• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/fwnode.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/mutex.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/netdevice.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sysfs.h>
29 
30 #include "base.h"
31 #include "power/power.h"
32 
33 #ifdef CONFIG_SYSFS_DEPRECATED
34 #ifdef CONFIG_SYSFS_DEPRECATED_V2
35 long sysfs_deprecated = 1;
36 #else
37 long sysfs_deprecated = 0;
38 #endif
sysfs_deprecated_setup(char * arg)39 static int __init sysfs_deprecated_setup(char *arg)
40 {
41 	return kstrtol(arg, 10, &sysfs_deprecated);
42 }
43 early_param("sysfs.deprecated", sysfs_deprecated_setup);
44 #endif
45 
46 /* Device links support. */
47 
48 #ifdef CONFIG_SRCU
49 static DEFINE_MUTEX(device_links_lock);
50 DEFINE_STATIC_SRCU(device_links_srcu);
51 
device_links_write_lock(void)52 static inline void device_links_write_lock(void)
53 {
54 	mutex_lock(&device_links_lock);
55 }
56 
device_links_write_unlock(void)57 static inline void device_links_write_unlock(void)
58 {
59 	mutex_unlock(&device_links_lock);
60 }
61 
device_links_read_lock(void)62 int device_links_read_lock(void)
63 {
64 	return srcu_read_lock(&device_links_srcu);
65 }
66 
device_links_read_unlock(int idx)67 void device_links_read_unlock(int idx)
68 {
69 	srcu_read_unlock(&device_links_srcu, idx);
70 }
71 #else /* !CONFIG_SRCU */
72 static DECLARE_RWSEM(device_links_lock);
73 
device_links_write_lock(void)74 static inline void device_links_write_lock(void)
75 {
76 	down_write(&device_links_lock);
77 }
78 
device_links_write_unlock(void)79 static inline void device_links_write_unlock(void)
80 {
81 	up_write(&device_links_lock);
82 }
83 
device_links_read_lock(void)84 int device_links_read_lock(void)
85 {
86 	down_read(&device_links_lock);
87 	return 0;
88 }
89 
device_links_read_unlock(int not_used)90 void device_links_read_unlock(int not_used)
91 {
92 	up_read(&device_links_lock);
93 }
94 #endif /* !CONFIG_SRCU */
95 
96 /**
97  * device_is_dependent - Check if one device depends on another one
98  * @dev: Device to check dependencies for.
99  * @target: Device to check against.
100  *
101  * Check if @target depends on @dev or any device dependent on it (its child or
102  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
103  */
device_is_dependent(struct device * dev,void * target)104 static int device_is_dependent(struct device *dev, void *target)
105 {
106 	struct device_link *link;
107 	int ret;
108 
109 	if (dev == target)
110 		return 1;
111 
112 	ret = device_for_each_child(dev, target, device_is_dependent);
113 	if (ret)
114 		return ret;
115 
116 	list_for_each_entry(link, &dev->links.consumers, s_node) {
117 		if (link->consumer == target)
118 			return 1;
119 
120 		ret = device_is_dependent(link->consumer, target);
121 		if (ret)
122 			break;
123 	}
124 	return ret;
125 }
126 
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)127 static void device_link_init_status(struct device_link *link,
128 				    struct device *consumer,
129 				    struct device *supplier)
130 {
131 	switch (supplier->links.status) {
132 	case DL_DEV_PROBING:
133 		switch (consumer->links.status) {
134 		case DL_DEV_PROBING:
135 			/*
136 			 * A consumer driver can create a link to a supplier
137 			 * that has not completed its probing yet as long as it
138 			 * knows that the supplier is already functional (for
139 			 * example, it has just acquired some resources from the
140 			 * supplier).
141 			 */
142 			link->status = DL_STATE_CONSUMER_PROBE;
143 			break;
144 		default:
145 			link->status = DL_STATE_DORMANT;
146 			break;
147 		}
148 		break;
149 	case DL_DEV_DRIVER_BOUND:
150 		switch (consumer->links.status) {
151 		case DL_DEV_PROBING:
152 			link->status = DL_STATE_CONSUMER_PROBE;
153 			break;
154 		case DL_DEV_DRIVER_BOUND:
155 			link->status = DL_STATE_ACTIVE;
156 			break;
157 		default:
158 			link->status = DL_STATE_AVAILABLE;
159 			break;
160 		}
161 		break;
162 	case DL_DEV_UNBINDING:
163 		link->status = DL_STATE_SUPPLIER_UNBIND;
164 		break;
165 	default:
166 		link->status = DL_STATE_DORMANT;
167 		break;
168 	}
169 }
170 
device_reorder_to_tail(struct device * dev,void * not_used)171 static int device_reorder_to_tail(struct device *dev, void *not_used)
172 {
173 	struct device_link *link;
174 
175 	/*
176 	 * Devices that have not been registered yet will be put to the ends
177 	 * of the lists during the registration, so skip them here.
178 	 */
179 	if (device_is_registered(dev))
180 		devices_kset_move_last(dev);
181 
182 	if (device_pm_initialized(dev))
183 		device_pm_move_last(dev);
184 
185 	device_for_each_child(dev, NULL, device_reorder_to_tail);
186 	list_for_each_entry(link, &dev->links.consumers, s_node)
187 		device_reorder_to_tail(link->consumer, NULL);
188 
189 	return 0;
190 }
191 
192 /**
193  * device_pm_move_to_tail - Move set of devices to the end of device lists
194  * @dev: Device to move
195  *
196  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
197  *
198  * It moves the @dev along with all of its children and all of its consumers
199  * to the ends of the device_kset and dpm_list, recursively.
200  */
device_pm_move_to_tail(struct device * dev)201 void device_pm_move_to_tail(struct device *dev)
202 {
203 	int idx;
204 
205 	idx = device_links_read_lock();
206 	device_pm_lock();
207 	device_reorder_to_tail(dev, NULL);
208 	device_pm_unlock();
209 	device_links_read_unlock(idx);
210 }
211 
212 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
213 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
214 			       DL_FLAG_AUTOPROBE_CONSUMER)
215 
216 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
217 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
218 
219 /**
220  * device_link_add - Create a link between two devices.
221  * @consumer: Consumer end of the link.
222  * @supplier: Supplier end of the link.
223  * @flags: Link flags.
224  *
225  * The caller is responsible for the proper synchronization of the link creation
226  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
227  * runtime PM framework to take the link into account.  Second, if the
228  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
229  * be forced into the active metastate and reference-counted upon the creation
230  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
231  * ignored.
232  *
233  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
234  * expected to release the link returned by it directly with the help of either
235  * device_link_del() or device_link_remove().
236  *
237  * If that flag is not set, however, the caller of this function is handing the
238  * management of the link over to the driver core entirely and its return value
239  * can only be used to check whether or not the link is present.  In that case,
240  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
241  * flags can be used to indicate to the driver core when the link can be safely
242  * deleted.  Namely, setting one of them in @flags indicates to the driver core
243  * that the link is not going to be used (by the given caller of this function)
244  * after unbinding the consumer or supplier driver, respectively, from its
245  * device, so the link can be deleted at that point.  If none of them is set,
246  * the link will be maintained until one of the devices pointed to by it (either
247  * the consumer or the supplier) is unregistered.
248  *
249  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
250  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
251  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
252  * be used to request the driver core to automaticall probe for a consmer
253  * driver after successfully binding a driver to the supplier device.
254  *
255  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
256  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
257  * the same time is invalid and will cause NULL to be returned upfront.
258  * However, if a device link between the given @consumer and @supplier pair
259  * exists already when this function is called for them, the existing link will
260  * be returned regardless of its current type and status (the link's flags may
261  * be modified then).  The caller of this function is then expected to treat
262  * the link as though it has just been created, so (in particular) if
263  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
264  * explicitly when not needed any more (as stated above).
265  *
266  * A side effect of the link creation is re-ordering of dpm_list and the
267  * devices_kset list by moving the consumer device and all devices depending
268  * on it to the ends of these lists (that does not happen to devices that have
269  * not been registered when this function is called).
270  *
271  * The supplier device is required to be registered when this function is called
272  * and NULL will be returned if that is not the case.  The consumer device need
273  * not be registered, however.
274  */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)275 struct device_link *device_link_add(struct device *consumer,
276 				    struct device *supplier, u32 flags)
277 {
278 	struct device_link *link;
279 
280 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
281 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
282 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
283 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
284 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
285 		return NULL;
286 
287 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
288 		if (pm_runtime_get_sync(supplier) < 0) {
289 			pm_runtime_put_noidle(supplier);
290 			return NULL;
291 		}
292 	}
293 
294 	if (!(flags & DL_FLAG_STATELESS))
295 		flags |= DL_FLAG_MANAGED;
296 
297 	device_links_write_lock();
298 	device_pm_lock();
299 
300 	/*
301 	 * If the supplier has not been fully registered yet or there is a
302 	 * reverse dependency between the consumer and the supplier already in
303 	 * the graph, return NULL.
304 	 */
305 	if (!device_pm_initialized(supplier)
306 	    || device_is_dependent(consumer, supplier)) {
307 		link = NULL;
308 		goto out;
309 	}
310 
311 	/*
312 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
313 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
314 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
315 	 */
316 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
317 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
318 
319 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
320 		if (link->consumer != consumer)
321 			continue;
322 
323 		if (flags & DL_FLAG_PM_RUNTIME) {
324 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
325 				pm_runtime_new_link(consumer);
326 				link->flags |= DL_FLAG_PM_RUNTIME;
327 			}
328 			if (flags & DL_FLAG_RPM_ACTIVE)
329 				refcount_inc(&link->rpm_active);
330 		}
331 
332 		if (flags & DL_FLAG_STATELESS) {
333 			link->flags |= DL_FLAG_STATELESS;
334 			kref_get(&link->kref);
335 			goto out;
336 		}
337 
338 		/*
339 		 * If the life time of the link following from the new flags is
340 		 * longer than indicated by the flags of the existing link,
341 		 * update the existing link to stay around longer.
342 		 */
343 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
344 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
345 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
346 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
347 			}
348 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
349 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
350 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
351 		}
352 		if (!(link->flags & DL_FLAG_MANAGED)) {
353 			kref_get(&link->kref);
354 			link->flags |= DL_FLAG_MANAGED;
355 			device_link_init_status(link, consumer, supplier);
356 		}
357 		goto out;
358 	}
359 
360 	link = kzalloc(sizeof(*link), GFP_KERNEL);
361 	if (!link)
362 		goto out;
363 
364 	refcount_set(&link->rpm_active, 1);
365 
366 	if (flags & DL_FLAG_PM_RUNTIME) {
367 		if (flags & DL_FLAG_RPM_ACTIVE)
368 			refcount_inc(&link->rpm_active);
369 
370 		pm_runtime_new_link(consumer);
371 	}
372 
373 	get_device(supplier);
374 	link->supplier = supplier;
375 	INIT_LIST_HEAD(&link->s_node);
376 	get_device(consumer);
377 	link->consumer = consumer;
378 	INIT_LIST_HEAD(&link->c_node);
379 	link->flags = flags;
380 	kref_init(&link->kref);
381 
382 	/* Determine the initial link state. */
383 	if (flags & DL_FLAG_STATELESS)
384 		link->status = DL_STATE_NONE;
385 	else
386 		device_link_init_status(link, consumer, supplier);
387 
388 	/*
389 	 * Some callers expect the link creation during consumer driver probe to
390 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
391 	 */
392 	if (link->status == DL_STATE_CONSUMER_PROBE &&
393 	    flags & DL_FLAG_PM_RUNTIME)
394 		pm_runtime_resume(supplier);
395 
396 	/*
397 	 * Move the consumer and all of the devices depending on it to the end
398 	 * of dpm_list and the devices_kset list.
399 	 *
400 	 * It is necessary to hold dpm_list locked throughout all that or else
401 	 * we may end up suspending with a wrong ordering of it.
402 	 */
403 	device_reorder_to_tail(consumer, NULL);
404 
405 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
406 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
407 
408 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
409 
410  out:
411 	device_pm_unlock();
412 	device_links_write_unlock();
413 
414 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
415 		pm_runtime_put(supplier);
416 
417 	return link;
418 }
419 EXPORT_SYMBOL_GPL(device_link_add);
420 
device_link_free(struct device_link * link)421 static void device_link_free(struct device_link *link)
422 {
423 	while (refcount_dec_not_one(&link->rpm_active))
424 		pm_runtime_put(link->supplier);
425 
426 	put_device(link->consumer);
427 	put_device(link->supplier);
428 	kfree(link);
429 }
430 
431 #ifdef CONFIG_SRCU
__device_link_free_srcu(struct rcu_head * rhead)432 static void __device_link_free_srcu(struct rcu_head *rhead)
433 {
434 	device_link_free(container_of(rhead, struct device_link, rcu_head));
435 }
436 
__device_link_del(struct kref * kref)437 static void __device_link_del(struct kref *kref)
438 {
439 	struct device_link *link = container_of(kref, struct device_link, kref);
440 
441 	dev_info(link->consumer, "Dropping the link to %s\n",
442 		 dev_name(link->supplier));
443 
444 	if (link->flags & DL_FLAG_PM_RUNTIME)
445 		pm_runtime_drop_link(link->consumer);
446 
447 	list_del_rcu(&link->s_node);
448 	list_del_rcu(&link->c_node);
449 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
450 }
451 #else /* !CONFIG_SRCU */
__device_link_del(struct kref * kref)452 static void __device_link_del(struct kref *kref)
453 {
454 	struct device_link *link = container_of(kref, struct device_link, kref);
455 
456 	dev_info(link->consumer, "Dropping the link to %s\n",
457 		 dev_name(link->supplier));
458 
459 	if (link->flags & DL_FLAG_PM_RUNTIME)
460 		pm_runtime_drop_link(link->consumer);
461 
462 	list_del(&link->s_node);
463 	list_del(&link->c_node);
464 	device_link_free(link);
465 }
466 #endif /* !CONFIG_SRCU */
467 
device_link_put_kref(struct device_link * link)468 static void device_link_put_kref(struct device_link *link)
469 {
470 	if (link->flags & DL_FLAG_STATELESS)
471 		kref_put(&link->kref, __device_link_del);
472 	else
473 		WARN(1, "Unable to drop a managed device link reference\n");
474 }
475 
476 /**
477  * device_link_del - Delete a stateless link between two devices.
