• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 
32 #include "base.h"
33 #include "power/power.h"
34 
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
sysfs_deprecated_setup(char * arg)41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 	return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47 
48 /* Device links support. */
49 static LIST_HEAD(wait_for_suppliers);
50 static DEFINE_MUTEX(wfs_lock);
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static unsigned int defer_fw_devlink_count;
54 static LIST_HEAD(deferred_fw_devlink);
55 static DEFINE_MUTEX(defer_fw_devlink_lock);
56 static bool fw_devlink_is_permissive(void);
57 
58 #ifdef CONFIG_SRCU
59 static DEFINE_MUTEX(device_links_lock);
60 DEFINE_STATIC_SRCU(device_links_srcu);
61 
device_links_write_lock(void)62 static inline void device_links_write_lock(void)
63 {
64 	mutex_lock(&device_links_lock);
65 }
66 
device_links_write_unlock(void)67 static inline void device_links_write_unlock(void)
68 {
69 	mutex_unlock(&device_links_lock);
70 }
71 
device_links_read_lock(void)72 int device_links_read_lock(void) __acquires(&device_links_srcu)
73 {
74 	return srcu_read_lock(&device_links_srcu);
75 }
76 
device_links_read_unlock(int idx)77 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
78 {
79 	srcu_read_unlock(&device_links_srcu, idx);
80 }
81 
device_links_read_lock_held(void)82 int device_links_read_lock_held(void)
83 {
84 	return srcu_read_lock_held(&device_links_srcu);
85 }
86 
device_link_synchronize_removal(void)87 static void device_link_synchronize_removal(void)
88 {
89 	synchronize_srcu(&device_links_srcu);
90 }
91 #else /* !CONFIG_SRCU */
92 static DECLARE_RWSEM(device_links_lock);
93 
device_links_write_lock(void)94 static inline void device_links_write_lock(void)
95 {
96 	down_write(&device_links_lock);
97 }
98 
device_links_write_unlock(void)99 static inline void device_links_write_unlock(void)
100 {
101 	up_write(&device_links_lock);
102 }
103 
device_links_read_lock(void)104 int device_links_read_lock(void)
105 {
106 	down_read(&device_links_lock);
107 	return 0;
108 }
109 
device_links_read_unlock(int not_used)110 void device_links_read_unlock(int not_used)
111 {
112 	up_read(&device_links_lock);
113 }
114 
115 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)116 int device_links_read_lock_held(void)
117 {
118 	return lockdep_is_held(&device_links_lock);
119 }
120 #endif
121 
device_link_synchronize_removal(void)122 static inline void device_link_synchronize_removal(void)
123 {
124 }
125 #endif /* !CONFIG_SRCU */
126 
device_is_ancestor(struct device * dev,struct device * target)127 static bool device_is_ancestor(struct device *dev, struct device *target)
128 {
129 	while (target->parent) {
130 		target = target->parent;
131 		if (dev == target)
132 			return true;
133 	}
134 	return false;
135 }
136 
137 /**
138  * device_is_dependent - Check if one device depends on another one
139  * @dev: Device to check dependencies for.
140  * @target: Device to check against.
141  *
142  * Check if @target depends on @dev or any device dependent on it (its child or
143  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
144  */
device_is_dependent(struct device * dev,void * target)145 int device_is_dependent(struct device *dev, void *target)
146 {
147 	struct device_link *link;
148 	int ret;
149 
150 	/*
151 	 * The "ancestors" check is needed to catch the case when the target
152 	 * device has not been completely initialized yet and it is still
153 	 * missing from the list of children of its parent device.
154 	 */
155 	if (dev == target || device_is_ancestor(dev, target))
156 		return 1;
157 
158 	ret = device_for_each_child(dev, target, device_is_dependent);
159 	if (ret)
160 		return ret;
161 
162 	list_for_each_entry(link, &dev->links.consumers, s_node) {
163 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
164 			continue;
165 
166 		if (link->consumer == target)
167 			return 1;
168 
169 		ret = device_is_dependent(link->consumer, target);
170 		if (ret)
171 			break;
172 	}
173 	return ret;
174 }
175 
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)176 static void device_link_init_status(struct device_link *link,
177 				    struct device *consumer,
178 				    struct device *supplier)
179 {
180 	switch (supplier->links.status) {
181 	case DL_DEV_PROBING:
182 		switch (consumer->links.status) {
183 		case DL_DEV_PROBING:
184 			/*
185 			 * A consumer driver can create a link to a supplier
186 			 * that has not completed its probing yet as long as it
187 			 * knows that the supplier is already functional (for
188 			 * example, it has just acquired some resources from the
189 			 * supplier).
190 			 */
191 			link->status = DL_STATE_CONSUMER_PROBE;
192 			break;
193 		default:
194 			link->status = DL_STATE_DORMANT;
195 			break;
196 		}
197 		break;
198 	case DL_DEV_DRIVER_BOUND:
199 		switch (consumer->links.status) {
200 		case DL_DEV_PROBING:
201 			link->status = DL_STATE_CONSUMER_PROBE;
202 			break;
203 		case DL_DEV_DRIVER_BOUND:
204 			link->status = DL_STATE_ACTIVE;
205 			break;
206 		default:
207 			link->status = DL_STATE_AVAILABLE;
208 			break;
209 		}
210 		break;
211 	case DL_DEV_UNBINDING:
212 		link->status = DL_STATE_SUPPLIER_UNBIND;
213 		break;
214 	default:
215 		link->status = DL_STATE_DORMANT;
216 		break;
217 	}
218 }
219 
device_reorder_to_tail(struct device * dev,void * not_used)220 static int device_reorder_to_tail(struct device *dev, void *not_used)
221 {
222 	struct device_link *link;
223 
224 	/*
225 	 * Devices that have not been registered yet will be put to the ends
226 	 * of the lists during the registration, so skip them here.
227 	 */
228 	if (device_is_registered(dev))
229 		devices_kset_move_last(dev);
230 
231 	if (device_pm_initialized(dev))
232 		device_pm_move_last(dev);
233 
234 	device_for_each_child(dev, NULL, device_reorder_to_tail);
235 	list_for_each_entry(link, &dev->links.consumers, s_node) {
236 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
237 			continue;
238 		device_reorder_to_tail(link->consumer, NULL);
239 	}
240 
241 	return 0;
242 }
243 
244 /**
245  * device_pm_move_to_tail - Move set of devices to the end of device lists
246  * @dev: Device to move
247  *
248  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
249  *
250  * It moves the @dev along with all of its children and all of its consumers
251  * to the ends of the device_kset and dpm_list, recursively.
252  */
device_pm_move_to_tail(struct device * dev)253 void device_pm_move_to_tail(struct device *dev)
254 {
255 	int idx;
256 
257 	idx = device_links_read_lock();
258 	device_pm_lock();
259 	device_reorder_to_tail(dev, NULL);
260 	device_pm_unlock();
261 	device_links_read_unlock(idx);
262 }
263 
264 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
265 
status_show(struct device * dev,struct device_attribute * attr,char * buf)266 static ssize_t status_show(struct device *dev,
267 			   struct device_attribute *attr, char *buf)
268 {
269 	const char *output;
270 
271 	switch (to_devlink(dev)->status) {
272 	case DL_STATE_NONE:
273 		output = "not tracked";
274 		break;
275 	case DL_STATE_DORMANT:
276 		output = "dormant";
277 		break;
278 	case DL_STATE_AVAILABLE:
279 		output = "available";
280 		break;
281 	case DL_STATE_CONSUMER_PROBE:
282 		output = "consumer probing";
283 		break;
284 	case DL_STATE_ACTIVE:
285 		output = "active";
286 		break;
287 	case DL_STATE_SUPPLIER_UNBIND:
288 		output = "supplier unbinding";
289 		break;
290 	default:
291 		output = "unknown";
292 		break;
293 	}
294 
295 	return sysfs_emit(buf, "%s\n", output);
296 }
297 static DEVICE_ATTR_RO(status);
298 
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)299 static ssize_t auto_remove_on_show(struct device *dev,
300 				   struct device_attribute *attr, char *buf)
301 {
302 	struct device_link *link = to_devlink(dev);
303 	const char *output;
304 
305 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
306 		output = "supplier unbind";
307 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
308 		output = "consumer unbind";
309 	else
310 		output = "never";
311 
312 	return sysfs_emit(buf, "%s\n", output);
313 }
314 static DEVICE_ATTR_RO(auto_remove_on);
315 
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)316 static ssize_t runtime_pm_show(struct device *dev,
317 			       struct device_attribute *attr, char *buf)
318 {
319 	struct device_link *link = to_devlink(dev);
320 
321 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
322 }
323 static DEVICE_ATTR_RO(runtime_pm);
324 
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)325 static ssize_t sync_state_only_show(struct device *dev,
326 				    struct device_attribute *attr, char *buf)
327 {
328 	struct device_link *link = to_devlink(dev);
329 
330 	return sysfs_emit(buf, "%d\n",
331 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
332 }
333 static DEVICE_ATTR_RO(sync_state_only);
334 
335 static struct attribute *devlink_attrs[] = {
336 	&dev_attr_status.attr,
337 	&dev_attr_auto_remove_on.attr,
338 	&dev_attr_runtime_pm.attr,
339 	&dev_attr_sync_state_only.attr,
340 	NULL,
341 };
342 ATTRIBUTE_GROUPS(devlink);
343 
device_link_release_fn(struct work_struct * work)344 static void device_link_release_fn(struct work_struct *work)
345 {
346 	struct device_link *link = container_of(work, struct device_link, rm_work);
347 
348 	/* Ensure that all references to the link object have been dropped. */
349 	device_link_synchronize_removal();
350 
351 	while (refcount_dec_not_one(&link->rpm_active))
352 		pm_runtime_put(link->supplier);
353 
354 	put_device(link->consumer);
355 	put_device(link->supplier);
356 	kfree(link);
357 }
358 
devlink_dev_release(struct device * dev)359 static void devlink_dev_release(struct device *dev)
360 {
361 	struct device_link *link = to_devlink(dev);
362 
363 	INIT_WORK(&link->rm_work, device_link_release_fn);
364 	/*
365 	 * It may take a while to complete this work because of the SRCU
366 	 * synchronization in device_link_release_fn() and if the consumer or
367 	 * supplier devices get deleted when it runs, so put it into the "long"
368 	 * workqueue.
369 	 */
370 	queue_work(system_long_wq, &link->rm_work);
371 }
372 
373 static struct class devlink_class = {
374 	.name = "devlink",
375 	.owner = THIS_MODULE,
376 	.dev_groups = devlink_groups,
377 	.dev_release = devlink_dev_release,
378 };
379 
devlink_add_symlinks(struct device * dev,struct class_interface * class_intf)380 static int devlink_add_symlinks(struct device *dev,
381 				struct class_interface *class_intf)
382 {
383 	int ret;
384 	size_t len;
385 	struct device_link *link = to_devlink(dev);
386 	struct device *sup = link->supplier;
387 	struct device *con = link->consumer;
388 	char *buf;
389 
390 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
391 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
392 	len += strlen(":");
393 	len += strlen("supplier:") + 1;
394 	buf = kzalloc(len, GFP_KERNEL);
395 	if (!buf)
396 		return -ENOMEM;
397 
398 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
399 	if (ret)
400 		goto out;
401 
402 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
403 	if (ret)
404 		goto err_con;
405 
406 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
407 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
408 	if (ret)
409 		goto err_con_dev;
410 
411 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
412 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
413 	if (ret)
414 		goto err_sup_dev;
415 
416 	goto out;
417 
418 err_sup_dev:
419 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
420 	sysfs_remove_link(&sup->kobj, buf);
421 err_con_dev:
422 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
423 err_con:
424 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
425 out:
426 	kfree(buf);
427 	return ret;
428 }
429 
devlink_remove_symlinks(struct device * dev,struct class_interface * class_intf)430 static void devlink_remove_symlinks(struct device *dev,
431 				   struct class_interface *class_intf)
432 {
433 	struct device_link *link = to_devlink(dev);
434 	size_t len;
435 	struct device *sup = link->supplier;
436 	struct device *con = link->consumer;
437 	char *buf;
438 
439 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
440 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
441 
442 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
443 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
444 	len += strlen(":");
445 	len += strlen("supplier:") + 1;
446 	buf = kzalloc(len, GFP_KERNEL);
447 	if (!buf) {
448 		WARN(1, "Unable to properly free device link symlinks!\n");
449 		return;
450 	}
451 
452 	if (device_is_registered(con)) {
453 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
454 		sysfs_remove_link(&con->kobj, buf);
455 	}
456 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
457 	sysfs_remove_link(&sup->kobj, buf);
458 	kfree(buf);
459 }
460 
461 static struct class_interface devlink_class_intf = {
462 	.class = &devlink_class,
463 	.add_dev = devlink_add_symlinks,
464 	.remove_dev = devlink_remove_symlinks,
465 };
466 
devlink_class_init(void)467 static int __init devlink_class_init(void)
468 {
469 	int ret;
470 
471 	ret = class_register(&devlink_class);
472 	if (ret)
473 		return ret;
474 
475 	ret = class_interface_register(&devlink_class_intf);
476 	if (ret)
477 		class_unregister(&devlink_class);
478 
479 	return ret;
480 }
481 postcore_initcall(devlink_class_init);
482 
483 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
484 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
485 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
486 			       DL_FLAG_SYNC_STATE_ONLY)
487 
488 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
489 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
490 
491 /**
492  * device_link_add - Create a link between two devices.
493  * @consumer: Consumer end of the link.
494  * @supplier: Supplier end of the link.
495  * @flags: Link flags.
496  *
497  * The caller is responsible for the proper synchronization of the link creation
498  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
499  * runtime PM framework to take the link into account.  Second, if the
500  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
501  * be forced into the active metastate and reference-counted upon the creation
502  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
503  * ignored.
504  *
505  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
506  * expected to release the link returned by it directly with the help of either
507  * device_link_del() or device_link_remove().
508  *
509  * If that flag is not set, however, the caller of this function is handing the
510  * management of the link over to the driver core entirely and its return value
511  * can only be used to check whether or not the link is present.  In that case,
512  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
513  * flags can be used to indicate to the driver core when the link can be safely
514  * deleted.  Namely, setting one of them in @flags indicates to the driver core
515  * that the link is not going to be used (by the given caller of this function)
516  * after unbinding the consumer or supplier driver, respectively, from its
517  * device, so the link can be deleted at that point.  If none of them is set,
518  * the link will be maintained until one of the devices pointed to by it (either
519  * the consumer or the supplier) is unregistered.
520  *
521  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
522  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
523  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
524  * be used to request the driver core to automaticall probe for a consmer
525  * driver after successfully binding a driver to the supplier device.
526  *
527  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
528  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
529  * the same time is invalid and will cause NULL to be returned upfront.
530  * However, if a device link between the given @consumer and @supplier pair
531  * exists already when this function is called for them, the existing link will
532  * be returned regardless of its current type and status (the link's flags may
533  * be modified then).  The caller of this function is then expected to treat
534  * the link as though it has just been created, so (in particular) if
535  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
536  * explicitly when not needed any more (as stated above).
537  *
538  * A side effect of the link creation is re-ordering of dpm_list and the
539  * devices_kset list by moving the consumer device and all devices depending
540  * on it to the ends of these lists (that does not happen to devices that have
541  * not been registered when this function is called).
542  *
543  * The supplier device is required to be registered when this function is called
544  * and NULL will be returned if that is not the case.  The consumer device need
545  * not be registered, however.
546  */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)547 struct device_link *device_link_add(struct device *consumer,
548 				    struct device *supplier, u32 flags)
549 {
550 	struct device_link *link;
551 
552 	if (!consumer || !supplier || consumer == supplier ||
553 	    flags & ~DL_ADD_VALID_FLAGS ||
554 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
555 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
556 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
557 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
558 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
559 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
560 		return NULL;
561 
562 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
563 		if (pm_runtime_get_sync(supplier) < 0) {
564 			pm_runtime_put_noidle(supplier);
565 			return NULL;
566 		}
567 	}
568 
569 	if (!(flags & DL_FLAG_STATELESS))
570 		flags |= DL_FLAG_MANAGED;
571 
572 	device_links_write_lock();
573 	device_pm_lock();
574 
575 	/*
576 	 * If the supplier has not been fully registered yet or there is a
577 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
578 	 * the supplier already in the graph, return NULL. If the link is a
579 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
580 	 * because it only affects sync_state() callbacks.
581 	 */
582 	if (!device_pm_initialized(supplier)
583 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
584 		  device_is_dependent(consumer, supplier))) {
585 		link = NULL;
586 		goto out;
587 	}
588 
589 	/*
590 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
591 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
592 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
593 	 */
594 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
595 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
596 
597 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
598 		if (link->consumer != consumer)
599 			continue;
600 
601 		if (flags & DL_FLAG_PM_RUNTIME) {
602 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
603 				pm_runtime_new_link(consumer);
604 				link->flags |= DL_FLAG_PM_RUNTIME;
605 			}
606 			if (flags & DL_FLAG_RPM_ACTIVE)
607 				refcount_inc(&link->rpm_active);
608 		}
609 
610 		if (flags & DL_FLAG_STATELESS) {
611 			kref_get(&link->kref);
612 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
613 			    !(link->flags & DL_FLAG_STATELESS)) {
614 				link->flags |= DL_FLAG_STATELESS;
615 				goto reorder;
616 			} else {
617 				link->flags |= DL_FLAG_STATELESS;
618 				goto out;
619 			}
620 		}
621 
622 		/*
623 		 * If the life time of the link following from the new flags is
624 		 * longer than indicated by the flags of the existing link,
625 		 * update the existing link to stay around longer.
