• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  EFI application memory management
4  *
5  *  Copyright (c) 2016 Alexander Graf
6  */
7 
8 #include <common.h>
9 #include <efi_loader.h>
10 #include <init.h>
11 #include <malloc.h>
12 #include <mapmem.h>
13 #include <watchdog.h>
14 #include <linux/list_sort.h>
15 #include <linux/sizes.h>
16 
17 DECLARE_GLOBAL_DATA_PTR;
18 
19 /* Magic number identifying memory allocated from pool */
20 #define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
21 
22 efi_uintn_t efi_memory_map_key;
23 
24 struct efi_mem_list {
25 	struct list_head link;
26 	struct efi_mem_desc desc;
27 };
28 
29 #define EFI_CARVE_NO_OVERLAP		-1
30 #define EFI_CARVE_LOOP_AGAIN		-2
31 #define EFI_CARVE_OVERLAPS_NONRAM	-3
32 
33 /* This list contains all memory map items */
34 LIST_HEAD(efi_mem);
35 
36 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
37 void *efi_bounce_buffer;
38 #endif
39 
40 /**
41  * struct efi_pool_allocation - memory block allocated from pool
42  *
43  * @num_pages:	number of pages allocated
44  * @checksum:	checksum
45  * @data:	allocated pool memory
46  *
47  * U-Boot services each UEFI AllocatePool() request as a separate
48  * (multiple) page allocation. We have to track the number of pages
49  * to be able to free the correct amount later.
50  *
51  * The checksum calculated in function checksum() is used in FreePool() to avoid
52  * freeing memory not allocated by AllocatePool() and duplicate freeing.
53  *
54  * EFI requires 8 byte alignment for pool allocations, so we can
55  * prepend each allocation with these header fields.
56  */
57 struct efi_pool_allocation {
58 	u64 num_pages;
59 	u64 checksum;
60 	char data[] __aligned(ARCH_DMA_MINALIGN);
61 };
62 
63 /**
64  * checksum() - calculate checksum for memory allocated from pool
65  *
66  * @alloc:	allocation header
67  * Return:	checksum, always non-zero
68  */
checksum(struct efi_pool_allocation * alloc)69 static u64 checksum(struct efi_pool_allocation *alloc)
70 {
71 	u64 addr = (uintptr_t)alloc;
72 	u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
73 		  EFI_ALLOC_POOL_MAGIC;
74 	if (!ret)
75 		++ret;
76 	return ret;
77 }
78 
79 /*
80  * Sorts the memory list from highest address to lowest address
81  *
82  * When allocating memory we should always start from the highest
83  * address chunk, so sort the memory list such that the first list
84  * iterator gets the highest address and goes lower from there.
85  */
efi_mem_cmp(void * priv,struct list_head * a,struct list_head * b)86 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
87 {
88 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
89 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
90 
91 	if (mema->desc.physical_start == memb->desc.physical_start)
92 		return 0;
93 	else if (mema->desc.physical_start < memb->desc.physical_start)
94 		return 1;
95 	else
96 		return -1;
97 }
98 
desc_get_end(struct efi_mem_desc * desc)99 static uint64_t desc_get_end(struct efi_mem_desc *desc)
100 {
101 	return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
102 }
103 
efi_mem_sort(void)104 static void efi_mem_sort(void)
105 {
106 	struct list_head *lhandle;
107 	struct efi_mem_list *prevmem = NULL;
108 	bool merge_again = true;
109 
110 	list_sort(NULL, &efi_mem, efi_mem_cmp);
111 
112 	/* Now merge entries that can be merged */
113 	while (merge_again) {
114 		merge_again = false;
115 		list_for_each(lhandle, &efi_mem) {
116 			struct efi_mem_list *lmem;
117 			struct efi_mem_desc *prev = &prevmem->desc;
118 			struct efi_mem_desc *cur;
119 			uint64_t pages;
120 
121 			lmem = list_entry(lhandle, struct efi_mem_list, link);
122 			if (!prevmem) {
123 				prevmem = lmem;
124 				continue;
125 			}
126 
127 			cur = &lmem->desc;
128 
129 			if ((desc_get_end(cur) == prev->physical_start) &&
130 			    (prev->type == cur->type) &&
131 			    (prev->attribute == cur->attribute)) {
132 				/* There is an existing map before, reuse it */
133 				pages = cur->num_pages;
134 				prev->num_pages += pages;
135 				prev->physical_start -= pages << EFI_PAGE_SHIFT;
136 				prev->virtual_start -= pages << EFI_PAGE_SHIFT;
137 				list_del(&lmem->link);
138 				free(lmem);
139 
140 				merge_again = true;
141 				break;
142 			}
143 
144 			prevmem = lmem;
145 		}
146 	}
147 }
148 
149 /** efi_mem_carve_out - unmap memory region
150  *
151  * @map:		memory map
152  * @carve_desc:		memory region to unmap
153  * @overlap_only_ram:	the carved out region may only overlap RAM
154  * Return Value:	the number of overlapping pages which have been
155  *			removed from the map,
156  *			EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
157  *			EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
158  *			and the map contains anything but free ram
159  *			(only when overlap_only_ram is true),
160  *			EFI_CARVE_LOOP_AGAIN, if the mapping list should be
161  *			traversed again, as it has been altered.
