exit = netdev_exit,
11148 };
11149 
default_device_exit(struct net * net)11150 static void __net_exit default_device_exit(struct net *net)
11151 {
11152 	struct net_device *dev, *aux;
11153 	/*
11154 	 * Push all migratable network devices back to the
11155 	 * initial network namespace
11156 	 */
11157 	rtnl_lock();
11158 	for_each_netdev_safe(net, dev, aux) {
11159 		int err;
11160 		char fb_name[IFNAMSIZ];
11161 
11162 		/* Ignore unmoveable devices (i.e. loopback) */
11163 		if (dev->features & NETIF_F_NETNS_LOCAL)
11164 			continue;
11165 
11166 		/* Leave virtual devices for the generic cleanup */
11167 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11168 			continue;
11169 
11170 		/* Push remaining network devices to init_net */
11171 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11172 		if (__dev_get_by_name(&init_net, fb_name))
11173 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11174 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11175 		if (err) {
11176 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11177 				 __func__, dev->name, err);
11178 			BUG();
11179 		}
11180 	}
11181 	rtnl_unlock();
11182 }
11183 
rtnl_lock_unregistering(struct list_head * net_list)11184 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11185 {
11186 	/* Return with the rtnl_lock held when there are no network
11187 	 * devices unregistering in any network namespace in net_list.
11188 	 */
11189 	struct net *net;
11190 	bool unregistering;
11191 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11192 
11193 	add_wait_queue(&netdev_unregistering_wq, &wait);
11194 	for (;;) {
11195 		unregistering = false;
11196 		rtnl_lock();
11197 		list_for_each_entry(net, net_list, exit_list) {
11198 			if (net->dev_unreg_count > 0) {
11199 				unregistering = true;
11200 				break;
11201 			}
11202 		}
11203 		if (!unregistering)
11204 			break;
11205 		__rtnl_unlock();
11206 
11207 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11208 	}
11209 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11210 }
11211 
default_device_exit_batch(struct list_head * net_list)11212 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11213 {
11214 	/* At exit all network devices most be removed from a network
11215 	 * namespace.  Do this in the reverse order of registration.
11216 	 * Do this across as many network namespaces as possible to
11217 	 * improve batching efficiency.
11218 	 */
11219 	struct net_device *dev;
11220 	struct net *net;
11221 	LIST_HEAD(dev_kill_list);
11222 
11223 	/* To prevent network device cleanup code from dereferencing
11224 	 * loopback devices or network devices that have been freed
11225 	 * wait here for all pending unregistrations to complete,
11226 	 * before unregistring the loopback device and allowing the
11227 	 * network namespace be freed.
11228 	 *
11229 	 * The netdev todo list containing all network devices
11230 	 * unregistrations that happen in default_device_exit_batch
11231 	 * will run in the rtnl_unlock() at the end of
11232 	 * default_device_exit_batch.
11233 	 */
11234 	rtnl_lock_unregistering(net_list);
11235 	list_for_each_entry(net, net_list, exit_list) {
11236 		for_each_netdev_reverse(net, dev) {
11237 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11238 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11239 			else
11240 				unregister_netdevice_queue(dev, &dev_kill_list);
11241 		}
11242 	}
11243 	unregister_netdevice_many(&dev_kill_list);
11244 	rtnl_unlock();
11245 }
11246 
11247 static struct pernet_operations __net_initdata default_device_ops = {
11248 	.exit = default_device_exit,
11249 	.exit_batch = default_device_exit_batch,
11250 };
11251 
11252 /*
11253  *	Initialize the DEV module. At boot time this walks the device list and
11254  *	unhooks any devices that fail to initialise (normally hardware not
11255  *	present) and leaves us with a valid list of present and active devices.
11256  *
11257  */
11258 
11259 /*
11260  *       This is called single threaded during boot, so no need
11261  *       to take the rtnl semaphore.
11262  */
net_dev_init(void)11263 static int __init net_dev_init(void)
11264 {
11265 	int i, rc = -ENOMEM;
11266 
11267 	BUG_ON(!dev_boot_phase);
11268 
11269 	if (dev_proc_init())
11270 		goto out;
11271 
11272 	if (netdev_kobject_init())
11273 		goto out;
11274 
11275 	INIT_LIST_HEAD(&ptype_all);
11276 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11277 		INIT_LIST_HEAD(&ptype_base[i]);
11278 
11279 	INIT_LIST_HEAD(&offload_base);
11280 
11281 	if (register_pernet_subsys(&netdev_net_ops))
11282 		goto out;
11283 
11284 	/*
11285 	 *	Initialise the packet receive queues.
11286 	 */
11287 
11288 	for_each_possible_cpu(i) {
11289 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11290 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11291 
11292 		INIT_WORK(flush, flush_backlog);
11293 
11294 		skb_queue_head_init(&sd->input_pkt_queue);
11295 		skb_queue_head_init(&sd->process_queue);
11296 #ifdef CONFIG_XFRM_OFFLOAD
11297 		skb_queue_head_init(&sd->xfrm_backlog);
11298 #endif
11299 		INIT_LIST_HEAD(&sd->poll_list);
11300 		sd->output_queue_tailp = &sd->output_queue;
11301 #ifdef CONFIG_RPS
11302 		sd->csd.func = rps_trigger_softirq;
11303 		sd->csd.info = sd;
11304 		sd->cpu = i;
11305 #endif
11306 
11307 		init_gro_hash(&sd->backlog);
11308 		sd->backlog.poll = process_backlog;
11309 		sd->backlog.weight = weight_p;
11310 	}
11311 
11312 	dev_boot_phase = 0;
11313 
11314 	/* The loopback device is special if any other network devices
11315 	 * is present in a network namespace the loopback device must
11316 	 * be present. Since we now dynamically allocate and free the
11317 	 * loopback device ensure this invariant is maintained by
11318 	 * keeping the loopback device as the first device on the
11319 	 * list of network devices.  Ensuring the loopback devices
11320 	 * is the first device that appears and the last network device
11321 	 * that disappears.
11322 	 */
11323 	if (register_pernet_device(&loopback_net_ops))
11324 		goto out;
11325 
11326 	if (register_pernet_device(&default_device_ops))
11327 		goto out;
11328 
11329 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11330 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11331 
11332 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11333 				       NULL, dev_cpu_dead);
11334 	WARN_ON(rc < 0);
11335 	rc = 0;
11336 out:
11337 	return rc;
11338 }
11339 
11340 subsys_initcall(net_dev_init);
11341