626 		 */
627 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
628 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
629 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
630 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
631 			}
632 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
633 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
634 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
635 		}
636 		if (!(link->flags & DL_FLAG_MANAGED)) {
637 			kref_get(&link->kref);
638 			link->flags |= DL_FLAG_MANAGED;
639 			device_link_init_status(link, consumer, supplier);
640 		}
641 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
642 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
643 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
644 			goto reorder;
645 		}
646 
647 		goto out;
648 	}
649 
650 	link = kzalloc(sizeof(*link), GFP_KERNEL);
651 	if (!link)
652 		goto out;
653 
654 	refcount_set(&link->rpm_active, 1);
655 
656 	get_device(supplier);
657 	link->supplier = supplier;
658 	INIT_LIST_HEAD(&link->s_node);
659 	get_device(consumer);
660 	link->consumer = consumer;
661 	INIT_LIST_HEAD(&link->c_node);
662 	link->flags = flags;
663 	kref_init(&link->kref);
664 
665 	link->link_dev.class = &devlink_class;
666 	device_set_pm_not_required(&link->link_dev);
667 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
668 		     dev_bus_name(supplier), dev_name(supplier),
669 		     dev_bus_name(consumer), dev_name(consumer));
670 	if (device_register(&link->link_dev)) {
671 		put_device(consumer);
672 		put_device(supplier);
673 		kfree(link);
674 		link = NULL;
675 		goto out;
676 	}
677 
678 	if (flags & DL_FLAG_PM_RUNTIME) {
679 		if (flags & DL_FLAG_RPM_ACTIVE)
680 			refcount_inc(&link->rpm_active);
681 
682 		pm_runtime_new_link(consumer);
683 	}
684 
685 	/* Determine the initial link state. */
686 	if (flags & DL_FLAG_STATELESS)
687 		link->status = DL_STATE_NONE;
688 	else
689 		device_link_init_status(link, consumer, supplier);
690 
691 	/*
692 	 * Some callers expect the link creation during consumer driver probe to
693 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
694 	 */
695 	if (link->status == DL_STATE_CONSUMER_PROBE &&
696 	    flags & DL_FLAG_PM_RUNTIME)
697 		pm_runtime_resume(supplier);
698 
699 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
700 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
701 
702 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
703 		dev_dbg(consumer,
704 			"Linked as a sync state only consumer to %s\n",
705 			dev_name(supplier));
706 		goto out;
707 	}
708 
709 reorder:
710 	/*
711 	 * Move the consumer and all of the devices depending on it to the end
712 	 * of dpm_list and the devices_kset list.
713 	 *
714 	 * It is necessary to hold dpm_list locked throughout all that or else
715 	 * we may end up suspending with a wrong ordering of it.
716 	 */
717 	device_reorder_to_tail(consumer, NULL);
718 
719 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
720 
721 out:
722 	device_pm_unlock();
723 	device_links_write_unlock();
724 
725 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
726 		pm_runtime_put(supplier);
727 
728 	return link;
729 }
730 EXPORT_SYMBOL_GPL(device_link_add);
731 
732 /**
733  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
734  * @consumer: Consumer device
735  *
736  * Marks the @consumer device as waiting for suppliers to become available by
737  * adding it to the wait_for_suppliers list. The consumer device will never be
738  * probed until it's removed from the wait_for_suppliers list.
739  *
740  * The caller is responsible for adding the links to the supplier devices once
741  * they are available and removing the @consumer device from the
742  * wait_for_suppliers list once links to all the suppliers have been created.
743  *
744  * This function is NOT meant to be called from the probe function of the
745  * consumer but rather from code that creates/adds the consumer device.
746  */
device_link_wait_for_supplier(struct device * consumer,bool need_for_probe)747 static void device_link_wait_for_supplier(struct device *consumer,
748 					  bool need_for_probe)
749 {
750 	mutex_lock(&wfs_lock);
751 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
752 	consumer->links.need_for_probe = need_for_probe;
753 	mutex_unlock(&wfs_lock);
754 }
755 
device_link_wait_for_mandatory_supplier(struct device * consumer)756 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
757 {
758 	device_link_wait_for_supplier(consumer, true);
759 }
760 
device_link_wait_for_optional_supplier(struct device * consumer)761 static void device_link_wait_for_optional_supplier(struct device *consumer)
762 {
763 	device_link_wait_for_supplier(consumer, false);
764 }
765 
766 /**
767  * device_link_add_missing_supplier_links - Add links from consumer devices to
768  *					    supplier devices, leaving any
769  *					    consumer with inactive suppliers on
770  *					    the wait_for_suppliers list
771  *
772  * Loops through all consumers waiting on suppliers and tries to add all their
773  * supplier links. If that succeeds, the consumer device is removed from
774  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
775  * list.  Devices left on the wait_for_suppliers list will not be probed.
776  *
777  * The fwnode add_links callback is expected to return 0 if it has found and
778  * added all the supplier links for the consumer device. It should return an
779  * error if it isn't able to do so.
780  *
781  * The caller of device_link_wait_for_supplier() is expected to call this once
782  * it's aware of potential suppliers becoming available.
783  */
device_link_add_missing_supplier_links(void)784 static void device_link_add_missing_supplier_links(void)
785 {
786 	struct device *dev, *tmp;
787 
788 	mutex_lock(&wfs_lock);
789 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
790 				 links.needs_suppliers) {
791 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
792 		if (!ret)
793 			list_del_init(&dev->links.needs_suppliers);
794 		else if (ret != -ENODEV || fw_devlink_is_permissive())
795 			dev->links.need_for_probe = false;
796 	}
797 	mutex_unlock(&wfs_lock);
798 }
799 
800 #ifdef CONFIG_SRCU
__device_link_del(struct kref * kref)801 static void __device_link_del(struct kref *kref)
802 {
803 	struct device_link *link = container_of(kref, struct device_link, kref);
804 
805 	dev_dbg(link->consumer, "Dropping the link to %s\n",
806 		dev_name(link->supplier));
807 
808 	pm_runtime_drop_link(link);
809 
810 	list_del_rcu(&link->s_node);
811 	list_del_rcu(&link->c_node);
812 	device_unregister(&link->link_dev);
813 }
814 #else /* !CONFIG_SRCU */
__device_link_del(struct kref * kref)815 static void __device_link_del(struct kref *kref)
816 {
817 	struct device_link *link = container_of(kref, struct device_link, kref);
818 
819 	dev_info(link->consumer, "Dropping the link to %s\n",
820 		 dev_name(link->supplier));
821 
822 	pm_runtime_drop_link(link);
823 
824 	list_del(&link->s_node);
825 	list_del(&link->c_node);
826 	device_unregister(&link->link_dev);
827 }
828 #endif /* !CONFIG_SRCU */
829 
device_link_put_kref(struct device_link * link)830 static void device_link_put_kref(struct device_link *link)
831 {
832 	if (link->flags & DL_FLAG_STATELESS)
833 		kref_put(&link->kref, __device_link_del);
834 	else
835 		WARN(1, "Unable to drop a managed device link reference\n");
836 }
837 
838 /**
839  * device_link_del - Delete a stateless link between two devices.
840  * @link: Device link to delete.
841  *
842  * The caller must ensure proper synchronization of this function with runtime
843  * PM.  If the link was added multiple times, it needs to be deleted as often.
844  * Care is required for hotplugged devices:  Their links are purged on removal
845  * and calling device_link_del() is then no longer allowed.
846  */
device_link_del(struct device_link * link)847 void device_link_del(struct device_link *link)
848 {
849 	device_links_write_lock();
850 	device_link_put_kref(link);
851 	device_links_write_unlock();
852 }
853 EXPORT_SYMBOL_GPL(device_link_del);
854 
855 /**
856  * device_link_remove - Delete a stateless link between two devices.
857  * @consumer: Consumer end of the link.
858  * @supplier: Supplier end of the link.
859  *
860  * The caller must ensure proper synchronization of this function with runtime
861  * PM.
862  */
device_link_remove(void * consumer,struct device * supplier)863 void device_link_remove(void *consumer, struct device *supplier)
864 {
865 	struct device_link *link;
866 
867 	if (WARN_ON(consumer == supplier))
868 		return;
869 
870 	device_links_write_lock();
871 
872 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
873 		if (link->consumer == consumer) {
874 			device_link_put_kref(link);
875 			break;
876 		}
877 	}
878 
879 	device_links_write_unlock();
880 }
881 EXPORT_SYMBOL_GPL(device_link_remove);
882 
device_links_missing_supplier(struct device * dev)883 static void device_links_missing_supplier(struct device *dev)
884 {
885 	struct device_link *link;
886 
887 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
888 		if (link->status != DL_STATE_CONSUMER_PROBE)
889 			continue;
890 
891 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
892 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
893 		} else {
894 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
895 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
896 		}
897 	}
898 }
899 
900 /**
901  * device_links_check_suppliers - Check presence of supplier drivers.
902  * @dev: Consumer device.
903  *
904  * Check links from this device to any suppliers.  Walk the list of the device's
905  * links to suppliers and see if all of them are available.  If not, simply
906  * return -EPROBE_DEFER.
907  *
908  * We need to guarantee that the supplier will not go away after the check has
909  * been positive here.  It only can go away in __device_release_driver() and
910  * that function  checks the device's links to consumers.  This means we need to
911  * mark the link as "consumer probe in progress" to make the supplier removal
912  * wait for us to complete (or bad things may happen).
913  *
914  * Links without the DL_FLAG_MANAGED flag set are ignored.
915  */
device_links_check_suppliers(struct device * dev)916 int device_links_check_suppliers(struct device *dev)
917 {
918 	struct device_link *link;
919 	int ret = 0;
920 
921 	/*
922 	 * Device waiting for supplier to become available is not allowed to
923 	 * probe.
924 	 */
925 	mutex_lock(&wfs_lock);
926 	if (!list_empty(&dev->links.needs_suppliers) &&
927 	    dev->links.need_for_probe) {
928 		mutex_unlock(&wfs_lock);
929 		return -EPROBE_DEFER;
930 	}
931 	mutex_unlock(&wfs_lock);
932 
933 	device_links_write_lock();
934 
935 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
936 		if (!(link->flags & DL_FLAG_MANAGED))
937 			continue;
938 
939 		if (link->status != DL_STATE_AVAILABLE &&
940 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
941 			device_links_missing_supplier(dev);
942 			ret = -EPROBE_DEFER;
943 			break;
944 		}
945 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
946 	}
947 	dev->links.status = DL_DEV_PROBING;
948 
949 	device_links_write_unlock();
950 	return ret;
951 }
952 
953 /**
954  * __device_links_queue_sync_state - Queue a device for sync_state() callback
955  * @dev: Device to call sync_state() on
956  * @list: List head to queue the @dev on
957  *
958  * Queues a device for a sync_state() callback when the device links write lock
959  * isn't held. This allows the sync_state() execution flow to use device links
960  * APIs.  The caller must ensure this function is called with
961  * device_links_write_lock() held.
962  *
963  * This function does a get_device() to make sure the device is not freed while
964  * on this list.
965  *
966  * So the caller must also ensure that device_links_flush_sync_list() is called
967  * as soon as the caller releases device_links_write_lock().  This is necessary
968  * to make sure the sync_state() is called in a timely fashion and the
969  * put_device() is called on this device.
970  */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)971 static void __device_links_queue_sync_state(struct device *dev,
972 					    struct list_head *list)
973 {
974 	struct device_link *link;
975 
976 	if (!dev_has_sync_state(dev))
977 		return;
978 	if (dev->state_synced)
979 		return;
980 
981 	list_for_each_entry(link, &dev->links.consumers, s_node) {
982 		if (!(link->flags & DL_FLAG_MANAGED))
983 			continue;
984 		if (link->status != DL_STATE_ACTIVE)
985 			return;
986 	}
987 
988 	/*
989 	 * Set the flag here to avoid adding the same device to a list more
990 	 * than once. This can happen if new consumers get added to the device
991 	 * and probed before the list is flushed.
992 	 */
993 	dev->state_synced = true;
994 
995 	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
996 		return;
997 
998 	get_device(dev);
999 	list_add_tail(&dev->links.defer_hook, list);
1000 }
1001 
1002 /**
1003  * device_links_flush_sync_list - Call sync_state() on a list of devices
1004  * @list: List of devices to call sync_state() on
1005  * @dont_lock_dev: Device for which lock is already held by the caller
1006  *
1007  * Calls sync_state() on all the devices that have been queued for it. This
1008  * function is used in conjunction with __device_links_queue_sync_state(). The
1009  * @dont_lock_dev parameter is useful when this function is called from a
1010  * context where a device lock is already held.
1011  */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1012 static void device_links_flush_sync_list(struct list_head *list,
1013 					 struct device *dont_lock_dev)
1014 {
1015 	struct device *dev, *tmp;
1016 
1017 	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
1018 		list_del_init(&dev->links.defer_hook);
1019 
1020 		if (dev != dont_lock_dev)
1021 			device_lock(dev);
1022 
1023 		if (dev->bus->sync_state)
1024 			dev->bus->sync_state(dev);
1025 		else if (dev->driver && dev->driver->sync_state)
1026 			dev->driver->sync_state(dev);
1027 
1028 		if (dev != dont_lock_dev)
1029 			device_unlock(dev);
1030 
1031 		put_device(dev);
1032 	}
1033 }
1034 
device_links_supplier_sync_state_pause(void)1035 void device_links_supplier_sync_state_pause(void)
1036 {
1037 	device_links_write_lock();
1038 	defer_sync_state_count++;
1039 	device_links_write_unlock();
1040 }
1041 
device_links_supplier_sync_state_resume(void)1042 void device_links_supplier_sync_state_resume(void)
1043 {
1044 	struct device *dev, *tmp;
1045 	LIST_HEAD(sync_list);
1046 
1047 	device_links_write_lock();
1048 	if (!defer_sync_state_count) {
1049 		WARN(true, "Unmatched sync_state pause/resume!");
1050 		goto out;
1051 	}
1052 	defer_sync_state_count--;
1053 	if (defer_sync_state_count)
1054 		goto out;
1055 
1056 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1057 		/*
1058 		 * Delete from deferred_sync list before queuing it to
1059 		 * sync_list because defer_hook is used for both lists.
1060 		 */
1061 		list_del_init(&dev->links.defer_hook);
1062 		__device_links_queue_sync_state(dev, &sync_list);
1063 	}
1064 out:
1065 	device_links_write_unlock();
1066 
1067 	device_links_flush_sync_list(&sync_list, NULL);
1068 }
1069 
sync_state_resume_initcall(void)1070 static int sync_state_resume_initcall(void)
1071 {
1072 	device_links_supplier_sync_state_resume();
1073 	return 0;
1074 }
1075 late_initcall(sync_state_resume_initcall);
1076 
__device_links_supplier_defer_sync(struct device * sup)1077 static void __device_links_supplier_defer_sync(struct device *sup)
1078 {
1079 	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1080 		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1081 }
1082 
device_link_drop_managed(struct device_link * link)1083 static void device_link_drop_managed(struct device_link *link)
1084 {
1085 	link->flags &= ~DL_FLAG_MANAGED;
1086 	WRITE_ONCE(link->status, DL_STATE_NONE);
1087 	kref_put(&link->kref, __device_link_del);
1088 }
1089 
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1090 static ssize_t waiting_for_supplier_show(struct device *dev,
1091 					 struct device_attribute *attr,
1092 					 char *buf)
1093 {
1094 	bool val;
1095 
1096 	device_lock(dev);
1097 	mutex_lock(&wfs_lock);
1098 	val = !list_empty(&dev->links.needs_suppliers)
1099 	      && dev->links.need_for_probe;
1100 	mutex_unlock(&wfs_lock);
1101 	device_unlock(dev);
1102 	return sysfs_emit(buf, "%u\n", val);
1103 }
1104 static DEVICE_ATTR_RO(waiting_for_supplier);
1105 
1106 /**
1107  * device_links_driver_bound - Update device links after probing its driver.
1108  * @dev: Device to update the links for.
1109  *
1110  * The probe has been successful, so update links from this device to any
1111  * consumers by changing their status to "available".
1112  *
1113  * Also change the status of @dev's links to suppliers to "active".
1114  *
1115  * Links without the DL_FLAG_MANAGED flag set are ignored.
1116  */
device_links_driver_bound(struct device * dev)1117 void device_links_driver_bound(struct device *dev)
1118 {
1119 	struct device_link *link, *ln;
1120 	LIST_HEAD(sync_list);
1121 
1122 	/*
1123 	 * If a device probes successfully, it's expected to have created all
1124 	 * the device links it needs to or make new device links as it needs
1125 	 * them. So, it no longer needs to wait on any suppliers.
1126 	 */
1127 	mutex_lock(&wfs_lock);
1128 	list_del_init(&dev->links.needs_suppliers);
1129 	mutex_unlock(&wfs_lock);
1130 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1131 
1132 	device_links_write_lock();
1133 
1134 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1135 		if (!(link->flags & DL_FLAG_MANAGED))
1136 			continue;
1137 
1138 		/*
1139 		 * Links created during consumer probe may be in the "consumer
1140 		 * probe" state to start with if the supplier is still probing
1141 		 * when they are created and they may become "active" if the
1142 		 * consumer probe returns first.  Skip them here.
1143 		 */
1144 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1145 		    link->status == DL_STATE_ACTIVE)
1146 			continue;
1147 
1148 		WARN_ON(link->status != DL_STATE_DORMANT);
1149 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1150 
1151 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1152 			driver_deferred_probe_add(link->consumer);
1153 	}
1154 
1155 	if (defer_sync_state_count)
1156 		__device_links_supplier_defer_sync(dev);
1157 	else
1158 		__device_links_queue_sync_state(dev, &sync_list);
1159 
1160 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1161 		struct device *supplier;
1162 
1163 		if (!(link->flags & DL_FLAG_MANAGED))
1164 			continue;
1165 
1166 		supplier = link->supplier;
1167 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1168 			/*
1169 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1170 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1171 			 * save to drop the managed link completely.
