1 /*
2 * Helper functions used by the EFI stub on multiple
3 * architectures. This should be #included by the EFI stub
4 * implementation files.
5 *
6 * Copyright 2011 Intel Corporation; author Matt Fleming
7 *
8 * This file is part of the Linux kernel, and is made available
9 * under the terms of the GNU General Public License version 2.
10 *
11 */
12
13 #include <linux/efi.h>
14 #include <asm/efi.h>
15
16 #include "efistub.h"
17
18 /*
19 * Some firmware implementations have problems reading files in one go.
20 * A read chunk size of 1MB seems to work for most platforms.
21 *
22 * Unfortunately, reading files in chunks triggers *other* bugs on some
23 * platforms, so we provide a way to disable this workaround, which can
24 * be done by passing "efi=nochunk" on the EFI boot stub command line.
25 *
26 * If you experience issues with initrd images being corrupt it's worth
27 * trying efi=nochunk, but chunking is enabled by default because there
28 * are far more machines that require the workaround than those that
29 * break with it enabled.
30 */
31 #define EFI_READ_CHUNK_SIZE (1024 * 1024)
32
33 static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
34
35 static int __section(.data) __nokaslr;
36 static int __section(.data) __quiet;
37 static int __section(.data) __novamap;
38
nokaslr(void)39 int __pure nokaslr(void)
40 {
41 return __nokaslr;
42 }
is_quiet(void)43 int __pure is_quiet(void)
44 {
45 return __quiet;
46 }
novamap(void)47 int __pure novamap(void)
48 {
49 return __novamap;
50 }
51
52 #define EFI_MMAP_NR_SLACK_SLOTS 8
53
54 struct file_info {
55 efi_file_handle_t *handle;
56 u64 size;
57 };
58
efi_printk(efi_system_table_t * sys_table_arg,char * str)59 void efi_printk(efi_system_table_t *sys_table_arg, char *str)
60 {
61 char *s8;
62
63 for (s8 = str; *s8; s8++) {
64 efi_char16_t ch[2] = { 0 };
65
66 ch[0] = *s8;
67 if (*s8 == '\n') {
68 efi_char16_t nl[2] = { '\r', 0 };
69 efi_char16_printk(sys_table_arg, nl);
70 }
71
72 efi_char16_printk(sys_table_arg, ch);
73 }
74 }
75
mmap_has_headroom(unsigned long buff_size,unsigned long map_size,unsigned long desc_size)76 static inline bool mmap_has_headroom(unsigned long buff_size,
77 unsigned long map_size,
78 unsigned long desc_size)
79 {
80 unsigned long slack = buff_size - map_size;
81
82 return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
83 }
84
efi_get_memory_map(efi_system_table_t * sys_table_arg,struct efi_boot_memmap * map)85 efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
86 struct efi_boot_memmap *map)
87 {
88 efi_memory_desc_t *m = NULL;
89 efi_status_t status;
90 unsigned long key;
91 u32 desc_version;
92
93 *map->desc_size = sizeof(*m);
94 *map->map_size = *map->desc_size * 32;
95 *map->buff_size = *map->map_size;
96 again:
97 status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
98 *map->map_size, (void **)&m);
99 if (status != EFI_SUCCESS)
100 goto fail;
101
102 *map->desc_size = 0;
103 key = 0;
104 status = efi_call_early(get_memory_map, map->map_size, m,
105 &key, map->desc_size, &desc_version);
106 if (status == EFI_BUFFER_TOO_SMALL ||
107 !mmap_has_headroom(*map->buff_size, *map->map_size,
108 *map->desc_size)) {
109 efi_call_early(free_pool, m);
110 /*
111 * Make sure there is some entries of headroom so that the
112 * buffer can be reused for a new map after allocations are
113 * no longer permitted. Its unlikely that the map will grow to
114 * exceed this headroom once we are ready to trigger
115 * ExitBootServices()
116 */
117 *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
118 *map->buff_size = *map->map_size;
119 goto again;
120 }
121
122 if (status != EFI_SUCCESS)
123 efi_call_early(free_pool, m);
124
