• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27 
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/set_memory.h>
35 
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38 
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44 
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46 
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107 
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110 
gen6_ggtt_invalidate(struct drm_i915_private * dev_priv)111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 	/*
114 	 * Note that as an uncached mmio write, this will flush the
115 	 * WCB of the writes into the GGTT before it triggers the invalidate.
116 	 */
117 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
118 }
119 
guc_ggtt_invalidate(struct drm_i915_private * dev_priv)120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122 	gen6_ggtt_invalidate(dev_priv);
123 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
124 }
125 
gmch_ggtt_invalidate(struct drm_i915_private * dev_priv)126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 {
128 	intel_gtt_chipset_flush();
129 }
130 
i915_ggtt_invalidate(struct drm_i915_private * i915)131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 	i915->ggtt.invalidate(i915);
134 }
135 
intel_sanitize_enable_ppgtt(struct drm_i915_private * dev_priv,int enable_ppgtt)136 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
137 			       	int enable_ppgtt)
138 {
139 	bool has_full_ppgtt;
140 	bool has_full_48bit_ppgtt;
141 
142 	if (!dev_priv->info.has_aliasing_ppgtt)
143 		return 0;
144 
145 	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
146 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147 
148 	if (intel_vgpu_active(dev_priv)) {
149 		/* GVT-g has no support for 32bit ppgtt */
150 		has_full_ppgtt = false;
151 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152 	}
153 
154 	/*
155 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
156 	 * execlists, the sole mechanism available to submit work.
157 	 */
158 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 		return 0;
160 
161 	/* Full PPGTT is required by the Gen9 cmdparser */
162 	if (enable_ppgtt == 1 && INTEL_GEN(dev_priv) != 9)
163 		return 1;
164 
165 	if (enable_ppgtt == 2 && has_full_ppgtt)
166 		return 2;
167 
168 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169 		return 3;
170 
171 	/* Disable ppgtt on SNB if VT-d is on. */
172 	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
173 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
174 		return 0;
175 	}
176 
177 	/* Early VLV doesn't have this */
178 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180 		return 0;
181 	}
182 
183 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
184 		if (has_full_48bit_ppgtt)
185 			return 3;
186 
187 		if (has_full_ppgtt)
188 			return 2;
189 	}
190 
191 	return 1;
192 }
193 
ppgtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)194 static int ppgtt_bind_vma(struct i915_vma *vma,
195 			  enum i915_cache_level cache_level,
196 			  u32 unused)
197 {
198 	u32 pte_flags;
199 	int err;
200 
201 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
202 		err = vma->vm->allocate_va_range(vma->vm,
203 						 vma->node.start, vma->size);
204 		if (err)
205 			return err;
206 	}
207 
208 	/* Applicable to VLV, and gen8+ */
209 	pte_flags = 0;
210 	if (i915_gem_object_is_readonly(vma->obj))
211 		pte_flags |= PTE_READ_ONLY;
212 
213 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
214 
215 	return 0;
216 }
217 
ppgtt_unbind_vma(struct i915_vma * vma)218 static void ppgtt_unbind_vma(struct i915_vma *vma)
219 {
220 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
221 }
222 
ppgtt_set_pages(struct i915_vma * vma)223 static int ppgtt_set_pages(struct i915_vma *vma)
224 {
225 	GEM_BUG_ON(vma->pages);
226 
227 	vma->pages = vma->obj->mm.pages;
228 
229 	vma->page_sizes = vma->obj->mm.page_sizes;
230 
231 	return 0;
232 }
233 
clear_pages(struct i915_vma * vma)234 static void clear_pages(struct i915_vma *vma)
235 {
236 	GEM_BUG_ON(!vma->pages);
237 
238 	if (vma->pages != vma->obj->mm.pages) {
239 		sg_free_table(vma->pages);
240 		kfree(vma->pages);
241 	}
242 	vma->pages = NULL;
243 
244 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
245 }
246 
gen8_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)247 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
248 				  enum i915_cache_level level,
249 				  u32 flags)
250 {
251 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
252 
253 	if (unlikely(flags & PTE_READ_ONLY))
254 		pte &= ~_PAGE_RW;
255 
256 	switch (level) {
257 	case I915_CACHE_NONE:
258 		pte |= PPAT_UNCACHED;
259 		break;
260 	case I915_CACHE_WT:
261 		pte |= PPAT_DISPLAY_ELLC;
262 		break;
263 	default:
264 		pte |= PPAT_CACHED;
265 		break;
266 	}
267 
268 	return pte;
269 }
270 
gen8_pde_encode(const dma_addr_t addr,const enum i915_cache_level level)271 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
272 				  const enum i915_cache_level level)
273 {
274 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
275 	pde |= addr;
276 	if (level != I915_CACHE_NONE)
277 		pde |= PPAT_CACHED_PDE;
278 	else
279 		pde |= PPAT_UNCACHED;
280 	return pde;
281 }
282 
283 #define gen8_pdpe_encode gen8_pde_encode
284 #define gen8_pml4e_encode gen8_pde_encode
285 
snb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)286 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
287 				 enum i915_cache_level level,
288 				 u32 unused)
289 {
290 	gen6_pte_t pte = GEN6_PTE_VALID;
291 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
292 
293 	switch (level) {
294 	case I915_CACHE_L3_LLC:
295 	case I915_CACHE_LLC:
296 		pte |= GEN6_PTE_CACHE_LLC;
297 		break;
298 	case I915_CACHE_NONE:
299 		pte |= GEN6_PTE_UNCACHED;
300 		break;
301 	default:
302 		MISSING_CASE(level);
303 	}
304 
305 	return pte;
306 }
307 
ivb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)308 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
309 				 enum i915_cache_level level,
310 				 u32 unused)
311 {
312 	gen6_pte_t pte = GEN6_PTE_VALID;
313 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
314 
315 	switch (level) {
316 	case I915_CACHE_L3_LLC:
317 		pte |= GEN7_PTE_CACHE_L3_LLC;
318 		break;
319 	case I915_CACHE_LLC:
320 		pte |= GEN6_PTE_CACHE_LLC;
321 		break;
322 	case I915_CACHE_NONE:
323 		pte |= GEN6_PTE_UNCACHED;
324 		break;
325 	default:
326 		MISSING_CASE(level);
327 	}
328 
329 	return pte;
330 }
331 
byt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)332 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
333 				 enum i915_cache_level level,
334 				 u32 flags)
335 {
336 	gen6_pte_t pte = GEN6_PTE_VALID;
337 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
338 
339 	if (!(flags & PTE_READ_ONLY))
340 		pte |= BYT_PTE_WRITEABLE;
341 
342 	if (level != I915_CACHE_NONE)
343 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
344 
345 	return pte;
346 }
347 
hsw_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)348 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
349 				 enum i915_cache_level level,
350 				 u32 unused)
351 {
352 	gen6_pte_t pte = GEN6_PTE_VALID;
353 	pte |= HSW_PTE_ADDR_ENCODE(addr);
354 
355 	if (level != I915_CACHE_NONE)
356 		pte |= HSW_WB_LLC_AGE3;
357 
358 	return pte;
359 }
360 
iris_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)361 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
362 				  enum i915_cache_level level,
363 				  u32 unused)
364 {
365 	gen6_pte_t pte = GEN6_PTE_VALID;
366 	pte |= HSW_PTE_ADDR_ENCODE(addr);
367 
368 	switch (level) {
369 	case I915_CACHE_NONE:
370 		break;
371 	case I915_CACHE_WT:
372 		pte |= HSW_WT_ELLC_LLC_AGE3;
373 		break;
374 	default:
375 		pte |= HSW_WB_ELLC_LLC_AGE3;
376 		break;
377 	}
378 
379 	return pte;
380 }
381 
stash_init(struct pagestash * stash)382 static void stash_init(struct pagestash *stash)
383 {
384 	pagevec_init(&stash->pvec);
385 	spin_lock_init(&stash->lock);
386 }
387 
stash_pop_page(struct pagestash * stash)388 static struct page *stash_pop_page(struct pagestash *stash)
389 {
390 	struct page *page = NULL;
391 
392 	spin_lock(&stash->lock);
393 	if (likely(stash->pvec.nr))
394 		page = stash->pvec.pages[--stash->pvec.nr];
395 	spin_unlock(&stash->lock);
396 
397 	return page;
398 }
399 
stash_push_pagevec(struct pagestash * stash,struct pagevec * pvec)400 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
401 {
402 	int nr;
403 
404 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
405 
406 	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
407 	memcpy(stash->pvec.pages + stash->pvec.nr,
408 	       pvec->pages + pvec->nr - nr,
409 	       sizeof(pvec->pages[0]) * nr);
410 	stash->pvec.nr += nr;
411 
412 	spin_unlock(&stash->lock);
413 
414 	pvec->nr -= nr;
415 }
416 
vm_alloc_page(struct i915_address_space * vm,gfp_t gfp)417 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
418 {
419 	struct pagevec stack;
420 	struct page *page;
421 
422 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
423 		i915_gem_shrink_all(vm->i915);
424 
425 	page = stash_pop_page(&vm->free_pages);
426 	if (page)
427 		return page;
428 
429 	if (!vm->pt_kmap_wc)
430 		return alloc_page(gfp);
431 
432 	/* Look in our global stash of WC pages... */
433 	page = stash_pop_page(&vm->i915->mm.wc_stash);
434 	if (page)
435 		return page;
436 
437 	/*
438 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
439 	 *
440 	 * We have to be careful as page allocation may trigger the shrinker
441 	 * (via direct reclaim) which will fill up the WC stash underneath us.
442 	 * So we add our WB pages into a temporary pvec on the stack and merge
443 	 * them into the WC stash after all the allocations are complete.
444 	 */
445 	pagevec_init(&stack);
446 	do {
447 		struct page *page;
448 
449 		page = alloc_page(gfp);
450 		if (unlikely(!page))
451 			break;
452 
453 		stack.pages[stack.nr++] = page;
454 	} while (pagevec_space(&stack));
455 
456 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
457 		page = stack.pages[--stack.nr];
458 
459 		/* Merge spare WC pages to the global stash */
460 		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
461 
462 		/* Push any surplus WC pages onto the local VM stash */
463 		if (stack.nr)
464 			stash_push_pagevec(&vm->free_pages, &stack);
465 	}
466 
467 	/* Return unwanted leftovers */
468 	if (unlikely(stack.nr)) {
469 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
470 		__pagevec_release(&stack);
471 	}
472 
473 	return page;
474 }
475 
vm_free_pages_release(struct i915_address_space * vm,bool immediate)476 static void vm_free_pages_release(struct i915_address_space *vm,
477 				  bool immediate)
478 {
479 	struct pagevec *pvec = &vm->free_pages.pvec;
480 	struct pagevec stack;
481 
482 	lockdep_assert_held(&vm->free_pages.lock);
483 	GEM_BUG_ON(!pagevec_count(pvec));
484 
485 	if (vm->pt_kmap_wc) {
486 		/*
487 		 * When we use WC, first fill up the global stash and then
488 		 * only if full immediately free the overflow.
489 		 */
490 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
491 
492 		/*
493 		 * As we have made some room in the VM's free_pages,
494 		 * we can wait for it to fill again. Unless we are
495 		 * inside i915_address_space_fini() and must
496 		 * immediately release the pages!
497 		 */
498 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
499 			return;
500 
501 		/*
502 		 * We have to drop the lock to allow ourselves to sleep,
503 		 * so take a copy of the pvec and clear the stash for
504 		 * others to use it as we sleep.
505 		 */
506 		stack = *pvec;
507 		pagevec_reinit(pvec);
508 		spin_unlock(&vm->free_pages.lock);
509 
510 		pvec = &stack;
511 		set_pages_array_wb(pvec->pages, pvec->nr);
512 
513 		spin_lock(&vm->free_pages.lock);
514 	}
515 
516 	__pagevec_release(pvec);
517 }
518 
vm_free_page(struct i915_address_space * vm,struct page * page)519 static void vm_free_page(struct i915_address_space *vm, struct page *page)
520 {
521 	/*
522 	 * On !llc, we need to change the pages back to WB. We only do so
523 	 * in bulk, so we rarely need to change the page attributes here,
524 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
525 	 * To make detection of the possible sleep more likely, use an
526 	 * unconditional might_sleep() for everybody.