1172 			 */
1173 			device_link_drop_managed(link);
1174 		} else {
1175 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1176 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1177 		}
1178 
1179 		/*
1180 		 * This needs to be done even for the deleted
1181 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1182 		 * device link that was preventing the supplier from getting a
1183 		 * sync_state() call.
1184 		 */
1185 		if (defer_sync_state_count)
1186 			__device_links_supplier_defer_sync(supplier);
1187 		else
1188 			__device_links_queue_sync_state(supplier, &sync_list);
1189 	}
1190 
1191 	dev->links.status = DL_DEV_DRIVER_BOUND;
1192 
1193 	device_links_write_unlock();
1194 
1195 	device_links_flush_sync_list(&sync_list, dev);
1196 }
1197 
1198 /**
1199  * __device_links_no_driver - Update links of a device without a driver.
1200  * @dev: Device without a drvier.
1201  *
1202  * Delete all non-persistent links from this device to any suppliers.
1203  *
1204  * Persistent links stay around, but their status is changed to "available",
1205  * unless they already are in the "supplier unbind in progress" state in which
1206  * case they need not be updated.
1207  *
1208  * Links without the DL_FLAG_MANAGED flag set are ignored.
1209  */
__device_links_no_driver(struct device * dev)1210 static void __device_links_no_driver(struct device *dev)
1211 {
1212 	struct device_link *link, *ln;
1213 
1214 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1215 		if (!(link->flags & DL_FLAG_MANAGED))
1216 			continue;
1217 
1218 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1219 			device_link_drop_managed(link);
1220 			continue;
1221 		}
1222 
1223 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1224 		    link->status != DL_STATE_ACTIVE)
1225 			continue;
1226 
1227 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1228 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1229 		} else {
1230 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1231 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1232 		}
1233 	}
1234 
1235 	dev->links.status = DL_DEV_NO_DRIVER;
1236 }
1237 
1238 /**
1239  * device_links_no_driver - Update links after failing driver probe.
1240  * @dev: Device whose driver has just failed to probe.
1241  *
1242  * Clean up leftover links to consumers for @dev and invoke
1243  * %__device_links_no_driver() to update links to suppliers for it as
1244  * appropriate.
1245  *
1246  * Links without the DL_FLAG_MANAGED flag set are ignored.
1247  */
device_links_no_driver(struct device * dev)1248 void device_links_no_driver(struct device *dev)
1249 {
1250 	struct device_link *link;
1251 
1252 	device_links_write_lock();
1253 
1254 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1255 		if (!(link->flags & DL_FLAG_MANAGED))
1256 			continue;
1257 
1258 		/*
1259 		 * The probe has failed, so if the status of the link is
1260 		 * "consumer probe" or "active", it must have been added by
1261 		 * a probing consumer while this device was still probing.
1262 		 * Change its state to "dormant", as it represents a valid
1263 		 * relationship, but it is not functionally meaningful.
1264 		 */
1265 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1266 		    link->status == DL_STATE_ACTIVE)
1267 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268 	}
1269 
1270 	__device_links_no_driver(dev);
1271 
1272 	device_links_write_unlock();
1273 }
1274 
1275 /**
1276  * device_links_driver_cleanup - Update links after driver removal.
1277  * @dev: Device whose driver has just gone away.
1278  *
1279  * Update links to consumers for @dev by changing their status to "dormant" and
1280  * invoke %__device_links_no_driver() to update links to suppliers for it as
1281  * appropriate.
1282  *
1283  * Links without the DL_FLAG_MANAGED flag set are ignored.
1284  */
device_links_driver_cleanup(struct device * dev)1285 void device_links_driver_cleanup(struct device *dev)
1286 {
1287 	struct device_link *link, *ln;
1288 
1289 	device_links_write_lock();
1290 
1291 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1292 		if (!(link->flags & DL_FLAG_MANAGED))
1293 			continue;
1294 
1295 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1296 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1297 
1298 		/*
1299 		 * autoremove the links between this @dev and its consumer
1300 		 * devices that are not active, i.e. where the link state
1301 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1302 		 */
1303 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1304 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1305 			device_link_drop_managed(link);
1306 
1307 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1308 	}
1309 
1310 	list_del_init(&dev->links.defer_hook);
1311 	__device_links_no_driver(dev);
1312 
1313 	device_links_write_unlock();
1314 }
1315 
1316 /**
1317  * device_links_busy - Check if there are any busy links to consumers.
1318  * @dev: Device to check.
1319  *
1320  * Check each consumer of the device and return 'true' if its link's status
1321  * is one of "consumer probe" or "active" (meaning that the given consumer is
1322  * probing right now or its driver is present).  Otherwise, change the link
1323  * state to "supplier unbind" to prevent the consumer from being probed
1324  * successfully going forward.
1325  *
1326  * Return 'false' if there are no probing or active consumers.
1327  *
1328  * Links without the DL_FLAG_MANAGED flag set are ignored.
1329  */
device_links_busy(struct device * dev)1330 bool device_links_busy(struct device *dev)
1331 {
1332 	struct device_link *link;
1333 	bool ret = false;
1334 
1335 	device_links_write_lock();
1336 
1337 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1338 		if (!(link->flags & DL_FLAG_MANAGED))
1339 			continue;
1340 
1341 		if (link->status == DL_STATE_CONSUMER_PROBE
1342 		    || link->status == DL_STATE_ACTIVE) {
1343 			ret = true;
1344 			break;
1345 		}
1346 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1347 	}
1348 
1349 	dev->links.status = DL_DEV_UNBINDING;
1350 
1351 	device_links_write_unlock();
1352 	return ret;
1353 }
1354 
1355 /**
1356  * device_links_unbind_consumers - Force unbind consumers of the given device.
1357  * @dev: Device to unbind the consumers of.
1358  *
1359  * Walk the list of links to consumers for @dev and if any of them is in the
1360  * "consumer probe" state, wait for all device probes in progress to complete
1361  * and start over.
1362  *
1363  * If that's not the case, change the status of the link to "supplier unbind"
1364  * and check if the link was in the "active" state.  If so, force the consumer
1365  * driver to unbind and start over (the consumer will not re-probe as we have
1366  * changed the state of the link already).
1367  *
1368  * Links without the DL_FLAG_MANAGED flag set are ignored.
1369  */
device_links_unbind_consumers(struct device * dev)1370 void device_links_unbind_consumers(struct device *dev)
1371 {
1372 	struct device_link *link;
1373 
1374  start:
1375 	device_links_write_lock();
1376 
1377 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1378 		enum device_link_state status;
1379 
1380 		if (!(link->flags & DL_FLAG_MANAGED) ||
1381 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1382 			continue;
1383 
1384 		status = link->status;
1385 		if (status == DL_STATE_CONSUMER_PROBE) {
1386 			device_links_write_unlock();
1387 
1388 			wait_for_device_probe();
1389 			goto start;
1390 		}
1391 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1392 		if (status == DL_STATE_ACTIVE) {
1393 			struct device *consumer = link->consumer;
1394 
1395 			get_device(consumer);
1396 
1397 			device_links_write_unlock();
1398 
1399 			device_release_driver_internal(consumer, NULL,
1400 						       consumer->parent);
1401 			put_device(consumer);
1402 			goto start;
1403 		}
1404 	}
1405 
1406 	device_links_write_unlock();
1407 }
1408 
1409 /**
1410  * device_links_purge - Delete existing links to other devices.
1411  * @dev: Target device.
1412  */
device_links_purge(struct device * dev)1413 static void device_links_purge(struct device *dev)
1414 {
1415 	struct device_link *link, *ln;
1416 
1417 	if (dev->class == &devlink_class)
1418 		return;
1419 
1420 	mutex_lock(&wfs_lock);
1421 	list_del_init(&dev->links.needs_suppliers);
1422 	mutex_unlock(&wfs_lock);
1423 
1424 	/*
1425 	 * Delete all of the remaining links from this device to any other
1426 	 * devices (either consumers or suppliers).
1427 	 */
1428 	device_links_write_lock();
1429 
1430 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1431 		WARN_ON(link->status == DL_STATE_ACTIVE);
1432 		__device_link_del(&link->kref);
1433 	}
1434 
1435 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1436 		WARN_ON(link->status != DL_STATE_DORMANT &&
1437 			link->status != DL_STATE_NONE);
1438 		__device_link_del(&link->kref);
1439 	}
1440 
1441 	device_links_write_unlock();
1442 }
1443 
1444 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
fw_devlink_setup(char * arg)1445 static int __init fw_devlink_setup(char *arg)
1446 {
1447 	if (!arg)
1448 		return -EINVAL;
1449 
1450 	if (strcmp(arg, "off") == 0) {
1451 		fw_devlink_flags = 0;
1452 	} else if (strcmp(arg, "permissive") == 0) {
1453 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1454 	} else if (strcmp(arg, "on") == 0) {
1455 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1456 	} else if (strcmp(arg, "rpm") == 0) {
1457 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1458 				   DL_FLAG_PM_RUNTIME;
1459 	}
1460 	return 0;
1461 }
1462 early_param("fw_devlink", fw_devlink_setup);
1463 
fw_devlink_get_flags(void)1464 u32 fw_devlink_get_flags(void)
1465 {
1466 	return fw_devlink_flags;
1467 }
1468 
fw_devlink_is_permissive(void)1469 static bool fw_devlink_is_permissive(void)
1470 {
1471 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1472 }
1473 
fw_devlink_link_device(struct device * dev)1474 static void fw_devlink_link_device(struct device *dev)
1475 {
1476 	int fw_ret;
1477 
1478 	if (!fw_devlink_flags)
1479 		return;
1480 
1481 	mutex_lock(&defer_fw_devlink_lock);
1482 	if (!defer_fw_devlink_count)
1483 		device_link_add_missing_supplier_links();
1484 
1485 	/*
1486 	 * The device's fwnode not having add_links() doesn't affect if other
1487 	 * consumers can find this device as a supplier.  So, this check is
1488 	 * intentionally placed after device_link_add_missing_supplier_links().
1489 	 */
1490 	if (!fwnode_has_op(dev->fwnode, add_links))
1491 		goto out;
1492 
1493 	/*
1494 	 * If fw_devlink is being deferred, assume all devices have mandatory
1495 	 * suppliers they need to link to later. Then, when the fw_devlink is
1496 	 * resumed, all these devices will get a chance to try and link to any
1497 	 * suppliers they have.
1498 	 */
1499 	if (!defer_fw_devlink_count) {
1500 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1501 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1502 			fw_ret = -EAGAIN;
1503 	} else {
1504 		fw_ret = -ENODEV;
1505 		/*
1506 		 * defer_hook is not used to add device to deferred_sync list
1507 		 * until device is bound. Since deferred fw devlink also blocks
1508 		 * probing, same list hook can be used for deferred_fw_devlink.
1509 		 */
1510 		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1511 	}
1512 
1513 	if (fw_ret == -ENODEV)
1514 		device_link_wait_for_mandatory_supplier(dev);
1515 	else if (fw_ret)
1516 		device_link_wait_for_optional_supplier(dev);
1517 
1518 out:
1519 	mutex_unlock(&defer_fw_devlink_lock);
1520 }
1521 
1522 /**
1523  * fw_devlink_pause - Pause parsing of fwnode to create device links
1524  *
1525  * Calling this function defers any fwnode parsing to create device links until
1526  * fw_devlink_resume() is called. Both these functions are ref counted and the
1527  * caller needs to match the calls.
1528  *
1529  * While fw_devlink is paused:
1530  * - Any device that is added won't have its fwnode parsed to create device
1531  *   links.
1532  * - The probe of the device will also be deferred during this period.
1533  * - Any devices that were already added, but waiting for suppliers won't be
1534  *   able to link to newly added devices.
1535  *
1536  * Once fw_devlink_resume():
1537  * - All the fwnodes that was not parsed will be parsed.
1538  * - All the devices that were deferred probing will be reattempted if they
1539  *   aren't waiting for any more suppliers.
1540  *
1541  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1542  * when a lot of devices that need to link to each other are added in a short
1543  * interval of time. For example, adding all the top level devices in a system.
1544  *
1545  * For example, if N devices are added and:
1546  * - All the consumers are added before their suppliers
1547  * - All the suppliers of the N devices are part of the N devices
1548  *
1549  * Then:
1550  *
1551  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1552  *   will only need one parsing of its fwnode because it is guaranteed to find
1553  *   all the supplier devices already registered and ready to link to. It won't
1554  *   have to do another pass later to find one or more suppliers it couldn't
1555  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1556  *   parses.
1557  *
1558  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1559  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1560  *   guaranteed to trigger a parse of the fwnode of every device added before
1561  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1562  *   device is parsed, all it descendant devices might need to have their
1563  *   fwnodes parsed too (even if the devices themselves aren't added).
1564  */
fw_devlink_pause(void)1565 void fw_devlink_pause(void)
1566 {
1567 	mutex_lock(&defer_fw_devlink_lock);
1568 	defer_fw_devlink_count++;
1569 	mutex_unlock(&defer_fw_devlink_lock);
1570 }
1571 
1572 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1573  *
1574  * This function is used in conjunction with fw_devlink_pause() and is ref
1575  * counted. See documentation for fw_devlink_pause() for more details.
1576  */
fw_devlink_resume(void)1577 void fw_devlink_resume(void)
1578 {
1579 	struct device *dev, *tmp;
1580 	LIST_HEAD(probe_list);
1581 
1582 	mutex_lock(&defer_fw_devlink_lock);
1583 	if (!defer_fw_devlink_count) {
1584 		WARN(true, "Unmatched fw_devlink pause/resume!");
1585 		goto out;
1586 	}
1587 
1588 	defer_fw_devlink_count--;
1589 	if (defer_fw_devlink_count)
1590 		goto out;
1591 
1592 	device_link_add_missing_supplier_links();
1593 	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1594 out:
1595 	mutex_unlock(&defer_fw_devlink_lock);
1596 
1597 	/*
1598 	 * bus_probe_device() can cause new devices to get added and they'll
1599 	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1600 	 * the defer_fw_devlink_lock.
1601 	 */
1602 	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1603 		list_del_init(&dev->links.defer_hook);
1604 		bus_probe_device(dev);
1605 	}
1606 }
1607 /* Device links support end. */
1608 
1609 int (*platform_notify)(struct device *dev) = NULL;
1610 int (*platform_notify_remove)(struct device *dev) = NULL;
1611 static struct kobject *dev_kobj;
1612 struct kobject *sysfs_dev_char_kobj;
1613 struct kobject *sysfs_dev_block_kobj;
1614 
1615 static DEFINE_MUTEX(device_hotplug_lock);
1616 
lock_device_hotplug(void)1617 void lock_device_hotplug(void)
1618 {
1619 	mutex_lock(&device_hotplug_lock);
1620 }
1621 
unlock_device_hotplug(void)1622 void unlock_device_hotplug(void)
1623 {
1624 	mutex_unlock(&device_hotplug_lock);
1625 }
1626 
lock_device_hotplug_sysfs(void)1627 int lock_device_hotplug_sysfs(void)
1628 {
1629 	if (mutex_trylock(&device_hotplug_lock))
1630 		return 0;
1631 
1632 	/* Avoid busy looping (5 ms of sleep should do). */
1633 	msleep(5);
1634 	return restart_syscall();
1635 }
1636 
1637 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)1638 static inline int device_is_not_partition(struct device *dev)
1639 {
1640 	return !(dev->type == &part_type);
1641 }
1642 #else
device_is_not_partition(struct device * dev)1643 static inline int device_is_not_partition(struct device *dev)
1644 {
1645 	return 1;
1646 }
1647 #endif
1648 
1649 static int
device_platform_notify(struct device * dev,enum kobject_action action)1650 device_platform_notify(struct device *dev, enum kobject_action action)
1651 {
1652 	int ret;
1653 
1654 	ret = acpi_platform_notify(dev, action);
1655 	if (ret)
1656 		return ret;
1657 
1658 	ret = software_node_notify(dev, action);
1659 	if (ret)
1660 		return ret;
1661 
1662 	if (platform_notify && action == KOBJ_ADD)
1663 		platform_notify(dev);
1664 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1665 		platform_notify_remove(dev);
1666 	return 0;
1667 }
1668 
1669 /**
1670  * dev_driver_string - Return a device's driver name, if at all possible
1671  * @dev: struct device to get the name of
1672  *
1673  * Will return the device's driver's name if it is bound to a device.  If
1674  * the device is not bound to a driver, it will return the name of the bus
1675  * it is attached to.  If it is not attached to a bus either, an empty
1676  * string will be returned.
1677  */
dev_driver_string(const struct device * dev)1678 const char *dev_driver_string(const struct device *dev)
1679 {
1680 	struct device_driver *drv;
1681 
1682 	/* dev->driver can change to NULL underneath us because of unbinding,
1683 	 * so be careful about accessing it.  dev->bus and dev->class should
1684 	 * never change once they are set, so they don't need special care.