478  * @link: Device link to delete.
479  *
480  * The caller must ensure proper synchronization of this function with runtime
481  * PM.  If the link was added multiple times, it needs to be deleted as often.
482  * Care is required for hotplugged devices:  Their links are purged on removal
483  * and calling device_link_del() is then no longer allowed.
484  */
device_link_del(struct device_link * link)485 void device_link_del(struct device_link *link)
486 {
487 	device_links_write_lock();
488 	device_pm_lock();
489 	device_link_put_kref(link);
490 	device_pm_unlock();
491 	device_links_write_unlock();
492 }
493 EXPORT_SYMBOL_GPL(device_link_del);
494 
495 /**
496  * device_link_remove - Delete a stateless link between two devices.
497  * @consumer: Consumer end of the link.
498  * @supplier: Supplier end of the link.
499  *
500  * The caller must ensure proper synchronization of this function with runtime
501  * PM.
502  */
device_link_remove(void * consumer,struct device * supplier)503 void device_link_remove(void *consumer, struct device *supplier)
504 {
505 	struct device_link *link;
506 
507 	if (WARN_ON(consumer == supplier))
508 		return;
509 
510 	device_links_write_lock();
511 	device_pm_lock();
512 
513 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
514 		if (link->consumer == consumer) {
515 			device_link_put_kref(link);
516 			break;
517 		}
518 	}
519 
520 	device_pm_unlock();
521 	device_links_write_unlock();
522 }
523 EXPORT_SYMBOL_GPL(device_link_remove);
524 
device_links_missing_supplier(struct device * dev)525 static void device_links_missing_supplier(struct device *dev)
526 {
527 	struct device_link *link;
528 
529 	list_for_each_entry(link, &dev->links.suppliers, c_node)
530 		if (link->status == DL_STATE_CONSUMER_PROBE)
531 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
532 }
533 
534 /**
535  * device_links_check_suppliers - Check presence of supplier drivers.
536  * @dev: Consumer device.
537  *
538  * Check links from this device to any suppliers.  Walk the list of the device's
539  * links to suppliers and see if all of them are available.  If not, simply
540  * return -EPROBE_DEFER.
541  *
542  * We need to guarantee that the supplier will not go away after the check has
543  * been positive here.  It only can go away in __device_release_driver() and
544  * that function  checks the device's links to consumers.  This means we need to
545  * mark the link as "consumer probe in progress" to make the supplier removal
546  * wait for us to complete (or bad things may happen).
547  *
548  * Links without the DL_FLAG_MANAGED flag set are ignored.
549  */
device_links_check_suppliers(struct device * dev)550 int device_links_check_suppliers(struct device *dev)
551 {
552 	struct device_link *link;
553 	int ret = 0;
554 
555 	device_links_write_lock();
556 
557 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
558 		if (!(link->flags & DL_FLAG_MANAGED))
559 			continue;
560 
561 		if (link->status != DL_STATE_AVAILABLE) {
562 			device_links_missing_supplier(dev);
563 			ret = -EPROBE_DEFER;
564 			break;
565 		}
566 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
567 	}
568 	dev->links.status = DL_DEV_PROBING;
569 
570 	device_links_write_unlock();
571 	return ret;
572 }
573 
574 /**
575  * device_links_driver_bound - Update device links after probing its driver.
576  * @dev: Device to update the links for.
577  *
578  * The probe has been successful, so update links from this device to any
579  * consumers by changing their status to "available".
580  *
581  * Also change the status of @dev's links to suppliers to "active".
582  *
583  * Links without the DL_FLAG_MANAGED flag set are ignored.
584  */
device_links_driver_bound(struct device * dev)585 void device_links_driver_bound(struct device *dev)
586 {
587 	struct device_link *link;
588 
589 	device_links_write_lock();
590 
591 	list_for_each_entry(link, &dev->links.consumers, s_node) {
592 		if (!(link->flags & DL_FLAG_MANAGED))
593 			continue;
594 
595 		/*
596 		 * Links created during consumer probe may be in the "consumer
597 		 * probe" state to start with if the supplier is still probing
598 		 * when they are created and they may become "active" if the
599 		 * consumer probe returns first.  Skip them here.
600 		 */
601 		if (link->status == DL_STATE_CONSUMER_PROBE ||
602 		    link->status == DL_STATE_ACTIVE)
603 			continue;
604 
605 		WARN_ON(link->status != DL_STATE_DORMANT);
606 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
607 
608 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
609 			driver_deferred_probe_add(link->consumer);
610 	}
611 
612 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
613 		if (!(link->flags & DL_FLAG_MANAGED))
614 			continue;
615 
616 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
617 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
618 	}
619 
620 	dev->links.status = DL_DEV_DRIVER_BOUND;
621 
622 	device_links_write_unlock();
623 }
624 
device_link_drop_managed(struct device_link * link)625 static void device_link_drop_managed(struct device_link *link)
626 {
627 	link->flags &= ~DL_FLAG_MANAGED;
628 	WRITE_ONCE(link->status, DL_STATE_NONE);
629 	kref_put(&link->kref, __device_link_del);
630 }
631 
632 /**
633  * __device_links_no_driver - Update links of a device without a driver.
634  * @dev: Device without a drvier.
635  *
636  * Delete all non-persistent links from this device to any suppliers.
637  *
638  * Persistent links stay around, but their status is changed to "available",
639  * unless they already are in the "supplier unbind in progress" state in which
640  * case they need not be updated.
641  *
642  * Links without the DL_FLAG_MANAGED flag set are ignored.
643  */
__device_links_no_driver(struct device * dev)644 static void __device_links_no_driver(struct device *dev)
645 {
646 	struct device_link *link, *ln;
647 
648 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
649 		if (!(link->flags & DL_FLAG_MANAGED))
650 			continue;
651 
652 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
653 			device_link_drop_managed(link);
654 		else if (link->status == DL_STATE_CONSUMER_PROBE ||
655 			 link->status == DL_STATE_ACTIVE)
656 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
657 	}
658 
659 	dev->links.status = DL_DEV_NO_DRIVER;
660 }
661 
662 /**
663  * device_links_no_driver - Update links after failing driver probe.
664  * @dev: Device whose driver has just failed to probe.
665  *
666  * Clean up leftover links to consumers for @dev and invoke
667  * %__device_links_no_driver() to update links to suppliers for it as
668  * appropriate.
669  *
670  * Links without the DL_FLAG_MANAGED flag set are ignored.
671  */
device_links_no_driver(struct device * dev)672 void device_links_no_driver(struct device *dev)
673 {
674 	struct device_link *link;
675 
676 	device_links_write_lock();
677 
678 	list_for_each_entry(link, &dev->links.consumers, s_node) {
679 		if (!(link->flags & DL_FLAG_MANAGED))
680 			continue;
681 
682 		/*
683 		 * The probe has failed, so if the status of the link is
684 		 * "consumer probe" or "active", it must have been added by
685 		 * a probing consumer while this device was still probing.
686 		 * Change its state to "dormant", as it represents a valid
687 		 * relationship, but it is not functionally meaningful.
688 		 */
689 		if (link->status == DL_STATE_CONSUMER_PROBE ||
690 		    link->status == DL_STATE_ACTIVE)
691 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
692 	}
693 
694 	__device_links_no_driver(dev);
695 
696 	device_links_write_unlock();
697 }
698 
699 /**
700  * device_links_driver_cleanup - Update links after driver removal.
701  * @dev: Device whose driver has just gone away.
702  *
703  * Update links to consumers for @dev by changing their status to "dormant" and
704  * invoke %__device_links_no_driver() to update links to suppliers for it as
705  * appropriate.
706  *
707  * Links without the DL_FLAG_MANAGED flag set are ignored.
708  */
device_links_driver_cleanup(struct device * dev)709 void device_links_driver_cleanup(struct device *dev)
710 {
711 	struct device_link *link, *ln;
712 
713 	device_links_write_lock();
714 
715 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
716 		if (!(link->flags & DL_FLAG_MANAGED))
717 			continue;
718 
719 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
720 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
721 
722 		/*
723 		 * autoremove the links between this @dev and its consumer
724 		 * devices that are not active, i.e. where the link state
725 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
726 		 */
727 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
728 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
729 			device_link_drop_managed(link);
730 
731 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
732 	}
733 
734 	__device_links_no_driver(dev);
735 
736 	device_links_write_unlock();
737 }
738 
739 /**
740  * device_links_busy - Check if there are any busy links to consumers.
741  * @dev: Device to check.
742  *
743  * Check each consumer of the device and return 'true' if its link's status
744  * is one of "consumer probe" or "active" (meaning that the given consumer is
745  * probing right now or its driver is present).  Otherwise, change the link
746  * state to "supplier unbind" to prevent the consumer from being probed
747  * successfully going forward.
748  *
749  * Return 'false' if there are no probing or active consumers.
750  *
751  * Links without the DL_FLAG_MANAGED flag set are ignored.
752  */
device_links_busy(struct device * dev)753 bool device_links_busy(struct device *dev)
754 {
755 	struct device_link *link;
756 	bool ret = false;
757 
758 	device_links_write_lock();
759 
760 	list_for_each_entry(link, &dev->links.consumers, s_node) {
761 		if (!(link->flags & DL_FLAG_MANAGED))
762 			continue;
763 
764 		if (link->status == DL_STATE_CONSUMER_PROBE
765 		    || link->status == DL_STATE_ACTIVE) {
766 			ret = true;
767 			break;
768 		}
769 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
770 	}
771 
772 	dev->links.status = DL_DEV_UNBINDING;
773 
774 	device_links_write_unlock();
775 	return ret;
776 }
777 
778 /**
779  * device_links_unbind_consumers - Force unbind consumers of the given device.
780  * @dev: Device to unbind the consumers of.
781  *
782  * Walk the list of links to consumers for @dev and if any of them is in the
783  * "consumer probe" state, wait for all device probes in progress to complete
784  * and start over.
785  *
786  * If that's not the case, change the status of the link to "supplier unbind"
787  * and check if the link was in the "active" state.  If so, force the consumer
788  * driver to unbind and start over (the consumer will not re-probe as we have
789  * changed the state of the link already).
790  *
791  * Links without the DL_FLAG_MANAGED flag set are ignored.
792  */
device_links_unbind_consumers(struct device * dev)793 void device_links_unbind_consumers(struct device *dev)
794 {
795 	struct device_link *link;
796 
797  start:
798 	device_links_write_lock();
799 
800 	list_for_each_entry(link, &dev->links.consumers, s_node) {
801 		enum device_link_state status;
802 
803 		if (!(link->flags & DL_FLAG_MANAGED))
804 			continue;
805 
806 		status = link->status;
807 		if (status == DL_STATE_CONSUMER_PROBE) {
808 			device_links_write_unlock();
809 
810 			wait_for_device_probe();
811 			goto start;
812 		}
813 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
814 		if (status == DL_STATE_ACTIVE) {
815 			struct device *consumer = link->consumer;
816 
817 			get_device(consumer);
818 
819 			device_links_write_unlock();
820 
821 			device_release_driver_internal(consumer, NULL,
822 						       consumer->parent);
823 			put_device(consumer);
824 			goto start;
825 		}
826 	}
827 
828 	device_links_write_unlock();
829 }
830 
831 /**
832  * device_links_purge - Delete existing links to other devices.
833  * @dev: Target device.
834  */
device_links_purge(struct device * dev)835 static void device_links_purge(struct device *dev)
836 {
837 	struct device_link *link, *ln;
838 
839 	/*
840 	 * Delete all of the remaining links from this device to any other
841 	 * devices (either consumers or suppliers).
842 	 */
843 	device_links_write_lock();
844 
845 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
846 		WARN_ON(link->status == DL_STATE_ACTIVE);
847 		__device_link_del(&link->kref);
848 	}
849 
850 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
851 		WARN_ON(link->status != DL_STATE_DORMANT &&
852 			link->status != DL_STATE_NONE);
853 		__device_link_del(&link->kref);
854 	}
855 
856 	device_links_write_unlock();
857 }
858 
859 /* Device links support end. */
860 
861 int (*platform_notify)(struct device *dev) = NULL;
862 int (*platform_notify_remove)(struct device *dev) = NULL;
863 static struct kobject *dev_kobj;
864 struct kobject *sysfs_dev_char_kobj;
865 struct kobject *sysfs_dev_block_kobj;
866 
867 static DEFINE_MUTEX(device_hotplug_lock);
868 
lock_device_hotplug(void)869 void lock_device_hotplug(void)
870 {
871 	mutex_lock(&device_hotplug_lock);
872 }
873 
unlock_device_hotplug(void)874 void unlock_device_hotplug(void)
875 {
876 	mutex_unlock(&device_hotplug_lock);
877 }
878 
lock_device_hotplug_sysfs(void)879 int lock_device_hotplug_sysfs(void)
880 {
881 	if (mutex_trylock(&device_hotplug_lock))
882 		return 0;
883 
884 	/* Avoid busy looping (5 ms of sleep should do). */
885 	msleep(5);
886 	return restart_syscall();
887 }
888 
889 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)890 static inline int device_is_not_partition(struct device *dev)
891 {
892 	return !(dev->type == &part_type);
893 }
894 #else
device_is_not_partition(struct device * dev)895 static inline int device_is_not_partition(struct device *dev)
896 {
897 	return 1;
898 }
899 #endif
900 
901 /**
902  * dev_driver_string - Return a device's driver name, if at all possible
903  * @dev: struct device to get the name of
904  *
905  * Will return the device's driver's name if it is bound to a device.  If
906  * the device is not bound to a driver, it will return the name of the bus
907  * it is attached to.  If it is not attached to a bus either, an empty
908  * string will be returned.