527 	 */
528 	might_sleep();
529 	spin_lock(&vm->free_pages.lock);
530 	if (!pagevec_add(&vm->free_pages.pvec, page))
531 		vm_free_pages_release(vm, false);
532 	spin_unlock(&vm->free_pages.lock);
533 }
534 
i915_address_space_init(struct i915_address_space * vm,struct drm_i915_private * dev_priv)535 static void i915_address_space_init(struct i915_address_space *vm,
536 				    struct drm_i915_private *dev_priv)
537 {
538 	/*
539 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
540 	 * Do a dummy acquire now under fs_reclaim so that any allocation
541 	 * attempt holding the lock is immediately reported by lockdep.
542 	 */
543 	mutex_init(&vm->mutex);
544 	i915_gem_shrinker_taints_mutex(&vm->mutex);
545 
546 	GEM_BUG_ON(!vm->total);
547 	drm_mm_init(&vm->mm, 0, vm->total);
548 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
549 
550 	stash_init(&vm->free_pages);
551 
552 	INIT_LIST_HEAD(&vm->active_list);
553 	INIT_LIST_HEAD(&vm->inactive_list);
554 	INIT_LIST_HEAD(&vm->unbound_list);
555 }
556 
i915_address_space_fini(struct i915_address_space * vm)557 static void i915_address_space_fini(struct i915_address_space *vm)
558 {
559 	spin_lock(&vm->free_pages.lock);
560 	if (pagevec_count(&vm->free_pages.pvec))
561 		vm_free_pages_release(vm, true);
562 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
563 	spin_unlock(&vm->free_pages.lock);
564 
565 	drm_mm_takedown(&vm->mm);
566 
567 	mutex_destroy(&vm->mutex);
568 }
569 
__setup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p,gfp_t gfp)570 static int __setup_page_dma(struct i915_address_space *vm,
571 			    struct i915_page_dma *p,
572 			    gfp_t gfp)
573 {
574 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
575 	if (unlikely(!p->page))
576 		return -ENOMEM;
577 
578 	p->daddr = dma_map_page_attrs(vm->dma,
579 				      p->page, 0, PAGE_SIZE,
580 				      PCI_DMA_BIDIRECTIONAL,
581 				      DMA_ATTR_SKIP_CPU_SYNC |
582 				      DMA_ATTR_NO_WARN);
583 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
584 		vm_free_page(vm, p->page);
585 		return -ENOMEM;
586 	}
587 
588 	return 0;
589 }
590 
setup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p)591 static int setup_page_dma(struct i915_address_space *vm,
592 			  struct i915_page_dma *p)
593 {
594 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
595 }
596 
cleanup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p)597 static void cleanup_page_dma(struct i915_address_space *vm,
598 			     struct i915_page_dma *p)
599 {
600 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
601 	vm_free_page(vm, p->page);
602 }
603 
604 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
605 
606 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
607 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
608 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
609 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
610 
fill_page_dma(struct i915_address_space * vm,struct i915_page_dma * p,const u64 val)611 static void fill_page_dma(struct i915_address_space *vm,
612 			  struct i915_page_dma *p,
613 			  const u64 val)
614 {
615 	u64 * const vaddr = kmap_atomic(p->page);
616 
617 	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
618 
619 	kunmap_atomic(vaddr);
620 }
621 
fill_page_dma_32(struct i915_address_space * vm,struct i915_page_dma * p,const u32 v)622 static void fill_page_dma_32(struct i915_address_space *vm,
623 			     struct i915_page_dma *p,
624 			     const u32 v)
625 {
626 	fill_page_dma(vm, p, (u64)v << 32 | v);
627 }
628 
629 static int
setup_scratch_page(struct i915_address_space * vm,gfp_t gfp)630 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
631 {
632 	unsigned long size;
633 
634 	/*
635 	 * In order to utilize 64K pages for an object with a size < 2M, we will
636 	 * need to support a 64K scratch page, given that every 16th entry for a
637 	 * page-table operating in 64K mode must point to a properly aligned 64K
638 	 * region, including any PTEs which happen to point to scratch.
639 	 *
640 	 * This is only relevant for the 48b PPGTT where we support
641 	 * huge-gtt-pages, see also i915_vma_insert().
642 	 *
643 	 * TODO: we should really consider write-protecting the scratch-page and
644 	 * sharing between ppgtt
645 	 */
646 	size = I915_GTT_PAGE_SIZE_4K;
647 	if (i915_vm_is_48bit(vm) &&
648 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
649 		size = I915_GTT_PAGE_SIZE_64K;
650 		gfp |= __GFP_NOWARN;
651 	}
652 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
653 
654 	do {
655 		int order = get_order(size);
656 		struct page *page;
657 		dma_addr_t addr;
658 
659 		page = alloc_pages(gfp, order);
660 		if (unlikely(!page))
661 			goto skip;
662 
663 		addr = dma_map_page_attrs(vm->dma,
664 					  page, 0, size,
665 					  PCI_DMA_BIDIRECTIONAL,
666 					  DMA_ATTR_SKIP_CPU_SYNC |
667 					  DMA_ATTR_NO_WARN);
668 		if (unlikely(dma_mapping_error(vm->dma, addr)))
669 			goto free_page;
670 
671 		if (unlikely(!IS_ALIGNED(addr, size)))
672 			goto unmap_page;
673 
674 		vm->scratch_page.page = page;
675 		vm->scratch_page.daddr = addr;
676 		vm->scratch_page.order = order;
677 		return 0;
678 
679 unmap_page:
680 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
681 free_page:
682 		__free_pages(page, order);
683 skip:
684 		if (size == I915_GTT_PAGE_SIZE_4K)
685 			return -ENOMEM;
686 
687 		size = I915_GTT_PAGE_SIZE_4K;
688 		gfp &= ~__GFP_NOWARN;
689 	} while (1);
690 }
691 
cleanup_scratch_page(struct i915_address_space * vm)692 static void cleanup_scratch_page(struct i915_address_space *vm)
693 {
694 	struct i915_page_dma *p = &vm->scratch_page;
695 
696 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
697 		       PCI_DMA_BIDIRECTIONAL);
698 	__free_pages(p->page, p->order);
699 }
700 
alloc_pt(struct i915_address_space * vm)701 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
702 {
703 	struct i915_page_table *pt;
704 
705 	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
706 	if (unlikely(!pt))
707 		return ERR_PTR(-ENOMEM);
708 
709 	if (unlikely(setup_px(vm, pt))) {
710 		kfree(pt);
711 		return ERR_PTR(-ENOMEM);
712 	}
713 
714 	pt->used_ptes = 0;
715 	return pt;
716 }
717 
free_pt(struct i915_address_space * vm,struct i915_page_table * pt)718 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
719 {
720 	cleanup_px(vm, pt);
721 	kfree(pt);
722 }
723 
gen8_initialize_pt(struct i915_address_space * vm,struct i915_page_table * pt)724 static void gen8_initialize_pt(struct i915_address_space *vm,
725 			       struct i915_page_table *pt)
726 {
727 	fill_px(vm, pt,
728 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
729 }
730 
gen6_initialize_pt(struct gen6_hw_ppgtt * ppgtt,struct i915_page_table * pt)731 static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
732 			       struct i915_page_table *pt)
733 {
734 	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
735 }
736 
alloc_pd(struct i915_address_space * vm)737 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
738 {
739 	struct i915_page_directory *pd;
740 
741 	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
742 	if (unlikely(!pd))
743 		return ERR_PTR(-ENOMEM);
744 
745 	if (unlikely(setup_px(vm, pd))) {
746 		kfree(pd);
747 		return ERR_PTR(-ENOMEM);
748 	}
749 
750 	pd->used_pdes = 0;
751 	return pd;
752 }
753 
free_pd(struct i915_address_space * vm,struct i915_page_directory * pd)754 static void free_pd(struct i915_address_space *vm,
755 		    struct i915_page_directory *pd)
756 {
757 	cleanup_px(vm, pd);
758 	kfree(pd);
759 }
760 
gen8_initialize_pd(struct i915_address_space * vm,struct i915_page_directory * pd)761 static void gen8_initialize_pd(struct i915_address_space *vm,
762 			       struct i915_page_directory *pd)
763 {
764 	fill_px(vm, pd,
765 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
766 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
767 }
768 
__pdp_init(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)769 static int __pdp_init(struct i915_address_space *vm,
770 		      struct i915_page_directory_pointer *pdp)
771 {
772 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
773 
774 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
775 					    I915_GFP_ALLOW_FAIL);
776 	if (unlikely(!pdp->page_directory))
777 		return -ENOMEM;
778 
779 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
780 
781 	return 0;
782 }
783 
__pdp_fini(struct i915_page_directory_pointer * pdp)784 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
785 {
786 	kfree(pdp->page_directory);
787 	pdp->page_directory = NULL;
788 }
789 
use_4lvl(const struct i915_address_space * vm)790 static inline bool use_4lvl(const struct i915_address_space *vm)
791 {
792 	return i915_vm_is_48bit(vm);
793 }
794 
795 static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space * vm)796 alloc_pdp(struct i915_address_space *vm)
797 {
798 	struct i915_page_directory_pointer *pdp;
799 	int ret = -ENOMEM;
800 
801 	GEM_BUG_ON(!use_4lvl(vm));
802 
803 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
804 	if (!pdp)
805 		return ERR_PTR(-ENOMEM);
806 
807 	ret = __pdp_init(vm, pdp);
808 	if (ret)
809 		goto fail_bitmap;
810 
811 	ret = setup_px(vm, pdp);
812 	if (ret)
813 		goto fail_page_m;
814 
815 	return pdp;
816 
817 fail_page_m:
818 	__pdp_fini(pdp);
819 fail_bitmap:
820 	kfree(pdp);
821 
822 	return ERR_PTR(ret);
823 }
824 
free_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)825 static void free_pdp(struct i915_address_space *vm,
826 		     struct i915_page_directory_pointer *pdp)
827 {
828 	__pdp_fini(pdp);
829 
830 	if (!use_4lvl(vm))
831 		return;
832 
833 	cleanup_px(vm, pdp);
834 	kfree(pdp);
835 }
836 
gen8_initialize_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)837 static void gen8_initialize_pdp(struct i915_address_space *vm,
838 				struct i915_page_directory_pointer *pdp)
839 {
840 	gen8_ppgtt_pdpe_t scratch_pdpe;
841 
842 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
843 
844 	fill_px(vm, pdp, scratch_pdpe);
845 }
846 
gen8_initialize_pml4(struct i915_address_space * vm,struct i915_pml4 * pml4)847 static void gen8_initialize_pml4(struct i915_address_space *vm,
848 				 struct i915_pml4 *pml4)
849 {
850 	fill_px(vm, pml4,
851 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
852 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
853 }
854 
855 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
856  * the page table structures, we mark them dirty so that
857  * context switching/execlist queuing code takes extra steps
858  * to ensure that tlbs are flushed.
859  */
mark_tlbs_dirty(struct i915_hw_ppgtt * ppgtt)860 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
861 {
862 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
863 }
864 
865 /* Removes entries from a single page table, releasing it if it's empty.
866  * Caller can use the return value to update higher-level entries.
867  */
gen8_ppgtt_clear_pt(struct i915_address_space * vm,struct i915_page_table * pt,u64 start,u64 length)868 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
869 				struct i915_page_table *pt,
870 				u64 start, u64 length)
871 {
872 	unsigned int num_entries = gen8_pte_count(start, length);
873 	unsigned int pte = gen8_pte_index(start);
874 	unsigned int pte_end = pte + num_entries;
875 	const gen8_pte_t scratch_pte =
876 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
877 	gen8_pte_t *vaddr;
878 
879 	GEM_BUG_ON(num_entries > pt->used_ptes);
880 
881 	pt->used_ptes -= num_entries;
882 	if (!pt->used_ptes)
883 		return true;
884 
885 	vaddr = kmap_atomic_px(pt);
886 	while (pte < pte_end)
887 		vaddr[pte++] = scratch_pte;
888 	kunmap_atomic(vaddr);
889 
890 	return false;
891 }
892 
gen8_ppgtt_set_pde(struct i915_address_space * vm,struct i915_page_directory * pd,struct i915_page_table * pt,unsigned int pde)893 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
894 			       struct i915_page_directory *pd,
895 			       struct i915_page_table *pt,
896 			       unsigned int pde)
897 {
898 	gen8_pde_t *vaddr;
899 
900 	pd->page_table[pde] = pt;
901 
902 	vaddr = kmap_atomic_px(pd);
903 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
904 	kunmap_atomic(vaddr);
905 }
906 
gen8_ppgtt_clear_pd(struct i915_address_space * vm,struct i915_page_directory * pd,u64 start,u64 length)907 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
908 				struct i915_page_directory *pd,
909 				u64 start, u64 length)
910 {
911 	struct i915_page_table *pt;
912 	u32 pde;
913 
914 	gen8_for_each_pde(pt, pd, start, length, pde) {
915 		GEM_BUG_ON(pt == vm->scratch_pt);
916 
917 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
918 			continue;
919 
920 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
921 		GEM_BUG_ON(!pd->used_pdes);
922 		pd->used_pdes--;
923 
924 		free_pt(vm, pt);
925 	}
926 
927 	return !pd->used_pdes;
928 }
929 
gen8_ppgtt_set_pdpe(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,struct i915_page_directory * pd,unsigned int pdpe)930 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
931 				struct i915_page_directory_pointer *pdp,
932 				struct i915_page_directory *pd,
933 				unsigned int pdpe)
934 {
935 	gen8_ppgtt_pdpe_t *vaddr;
936 
937 	pdp->page_directory[pdpe] = pd;
938 	if (!use_4lvl(vm))
939 		return;
940 
941 	vaddr = kmap_atomic_px(pdp);
942 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
943 	kunmap_atomic(vaddr);
944 }
945 
946 /* Removes entries from a single page dir pointer, releasing it if it's empty.