162  *
163  * Unmaps all memory occupied by the carve_desc region from the list entry
164  * pointed to by map.
165  *
166  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
167  * to re-add the already carved out pages to the mapping.
168  */
efi_mem_carve_out(struct efi_mem_list * map,struct efi_mem_desc * carve_desc,bool overlap_only_ram)169 static s64 efi_mem_carve_out(struct efi_mem_list *map,
170 			     struct efi_mem_desc *carve_desc,
171 			     bool overlap_only_ram)
172 {
173 	struct efi_mem_list *newmap;
174 	struct efi_mem_desc *map_desc = &map->desc;
175 	uint64_t map_start = map_desc->physical_start;
176 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
177 	uint64_t carve_start = carve_desc->physical_start;
178 	uint64_t carve_end = carve_start +
179 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
180 
181 	/* check whether we're overlapping */
182 	if ((carve_end <= map_start) || (carve_start >= map_end))
183 		return EFI_CARVE_NO_OVERLAP;
184 
185 	/* We're overlapping with non-RAM, warn the caller if desired */
186 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
187 		return EFI_CARVE_OVERLAPS_NONRAM;
188 
189 	/* Sanitize carve_start and carve_end to lie within our bounds */
190 	carve_start = max(carve_start, map_start);
191 	carve_end = min(carve_end, map_end);
192 
193 	/* Carving at the beginning of our map? Just move it! */
194 	if (carve_start == map_start) {
195 		if (map_end == carve_end) {
196 			/* Full overlap, just remove map */
197 			list_del(&map->link);
198 			free(map);
199 		} else {
200 			map->desc.physical_start = carve_end;
201 			map->desc.virtual_start = carve_end;
202 			map->desc.num_pages = (map_end - carve_end)
203 					      >> EFI_PAGE_SHIFT;
204 		}
205 
206 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
207 	}
208 
209 	/*
210 	 * Overlapping maps, just split the list map at carve_start,
211 	 * it will get moved or removed in the next iteration.
212 	 *
213 	 * [ map_desc |__carve_start__| newmap ]
214 	 */
215 
216 	/* Create a new map from [ carve_start ... map_end ] */
217 	newmap = calloc(1, sizeof(*newmap));
218 	newmap->desc = map->desc;
219 	newmap->desc.physical_start = carve_start;
220 	newmap->desc.virtual_start = carve_start;
221 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
222 	/* Insert before current entry (descending address order) */
223 	list_add_tail(&newmap->link, &map->link);
224 
225 	/* Shrink the map to [ map_start ... carve_start ] */
226 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
227 
228 	return EFI_CARVE_LOOP_AGAIN;
229 }
230 
231 /**
232  * efi_add_memory_map() - add memory area to the memory map
233  *
234  * @start:		start address, must be a multiple of EFI_PAGE_SIZE
235  * @pages:		number of pages to add
236  * @memory_type:	type of memory added
237  * @overlap_only_ram:	the memory area must overlap existing
238  * Return:		status code
239  */
efi_add_memory_map(uint64_t start,uint64_t pages,int memory_type,bool overlap_only_ram)240 efi_status_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
241 				bool overlap_only_ram)
242 {
243 	struct list_head *lhandle;
244 	struct efi_mem_list *newlist;
245 	bool carve_again;
246 	uint64_t carved_pages = 0;
247 	struct efi_event *evt;
248 
249 	EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
250 		  start, pages, memory_type, overlap_only_ram ? "yes" : "no");
251 
252 	if (memory_type >= EFI_MAX_MEMORY_TYPE)
253 		return EFI_INVALID_PARAMETER;
254 
255 	if (!pages)
256 		return EFI_SUCCESS;
257 
258 	++efi_memory_map_key;
259 	newlist = calloc(1, sizeof(*newlist));
260 	newlist->desc.type = memory_type;