1685 	 */
1686 	drv = READ_ONCE(dev->driver);
1687 	return drv ? drv->name : dev_bus_name(dev);
1688 }
1689 EXPORT_SYMBOL(dev_driver_string);
1690 
1691 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1692 
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1693 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1694 			     char *buf)
1695 {
1696 	struct device_attribute *dev_attr = to_dev_attr(attr);
1697 	struct device *dev = kobj_to_dev(kobj);
1698 	ssize_t ret = -EIO;
1699 
1700 	if (dev_attr->show)
1701 		ret = dev_attr->show(dev, dev_attr, buf);
1702 	if (ret >= (ssize_t)PAGE_SIZE) {
1703 		printk("dev_attr_show: %pS returned bad count\n",
1704 				dev_attr->show);
1705 	}
1706 	return ret;
1707 }
1708 
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1709 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1710 			      const char *buf, size_t count)
1711 {
1712 	struct device_attribute *dev_attr = to_dev_attr(attr);
1713 	struct device *dev = kobj_to_dev(kobj);
1714 	ssize_t ret = -EIO;
1715 
1716 	if (dev_attr->store)
1717 		ret = dev_attr->store(dev, dev_attr, buf, count);
1718 	return ret;
1719 }
1720 
1721 static const struct sysfs_ops dev_sysfs_ops = {
1722 	.show	= dev_attr_show,
1723 	.store	= dev_attr_store,
1724 };
1725 
1726 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1727 
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1728 ssize_t device_store_ulong(struct device *dev,
1729 			   struct device_attribute *attr,
1730 			   const char *buf, size_t size)
1731 {
1732 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1733 	int ret;
1734 	unsigned long new;
1735 
1736 	ret = kstrtoul(buf, 0, &new);
1737 	if (ret)
1738 		return ret;
1739 	*(unsigned long *)(ea->var) = new;
1740 	/* Always return full write size even if we didn't consume all */
1741 	return size;
1742 }
1743 EXPORT_SYMBOL_GPL(device_store_ulong);
1744 
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)1745 ssize_t device_show_ulong(struct device *dev,
1746 			  struct device_attribute *attr,
1747 			  char *buf)
1748 {
1749 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1750 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1751 }
1752 EXPORT_SYMBOL_GPL(device_show_ulong);
1753 
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1754 ssize_t device_store_int(struct device *dev,
1755 			 struct device_attribute *attr,
1756 			 const char *buf, size_t size)
1757 {
1758 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1759 	int ret;
1760 	long new;
1761 
1762 	ret = kstrtol(buf, 0, &new);
1763 	if (ret)
1764 		return ret;
1765 
1766 	if (new > INT_MAX || new < INT_MIN)
1767 		return -EINVAL;
1768 	*(int *)(ea->var) = new;
1769 	/* Always return full write size even if we didn't consume all */
1770 	return size;
1771 }
1772 EXPORT_SYMBOL_GPL(device_store_int);
1773 
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)1774 ssize_t device_show_int(struct device *dev,
1775 			struct device_attribute *attr,
1776 			char *buf)
1777 {
1778 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1779 
1780 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1781 }
1782 EXPORT_SYMBOL_GPL(device_show_int);
1783 
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1784 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1785 			  const char *buf, size_t size)
1786 {
1787 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1788 
1789 	if (strtobool(buf, ea->var) < 0)
1790 		return -EINVAL;
1791 
1792 	return size;
1793 }
1794 EXPORT_SYMBOL_GPL(device_store_bool);
1795 
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)1796 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1797 			 char *buf)
1798 {
1799 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1800 
1801 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1802 }
1803 EXPORT_SYMBOL_GPL(device_show_bool);
1804 
1805 /**
1806  * device_release - free device structure.
1807  * @kobj: device's kobject.
1808  *
1809  * This is called once the reference count for the object
1810  * reaches 0. We forward the call to the device's release
1811  * method, which should handle actually freeing the structure.
1812  */
device_release(struct kobject * kobj)1813 static void device_release(struct kobject *kobj)
1814 {
1815 	struct device *dev = kobj_to_dev(kobj);
1816 	struct device_private *p = dev->p;
1817 
1818 	/*
1819 	 * Some platform devices are driven without driver attached
1820 	 * and managed resources may have been acquired.  Make sure
1821 	 * all resources are released.
1822 	 *
1823 	 * Drivers still can add resources into device after device
1824 	 * is deleted but alive, so release devres here to avoid
1825 	 * possible memory leak.
1826 	 */
1827 	devres_release_all(dev);
1828 
1829 	kfree(dev->dma_range_map);
1830 
1831 	if (dev->release)
1832 		dev->release(dev);
1833 	else if (dev->type && dev->type->release)
1834 		dev->type->release(dev);
1835 	else if (dev->class && dev->class->dev_release)
1836 		dev->class->dev_release(dev);
1837 	else
1838 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1839 			dev_name(dev));
1840 	kfree(p);
1841 }
1842 
device_namespace(struct kobject * kobj)1843 static const void *device_namespace(struct kobject *kobj)
1844 {
1845 	struct device *dev = kobj_to_dev(kobj);
1846 	const void *ns = NULL;
1847 
1848 	if (dev->class && dev->class->ns_type)
1849 		ns = dev->class->namespace(dev);
1850 
1851 	return ns;
1852 }
1853 
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1854 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1855 {
1856 	struct device *dev = kobj_to_dev(kobj);
1857 
1858 	if (dev->class && dev->class->get_ownership)
1859 		dev->class->get_ownership(dev, uid, gid);
1860 }
1861 
1862 static struct kobj_type device_ktype = {
1863 	.release	= device_release,
1864 	.sysfs_ops	= &dev_sysfs_ops,
1865 	.namespace	= device_namespace,
1866 	.get_ownership	= device_get_ownership,
1867 };
1868 
1869 
dev_uevent_filter(struct kset * kset,struct kobject * kobj)1870 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1871 {
1872 	struct kobj_type *ktype = get_ktype(kobj);
1873 
1874 	if (ktype == &device_ktype) {
1875 		struct device *dev = kobj_to_dev(kobj);
1876 		if (dev->bus)
1877 			return 1;
1878 		if (dev->class)
1879 			return 1;
1880 	}
1881 	return 0;
1882 }
1883 
dev_uevent_name(struct kset * kset,struct kobject * kobj)1884 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1885 {
1886 	struct device *dev = kobj_to_dev(kobj);
1887 
1888 	if (dev->bus)
1889 		return dev->bus->name;
1890 	if (dev->class)
1891 		return dev->class->name;
1892 	return NULL;
1893 }
1894 
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)1895 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1896 		      struct kobj_uevent_env *env)
1897 {
1898 	struct device *dev = kobj_to_dev(kobj);
1899 	int retval = 0;
1900 
1901 	/* add device node properties if present */
1902 	if (MAJOR(dev->devt)) {
1903 		const char *tmp;
1904 		const char *name;
1905 		umode_t mode = 0;
1906 		kuid_t uid = GLOBAL_ROOT_UID;
1907 		kgid_t gid = GLOBAL_ROOT_GID;
1908 
1909 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1910 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1911 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1912 		if (name) {
1913 			add_uevent_var(env, "DEVNAME=%s", name);
1914 			if (mode)
1915 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1916 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1917 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1918 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1919 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1920 			kfree(tmp);
1921 		}
1922 	}
1923 
1924 	if (dev->type && dev->type->name)
1925 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1926 
1927 	if (dev->driver)
1928 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1929 
1930 	/* Add common DT information about the device */
1931 	of_device_uevent(dev, env);
1932 
1933 	/* have the bus specific function add its stuff */
1934 	if (dev->bus && dev->bus->uevent) {
1935 		retval = dev->bus->uevent(dev, env);
1936 		if (retval)
1937 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1938 				 dev_name(dev), __func__, retval);
1939 	}
1940 
1941 	/* have the class specific function add its stuff */
1942 	if (dev->class && dev->class->dev_uevent) {
1943 		retval = dev->class->dev_uevent(dev, env);
1944 		if (retval)
1945 			pr_debug("device: '%s': %s: class uevent() "
1946 				 "returned %d\n", dev_name(dev),
1947 				 __func__, retval);
1948 	}
1949 
1950 	/* have the device type specific function add its stuff */
1951 	if (dev->type && dev->type->uevent) {
1952 		retval = dev->type->uevent(dev, env);
1953 		if (retval)
1954 			pr_debug("device: '%s': %s: dev_type uevent() "
1955 				 "returned %d\n", dev_name(dev),
1956 				 __func__, retval);
1957 	}
1958 
1959 	return retval;
1960 }
1961 
1962 static const struct kset_uevent_ops device_uevent_ops = {
1963 	.filter =	dev_uevent_filter,
1964 	.name =		dev_uevent_name,
1965 	.uevent =	dev_uevent,
1966 };
1967 
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)1968 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1969 			   char *buf)
1970 {
1971 	struct kobject *top_kobj;
1972 	struct kset *kset;
1973 	struct kobj_uevent_env *env = NULL;
1974 	int i;
1975 	int len = 0;
1976 	int retval;
1977 
1978 	/* search the kset, the device belongs to */
1979 	top_kobj = &dev->kobj;
1980 	while (!top_kobj->kset && top_kobj->parent)
1981 		top_kobj = top_kobj->parent;
1982 	if (!top_kobj->kset)
1983 		goto out;
1984 
1985 	kset = top_kobj->kset;
1986 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1987 		goto out;
1988 
1989 	/* respect filter */
1990 	if (kset->uevent_ops && kset->uevent_ops->filter)
1991 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1992 			goto out;
1993 
1994 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1995 	if (!env)
1996 		return -ENOMEM;
1997 
1998 	/* let the kset specific function add its keys */
1999 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2000 	if (retval)
2001 		goto out;
2002 
2003 	/* copy keys to file */
2004 	for (i = 0; i < env->envp_idx; i++)
2005 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2006 out:
2007 	kfree(env);
2008 	return len;
2009 }
2010 
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2011 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2012 			    const char *buf, size_t count)
2013 {
2014 	int rc;
2015 
2016 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2017 
2018 	if (rc) {
2019 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2020 		return rc;
2021 	}
2022 
2023 	return count;
2024 }
2025 static DEVICE_ATTR_RW(uevent);
2026 
online_show(struct device * dev,struct device_attribute * attr,char * buf)2027 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2028 			   char *buf)
2029 {
2030 	bool val;
2031 
2032 	device_lock(dev);
2033 	val = !dev->offline;
2034 	device_unlock(dev);
2035 	return sysfs_emit(buf, "%u\n", val);
2036 }
2037 
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2038 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2039 			    const char *buf, size_t count)
2040 {
2041 	bool val;
2042 	int ret;
2043 
2044 	ret = strtobool(buf, &val);
2045 	if (ret < 0)
2046 		return ret;
2047 
2048 	ret = lock_device_hotplug_sysfs();
2049 	if (ret)
2050 		return ret;
2051 
2052 	ret = val ? device_online(dev) : device_offline(dev);
2053 	unlock_device_hotplug();
2054 	return ret < 0 ? ret : count;
2055 }
2056 static DEVICE_ATTR_RW(online);
2057 
device_add_groups(struct device * dev,const struct attribute_group ** groups)2058 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2059 {
2060 	return sysfs_create_groups(&dev->kobj, groups);
2061 }
2062 EXPORT_SYMBOL_GPL(device_add_groups);
2063 
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2064 void device_remove_groups(struct device *dev,
2065 			  const struct attribute_group **groups)
2066 {
2067 	sysfs_remove_groups(&dev->kobj, groups);
2068 }
2069 EXPORT_SYMBOL_GPL(device_remove_groups);
2070 
2071 union device_attr_group_devres {
2072 	const struct attribute_group *group;
2073 	const struct attribute_group **groups;
2074 };
2075 
devm_attr_group_match(struct device * dev,void * res,void * data)2076 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2077 {
2078 	return ((union device_attr_group_devres *)res)->group == data;
2079 }
2080 
devm_attr_group_remove(struct device * dev,void * res)2081 static void devm_attr_group_remove(struct device *dev, void *res)
2082 {
2083 	union device_attr_group_devres *devres = res;
2084 	const struct attribute_group *group = devres->group;
2085 
2086 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2087 	sysfs_remove_group(&dev->kobj, group);
2088 }
2089 
devm_attr_groups_remove(struct device * dev,void * res)2090 static void devm_attr_groups_remove(struct device *dev, void *res)
2091 {
2092 	union device_attr_group_devres *devres = res;
2093 	const struct attribute_group **groups = devres->groups;
2094 
2095 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2096 	sysfs_remove_groups(&dev->kobj, groups);
2097 }
2098 
2099 /**
2100  * devm_device_add_group - given a device, create a managed attribute group
2101  * @dev:	The device to create the group for
2102  * @grp:	The attribute group to create
2103  *
2104  * This function creates a group for the first time.  It will explicitly
2105  * warn and error if any of the attribute files being created already exist.
2106  *
2107  * Returns 0 on success or error code on failure.
2108  */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2109 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2110 {
2111 	union device_attr_group_devres *devres;
2112 	int error;
2113 
2114 	devres = devres_alloc(devm_attr_group_remove,
2115 			      sizeof(*devres), GFP_KERNEL);
2116 	if (!devres)
2117 		return -ENOMEM;
2118 
2119 	error = sysfs_create_group(&dev->kobj, grp);
2120 	if (error) {
2121 		devres_free(devres);
2122 		return error;
2123 	}
2124 
2125 	devres->group = grp;
2126 	devres_add(dev, devres);
2127 	return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(devm_device_add_group);
2130 
2131 /**
2132  * devm_device_remove_group: remove a managed group from a device
2133  * @dev:	device to remove the group from
2134  * @grp:	group to remove
2135  *
2136  * This function removes a group of attributes from a device. The attributes
2137  * previously have to have been created for this group, otherwise it will fail.
2138  */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)2139 void devm_device_remove_group(struct device *dev,
2140 			      const struct attribute_group *grp)
2141 {
2142 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2143 			       devm_attr_group_match,
2144 			       /* cast away const */ (void *)grp));
2145 }
2146 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2147 
2148 /**
2149  * devm_device_add_groups - create a bunch of managed attribute groups
2150  * @dev:	The device to create the group for
2151  * @groups:	The attribute groups to create, NULL terminated
2152  *
2153  * This function creates a bunch of managed attribute groups.  If an error
2154  * occurs when creating a group, all previously created groups will be
2155  * removed, unwinding everything back to the original state when this
2156  * function was called.  It will explicitly warn and error if any of the
2157  * attribute files being created already exist.
2158  *
2159  * Returns 0 on success or error code from sysfs_create_group on failure.
2160  */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2161 int devm_device_add_groups(struct device *dev,
2162 			   const struct attribute_group **groups)
2163 {
2164 	union device_attr_group_devres *devres;
2165 	int error;
2166 
2167 	devres = devres_alloc(devm_attr_groups_remove,
2168 			      sizeof(*devres), GFP_KERNEL);
2169 	if (!devres)
2170 		return -ENOMEM;
2171 
2172 	error = sysfs_create_groups(&dev->kobj, groups);
2173 	if (error) {
2174 		devres_free(devres);
2175 		return error;
2176 	}
2177 
2178 	devres->groups = groups;
2179 	devres_add(dev, devres);
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2183 
2184 /**
2185  * devm_device_remove_groups - remove a list of managed groups
2186  *
2187  * @dev:	The device for the groups to be removed from
2188  * @groups:	NULL terminated list of groups to be removed
2189  *
2190  * If groups is not NULL, remove the specified groups from the device.
2191  */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)2192 void devm_device_remove_groups(struct device *dev,
2193 			       const struct attribute_group **groups)
2194 {
2195 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2196 			       devm_attr_group_match,
2197 			       /* cast away const */ (void *)groups));
2198 }
2199 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2200 
device_add_attrs(struct device * dev)2201 static int device_add_attrs(struct device *dev)
2202 {
2203 	struct class *class = dev->class;
2204 	const struct device_type *type = dev->type;
2205 	int error;
2206 
2207 	if (class) {
2208 		error = device_add_groups(dev, class->dev_groups);
2209 		if (error)
2210 			return error;
2211 	}
2212 
2213 	if (type) {
2214 		error = device_add_groups(dev, type->groups);
2215 		if (error)
2216 			goto err_remove_class_groups;
2217 	}
2218 
2219 	error = device_add_groups(dev, dev->groups);
2220 	if (error)
2221 		goto err_remove_type_groups;
2222 
2223 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2224 		error = device_create_file(dev, &dev_attr_online);
2225 		if (error)
2226 			goto err_remove_dev_groups;
2227 	}
2228 
2229 	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2230 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2231 		if (error)
2232 			goto err_remove_dev_online;
2233 	}
2234 
2235 	return 0;
2236 
2237  err_remove_dev_online:
2238 	device_remove_file(dev, &dev_attr_online);
2239  err_remove_dev_groups:
2240 	device_remove_groups(dev, dev->groups);
2241  err_remove_type_groups:
2242 	if (type)
2243 		device_remove_groups(dev, type->groups);
2244  err_remove_class_groups:
2245 	if (class)
2246 		device_remove_groups(dev, class->dev_groups);
2247 
2248 	return error;
2249 }
2250 
device_remove_attrs(struct device * dev)2251 static void device_remove_attrs(struct device *dev)
2252 {
2253 	struct class *class = dev->class;
2254 	const struct device_type *type = dev->type;
2255 
2256 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2257 	device_remove_file(dev, &dev_attr_online);
2258 	device_remove_groups(dev, dev->groups);
2259 
2260 	if (type)
2261 		device_remove_groups(dev, type->groups);
2262 
2263 	if (class)
2264 		device_remove_groups(dev, class->dev_groups);
2265 }
2266 
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2267 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2268 			char *buf)
2269 {
2270 	return print_dev_t(buf, dev->devt);
2271 }
2272 static DEVICE_ATTR_RO(dev);
2273 
2274 /* /sys/devices/ */
2275 struct kset *devices_kset;
2276 
2277 /**
2278  * devices_kset_move_before - Move device in the devices_kset's list.
2279  * @deva: Device to move.
2280  * @devb: Device @deva should come before.