947  * Caller can use the return value to update higher-level entries
948  */
gen8_ppgtt_clear_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,u64 start,u64 length)949 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
950 				 struct i915_page_directory_pointer *pdp,
951 				 u64 start, u64 length)
952 {
953 	struct i915_page_directory *pd;
954 	unsigned int pdpe;
955 
956 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
957 		GEM_BUG_ON(pd == vm->scratch_pd);
958 
959 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
960 			continue;
961 
962 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
963 		GEM_BUG_ON(!pdp->used_pdpes);
964 		pdp->used_pdpes--;
965 
966 		free_pd(vm, pd);
967 	}
968 
969 	return !pdp->used_pdpes;
970 }
971 
gen8_ppgtt_clear_3lvl(struct i915_address_space * vm,u64 start,u64 length)972 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
973 				  u64 start, u64 length)
974 {
975 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
976 }
977 
gen8_ppgtt_set_pml4e(struct i915_pml4 * pml4,struct i915_page_directory_pointer * pdp,unsigned int pml4e)978 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
979 				 struct i915_page_directory_pointer *pdp,
980 				 unsigned int pml4e)
981 {
982 	gen8_ppgtt_pml4e_t *vaddr;
983 
984 	pml4->pdps[pml4e] = pdp;
985 
986 	vaddr = kmap_atomic_px(pml4);
987 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
988 	kunmap_atomic(vaddr);
989 }
990 
991 /* Removes entries from a single pml4.
992  * This is the top-level structure in 4-level page tables used on gen8+.
993  * Empty entries are always scratch pml4e.
994  */
gen8_ppgtt_clear_4lvl(struct i915_address_space * vm,u64 start,u64 length)995 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
996 				  u64 start, u64 length)
997 {
998 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
999 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1000 	struct i915_page_directory_pointer *pdp;
1001 	unsigned int pml4e;
1002 
1003 	GEM_BUG_ON(!use_4lvl(vm));
1004 
1005 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1006 		GEM_BUG_ON(pdp == vm->scratch_pdp);
1007 
1008 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
1009 			continue;
1010 
1011 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1012 
1013 		free_pdp(vm, pdp);
1014 	}
1015 }
1016 
1017 static inline struct sgt_dma {
1018 	struct scatterlist *sg;
1019 	dma_addr_t dma, max;
sgt_dma(struct i915_vma * vma)1020 } sgt_dma(struct i915_vma *vma) {
1021 	struct scatterlist *sg = vma->pages->sgl;
1022 	dma_addr_t addr = sg_dma_address(sg);
1023 	return (struct sgt_dma) { sg, addr, addr + sg->length };
1024 }
1025 
1026 struct gen8_insert_pte {
1027 	u16 pml4e;
1028 	u16 pdpe;
1029 	u16 pde;
1030 	u16 pte;
1031 };
1032 
gen8_insert_pte(u64 start)1033 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
1034 {
1035 	return (struct gen8_insert_pte) {
1036 		 gen8_pml4e_index(start),
1037 		 gen8_pdpe_index(start),
1038 		 gen8_pde_index(start),
1039 		 gen8_pte_index(start),
1040 	};
1041 }
1042 
1043 static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt * ppgtt,struct i915_page_directory_pointer * pdp,struct sgt_dma * iter,struct gen8_insert_pte * idx,enum i915_cache_level cache_level,u32 flags)1044 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1045 			      struct i915_page_directory_pointer *pdp,
1046 			      struct sgt_dma *iter,
1047 			      struct gen8_insert_pte *idx,
1048 			      enum i915_cache_level cache_level,
1049 			      u32 flags)
1050 {
1051 	struct i915_page_directory *pd;
1052 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1053 	gen8_pte_t *vaddr;
1054 	bool ret;
1055 
1056 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1057 	pd = pdp->page_directory[idx->pdpe];
1058 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1059 	do {
1060 		vaddr[idx->pte] = pte_encode | iter->dma;
1061 
1062 		iter->dma += I915_GTT_PAGE_SIZE;
1063 		if (iter->dma >= iter->max) {
1064 			iter->sg = __sg_next(iter->sg);
1065 			if (!iter->sg) {
1066 				ret = false;
1067 				break;
1068 			}
1069 
1070 			iter->dma = sg_dma_address(iter->sg);
1071 			iter->max = iter->dma + iter->sg->length;
1072 		}
1073 
1074 		if (++idx->pte == GEN8_PTES) {
1075 			idx->pte = 0;
1076 
1077 			if (++idx->pde == I915_PDES) {
1078 				idx->pde = 0;
1079 
1080 				/* Limited by sg length for 3lvl */
1081 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1082 					idx->pdpe = 0;
1083 					ret = true;
1084 					break;
1085 				}
1086 
1087 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1088 				pd = pdp->page_directory[idx->pdpe];
1089 			}
1090 
1091 			kunmap_atomic(vaddr);
1092 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1093 		}
1094 	} while (1);
1095 	kunmap_atomic(vaddr);
1096 
1097 	return ret;
1098 }
1099 
gen8_ppgtt_insert_3lvl(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)1100 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1101 				   struct i915_vma *vma,
1102 				   enum i915_cache_level cache_level,
1103 				   u32 flags)
1104 {
1105 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1106 	struct sgt_dma iter = sgt_dma(vma);
1107 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1108 
1109 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1110 				      cache_level, flags);
1111 
1112 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1113 }
1114 
gen8_ppgtt_insert_huge_entries(struct i915_vma * vma,struct i915_page_directory_pointer ** pdps,struct sgt_dma * iter,enum i915_cache_level cache_level,u32 flags)1115 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1116 					   struct i915_page_directory_pointer **pdps,
1117 					   struct sgt_dma *iter,
1118 					   enum i915_cache_level cache_level,
1119 					   u32 flags)
1120 {
1121 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1122 	u64 start = vma->node.start;
1123 	dma_addr_t rem = iter->sg->length;
1124 
1125 	do {
1126 		struct gen8_insert_pte idx = gen8_insert_pte(start);
1127 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1128 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1129 		unsigned int page_size;
1130 		bool maybe_64K = false;
1131 		gen8_pte_t encode = pte_encode;
1132 		gen8_pte_t *vaddr;
1133 		u16 index, max;
1134 
1135 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1136 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1137 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1138 			index = idx.pde;
1139 			max = I915_PDES;
1140 			page_size = I915_GTT_PAGE_SIZE_2M;
1141 
1142 			encode |= GEN8_PDE_PS_2M;
1143 
1144 			vaddr = kmap_atomic_px(pd);
1145 		} else {
1146 			struct i915_page_table *pt = pd->page_table[idx.pde];
1147 
1148 			index = idx.pte;
1149 			max = GEN8_PTES;
1150 			page_size = I915_GTT_PAGE_SIZE;
1151 
1152 			if (!index &&
1153 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1154 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1155 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1156 			     rem >= (max - index) << PAGE_SHIFT))
1157 				maybe_64K = true;
1158 
1159 			vaddr = kmap_atomic_px(pt);
1160 		}
1161 
1162 		do {
1163 			GEM_BUG_ON(iter->sg->length < page_size);
1164 			vaddr[index++] = encode | iter->dma;
1165 
1166 			start += page_size;
1167 			iter->dma += page_size;
1168 			rem -= page_size;
1169 			if (iter->dma >= iter->max) {
1170 				iter->sg = __sg_next(iter->sg);
1171 				if (!iter->sg)
1172 					break;
1173 
1174 				rem = iter->sg->length;
1175 				iter->dma = sg_dma_address(iter->sg);
1176 				iter->max = iter->dma + rem;
1177 
1178 				if (maybe_64K && index < max &&
1179 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1180 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1181 				       rem >= (max - index) << PAGE_SHIFT)))
1182 					maybe_64K = false;
1183 
1184 				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1185 					break;
1186 			}
1187 		} while (rem >= page_size && index < max);
1188 
1189 		kunmap_atomic(vaddr);
1190 
1191 		/*
1192 		 * Is it safe to mark the 2M block as 64K? -- Either we have
1193 		 * filled whole page-table with 64K entries, or filled part of
1194 		 * it and have reached the end of the sg table and we have
1195 		 * enough padding.
1196 		 */
1197 		if (maybe_64K &&
1198 		    (index == max ||
1199 		     (i915_vm_has_scratch_64K(vma->vm) &&
1200 		      !iter->sg && IS_ALIGNED(vma->node.start +
1201 					      vma->node.size,
1202 					      I915_GTT_PAGE_SIZE_2M)))) {
1203 			vaddr = kmap_atomic_px(pd);
1204 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1205 			kunmap_atomic(vaddr);
1206 			page_size = I915_GTT_PAGE_SIZE_64K;
1207 
1208 			/*
1209 			 * We write all 4K page entries, even when using 64K
1210 			 * pages. In order to verify that the HW isn't cheating
1211 			 * by using the 4K PTE instead of the 64K PTE, we want
1212 			 * to remove all the surplus entries. If the HW skipped
1213 			 * the 64K PTE, it will read/write into the scratch page
1214 			 * instead - which we detect as missing results during
1215 			 * selftests.