261 	newlist->desc.physical_start = start;
262 	newlist->desc.virtual_start = start;
263 	newlist->desc.num_pages = pages;
264 
265 	switch (memory_type) {
266 	case EFI_RUNTIME_SERVICES_CODE:
267 	case EFI_RUNTIME_SERVICES_DATA:
268 		newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
269 		break;
270 	case EFI_MMAP_IO:
271 		newlist->desc.attribute = EFI_MEMORY_RUNTIME;
272 		break;
273 	default:
274 		newlist->desc.attribute = EFI_MEMORY_WB;
275 		break;
276 	}
277 
278 	/* Add our new map */
279 	do {
280 		carve_again = false;
281 		list_for_each(lhandle, &efi_mem) {
282 			struct efi_mem_list *lmem;
283 			s64 r;
284 
285 			lmem = list_entry(lhandle, struct efi_mem_list, link);
286 			r = efi_mem_carve_out(lmem, &newlist->desc,
287 					      overlap_only_ram);
288 			switch (r) {
289 			case EFI_CARVE_OVERLAPS_NONRAM:
290 				/*
291 				 * The user requested to only have RAM overlaps,
292 				 * but we hit a non-RAM region. Error out.
293 				 */
294 				return EFI_NO_MAPPING;
295 			case EFI_CARVE_NO_OVERLAP:
296 				/* Just ignore this list entry */
297 				break;
298 			case EFI_CARVE_LOOP_AGAIN:
299 				/*
300 				 * We split an entry, but need to loop through
301 				 * the list again to actually carve it.
302 				 */
303 				carve_again = true;
304 				break;
305 			default:
306 				/* We carved a number of pages */
307 				carved_pages += r;
308 				carve_again = true;
309 				break;
310 			}
311 
312 			if (carve_again) {
313 				/* The list changed, we need to start over */
314 				break;
315 			}
316 		}
317 	} while (carve_again);
318 
319 	if (overlap_only_ram && (carved_pages != pages)) {
320 		/*
321 		 * The payload wanted to have RAM overlaps, but we overlapped
322 		 * with an unallocated region. Error out.
323 		 */
324 		return EFI_NO_MAPPING;
325 	}
326 
327 	/* Add our new map */
328         list_add_tail(&newlist->link, &efi_mem);
329 
330 	/* And make sure memory is listed in descending order */
331 	efi_mem_sort();
332 
333 	/* Notify that the memory map was changed */
334 	list_for_each_entry(evt, &efi_events, link) {
335 		if (evt->group &&
336 		    !guidcmp(evt->group,
337 			     &efi_guid_event_group_memory_map_change)) {
338 			efi_signal_event(evt);
339 			break;
340 		}
341 	}
342 
343 	return EFI_SUCCESS;
344 }
345 
346 /**
347  * efi_check_allocated() - validate address to be freed
348  *
349  * Check that the address is within allocated memory:
350  *
351  * * The address must be in a range of the memory map.
352  * * The address may not point to EFI_CONVENTIONAL_MEMORY.
353  *
354  * Page alignment is not checked as this is not a requirement of
355  * efi_free_pool().
356  *
357  * @addr:		address of page to be freed
358  * @must_be_allocated:	return success if the page is allocated
359  * Return:		status code
360  */
efi_check_allocated(u64 addr,bool must_be_allocated)361 static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
362 {
363 	struct efi_mem_list *item;
364 
365 	list_for_each_entry(item, &efi_mem, link) {
366 		u64 start = item->desc.physical_start;
367 		u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
368 
369 		if (addr >= start && addr < end) {
370 			if (must_be_allocated ^
371 			    (item->desc.type == EFI_CONVENTIONAL_MEMORY))
372 				return EFI_SUCCESS;
373 			else
374 				return EFI_NOT_FOUND;
375 		}
376 	}
377 
378 	return EFI_NOT_FOUND;
379 }
380 
efi_find_free_memory(uint64_t len,uint64_t max_addr)381 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
382 {
383 	struct list_head *lhandle;
384 
385 	/*
386 	 * Prealign input max address, so we simplify our matching
387 	 * logic below and can just reuse it as return pointer.