2281  */
devices_kset_move_before(struct device * deva,struct device * devb)2282 static void devices_kset_move_before(struct device *deva, struct device *devb)
2283 {
2284 	if (!devices_kset)
2285 		return;
2286 	pr_debug("devices_kset: Moving %s before %s\n",
2287 		 dev_name(deva), dev_name(devb));
2288 	spin_lock(&devices_kset->list_lock);
2289 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2290 	spin_unlock(&devices_kset->list_lock);
2291 }
2292 
2293 /**
2294  * devices_kset_move_after - Move device in the devices_kset's list.
2295  * @deva: Device to move
2296  * @devb: Device @deva should come after.
2297  */
devices_kset_move_after(struct device * deva,struct device * devb)2298 static void devices_kset_move_after(struct device *deva, struct device *devb)
2299 {
2300 	if (!devices_kset)
2301 		return;
2302 	pr_debug("devices_kset: Moving %s after %s\n",
2303 		 dev_name(deva), dev_name(devb));
2304 	spin_lock(&devices_kset->list_lock);
2305 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2306 	spin_unlock(&devices_kset->list_lock);
2307 }
2308 
2309 /**
2310  * devices_kset_move_last - move the device to the end of devices_kset's list.
2311  * @dev: device to move
2312  */
devices_kset_move_last(struct device * dev)2313 void devices_kset_move_last(struct device *dev)
2314 {
2315 	if (!devices_kset)
2316 		return;
2317 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2318 	spin_lock(&devices_kset->list_lock);
2319 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2320 	spin_unlock(&devices_kset->list_lock);
2321 }
2322 
2323 /**
2324  * device_create_file - create sysfs attribute file for device.
2325  * @dev: device.
2326  * @attr: device attribute descriptor.
2327  */
device_create_file(struct device * dev,const struct device_attribute * attr)2328 int device_create_file(struct device *dev,
2329 		       const struct device_attribute *attr)
2330 {
2331 	int error = 0;
2332 
2333 	if (dev) {
2334 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2335 			"Attribute %s: write permission without 'store'\n",
2336 			attr->attr.name);
2337 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2338 			"Attribute %s: read permission without 'show'\n",
2339 			attr->attr.name);
2340 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2341 	}
2342 
2343 	return error;
2344 }
2345 EXPORT_SYMBOL_GPL(device_create_file);
2346 
2347 /**
2348  * device_remove_file - remove sysfs attribute file.
2349  * @dev: device.
2350  * @attr: device attribute descriptor.
2351  */
device_remove_file(struct device * dev,const struct device_attribute * attr)2352 void device_remove_file(struct device *dev,
2353 			const struct device_attribute *attr)
2354 {
2355 	if (dev)
2356 		sysfs_remove_file(&dev->kobj, &attr->attr);
2357 }
2358 EXPORT_SYMBOL_GPL(device_remove_file);
2359 
2360 /**
2361  * device_remove_file_self - remove sysfs attribute file from its own method.
2362  * @dev: device.
2363  * @attr: device attribute descriptor.
2364  *
2365  * See kernfs_remove_self() for details.
2366  */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)2367 bool device_remove_file_self(struct device *dev,
2368 			     const struct device_attribute *attr)
2369 {
2370 	if (dev)
2371 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2372 	else
2373 		return false;
2374 }
2375 EXPORT_SYMBOL_GPL(device_remove_file_self);
2376 
2377 /**
2378  * device_create_bin_file - create sysfs binary attribute file for device.
2379  * @dev: device.
2380  * @attr: device binary attribute descriptor.
2381  */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)2382 int device_create_bin_file(struct device *dev,
2383 			   const struct bin_attribute *attr)
2384 {
2385 	int error = -EINVAL;
2386 	if (dev)
2387 		error = sysfs_create_bin_file(&dev->kobj, attr);
2388 	return error;
2389 }
2390 EXPORT_SYMBOL_GPL(device_create_bin_file);
2391 
2392 /**
2393  * device_remove_bin_file - remove sysfs binary attribute file
2394  * @dev: device.
2395  * @attr: device binary attribute descriptor.
2396  */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)2397 void device_remove_bin_file(struct device *dev,
2398 			    const struct bin_attribute *attr)
2399 {
2400 	if (dev)
2401 		sysfs_remove_bin_file(&dev->kobj, attr);
2402 }
2403 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2404 
klist_children_get(struct klist_node * n)2405 static void klist_children_get(struct klist_node *n)
2406 {
2407 	struct device_private *p = to_device_private_parent(n);
2408 	struct device *dev = p->device;
2409 
2410 	get_device(dev);
2411 }
2412 
klist_children_put(struct klist_node * n)2413 static void klist_children_put(struct klist_node *n)
2414 {
2415 	struct device_private *p = to_device_private_parent(n);
2416 	struct device *dev = p->device;
2417 
2418 	put_device(dev);
2419 }
2420 
2421 /**
2422  * device_initialize - init device structure.
2423  * @dev: device.
2424  *
2425  * This prepares the device for use by other layers by initializing
2426  * its fields.
2427  * It is the first half of device_register(), if called by
2428  * that function, though it can also be called separately, so one
2429  * may use @dev's fields. In particular, get_device()/put_device()
2430  * may be used for reference counting of @dev after calling this
2431  * function.
2432  *
2433  * All fields in @dev must be initialized by the caller to 0, except
2434  * for those explicitly set to some other value.  The simplest
2435  * approach is to use kzalloc() to allocate the structure containing
2436  * @dev.
2437  *
2438  * NOTE: Use put_device() to give up your reference instead of freeing
2439  * @dev directly once you have called this function.
2440  */
device_initialize(struct device * dev)2441 void device_initialize(struct device *dev)
2442 {
2443 	dev->kobj.kset = devices_kset;
2444 	kobject_init(&dev->kobj, &device_ktype);
2445 	INIT_LIST_HEAD(&dev->dma_pools);
2446 	mutex_init(&dev->mutex);
2447 #ifdef CONFIG_PROVE_LOCKING
2448 	mutex_init(&dev->lockdep_mutex);
2449 #endif
2450 	lockdep_set_novalidate_class(&dev->mutex);
2451 	spin_lock_init(&dev->devres_lock);
2452 	INIT_LIST_HEAD(&dev->devres_head);
2453 	device_pm_init(dev);
2454 	set_dev_node(dev, -1);
2455 #ifdef CONFIG_GENERIC_MSI_IRQ
2456 	raw_spin_lock_init(&dev->msi_lock);
2457 	INIT_LIST_HEAD(&dev->msi_list);
2458 #endif
2459 	INIT_LIST_HEAD(&dev->links.consumers);
2460 	INIT_LIST_HEAD(&dev->links.suppliers);
2461 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2462 	INIT_LIST_HEAD(&dev->links.defer_hook);
2463 	dev->links.status = DL_DEV_NO_DRIVER;
2464 }
2465 EXPORT_SYMBOL_GPL(device_initialize);
2466 
virtual_device_parent(struct device * dev)2467 struct kobject *virtual_device_parent(struct device *dev)
2468 {
2469 	static struct kobject *virtual_dir = NULL;
2470 
2471 	if (!virtual_dir)
2472 		virtual_dir = kobject_create_and_add("virtual",
2473 						     &devices_kset->kobj);
2474 
2475 	return virtual_dir;
2476 }
2477 
2478 struct class_dir {
2479 	struct kobject kobj;
2480 	struct class *class;
2481 };
2482 
2483 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2484 
class_dir_release(struct kobject * kobj)2485 static void class_dir_release(struct kobject *kobj)
2486 {
2487 	struct class_dir *dir = to_class_dir(kobj);
2488 	kfree(dir);
2489 }
2490 
2491 static const
class_dir_child_ns_type(struct kobject * kobj)2492 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2493 {
2494 	struct class_dir *dir = to_class_dir(kobj);
2495 	return dir->class->ns_type;
2496 }
2497 
2498 static struct kobj_type class_dir_ktype = {
2499 	.release	= class_dir_release,
2500 	.sysfs_ops	= &kobj_sysfs_ops,
2501 	.child_ns_type	= class_dir_child_ns_type
2502 };
2503 
2504 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)2505 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2506 {
2507 	struct class_dir *dir;
2508 	int retval;
2509 
2510 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2511 	if (!dir)
2512 		return ERR_PTR(-ENOMEM);
2513 
2514 	dir->class = class;
2515 	kobject_init(&dir->kobj, &class_dir_ktype);
2516 
2517 	dir->kobj.kset = &class->p->glue_dirs;
2518 
2519 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2520 	if (retval < 0) {
2521 		kobject_put(&dir->kobj);
2522 		return ERR_PTR(retval);
2523 	}
2524 	return &dir->kobj;
2525 }
2526 
2527 static DEFINE_MUTEX(gdp_mutex);
2528 
get_device_parent(struct device * dev,struct device * parent)2529 static struct kobject *get_device_parent(struct device *dev,
2530 					 struct device *parent)
2531 {
2532 	if (dev->class) {
2533 		struct kobject *kobj = NULL;
2534 		struct kobject *parent_kobj;
2535 		struct kobject *k;
2536 
2537 #ifdef CONFIG_BLOCK
2538 		/* block disks show up in /sys/block */
2539 		if (sysfs_deprecated && dev->class == &block_class) {
2540 			if (parent && parent->class == &block_class)
2541 				return &parent->kobj;
2542 			return &block_class.p->subsys.kobj;
2543 		}
2544 #endif
2545 
2546 		/*
2547 		 * If we have no parent, we live in "virtual".
2548 		 * Class-devices with a non class-device as parent, live
2549 		 * in a "glue" directory to prevent namespace collisions.
2550 		 */
2551 		if (parent == NULL)
2552 			parent_kobj = virtual_device_parent(dev);
2553 		else if (parent->class && !dev->class->ns_type)
2554 			return &parent->kobj;
2555 		else
2556 			parent_kobj = &parent->kobj;
2557 
2558 		mutex_lock(&gdp_mutex);
2559 
2560 		/* find our class-directory at the parent and reference it */
2561 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2562 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2563 			if (k->parent == parent_kobj) {
2564 				kobj = kobject_get(k);
2565 				break;
2566 			}
2567 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2568 		if (kobj) {
2569 			mutex_unlock(&gdp_mutex);
2570 			return kobj;
2571 		}
2572 
2573 		/* or create a new class-directory at the parent device */
2574 		k = class_dir_create_and_add(dev->class, parent_kobj);
2575 		/* do not emit an uevent for this simple "glue" directory */
2576 		mutex_unlock(&gdp_mutex);
2577 		return k;
2578 	}
2579 
2580 	/* subsystems can specify a default root directory for their devices */
2581 	if (!parent && dev->bus && dev->bus->dev_root)
2582 		return &dev->bus->dev_root->kobj;
2583 
2584 	if (parent)
2585 		return &parent->kobj;
2586 	return NULL;
2587 }
2588 
live_in_glue_dir(struct kobject * kobj,struct device * dev)2589 static inline bool live_in_glue_dir(struct kobject *kobj,
2590 				    struct device *dev)
2591 {
2592 	if (!kobj || !dev->class ||
2593 	    kobj->kset != &dev->class->p->glue_dirs)
2594 		return false;
2595 	return true;
2596 }
2597 
get_glue_dir(struct device * dev)2598 static inline struct kobject *get_glue_dir(struct device *dev)
2599 {
2600 	return dev->kobj.parent;
2601 }
2602 
2603 /*
2604  * make sure cleaning up dir as the last step, we need to make
2605  * sure .release handler of kobject is run with holding the
2606  * global lock
2607  */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)2608 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2609 {
2610 	unsigned int ref;
2611 
2612 	/* see if we live in a "glue" directory */
2613 	if (!live_in_glue_dir(glue_dir, dev))
2614 		return;
2615 
2616 	mutex_lock(&gdp_mutex);
2617 	/**
2618 	 * There is a race condition between removing glue directory
2619 	 * and adding a new device under the glue directory.
2620 	 *
2621 	 * CPU1:                                         CPU2:
2622 	 *
2623 	 * device_add()
2624 	 *   get_device_parent()
2625 	 *     class_dir_create_and_add()
2626 	 *       kobject_add_internal()
2627 	 *         create_dir()    // create glue_dir
2628 	 *
2629 	 *                                               device_add()
2630 	 *                                                 get_device_parent()
2631 	 *                                                   kobject_get() // get glue_dir
2632 	 *
2633 	 * device_del()
2634 	 *   cleanup_glue_dir()
2635 	 *     kobject_del(glue_dir)
2636 	 *
2637 	 *                                               kobject_add()
2638 	 *                                                 kobject_add_internal()
2639 	 *                                                   create_dir() // in glue_dir
2640 	 *                                                     sysfs_create_dir_ns()
2641 	 *                                                       kernfs_create_dir_ns(sd)
2642 	 *
2643 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2644 	 *       sysfs_put()        // free glue_dir->sd
2645 	 *
2646 	 *                                                         // sd is freed
2647 	 *                                                         kernfs_new_node(sd)
2648 	 *                                                           kernfs_get(glue_dir)
2649 	 *                                                           kernfs_add_one()
2650 	 *                                                           kernfs_put()
2651 	 *
2652 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2653 	 * a new device under glue dir, the glue_dir kobject reference count
2654 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2655 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2656 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2657 	 *
2658 	 * Then the CPU2 will see a stale "empty" but still potentially used
2659 	 * glue dir around in kernfs_new_node().
2660 	 *
2661 	 * In order to avoid this happening, we also should make sure that
2662 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2663 	 * for glue_dir kobj is 1.
2664 	 */
2665 	ref = kref_read(&glue_dir->kref);
2666 	if (!kobject_has_children(glue_dir) && !--ref)
2667 		kobject_del(glue_dir);
2668 	kobject_put(glue_dir);
2669 	mutex_unlock(&gdp_mutex);
2670 }
2671 
device_add_class_symlinks(struct device * dev)2672 static int device_add_class_symlinks(struct device *dev)
2673 {
2674 	struct device_node *of_node = dev_of_node(dev);
2675 	int error;
2676 
2677 	if (of_node) {
2678 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2679 		if (error)
2680 			dev_warn(dev, "Error %d creating of_node link\n",error);
2681 		/* An error here doesn't warrant bringing down the device */
2682 	}
2683 
2684 	if (!dev->class)
2685 		return 0;
2686 
2687 	error = sysfs_create_link(&dev->kobj,
2688 				  &dev->class->p->subsys.kobj,
2689 				  "subsystem");
2690 	if (error)
2691 		goto out_devnode;
2692 
2693 	if (dev->parent && device_is_not_partition(dev)) {
2694 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2695 					  "device");
2696 		if (error)
2697 			goto out_subsys;
2698 	}
2699 
2700 #ifdef CONFIG_BLOCK
2701 	/* /sys/block has directories and does not need symlinks */
2702 	if (sysfs_deprecated && dev->class == &block_class)
2703 		return 0;
2704 #endif
2705 
2706 	/* link in the class directory pointing to the device */
2707 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2708 				  &dev->kobj, dev_name(dev));
2709 	if (error)
2710 		goto out_device;
2711 
2712 	return 0;
2713 
2714 out_device:
2715 	sysfs_remove_link(&dev->kobj, "device");
2716 
2717 out_subsys:
2718 	sysfs_remove_link(&dev->kobj, "subsystem");
2719 out_devnode:
2720 	sysfs_remove_link(&dev->kobj, "of_node");
2721 	return error;
2722 }
2723 
device_remove_class_symlinks(struct device * dev)2724 static void device_remove_class_symlinks(struct device *dev)
2725 {
2726 	if (dev_of_node(dev))
2727 		sysfs_remove_link(&dev->kobj, "of_node");
2728 
2729 	if (!dev->class)
2730 		return;
2731 
2732 	if (dev->parent && device_is_not_partition(dev))
2733 		sysfs_remove_link(&dev->kobj, "device");
2734 	sysfs_remove_link(&dev->kobj, "subsystem");
2735 #ifdef CONFIG_BLOCK
2736 	if (sysfs_deprecated && dev->class == &block_class)
2737 		return;
2738 #endif
2739 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2740 }
2741 
2742 /**
2743  * dev_set_name - set a device name
2744  * @dev: device
2745  * @fmt: format string for the device's name
2746  */
dev_set_name(struct device * dev,const char * fmt,...)2747 int dev_set_name(struct device *dev, const char *fmt, ...)
2748 {
2749 	va_list vargs;
2750 	int err;
2751 
2752 	va_start(vargs, fmt);
2753 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2754 	va_end(vargs);
2755 	return err;
2756 }
2757 EXPORT_SYMBOL_GPL(dev_set_name);
2758 
2759 /**
2760  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2761  * @dev: device
2762  *
2763  * By default we select char/ for new entries.  Setting class->dev_obj
2764  * to NULL prevents an entry from being created.  class->dev_kobj must
2765  * be set (or cleared) before any devices are registered to the class
2766  * otherwise device_create_sys_dev_entry() and
2767  * device_remove_sys_dev_entry() will disagree about the presence of
2768  * the link.