1216 			 */
1217 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1218 				u16 i;
1219 
1220 				encode = pte_encode | vma->vm->scratch_page.daddr;
1221 				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1222 
1223 				for (i = 1; i < index; i += 16)
1224 					memset64(vaddr + i, encode, 15);
1225 
1226 				kunmap_atomic(vaddr);
1227 			}
1228 		}
1229 
1230 		vma->page_sizes.gtt |= page_size;
1231 	} while (iter->sg);
1232 }
1233 
gen8_ppgtt_insert_4lvl(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)1234 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1235 				   struct i915_vma *vma,
1236 				   enum i915_cache_level cache_level,
1237 				   u32 flags)
1238 {
1239 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1240 	struct sgt_dma iter = sgt_dma(vma);
1241 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1242 
1243 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1244 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1245 					       flags);
1246 	} else {
1247 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1248 
1249 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1250 						     &iter, &idx, cache_level,
1251 						     flags))
1252 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1253 
1254 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1255 	}
1256 }
1257 
gen8_free_page_tables(struct i915_address_space * vm,struct i915_page_directory * pd)1258 static void gen8_free_page_tables(struct i915_address_space *vm,
1259 				  struct i915_page_directory *pd)
1260 {
1261 	int i;
1262 
1263 	if (!px_page(pd))
1264 		return;
1265 
1266 	for (i = 0; i < I915_PDES; i++) {
1267 		if (pd->page_table[i] != vm->scratch_pt)
1268 			free_pt(vm, pd->page_table[i]);
1269 	}
1270 }
1271 
gen8_init_scratch(struct i915_address_space * vm)1272 static int gen8_init_scratch(struct i915_address_space *vm)
1273 {
1274 	int ret;
1275 
1276 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1277 	if (ret)
1278 		return ret;
1279 
1280 	vm->scratch_pt = alloc_pt(vm);
1281 	if (IS_ERR(vm->scratch_pt)) {
1282 		ret = PTR_ERR(vm->scratch_pt);
1283 		goto free_scratch_page;
1284 	}
1285 
1286 	vm->scratch_pd = alloc_pd(vm);
1287 	if (IS_ERR(vm->scratch_pd)) {
1288 		ret = PTR_ERR(vm->scratch_pd);
1289 		goto free_pt;
1290 	}
1291 
1292 	if (use_4lvl(vm)) {
1293 		vm->scratch_pdp = alloc_pdp(vm);
1294 		if (IS_ERR(vm->scratch_pdp)) {
1295 			ret = PTR_ERR(vm->scratch_pdp);
1296 			goto free_pd;
1297 		}
1298 	}
1299 
1300 	gen8_initialize_pt(vm, vm->scratch_pt);
1301 	gen8_initialize_pd(vm, vm->scratch_pd);
1302 	if (use_4lvl(vm))
1303 		gen8_initialize_pdp(vm, vm->scratch_pdp);
1304 
1305 	return 0;
1306 
1307 free_pd:
1308 	free_pd(vm, vm->scratch_pd);
1309 free_pt:
1310 	free_pt(vm, vm->scratch_pt);
1311 free_scratch_page:
1312 	cleanup_scratch_page(vm);
1313 
1314 	return ret;
1315 }
1316 
gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt * ppgtt,bool create)1317 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1318 {
1319 	struct i915_address_space *vm = &ppgtt->vm;
1320 	struct drm_i915_private *dev_priv = vm->i915;
1321 	enum vgt_g2v_type msg;
1322 	int i;
1323 
1324 	if (use_4lvl(vm)) {
1325 		const u64 daddr = px_dma(&ppgtt->pml4);
1326 
1327 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1328 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1329 
1330 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1331 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1332 	} else {
1333 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1334 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1335 
1336 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1337 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1338 		}
1339 
1340 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1341 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1342 	}
1343 
1344 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1345 
1346 	return 0;
1347 }
1348 
gen8_free_scratch(struct i915_address_space * vm)1349 static void gen8_free_scratch(struct i915_address_space *vm)
1350 {
1351 	if (use_4lvl(vm))
1352 		free_pdp(vm, vm->scratch_pdp);
1353 	free_pd(vm, vm->scratch_pd);
1354 	free_pt(vm, vm->scratch_pt);
1355 	cleanup_scratch_page(vm);
1356 }
1357 
gen8_ppgtt_cleanup_3lvl(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)1358 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1359 				    struct i915_page_directory_pointer *pdp)
1360 {
1361 	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1362 	int i;
1363 
1364 	for (i = 0; i < pdpes; i++) {
1365 		if (pdp->page_directory[i] == vm->scratch_pd)
1366 			continue;
1367 
1368 		gen8_free_page_tables(vm, pdp->page_directory[i]);
1369 		free_pd(vm, pdp->page_directory[i]);
1370 	}
1371 
1372 	free_pdp(vm, pdp);
1373 }
1374 
gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt * ppgtt)1375 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1376 {
1377 	int i;
1378 
1379 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1380 		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1381 			continue;
1382 
1383 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1384 	}
1385 
1386 	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1387 }
1388 
gen8_ppgtt_cleanup(struct i915_address_space * vm)1389 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1390 {
1391 	struct drm_i915_private *dev_priv = vm->i915;
1392 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1393 
1394 	if (intel_vgpu_active(dev_priv))
1395 		gen8_ppgtt_notify_vgt(ppgtt, false);
1396 
1397 	if (use_4lvl(vm))
1398 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1399 	else
1400 		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1401 
1402 	gen8_free_scratch(vm);
1403 }
1404 
gen8_ppgtt_alloc_pd(struct i915_address_space * vm,struct i915_page_directory * pd,u64 start,u64 length)1405 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1406 			       struct i915_page_directory *pd,
1407 			       u64 start, u64 length)
1408 {
1409 	struct i915_page_table *pt;
1410 	u64 from = start;
1411 	unsigned int pde;
1412 
1413 	gen8_for_each_pde(pt, pd, start, length, pde) {
1414 		int count = gen8_pte_count(start, length);
1415 
1416 		if (pt == vm->scratch_pt) {
1417 			pd->used_pdes++;
1418 
1419 			pt = alloc_pt(vm);
1420 			if (IS_ERR(pt)) {
1421 				pd->used_pdes--;
1422 				goto unwind;
1423 			}
1424 
1425 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1426 				gen8_initialize_pt(vm, pt);
1427 
1428 			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1429 			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1430 		}
1431 
1432 		pt->used_ptes += count;
1433 	}
1434 	return 0;
1435 
1436 unwind:
1437 	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1438 	return -ENOMEM;
1439 }
1440 
gen8_ppgtt_alloc_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,u64 start,u64 length)1441 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1442 				struct i915_page_directory_pointer *pdp,
1443 				u64 start, u64 length)
1444 {
1445 	struct i915_page_directory *pd;
1446 	u64 from = start;
1447 	unsigned int pdpe;
1448 	int ret;
1449 
1450 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1451 		if (pd == vm->scratch_pd) {
1452 			pdp->used_pdpes++;
1453 
1454 			pd = alloc_pd(vm);
1455 			if (IS_ERR(pd)) {
1456 				pdp->used_pdpes--;
1457 				goto unwind;
1458 			}
1459 
1460 			gen8_initialize_pd(vm, pd);
1461 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1462 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1463 
1464 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1465 		}
1466 
1467 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1468 		if (unlikely(ret))
1469 			goto unwind_pd;
1470 	}
1471 
1472 	return 0;
1473 
1474 unwind_pd:
1475 	if (!pd->used_pdes) {
1476 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1477 		GEM_BUG_ON(!pdp->used_pdpes);
1478 		pdp->used_pdpes--;
1479 		free_pd(vm, pd);
1480 	}
1481 unwind:
1482 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1483 	return -ENOMEM;
1484 }
1485 
gen8_ppgtt_alloc_3lvl(struct i915_address_space * vm,u64 start,u64 length)1486 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1487 				 u64 start, u64 length)
1488 {
1489 	return gen8_ppgtt_alloc_pdp(vm,
1490 				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1491 }
1492 
gen8_ppgtt_alloc_4lvl(struct i915_address_space * vm,u64 start,u64 length)1493 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1494 				 u64 start, u64 length)
1495 {
1496 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1497 	struct i915_pml4 *pml4 = &ppgtt->pml4;
1498 	struct i915_page_directory_pointer *pdp;
1499 	u64 from = start;
1500 	u32 pml4e;
1501 	int ret;
1502 
1503 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1504 		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1505 			pdp = alloc_pdp(vm);
1506 			if (IS_ERR(pdp))
1507 				goto unwind;
1508 
1509 			gen8_initialize_pdp(vm, pdp);
1510 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1511 		}
1512 
1513 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1514 		if (unlikely(ret))
1515 			goto unwind_pdp;
1516 	}
1517 
1518 	return 0;
1519 
1520 unwind_pdp:
1521 	if (!pdp->used_pdpes) {
1522 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1523 		free_pdp(vm, pdp);
1524 	}
1525 unwind:
1526 	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1527 	return -ENOMEM;
1528 }
1529 
gen8_dump_pdp(struct i915_hw_ppgtt * ppgtt,struct i915_page_directory_pointer * pdp,u64 start,u64 length,gen8_pte_t scratch_pte,struct seq_file * m)1530 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1531 			  struct i915_page_directory_pointer *pdp,
1532 			  u64 start, u64 length,
1533 			  gen8_pte_t scratch_pte,
1534 			  struct seq_file *m)
1535 {
1536 	struct i915_address_space *vm = &ppgtt->vm;
1537 	struct i915_page_directory *pd;
1538 	u32 pdpe;
1539 
1540 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1541 		struct i915_page_table *pt;
1542 		u64 pd_len = length;
1543 		u64 pd_start = start;
1544 		u32 pde;
1545 
1546 		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1547 			continue;
1548 
1549 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1550 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1551 			u32 pte;
1552 			gen8_pte_t *pt_vaddr;
1553 
1554 			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1555 				continue;
1556 
1557 			pt_vaddr = kmap_atomic_px(pt);
1558 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1559 				u64 va = (pdpe << GEN8_PDPE_SHIFT |
1560 					  pde << GEN8_PDE_SHIFT |
1561 					  pte << GEN8_PTE_SHIFT);
1562 				int i;
1563 				bool found = false;
1564 
1565 				for (i = 0; i < 4; i++)
1566 					if (pt_vaddr[pte + i] != scratch_pte)
1567 						found = true;
1568 				if (!found)
1569 					continue;
1570 
1571 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1572 				for (i = 0; i < 4; i++) {
1573 					if (pt_vaddr[pte + i] != scratch_pte)
1574 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1575 					else
1576 						seq_puts(m, "  SCRATCH ");
1577 				}
1578 				seq_puts(m, "\n");
1579 			}
1580 			kunmap_atomic(pt_vaddr);
1581 		}
1582 	}
1583 }
1584 
gen8_dump_ppgtt(struct i915_hw_ppgtt * ppgtt,struct seq_file * m)1585 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1586 {
1587 	struct i915_address_space *vm = &ppgtt->vm;
1588 	const gen8_pte_t scratch_pte =
1589 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1590 	u64 start = 0, length = ppgtt->vm.total;
1591 
1592 	if (use_4lvl(vm)) {
1593 		u64 pml4e;
1594 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1595 		struct i915_page_directory_pointer *pdp;
1596 
1597 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1598 			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1599 				continue;
1600 
1601 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1602 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1603 		}
1604 	} else {
1605 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1606 	}
1607 }
1608 
gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt * ppgtt)1609 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1610 {
1611 	struct i915_address_space *vm = &ppgtt->vm;
1612 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1613 	struct i915_page_directory *pd;
1614 	u64 start = 0, length = ppgtt->vm.total;
1615 	u64 from = start;
1616 	unsigned int pdpe;
1617 
1618 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1619 		pd = alloc_pd(vm);
1620 		if (IS_ERR(pd))
1621 			goto unwind;
1622 
1623 		gen8_initialize_pd(vm, pd);
1624 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1625 		pdp->used_pdpes++;
1626 	}
1627 
1628 	pdp->used_pdpes++; /* never remove */
1629 	return 0;
1630 
1631 unwind:
1632 	start -= from;
1633 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1634 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1635 		free_pd(vm, pd);
1636 	}
1637 	pdp->used_pdpes = 0;
1638 	return -ENOMEM;
1639 }
1640 
1641 /*
1642  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1643  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1644  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1645  * space.
1646  *
1647  */
gen8_ppgtt_create(struct drm_i915_private * i915)1648 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1649 {
1650 	struct i915_hw_ppgtt *ppgtt;
1651 	int err;
1652 
1653 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1654 	if (!ppgtt)
1655 		return ERR_PTR(-ENOMEM);
1656 
1657 	kref_init(&ppgtt->ref);
1658 
1659 	ppgtt->vm.i915 = i915;
1660 	ppgtt->vm.dma = &i915->drm.pdev->dev;
1661 
1662 	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1663 		1ULL << 48 :
1664 		1ULL << 32;
1665 
1666 	/*
1667 	 * From bdw, there is support for read-only pages in the PPGTT.
1668 	 *
1669 	 * XXX GVT is not honouring the lack of RW in the PTE bits.
1670 	 */
1671 	ppgtt->vm.has_read_only = !intel_vgpu_active(i915);
1672 
1673 	i915_address_space_init(&ppgtt->vm, i915);
1674 
1675 	/* There are only few exceptions for gen >=6. chv and bxt.
1676 	 * And we are not sure about the latter so play safe for now.