909  */
dev_driver_string(const struct device * dev)910 const char *dev_driver_string(const struct device *dev)
911 {
912 	struct device_driver *drv;
913 
914 	/* dev->driver can change to NULL underneath us because of unbinding,
915 	 * so be careful about accessing it.  dev->bus and dev->class should
916 	 * never change once they are set, so they don't need special care.
917 	 */
918 	drv = READ_ONCE(dev->driver);
919 	return drv ? drv->name :
920 			(dev->bus ? dev->bus->name :
921 			(dev->class ? dev->class->name : ""));
922 }
923 EXPORT_SYMBOL(dev_driver_string);
924 
925 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
926 
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)927 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
928 			     char *buf)
929 {
930 	struct device_attribute *dev_attr = to_dev_attr(attr);
931 	struct device *dev = kobj_to_dev(kobj);
932 	ssize_t ret = -EIO;
933 
934 	if (dev_attr->show)
935 		ret = dev_attr->show(dev, dev_attr, buf);
936 	if (ret >= (ssize_t)PAGE_SIZE) {
937 		printk("dev_attr_show: %pS returned bad count\n",
938 				dev_attr->show);
939 	}
940 	return ret;
941 }
942 
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)943 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
944 			      const char *buf, size_t count)
945 {
946 	struct device_attribute *dev_attr = to_dev_attr(attr);
947 	struct device *dev = kobj_to_dev(kobj);
948 	ssize_t ret = -EIO;
949 
950 	if (dev_attr->store)
951 		ret = dev_attr->store(dev, dev_attr, buf, count);
952 	return ret;
953 }
954 
955 static const struct sysfs_ops dev_sysfs_ops = {
956 	.show	= dev_attr_show,
957 	.store	= dev_attr_store,
958 };
959 
960 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
961 
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)962 ssize_t device_store_ulong(struct device *dev,
963 			   struct device_attribute *attr,
964 			   const char *buf, size_t size)
965 {
966 	struct dev_ext_attribute *ea = to_ext_attr(attr);
967 	char *end;
968 	unsigned long new = simple_strtoul(buf, &end, 0);
969 	if (end == buf)
970 		return -EINVAL;
971 	*(unsigned long *)(ea->var) = new;
972 	/* Always return full write size even if we didn't consume all */
973 	return size;
974 }
975 EXPORT_SYMBOL_GPL(device_store_ulong);
976 
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)977 ssize_t device_show_ulong(struct device *dev,
978 			  struct device_attribute *attr,
979 			  char *buf)
980 {
981 	struct dev_ext_attribute *ea = to_ext_attr(attr);
982 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
983 }
984 EXPORT_SYMBOL_GPL(device_show_ulong);
985 
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)986 ssize_t device_store_int(struct device *dev,
987 			 struct device_attribute *attr,
988 			 const char *buf, size_t size)
989 {
990 	struct dev_ext_attribute *ea = to_ext_attr(attr);
991 	char *end;
992 	long new = simple_strtol(buf, &end, 0);
993 	if (end == buf || new > INT_MAX || new < INT_MIN)
994 		return -EINVAL;
995 	*(int *)(ea->var) = new;
996 	/* Always return full write size even if we didn't consume all */
997 	return size;
998 }
999 EXPORT_SYMBOL_GPL(device_store_int);
1000 
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)1001 ssize_t device_show_int(struct device *dev,
1002 			struct device_attribute *attr,
1003 			char *buf)
1004 {
1005 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1006 
1007 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1008 }
1009 EXPORT_SYMBOL_GPL(device_show_int);
1010 
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1011 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1012 			  const char *buf, size_t size)
1013 {
1014 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1015 
1016 	if (strtobool(buf, ea->var) < 0)
1017 		return -EINVAL;
1018 
1019 	return size;
1020 }
1021 EXPORT_SYMBOL_GPL(device_store_bool);
1022 
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)1023 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1024 			 char *buf)
1025 {
1026 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1027 
1028 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1029 }
1030 EXPORT_SYMBOL_GPL(device_show_bool);
1031 
1032 /**
1033  * device_release - free device structure.
1034  * @kobj: device's kobject.
1035  *
1036  * This is called once the reference count for the object
1037  * reaches 0. We forward the call to the device's release
1038  * method, which should handle actually freeing the structure.
1039  */
device_release(struct kobject * kobj)1040 static void device_release(struct kobject *kobj)
1041 {
1042 	struct device *dev = kobj_to_dev(kobj);
1043 	struct device_private *p = dev->p;
1044 
1045 	/*
1046 	 * Some platform devices are driven without driver attached
1047 	 * and managed resources may have been acquired.  Make sure
1048 	 * all resources are released.
1049 	 *
1050 	 * Drivers still can add resources into device after device
1051 	 * is deleted but alive, so release devres here to avoid
1052 	 * possible memory leak.
1053 	 */
1054 	devres_release_all(dev);
1055 
1056 	if (dev->release)
1057 		dev->release(dev);
1058 	else if (dev->type && dev->type->release)
1059 		dev->type->release(dev);
1060 	else if (dev->class && dev->class->dev_release)
1061 		dev->class->dev_release(dev);
1062 	else
1063 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
1064 			"function, it is broken and must be fixed.\n",
1065 			dev_name(dev));
1066 	kfree(p);
1067 }
1068 
device_namespace(struct kobject * kobj)1069 static const void *device_namespace(struct kobject *kobj)
1070 {
1071 	struct device *dev = kobj_to_dev(kobj);
1072 	const void *ns = NULL;
1073 
1074 	if (dev->class && dev->class->ns_type)
1075 		ns = dev->class->namespace(dev);
1076 
1077 	return ns;
1078 }
1079 
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1080 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1081 {
1082 	struct device *dev = kobj_to_dev(kobj);
1083 
1084 	if (dev->class && dev->class->get_ownership)
1085 		dev->class->get_ownership(dev, uid, gid);
1086 }
1087 
1088 static struct kobj_type device_ktype = {
1089 	.release	= device_release,
1090 	.sysfs_ops	= &dev_sysfs_ops,
1091 	.namespace	= device_namespace,
1092 	.get_ownership	= device_get_ownership,
1093 };
1094 
1095 
dev_uevent_filter(struct kset * kset,struct kobject * kobj)1096 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1097 {
1098 	struct kobj_type *ktype = get_ktype(kobj);
1099 
1100 	if (ktype == &device_ktype) {
1101 		struct device *dev = kobj_to_dev(kobj);
1102 		if (dev->bus)
1103 			return 1;
1104 		if (dev->class)
1105 			return 1;
1106 	}
1107 	return 0;
1108 }
1109 
dev_uevent_name(struct kset * kset,struct kobject * kobj)1110 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1111 {
1112 	struct device *dev = kobj_to_dev(kobj);
1113 
1114 	if (dev->bus)
1115 		return dev->bus->name;
1116 	if (dev->class)
1117 		return dev->class->name;
1118 	return NULL;
1119 }
1120 
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)1121 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1122 		      struct kobj_uevent_env *env)
1123 {
1124 	struct device *dev = kobj_to_dev(kobj);
1125 	int retval = 0;
1126 
1127 	/* add device node properties if present */
1128 	if (MAJOR(dev->devt)) {
1129 		const char *tmp;
1130 		const char *name;
1131 		umode_t mode = 0;
1132 		kuid_t uid = GLOBAL_ROOT_UID;
1133 		kgid_t gid = GLOBAL_ROOT_GID;
1134 
1135 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1136 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1137 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1138 		if (name) {
1139 			add_uevent_var(env, "DEVNAME=%s", name);
1140 			if (mode)
1141 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1142 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1143 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1144 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1145 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1146 			kfree(tmp);
1147 		}
1148 	}
1149 
1150 	if (dev->type && dev->type->name)
1151 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1152 
1153 	if (dev->driver)
1154 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1155 
1156 	/* Add common DT information about the device */
1157 	of_device_uevent(dev, env);
1158 
1159 	/* have the bus specific function add its stuff */
1160 	if (dev->bus && dev->bus->uevent) {
1161 		retval = dev->bus->uevent(dev, env);
1162 		if (retval)
1163 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1164 				 dev_name(dev), __func__, retval);
1165 	}
1166 
1167 	/* have the class specific function add its stuff */
1168 	if (dev->class && dev->class->dev_uevent) {
1169 		retval = dev->class->dev_uevent(dev, env);
1170 		if (retval)
1171 			pr_debug("device: '%s': %s: class uevent() "
1172 				 "returned %d\n", dev_name(dev),
1173 				 __func__, retval);
1174 	}
1175 
1176 	/* have the device type specific function add its stuff */
1177 	if (dev->type && dev->type->uevent) {
1178 		retval = dev->type->uevent(dev, env);
1179 		if (retval)
1180 			pr_debug("device: '%s': %s: dev_type uevent() "
1181 				 "returned %d\n", dev_name(dev),
1182 				 __func__, retval);
1183 	}
1184 
1185 	return retval;
1186 }
1187 
1188 static const struct kset_uevent_ops device_uevent_ops = {
1189 	.filter =	dev_uevent_filter,
1190 	.name =		dev_uevent_name,
1191 	.uevent =	dev_uevent,
1192 };
1193 
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)1194 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1195 			   char *buf)
1196 {
1197 	struct kobject *top_kobj;
1198 	struct kset *kset;
1199 	struct kobj_uevent_env *env = NULL;
1200 	int i;
1201 	size_t count = 0;
1202 	int retval;
1203 
1204 	/* search the kset, the device belongs to */
1205 	top_kobj = &dev->kobj;
1206 	while (!top_kobj->kset && top_kobj->parent)
1207 		top_kobj = top_kobj->parent;
1208 	if (!top_kobj->kset)
1209 		goto out;
1210 
1211 	kset = top_kobj->kset;
1212 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1213 		goto out;
1214 
1215 	/* respect filter */
1216 	if (kset->uevent_ops && kset->uevent_ops->filter)
1217 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1218 			goto out;
1219 
1220 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1221 	if (!env)
1222 		return -ENOMEM;
1223 
1224 	/* let the kset specific function add its keys */
1225 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1226 	if (retval)
1227 		goto out;
1228 
1229 	/* copy keys to file */
1230 	for (i = 0; i < env->envp_idx; i++)
1231 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1232 out:
1233 	kfree(env);
1234 	return count;
1235 }
1236 
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1237 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1238 			    const char *buf, size_t count)
1239 {
1240 	int rc;
1241 
1242 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1243 
1244 	if (rc) {
1245 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1246 		return rc;
1247 	}
1248 
1249 	return count;
1250 }
1251 static DEVICE_ATTR_RW(uevent);
1252 
online_show(struct device * dev,struct device_attribute * attr,char * buf)1253 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1254 			   char *buf)
1255 {
1256 	bool val;
1257 
1258 	device_lock(dev);
1259 	val = !dev->offline;
1260 	device_unlock(dev);
1261 	return sprintf(buf, "%u\n", val);
1262 }
1263 
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1264 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1265 			    const char *buf, size_t count)
1266 {
1267 	bool val;
1268 	int ret;
1269 
1270 	ret = strtobool(buf, &val);
1271 	if (ret < 0)
1272 		return ret;
1273 
1274 	ret = lock_device_hotplug_sysfs();
1275 	if (ret)
1276 		return ret;
1277 
1278 	ret = val ? device_online(dev) : device_offline(dev);
1279 	unlock_device_hotplug();
1280 	return ret < 0 ? ret : count;
1281 }
1282 static DEVICE_ATTR_RW(online);
1283 
device_add_groups(struct device * dev,const struct attribute_group ** groups)1284 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1285 {
1286 	return sysfs_create_groups(&dev->kobj, groups);
1287 }
1288 EXPORT_SYMBOL_GPL(device_add_groups);
1289 
device_remove_groups(struct device * dev,const struct attribute_group ** groups)1290 void device_remove_groups(struct device *dev,
1291 			  const struct attribute_group **groups)
1292 {
1293 	sysfs_remove_groups(&dev->kobj, groups);
1294 }
1295 EXPORT_SYMBOL_GPL(device_remove_groups);
1296 
1297 union device_attr_group_devres {
1298 	const struct attribute_group *group;
1299 	const struct attribute_group **groups;
1300 };
1301 
devm_attr_group_match(struct device * dev,void * res,void * data)1302 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1303 {
1304 	return ((union device_attr_group_devres *)res)->group == data;
1305 }
1306 
devm_attr_group_remove(struct device * dev,void * res)1307 static void devm_attr_group_remove(struct device *dev, void *res)
1308 {
1309 	union device_attr_group_devres *devres = res;
1310 	const struct attribute_group *group = devres->group;
1311 
1312 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1313 	sysfs_remove_group(&dev->kobj, group);
1314 }
1315 
devm_attr_groups_remove(struct device * dev,void * res)1316 static void devm_attr_groups_remove(struct device *dev, void *res)
1317 {
1318 	union device_attr_group_devres *devres = res;
1319 	const struct attribute_group **groups = devres->groups;
1320 
1321 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1322 	sysfs_remove_groups(&dev->kobj, groups);
1323 }
1324 
1325 /**
1326  * devm_device_add_group - given a device, create a managed attribute group
1327  * @dev:	The device to create the group for
1328  * @grp:	The attribute group to create
1329  *
1330  * This function creates a group for the first time.  It will explicitly
1331  * warn and error if any of the attribute files being created already exist.
1332  *
1333  * Returns 0 on success or error code on failure.