2769  */
device_to_dev_kobj(struct device * dev)2770 static struct kobject *device_to_dev_kobj(struct device *dev)
2771 {
2772 	struct kobject *kobj;
2773 
2774 	if (dev->class)
2775 		kobj = dev->class->dev_kobj;
2776 	else
2777 		kobj = sysfs_dev_char_kobj;
2778 
2779 	return kobj;
2780 }
2781 
device_create_sys_dev_entry(struct device * dev)2782 static int device_create_sys_dev_entry(struct device *dev)
2783 {
2784 	struct kobject *kobj = device_to_dev_kobj(dev);
2785 	int error = 0;
2786 	char devt_str[15];
2787 
2788 	if (kobj) {
2789 		format_dev_t(devt_str, dev->devt);
2790 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2791 	}
2792 
2793 	return error;
2794 }
2795 
device_remove_sys_dev_entry(struct device * dev)2796 static void device_remove_sys_dev_entry(struct device *dev)
2797 {
2798 	struct kobject *kobj = device_to_dev_kobj(dev);
2799 	char devt_str[15];
2800 
2801 	if (kobj) {
2802 		format_dev_t(devt_str, dev->devt);
2803 		sysfs_remove_link(kobj, devt_str);
2804 	}
2805 }
2806 
device_private_init(struct device * dev)2807 static int device_private_init(struct device *dev)
2808 {
2809 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2810 	if (!dev->p)
2811 		return -ENOMEM;
2812 	dev->p->device = dev;
2813 	klist_init(&dev->p->klist_children, klist_children_get,
2814 		   klist_children_put);
2815 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2816 	return 0;
2817 }
2818 
2819 /**
2820  * device_add - add device to device hierarchy.
2821  * @dev: device.
2822  *
2823  * This is part 2 of device_register(), though may be called
2824  * separately _iff_ device_initialize() has been called separately.
2825  *
2826  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2827  * to the global and sibling lists for the device, then
2828  * adds it to the other relevant subsystems of the driver model.
2829  *
2830  * Do not call this routine or device_register() more than once for
2831  * any device structure.  The driver model core is not designed to work
2832  * with devices that get unregistered and then spring back to life.
2833  * (Among other things, it's very hard to guarantee that all references
2834  * to the previous incarnation of @dev have been dropped.)  Allocate
2835  * and register a fresh new struct device instead.
2836  *
2837  * NOTE: _Never_ directly free @dev after calling this function, even
2838  * if it returned an error! Always use put_device() to give up your
2839  * reference instead.
2840  *
2841  * Rule of thumb is: if device_add() succeeds, you should call
2842  * device_del() when you want to get rid of it. If device_add() has
2843  * *not* succeeded, use *only* put_device() to drop the reference
2844  * count.
2845  */
device_add(struct device * dev)2846 int device_add(struct device *dev)
2847 {
2848 	struct device *parent;
2849 	struct kobject *kobj;
2850 	struct class_interface *class_intf;
2851 	int error = -EINVAL;
2852 	struct kobject *glue_dir = NULL;
2853 
2854 	dev = get_device(dev);
2855 	if (!dev)
2856 		goto done;
2857 
2858 	if (!dev->p) {
2859 		error = device_private_init(dev);
2860 		if (error)
2861 			goto done;
2862 	}
2863 
2864 	/*
2865 	 * for statically allocated devices, which should all be converted
2866 	 * some day, we need to initialize the name. We prevent reading back
2867 	 * the name, and force the use of dev_name()
2868 	 */
2869 	if (dev->init_name) {
2870 		dev_set_name(dev, "%s", dev->init_name);
2871 		dev->init_name = NULL;
2872 	}
2873 
2874 	/* subsystems can specify simple device enumeration */
2875 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2876 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2877 
2878 	if (!dev_name(dev)) {
2879 		error = -EINVAL;
2880 		goto name_error;
2881 	}
2882 
2883 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2884 
2885 	parent = get_device(dev->parent);
2886 	kobj = get_device_parent(dev, parent);
2887 	if (IS_ERR(kobj)) {
2888 		error = PTR_ERR(kobj);
2889 		goto parent_error;
2890 	}
2891 	if (kobj)
2892 		dev->kobj.parent = kobj;
2893 
2894 	/* use parent numa_node */
2895 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2896 		set_dev_node(dev, dev_to_node(parent));
2897 
2898 	/* first, register with generic layer. */
2899 	/* we require the name to be set before, and pass NULL */
2900 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2901 	if (error) {
2902 		glue_dir = get_glue_dir(dev);
2903 		goto Error;
2904 	}
2905 
2906 	/* notify platform of device entry */
2907 	error = device_platform_notify(dev, KOBJ_ADD);
2908 	if (error)
2909 		goto platform_error;
2910 
2911 	error = device_create_file(dev, &dev_attr_uevent);
2912 	if (error)
2913 		goto attrError;
2914 
2915 	error = device_add_class_symlinks(dev);
2916 	if (error)
2917 		goto SymlinkError;
2918 	error = device_add_attrs(dev);
2919 	if (error)
2920 		goto AttrsError;
2921 	error = bus_add_device(dev);
2922 	if (error)
2923 		goto BusError;
2924 	error = dpm_sysfs_add(dev);
2925 	if (error)
2926 		goto DPMError;
2927 	device_pm_add(dev);
2928 
2929 	if (MAJOR(dev->devt)) {
2930 		error = device_create_file(dev, &dev_attr_dev);
2931 		if (error)
2932 			goto DevAttrError;
2933 
2934 		error = device_create_sys_dev_entry(dev);
2935 		if (error)
2936 			goto SysEntryError;
2937 
2938 		devtmpfs_create_node(dev);
2939 	}
2940 
2941 	/* Notify clients of device addition.  This call must come
2942 	 * after dpm_sysfs_add() and before kobject_uevent().
2943 	 */
2944 	if (dev->bus)
2945 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2946 					     BUS_NOTIFY_ADD_DEVICE, dev);
2947 
2948 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2949 
2950 	/*
2951 	 * Check if any of the other devices (consumers) have been waiting for
2952 	 * this device (supplier) to be added so that they can create a device
2953 	 * link to it.
2954 	 *
2955 	 * This needs to happen after device_pm_add() because device_link_add()
2956 	 * requires the supplier be registered before it's called.
2957 	 *
2958 	 * But this also needs to happen before bus_probe_device() to make sure
2959 	 * waiting consumers can link to it before the driver is bound to the
2960 	 * device and the driver sync_state callback is called for this device.
2961 	 */
2962 	if (dev->fwnode && !dev->fwnode->dev) {
2963 		dev->fwnode->dev = dev;
2964 		fw_devlink_link_device(dev);
2965 	}
2966 
2967 	bus_probe_device(dev);
2968 	if (parent)
2969 		klist_add_tail(&dev->p->knode_parent,
2970 			       &parent->p->klist_children);
2971 
2972 	if (dev->class) {
2973 		mutex_lock(&dev->class->p->mutex);
2974 		/* tie the class to the device */
2975 		klist_add_tail(&dev->p->knode_class,
2976 			       &dev->class->p->klist_devices);
2977 
2978 		/* notify any interfaces that the device is here */
2979 		list_for_each_entry(class_intf,
2980 				    &dev->class->p->interfaces, node)
2981 			if (class_intf->add_dev)
2982 				class_intf->add_dev(dev, class_intf);
2983 		mutex_unlock(&dev->class->p->mutex);
2984 	}
2985 done:
2986 	put_device(dev);
2987 	return error;
2988  SysEntryError:
2989 	if (MAJOR(dev->devt))
2990 		device_remove_file(dev, &dev_attr_dev);
2991  DevAttrError:
2992 	device_pm_remove(dev);
2993 	dpm_sysfs_remove(dev);
2994  DPMError:
2995 	bus_remove_device(dev);
2996  BusError:
2997 	device_remove_attrs(dev);
2998  AttrsError:
2999 	device_remove_class_symlinks(dev);
3000  SymlinkError:
3001 	device_remove_file(dev, &dev_attr_uevent);
3002  attrError:
3003 	device_platform_notify(dev, KOBJ_REMOVE);
3004 platform_error:
3005 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3006 	glue_dir = get_glue_dir(dev);
3007 	kobject_del(&dev->kobj);
3008  Error:
3009 	cleanup_glue_dir(dev, glue_dir);
3010 parent_error:
3011 	put_device(parent);
3012 name_error:
3013 	kfree(dev->p);
3014 	dev->p = NULL;
3015 	goto done;
3016 }
3017 EXPORT_SYMBOL_GPL(device_add);
3018 
3019 /**
3020  * device_register - register a device with the system.
3021  * @dev: pointer to the device structure
3022  *
3023  * This happens in two clean steps - initialize the device
3024  * and add it to the system. The two steps can be called
3025  * separately, but this is the easiest and most common.
3026  * I.e. you should only call the two helpers separately if
3027  * have a clearly defined need to use and refcount the device
3028  * before it is added to the hierarchy.
3029  *
3030  * For more information, see the kerneldoc for device_initialize()
3031  * and device_add().
3032  *
3033  * NOTE: _Never_ directly free @dev after calling this function, even
3034  * if it returned an error! Always use put_device() to give up the
3035  * reference initialized in this function instead.
3036  */
device_register(struct device * dev)3037 int device_register(struct device *dev)
3038 {
3039 	device_initialize(dev);
3040 	return device_add(dev);
3041 }
3042 EXPORT_SYMBOL_GPL(device_register);
3043 
3044 /**
3045  * get_device - increment reference count for device.
3046  * @dev: device.
3047  *
3048  * This simply forwards the call to kobject_get(), though
3049  * we do take care to provide for the case that we get a NULL
3050  * pointer passed in.
3051  */
get_device(struct device * dev)3052 struct device *get_device(struct device *dev)
3053 {
3054 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3055 }
3056 EXPORT_SYMBOL_GPL(get_device);
3057 
3058 /**
3059  * put_device - decrement reference count.
3060  * @dev: device in question.
3061  */
put_device(struct device * dev)3062 void put_device(struct device *dev)
3063 {
3064 	/* might_sleep(); */
3065 	if (dev)
3066 		kobject_put(&dev->kobj);
3067 }
3068 EXPORT_SYMBOL_GPL(put_device);
3069 
kill_device(struct device * dev)3070 bool kill_device(struct device *dev)
3071 {
3072 	/*
3073 	 * Require the device lock and set the "dead" flag to guarantee that
3074 	 * the update behavior is consistent with the other bitfields near
3075 	 * it and that we cannot have an asynchronous probe routine trying
3076 	 * to run while we are tearing out the bus/class/sysfs from
3077 	 * underneath the device.
3078 	 */
3079 	lockdep_assert_held(&dev->mutex);
3080 
3081 	if (dev->p->dead)
3082 		return false;
3083 	dev->p->dead = true;
3084 	return true;
3085 }
3086 EXPORT_SYMBOL_GPL(kill_device);
3087 
3088 /**
3089  * device_del - delete device from system.
3090  * @dev: device.
3091  *
3092  * This is the first part of the device unregistration
3093  * sequence. This removes the device from the lists we control
3094  * from here, has it removed from the other driver model
3095  * subsystems it was added to in device_add(), and removes it
3096  * from the kobject hierarchy.
3097  *
3098  * NOTE: this should be called manually _iff_ device_add() was
3099  * also called manually.
3100  */
device_del(struct device * dev)3101 void device_del(struct device *dev)
3102 {
3103 	struct device *parent = dev->parent;
3104 	struct kobject *glue_dir = NULL;
3105 	struct class_interface *class_intf;
3106 	unsigned int noio_flag;
3107 
3108 	device_lock(dev);
3109 	kill_device(dev);
3110 	device_unlock(dev);
3111 
3112 	if (dev->fwnode && dev->fwnode->dev == dev)
3113 		dev->fwnode->dev = NULL;
3114 
3115 	/* Notify clients of device removal.  This call must come
3116 	 * before dpm_sysfs_remove().
3117 	 */
3118 	noio_flag = memalloc_noio_save();
3119 	if (dev->bus)
3120 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3121 					     BUS_NOTIFY_DEL_DEVICE, dev);
3122 
3123 	dpm_sysfs_remove(dev);
3124 	if (parent)
3125 		klist_del(&dev->p->knode_parent);
3126 	if (MAJOR(dev->devt)) {
3127 		devtmpfs_delete_node(dev);
3128 		device_remove_sys_dev_entry(dev);
3129 		device_remove_file(dev, &dev_attr_dev);
3130 	}
3131 	if (dev->class) {
3132 		device_remove_class_symlinks(dev);
3133 
3134 		mutex_lock(&dev->class->p->mutex);
3135 		/* notify any interfaces that the device is now gone */
3136 		list_for_each_entry(class_intf,
3137 				    &dev->class->p->interfaces, node)
3138 			if (class_intf->remove_dev)
3139 				class_intf->remove_dev(dev, class_intf);
3140 		/* remove the device from the class list */
3141 		klist_del(&dev->p->knode_class);
3142 		mutex_unlock(&dev->class->p->mutex);
3143 	}
3144 	device_remove_file(dev, &dev_attr_uevent);
3145 	device_remove_attrs(dev);
3146 	bus_remove_device(dev);
3147 	device_pm_remove(dev);
3148 	driver_deferred_probe_del(dev);
3149 	device_platform_notify(dev, KOBJ_REMOVE);
3150 	device_remove_properties(dev);
3151 	device_links_purge(dev);
3152 
3153 	if (dev->bus)
3154 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3155 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3156 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3157 	glue_dir = get_glue_dir(dev);
3158 	kobject_del(&dev->kobj);
3159 	cleanup_glue_dir(dev, glue_dir);
3160 	memalloc_noio_restore(noio_flag);
3161 	put_device(parent);
3162 }
3163 EXPORT_SYMBOL_GPL(device_del);
3164 
3165 /**
3166  * device_unregister - unregister device from system.
3167  * @dev: device going away.
3168  *
3169  * We do this in two parts, like we do device_register(). First,
3170  * we remove it from all the subsystems with device_del(), then
3171  * we decrement the reference count via put_device(). If that
3172  * is the final reference count, the device will be cleaned up
3173  * via device_release() above. Otherwise, the structure will
3174  * stick around until the final reference to the device is dropped.
3175  */
device_unregister(struct device * dev)3176 void device_unregister(struct device *dev)
3177 {
3178 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3179 	device_del(dev);
3180 	put_device(dev);
3181 }
3182 EXPORT_SYMBOL_GPL(device_unregister);
3183 
prev_device(struct klist_iter * i)3184 static struct device *prev_device(struct klist_iter *i)
3185 {
3186 	struct klist_node *n = klist_prev(i);
3187 	struct device *dev = NULL;
3188 	struct device_private *p;
3189 
3190 	if (n) {
3191 		p = to_device_private_parent(n);
3192 		dev = p->device;
3193 	}
3194 	return dev;
3195 }
3196 
next_device(struct klist_iter * i)3197 static struct device *next_device(struct klist_iter *i)
3198 {
3199 	struct klist_node *n = klist_next(i);
3200 	struct device *dev = NULL;
3201 	struct device_private *p;
3202 
3203 	if (n) {
3204 		p = to_device_private_parent(n);
3205 		dev = p->device;
3206 	}
3207 	return dev;
3208 }
3209 
3210 /**
3211  * device_get_devnode - path of device node file
3212  * @dev: device
3213  * @mode: returned file access mode
3214  * @uid: returned file owner
3215  * @gid: returned file group
3216  * @tmp: possibly allocated string
3217  *
3218  * Return the relative path of a possible device node.
3219  * Non-default names may need to allocate a memory to compose
3220  * a name. This memory is returned in tmp and needs to be
3221  * freed by the caller.
3222  */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3223 const char *device_get_devnode(struct device *dev,
3224 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3225 			       const char **tmp)
3226 {
3227 	char *s;
3228 
3229 	*tmp = NULL;
3230 
3231 	/* the device type may provide a specific name */
3232 	if (dev->type && dev->type->devnode)
3233 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3234 	if (*tmp)
3235 		return *tmp;
3236 
3237 	/* the class may provide a specific name */
3238 	if (dev->class && dev->class->devnode)
3239 		*tmp = dev->class->devnode(dev, mode);
3240 	if (*tmp)
3241 		return *tmp;
3242 
3243 	/* return name without allocation, tmp == NULL */
3244 	if (strchr(dev_name(dev), '!') == NULL)
3245 		return dev_name(dev);
3246 
3247 	/* replace '!' in the name with '/' */
3248 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3249 	if (!s)
3250 		return NULL;
3251 	strreplace(s, '!', '/');
3252 	return *tmp = s;
3253 }
3254 
3255 /**
3256  * device_for_each_child - device child iterator.
3257  * @parent: parent struct device.
3258  * @fn: function to be called for each device.
3259  * @data: data for the callback.
3260  *
3261  * Iterate over @parent's child devices, and call @fn for each,
3262  * passing it @data.
3263  *
3264  * We check the return of @fn each time. If it returns anything
3265  * other than 0, we break out and return that value.
3266  */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3267 int device_for_each_child(struct device *parent, void *data,
3268 			  int (*fn)(struct device *dev, void *data))
3269 {
3270 	struct klist_iter i;
3271 	struct device *child;
3272 	int error = 0;
3273 
3274 	if (!parent->p)
3275 		return 0;
3276 
3277 	klist_iter_init(&parent->p->klist_children, &i);
3278 	while (!error && (child = next_device(&i)))
3279 		error = fn(child, data);
3280 	klist_iter_exit(&i);
3281 	return error;
3282 }
3283 EXPORT_SYMBOL_GPL(device_for_each_child);
3284 
3285 /**
3286  * device_for_each_child_reverse - device child iterator in reversed order.
3287  * @parent: parent struct device.
3288  * @fn: function to be called for each device.
3289  * @data: data for the callback.
3290  *
3291  * Iterate over @parent's child devices, and call @fn for each,
3292  * passing it @data.
3293  *
3294  * We check the return of @fn each time. If it returns anything
3295  * other than 0, we break out and return that value.
3296  */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3297 int device_for_each_child_reverse(struct device *parent, void *data,
3298 				  int (*fn)(struct device *dev, void *data))
3299 {
3300 	struct klist_iter i;
3301 	struct device *child;
3302 	int error = 0;
3303 
3304 	if (!parent->p)
3305 		return 0;
3306 
3307 	klist_iter_init(&parent->p->klist_children, &i);
3308 	while ((child = prev_device(&i)) && !error)
3309 		error = fn(child, data);
3310 	klist_iter_exit(&i);
3311 	return error;
3312 }
3313 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3314 
3315 /**
3316  * device_find_child - device iterator for locating a particular device.