125 if (map->key_ptr && status == EFI_SUCCESS)
126 *map->key_ptr = key;
127 if (map->desc_ver && status == EFI_SUCCESS)
128 *map->desc_ver = desc_version;
129
130 fail:
131 *map->map = m;
132 return status;
133 }
134
135
get_dram_base(efi_system_table_t * sys_table_arg)136 unsigned long get_dram_base(efi_system_table_t *sys_table_arg)
137 {
138 efi_status_t status;
139 unsigned long map_size, buff_size;
140 unsigned long membase = EFI_ERROR;
141 struct efi_memory_map map;
142 efi_memory_desc_t *md;
143 struct efi_boot_memmap boot_map;
144
145 boot_map.map = (efi_memory_desc_t **)&map.map;
146 boot_map.map_size = &map_size;
147 boot_map.desc_size = &map.desc_size;
148 boot_map.desc_ver = NULL;
149 boot_map.key_ptr = NULL;
150 boot_map.buff_size = &buff_size;
151
152 status = efi_get_memory_map(sys_table_arg, &boot_map);
153 if (status != EFI_SUCCESS)
154 return membase;
155
156 map.map_end = map.map + map_size;
157
158 for_each_efi_memory_desc_in_map(&map, md) {
159 if (md->attribute & EFI_MEMORY_WB) {
160 if (membase > md->phys_addr)
161 membase = md->phys_addr;
162 }
163 }
164
165 efi_call_early(free_pool, map.map);
166
167 return membase;
168 }
169
170 /*
171 * Allocate at the highest possible address that is not above 'max'.
172 */
efi_high_alloc(efi_system_table_t * sys_table_arg,unsigned long size,unsigned long align,unsigned long * addr,unsigned long max)173 efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
174 unsigned long size, unsigned long align,
175 unsigned long *addr, unsigned long max)
176 {
177 unsigned long map_size, desc_size, buff_size;
178 efi_memory_desc_t *map;
179 efi_status_t status;
180 unsigned long nr_pages;
181 u64 max_addr = 0;
182 int i;
183 struct efi_boot_memmap boot_map;
184
185 boot_map.map = ↦
186 boot_map.map_size = &map_size;
187 boot_map.desc_size = &desc_size;
188 boot_map.desc_ver = NULL;
189 boot_map.key_ptr = NULL;
190 boot_map.buff_size = &buff_size;
191
192 status = efi_get_memory_map(sys_table_arg, &boot_map);
193 if (status != EFI_SUCCESS)
194 goto fail;
195
196 /*
197 * Enforce minimum alignment that EFI or Linux requires when
198 * requesting a specific address. We are doing page-based (or
199 * larger) allocations, and both the address and size must meet
200 * alignment constraints.
201 */
202 if (align < EFI_ALLOC_ALIGN)
203 align = EFI_ALLOC_ALIGN;
204
205 size = round_up(size, EFI_ALLOC_ALIGN);
206 nr_pages = size / EFI_PAGE_SIZE;
207 again:
208 for (i = 0; i < map_size / desc_size; i++) {
209 efi_memory_desc_t *desc;
210 unsigned long m = (unsigned long)map;
211 u64 start, end;
212
213 desc = efi_early_memdesc_ptr(m, desc_size, i);
214 if (desc->type != EFI_CONVENTIONAL_MEMORY)
215 continue;
216
217 if (desc->num_pages < nr_pages)
218 continue;
219
220 start = desc->phys_addr;
221 end = start + desc->num_pages * EFI_PAGE_SIZE;
222
223 if (end > max)
224 end = max;
225
226 if ((start + size) > end)
227 continue;
228
229 if (round_down(end - size, align) < start)
230 continue;
231
232 start = round_down(end - size, align);
233
234 /*
235 * Don't allocate at 0x0. It will confuse code that
236 * checks pointers against NULL.
237 */
238 if (start == 0x0)
239 continue;
240
241 if (start > max_addr)
242 max_addr = start;
243 }
244
245 if (!max_addr)
246 status = EFI_NOT_FOUND;
247 else {
248 status = efi_call_early(allocate_pages,
249 EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
250 nr_pages, &max_addr);
251 if (status != EFI_SUCCESS) {
252 max = max_addr;
253 max_addr = 0;
254 goto again;
255 }
256
257 *addr = max_addr;
258 }
259
260 efi_call_early(free_pool, map);
261 fail:
262 return status;
263 }
264
265 /*
266 * Allocate at the lowest possible address.