1334  */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)1335 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1336 {
1337 	union device_attr_group_devres *devres;
1338 	int error;
1339 
1340 	devres = devres_alloc(devm_attr_group_remove,
1341 			      sizeof(*devres), GFP_KERNEL);
1342 	if (!devres)
1343 		return -ENOMEM;
1344 
1345 	error = sysfs_create_group(&dev->kobj, grp);
1346 	if (error) {
1347 		devres_free(devres);
1348 		return error;
1349 	}
1350 
1351 	devres->group = grp;
1352 	devres_add(dev, devres);
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_device_add_group);
1356 
1357 /**
1358  * devm_device_remove_group: remove a managed group from a device
1359  * @dev:	device to remove the group from
1360  * @grp:	group to remove
1361  *
1362  * This function removes a group of attributes from a device. The attributes
1363  * previously have to have been created for this group, otherwise it will fail.
1364  */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)1365 void devm_device_remove_group(struct device *dev,
1366 			      const struct attribute_group *grp)
1367 {
1368 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1369 			       devm_attr_group_match,
1370 			       /* cast away const */ (void *)grp));
1371 }
1372 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1373 
1374 /**
1375  * devm_device_add_groups - create a bunch of managed attribute groups
1376  * @dev:	The device to create the group for
1377  * @groups:	The attribute groups to create, NULL terminated
1378  *
1379  * This function creates a bunch of managed attribute groups.  If an error
1380  * occurs when creating a group, all previously created groups will be
1381  * removed, unwinding everything back to the original state when this
1382  * function was called.  It will explicitly warn and error if any of the
1383  * attribute files being created already exist.
1384  *
1385  * Returns 0 on success or error code from sysfs_create_group on failure.
1386  */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)1387 int devm_device_add_groups(struct device *dev,
1388 			   const struct attribute_group **groups)
1389 {
1390 	union device_attr_group_devres *devres;
1391 	int error;
1392 
1393 	devres = devres_alloc(devm_attr_groups_remove,
1394 			      sizeof(*devres), GFP_KERNEL);
1395 	if (!devres)
1396 		return -ENOMEM;
1397 
1398 	error = sysfs_create_groups(&dev->kobj, groups);
1399 	if (error) {
1400 		devres_free(devres);
1401 		return error;
1402 	}
1403 
1404 	devres->groups = groups;
1405 	devres_add(dev, devres);
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1409 
1410 /**
1411  * devm_device_remove_groups - remove a list of managed groups
1412  *
1413  * @dev:	The device for the groups to be removed from
1414  * @groups:	NULL terminated list of groups to be removed
1415  *
1416  * If groups is not NULL, remove the specified groups from the device.
1417  */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)1418 void devm_device_remove_groups(struct device *dev,
1419 			       const struct attribute_group **groups)
1420 {
1421 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1422 			       devm_attr_group_match,
1423 			       /* cast away const */ (void *)groups));
1424 }
1425 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1426 
device_add_attrs(struct device * dev)1427 static int device_add_attrs(struct device *dev)
1428 {
1429 	struct class *class = dev->class;
1430 	const struct device_type *type = dev->type;
1431 	int error;
1432 
1433 	if (class) {
1434 		error = device_add_groups(dev, class->dev_groups);
1435 		if (error)
1436 			return error;
1437 	}
1438 
1439 	if (type) {
1440 		error = device_add_groups(dev, type->groups);
1441 		if (error)
1442 			goto err_remove_class_groups;
1443 	}
1444 
1445 	error = device_add_groups(dev, dev->groups);
1446 	if (error)
1447 		goto err_remove_type_groups;
1448 
1449 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1450 		error = device_create_file(dev, &dev_attr_online);
1451 		if (error)
1452 			goto err_remove_dev_groups;
1453 	}
1454 
1455 	return 0;
1456 
1457  err_remove_dev_groups:
1458 	device_remove_groups(dev, dev->groups);
1459  err_remove_type_groups:
1460 	if (type)
1461 		device_remove_groups(dev, type->groups);
1462  err_remove_class_groups:
1463 	if (class)
1464 		device_remove_groups(dev, class->dev_groups);
1465 
1466 	return error;
1467 }
1468 
device_remove_attrs(struct device * dev)1469 static void device_remove_attrs(struct device *dev)
1470 {
1471 	struct class *class = dev->class;
1472 	const struct device_type *type = dev->type;
1473 
1474 	device_remove_file(dev, &dev_attr_online);
1475 	device_remove_groups(dev, dev->groups);
1476 
1477 	if (type)
1478 		device_remove_groups(dev, type->groups);
1479 
1480 	if (class)
1481 		device_remove_groups(dev, class->dev_groups);
1482 }
1483 
dev_show(struct device * dev,struct device_attribute * attr,char * buf)1484 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1485 			char *buf)
1486 {
1487 	return print_dev_t(buf, dev->devt);
1488 }
1489 static DEVICE_ATTR_RO(dev);
1490 
1491 /* /sys/devices/ */
1492 struct kset *devices_kset;
1493 
1494 /**
1495  * devices_kset_move_before - Move device in the devices_kset's list.
1496  * @deva: Device to move.
1497  * @devb: Device @deva should come before.
1498  */
devices_kset_move_before(struct device * deva,struct device * devb)1499 static void devices_kset_move_before(struct device *deva, struct device *devb)
1500 {
1501 	if (!devices_kset)
1502 		return;
1503 	pr_debug("devices_kset: Moving %s before %s\n",
1504 		 dev_name(deva), dev_name(devb));
1505 	spin_lock(&devices_kset->list_lock);
1506 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1507 	spin_unlock(&devices_kset->list_lock);
1508 }
1509 
1510 /**
1511  * devices_kset_move_after - Move device in the devices_kset's list.
1512  * @deva: Device to move
1513  * @devb: Device @deva should come after.
1514  */
devices_kset_move_after(struct device * deva,struct device * devb)1515 static void devices_kset_move_after(struct device *deva, struct device *devb)
1516 {
1517 	if (!devices_kset)
1518 		return;
1519 	pr_debug("devices_kset: Moving %s after %s\n",
1520 		 dev_name(deva), dev_name(devb));
1521 	spin_lock(&devices_kset->list_lock);
1522 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1523 	spin_unlock(&devices_kset->list_lock);
1524 }
1525 
1526 /**
1527  * devices_kset_move_last - move the device to the end of devices_kset's list.
1528  * @dev: device to move
1529  */
devices_kset_move_last(struct device * dev)1530 void devices_kset_move_last(struct device *dev)
1531 {
1532 	if (!devices_kset)
1533 		return;
1534 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1535 	spin_lock(&devices_kset->list_lock);
1536 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1537 	spin_unlock(&devices_kset->list_lock);
1538 }
1539 
1540 /**
1541  * device_create_file - create sysfs attribute file for device.
1542  * @dev: device.
1543  * @attr: device attribute descriptor.
1544  */
device_create_file(struct device * dev,const struct device_attribute * attr)1545 int device_create_file(struct device *dev,
1546 		       const struct device_attribute *attr)
1547 {
1548 	int error = 0;
1549 
1550 	if (dev) {
1551 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1552 			"Attribute %s: write permission without 'store'\n",
1553 			attr->attr.name);
1554 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1555 			"Attribute %s: read permission without 'show'\n",
1556 			attr->attr.name);
1557 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1558 	}
1559 
1560 	return error;
1561 }
1562 EXPORT_SYMBOL_GPL(device_create_file);
1563 
1564 /**
1565  * device_remove_file - remove sysfs attribute file.
1566  * @dev: device.
1567  * @attr: device attribute descriptor.
1568  */
device_remove_file(struct device * dev,const struct device_attribute * attr)1569 void device_remove_file(struct device *dev,
1570 			const struct device_attribute *attr)
1571 {
1572 	if (dev)
1573 		sysfs_remove_file(&dev->kobj, &attr->attr);
1574 }
1575 EXPORT_SYMBOL_GPL(device_remove_file);
1576 
1577 /**
1578  * device_remove_file_self - remove sysfs attribute file from its own method.
1579  * @dev: device.
1580  * @attr: device attribute descriptor.
1581  *
1582  * See kernfs_remove_self() for details.
1583  */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)1584 bool device_remove_file_self(struct device *dev,
1585 			     const struct device_attribute *attr)
1586 {
1587 	if (dev)
1588 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1589 	else
1590 		return false;
1591 }
1592 EXPORT_SYMBOL_GPL(device_remove_file_self);
1593 
1594 /**
1595  * device_create_bin_file - create sysfs binary attribute file for device.
1596  * @dev: device.
1597  * @attr: device binary attribute descriptor.
1598  */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)1599 int device_create_bin_file(struct device *dev,
1600 			   const struct bin_attribute *attr)
1601 {
1602 	int error = -EINVAL;
1603 	if (dev)
1604 		error = sysfs_create_bin_file(&dev->kobj, attr);
1605 	return error;
1606 }
1607 EXPORT_SYMBOL_GPL(device_create_bin_file);
1608 
1609 /**
1610  * device_remove_bin_file - remove sysfs binary attribute file
1611  * @dev: device.
1612  * @attr: device binary attribute descriptor.
1613  */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)1614 void device_remove_bin_file(struct device *dev,
1615 			    const struct bin_attribute *attr)
1616 {
1617 	if (dev)
1618 		sysfs_remove_bin_file(&dev->kobj, attr);
1619 }
1620 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1621 
klist_children_get(struct klist_node * n)1622 static void klist_children_get(struct klist_node *n)
1623 {
1624 	struct device_private *p = to_device_private_parent(n);
1625 	struct device *dev = p->device;
1626 
1627 	get_device(dev);
1628 }
1629 
klist_children_put(struct klist_node * n)1630 static void klist_children_put(struct klist_node *n)
1631 {
1632 	struct device_private *p = to_device_private_parent(n);
1633 	struct device *dev = p->device;
1634 
1635 	put_device(dev);
1636 }
1637 
1638 /**
1639  * device_initialize - init device structure.
1640  * @dev: device.
1641  *
1642  * This prepares the device for use by other layers by initializing
1643  * its fields.
1644  * It is the first half of device_register(), if called by
1645  * that function, though it can also be called separately, so one
1646  * may use @dev's fields. In particular, get_device()/put_device()
1647  * may be used for reference counting of @dev after calling this
1648  * function.
1649  *
1650  * All fields in @dev must be initialized by the caller to 0, except
1651  * for those explicitly set to some other value.  The simplest
1652  * approach is to use kzalloc() to allocate the structure containing
1653  * @dev.
1654  *
1655  * NOTE: Use put_device() to give up your reference instead of freeing
1656  * @dev directly once you have called this function.
1657  */
device_initialize(struct device * dev)1658 void device_initialize(struct device *dev)
1659 {
1660 	dev->kobj.kset = devices_kset;
1661 	kobject_init(&dev->kobj, &device_ktype);
1662 	INIT_LIST_HEAD(&dev->dma_pools);
1663 	mutex_init(&dev->mutex);
1664 	lockdep_set_novalidate_class(&dev->mutex);
1665 	spin_lock_init(&dev->devres_lock);
1666 	INIT_LIST_HEAD(&dev->devres_head);
1667 	device_pm_init(dev);
1668 	set_dev_node(dev, -1);
1669 #ifdef CONFIG_GENERIC_MSI_IRQ
1670 	INIT_LIST_HEAD(&dev->msi_list);
1671 #endif
1672 	INIT_LIST_HEAD(&dev->links.consumers);
1673 	INIT_LIST_HEAD(&dev->links.suppliers);
1674 	dev->links.status = DL_DEV_NO_DRIVER;
1675 }
1676 EXPORT_SYMBOL_GPL(device_initialize);
1677 
virtual_device_parent(struct device * dev)1678 struct kobject *virtual_device_parent(struct device *dev)
1679 {
1680 	static struct kobject *virtual_dir = NULL;
1681 
1682 	if (!virtual_dir)
1683 		virtual_dir = kobject_create_and_add("virtual",
1684 						     &devices_kset->kobj);
1685 
1686 	return virtual_dir;
1687 }
1688 
1689 struct class_dir {
1690 	struct kobject kobj;
1691 	struct class *class;
1692 };
1693 
1694 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1695 
class_dir_release(struct kobject * kobj)1696 static void class_dir_release(struct kobject *kobj)
1697 {
1698 	struct class_dir *dir = to_class_dir(kobj);
1699 	kfree(dir);
1700 }
1701 
1702 static const
class_dir_child_ns_type(struct kobject * kobj)1703 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1704 {
1705 	struct class_dir *dir = to_class_dir(kobj);
1706 	return dir->class->ns_type;
1707 }
1708 
1709 static struct kobj_type class_dir_ktype = {
1710 	.release	= class_dir_release,
1711 	.sysfs_ops	= &kobj_sysfs_ops,
1712 	.child_ns_type	= class_dir_child_ns_type
1713 };
1714 
1715 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)1716 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1717 {
1718 	struct class_dir *dir;
1719 	int retval;
1720 
1721 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1722 	if (!dir)
1723 		return ERR_PTR(-ENOMEM);
1724 
1725 	dir->class = class;
1726 	kobject_init(&dir->kobj, &class_dir_ktype);
1727 
1728 	dir->kobj.kset = &class->p->glue_dirs;
1729 
1730 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1731 	if (retval < 0) {
1732 		kobject_put(&dir->kobj);
1733 		return ERR_PTR(retval);
1734 	}
1735 	return &dir->kobj;
1736 }
1737 
1738 static DEFINE_MUTEX(gdp_mutex);
1739 
get_device_parent(struct device * dev,struct device * parent)1740 static struct kobject *get_device_parent(struct device *dev,
1741 					 struct device *parent)
1742 {
1743 	if (dev->class) {
1744 		struct kobject *kobj = NULL;
1745 		struct kobject *parent_kobj;
1746 		struct kobject *k;
1747 
1748 #ifdef CONFIG_BLOCK
1749 		/* block disks show up in /sys/block */
1750 		if (sysfs_deprecated && dev->class == &block_class) {
1751 			if (parent && parent->class == &block_class)
1752 				return &parent->kobj;
1753 			return &block_class.p->subsys.kobj;
1754 		}
1755 #endif
1756 
1757 		/*
1758 		 * If we have no parent, we live in "virtual".