1677 	 */
1678 	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1679 		ppgtt->vm.pt_kmap_wc = true;
1680 
1681 	err = gen8_init_scratch(&ppgtt->vm);
1682 	if (err)
1683 		goto err_free;
1684 
1685 	if (use_4lvl(&ppgtt->vm)) {
1686 		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1687 		if (err)
1688 			goto err_scratch;
1689 
1690 		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1691 
1692 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1693 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1694 		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1695 	} else {
1696 		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1697 		if (err)
1698 			goto err_scratch;
1699 
1700 		if (intel_vgpu_active(i915)) {
1701 			err = gen8_preallocate_top_level_pdp(ppgtt);
1702 			if (err) {
1703 				__pdp_fini(&ppgtt->pdp);
1704 				goto err_scratch;
1705 			}
1706 		}
1707 
1708 		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1709 		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1710 		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1711 	}
1712 
1713 	if (intel_vgpu_active(i915))
1714 		gen8_ppgtt_notify_vgt(ppgtt, true);
1715 
1716 	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1717 	ppgtt->debug_dump = gen8_dump_ppgtt;
1718 
1719 	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1720 	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1721 	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1722 	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1723 
1724 	return ppgtt;
1725 
1726 err_scratch:
1727 	gen8_free_scratch(&ppgtt->vm);
1728 err_free:
1729 	kfree(ppgtt);
1730 	return ERR_PTR(err);
1731 }
1732 
gen6_dump_ppgtt(struct i915_hw_ppgtt * base,struct seq_file * m)1733 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
1734 {
1735 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1736 	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1737 	struct i915_page_table *pt;
1738 	u32 pte, pde;
1739 
1740 	gen6_for_all_pdes(pt, &base->pd, pde) {
1741 		gen6_pte_t *vaddr;
1742 
1743 		if (pt == base->vm.scratch_pt)
1744 			continue;
1745 
1746 		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
1747 			u32 expected =
1748 				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
1749 				GEN6_PDE_VALID;
1750 			u32 pd_entry = readl(ppgtt->pd_addr + pde);
1751 
1752 			if (pd_entry != expected)
1753 				seq_printf(m,
1754 					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1755 					   pde,
1756 					   pd_entry,
1757 					   expected);
1758 
1759 			seq_printf(m, "\tPDE: %x\n", pd_entry);
1760 		}
1761 
1762 		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
1763 		for (pte = 0; pte < GEN6_PTES; pte += 4) {
1764 			int i;
1765 
1766 			for (i = 0; i < 4; i++)
1767 				if (vaddr[pte + i] != scratch_pte)
1768 					break;
1769 			if (i == 4)
1770 				continue;
1771 
1772 			seq_printf(m, "\t\t(%03d, %04d) %08llx: ",
1773 				   pde, pte,
1774 				   (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE);
1775 			for (i = 0; i < 4; i++) {
1776 				if (vaddr[pte + i] != scratch_pte)
1777 					seq_printf(m, " %08x", vaddr[pte + i]);
1778 				else
1779 					seq_puts(m, "  SCRATCH");
1780 			}
1781 			seq_puts(m, "\n");
1782 		}
1783 		kunmap_atomic(vaddr);
1784 	}
1785 }
1786 
1787 /* Write pde (index) from the page directory @pd to the page table @pt */
gen6_write_pde(const struct gen6_hw_ppgtt * ppgtt,const unsigned int pde,const struct i915_page_table * pt)1788 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1789 				  const unsigned int pde,
1790 				  const struct i915_page_table *pt)
1791 {
1792 	/* Caller needs to make sure the write completes if necessary */
1793 	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1794 		  ppgtt->pd_addr + pde);
1795 }
1796 
gen8_ppgtt_enable(struct drm_i915_private * dev_priv)1797 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1798 {
1799 	struct intel_engine_cs *engine;
1800 	enum intel_engine_id id;
1801 
1802 	for_each_engine(engine, dev_priv, id) {
1803 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1804 				 GEN8_GFX_PPGTT_48B : 0;
1805 		I915_WRITE(RING_MODE_GEN7(engine),
1806 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1807 	}
1808 }
1809 
gen7_ppgtt_enable(struct drm_i915_private * dev_priv)1810 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1811 {
1812 	struct intel_engine_cs *engine;
1813 	u32 ecochk, ecobits;
1814 	enum intel_engine_id id;
1815 
1816 	ecobits = I915_READ(GAC_ECO_BITS);
1817 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1818 
1819 	ecochk = I915_READ(GAM_ECOCHK);
1820 	if (IS_HASWELL(dev_priv)) {
1821 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1822 	} else {
1823 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1824 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1825 	}
1826 	I915_WRITE(GAM_ECOCHK, ecochk);
1827 
1828 	for_each_engine(engine, dev_priv, id) {
1829 		/* GFX_MODE is per-ring on gen7+ */
1830 		I915_WRITE(RING_MODE_GEN7(engine),
1831 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1832 	}
1833 }
1834 
gen6_ppgtt_enable(struct drm_i915_private * dev_priv)1835 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1836 {
1837 	u32 ecochk, gab_ctl, ecobits;
1838 
1839 	ecobits = I915_READ(GAC_ECO_BITS);
1840 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1841 		   ECOBITS_PPGTT_CACHE64B);
1842 
1843 	gab_ctl = I915_READ(GAB_CTL);
1844 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1845 
1846 	ecochk = I915_READ(GAM_ECOCHK);
1847 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1848 
1849 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1850 }
1851 
1852 /* PPGTT support for Sandybdrige/Gen6 and later */
gen6_ppgtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)1853 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1854 				   u64 start, u64 length)
1855 {
1856 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1857 	unsigned int first_entry = start >> PAGE_SHIFT;
1858 	unsigned int pde = first_entry / GEN6_PTES;
1859 	unsigned int pte = first_entry % GEN6_PTES;
1860 	unsigned int num_entries = length >> PAGE_SHIFT;
1861 	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1862 
1863 	while (num_entries) {
1864 		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1865 		const unsigned int end = min(pte + num_entries, GEN6_PTES);
1866 		const unsigned int count = end - pte;
1867 		gen6_pte_t *vaddr;
1868 
1869 		GEM_BUG_ON(pt == vm->scratch_pt);
1870 
1871 		num_entries -= count;
1872 
1873 		GEM_BUG_ON(count > pt->used_ptes);
1874 		pt->used_ptes -= count;
1875 		if (!pt->used_ptes)
1876 			ppgtt->scan_for_unused_pt = true;
1877 
1878 		/*
1879 		 * Note that the hw doesn't support removing PDE on the fly
1880 		 * (they are cached inside the context with no means to
1881 		 * invalidate the cache), so we can only reset the PTE
1882 		 * entries back to scratch.
1883 		 */
1884 
1885 		vaddr = kmap_atomic_px(pt);
1886 		do {
1887 			vaddr[pte++] = scratch_pte;
1888 		} while (pte < end);
1889 		kunmap_atomic(vaddr);
1890 
1891 		pte = 0;
1892 	}
1893 }
1894 
gen6_ppgtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)1895 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1896 				      struct i915_vma *vma,
1897 				      enum i915_cache_level cache_level,
1898 				      u32 flags)
1899 {
1900 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1901 	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1902 	unsigned act_pt = first_entry / GEN6_PTES;
1903 	unsigned act_pte = first_entry % GEN6_PTES;
1904 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1905 	struct sgt_dma iter = sgt_dma(vma);
1906 	gen6_pte_t *vaddr;
1907 
1908 	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1909 
1910 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1911 	do {
1912 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1913 
1914 		iter.dma += I915_GTT_PAGE_SIZE;
1915 		if (iter.dma == iter.max) {
1916 			iter.sg = __sg_next(iter.sg);
1917 			if (!iter.sg)
1918 				break;
1919 
1920 			iter.dma = sg_dma_address(iter.sg);
1921 			iter.max = iter.dma + iter.sg->length;
1922 		}
1923 
1924 		if (++act_pte == GEN6_PTES) {
1925 			kunmap_atomic(vaddr);
1926 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1927 			act_pte = 0;
1928 		}
1929 	} while (1);
1930 	kunmap_atomic(vaddr);
1931 
1932 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1933 }
1934 
gen6_alloc_va_range(struct i915_address_space * vm,u64 start,u64 length)1935 static int gen6_alloc_va_range(struct i915_address_space *vm,
1936 			       u64 start, u64 length)
1937 {
1938 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1939 	struct i915_page_table *pt;
1940 	u64 from = start;
1941 	unsigned int pde;
1942 	bool flush = false;
1943 
1944 	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1945 		const unsigned int count = gen6_pte_count(start, length);
1946 
1947 		if (pt == vm->scratch_pt) {
1948 			pt = alloc_pt(vm);
1949 			if (IS_ERR(pt))
1950 				goto unwind_out;
1951 
1952 			gen6_initialize_pt(ppgtt, pt);
1953 			ppgtt->base.pd.page_table[pde] = pt;
1954 
1955 			if (i915_vma_is_bound(ppgtt->vma,
1956 					      I915_VMA_GLOBAL_BIND)) {
1957 				gen6_write_pde(ppgtt, pde, pt);
1958 				flush = true;
1959 			}
1960 
1961 			GEM_BUG_ON(pt->used_ptes);
1962 		}
1963 
1964 		pt->used_ptes += count;
1965 	}
1966 
1967 	if (flush) {
1968 		mark_tlbs_dirty(&ppgtt->base);
1969 		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1970 	}
1971 
1972 	return 0;
1973 
1974 unwind_out:
1975 	gen6_ppgtt_clear_range(vm, from, start - from);
1976 	return -ENOMEM;
1977 }
1978 
gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt * ppgtt)1979 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1980 {
1981 	struct i915_address_space * const vm = &ppgtt->base.vm;
1982 	struct i915_page_table *unused;
1983 	u32 pde;
1984 	int ret;
1985 
1986 	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1987 	if (ret)
1988 		return ret;
1989 
1990 	ppgtt->scratch_pte =
1991 		vm->pte_encode(vm->scratch_page.daddr,
1992 			       I915_CACHE_NONE, PTE_READ_ONLY);
1993 
1994 	vm->scratch_pt = alloc_pt(vm);
1995 	if (IS_ERR(vm->scratch_pt)) {
1996 		cleanup_scratch_page(vm);
1997 		return PTR_ERR(vm->scratch_pt);
1998 	}
1999 
2000 	gen6_initialize_pt(ppgtt, vm->scratch_pt);
2001 	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
2002 		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
2003 
2004 	return 0;
2005 }
2006 
gen6_ppgtt_free_scratch(struct i915_address_space * vm)2007 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
2008 {
2009 	free_pt(vm, vm->scratch_pt);
2010 	cleanup_scratch_page(vm);
2011 }
2012 
gen6_ppgtt_free_pd(struct gen6_hw_ppgtt * ppgtt)2013 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
2014 {
2015 	struct i915_page_table *pt;
2016 	u32 pde;
2017 
2018 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2019 		if (pt != ppgtt->base.vm.scratch_pt)
2020 			free_pt(&ppgtt->base.vm, pt);
2021 }
2022 
gen6_ppgtt_cleanup(struct i915_address_space * vm)2023 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2024 {
2025 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
2026 
2027 	i915_vma_destroy(ppgtt->vma);
2028 
2029 	gen6_ppgtt_free_pd(ppgtt);
2030 	gen6_ppgtt_free_scratch(vm);
2031 }
2032 
pd_vma_set_pages(struct i915_vma * vma)2033 static int pd_vma_set_pages(struct i915_vma *vma)
2034 {
2035 	vma->pages = ERR_PTR(-ENODEV);
2036 	return 0;
2037 }
2038 
pd_vma_clear_pages(struct i915_vma * vma)2039 static void pd_vma_clear_pages(struct i915_vma *vma)
2040 {
2041 	GEM_BUG_ON(!vma->pages);
2042 
2043 	vma->pages = NULL;
2044 }
2045 
pd_vma_bind(struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)2046 static int pd_vma_bind(struct i915_vma *vma,
2047 		       enum i915_cache_level cache_level,
2048 		       u32 unused)
2049 {
2050 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
2051 	struct gen6_hw_ppgtt *ppgtt = vma->private;
2052 	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
2053 	struct i915_page_table *pt;
2054 	unsigned int pde;
2055 
2056 	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2057 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2058 
2059 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2060 		gen6_write_pde(ppgtt, pde, pt);
2061 
2062 	mark_tlbs_dirty(&ppgtt->base);
2063 	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2064 
2065 	return 0;
2066 }
2067 
pd_vma_unbind(struct i915_vma * vma)2068 static void pd_vma_unbind(struct i915_vma *vma)
2069 {
2070 	struct gen6_hw_ppgtt *ppgtt = vma->private;
2071 	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2072 	struct i915_page_table *pt;
2073 	unsigned int pde;
2074 
2075 	if (!ppgtt->scan_for_unused_pt)
2076 		return;
2077 
2078 	/* Free all no longer used page tables */
2079 	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2080 		if (pt->used_ptes || pt == scratch_pt)
2081 			continue;
2082 
2083 		free_pt(&ppgtt->base.vm, pt);
2084 		ppgtt->base.pd.page_table[pde] = scratch_pt;
2085 	}
2086 
2087 	ppgtt->scan_for_unused_pt = false;
2088 }
2089 
2090 static const struct i915_vma_ops pd_vma_ops = {
2091 	.set_pages = pd_vma_set_pages,
2092 	.clear_pages = pd_vma_clear_pages,
2093 	.bind_vma = pd_vma_bind,
2094 	.unbind_vma = pd_vma_unbind,
2095 };
2096 
pd_vma_create(struct gen6_hw_ppgtt * ppgtt,int size)2097 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
2098 {
2099 	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2100 	struct i915_ggtt *ggtt = &i915->ggtt;
2101 	struct i915_vma *vma;
2102 
2103 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2104 	GEM_BUG_ON(size > ggtt->vm.total);
2105 
2106 	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
2107 	if (!vma)
2108 		return ERR_PTR(-ENOMEM);
2109 
2110 	init_request_active(&vma->last_fence, NULL);
2111 
2112 	vma->vm = &ggtt->vm;
2113 	vma->ops = &pd_vma_ops;
2114 	vma->private = ppgtt;
2115 
2116 	vma->active = RB_ROOT;
2117 
2118 	vma->size = size;
2119 	vma->fence_size = size;
2120 	vma->flags = I915_VMA_GGTT;
2121 	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2122 
2123 	INIT_LIST_HEAD(&vma->obj_link);
2124 	list_add(&vma->vm_link, &vma->vm->unbound_list);
2125 
2126 	return vma;
2127 }
2128 
gen6_ppgtt_pin(struct i915_hw_ppgtt * base)2129 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2130 {
2131 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2132 	int err;
2133 
2134 	/*
2135 	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2136 	 * which will be pinned into every active context.