388 	 */
389 	max_addr &= ~EFI_PAGE_MASK;
390 
391 	list_for_each(lhandle, &efi_mem) {
392 		struct efi_mem_list *lmem = list_entry(lhandle,
393 			struct efi_mem_list, link);
394 		struct efi_mem_desc *desc = &lmem->desc;
395 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
396 		uint64_t desc_end = desc->physical_start + desc_len;
397 		uint64_t curmax = min(max_addr, desc_end);
398 		uint64_t ret = curmax - len;
399 
400 		/* We only take memory from free RAM */
401 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
402 			continue;
403 
404 		/* Out of bounds for max_addr */
405 		if ((ret + len) > max_addr)
406 			continue;
407 
408 		/* Out of bounds for upper map limit */
409 		if ((ret + len) > desc_end)
410 			continue;
411 
412 		/* Out of bounds for lower map limit */
413 		if (ret < desc->physical_start)
414 			continue;
415 
416 		/* Return the highest address in this map within bounds */
417 		return ret;
418 	}
419 
420 	return 0;
421 }
422 
423 /*
424  * Allocate memory pages.
425  *
426  * @type		type of allocation to be performed
427  * @memory_type		usage type of the allocated memory
428  * @pages		number of pages to be allocated
429  * @memory		allocated memory
430  * @return		status code
431  */
efi_allocate_pages(int type,int memory_type,efi_uintn_t pages,uint64_t * memory)432 efi_status_t efi_allocate_pages(int type, int memory_type,
433 				efi_uintn_t pages, uint64_t *memory)
434 {
435 	u64 len = pages << EFI_PAGE_SHIFT;
436 	efi_status_t ret;
437 	uint64_t addr;
438 
439 	/* Check import parameters */
440 	if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
441 	    memory_type <= 0x6FFFFFFF)
442 		return EFI_INVALID_PARAMETER;
443 	if (!memory)
444 		return EFI_INVALID_PARAMETER;
445 
446 	switch (type) {
447 	case EFI_ALLOCATE_ANY_PAGES:
448 		/* Any page */
449 		addr = efi_find_free_memory(len, -1ULL);
450 		if (!addr)
451 			return EFI_OUT_OF_RESOURCES;
452 		break;
453 	case EFI_ALLOCATE_MAX_ADDRESS:
454 		/* Max address */
455 		addr = efi_find_free_memory(len, *memory);
456 		if (!addr)
457 			return EFI_OUT_OF_RESOURCES;
458 		break;
459 	case EFI_ALLOCATE_ADDRESS:
460 		/* Exact address, reserve it. The addr is already in *memory. */
461 		ret = efi_check_allocated(*memory, false);
462 		if (ret != EFI_SUCCESS)
463 			return EFI_NOT_FOUND;
464 		addr = *memory;
465 		break;
466 	default:
467 		/* UEFI doesn't specify other allocation types */
468 		return EFI_INVALID_PARAMETER;
469 	}
470 
471 	/* Reserve that map in our memory maps */
472 	if (efi_add_memory_map(addr, pages, memory_type, true) != EFI_SUCCESS)
473 		/* Map would overlap, bail out */
474 		return  EFI_OUT_OF_RESOURCES;
475 
476 	*memory = addr;
477 
478 	return EFI_SUCCESS;
479 }
480 
efi_alloc(uint64_t len,int memory_type)481 void *efi_alloc(uint64_t len, int memory_type)
482 {
483 	uint64_t ret = 0;
484 	uint64_t pages = efi_size_in_pages(len);
485 	efi_status_t r;
486 
487 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
488 			       &ret);
489 	if (r == EFI_SUCCESS)
490 		return (void*)(uintptr_t)ret;
491 
492 	return NULL;
493 }
494 
495 /**
496  * efi_free_pages() - free memory pages
497  *
498  * @memory:	start of the memory area to be freed
499  * @pages:	number of pages to be freed
500  * Return:	status code
501  */
efi_free_pages(uint64_t memory,efi_uintn_t pages)502 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
503 {
504 	efi_status_t ret;
505 
506 	ret = efi_check_allocated(memory, true);
507 	if (ret != EFI_SUCCESS)
508 		return ret;
509 
510 	/* Sanity check */
511 	if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
512 		printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
513 		       memory, pages);
514 		return EFI_INVALID_PARAMETER;
515 	}
516 
517 	ret = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false);
518 	/* Merging of adjacent free regions is missing */
519 
520 	if (ret != EFI_SUCCESS)
521 		return EFI_NOT_FOUND;
522 
523 	return ret;
524 }
525 
526 /**
527  * efi_allocate_pool - allocate memory from pool
528  *
529  * @pool_type:	type of the pool from which memory is to be allocated
530  * @size:	number of bytes to be allocated
531  * @buffer:	allocated memory
532  * Return:	status code
533  */
efi_allocate_pool(int pool_type,efi_uintn_t size,void ** buffer)534 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
535 {
536 	efi_status_t r;
537 	u64 addr;
538 	struct efi_pool_allocation *alloc;
539 	u64 num_pages = efi_size_in_pages(size +
540 					  sizeof(struct efi_pool_allocation));