1759 		 * Class-devices with a non class-device as parent, live
1760 		 * in a "glue" directory to prevent namespace collisions.
1761 		 */
1762 		if (parent == NULL)
1763 			parent_kobj = virtual_device_parent(dev);
1764 		else if (parent->class && !dev->class->ns_type)
1765 			return &parent->kobj;
1766 		else
1767 			parent_kobj = &parent->kobj;
1768 
1769 		mutex_lock(&gdp_mutex);
1770 
1771 		/* find our class-directory at the parent and reference it */
1772 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1773 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1774 			if (k->parent == parent_kobj) {
1775 				kobj = kobject_get(k);
1776 				break;
1777 			}
1778 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1779 		if (kobj) {
1780 			mutex_unlock(&gdp_mutex);
1781 			return kobj;
1782 		}
1783 
1784 		/* or create a new class-directory at the parent device */
1785 		k = class_dir_create_and_add(dev->class, parent_kobj);
1786 		/* do not emit an uevent for this simple "glue" directory */
1787 		mutex_unlock(&gdp_mutex);
1788 		return k;
1789 	}
1790 
1791 	/* subsystems can specify a default root directory for their devices */
1792 	if (!parent && dev->bus && dev->bus->dev_root)
1793 		return &dev->bus->dev_root->kobj;
1794 
1795 	if (parent)
1796 		return &parent->kobj;
1797 	return NULL;
1798 }
1799 
live_in_glue_dir(struct kobject * kobj,struct device * dev)1800 static inline bool live_in_glue_dir(struct kobject *kobj,
1801 				    struct device *dev)
1802 {
1803 	if (!kobj || !dev->class ||
1804 	    kobj->kset != &dev->class->p->glue_dirs)
1805 		return false;
1806 	return true;
1807 }
1808 
get_glue_dir(struct device * dev)1809 static inline struct kobject *get_glue_dir(struct device *dev)
1810 {
1811 	return dev->kobj.parent;
1812 }
1813 
1814 /*
1815  * make sure cleaning up dir as the last step, we need to make
1816  * sure .release handler of kobject is run with holding the
1817  * global lock
1818  */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)1819 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1820 {
1821 	unsigned int ref;
1822 
1823 	/* see if we live in a "glue" directory */
1824 	if (!live_in_glue_dir(glue_dir, dev))
1825 		return;
1826 
1827 	mutex_lock(&gdp_mutex);
1828 	/**
1829 	 * There is a race condition between removing glue directory
1830 	 * and adding a new device under the glue directory.
1831 	 *
1832 	 * CPU1:                                         CPU2:
1833 	 *
1834 	 * device_add()
1835 	 *   get_device_parent()
1836 	 *     class_dir_create_and_add()
1837 	 *       kobject_add_internal()
1838 	 *         create_dir()    // create glue_dir
1839 	 *
1840 	 *                                               device_add()
1841 	 *                                                 get_device_parent()
1842 	 *                                                   kobject_get() // get glue_dir
1843 	 *
1844 	 * device_del()
1845 	 *   cleanup_glue_dir()
1846 	 *     kobject_del(glue_dir)
1847 	 *
1848 	 *                                               kobject_add()
1849 	 *                                                 kobject_add_internal()
1850 	 *                                                   create_dir() // in glue_dir
1851 	 *                                                     sysfs_create_dir_ns()
1852 	 *                                                       kernfs_create_dir_ns(sd)
1853 	 *
1854 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1855 	 *       sysfs_put()        // free glue_dir->sd
1856 	 *
1857 	 *                                                         // sd is freed
1858 	 *                                                         kernfs_new_node(sd)
1859 	 *                                                           kernfs_get(glue_dir)
1860 	 *                                                           kernfs_add_one()
1861 	 *                                                           kernfs_put()
1862 	 *
1863 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1864 	 * a new device under glue dir, the glue_dir kobject reference count
1865 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1866 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1867 	 * and sysfs_put(). This result in glue_dir->sd is freed.
1868 	 *
1869 	 * Then the CPU2 will see a stale "empty" but still potentially used
1870 	 * glue dir around in kernfs_new_node().
1871 	 *
1872 	 * In order to avoid this happening, we also should make sure that
1873 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1874 	 * for glue_dir kobj is 1.
1875 	 */
1876 	ref = kref_read(&glue_dir->kref);
1877 	if (!kobject_has_children(glue_dir) && !--ref)
1878 		kobject_del(glue_dir);
1879 	kobject_put(glue_dir);
1880 	mutex_unlock(&gdp_mutex);
1881 }
1882 
device_add_class_symlinks(struct device * dev)1883 static int device_add_class_symlinks(struct device *dev)
1884 {
1885 	struct device_node *of_node = dev_of_node(dev);
1886 	int error;
1887 
1888 	if (of_node) {
1889 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1890 		if (error)
1891 			dev_warn(dev, "Error %d creating of_node link\n",error);
1892 		/* An error here doesn't warrant bringing down the device */
1893 	}
1894 
1895 	if (!dev->class)
1896 		return 0;
1897 
1898 	error = sysfs_create_link(&dev->kobj,
1899 				  &dev->class->p->subsys.kobj,
1900 				  "subsystem");
1901 	if (error)
1902 		goto out_devnode;
1903 
1904 	if (dev->parent && device_is_not_partition(dev)) {
1905 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1906 					  "device");
1907 		if (error)
1908 			goto out_subsys;
1909 	}
1910 
1911 #ifdef CONFIG_BLOCK
1912 	/* /sys/block has directories and does not need symlinks */
1913 	if (sysfs_deprecated && dev->class == &block_class)
1914 		return 0;
1915 #endif
1916 
1917 	/* link in the class directory pointing to the device */
1918 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1919 				  &dev->kobj, dev_name(dev));
1920 	if (error)
1921 		goto out_device;
1922 
1923 	return 0;
1924 
1925 out_device:
1926 	sysfs_remove_link(&dev->kobj, "device");
1927 
1928 out_subsys:
1929 	sysfs_remove_link(&dev->kobj, "subsystem");
1930 out_devnode:
1931 	sysfs_remove_link(&dev->kobj, "of_node");
1932 	return error;
1933 }
1934 
device_remove_class_symlinks(struct device * dev)1935 static void device_remove_class_symlinks(struct device *dev)
1936 {
1937 	if (dev_of_node(dev))
1938 		sysfs_remove_link(&dev->kobj, "of_node");
1939 
1940 	if (!dev->class)
1941 		return;
1942 
1943 	if (dev->parent && device_is_not_partition(dev))
1944 		sysfs_remove_link(&dev->kobj, "device");
1945 	sysfs_remove_link(&dev->kobj, "subsystem");
1946 #ifdef CONFIG_BLOCK
1947 	if (sysfs_deprecated && dev->class == &block_class)
1948 		return;
1949 #endif
1950 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1951 }
1952 
1953 /**
1954  * dev_set_name - set a device name
1955  * @dev: device
1956  * @fmt: format string for the device's name
1957  */
dev_set_name(struct device * dev,const char * fmt,...)1958 int dev_set_name(struct device *dev, const char *fmt, ...)
1959 {
1960 	va_list vargs;
1961 	int err;
1962 
1963 	va_start(vargs, fmt);
1964 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1965 	va_end(vargs);
1966 	return err;
1967 }
1968 EXPORT_SYMBOL_GPL(dev_set_name);
1969 
1970 /**
1971  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1972  * @dev: device
1973  *
1974  * By default we select char/ for new entries.  Setting class->dev_obj
1975  * to NULL prevents an entry from being created.  class->dev_kobj must
1976  * be set (or cleared) before any devices are registered to the class
1977  * otherwise device_create_sys_dev_entry() and
1978  * device_remove_sys_dev_entry() will disagree about the presence of
1979  * the link.
1980  */
device_to_dev_kobj(struct device * dev)1981 static struct kobject *device_to_dev_kobj(struct device *dev)
1982 {
1983 	struct kobject *kobj;
1984 
1985 	if (dev->class)
1986 		kobj = dev->class->dev_kobj;
1987 	else
1988 		kobj = sysfs_dev_char_kobj;
1989 
1990 	return kobj;
1991 }
1992 
device_create_sys_dev_entry(struct device * dev)1993 static int device_create_sys_dev_entry(struct device *dev)
1994 {
1995 	struct kobject *kobj = device_to_dev_kobj(dev);
1996 	int error = 0;
1997 	char devt_str[15];
1998 
1999 	if (kobj) {
2000 		format_dev_t(devt_str, dev->devt);
2001 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2002 	}
2003 
2004 	return error;
2005 }
2006 
device_remove_sys_dev_entry(struct device * dev)2007 static void device_remove_sys_dev_entry(struct device *dev)
2008 {
2009 	struct kobject *kobj = device_to_dev_kobj(dev);
2010 	char devt_str[15];
2011 
2012 	if (kobj) {
2013 		format_dev_t(devt_str, dev->devt);
2014 		sysfs_remove_link(kobj, devt_str);
2015 	}
2016 }
2017 
device_private_init(struct device * dev)2018 static int device_private_init(struct device *dev)
2019 {
2020 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2021 	if (!dev->p)
2022 		return -ENOMEM;
2023 	dev->p->device = dev;
2024 	klist_init(&dev->p->klist_children, klist_children_get,
2025 		   klist_children_put);
2026 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2027 	return 0;
2028 }
2029 
2030 /**
2031  * device_add - add device to device hierarchy.
2032  * @dev: device.
2033  *
2034  * This is part 2 of device_register(), though may be called
2035  * separately _iff_ device_initialize() has been called separately.
2036  *
2037  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2038  * to the global and sibling lists for the device, then
2039  * adds it to the other relevant subsystems of the driver model.
2040  *
2041  * Do not call this routine or device_register() more than once for
2042  * any device structure.  The driver model core is not designed to work
2043  * with devices that get unregistered and then spring back to life.
2044  * (Among other things, it's very hard to guarantee that all references
2045  * to the previous incarnation of @dev have been dropped.)  Allocate
2046  * and register a fresh new struct device instead.
2047  *
2048  * NOTE: _Never_ directly free @dev after calling this function, even
2049  * if it returned an error! Always use put_device() to give up your
2050  * reference instead.
2051  */
device_add(struct device * dev)2052 int device_add(struct device *dev)
2053 {
2054 	struct device *parent;
2055 	struct kobject *kobj;
2056 	struct class_interface *class_intf;
2057 	int error = -EINVAL;
2058 	struct kobject *glue_dir = NULL;
2059 
2060 	dev = get_device(dev);
2061 	if (!dev)
2062 		goto done;
2063 
2064 	if (!dev->p) {
2065 		error = device_private_init(dev);
2066 		if (error)
2067 			goto done;
2068 	}
2069 
2070 	/*
2071 	 * for statically allocated devices, which should all be converted
2072 	 * some day, we need to initialize the name. We prevent reading back
2073 	 * the name, and force the use of dev_name()
2074 	 */
2075 	if (dev->init_name) {
2076 		dev_set_name(dev, "%s", dev->init_name);
2077 		dev->init_name = NULL;
2078 	}
2079 
2080 	/* subsystems can specify simple device enumeration */
2081 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2082 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2083 
2084 	if (!dev_name(dev)) {
2085 		error = -EINVAL;
2086 		goto name_error;
2087 	}
2088 
2089 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2090 
2091 	parent = get_device(dev->parent);
2092 	kobj = get_device_parent(dev, parent);
2093 	if (IS_ERR(kobj)) {
2094 		error = PTR_ERR(kobj);
2095 		goto parent_error;
2096 	}
2097 	if (kobj)
2098 		dev->kobj.parent = kobj;
2099 
2100 	/* use parent numa_node */
2101 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2102 		set_dev_node(dev, dev_to_node(parent));
2103 
2104 	/* first, register with generic layer. */
2105 	/* we require the name to be set before, and pass NULL */
2106 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2107 	if (error) {
2108 		glue_dir = get_glue_dir(dev);
2109 		goto Error;
2110 	}
2111 
2112 	/* notify platform of device entry */
2113 	if (platform_notify)
2114 		platform_notify(dev);
2115 
2116 	error = device_create_file(dev, &dev_attr_uevent);
2117 	if (error)
2118 		goto attrError;
2119 
2120 	error = device_add_class_symlinks(dev);
2121 	if (error)
2122 		goto SymlinkError;
2123 	error = device_add_attrs(dev);
2124 	if (error)
2125 		goto AttrsError;
2126 	error = bus_add_device(dev);
2127 	if (error)
2128 		goto BusError;
2129 	error = dpm_sysfs_add(dev);
2130 	if (error)
2131 		goto DPMError;
2132 	device_pm_add(dev);
2133 
2134 	if (MAJOR(dev->devt)) {
2135 		error = device_create_file(dev, &dev_attr_dev);
2136 		if (error)
2137 			goto DevAttrError;
2138 
2139 		error = device_create_sys_dev_entry(dev);
2140 		if (error)
2141 			goto SysEntryError;
2142 
2143 		devtmpfs_create_node(dev);
2144 	}
2145 
2146 	/* Notify clients of device addition.  This call must come
2147 	 * after dpm_sysfs_add() and before kobject_uevent().