2137 	 * (When vma->pin_count becomes atomic, I expect we will naturally
2138 	 * need a larger, unpacked, type and kill this redundancy.)
2139 	 */
2140 	if (ppgtt->pin_count++)
2141 		return 0;
2142 
2143 	/*
2144 	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2145 	 * allocator works in address space sizes, so it's multiplied by page
2146 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2147 	 */
2148 	err = i915_vma_pin(ppgtt->vma,
2149 			   0, GEN6_PD_ALIGN,
2150 			   PIN_GLOBAL | PIN_HIGH);
2151 	if (err)
2152 		goto unpin;
2153 
2154 	return 0;
2155 
2156 unpin:
2157 	ppgtt->pin_count = 0;
2158 	return err;
2159 }
2160 
gen6_ppgtt_unpin(struct i915_hw_ppgtt * base)2161 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2162 {
2163 	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2164 
2165 	GEM_BUG_ON(!ppgtt->pin_count);
2166 	if (--ppgtt->pin_count)
2167 		return;
2168 
2169 	i915_vma_unpin(ppgtt->vma);
2170 }
2171 
gen6_ppgtt_create(struct drm_i915_private * i915)2172 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2173 {
2174 	struct i915_ggtt * const ggtt = &i915->ggtt;
2175 	struct gen6_hw_ppgtt *ppgtt;
2176 	int err;
2177 
2178 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2179 	if (!ppgtt)
2180 		return ERR_PTR(-ENOMEM);
2181 
2182 	kref_init(&ppgtt->base.ref);
2183 
2184 	ppgtt->base.vm.i915 = i915;
2185 	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2186 
2187 	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2188 
2189 	i915_address_space_init(&ppgtt->base.vm, i915);
2190 
2191 	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2192 	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2193 	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2194 	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2195 	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2196 
2197 	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2198 	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
2199 	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
2200 	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2201 
2202 	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2203 
2204 	err = gen6_ppgtt_init_scratch(ppgtt);
2205 	if (err)
2206 		goto err_free;
2207 
2208 	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2209 	if (IS_ERR(ppgtt->vma)) {
2210 		err = PTR_ERR(ppgtt->vma);
2211 		goto err_scratch;
2212 	}
2213 
2214 	return &ppgtt->base;
2215 
2216 err_scratch:
2217 	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2218 err_free:
2219 	kfree(ppgtt);
2220 	return ERR_PTR(err);
2221 }
2222 
gtt_write_workarounds(struct drm_i915_private * dev_priv)2223 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2224 {
2225 	/* This function is for gtt related workarounds. This function is
2226 	 * called on driver load and after a GPU reset, so you can place
2227 	 * workarounds here even if they get overwritten by GPU reset.
2228 	 */
2229 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2230 	if (IS_BROADWELL(dev_priv))
2231 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2232 	else if (IS_CHERRYVIEW(dev_priv))
2233 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2234 	else if (IS_GEN9_LP(dev_priv))
2235 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2236 	else if (INTEL_GEN(dev_priv) >= 9)
2237 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2238 
2239 	/*
2240 	 * To support 64K PTEs we need to first enable the use of the
2241 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2242 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2243 	 * shouldn't be needed after GEN10.
2244 	 *
2245 	 * 64K pages were first introduced from BDW+, although technically they
2246 	 * only *work* from gen9+. For pre-BDW we instead have the option for
2247 	 * 32K pages, but we don't currently have any support for it in our
2248 	 * driver.
2249 	 */
2250 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2251 	    INTEL_GEN(dev_priv) <= 10)
2252 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2253 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2254 			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2255 }
2256 
i915_ppgtt_init_hw(struct drm_i915_private * dev_priv)2257 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2258 {
2259 	gtt_write_workarounds(dev_priv);
2260 
2261 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2262 	 * and the PDPs are contained within the context itself.  We don't
2263 	 * need to do anything here. */
2264 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2265 		return 0;
2266 
2267 	if (!USES_PPGTT(dev_priv))
2268 		return 0;
2269 
2270 	if (IS_GEN6(dev_priv))
2271 		gen6_ppgtt_enable(dev_priv);
2272 	else if (IS_GEN7(dev_priv))
2273 		gen7_ppgtt_enable(dev_priv);
2274 	else if (INTEL_GEN(dev_priv) >= 8)
2275 		gen8_ppgtt_enable(dev_priv);
2276 	else
2277 		MISSING_CASE(INTEL_GEN(dev_priv));
2278 
2279 	return 0;
2280 }
2281 
2282 static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private * i915)2283 __hw_ppgtt_create(struct drm_i915_private *i915)
2284 {
2285 	if (INTEL_GEN(i915) < 8)
2286 		return gen6_ppgtt_create(i915);
2287 	else
2288 		return gen8_ppgtt_create(i915);
2289 }
2290 
2291 struct i915_hw_ppgtt *
i915_ppgtt_create(struct drm_i915_private * i915,struct drm_i915_file_private * fpriv)2292 i915_ppgtt_create(struct drm_i915_private *i915,
2293 		  struct drm_i915_file_private *fpriv)
2294 {
2295 	struct i915_hw_ppgtt *ppgtt;
2296 
2297 	ppgtt = __hw_ppgtt_create(i915);
2298 	if (IS_ERR(ppgtt))
2299 		return ppgtt;
2300 
2301 	ppgtt->vm.file = fpriv;
2302 
2303 	trace_i915_ppgtt_create(&ppgtt->vm);
2304 
2305 	return ppgtt;
2306 }
2307 
i915_ppgtt_close(struct i915_address_space * vm)2308 void i915_ppgtt_close(struct i915_address_space *vm)
2309 {
2310 	GEM_BUG_ON(vm->closed);
2311 	vm->closed = true;
2312 }
2313 
ppgtt_destroy_vma(struct i915_address_space * vm)2314 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2315 {
2316 	struct list_head *phases[] = {
2317 		&vm->active_list,
2318 		&vm->inactive_list,
2319 		&vm->unbound_list,
2320 		NULL,
2321 	}, **phase;
2322 
2323 	vm->closed = true;
2324 	for (phase = phases; *phase; phase++) {
2325 		struct i915_vma *vma, *vn;
2326 
2327 		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2328 			i915_vma_destroy(vma);
2329 	}
2330 }
2331 
i915_ppgtt_release(struct kref * kref)2332 void i915_ppgtt_release(struct kref *kref)
2333 {
2334 	struct i915_hw_ppgtt *ppgtt =
2335 		container_of(kref, struct i915_hw_ppgtt, ref);
2336 
2337 	trace_i915_ppgtt_release(&ppgtt->vm);
2338 
2339 	ppgtt_destroy_vma(&ppgtt->vm);
2340 
2341 	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
2342 	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
2343 	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2344 
2345 	ppgtt->vm.cleanup(&ppgtt->vm);
2346 	i915_address_space_fini(&ppgtt->vm);
2347 	kfree(ppgtt);
2348 }
2349 
2350 /* Certain Gen5 chipsets require require idling the GPU before
2351  * unmapping anything from the GTT when VT-d is enabled.
2352  */
needs_idle_maps(struct drm_i915_private * dev_priv)2353 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2354 {
2355 	/* Query intel_iommu to see if we need the workaround. Presumably that
2356 	 * was loaded first.
2357 	 */
2358 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2359 }
2360 
gen6_check_and_clear_faults(struct drm_i915_private * dev_priv)2361 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2362 {
2363 	struct intel_engine_cs *engine;
2364 	enum intel_engine_id id;
2365 	u32 fault;
2366 
2367 	for_each_engine(engine, dev_priv, id) {
2368 		fault = I915_READ(RING_FAULT_REG(engine));
2369 		if (fault & RING_FAULT_VALID) {
2370 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2371 					 "\tAddr: 0x%08lx\n"
2372 					 "\tAddress space: %s\n"
2373 					 "\tSource ID: %d\n"
2374 					 "\tType: %d\n",
2375 					 fault & PAGE_MASK,
2376 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2377 					 RING_FAULT_SRCID(fault),
2378 					 RING_FAULT_FAULT_TYPE(fault));
2379 			I915_WRITE(RING_FAULT_REG(engine),
2380 				   fault & ~RING_FAULT_VALID);
2381 		}
2382 	}
2383 
2384 	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2385 }
2386 
gen8_check_and_clear_faults(struct drm_i915_private * dev_priv)2387 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2388 {
2389 	u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2390 
2391 	if (fault & RING_FAULT_VALID) {
2392 		u32 fault_data0, fault_data1;
2393 		u64 fault_addr;
2394 
2395 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2396 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2397 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2398 			     ((u64)fault_data0 << 12);
2399 
2400 		DRM_DEBUG_DRIVER("Unexpected fault\n"
2401 				 "\tAddr: 0x%08x_%08x\n"
2402 				 "\tAddress space: %s\n"
2403 				 "\tEngine ID: %d\n"
2404 				 "\tSource ID: %d\n"
2405 				 "\tType: %d\n",
2406 				 upper_32_bits(fault_addr),
2407 				 lower_32_bits(fault_addr),
2408 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2409 				 GEN8_RING_FAULT_ENGINE_ID(fault),
2410 				 RING_FAULT_SRCID(fault),
2411 				 RING_FAULT_FAULT_TYPE(fault));
2412 		I915_WRITE(GEN8_RING_FAULT_REG,
2413 			   fault & ~RING_FAULT_VALID);
2414 	}
2415 
2416 	POSTING_READ(GEN8_RING_FAULT_REG);
2417 }
2418 
i915_check_and_clear_faults(struct drm_i915_private * dev_priv)2419 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2420 {
2421 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
2422 	if (INTEL_GEN(dev_priv) >= 8)
2423 		gen8_check_and_clear_faults(dev_priv);
2424 	else if (INTEL_GEN(dev_priv) >= 6)
2425 		gen6_check_and_clear_faults(dev_priv);
2426 	else
2427 		return;
2428 }
2429 
i915_gem_suspend_gtt_mappings(struct drm_i915_private * dev_priv)2430 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2431 {
2432 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2433 
2434 	/* Don't bother messing with faults pre GEN6 as we have little
2435 	 * documentation supporting that it's a good idea.
2436 	 */
2437 	if (INTEL_GEN(dev_priv) < 6)
2438 		return;
2439 
2440 	i915_check_and_clear_faults(dev_priv);
2441 
2442 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2443 
2444 	i915_ggtt_invalidate(dev_priv);
2445 }
2446 
i915_gem_gtt_prepare_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2447 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2448 			       struct sg_table *pages)
2449 {
2450 	do {
2451 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2452 				     pages->sgl, pages->nents,
2453 				     PCI_DMA_BIDIRECTIONAL,
2454 				     DMA_ATTR_NO_WARN))
2455 			return 0;
2456 
2457 		/* If the DMA remap fails, one cause can be that we have
2458 		 * too many objects pinned in a small remapping table,
2459 		 * such as swiotlb. Incrementally purge all other objects and
2460 		 * try again - if there are no more pages to remove from
2461 		 * the DMA remapper, i915_gem_shrink will return 0.