3317  * @parent: parent struct device
3318  * @match: Callback function to check device
3319  * @data: Data to pass to match function
3320  *
3321  * This is similar to the device_for_each_child() function above, but it
3322  * returns a reference to a device that is 'found' for later use, as
3323  * determined by the @match callback.
3324  *
3325  * The callback should return 0 if the device doesn't match and non-zero
3326  * if it does.  If the callback returns non-zero and a reference to the
3327  * current device can be obtained, this function will return to the caller
3328  * and not iterate over any more devices.
3329  *
3330  * NOTE: you will need to drop the reference with put_device() after use.
3331  */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))3332 struct device *device_find_child(struct device *parent, void *data,
3333 				 int (*match)(struct device *dev, void *data))
3334 {
3335 	struct klist_iter i;
3336 	struct device *child;
3337 
3338 	if (!parent)
3339 		return NULL;
3340 
3341 	klist_iter_init(&parent->p->klist_children, &i);
3342 	while ((child = next_device(&i)))
3343 		if (match(child, data) && get_device(child))
3344 			break;
3345 	klist_iter_exit(&i);
3346 	return child;
3347 }
3348 EXPORT_SYMBOL_GPL(device_find_child);
3349 
3350 /**
3351  * device_find_child_by_name - device iterator for locating a child device.
3352  * @parent: parent struct device
3353  * @name: name of the child device
3354  *
3355  * This is similar to the device_find_child() function above, but it
3356  * returns a reference to a device that has the name @name.
3357  *
3358  * NOTE: you will need to drop the reference with put_device() after use.
3359  */
device_find_child_by_name(struct device * parent,const char * name)3360 struct device *device_find_child_by_name(struct device *parent,
3361 					 const char *name)
3362 {
3363 	struct klist_iter i;
3364 	struct device *child;
3365 
3366 	if (!parent)
3367 		return NULL;
3368 
3369 	klist_iter_init(&parent->p->klist_children, &i);
3370 	while ((child = next_device(&i)))
3371 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3372 			break;
3373 	klist_iter_exit(&i);
3374 	return child;
3375 }
3376 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3377 
devices_init(void)3378 int __init devices_init(void)
3379 {
3380 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3381 	if (!devices_kset)
3382 		return -ENOMEM;
3383 	dev_kobj = kobject_create_and_add("dev", NULL);
3384 	if (!dev_kobj)
3385 		goto dev_kobj_err;
3386 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3387 	if (!sysfs_dev_block_kobj)
3388 		goto block_kobj_err;
3389 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3390 	if (!sysfs_dev_char_kobj)
3391 		goto char_kobj_err;
3392 
3393 	return 0;
3394 
3395  char_kobj_err:
3396 	kobject_put(sysfs_dev_block_kobj);
3397  block_kobj_err:
3398 	kobject_put(dev_kobj);
3399  dev_kobj_err:
3400 	kset_unregister(devices_kset);
3401 	return -ENOMEM;
3402 }
3403 
device_check_offline(struct device * dev,void * not_used)3404 static int device_check_offline(struct device *dev, void *not_used)
3405 {
3406 	int ret;
3407 
3408 	ret = device_for_each_child(dev, NULL, device_check_offline);
3409 	if (ret)
3410 		return ret;
3411 
3412 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3413 }
3414 
3415 /**
3416  * device_offline - Prepare the device for hot-removal.
3417  * @dev: Device to be put offline.
3418  *
3419  * Execute the device bus type's .offline() callback, if present, to prepare
3420  * the device for a subsequent hot-removal.  If that succeeds, the device must
3421  * not be used until either it is removed or its bus type's .online() callback
3422  * is executed.
3423  *
3424  * Call under device_hotplug_lock.
3425  */
device_offline(struct device * dev)3426 int device_offline(struct device *dev)
3427 {
3428 	int ret;
3429 
3430 	if (dev->offline_disabled)
3431 		return -EPERM;
3432 
3433 	ret = device_for_each_child(dev, NULL, device_check_offline);
3434 	if (ret)
3435 		return ret;
3436 
3437 	device_lock(dev);
3438 	if (device_supports_offline(dev)) {
3439 		if (dev->offline) {
3440 			ret = 1;
3441 		} else {
3442 			ret = dev->bus->offline(dev);
3443 			if (!ret) {
3444 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3445 				dev->offline = true;
3446 			}
3447 		}
3448 	}
3449 	device_unlock(dev);
3450 
3451 	return ret;
3452 }
3453 
3454 /**
3455  * device_online - Put the device back online after successful device_offline().
3456  * @dev: Device to be put back online.
3457  *
3458  * If device_offline() has been successfully executed for @dev, but the device
3459  * has not been removed subsequently, execute its bus type's .online() callback
3460  * to indicate that the device can be used again.
3461  *
3462  * Call under device_hotplug_lock.
3463  */
device_online(struct device * dev)3464 int device_online(struct device *dev)
3465 {
3466 	int ret = 0;
3467 
3468 	device_lock(dev);
3469 	if (device_supports_offline(dev)) {
3470 		if (dev->offline) {
3471 			ret = dev->bus->online(dev);
3472 			if (!ret) {
3473 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3474 				dev->offline = false;
3475 			}
3476 		} else {
3477 			ret = 1;
3478 		}
3479 	}
3480 	device_unlock(dev);
3481 
3482 	return ret;
3483 }
3484 
3485 struct root_device {
3486 	struct device dev;
3487 	struct module *owner;
3488 };
3489 
to_root_device(struct device * d)3490 static inline struct root_device *to_root_device(struct device *d)
3491 {
3492 	return container_of(d, struct root_device, dev);
3493 }
3494 
root_device_release(struct device * dev)3495 static void root_device_release(struct device *dev)
3496 {
3497 	kfree(to_root_device(dev));
3498 }
3499 
3500 /**
3501  * __root_device_register - allocate and register a root device
3502  * @name: root device name
3503  * @owner: owner module of the root device, usually THIS_MODULE
3504  *
3505  * This function allocates a root device and registers it
3506  * using device_register(). In order to free the returned
3507  * device, use root_device_unregister().
3508  *
3509  * Root devices are dummy devices which allow other devices
3510  * to be grouped under /sys/devices. Use this function to
3511  * allocate a root device and then use it as the parent of
3512  * any device which should appear under /sys/devices/{name}
3513  *
3514  * The /sys/devices/{name} directory will also contain a
3515  * 'module' symlink which points to the @owner directory
3516  * in sysfs.
3517  *
3518  * Returns &struct device pointer on success, or ERR_PTR() on error.
3519  *
3520  * Note: You probably want to use root_device_register().
3521  */
__root_device_register(const char * name,struct module * owner)3522 struct device *__root_device_register(const char *name, struct module *owner)
3523 {
3524 	struct root_device *root;
3525 	int err = -ENOMEM;
3526 
3527 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3528 	if (!root)
3529 		return ERR_PTR(err);
3530 
3531 	err = dev_set_name(&root->dev, "%s", name);
3532 	if (err) {
3533 		kfree(root);
3534 		return ERR_PTR(err);
3535 	}
3536 
3537 	root->dev.release = root_device_release;
3538 
3539 	err = device_register(&root->dev);
3540 	if (err) {
3541 		put_device(&root->dev);
3542 		return ERR_PTR(err);
3543 	}
3544 
3545 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3546 	if (owner) {
3547 		struct module_kobject *mk = &owner->mkobj;
3548 
3549 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3550 		if (err) {
3551 			device_unregister(&root->dev);
3552 			return ERR_PTR(err);
3553 		}
3554 		root->owner = owner;
3555 	}
3556 #endif
3557 
3558 	return &root->dev;
3559 }
3560 EXPORT_SYMBOL_GPL(__root_device_register);
3561 
3562 /**
3563  * root_device_unregister - unregister and free a root device
3564  * @dev: device going away
3565  *
3566  * This function unregisters and cleans up a device that was created by
3567  * root_device_register().
3568  */
root_device_unregister(struct device * dev)3569 void root_device_unregister(struct device *dev)
3570 {
3571 	struct root_device *root = to_root_device(dev);
3572 
3573 	if (root->owner)
3574 		sysfs_remove_link(&root->dev.kobj, "module");
3575 
3576 	device_unregister(dev);
3577 }
3578 EXPORT_SYMBOL_GPL(root_device_unregister);
3579 
3580 
device_create_release(struct device * dev)3581 static void device_create_release(struct device *dev)
3582 {
3583 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3584 	kfree(dev);
3585 }
3586 
3587 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)3588 device_create_groups_vargs(struct class *class, struct device *parent,
3589 			   dev_t devt, void *drvdata,
3590 			   const struct attribute_group **groups,
3591 			   const char *fmt, va_list args)
3592 {
3593 	struct device *dev = NULL;
3594 	int retval = -ENODEV;
3595 
3596 	if (class == NULL || IS_ERR(class))
3597 		goto error;
3598 
3599 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3600 	if (!dev) {
3601 		retval = -ENOMEM;
3602 		goto error;
3603 	}
3604 
3605 	device_initialize(dev);
3606 	dev->devt = devt;
3607 	dev->class = class;
3608 	dev->parent = parent;
3609 	dev->groups = groups;
3610 	dev->release = device_create_release;
3611 	dev_set_drvdata(dev, drvdata);
3612 
3613 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3614 	if (retval)
3615 		goto error;
3616 
3617 	retval = device_add(dev);
3618 	if (retval)
3619 		goto error;
3620 
3621 	return dev;
3622 
3623 error:
3624 	put_device(dev);
3625 	return ERR_PTR(retval);
3626 }
3627 
3628 /**
3629  * device_create - creates a device and registers it with sysfs
3630  * @class: pointer to the struct class that this device should be registered to
3631  * @parent: pointer to the parent struct device of this new device, if any
3632  * @devt: the dev_t for the char device to be added
3633  * @drvdata: the data to be added to the device for callbacks
3634  * @fmt: string for the device's name
3635  *
3636  * This function can be used by char device classes.  A struct device
3637  * will be created in sysfs, registered to the specified class.
3638  *
3639  * A "dev" file will be created, showing the dev_t for the device, if
3640  * the dev_t is not 0,0.
3641  * If a pointer to a parent struct device is passed in, the newly created
3642  * struct device will be a child of that device in sysfs.
3643  * The pointer to the struct device will be returned from the call.
3644  * Any further sysfs files that might be required can be created using this
3645  * pointer.
3646  *
3647  * Returns &struct device pointer on success, or ERR_PTR() on error.
3648  *
3649  * Note: the struct class passed to this function must have previously
3650  * been created with a call to class_create().
3651  */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)3652 struct device *device_create(struct class *class, struct device *parent,
3653 			     dev_t devt, void *drvdata, const char *fmt, ...)
3654 {
3655 	va_list vargs;
3656 	struct device *dev;
3657 
3658 	va_start(vargs, fmt);
3659 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3660 					  fmt, vargs);
3661 	va_end(vargs);
3662 	return dev;
3663 }
3664 EXPORT_SYMBOL_GPL(device_create);
3665 
3666 /**
3667  * device_create_with_groups - creates a device and registers it with sysfs
3668  * @class: pointer to the struct class that this device should be registered to
3669  * @parent: pointer to the parent struct device of this new device, if any
3670  * @devt: the dev_t for the char device to be added
3671  * @drvdata: the data to be added to the device for callbacks
3672  * @groups: NULL-terminated list of attribute groups to be created
3673  * @fmt: string for the device's name
3674  *
3675  * This function can be used by char device classes.  A struct device
3676  * will be created in sysfs, registered to the specified class.
3677  * Additional attributes specified in the groups parameter will also
3678  * be created automatically.
3679  *
3680  * A "dev" file will be created, showing the dev_t for the device, if
3681  * the dev_t is not 0,0.
3682  * If a pointer to a parent struct device is passed in, the newly created
3683  * struct device will be a child of that device in sysfs.
3684  * The pointer to the struct device will be returned from the call.
3685  * Any further sysfs files that might be required can be created using this
3686  * pointer.
3687  *
3688  * Returns &struct device pointer on success, or ERR_PTR() on error.
3689  *
3690  * Note: the struct class passed to this function must have previously
3691  * been created with a call to class_create().
3692  */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)3693 struct device *device_create_with_groups(struct class *class,
3694 					 struct device *parent, dev_t devt,
3695 					 void *drvdata,
3696 					 const struct attribute_group **groups,
3697 					 const char *fmt, ...)
3698 {
3699 	va_list vargs;
3700 	struct device *dev;
3701 
3702 	va_start(vargs, fmt);
3703 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3704 					 fmt, vargs);
3705 	va_end(vargs);
3706 	return dev;
3707 }
3708 EXPORT_SYMBOL_GPL(device_create_with_groups);
3709 
3710 /**
3711  * device_destroy - removes a device that was created with device_create()
3712  * @class: pointer to the struct class that this device was registered with
3713  * @devt: the dev_t of the device that was previously registered
3714  *
3715  * This call unregisters and cleans up a device that was created with a
3716  * call to device_create().
3717  */
device_destroy(struct class * class,dev_t devt)3718 void device_destroy(struct class *class, dev_t devt)
3719 {
3720 	struct device *dev;
3721 
3722 	dev = class_find_device_by_devt(class, devt);
3723 	if (dev) {
3724 		put_device(dev);
3725 		device_unregister(dev);
3726 	}
3727 }
3728 EXPORT_SYMBOL_GPL(device_destroy);
3729 
3730 /**
3731  * device_rename - renames a device
3732  * @dev: the pointer to the struct device to be renamed
3733  * @new_name: the new name of the device
3734  *
3735  * It is the responsibility of the caller to provide mutual
3736  * exclusion between two different calls of device_rename
3737  * on the same device to ensure that new_name is valid and
3738  * won't conflict with other devices.
3739  *
3740  * Note: Don't call this function.  Currently, the networking layer calls this
3741  * function, but that will change.  The following text from Kay Sievers offers
3742  * some insight:
3743  *
3744  * Renaming devices is racy at many levels, symlinks and other stuff are not
3745  * replaced atomically, and you get a "move" uevent, but it's not easy to
3746  * connect the event to the old and new device. Device nodes are not renamed at
3747  * all, there isn't even support for that in the kernel now.
3748  *
3749  * In the meantime, during renaming, your target name might be taken by another
3750  * driver, creating conflicts. Or the old name is taken directly after you
3751  * renamed it -- then you get events for the same DEVPATH, before you even see
3752  * the "move" event. It's just a mess, and nothing new should ever rely on
3753  * kernel device renaming. Besides that, it's not even implemented now for
3754  * other things than (driver-core wise very simple) network devices.
3755  *
3756  * We are currently about to change network renaming in udev to completely
3757  * disallow renaming of devices in the same namespace as the kernel uses,
3758  * because we can't solve the problems properly, that arise with swapping names
3759  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3760  * be allowed to some other name than eth[0-9]*, for the aforementioned
3761  * reasons.