2148 	 */
2149 	if (dev->bus)
2150 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2151 					     BUS_NOTIFY_ADD_DEVICE, dev);
2152 
2153 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2154 	bus_probe_device(dev);
2155 	if (parent)
2156 		klist_add_tail(&dev->p->knode_parent,
2157 			       &parent->p->klist_children);
2158 
2159 	if (dev->class) {
2160 		mutex_lock(&dev->class->p->mutex);
2161 		/* tie the class to the device */
2162 		klist_add_tail(&dev->knode_class,
2163 			       &dev->class->p->klist_devices);
2164 
2165 		/* notify any interfaces that the device is here */
2166 		list_for_each_entry(class_intf,
2167 				    &dev->class->p->interfaces, node)
2168 			if (class_intf->add_dev)
2169 				class_intf->add_dev(dev, class_intf);
2170 		mutex_unlock(&dev->class->p->mutex);
2171 	}
2172 done:
2173 	put_device(dev);
2174 	return error;
2175  SysEntryError:
2176 	if (MAJOR(dev->devt))
2177 		device_remove_file(dev, &dev_attr_dev);
2178  DevAttrError:
2179 	device_pm_remove(dev);
2180 	dpm_sysfs_remove(dev);
2181  DPMError:
2182 	bus_remove_device(dev);
2183  BusError:
2184 	device_remove_attrs(dev);
2185  AttrsError:
2186 	device_remove_class_symlinks(dev);
2187  SymlinkError:
2188 	device_remove_file(dev, &dev_attr_uevent);
2189  attrError:
2190 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2191 	glue_dir = get_glue_dir(dev);
2192 	kobject_del(&dev->kobj);
2193  Error:
2194 	cleanup_glue_dir(dev, glue_dir);
2195 parent_error:
2196 	put_device(parent);
2197 name_error:
2198 	kfree(dev->p);
2199 	dev->p = NULL;
2200 	goto done;
2201 }
2202 EXPORT_SYMBOL_GPL(device_add);
2203 
2204 /**
2205  * device_register - register a device with the system.
2206  * @dev: pointer to the device structure
2207  *
2208  * This happens in two clean steps - initialize the device
2209  * and add it to the system. The two steps can be called
2210  * separately, but this is the easiest and most common.
2211  * I.e. you should only call the two helpers separately if
2212  * have a clearly defined need to use and refcount the device
2213  * before it is added to the hierarchy.
2214  *
2215  * For more information, see the kerneldoc for device_initialize()
2216  * and device_add().
2217  *
2218  * NOTE: _Never_ directly free @dev after calling this function, even
2219  * if it returned an error! Always use put_device() to give up the
2220  * reference initialized in this function instead.
2221  */
device_register(struct device * dev)2222 int device_register(struct device *dev)
2223 {
2224 	device_initialize(dev);
2225 	return device_add(dev);
2226 }
2227 EXPORT_SYMBOL_GPL(device_register);
2228 
2229 /**
2230  * get_device - increment reference count for device.
2231  * @dev: device.
2232  *
2233  * This simply forwards the call to kobject_get(), though
2234  * we do take care to provide for the case that we get a NULL
2235  * pointer passed in.
2236  */
get_device(struct device * dev)2237 struct device *get_device(struct device *dev)
2238 {
2239 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2240 }
2241 EXPORT_SYMBOL_GPL(get_device);
2242 
2243 /**
2244  * put_device - decrement reference count.
2245  * @dev: device in question.
2246  */
put_device(struct device * dev)2247 void put_device(struct device *dev)
2248 {
2249 	/* might_sleep(); */
2250 	if (dev)
2251 		kobject_put(&dev->kobj);
2252 }
2253 EXPORT_SYMBOL_GPL(put_device);
2254 
kill_device(struct device * dev)2255 bool kill_device(struct device *dev)
2256 {
2257 	/*
2258 	 * Require the device lock and set the "dead" flag to guarantee that
2259 	 * the update behavior is consistent with the other bitfields near
2260 	 * it and that we cannot have an asynchronous probe routine trying
2261 	 * to run while we are tearing out the bus/class/sysfs from
2262 	 * underneath the device.
2263 	 */
2264 	lockdep_assert_held(&dev->mutex);
2265 
2266 	if (dev->p->dead)
2267 		return false;
2268 	dev->p->dead = true;
2269 	return true;
2270 }
2271 EXPORT_SYMBOL_GPL(kill_device);
2272 
2273 /**
2274  * device_del - delete device from system.
2275  * @dev: device.
2276  *
2277  * This is the first part of the device unregistration
2278  * sequence. This removes the device from the lists we control
2279  * from here, has it removed from the other driver model
2280  * subsystems it was added to in device_add(), and removes it
2281  * from the kobject hierarchy.
2282  *
2283  * NOTE: this should be called manually _iff_ device_add() was
2284  * also called manually.
2285  */
device_del(struct device * dev)2286 void device_del(struct device *dev)
2287 {
2288 	struct device *parent = dev->parent;
2289 	struct kobject *glue_dir = NULL;
2290 	struct class_interface *class_intf;
2291 
2292 	device_lock(dev);
2293 	kill_device(dev);
2294 	device_unlock(dev);
2295 
2296 	/* Notify clients of device removal.  This call must come
2297 	 * before dpm_sysfs_remove().
2298 	 */
2299 	if (dev->bus)
2300 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2301 					     BUS_NOTIFY_DEL_DEVICE, dev);
2302 
2303 	dpm_sysfs_remove(dev);
2304 	if (parent)
2305 		klist_del(&dev->p->knode_parent);
2306 	if (MAJOR(dev->devt)) {
2307 		devtmpfs_delete_node(dev);
2308 		device_remove_sys_dev_entry(dev);
2309 		device_remove_file(dev, &dev_attr_dev);
2310 	}
2311 	if (dev->class) {
2312 		device_remove_class_symlinks(dev);
2313 
2314 		mutex_lock(&dev->class->p->mutex);
2315 		/* notify any interfaces that the device is now gone */
2316 		list_for_each_entry(class_intf,
2317 				    &dev->class->p->interfaces, node)
2318 			if (class_intf->remove_dev)
2319 				class_intf->remove_dev(dev, class_intf);
2320 		/* remove the device from the class list */
2321 		klist_del(&dev->knode_class);
2322 		mutex_unlock(&dev->class->p->mutex);
2323 	}
2324 	device_remove_file(dev, &dev_attr_uevent);
2325 	device_remove_attrs(dev);
2326 	bus_remove_device(dev);
2327 	device_pm_remove(dev);
2328 	driver_deferred_probe_del(dev);
2329 	device_remove_properties(dev);
2330 	device_links_purge(dev);
2331 
2332 	/* Notify the platform of the removal, in case they
2333 	 * need to do anything...
2334 	 */
2335 	if (platform_notify_remove)
2336 		platform_notify_remove(dev);
2337 	if (dev->bus)
2338 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2339 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2340 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2341 	glue_dir = get_glue_dir(dev);
2342 	kobject_del(&dev->kobj);
2343 	cleanup_glue_dir(dev, glue_dir);
2344 	put_device(parent);
2345 }
2346 EXPORT_SYMBOL_GPL(device_del);
2347 
2348 /**
2349  * device_unregister - unregister device from system.
2350  * @dev: device going away.
2351  *
2352  * We do this in two parts, like we do device_register(). First,
2353  * we remove it from all the subsystems with device_del(), then
2354  * we decrement the reference count via put_device(). If that
2355  * is the final reference count, the device will be cleaned up
2356  * via device_release() above. Otherwise, the structure will
2357  * stick around until the final reference to the device is dropped.
2358  */
device_unregister(struct device * dev)2359 void device_unregister(struct device *dev)
2360 {
2361 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2362 	device_del(dev);
2363 	put_device(dev);
2364 }
2365 EXPORT_SYMBOL_GPL(device_unregister);
2366 
prev_device(struct klist_iter * i)2367 static struct device *prev_device(struct klist_iter *i)
2368 {
2369 	struct klist_node *n = klist_prev(i);
2370 	struct device *dev = NULL;
2371 	struct device_private *p;
2372 
2373 	if (n) {
2374 		p = to_device_private_parent(n);
2375 		dev = p->device;
2376 	}
2377 	return dev;
2378 }
2379 
next_device(struct klist_iter * i)2380 static struct device *next_device(struct klist_iter *i)
2381 {
2382 	struct klist_node *n = klist_next(i);
2383 	struct device *dev = NULL;
2384 	struct device_private *p;
2385 
2386 	if (n) {
2387 		p = to_device_private_parent(n);
2388 		dev = p->device;
2389 	}
2390 	return dev;
2391 }
2392 
2393 /**
2394  * device_get_devnode - path of device node file
2395  * @dev: device
2396  * @mode: returned file access mode
2397  * @uid: returned file owner
2398  * @gid: returned file group
2399  * @tmp: possibly allocated string
2400  *
2401  * Return the relative path of a possible device node.
2402  * Non-default names may need to allocate a memory to compose
2403  * a name. This memory is returned in tmp and needs to be
2404  * freed by the caller.
2405  */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)2406 const char *device_get_devnode(struct device *dev,
2407 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2408 			       const char **tmp)
2409 {
2410 	char *s;
2411 
2412 	*tmp = NULL;
2413 
2414 	/* the device type may provide a specific name */
2415 	if (dev->type && dev->type->devnode)
2416 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2417 	if (*tmp)
2418 		return *tmp;
2419 
2420 	/* the class may provide a specific name */
2421 	if (dev->class && dev->class->devnode)
2422 		*tmp = dev->class->devnode(dev, mode);
2423 	if (*tmp)
2424 		return *tmp;
2425 
2426 	/* return name without allocation, tmp == NULL */
2427 	if (strchr(dev_name(dev), '!') == NULL)
2428 		return dev_name(dev);
2429 
2430 	/* replace '!' in the name with '/' */
2431 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2432 	if (!s)
2433 		return NULL;
2434 	strreplace(s, '!', '/');
2435 	return *tmp = s;
2436 }
2437 
2438 /**
2439  * device_for_each_child - device child iterator.
2440  * @parent: parent struct device.
2441  * @fn: function to be called for each device.
2442  * @data: data for the callback.
2443  *
2444  * Iterate over @parent's child devices, and call @fn for each,
2445  * passing it @data.
2446  *
2447  * We check the return of @fn each time. If it returns anything
2448  * other than 0, we break out and return that value.
2449  */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))2450 int device_for_each_child(struct device *parent, void *data,
2451 			  int (*fn)(struct device *dev, void *data))
2452 {
2453 	struct klist_iter i;
2454 	struct device *child;
2455 	int error = 0;
2456 
2457 	if (!parent->p)
2458 		return 0;
2459 
2460 	klist_iter_init(&parent->p->klist_children, &i);
2461 	while (!error && (child = next_device(&i)))
2462 		error = fn(child, data);
2463 	klist_iter_exit(&i);
2464 	return error;
2465 }
2466 EXPORT_SYMBOL_GPL(device_for_each_child);
2467 
2468 /**
2469  * device_for_each_child_reverse - device child iterator in reversed order.
2470  * @parent: parent struct device.
2471  * @fn: function to be called for each device.
2472  * @data: data for the callback.
2473  *
2474  * Iterate over @parent's child devices, and call @fn for each,
2475  * passing it @data.
2476  *
2477  * We check the return of @fn each time. If it returns anything
2478  * other than 0, we break out and return that value.
2479  */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))2480 int device_for_each_child_reverse(struct device *parent, void *data,
2481 				  int (*fn)(struct device *dev, void *data))
2482 {
2483 	struct klist_iter i;
2484 	struct device *child;
2485 	int error = 0;
2486 
2487 	if (!parent->p)
2488 		return 0;
2489 
2490 	klist_iter_init(&parent->p->klist_children, &i);
2491 	while ((child = prev_device(&i)) && !error)
2492 		error = fn(child, data);
2493 	klist_iter_exit(&i);
2494 	return error;
2495 }
2496 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2497 
2498 /**
2499  * device_find_child - device iterator for locating a particular device.
2500  * @parent: parent struct device
2501  * @match: Callback function to check device
2502  * @data: Data to pass to match function
2503  *
2504  * This is similar to the device_for_each_child() function above, but it
2505  * returns a reference to a device that is 'found' for later use, as
2506  * determined by the @match callback.
2507  *
2508  * The callback should return 0 if the device doesn't match and non-zero
2509  * if it does.  If the callback returns non-zero and a reference to the
2510  * current device can be obtained, this function will return to the caller
2511  * and not iterate over any more devices.
2512  *
2513  * NOTE: you will need to drop the reference with put_device() after use.
2514  */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))2515 struct device *device_find_child(struct device *parent, void *data,
2516 				 int (*match)(struct device *dev, void *data))
2517 {
2518 	struct klist_iter i;
2519 	struct device *child;
2520 
2521 	if (!parent)
2522 		return NULL;
2523 
2524 	klist_iter_init(&parent->p->klist_children, &i);
2525 	while ((child = next_device(&i)))
2526 		if (match(child, data) && get_device(child))
2527 			break;
2528 	klist_iter_exit(&i);
2529 	return child;
2530 }
2531 EXPORT_SYMBOL_GPL(device_find_child);
2532 
devices_init(void)2533 int __init devices_init(void)
2534 {
2535 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2536 	if (!devices_kset)
2537 		return -ENOMEM;
2538 	dev_kobj = kobject_create_and_add("dev", NULL);
2539 	if (!dev_kobj)
2540 		goto dev_kobj_err;
2541 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2542 	if (!sysfs_dev_block_kobj)
2543 		goto block_kobj_err;
2544 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2545 	if (!sysfs_dev_char_kobj)
2546 		goto char_kobj_err;
2547 
2548 	return 0;
2549 
2550  char_kobj_err:
2551 	kobject_put(sysfs_dev_block_kobj);
2552  block_kobj_err:
2553 	kobject_put(dev_kobj);
2554  dev_kobj_err:
2555 	kset_unregister(devices_kset);
2556 	return -ENOMEM;
2557 }
2558 
device_check_offline(struct device * dev,void * not_used)2559 static int device_check_offline(struct device *dev, void *not_used)
2560 {
2561 	int ret;
2562 
2563 	ret = device_for_each_child(dev, NULL, device_check_offline);
2564 	if (ret)
2565 		return ret;
2566 
2567 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2568 }
2569 
2570 /**
2571  * device_offline - Prepare the device for hot-removal.