2462 		 */
2463 		GEM_BUG_ON(obj->mm.pages == pages);
2464 	} while (i915_gem_shrink(to_i915(obj->base.dev),
2465 				 obj->base.size >> PAGE_SHIFT, NULL,
2466 				 I915_SHRINK_BOUND |
2467 				 I915_SHRINK_UNBOUND |
2468 				 I915_SHRINK_ACTIVE));
2469 
2470 	return -ENOSPC;
2471 }
2472 
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)2473 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2474 {
2475 	writeq(pte, addr);
2476 }
2477 
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)2478 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2479 				  dma_addr_t addr,
2480 				  u64 offset,
2481 				  enum i915_cache_level level,
2482 				  u32 unused)
2483 {
2484 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2485 	gen8_pte_t __iomem *pte =
2486 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2487 
2488 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2489 
2490 	ggtt->invalidate(vm->i915);
2491 }
2492 
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2493 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2494 				     struct i915_vma *vma,
2495 				     enum i915_cache_level level,
2496 				     u32 flags)
2497 {
2498 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2499 	struct sgt_iter sgt_iter;
2500 	gen8_pte_t __iomem *gtt_entries;
2501 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2502 	dma_addr_t addr;
2503 
2504 	/*
2505 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2506 	 * not to allow the user to override access to a read only page.
2507 	 */
2508 
2509 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2510 	gtt_entries += vma->node.start >> PAGE_SHIFT;
2511 	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2512 		gen8_set_pte(gtt_entries++, pte_encode | addr);
2513 
2514 	/*
2515 	 * We want to flush the TLBs only after we're certain all the PTE
2516 	 * updates have finished.
2517 	 */
2518 	ggtt->invalidate(vm->i915);
2519 }
2520 
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)2521 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2522 				  dma_addr_t addr,
2523 				  u64 offset,
2524 				  enum i915_cache_level level,
2525 				  u32 flags)
2526 {
2527 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2528 	gen6_pte_t __iomem *pte =
2529 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2530 
2531 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2532 
2533 	ggtt->invalidate(vm->i915);
2534 }
2535 
2536 /*
2537  * Binds an object into the global gtt with the specified cache level. The object
2538  * will be accessible to the GPU via commands whose operands reference offsets
2539  * within the global GTT as well as accessible by the GPU through the GMADR
2540  * mapped BAR (dev_priv->mm.gtt->gtt).
2541  */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2542 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2543 				     struct i915_vma *vma,
2544 				     enum i915_cache_level level,
2545 				     u32 flags)
2546 {
2547 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2548 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2549 	unsigned int i = vma->node.start >> PAGE_SHIFT;
2550 	struct sgt_iter iter;
2551 	dma_addr_t addr;
2552 	for_each_sgt_dma(addr, iter, vma->pages)
2553 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2554 
2555 	/*
2556 	 * We want to flush the TLBs only after we're certain all the PTE
2557 	 * updates have finished.
2558 	 */
2559 	ggtt->invalidate(vm->i915);
2560 }
2561 
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)2562 static void nop_clear_range(struct i915_address_space *vm,
2563 			    u64 start, u64 length)
2564 {
2565 }
2566 
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2567 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2568 				  u64 start, u64 length)
2569 {
2570 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2571 	unsigned first_entry = start >> PAGE_SHIFT;
2572 	unsigned num_entries = length >> PAGE_SHIFT;
2573 	const gen8_pte_t scratch_pte =
2574 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2575 	gen8_pte_t __iomem *gtt_base =
2576 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2577 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2578 	int i;
2579 
2580 	if (WARN(num_entries > max_entries,
2581 		 "First entry = %d; Num entries = %d (max=%d)\n",
2582 		 first_entry, num_entries, max_entries))
2583 		num_entries = max_entries;
2584 
2585 	for (i = 0; i < num_entries; i++)
2586 		gen8_set_pte(&gtt_base[i], scratch_pte);
2587 }
2588 
bxt_vtd_ggtt_wa(struct i915_address_space * vm)2589 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2590 {
2591 	struct drm_i915_private *dev_priv = vm->i915;
2592 
2593 	/*
2594 	 * Make sure the internal GAM fifo has been cleared of all GTT
2595 	 * writes before exiting stop_machine(). This guarantees that
2596 	 * any aperture accesses waiting to start in another process
2597 	 * cannot back up behind the GTT writes causing a hang.
2598 	 * The register can be any arbitrary GAM register.
2599 	 */
2600 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2601 }
2602 
2603 struct insert_page {
2604 	struct i915_address_space *vm;
2605 	dma_addr_t addr;
2606 	u64 offset;
2607 	enum i915_cache_level level;
2608 };
2609 
bxt_vtd_ggtt_insert_page__cb(void * _arg)2610 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2611 {
2612 	struct insert_page *arg = _arg;
2613 
2614 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2615 	bxt_vtd_ggtt_wa(arg->vm);
2616 
2617 	return 0;
2618 }
2619 
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)2620 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2621 					  dma_addr_t addr,
2622 					  u64 offset,
2623 					  enum i915_cache_level level,
2624 					  u32 unused)
2625 {
2626 	struct insert_page arg = { vm, addr, offset, level };
2627 
2628 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2629 }
2630 
2631 struct insert_entries {
2632 	struct i915_address_space *vm;
2633 	struct i915_vma *vma;
2634 	enum i915_cache_level level;
2635 	u32 flags;
2636 };
2637 
bxt_vtd_ggtt_insert_entries__cb(void * _arg)2638 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2639 {
2640 	struct insert_entries *arg = _arg;
2641 
2642 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2643 	bxt_vtd_ggtt_wa(arg->vm);
2644 
2645 	return 0;
2646 }
2647 
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2648 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2649 					     struct i915_vma *vma,
2650 					     enum i915_cache_level level,
2651 					     u32 flags)
2652 {
2653 	struct insert_entries arg = { vm, vma, level, flags };
2654 
2655 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2656 }
2657 
2658 struct clear_range {
2659 	struct i915_address_space *vm;
2660 	u64 start;
2661 	u64 length;
2662 };
2663 
bxt_vtd_ggtt_clear_range__cb(void * _arg)2664 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2665 {
2666 	struct clear_range *arg = _arg;
2667 
2668 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2669 	bxt_vtd_ggtt_wa(arg->vm);
2670 
2671 	return 0;
2672 }
2673 
bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space * vm,u64 start,u64 length)2674 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2675 					  u64 start,
2676 					  u64 length)
2677 {
2678 	struct clear_range arg = { vm, start, length };
2679 
2680 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2681 }
2682 
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2683 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2684 				  u64 start, u64 length)
2685 {
2686 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2687 	unsigned first_entry = start >> PAGE_SHIFT;
2688 	unsigned num_entries = length >> PAGE_SHIFT;
2689 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2690 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2691 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2692 	int i;
2693 
2694 	if (WARN(num_entries > max_entries,
2695 		 "First entry = %d; Num entries = %d (max=%d)\n",
2696 		 first_entry, num_entries, max_entries))
2697 		num_entries = max_entries;
2698 
2699 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2700 				     I915_CACHE_LLC, 0);
2701 
2702 	for (i = 0; i < num_entries; i++)
2703 		iowrite32(scratch_pte, &gtt_base[i]);
2704 }
2705 
i915_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level cache_level,u32 unused)2706 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2707 				  dma_addr_t addr,
2708 				  u64 offset,
2709 				  enum i915_cache_level cache_level,
2710 				  u32 unused)
2711 {
2712 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2713 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2714 
2715 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2716 }
2717 
i915_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)2718 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2719 				     struct i915_vma *vma,
2720 				     enum i915_cache_level cache_level,
2721 				     u32 unused)
2722 {
2723 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2724 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2725 
2726 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2727 				    flags);
2728 }
2729 
i915_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2730 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2731 				  u64 start, u64 length)
2732 {
2733 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2734 }
2735 
ggtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2736 static int ggtt_bind_vma(struct i915_vma *vma,
2737 			 enum i915_cache_level cache_level,
2738 			 u32 flags)
2739 {
2740 	struct drm_i915_private *i915 = vma->vm->i915;
2741 	struct drm_i915_gem_object *obj = vma->obj;
2742 	u32 pte_flags;
2743 
2744 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2745 	pte_flags = 0;
2746 	if (i915_gem_object_is_readonly(obj))
2747 		pte_flags |= PTE_READ_ONLY;
2748 
2749 	intel_runtime_pm_get(i915);
2750 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2751 	intel_runtime_pm_put(i915);
2752 
2753 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2754 
2755 	/*
2756 	 * Without aliasing PPGTT there's no difference between
2757 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2758 	 * upgrade to both bound if we bind either to avoid double-binding.
2759 	 */
2760 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2761 
2762 	return 0;
2763 }
2764 
ggtt_unbind_vma(struct i915_vma * vma)2765 static void ggtt_unbind_vma(struct i915_vma *vma)
2766 {
2767 	struct drm_i915_private *i915 = vma->vm->i915;
2768 
2769 	intel_runtime_pm_get(i915);
2770 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2771 	intel_runtime_pm_put(i915);
2772 }
2773 
aliasing_gtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2774 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2775 				 enum i915_cache_level cache_level,
2776 				 u32 flags)
2777 {
2778 	struct drm_i915_private *i915 = vma->vm->i915;
2779 	u32 pte_flags;
2780 	int ret;
2781 
2782 	/* Currently applicable only to VLV */
2783 	pte_flags = 0;
2784 	if (i915_gem_object_is_readonly(vma->obj))
2785 		pte_flags |= PTE_READ_ONLY;
2786 
2787 	if (flags & I915_VMA_LOCAL_BIND) {
2788 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2789 
2790 		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2791 			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2792 							   vma->node.start,
2793 							   vma->size);
2794 			if (ret)
2795 				return ret;
2796 		}
2797 
2798 		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2799 					  pte_flags);
2800 	}
2801 
2802 	if (flags & I915_VMA_GLOBAL_BIND) {
2803 		intel_runtime_pm_get(i915);
2804 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2805 		intel_runtime_pm_put(i915);
2806 	}
2807 
2808 	return 0;
2809 }
2810 
aliasing_gtt_unbind_vma(struct i915_vma * vma)2811 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2812 {
2813 	struct drm_i915_private *i915 = vma->vm->i915;
2814 
2815 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2816 		intel_runtime_pm_get(i915);
2817 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2818 		intel_runtime_pm_put(i915);
2819 	}
2820 
2821 	if (vma->flags & I915_VMA_LOCAL_BIND) {
2822 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2823 
2824 		vm->clear_range(vm, vma->node.start, vma->size);
2825 	}
2826 }
2827 
i915_gem_gtt_finish_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2828 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2829 			       struct sg_table *pages)
2830 {
2831 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2832 	struct device *kdev = &dev_priv->drm.pdev->dev;
2833 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2834 
2835 	if (unlikely(ggtt->do_idle_maps)) {
2836 		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2837 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2838 			/* Wait a bit, in hopes it avoids the hang */
2839 			udelay(10);
2840 		}
2841 	}
2842 
2843 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2844 }
2845 
ggtt_set_pages(struct i915_vma * vma)2846 static int ggtt_set_pages(struct i915_vma *vma)
2847 {
2848 	int ret;
2849 
2850 	GEM_BUG_ON(vma->pages);
2851 
2852 	ret = i915_get_ggtt_vma_pages(vma);
2853 	if (ret)
2854 		return ret;
2855 
2856 	vma->page_sizes = vma->obj->mm.page_sizes;
2857 
2858 	return 0;
2859 }
2860 
i915_gtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)2861 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2862 				  unsigned long color,
2863 				  u64 *start,
2864 				  u64 *end)
2865 {
2866 	if (node->allocated && node->color != color)
2867 		*start += I915_GTT_PAGE_SIZE;
2868 
2869 	/* Also leave a space between the unallocated reserved node after the
2870 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
2871 	 * to insert a guard page to prevent prefetches crossing over the
2872 	 * GTT boundary.
2873 	 */
2874 	node = list_next_entry(node, node_list);
2875 	if (node->color != color)
2876 		*end -= I915_GTT_PAGE_SIZE;
2877 }
2878 
i915_gem_init_aliasing_ppgtt(struct drm_i915_private * i915)2879 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2880 {
2881 	struct i915_ggtt *ggtt = &i915->ggtt;
2882 	struct i915_hw_ppgtt *ppgtt;
2883 	int err;
2884 
2885 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2886 	if (IS_ERR(ppgtt))
2887 		return PTR_ERR(ppgtt);
2888 
2889 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2890 		err = -ENODEV;
2891 		goto err_ppgtt;
2892 	}
2893 
2894 	/*
2895 	 * Note we only pre-allocate as far as the end of the global
2896 	 * GTT. On 48b / 4-level page-tables, the difference is very,
2897 	 * very significant! We have to preallocate as GVT/vgpu does
2898 	 * not like the page directory disappearing.