267 */
efi_low_alloc(efi_system_table_t * sys_table_arg,unsigned long size,unsigned long align,unsigned long * addr)268 efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
269 unsigned long size, unsigned long align,
270 unsigned long *addr)
271 {
272 unsigned long map_size, desc_size, buff_size;
273 efi_memory_desc_t *map;
274 efi_status_t status;
275 unsigned long nr_pages;
276 int i;
277 struct efi_boot_memmap boot_map;
278
279 boot_map.map = ↦
280 boot_map.map_size = &map_size;
281 boot_map.desc_size = &desc_size;
282 boot_map.desc_ver = NULL;
283 boot_map.key_ptr = NULL;
284 boot_map.buff_size = &buff_size;
285
286 status = efi_get_memory_map(sys_table_arg, &boot_map);
287 if (status != EFI_SUCCESS)
288 goto fail;
289
290 /*
291 * Enforce minimum alignment that EFI or Linux requires when
292 * requesting a specific address. We are doing page-based (or
293 * larger) allocations, and both the address and size must meet
294 * alignment constraints.
295 */
296 if (align < EFI_ALLOC_ALIGN)
297 align = EFI_ALLOC_ALIGN;
298
299 size = round_up(size, EFI_ALLOC_ALIGN);
300 nr_pages = size / EFI_PAGE_SIZE;
301 for (i = 0; i < map_size / desc_size; i++) {
302 efi_memory_desc_t *desc;
303 unsigned long m = (unsigned long)map;
304 u64 start, end;
305
306 desc = efi_early_memdesc_ptr(m, desc_size, i);
307
308 if (desc->type != EFI_CONVENTIONAL_MEMORY)
309 continue;
310
311 if (desc->num_pages < nr_pages)
312 continue;
313
314 start = desc->phys_addr;
315 end = start + desc->num_pages * EFI_PAGE_SIZE;
316
317 /*
318 * Don't allocate at 0x0. It will confuse code that
319 * checks pointers against NULL. Skip the first 8
320 * bytes so we start at a nice even number.
321 */
322 if (start == 0x0)
323 start += 8;
324
325 start = round_up(start, align);
326 if ((start + size) > end)
327 continue;
328
329 status = efi_call_early(allocate_pages,
330 EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
331 nr_pages, &start);
332 if (status == EFI_SUCCESS) {
333 *addr = start;
334 break;
335 }
336 }
337
338 if (i == map_size / desc_size)
339 status = EFI_NOT_FOUND;
340
341 efi_call_early(free_pool, map);
342 fail:
343 return status;
344 }
345
efi_free(efi_system_table_t * sys_table_arg,unsigned long size,unsigned long addr)346 void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
347 unsigned long addr)
348 {
349 unsigned long nr_pages;
350
351 if (!size)
352 return;
353
354 nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
355 efi_call_early(free_pages, addr, nr_pages);
356 }
357
efi_file_size(efi_system_table_t * sys_table_arg,void * __fh,efi_char16_t * filename_16,void ** handle,u64 * file_sz)358 static efi_status_t efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
359 efi_char16_t *filename_16, void **handle,
360 u64 *file_sz)
361 {
362 efi_file_handle_t *h, *fh = __fh;
363 efi_file_info_t *info;
364 efi_status_t status;
365 efi_guid_t info_guid = EFI_FILE_INFO_ID;
366 unsigned long info_sz;
367
368 status = efi_call_proto(efi_file_handle, open, fh, &h, filename_16,
369 EFI_FILE_MODE_READ, (u64)0);
370 if (status != EFI_SUCCESS) {
371 efi_printk(sys_table_arg, "Failed to open file: ");
372 efi_char16_printk(sys_table_arg, filename_16);
373 efi_printk(sys_table_arg, "\n");
374 return status;
375 }
376
377 *handle = h;
378
379 info_sz = 0;
380 status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
381 &info_sz, NULL);
382 if (status != EFI_BUFFER_TOO_SMALL) {
383 efi_printk(sys_table_arg, "Failed to get file info size\n");
384 return status;
385 }
386
387 grow:
388 status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
389 info_sz, (void **)&info);
390 if (status != EFI_SUCCESS) {
391 efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
392 return status;
393 }
394
395 status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
396 &info_sz, info);
397 if (status == EFI_BUFFER_TOO_SMALL) {
398 efi_call_early(free_pool, info);
399 goto grow;
400 }
401
402 *file_sz = info->file_size;
403 efi_call_early(free_pool, info);
404
405 if (status != EFI_SUCCESS)
406 efi_printk(sys_table_arg, "Failed to get initrd info\n");
407
408 return status;
409 }
410
efi_file_read(void * handle,unsigned long * size,void * addr)411 static efi_status_t efi_file_read(void *handle, unsigned long *size, void *addr)
412 {
413 return efi_call_proto(efi_file_handle, read, handle, size, addr);
414 }
415
efi_file_close(void * handle)416 static efi_status_t efi_file_close(void *handle)
417 {
418 return efi_call_proto(efi_file_handle, close, handle);
419 }
420
efi_open_volume(efi_system_table_t * sys_table_arg,efi_loaded_image_t * image,efi_file_handle_t ** __fh)421 static efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
422 efi_loaded_image_t *image,
423 efi_file_handle_t **__fh)
424 {
425 efi_file_io_interface_t *io;
426 efi_file_handle_t *fh;
427 efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
428 efi_status_t status;
429 void *handle = (void *)(unsigned long)efi_table_attr(efi_loaded_image,
430 device_handle,
431 image);
432
433 status = efi_call_early(handle_protocol, handle,
434 &fs_proto, (void **)&io);
435 if (status != EFI_SUCCESS) {
436 efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
437 return status;
438 }
439
440 status = efi_call_proto(efi_file_io_interface, open_volume, io, &fh);
441 if (status != EFI_SUCCESS)
442 efi_printk(sys_table_arg, "Failed to open volume\n");
443 else
444 *__fh = fh;
445
446 return status;
447 }
448
449 /*
450 * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
451 * option, e.g. efi=nochunk.
452 *
453 * It should be noted that efi= is parsed in two very different
454 * environments, first in the early boot environment of the EFI boot
455 * stub, and subsequently during the kernel boot.
456 */
efi_parse_options(char const * cmdline)457 efi_status_t efi_parse_options(char const *cmdline)
458 {
459 char *str;
460
461 str = strstr(cmdline, "nokaslr");
462 if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
463 __nokaslr = 1;
464
465 str = strstr(cmdline, "quiet");
466 if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
467 __quiet = 1;
468
469 /*
470 * If no EFI parameters were specified on the cmdline we've got
471 * nothing to do.
472 */
473 str = strstr(cmdline, "efi=");
474 if (!str)
475 return EFI_SUCCESS;
476
477 /* Skip ahead to first argument */
478 str += strlen("efi=");
479
480 /*
481 * Remember, because efi= is also used by the kernel we need to
482 * skip over arguments we don't understand.
483 */
484 while (*str && *str != ' ') {
485 if (!strncmp(str, "nochunk", 7)) {
486 str += strlen("nochunk");
487 __chunk_size = -1UL;
488 }
489
490 if (!strncmp(str, "novamap", 7)) {
491 str += strlen("novamap");
492 __novamap = 1;
493 }
494
495 /* Group words together, delimited by "," */
496 while (*str && *str != ' ' && *str != ',')
497 str++;
498
499 if (*str == ',')
500 str++;
501 }
502
503 return EFI_SUCCESS;
504 }
505
506 /*
507 * Check the cmdline for a LILO-style file= arguments.
508 *
509 * We only support loading a file from the same filesystem as
510 * the kernel image.