2572  * @dev: Device to be put offline.
2573  *
2574  * Execute the device bus type's .offline() callback, if present, to prepare
2575  * the device for a subsequent hot-removal.  If that succeeds, the device must
2576  * not be used until either it is removed or its bus type's .online() callback
2577  * is executed.
2578  *
2579  * Call under device_hotplug_lock.
2580  */
device_offline(struct device * dev)2581 int device_offline(struct device *dev)
2582 {
2583 	int ret;
2584 
2585 	if (dev->offline_disabled)
2586 		return -EPERM;
2587 
2588 	ret = device_for_each_child(dev, NULL, device_check_offline);
2589 	if (ret)
2590 		return ret;
2591 
2592 	device_lock(dev);
2593 	if (device_supports_offline(dev)) {
2594 		if (dev->offline) {
2595 			ret = 1;
2596 		} else {
2597 			ret = dev->bus->offline(dev);
2598 			if (!ret) {
2599 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2600 				dev->offline = true;
2601 			}
2602 		}
2603 	}
2604 	device_unlock(dev);
2605 
2606 	return ret;
2607 }
2608 
2609 /**
2610  * device_online - Put the device back online after successful device_offline().
2611  * @dev: Device to be put back online.
2612  *
2613  * If device_offline() has been successfully executed for @dev, but the device
2614  * has not been removed subsequently, execute its bus type's .online() callback
2615  * to indicate that the device can be used again.
2616  *
2617  * Call under device_hotplug_lock.
2618  */
device_online(struct device * dev)2619 int device_online(struct device *dev)
2620 {
2621 	int ret = 0;
2622 
2623 	device_lock(dev);
2624 	if (device_supports_offline(dev)) {
2625 		if (dev->offline) {
2626 			ret = dev->bus->online(dev);
2627 			if (!ret) {
2628 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2629 				dev->offline = false;
2630 			}
2631 		} else {
2632 			ret = 1;
2633 		}
2634 	}
2635 	device_unlock(dev);
2636 
2637 	return ret;
2638 }
2639 
2640 struct root_device {
2641 	struct device dev;
2642 	struct module *owner;
2643 };
2644 
to_root_device(struct device * d)2645 static inline struct root_device *to_root_device(struct device *d)
2646 {
2647 	return container_of(d, struct root_device, dev);
2648 }
2649 
root_device_release(struct device * dev)2650 static void root_device_release(struct device *dev)
2651 {
2652 	kfree(to_root_device(dev));
2653 }
2654 
2655 /**
2656  * __root_device_register - allocate and register a root device
2657  * @name: root device name
2658  * @owner: owner module of the root device, usually THIS_MODULE
2659  *
2660  * This function allocates a root device and registers it
2661  * using device_register(). In order to free the returned
2662  * device, use root_device_unregister().
2663  *
2664  * Root devices are dummy devices which allow other devices
2665  * to be grouped under /sys/devices. Use this function to
2666  * allocate a root device and then use it as the parent of
2667  * any device which should appear under /sys/devices/{name}
2668  *
2669  * The /sys/devices/{name} directory will also contain a
2670  * 'module' symlink which points to the @owner directory
2671  * in sysfs.
2672  *
2673  * Returns &struct device pointer on success, or ERR_PTR() on error.
2674  *
2675  * Note: You probably want to use root_device_register().
2676  */
__root_device_register(const char * name,struct module * owner)2677 struct device *__root_device_register(const char *name, struct module *owner)
2678 {
2679 	struct root_device *root;
2680 	int err = -ENOMEM;
2681 
2682 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2683 	if (!root)
2684 		return ERR_PTR(err);
2685 
2686 	err = dev_set_name(&root->dev, "%s", name);
2687 	if (err) {
2688 		kfree(root);
2689 		return ERR_PTR(err);
2690 	}
2691 
2692 	root->dev.release = root_device_release;
2693 
2694 	err = device_register(&root->dev);
2695 	if (err) {
2696 		put_device(&root->dev);
2697 		return ERR_PTR(err);
2698 	}
2699 
2700 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2701 	if (owner) {
2702 		struct module_kobject *mk = &owner->mkobj;
2703 
2704 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2705 		if (err) {
2706 			device_unregister(&root->dev);
2707 			return ERR_PTR(err);
2708 		}
2709 		root->owner = owner;
2710 	}
2711 #endif
2712 
2713 	return &root->dev;
2714 }
2715 EXPORT_SYMBOL_GPL(__root_device_register);
2716 
2717 /**
2718  * root_device_unregister - unregister and free a root device
2719  * @dev: device going away
2720  *
2721  * This function unregisters and cleans up a device that was created by
2722  * root_device_register().
2723  */
root_device_unregister(struct device * dev)2724 void root_device_unregister(struct device *dev)
2725 {
2726 	struct root_device *root = to_root_device(dev);
2727 
2728 	if (root->owner)
2729 		sysfs_remove_link(&root->dev.kobj, "module");
2730 
2731 	device_unregister(dev);
2732 }
2733 EXPORT_SYMBOL_GPL(root_device_unregister);
2734 
2735 
device_create_release(struct device * dev)2736 static void device_create_release(struct device *dev)
2737 {
2738 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2739 	kfree(dev);
2740 }
2741 
2742 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)2743 device_create_groups_vargs(struct class *class, struct device *parent,
2744 			   dev_t devt, void *drvdata,
2745 			   const struct attribute_group **groups,
2746 			   const char *fmt, va_list args)
2747 {
2748 	struct device *dev = NULL;
2749 	int retval = -ENODEV;
2750 
2751 	if (class == NULL || IS_ERR(class))
2752 		goto error;
2753 
2754 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2755 	if (!dev) {
2756 		retval = -ENOMEM;
2757 		goto error;
2758 	}
2759 
2760 	device_initialize(dev);
2761 	dev->devt = devt;
2762 	dev->class = class;
2763 	dev->parent = parent;
2764 	dev->groups = groups;
2765 	dev->release = device_create_release;
2766 	dev_set_drvdata(dev, drvdata);
2767 
2768 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2769 	if (retval)
2770 		goto error;
2771 
2772 	retval = device_add(dev);
2773 	if (retval)
2774 		goto error;
2775 
2776 	return dev;
2777 
2778 error:
2779 	put_device(dev);
2780 	return ERR_PTR(retval);
2781 }
2782 
2783 /**
2784  * device_create_vargs - creates a device and registers it with sysfs
2785  * @class: pointer to the struct class that this device should be registered to
2786  * @parent: pointer to the parent struct device of this new device, if any
2787  * @devt: the dev_t for the char device to be added
2788  * @drvdata: the data to be added to the device for callbacks
2789  * @fmt: string for the device's name
2790  * @args: va_list for the device's name
2791  *
2792  * This function can be used by char device classes.  A struct device
2793  * will be created in sysfs, registered to the specified class.
2794  *
2795  * A "dev" file will be created, showing the dev_t for the device, if
2796  * the dev_t is not 0,0.
2797  * If a pointer to a parent struct device is passed in, the newly created
2798  * struct device will be a child of that device in sysfs.
2799  * The pointer to the struct device will be returned from the call.
2800  * Any further sysfs files that might be required can be created using this
2801  * pointer.
2802  *
2803  * Returns &struct device pointer on success, or ERR_PTR() on error.
2804  *
2805  * Note: the struct class passed to this function must have previously
2806  * been created with a call to class_create().
2807  */
device_create_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,va_list args)2808 struct device *device_create_vargs(struct class *class, struct device *parent,
2809 				   dev_t devt, void *drvdata, const char *fmt,
2810 				   va_list args)
2811 {
2812 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2813 					  fmt, args);
2814 }
2815 EXPORT_SYMBOL_GPL(device_create_vargs);
2816 
2817 /**
2818  * device_create - creates a device and registers it with sysfs
2819  * @class: pointer to the struct class that this device should be registered to
2820  * @parent: pointer to the parent struct device of this new device, if any
2821  * @devt: the dev_t for the char device to be added
2822  * @drvdata: the data to be added to the device for callbacks
2823  * @fmt: string for the device's name
2824  *
2825  * This function can be used by char device classes.  A struct device
2826  * will be created in sysfs, registered to the specified class.
2827  *
2828  * A "dev" file will be created, showing the dev_t for the device, if
2829  * the dev_t is not 0,0.
2830  * If a pointer to a parent struct device is passed in, the newly created
2831  * struct device will be a child of that device in sysfs.
2832  * The pointer to the struct device will be returned from the call.
2833  * Any further sysfs files that might be required can be created using this
2834  * pointer.
2835  *
2836  * Returns &struct device pointer on success, or ERR_PTR() on error.
2837  *
2838  * Note: the struct class passed to this function must have previously
2839  * been created with a call to class_create().
2840  */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)2841 struct device *device_create(struct class *class, struct device *parent,
2842 			     dev_t devt, void *drvdata, const char *fmt, ...)
2843 {
2844 	va_list vargs;
2845 	struct device *dev;
2846 
2847 	va_start(vargs, fmt);
2848 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2849 	va_end(vargs);
2850 	return dev;
2851 }
2852 EXPORT_SYMBOL_GPL(device_create);
2853 
2854 /**
2855  * device_create_with_groups - creates a device and registers it with sysfs
2856  * @class: pointer to the struct class that this device should be registered to
2857  * @parent: pointer to the parent struct device of this new device, if any
2858  * @devt: the dev_t for the char device to be added
2859  * @drvdata: the data to be added to the device for callbacks
2860  * @groups: NULL-terminated list of attribute groups to be created
2861  * @fmt: string for the device's name
2862  *
2863  * This function can be used by char device classes.  A struct device
2864  * will be created in sysfs, registered to the specified class.
2865  * Additional attributes specified in the groups parameter will also
2866  * be created automatically.
2867  *
2868  * A "dev" file will be created, showing the dev_t for the device, if
2869  * the dev_t is not 0,0.
2870  * If a pointer to a parent struct device is passed in, the newly created
2871  * struct device will be a child of that device in sysfs.
2872  * The pointer to the struct device will be returned from the call.
2873  * Any further sysfs files that might be required can be created using this
2874  * pointer.
2875  *
2876  * Returns &struct device pointer on success, or ERR_PTR() on error.
2877  *
2878  * Note: the struct class passed to this function must have previously
2879  * been created with a call to class_create().
2880  */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)2881 struct device *device_create_with_groups(struct class *class,
2882 					 struct device *parent, dev_t devt,
2883 					 void *drvdata,
2884 					 const struct attribute_group **groups,
2885 					 const char *fmt, ...)
2886 {
2887 	va_list vargs;
2888 	struct device *dev;
2889 
2890 	va_start(vargs, fmt);
2891 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2892 					 fmt, vargs);
2893 	va_end(vargs);
2894 	return dev;
2895 }
2896 EXPORT_SYMBOL_GPL(device_create_with_groups);
2897 
__match_devt(struct device * dev,const void * data)2898 static int __match_devt(struct device *dev, const void *data)
2899 {
2900 	const dev_t *devt = data;
2901 
2902 	return dev->devt == *devt;
2903 }
2904 
2905 /**
2906  * device_destroy - removes a device that was created with device_create()
2907  * @class: pointer to the struct class that this device was registered with
2908  * @devt: the dev_t of the device that was previously registered
2909  *
2910  * This call unregisters and cleans up a device that was created with a
2911  * call to device_create().
2912  */
device_destroy(struct class * class,dev_t devt)2913 void device_destroy(struct class *class, dev_t devt)
2914 {
2915 	struct device *dev;
2916 
2917 	dev = class_find_device(class, NULL, &devt, __match_devt);
2918 	if (dev) {
2919 		put_device(dev);
2920 		device_unregister(dev);
2921 	}
2922 }
2923 EXPORT_SYMBOL_GPL(device_destroy);
2924 
2925 /**
2926  * device_rename - renames a device
2927  * @dev: the pointer to the struct device to be renamed
2928  * @new_name: the new name of the device
2929  *
2930  * It is the responsibility of the caller to provide mutual
2931  * exclusion between two different calls of device_rename
2932  * on the same device to ensure that new_name is valid and
2933  * won't conflict with other devices.
2934  *
2935  * Note: Don't call this function.  Currently, the networking layer calls this
2936  * function, but that will change.  The following text from Kay Sievers offers
2937  * some insight:
2938  *
2939  * Renaming devices is racy at many levels, symlinks and other stuff are not
2940  * replaced atomically, and you get a "move" uevent, but it's not easy to
2941  * connect the event to the old and new device. Device nodes are not renamed at
2942  * all, there isn't even support for that in the kernel now.
2943  *
2944  * In the meantime, during renaming, your target name might be taken by another
2945  * driver, creating conflicts. Or the old name is taken directly after you
2946  * renamed it -- then you get events for the same DEVPATH, before you even see
2947  * the "move" event. It's just a mess, and nothing new should ever rely on
2948  * kernel device renaming. Besides that, it's not even implemented now for
2949  * other things than (driver-core wise very simple) network devices.
2950  *
2951  * We are currently about to change network renaming in udev to completely
2952  * disallow renaming of devices in the same namespace as the kernel uses,
2953  * because we can't solve the problems properly, that arise with swapping names
2954  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2955  * be allowed to some other name than eth[0-9]*, for the aforementioned
2956  * reasons.