541 
542 	if (!buffer)
543 		return EFI_INVALID_PARAMETER;
544 
545 	if (size == 0) {
546 		*buffer = NULL;
547 		return EFI_SUCCESS;
548 	}
549 
550 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
551 			       &addr);
552 	if (r == EFI_SUCCESS) {
553 		alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
554 		alloc->num_pages = num_pages;
555 		alloc->checksum = checksum(alloc);
556 		*buffer = alloc->data;
557 	}
558 
559 	return r;
560 }
561 
562 /**
563  * efi_free_pool() - free memory from pool
564  *
565  * @buffer:	start of memory to be freed
566  * Return:	status code
567  */
efi_free_pool(void * buffer)568 efi_status_t efi_free_pool(void *buffer)
569 {
570 	efi_status_t ret;
571 	struct efi_pool_allocation *alloc;
572 
573 	if (!buffer)
574 		return EFI_INVALID_PARAMETER;
575 
576 	ret = efi_check_allocated((uintptr_t)buffer, true);
577 	if (ret != EFI_SUCCESS)
578 		return ret;
579 
580 	alloc = container_of(buffer, struct efi_pool_allocation, data);
581 
582 	/* Check that this memory was allocated by efi_allocate_pool() */
583 	if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
584 	    alloc->checksum != checksum(alloc)) {
585 		printf("%s: illegal free 0x%p\n", __func__, buffer);
586 		return EFI_INVALID_PARAMETER;
587 	}
588 	/* Avoid double free */
589 	alloc->checksum = 0;
590 
591 	ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
592 
593 	return ret;
594 }
595 
596 /*
597  * Get map describing memory usage.
598  *
599  * @memory_map_size	on entry the size, in bytes, of the memory map buffer,
600  *			on exit the size of the copied memory map
601  * @memory_map		buffer to which the memory map is written
602  * @map_key		key for the memory map
603  * @descriptor_size	size of an individual memory descriptor
604  * @descriptor_version	version number of the memory descriptor structure
605  * @return		status code
606  */
efi_get_memory_map(efi_uintn_t * memory_map_size,struct efi_mem_desc * memory_map,efi_uintn_t * map_key,efi_uintn_t * descriptor_size,uint32_t * descriptor_version)607 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
608 				struct efi_mem_desc *memory_map,
609 				efi_uintn_t *map_key,
610 				efi_uintn_t *descriptor_size,
611 				uint32_t *descriptor_version)
612 {
613 	efi_uintn_t map_size = 0;
614 	int map_entries = 0;
615 	struct list_head *lhandle;
616 	efi_uintn_t provided_map_size;
617 
618 	if (!memory_map_size)
619 		return EFI_INVALID_PARAMETER;
620 
621 	provided_map_size = *memory_map_size;
622 
623 	list_for_each(lhandle, &efi_mem)
624 		map_entries++;
625 
626 	map_size = map_entries * sizeof(struct efi_mem_desc);
627 
628 	*memory_map_size = map_size;
629 
630 	if (provided_map_size < map_size)
631 		return EFI_BUFFER_TOO_SMALL;
632 
633 	if (!memory_map)
634 		return EFI_INVALID_PARAMETER;
635 
636 	if (descriptor_size)
637 		*descriptor_size = sizeof(struct efi_mem_desc);
638 
639 	if (descriptor_version)
640 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
641 
642 	/* Copy list into array */
643 	/* Return the list in ascending order */
644 	memory_map = &memory_map[map_entries - 1];
645 	list_for_each(lhandle, &efi_mem) {
646 		struct efi_mem_list *lmem;
647 
648 		lmem = list_entry(lhandle, struct efi_mem_list, link);
649 		*memory_map = lmem->desc;
650 		memory_map--;
651 	}
652 
653 	if (map_key)
654 		*map_key = efi_memory_map_key;
655 
656 	return EFI_SUCCESS;
657 }
658 
659 /**
660  * efi_add_conventional_memory_map() - add a RAM memory area to the map
661  *
662  * @ram_start:		start address of a RAM memory area
663  * @ram_end:		end address of a RAM memory area
664  * @ram_top:		max address to be used as conventional memory
665  * Return:		status code
666  */
efi_add_conventional_memory_map(u64 ram_start,u64 ram_end,u64 ram_top)667 efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
668 					     u64 ram_top)
669 {
670 	u64 pages;
671 
672 	/* Remove partial pages */
673 	ram_end &= ~EFI_PAGE_MASK;
674 	ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
675 
676 	if (ram_end <= ram_start) {
677 		/* Invalid mapping */
678 		return EFI_INVALID_PARAMETER;
679 	}
680 
681 	pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;
682 
683 	efi_add_memory_map(ram_start, pages,
684 			   EFI_CONVENTIONAL_MEMORY, false);
685 
686 	/*
687 	 * Boards may indicate to the U-Boot memory core that they
688 	 * can not support memory above ram_top. Let's honor this
689 	 * in the efi_loader subsystem too by declaring any memory
690 	 * above ram_top as "already occupied by firmware".