511 */
handle_cmdline_files(efi_system_table_t * sys_table_arg,efi_loaded_image_t * image,char * cmd_line,char * option_string,unsigned long max_addr,unsigned long * load_addr,unsigned long * load_size)512 efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
513 efi_loaded_image_t *image,
514 char *cmd_line, char *option_string,
515 unsigned long max_addr,
516 unsigned long *load_addr,
517 unsigned long *load_size)
518 {
519 struct file_info *files;
520 unsigned long file_addr;
521 u64 file_size_total;
522 efi_file_handle_t *fh = NULL;
523 efi_status_t status;
524 int nr_files;
525 char *str;
526 int i, j, k;
527
528 file_addr = 0;
529 file_size_total = 0;
530
531 str = cmd_line;
532
533 j = 0; /* See close_handles */
534
535 if (!load_addr || !load_size)
536 return EFI_INVALID_PARAMETER;
537
538 *load_addr = 0;
539 *load_size = 0;
540
541 if (!str || !*str)
542 return EFI_SUCCESS;
543
544 for (nr_files = 0; *str; nr_files++) {
545 str = strstr(str, option_string);
546 if (!str)
547 break;
548
549 str += strlen(option_string);
550
551 /* Skip any leading slashes */
552 while (*str == '/' || *str == '\\')
553 str++;
554
555 while (*str && *str != ' ' && *str != '\n')
556 str++;
557 }
558
559 if (!nr_files)
560 return EFI_SUCCESS;
561
562 status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
563 nr_files * sizeof(*files), (void **)&files);
564 if (status != EFI_SUCCESS) {
565 pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
566 goto fail;
567 }
568
569 str = cmd_line;
570 for (i = 0; i < nr_files; i++) {
571 struct file_info *file;
572 efi_char16_t filename_16[256];
573 efi_char16_t *p;
574
575 str = strstr(str, option_string);
576 if (!str)
577 break;
578
579 str += strlen(option_string);
580
581 file = &files[i];
582 p = filename_16;
583
584 /* Skip any leading slashes */
585 while (*str == '/' || *str == '\\')
586 str++;
587
588 while (*str && *str != ' ' && *str != '\n') {
589 if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
590 break;
591
592 if (*str == '/') {
593 *p++ = '\\';
594 str++;
595 } else {
596 *p++ = *str++;
597 }
598 }
599
600 *p = '\0';
601
602 /* Only open the volume once. */
603 if (!i) {
604 status = efi_open_volume(sys_table_arg, image, &fh);
605 if (status != EFI_SUCCESS)
606 goto free_files;
607 }
608
609 status = efi_file_size(sys_table_arg, fh, filename_16,
610 (void **)&file->handle, &file->size);
611 if (status != EFI_SUCCESS)
612 goto close_handles;
613
614 file_size_total += file->size;
615 }
616
617 if (file_size_total) {
618 unsigned long addr;
619
620 /*
621 * Multiple files need to be at consecutive addresses in memory,
622 * so allocate enough memory for all the files. This is used
623 * for loading multiple files.
624 */
625 status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
626 &file_addr, max_addr);
627 if (status != EFI_SUCCESS) {
628 pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
629 goto close_handles;
630 }
631
632 /* We've run out of free low memory. */
633 if (file_addr > max_addr) {
634 pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
635 status = EFI_INVALID_PARAMETER;
636 goto free_file_total;
637 }
638
639 addr = file_addr;
640 for (j = 0; j < nr_files; j++) {
641 unsigned long size;
642
643 size = files[j].size;
644 while (size) {
645 unsigned long chunksize;
646
647 if (IS_ENABLED(CONFIG_X86) && size > __chunk_size)
648 chunksize = __chunk_size;
649 else
650 chunksize = size;
651
652 status = efi_file_read(files[j].handle,
653 &chunksize,
654 (void *)addr);
655 if (status != EFI_SUCCESS) {
656 pr_efi_err(sys_table_arg, "Failed to read file\n");
657 goto free_file_total;
658 }
659 addr += chunksize;
660 size -= chunksize;
661 }
662
663 efi_file_close(files[j].handle);
664 }
665
666 }
667
668 efi_call_early(free_pool, files);
669
670 *load_addr = file_addr;
671 *load_size = file_size_total;
672
673 return status;
674
675 free_file_total:
676 efi_free(sys_table_arg, file_size_total, file_addr);
677
678 close_handles:
679 for (k = j; k < i; k++)
680 efi_file_close(files[k].handle);
681 free_files:
682 efi_call_early(free_pool, files);
683 fail:
684 *load_addr = 0;
685 *load_size = 0;
686
687 return status;
688 }
689 /*
690 * Relocate a kernel image, either compressed or uncompressed.