2957  *
2958  * Make up a "real" name in the driver before you register anything, or add
2959  * some other attributes for userspace to find the device, or use udev to add
2960  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2961  * don't even want to get into that and try to implement the missing pieces in
2962  * the core. We really have other pieces to fix in the driver core mess. :)
2963  */
device_rename(struct device * dev,const char * new_name)2964 int device_rename(struct device *dev, const char *new_name)
2965 {
2966 	struct kobject *kobj = &dev->kobj;
2967 	char *old_device_name = NULL;
2968 	int error;
2969 
2970 	dev = get_device(dev);
2971 	if (!dev)
2972 		return -EINVAL;
2973 
2974 	dev_dbg(dev, "renaming to %s\n", new_name);
2975 
2976 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2977 	if (!old_device_name) {
2978 		error = -ENOMEM;
2979 		goto out;
2980 	}
2981 
2982 	if (dev->class) {
2983 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2984 					     kobj, old_device_name,
2985 					     new_name, kobject_namespace(kobj));
2986 		if (error)
2987 			goto out;
2988 	}
2989 
2990 	error = kobject_rename(kobj, new_name);
2991 	if (error)
2992 		goto out;
2993 
2994 out:
2995 	put_device(dev);
2996 
2997 	kfree(old_device_name);
2998 
2999 	return error;
3000 }
3001 EXPORT_SYMBOL_GPL(device_rename);
3002 
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)3003 static int device_move_class_links(struct device *dev,
3004 				   struct device *old_parent,
3005 				   struct device *new_parent)
3006 {
3007 	int error = 0;
3008 
3009 	if (old_parent)
3010 		sysfs_remove_link(&dev->kobj, "device");
3011 	if (new_parent)
3012 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3013 					  "device");
3014 	return error;
3015 }
3016 
3017 /**
3018  * device_move - moves a device to a new parent
3019  * @dev: the pointer to the struct device to be moved
3020  * @new_parent: the new parent of the device (can be NULL)
3021  * @dpm_order: how to reorder the dpm_list
3022  */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)3023 int device_move(struct device *dev, struct device *new_parent,
3024 		enum dpm_order dpm_order)
3025 {
3026 	int error;
3027 	struct device *old_parent;
3028 	struct kobject *new_parent_kobj;
3029 
3030 	dev = get_device(dev);
3031 	if (!dev)
3032 		return -EINVAL;
3033 
3034 	device_pm_lock();
3035 	new_parent = get_device(new_parent);
3036 	new_parent_kobj = get_device_parent(dev, new_parent);
3037 	if (IS_ERR(new_parent_kobj)) {
3038 		error = PTR_ERR(new_parent_kobj);
3039 		put_device(new_parent);
3040 		goto out;
3041 	}
3042 
3043 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3044 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3045 	error = kobject_move(&dev->kobj, new_parent_kobj);
3046 	if (error) {
3047 		cleanup_glue_dir(dev, new_parent_kobj);
3048 		put_device(new_parent);
3049 		goto out;
3050 	}
3051 	old_parent = dev->parent;
3052 	dev->parent = new_parent;
3053 	if (old_parent)
3054 		klist_remove(&dev->p->knode_parent);
3055 	if (new_parent) {
3056 		klist_add_tail(&dev->p->knode_parent,
3057 			       &new_parent->p->klist_children);
3058 		set_dev_node(dev, dev_to_node(new_parent));
3059 	}
3060 
3061 	if (dev->class) {
3062 		error = device_move_class_links(dev, old_parent, new_parent);
3063 		if (error) {
3064 			/* We ignore errors on cleanup since we're hosed anyway... */
3065 			device_move_class_links(dev, new_parent, old_parent);
3066 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3067 				if (new_parent)
3068 					klist_remove(&dev->p->knode_parent);
3069 				dev->parent = old_parent;
3070 				if (old_parent) {
3071 					klist_add_tail(&dev->p->knode_parent,
3072 						       &old_parent->p->klist_children);
3073 					set_dev_node(dev, dev_to_node(old_parent));
3074 				}
3075 			}
3076 			cleanup_glue_dir(dev, new_parent_kobj);
3077 			put_device(new_parent);
3078 			goto out;
3079 		}
3080 	}
3081 	switch (dpm_order) {
3082 	case DPM_ORDER_NONE:
3083 		break;
3084 	case DPM_ORDER_DEV_AFTER_PARENT:
3085 		device_pm_move_after(dev, new_parent);
3086 		devices_kset_move_after(dev, new_parent);
3087 		break;
3088 	case DPM_ORDER_PARENT_BEFORE_DEV:
3089 		device_pm_move_before(new_parent, dev);
3090 		devices_kset_move_before(new_parent, dev);
3091 		break;
3092 	case DPM_ORDER_DEV_LAST:
3093 		device_pm_move_last(dev);
3094 		devices_kset_move_last(dev);
3095 		break;
3096 	}
3097 
3098 	put_device(old_parent);
3099 out:
3100 	device_pm_unlock();
3101 	put_device(dev);
3102 	return error;
3103 }
3104 EXPORT_SYMBOL_GPL(device_move);
3105 
3106 /**
3107  * device_shutdown - call ->shutdown() on each device to shutdown.
3108  */
device_shutdown(void)3109 void device_shutdown(void)
3110 {
3111 	struct device *dev, *parent;
3112 
3113 	wait_for_device_probe();
3114 	device_block_probing();
3115 
3116 	cpufreq_suspend();
3117 
3118 	spin_lock(&devices_kset->list_lock);
3119 	/*
3120 	 * Walk the devices list backward, shutting down each in turn.
3121 	 * Beware that device unplug events may also start pulling
3122 	 * devices offline, even as the system is shutting down.
3123 	 */
3124 	while (!list_empty(&devices_kset->list)) {
3125 		dev = list_entry(devices_kset->list.prev, struct device,
3126 				kobj.entry);
3127 
3128 		/*
3129 		 * hold reference count of device's parent to
3130 		 * prevent it from being freed because parent's
3131 		 * lock is to be held
3132 		 */
3133 		parent = get_device(dev->parent);
3134 		get_device(dev);
3135 		/*
3136 		 * Make sure the device is off the kset list, in the
3137 		 * event that dev->*->shutdown() doesn't remove it.
3138 		 */
3139 		list_del_init(&dev->kobj.entry);
3140 		spin_unlock(&devices_kset->list_lock);
3141 
3142 		/* hold lock to avoid race with probe/release */
3143 		if (parent)
3144 			device_lock(parent);
3145 		device_lock(dev);
3146 
3147 		/* Don't allow any more runtime suspends */
3148 		pm_runtime_get_noresume(dev);
3149 		pm_runtime_barrier(dev);
3150 
3151 		if (dev->class && dev->class->shutdown_pre) {
3152 			if (initcall_debug)
3153 				dev_info(dev, "shutdown_pre\n");
3154 			dev->class->shutdown_pre(dev);
3155 		}
3156 		if (dev->bus && dev->bus->shutdown) {
3157 			if (initcall_debug)
3158 				dev_info(dev, "shutdown\n");
3159 			dev->bus->shutdown(dev);
3160 		} else if (dev->driver && dev->driver->shutdown) {
3161 			if (initcall_debug)
3162 				dev_info(dev, "shutdown\n");
3163 			dev->driver->shutdown(dev);
3164 		}
3165 
3166 		device_unlock(dev);
3167 		if (parent)
3168 			device_unlock(parent);
3169 
3170 		put_device(dev);
3171 		put_device(parent);
3172 
3173 		spin_lock(&devices_kset->list_lock);
3174 	}
3175 	spin_unlock(&devices_kset->list_lock);
3176 }
3177 
3178 /*
3179  * Device logging functions
3180  */
3181 
3182 #ifdef CONFIG_PRINTK
3183 static int
create_syslog_header(const struct device * dev,char * hdr,size_t hdrlen)3184 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3185 {
3186 	const char *subsys;
3187 	size_t pos = 0;
3188 
3189 	if (dev->class)
3190 		subsys = dev->class->name;
3191 	else if (dev->bus)
3192 		subsys = dev->bus->name;
3193 	else
3194 		return 0;
3195 
3196 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3197 	if (pos >= hdrlen)
3198 		goto overflow;
3199 
3200 	/*
3201 	 * Add device identifier DEVICE=:
3202 	 *   b12:8         block dev_t
3203 	 *   c127:3        char dev_t
3204 	 *   n8            netdev ifindex
3205 	 *   +sound:card0  subsystem:devname
3206 	 */
3207 	if (MAJOR(dev->devt)) {
3208 		char c;
3209 
3210 		if (strcmp(subsys, "block") == 0)
3211 			c = 'b';
3212 		else
3213 			c = 'c';
3214 		pos++;
3215 		pos += snprintf(hdr + pos, hdrlen - pos,
3216 				"DEVICE=%c%u:%u",
3217 				c, MAJOR(dev->devt), MINOR(dev->devt));
3218 	} else if (strcmp(subsys, "net") == 0) {
3219 		struct net_device *net = to_net_dev(dev);
3220 
3221 		pos++;
3222 		pos += snprintf(hdr + pos, hdrlen - pos,
3223 				"DEVICE=n%u", net->ifindex);
3224 	} else {
3225 		pos++;
3226 		pos += snprintf(hdr + pos, hdrlen - pos,
3227 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3228 	}
3229 
3230 	if (pos >= hdrlen)
3231 		goto overflow;
3232 
3233 	return pos;
3234 
3235 overflow:
3236 	dev_WARN(dev, "device/subsystem name too long");
3237 	return 0;
3238 }
3239 
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)3240 int dev_vprintk_emit(int level, const struct device *dev,
3241 		     const char *fmt, va_list args)
3242 {
3243 	char hdr[128];
3244 	size_t hdrlen;
3245 
3246 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3247 
3248 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3249 }
3250 EXPORT_SYMBOL(dev_vprintk_emit);
3251 
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)3252 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3253 {
3254 	va_list args;
3255 	int r;
3256 
3257 	va_start(args, fmt);
3258 
3259 	r = dev_vprintk_emit(level, dev, fmt, args);
3260 
3261 	va_end(args);
3262 
3263 	return r;
3264 }
3265 EXPORT_SYMBOL(dev_printk_emit);
3266 
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)3267 static void __dev_printk(const char *level, const struct device *dev,
3268 			struct va_format *vaf)
3269 {
3270 	if (dev)
3271 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3272 				dev_driver_string(dev), dev_name(dev), vaf);
3273 	else
3274 		printk("%s(NULL device *): %pV", level, vaf);
3275 }
3276 
dev_printk(const char * level,const struct device * dev,const char * fmt,...)3277 void dev_printk(const char *level, const struct device *dev,
3278 		const char *fmt, ...)
3279 {
3280 	struct va_format vaf;
3281 	va_list args;
3282 
3283 	va_start(args, fmt);
3284 
3285 	vaf.fmt = fmt;
3286 	vaf.va = &args;
3287 
3288 	__dev_printk(level, dev, &vaf);
3289 
3290 	va_end(args);
3291 }
3292 EXPORT_SYMBOL(dev_printk);
3293 
3294 #define define_dev_printk_level(func, kern_level)		\
3295 void func(const struct device *dev, const char *fmt, ...)	\
3296 {								\
3297 	struct va_format vaf;					\
3298 	va_list args;						\
3299 								\
3300 	va_start(args, fmt);					\
3301 								\
3302 	vaf.fmt = fmt;						\
3303 	vaf.va = &args;						\
3304 								\
3305 	__dev_printk(kern_level, dev, &vaf);			\
3306 								\
3307 	va_end(args);						\
3308 }								\
3309 EXPORT_SYMBOL(func);
3310 
3311 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3312 define_dev_printk_level(_dev_alert, KERN_ALERT);
3313 define_dev_printk_level(_dev_crit, KERN_CRIT);
3314 define_dev_printk_level(_dev_err, KERN_ERR);
3315 define_dev_printk_level(_dev_warn, KERN_WARNING);
3316 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3317 define_dev_printk_level(_dev_info, KERN_INFO);
3318 
3319 #endif
3320 
fwnode_is_primary(struct fwnode_handle * fwnode)3321 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3322 {
3323 	return fwnode && !IS_ERR(fwnode->secondary);
3324 }
3325 
3326 /**
3327  * set_primary_fwnode - Change the primary firmware node of a given device.
3328  * @dev: Device to handle.
3329  * @fwnode: New primary firmware node of the device.
3330  *
3331  * Set the device's firmware node pointer to @fwnode, but if a secondary
3332  * firmware node of the device is present, preserve it.
3333  */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)3334 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3335 {
3336 	struct device *parent = dev->parent;
3337 	struct fwnode_handle *fn = dev->fwnode;
3338 
3339 	if (fwnode) {
3340 		if (fwnode_is_primary(fn))
3341 			fn = fn->secondary;
3342 
3343 		if (fn) {
3344 			WARN_ON(fwnode->secondary);
3345 			fwnode->secondary = fn;
3346 		}
3347 		dev->fwnode = fwnode;
3348 	} else {
3349 		if (fwnode_is_primary(fn)) {
3350 			dev->fwnode = fn->secondary;
3351 			if (!(parent && fn == parent->fwnode))
3352 				fn->secondary = ERR_PTR(-ENODEV);
3353 		} else {
3354 			dev->fwnode = NULL;
3355 		}
3356 	}
3357 }
3358 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3359 
3360 /**
3361  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3362  * @dev: Device to handle.
3363  * @fwnode: New secondary firmware node of the device.
3364  *
3365  * If a primary firmware node of the device is present, set its secondary
3366  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3367  * @fwnode.
3368  */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)3369 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3370 {
3371 	if (fwnode)
3372 		fwnode->secondary = ERR_PTR(-ENODEV);
3373 
3374 	if (fwnode_is_primary(dev->fwnode))
3375 		dev->fwnode->secondary = fwnode;
3376 	else
3377 		dev->fwnode = fwnode;
3378 }
3379 
3380 /**
3381  * device_set_of_node_from_dev - reuse device-tree node of another device
3382  * @dev: device whose device-tree node is being set
3383  * @dev2: device whose device-tree node is being reused
3384  *
3385  * Takes another reference to the new device-tree node after first dropping
3386  * any reference held to the old node.
3387  */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)3388 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3389 {
3390 	of_node_put(dev->of_node);
3391 	dev->of_node = of_node_get(dev2->of_node);
3392 	dev->of_node_reused = true;
3393 }
3394 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3395