3762  *
3763  * Make up a "real" name in the driver before you register anything, or add
3764  * some other attributes for userspace to find the device, or use udev to add
3765  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3766  * don't even want to get into that and try to implement the missing pieces in
3767  * the core. We really have other pieces to fix in the driver core mess. :)
3768  */
device_rename(struct device * dev,const char * new_name)3769 int device_rename(struct device *dev, const char *new_name)
3770 {
3771 	struct kobject *kobj = &dev->kobj;
3772 	char *old_device_name = NULL;
3773 	int error;
3774 
3775 	dev = get_device(dev);
3776 	if (!dev)
3777 		return -EINVAL;
3778 
3779 	dev_dbg(dev, "renaming to %s\n", new_name);
3780 
3781 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3782 	if (!old_device_name) {
3783 		error = -ENOMEM;
3784 		goto out;
3785 	}
3786 
3787 	if (dev->class) {
3788 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3789 					     kobj, old_device_name,
3790 					     new_name, kobject_namespace(kobj));
3791 		if (error)
3792 			goto out;
3793 	}
3794 
3795 	error = kobject_rename(kobj, new_name);
3796 	if (error)
3797 		goto out;
3798 
3799 out:
3800 	put_device(dev);
3801 
3802 	kfree(old_device_name);
3803 
3804 	return error;
3805 }
3806 EXPORT_SYMBOL_GPL(device_rename);
3807 
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)3808 static int device_move_class_links(struct device *dev,
3809 				   struct device *old_parent,
3810 				   struct device *new_parent)
3811 {
3812 	int error = 0;
3813 
3814 	if (old_parent)
3815 		sysfs_remove_link(&dev->kobj, "device");
3816 	if (new_parent)
3817 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3818 					  "device");
3819 	return error;
3820 }
3821 
3822 /**
3823  * device_move - moves a device to a new parent
3824  * @dev: the pointer to the struct device to be moved
3825  * @new_parent: the new parent of the device (can be NULL)
3826  * @dpm_order: how to reorder the dpm_list
3827  */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)3828 int device_move(struct device *dev, struct device *new_parent,
3829 		enum dpm_order dpm_order)
3830 {
3831 	int error;
3832 	struct device *old_parent;
3833 	struct kobject *new_parent_kobj;
3834 
3835 	dev = get_device(dev);
3836 	if (!dev)
3837 		return -EINVAL;
3838 
3839 	device_pm_lock();
3840 	new_parent = get_device(new_parent);
3841 	new_parent_kobj = get_device_parent(dev, new_parent);
3842 	if (IS_ERR(new_parent_kobj)) {
3843 		error = PTR_ERR(new_parent_kobj);
3844 		put_device(new_parent);
3845 		goto out;
3846 	}
3847 
3848 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3849 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3850 	error = kobject_move(&dev->kobj, new_parent_kobj);
3851 	if (error) {
3852 		cleanup_glue_dir(dev, new_parent_kobj);
3853 		put_device(new_parent);
3854 		goto out;
3855 	}
3856 	old_parent = dev->parent;
3857 	dev->parent = new_parent;
3858 	if (old_parent)
3859 		klist_remove(&dev->p->knode_parent);
3860 	if (new_parent) {
3861 		klist_add_tail(&dev->p->knode_parent,
3862 			       &new_parent->p->klist_children);
3863 		set_dev_node(dev, dev_to_node(new_parent));
3864 	}
3865 
3866 	if (dev->class) {
3867 		error = device_move_class_links(dev, old_parent, new_parent);
3868 		if (error) {
3869 			/* We ignore errors on cleanup since we're hosed anyway... */
3870 			device_move_class_links(dev, new_parent, old_parent);
3871 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3872 				if (new_parent)
3873 					klist_remove(&dev->p->knode_parent);
3874 				dev->parent = old_parent;
3875 				if (old_parent) {
3876 					klist_add_tail(&dev->p->knode_parent,
3877 						       &old_parent->p->klist_children);
3878 					set_dev_node(dev, dev_to_node(old_parent));
3879 				}
3880 			}
3881 			cleanup_glue_dir(dev, new_parent_kobj);
3882 			put_device(new_parent);
3883 			goto out;
3884 		}
3885 	}
3886 	switch (dpm_order) {
3887 	case DPM_ORDER_NONE:
3888 		break;
3889 	case DPM_ORDER_DEV_AFTER_PARENT:
3890 		device_pm_move_after(dev, new_parent);
3891 		devices_kset_move_after(dev, new_parent);
3892 		break;
3893 	case DPM_ORDER_PARENT_BEFORE_DEV:
3894 		device_pm_move_before(new_parent, dev);
3895 		devices_kset_move_before(new_parent, dev);
3896 		break;
3897 	case DPM_ORDER_DEV_LAST:
3898 		device_pm_move_last(dev);
3899 		devices_kset_move_last(dev);
3900 		break;
3901 	}
3902 
3903 	put_device(old_parent);
3904 out:
3905 	device_pm_unlock();
3906 	put_device(dev);
3907 	return error;
3908 }
3909 EXPORT_SYMBOL_GPL(device_move);
3910 
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)3911 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3912 				     kgid_t kgid)
3913 {
3914 	struct kobject *kobj = &dev->kobj;
3915 	struct class *class = dev->class;
3916 	const struct device_type *type = dev->type;
3917 	int error;
3918 
3919 	if (class) {
3920 		/*
3921 		 * Change the device groups of the device class for @dev to
3922 		 * @kuid/@kgid.
3923 		 */
3924 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3925 						  kgid);
3926 		if (error)
3927 			return error;
3928 	}
3929 
3930 	if (type) {
3931 		/*
3932 		 * Change the device groups of the device type for @dev to
3933 		 * @kuid/@kgid.
3934 		 */
3935 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3936 						  kgid);
3937 		if (error)
3938 			return error;
3939 	}
3940 
3941 	/* Change the device groups of @dev to @kuid/@kgid. */
3942 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3943 	if (error)
3944 		return error;
3945 
3946 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3947 		/* Change online device attributes of @dev to @kuid/@kgid. */
3948 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3949 						kuid, kgid);
3950 		if (error)
3951 			return error;
3952 	}
3953 
3954 	return 0;
3955 }
3956 
3957 /**
3958  * device_change_owner - change the owner of an existing device.
3959  * @dev: device.
3960  * @kuid: new owner's kuid
3961  * @kgid: new owner's kgid
3962  *
3963  * This changes the owner of @dev and its corresponding sysfs entries to
3964  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3965  * core.
3966  *
3967  * Returns 0 on success or error code on failure.
3968  */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)3969 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3970 {
3971 	int error;
3972 	struct kobject *kobj = &dev->kobj;
3973 
3974 	dev = get_device(dev);
3975 	if (!dev)
3976 		return -EINVAL;
3977 
3978 	/*
3979 	 * Change the kobject and the default attributes and groups of the
3980 	 * ktype associated with it to @kuid/@kgid.
3981 	 */
3982 	error = sysfs_change_owner(kobj, kuid, kgid);
3983 	if (error)
3984 		goto out;
3985 
3986 	/*
3987 	 * Change the uevent file for @dev to the new owner. The uevent file
3988 	 * was created in a separate step when @dev got added and we mirror
3989 	 * that step here.
3990 	 */
3991 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3992 					kgid);
3993 	if (error)
3994 		goto out;
3995 
3996 	/*
3997 	 * Change the device groups, the device groups associated with the
3998 	 * device class, and the groups associated with the device type of @dev
3999 	 * to @kuid/@kgid.
4000 	 */
4001 	error = device_attrs_change_owner(dev, kuid, kgid);
4002 	if (error)
4003 		goto out;
4004 
4005 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4006 	if (error)
4007 		goto out;
4008 
4009 #ifdef CONFIG_BLOCK
4010 	if (sysfs_deprecated && dev->class == &block_class)
4011 		goto out;
4012 #endif
4013 
4014 	/*
4015 	 * Change the owner of the symlink located in the class directory of
4016 	 * the device class associated with @dev which points to the actual
4017 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4018 	 * symlink shows the same permissions as its target.
4019 	 */
4020 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4021 					dev_name(dev), kuid, kgid);
4022 	if (error)
4023 		goto out;
4024 
4025 out:
4026 	put_device(dev);
4027 	return error;
4028 }
4029 EXPORT_SYMBOL_GPL(device_change_owner);
4030 
4031 /**
4032  * device_shutdown - call ->shutdown() on each device to shutdown.
4033  */
device_shutdown(void)4034 void device_shutdown(void)
4035 {
4036 	struct device *dev, *parent;
4037 
4038 	wait_for_device_probe();
4039 	device_block_probing();
4040 
4041 	cpufreq_suspend();
4042 
4043 	spin_lock(&devices_kset->list_lock);
4044 	/*
4045 	 * Walk the devices list backward, shutting down each in turn.
4046 	 * Beware that device unplug events may also start pulling
4047 	 * devices offline, even as the system is shutting down.
4048 	 */
4049 	while (!list_empty(&devices_kset->list)) {
4050 		dev = list_entry(devices_kset->list.prev, struct device,
4051 				kobj.entry);
4052 
4053 		/*
4054 		 * hold reference count of device's parent to
4055 		 * prevent it from being freed because parent's
4056 		 * lock is to be held
4057 		 */
4058 		parent = get_device(dev->parent);
4059 		get_device(dev);
4060 		/*
4061 		 * Make sure the device is off the kset list, in the
4062 		 * event that dev->*->shutdown() doesn't remove it.
4063 		 */
4064 		list_del_init(&dev->kobj.entry);
4065 		spin_unlock(&devices_kset->list_lock);
4066 
4067 		/* hold lock to avoid race with probe/release */
4068 		if (parent)
4069 			device_lock(parent);
4070 		device_lock(dev);
4071 
4072 		/* Don't allow any more runtime suspends */
4073 		pm_runtime_get_noresume(dev);
4074 		pm_runtime_barrier(dev);
4075 
4076 		if (dev->class && dev->class->shutdown_pre) {
4077 			if (initcall_debug)
4078 				dev_info(dev, "shutdown_pre\n");
4079 			dev->class->shutdown_pre(dev);
4080 		}
4081 		if (dev->bus && dev->bus->shutdown) {
4082 			if (initcall_debug)
4083 				dev_info(dev, "shutdown\n");
4084 			dev->bus->shutdown(dev);
4085 		} else if (dev->driver && dev->driver->shutdown) {
4086 			if (initcall_debug)
4087 				dev_info(dev, "shutdown\n");
4088 			dev->driver->shutdown(dev);
4089 		}
4090 
4091 		device_unlock(dev);
4092 		if (parent)
4093 			device_unlock(parent);
4094 
4095 		put_device(dev);
4096 		put_device(parent);
4097 
4098 		spin_lock(&devices_kset->list_lock);
4099 	}
4100 	spin_unlock(&devices_kset->list_lock);
4101 }
4102 
4103 /*
4104  * Device logging functions
4105  */
4106 
4107 #ifdef CONFIG_PRINTK
4108 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4109 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4110 {
4111 	const char *subsys;
4112 
4113 	memset(dev_info, 0, sizeof(*dev_info));
4114 
4115 	if (dev->class)
4116 		subsys = dev->class->name;
4117 	else if (dev->bus)
4118 		subsys = dev->bus->name;
4119 	else
4120 		return;
4121 
4122 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4123 
4124 	/*
4125 	 * Add device identifier DEVICE=:
4126 	 *   b12:8         block dev_t
4127 	 *   c127:3        char dev_t
4128 	 *   n8            netdev ifindex
4129 	 *   +sound:card0  subsystem:devname
4130 	 */
4131 	if (MAJOR(dev->devt)) {
4132 		char c;
4133 
4134 		if (strcmp(subsys, "block") == 0)
4135 			c = 'b';
4136 		else
4137 			c = 'c';
4138 
4139 		snprintf(dev_info->device, sizeof(dev_info->device),
4140 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4141 	} else if (strcmp(subsys, "net") == 0) {
4142 		struct net_device *net = to_net_dev(dev);
4143 
4144 		snprintf(dev_info->device, sizeof(dev_info->device),
4145 			 "n%u", net->ifindex);
4146 	} else {
4147 		snprintf(dev_info->device, sizeof(dev_info->device),
4148 			 "+%s:%s", subsys, dev_name(dev));
4149 	}
4150 }
4151 
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4152 int dev_vprintk_emit(int level, const struct device *dev,
4153 		     const char *fmt, va_list args)
4154 {
4155 	struct dev_printk_info dev_info;
4156 
4157 	set_dev_info(dev, &dev_info);
4158 
4159 	return vprintk_emit(0, level, &dev_info, fmt, args);
4160 }
4161 EXPORT_SYMBOL(dev_vprintk_emit);
4162 
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4163 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4164 {
4165 	va_list args;
4166 	int r;
4167 
4168 	va_start(args, fmt);
4169 
4170 	r = dev_vprintk_emit(level, dev, fmt, args);
4171 
4172 	va_end(args);
4173 
4174 	return r;
4175 }
4176 EXPORT_SYMBOL(dev_printk_emit);
4177 
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4178 static void __dev_printk(const char *level, const struct device *dev,
4179 			struct va_format *vaf)
4180 {
4181 	if (dev)
4182 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4183 				dev_driver_string(dev), dev_name(dev), vaf);
4184 	else
4185 		printk("%s(NULL device *): %pV", level, vaf);
4186 }
4187 
dev_printk(const char * level,const struct device * dev,const char * fmt,...)4188 void dev_printk(const char *level, const struct device *dev,
4189 		const char *fmt, ...)
4190 {
4191 	struct va_format vaf;
4192 	va_list args;
4193 
4194 	va_start(args, fmt);
4195 
4196 	vaf.fmt = fmt;
4197 	vaf.va = &args;
4198 
4199 	__dev_printk(level, dev, &vaf);
4200 
4201 	va_end(args);
4202 }
4203 EXPORT_SYMBOL(dev_printk);
4204 
4205 #define define_dev_printk_level(func, kern_level)		\
4206 void func(const struct device *dev, const char *fmt, ...)	\
4207 {								\
4208 	struct va_format vaf;					\
4209 	va_list args;						\
4210 								\
4211 	va_start(args, fmt);					\
4212 								\
4213 	vaf.fmt = fmt;						\
4214 	vaf.va = &args;						\
4215 								\
4216 	__dev_printk(kern_level, dev, &vaf);			\
4217 								\
4218 	va_end(args);						\
4219 }								\
4220 EXPORT_SYMBOL(func);
4221 
4222 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4223 define_dev_printk_level(_dev_alert, KERN_ALERT);
4224 define_dev_printk_level(_dev_crit, KERN_CRIT);
4225 define_dev_printk_level(_dev_err, KERN_ERR);
4226 define_dev_printk_level(_dev_warn, KERN_WARNING);
4227 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4228 define_dev_printk_level(_dev_info, KERN_INFO);
4229 
4230 #endif
4231 
4232 /**
4233  * dev_err_probe - probe error check and log helper
4234  * @dev: the pointer to the struct device
4235  * @err: error value to test
4236  * @fmt: printf-style format string
4237  * @...: arguments as specified in the format string
4238  *
4239  * This helper implements common pattern present in probe functions for error
4240  * checking: print debug or error message depending if the error value is
4241  * -EPROBE_DEFER and propagate error upwards.
4242  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4243  * checked later by reading devices_deferred debugfs attribute.
4244  * It replaces code sequence::
4245  *
4246  * 	if (err != -EPROBE_DEFER)
4247  * 		dev_err(dev, ...);
4248  * 	else
4249  * 		dev_dbg(dev, ...);
4250  * 	return err;
4251  *
4252  * with::
4253  *
4254  * 	return dev_err_probe(dev, err, ...);
4255  *
4256  * Returns @err.
4257  *
4258  */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4259 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4260 {
4261 	struct va_format vaf;
4262 	va_list args;
4263 
4264 	va_start(args, fmt);
4265 	vaf.fmt = fmt;
4266 	vaf.va = &args;
4267 
4268 	if (err != -EPROBE_DEFER) {
4269 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4270 	} else {
4271 		device_set_deferred_probe_reason(dev, &vaf);
4272 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4273 	}
4274 
4275 	va_end(args);
4276 
4277 	return err;
4278 }
4279 EXPORT_SYMBOL_GPL(dev_err_probe);
4280 
fwnode_is_primary(struct fwnode_handle * fwnode)4281 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4282 {
4283 	return fwnode && !IS_ERR(fwnode->secondary);
4284 }
4285 
4286 /**
4287  * set_primary_fwnode - Change the primary firmware node of a given device.
4288  * @dev: Device to handle.
4289  * @fwnode: New primary firmware node of the device.
4290  *
4291  * Set the device's firmware node pointer to @fwnode, but if a secondary
4292  * firmware node of the device is present, preserve it.
4293  */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4294 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4295 {
4296 	struct device *parent = dev->parent;
4297 	struct fwnode_handle *fn = dev->fwnode;
4298 
4299 	if (fwnode) {
4300 		if (fwnode_is_primary(fn))
4301 			fn = fn->secondary;
4302 
4303 		if (fn) {
4304 			WARN_ON(fwnode->secondary);
4305 			fwnode->secondary = fn;
4306 		}
4307 		dev->fwnode = fwnode;
4308 	} else {
4309 		if (fwnode_is_primary(fn)) {
4310 			dev->fwnode = fn->secondary;
4311 			if (!(parent && fn == parent->fwnode))
4312 				fn->secondary = NULL;
4313 		} else {
4314 			dev->fwnode = NULL;
4315 		}
4316 	}
4317 }
4318 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4319 
4320 /**
4321  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4322  * @dev: Device to handle.
4323  * @fwnode: New secondary firmware node of the device.
4324  *
4325  * If a primary firmware node of the device is present, set its secondary
4326  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4327  * @fwnode.
4328  */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4329 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4330 {
4331 	if (fwnode)
4332 		fwnode->secondary = ERR_PTR(-ENODEV);
4333 
4334 	if (fwnode_is_primary(dev->fwnode))
4335 		dev->fwnode->secondary = fwnode;
4336 	else
4337 		dev->fwnode = fwnode;
4338 }
4339 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4340 
4341 /**
4342  * device_set_of_node_from_dev - reuse device-tree node of another device
4343  * @dev: device whose device-tree node is being set
4344  * @dev2: device whose device-tree node is being reused
4345  *
4346  * Takes another reference to the new device-tree node after first dropping
4347  * any reference held to the old node.
4348  */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)4349 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4350 {
4351 	of_node_put(dev->of_node);
4352 	dev->of_node = of_node_get(dev2->of_node);
4353 	dev->of_node_reused = true;
4354 }
4355 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4356 
device_match_name(struct device * dev,const void * name)4357 int device_match_name(struct device *dev, const void *name)
4358 {
4359 	return sysfs_streq(dev_name(dev), name);
4360 }
4361 EXPORT_SYMBOL_GPL(device_match_name);
4362 
device_match_of_node(struct device * dev,const void * np)4363 int device_match_of_node(struct device *dev, const void *np)
4364 {
4365 	return dev->of_node == np;
4366 }
4367 EXPORT_SYMBOL_GPL(device_match_of_node);
4368 
device_match_fwnode(struct device * dev,const void * fwnode)4369 int device_match_fwnode(struct device *dev, const void *fwnode)
4370 {
4371 	return dev_fwnode(dev) == fwnode;
4372 }
4373 EXPORT_SYMBOL_GPL(device_match_fwnode);
4374 
device_match_devt(struct device * dev,const void * pdevt)4375 int device_match_devt(struct device *dev, const void *pdevt)
4376 {
4377 	return dev->devt == *(dev_t *)pdevt;
4378 }
4379 EXPORT_SYMBOL_GPL(device_match_devt);
4380 
device_match_acpi_dev(struct device * dev,const void * adev)4381 int device_match_acpi_dev(struct device *dev, const void *adev)
4382 {
4383 	return ACPI_COMPANION(dev) == adev;
4384 }
4385 EXPORT_SYMBOL(device_match_acpi_dev);
4386 
device_match_any(struct device * dev,const void * unused)4387 int device_match_any(struct device *dev, const void *unused)
4388 {
4389 	return 1;
4390 }
4391 EXPORT_SYMBOL_GPL(device_match_any);
4392