691 * In the ARM64 case, all kernel images are currently
692 * uncompressed, and as such when we relocate it we need to
693 * allocate additional space for the BSS segment. Any low
694 * memory that this function should avoid needs to be
695 * unavailable in the EFI memory map, as if the preferred
696 * address is not available the lowest available address will
697 * be used.
698 */
efi_relocate_kernel(efi_system_table_t * sys_table_arg,unsigned long * image_addr,unsigned long image_size,unsigned long alloc_size,unsigned long preferred_addr,unsigned long alignment)699 efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
700 unsigned long *image_addr,
701 unsigned long image_size,
702 unsigned long alloc_size,
703 unsigned long preferred_addr,
704 unsigned long alignment)
705 {
706 unsigned long cur_image_addr;
707 unsigned long new_addr = 0;
708 efi_status_t status;
709 unsigned long nr_pages;
710 efi_physical_addr_t efi_addr = preferred_addr;
711
712 if (!image_addr || !image_size || !alloc_size)
713 return EFI_INVALID_PARAMETER;
714 if (alloc_size < image_size)
715 return EFI_INVALID_PARAMETER;
716
717 cur_image_addr = *image_addr;
718
719 /*
720 * The EFI firmware loader could have placed the kernel image
721 * anywhere in memory, but the kernel has restrictions on the
722 * max physical address it can run at. Some architectures
723 * also have a prefered address, so first try to relocate
724 * to the preferred address. If that fails, allocate as low
725 * as possible while respecting the required alignment.
726 */
727 nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
728 status = efi_call_early(allocate_pages,
729 EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
730 nr_pages, &efi_addr);
731 new_addr = efi_addr;
732 /*
733 * If preferred address allocation failed allocate as low as
734 * possible.
735 */
736 if (status != EFI_SUCCESS) {
737 status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
738 &new_addr);
739 }
740 if (status != EFI_SUCCESS) {
741 pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
742 return status;
743 }
744
745 /*
746 * We know source/dest won't overlap since both memory ranges
747 * have been allocated by UEFI, so we can safely use memcpy.
748 */
749 memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
750
751 /* Return the new address of the relocated image. */
752 *image_addr = new_addr;
753
754 return status;
755 }
756
757 /*
758 * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
759 * This overestimates for surrogates, but that is okay.
760 */
efi_utf8_bytes(u16 c)761 static int efi_utf8_bytes(u16 c)
762 {
763 return 1 + (c >= 0x80) + (c >= 0x800);
764 }
765
766 /*
767 * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
768 */
efi_utf16_to_utf8(u8 * dst,const u16 * src,int n)769 static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
770 {
771 unsigned int c;
772
773 while (n--) {
774 c = *src++;
775 if (n && c >= 0xd800 && c <= 0xdbff &&
776 *src >= 0xdc00 && *src <= 0xdfff) {
777 c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
778 src++;
779 n--;
780 }
781 if (c >= 0xd800 && c <= 0xdfff)
782 c = 0xfffd; /* Unmatched surrogate */
783 if (c < 0x80) {
784 *dst++ = c;
785 continue;
786 }
787 if (c < 0x800) {
788 *dst++ = 0xc0 + (c >> 6);
789 goto t1;
790 }
791 if (c < 0x10000) {
792 *dst++ = 0xe0 + (c >> 12);
793 goto t2;
794 }
795 *dst++ = 0xf0 + (c >> 18);
796 *dst++ = 0x80 + ((c >> 12) & 0x3f);
797 t2:
798 *dst++ = 0x80 + ((c >> 6) & 0x3f);
799 t1:
800 *dst++ = 0x80 + (c & 0x3f);
801 }
802
803 return dst;
804 }
805
806 #ifndef MAX_CMDLINE_ADDRESS
807 #define MAX_CMDLINE_ADDRESS ULONG_MAX
808 #endif
809
810 /*
811 * Convert the unicode UEFI command line to ASCII to pass to kernel.