691 	 */
692 	if (ram_top < ram_start) {
693 		/* ram_top is before this region, reserve all */
694 		efi_add_memory_map(ram_start, pages,
695 				   EFI_BOOT_SERVICES_DATA, true);
696 	} else if ((ram_top >= ram_start) && (ram_top < ram_end)) {
697 		/* ram_top is inside this region, reserve parts */
698 		pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;
699 
700 		efi_add_memory_map(ram_top, pages,
701 				   EFI_BOOT_SERVICES_DATA, true);
702 	}
703 
704 	return EFI_SUCCESS;
705 }
706 
efi_add_known_memory(void)707 __weak void efi_add_known_memory(void)
708 {
709 	u64 ram_top = board_get_usable_ram_top(0) & ~EFI_PAGE_MASK;
710 	int i;
711 
712 	/*
713 	 * ram_top is just outside mapped memory. So use an offset of one for
714 	 * mapping the sandbox address.
715 	 */
716 	ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;
717 
718 	/* Fix for 32bit targets with ram_top at 4G */
719 	if (!ram_top)
720 		ram_top = 0x100000000ULL;
721 
722 	/* Add RAM */
723 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
724 		u64 ram_end, ram_start;
725 
726 		ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
727 		ram_end = ram_start + gd->bd->bi_dram[i].size;
728 
729 		efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
730 	}
731 }
732 
733 /* Add memory regions for U-Boot's memory and for the runtime services code */
add_u_boot_and_runtime(void)734 static void add_u_boot_and_runtime(void)
735 {
736 	unsigned long runtime_start, runtime_end, runtime_pages;
737 	unsigned long runtime_mask = EFI_PAGE_MASK;
738 	unsigned long uboot_start, uboot_pages;
739 	unsigned long uboot_stack_size = 16 * 1024 * 1024;
740 
741 	/* Add U-Boot */
742 	uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
743 		       uboot_stack_size) & ~EFI_PAGE_MASK;
744 	uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
745 		       uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
746 	efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
747 
748 #if defined(__aarch64__)
749 	/*
750 	 * Runtime Services must be 64KiB aligned according to the
751 	 * "AArch64 Platforms" section in the UEFI spec (2.7+).
752 	 */
753 
754 	runtime_mask = SZ_64K - 1;
755 #endif
756 
757 	/*
758 	 * Add Runtime Services. We mark surrounding boottime code as runtime as
759 	 * well to fulfill the runtime alignment constraints but avoid padding.
760 	 */
761 	runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask;
762 	runtime_end = (ulong)&__efi_runtime_stop;
763 	runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
764 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
765 	efi_add_memory_map(runtime_start, runtime_pages,
766 			   EFI_RUNTIME_SERVICES_CODE, false);
767 }
768 
efi_memory_init(void)769 int efi_memory_init(void)
770 {
771 	efi_add_known_memory();
772 
773 	add_u_boot_and_runtime();
774 
775 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
776 	/* Request a 32bit 64MB bounce buffer region */
777 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
778 
779 	if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
780 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
781 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
782 		return -1;
783 
784 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
785 #endif
786 
787 	return 0;
788 }
789