812 * Size of memory allocated return in *cmd_line_len.
813 * Returns NULL on error.
814 */
efi_convert_cmdline(efi_system_table_t * sys_table_arg,efi_loaded_image_t * image,int * cmd_line_len)815 char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
816 efi_loaded_image_t *image,
817 int *cmd_line_len)
818 {
819 const u16 *s2;
820 u8 *s1 = NULL;
821 unsigned long cmdline_addr = 0;
822 int load_options_chars = image->load_options_size / 2; /* UTF-16 */
823 const u16 *options = image->load_options;
824 int options_bytes = 0; /* UTF-8 bytes */
825 int options_chars = 0; /* UTF-16 chars */
826 efi_status_t status;
827 u16 zero = 0;
828
829 if (options) {
830 s2 = options;
831 while (*s2 && *s2 != '\n'
832 && options_chars < load_options_chars) {
833 options_bytes += efi_utf8_bytes(*s2++);
834 options_chars++;
835 }
836 }
837
838 if (!options_chars) {
839 /* No command line options, so return empty string*/
840 options = &zero;
841 }
842
843 options_bytes++; /* NUL termination */
844
845 status = efi_high_alloc(sys_table_arg, options_bytes, 0,
846 &cmdline_addr, MAX_CMDLINE_ADDRESS);
847 if (status != EFI_SUCCESS)
848 return NULL;
849
850 s1 = (u8 *)cmdline_addr;
851 s2 = (const u16 *)options;
852
853 s1 = efi_utf16_to_utf8(s1, s2, options_chars);
854 *s1 = '\0';
855
856 *cmd_line_len = options_bytes;
857 return (char *)cmdline_addr;
858 }
859
860 /*
861 * Handle calling ExitBootServices according to the requirements set out by the
862 * spec. Obtains the current memory map, and returns that info after calling
863 * ExitBootServices. The client must specify a function to perform any
864 * processing of the memory map data prior to ExitBootServices. A client
865 * specific structure may be passed to the function via priv. The client
866 * function may be called multiple times.
867 */
efi_exit_boot_services(efi_system_table_t * sys_table_arg,void * handle,struct efi_boot_memmap * map,void * priv,efi_exit_boot_map_processing priv_func)868 efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg,
869 void *handle,
870 struct efi_boot_memmap *map,
871 void *priv,
872 efi_exit_boot_map_processing priv_func)
873 {
874 efi_status_t status;
875
876 status = efi_get_memory_map(sys_table_arg, map);
877
878 if (status != EFI_SUCCESS)
879 goto fail;
880
881 status = priv_func(sys_table_arg, map, priv);
882 if (status != EFI_SUCCESS)
883 goto free_map;
884
885 status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
886
887 if (status == EFI_INVALID_PARAMETER) {
888 /*
889 * The memory map changed between efi_get_memory_map() and
890 * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4:
891 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
892 * updated map, and try again. The spec implies one retry
893 * should be sufficent, which is confirmed against the EDK2
894 * implementation. Per the spec, we can only invoke
895 * get_memory_map() and exit_boot_services() - we cannot alloc
896 * so efi_get_memory_map() cannot be used, and we must reuse
897 * the buffer. For all practical purposes, the headroom in the
898 * buffer should account for any changes in the map so the call
899 * to get_memory_map() is expected to succeed here.
900 */
901 *map->map_size = *map->buff_size;
902 status = efi_call_early(get_memory_map,
903 map->map_size,
904 *map->map,
905 map->key_ptr,
906 map->desc_size,
907 map->desc_ver);
908
909 /* exit_boot_services() was called, thus cannot free */
910 if (status != EFI_SUCCESS)
911 goto fail;
912
913 status = priv_func(sys_table_arg, map, priv);
914 /* exit_boot_services() was called, thus cannot free */
915 if (status != EFI_SUCCESS)
916 goto fail;
917
918 status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
919 }
920
921 /* exit_boot_services() was called, thus cannot free */
922 if (status != EFI_SUCCESS)
923 goto fail;
924
925 return EFI_SUCCESS;
926
927 free_map:
928 efi_call_early(free_pool, *map->map);
929 fail:
930 return status;
931 }
932