2899 	 */
2900 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2901 	if (err)
2902 		goto err_ppgtt;
2903 
2904 	i915->mm.aliasing_ppgtt = ppgtt;
2905 
2906 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2907 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2908 
2909 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2910 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2911 
2912 	return 0;
2913 
2914 err_ppgtt:
2915 	i915_ppgtt_put(ppgtt);
2916 	return err;
2917 }
2918 
i915_gem_fini_aliasing_ppgtt(struct drm_i915_private * i915)2919 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2920 {
2921 	struct i915_ggtt *ggtt = &i915->ggtt;
2922 	struct i915_hw_ppgtt *ppgtt;
2923 
2924 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2925 	if (!ppgtt)
2926 		return;
2927 
2928 	i915_ppgtt_put(ppgtt);
2929 
2930 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2931 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2932 }
2933 
i915_gem_init_ggtt(struct drm_i915_private * dev_priv)2934 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2935 {
2936 	/* Let GEM Manage all of the aperture.
2937 	 *
2938 	 * However, leave one page at the end still bound to the scratch page.
2939 	 * There are a number of places where the hardware apparently prefetches
2940 	 * past the end of the object, and we've seen multiple hangs with the
2941 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2942 	 * aperture.  One page should be enough to keep any prefetching inside
2943 	 * of the aperture.
2944 	 */
2945 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2946 	unsigned long hole_start, hole_end;
2947 	struct drm_mm_node *entry;
2948 	int ret;
2949 
2950 	ret = intel_vgt_balloon(dev_priv);
2951 	if (ret)
2952 		return ret;
2953 
2954 	/* Reserve a mappable slot for our lockless error capture */
2955 	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2956 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2957 					  0, ggtt->mappable_end,
2958 					  DRM_MM_INSERT_LOW);
2959 	if (ret)
2960 		return ret;
2961 
2962 	/* Clear any non-preallocated blocks */
2963 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2964 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2965 			      hole_start, hole_end);
2966 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
2967 				     hole_end - hole_start);
2968 	}
2969 
2970 	/* And finally clear the reserved guard page */
2971 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2972 
2973 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2974 		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2975 		if (ret)
2976 			goto err;
2977 	}
2978 
2979 	return 0;
2980 
2981 err:
2982 	drm_mm_remove_node(&ggtt->error_capture);
2983 	return ret;
2984 }
2985 
2986 /**
2987  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2988  * @dev_priv: i915 device
2989  */
i915_ggtt_cleanup_hw(struct drm_i915_private * dev_priv)2990 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2991 {
2992 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2993 	struct i915_vma *vma, *vn;
2994 	struct pagevec *pvec;
2995 
2996 	ggtt->vm.closed = true;
2997 
2998 	mutex_lock(&dev_priv->drm.struct_mutex);
2999 	i915_gem_fini_aliasing_ppgtt(dev_priv);
3000 
3001 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3002 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
3003 		WARN_ON(i915_vma_unbind(vma));
3004 
3005 	if (drm_mm_node_allocated(&ggtt->error_capture))
3006 		drm_mm_remove_node(&ggtt->error_capture);
3007 
3008 	if (drm_mm_initialized(&ggtt->vm.mm)) {
3009 		intel_vgt_deballoon(dev_priv);
3010 		i915_address_space_fini(&ggtt->vm);
3011 	}
3012 
3013 	ggtt->vm.cleanup(&ggtt->vm);
3014 
3015 	pvec = &dev_priv->mm.wc_stash.pvec;
3016 	if (pvec->nr) {
3017 		set_pages_array_wb(pvec->pages, pvec->nr);
3018 		__pagevec_release(pvec);
3019 	}
3020 
3021 	mutex_unlock(&dev_priv->drm.struct_mutex);
3022 
3023 	arch_phys_wc_del(ggtt->mtrr);
3024 	io_mapping_fini(&ggtt->iomap);
3025 
3026 	i915_gem_cleanup_stolen(&dev_priv->drm);
3027 }
3028 
gen6_get_total_gtt_size(u16 snb_gmch_ctl)3029 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3030 {
3031 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
3032 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
3033 	return snb_gmch_ctl << 20;
3034 }
3035 
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)3036 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3037 {
3038 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
3039 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
3040 	if (bdw_gmch_ctl)
3041 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3042 
3043 #ifdef CONFIG_X86_32
3044 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
3045 	if (bdw_gmch_ctl > 4)
3046 		bdw_gmch_ctl = 4;
3047 #endif
3048 
3049 	return bdw_gmch_ctl << 20;
3050 }
3051 
chv_get_total_gtt_size(u16 gmch_ctrl)3052 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3053 {
3054 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
3055 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
3056 
3057 	if (gmch_ctrl)
3058 		return 1 << (20 + gmch_ctrl);
3059 
3060 	return 0;
3061 }
3062 
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)3063 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
3064 {
3065 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3066 	struct pci_dev *pdev = dev_priv->drm.pdev;
3067 	phys_addr_t phys_addr;
3068 	int ret;
3069 
3070 	/* For Modern GENs the PTEs and register space are split in the BAR */
3071 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
3072 
3073 	/*
3074 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3075 	 * will be dropped. For WC mappings in general we have 64 byte burst
3076 	 * writes when the WC buffer is flushed, so we can't use it, but have to
3077 	 * resort to an uncached mapping. The WC issue is easily caught by the
3078 	 * readback check when writing GTT PTE entries.
3079 	 */
3080 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3081 		ggtt->gsm = ioremap_nocache(phys_addr, size);
3082 	else
3083 		ggtt->gsm = ioremap_wc(phys_addr, size);
3084 	if (!ggtt->gsm) {
3085 		DRM_ERROR("Failed to map the ggtt page table\n");
3086 		return -ENOMEM;
3087 	}
3088 
3089 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3090 	if (ret) {
3091 		DRM_ERROR("Scratch setup failed\n");
3092 		/* iounmap will also get called at remove, but meh */
3093 		iounmap(ggtt->gsm);
3094 		return ret;
3095 	}
3096 
3097 	return 0;
3098 }
3099 
3100 static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat * ppat,unsigned int index,u8 value)3101 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3102 {
3103 	struct intel_ppat_entry *entry = &ppat->entries[index];
3104 
3105 	GEM_BUG_ON(index >= ppat->max_entries);
3106 	GEM_BUG_ON(test_bit(index, ppat->used));
3107 
3108 	entry->ppat = ppat;
3109 	entry->value = value;
3110 	kref_init(&entry->ref);
3111 	set_bit(index, ppat->used);
3112 	set_bit(index, ppat->dirty);
3113 
3114 	return entry;
3115 }
3116 
__free_ppat_entry(struct intel_ppat_entry * entry)3117 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3118 {
3119 	struct intel_ppat *ppat = entry->ppat;
3120 	unsigned int index = entry - ppat->entries;
3121 
3122 	GEM_BUG_ON(index >= ppat->max_entries);
3123 	GEM_BUG_ON(!test_bit(index, ppat->used));
3124 
3125 	entry->value = ppat->clear_value;
3126 	clear_bit(index, ppat->used);
3127 	set_bit(index, ppat->dirty);
3128 }
3129 
3130 /**
3131  * intel_ppat_get - get a usable PPAT entry
3132  * @i915: i915 device instance
3133  * @value: the PPAT value required by the caller
3134  *
3135  * The function tries to search if there is an existing PPAT entry which
3136  * matches with the required value. If perfectly matched, the existing PPAT
3137  * entry will be used. If only partially matched, it will try to check if
3138  * there is any available PPAT index. If yes, it will allocate a new PPAT
3139  * index for the required entry and update the HW. If not, the partially
3140  * matched entry will be used.
3141  */
3142 const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private * i915,u8 value)3143 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3144 {
3145 	struct intel_ppat *ppat = &i915->ppat;
3146 	struct intel_ppat_entry *entry = NULL;
3147 	unsigned int scanned, best_score;
3148 	int i;
3149 
3150 	GEM_BUG_ON(!ppat->max_entries);
3151 
3152 	scanned = best_score = 0;
3153 	for_each_set_bit(i, ppat->used, ppat->max_entries) {
3154 		unsigned int score;
3155 
3156 		score = ppat->match(ppat->entries[i].value, value);
3157 		if (score > best_score) {
3158 			entry = &ppat->entries[i];
3159 			if (score == INTEL_PPAT_PERFECT_MATCH) {
3160 				kref_get(&entry->ref);
3161 				return entry;
3162 			}
3163 			best_score = score;
3164 		}
3165 		scanned++;
3166 	}
3167 
3168 	if (scanned == ppat->max_entries) {
3169 		if (!entry)
3170 			return ERR_PTR(-ENOSPC);
3171 
3172 		kref_get(&entry->ref);
3173 		return entry;
3174 	}
3175 
3176 	i = find_first_zero_bit(ppat->used, ppat->max_entries);
3177 	entry = __alloc_ppat_entry(ppat, i, value);
3178 	ppat->update_hw(i915);
3179 	return entry;
3180 }
3181 
release_ppat(struct kref * kref)3182 static void release_ppat(struct kref *kref)
3183 {
3184 	struct intel_ppat_entry *entry =
3185 		container_of(kref, struct intel_ppat_entry, ref);
3186 	struct drm_i915_private *i915 = entry->ppat->i915;
3187 
3188 	__free_ppat_entry(entry);
3189 	entry->ppat->update_hw(i915);
3190 }
3191 
3192 /**
3193  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3194  * @entry: an intel PPAT entry
3195  *
3196  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3197  * entry is dynamically allocated, its reference count will be decreased. Once
3198  * the reference count becomes into zero, the PPAT index becomes free again.
3199  */
intel_ppat_put(const struct intel_ppat_entry * entry)3200 void intel_ppat_put(const struct intel_ppat_entry *entry)
3201 {
3202 	struct intel_ppat *ppat = entry->ppat;
3203 	unsigned int index = entry - ppat->entries;
3204 
3205 	GEM_BUG_ON(!ppat->max_entries);
3206 
3207 	kref_put(&ppat->entries[index].ref, release_ppat);
3208 }
3209 
cnl_private_pat_update_hw(struct drm_i915_private * dev_priv)3210 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3211 {
3212 	struct intel_ppat *ppat = &dev_priv->ppat;
3213 	int i;
3214 
3215 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3216 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3217 		clear_bit(i, ppat->dirty);
3218 	}
3219 }
3220 
bdw_private_pat_update_hw(struct drm_i915_private * dev_priv)3221 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3222 {
3223 	struct intel_ppat *ppat = &dev_priv->ppat;
3224 	u64 pat = 0;
3225 	int i;
3226 
3227 	for (i = 0; i < ppat->max_entries; i++)
3228 		pat |= GEN8_PPAT(i, ppat->entries[i].value);
3229 
3230 	bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3231 
3232 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3233 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3234 }
3235 
bdw_private_pat_match(u8 src,u8 dst)3236 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3237 {
3238 	unsigned int score = 0;
3239 	enum {
3240 		AGE_MATCH = BIT(0),
3241 		TC_MATCH = BIT(1),
3242 		CA_MATCH = BIT(2),
3243 	};
3244 
3245 	/* Cache attribute has to be matched. */
3246 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3247 		return 0;
3248 
3249 	score |= CA_MATCH;
3250 
3251 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3252 		score |= TC_MATCH;
3253 
3254 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3255 		score |= AGE_MATCH;
3256 
3257 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3258 		return INTEL_PPAT_PERFECT_MATCH;
3259 
3260 	return score;
3261 }
3262 
chv_private_pat_match(u8 src,u8 dst)3263 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3264 {
3265 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3266 		INTEL_PPAT_PERFECT_MATCH : 0;
3267 }
3268 
cnl_setup_private_ppat(struct intel_ppat * ppat)3269 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3270 {
3271 	ppat->max_entries = 8;
3272 	ppat->update_hw = cnl_private_pat_update_hw;
3273 	ppat->match = bdw_private_pat_match;
3274 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3275 
3276 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3277 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3278 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3279 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3280 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3281 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3282 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3283 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3284 }
3285 
3286 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3287  * bits. When using advanced contexts each context stores its own PAT, but
3288  * writing this data shouldn't be harmful even in those cases. */
bdw_setup_private_ppat(struct intel_ppat * ppat)3289 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3290 {
3291 	ppat->max_entries = 8;
3292 	ppat->update_hw = bdw_private_pat_update_hw;
3293 	ppat->match = bdw_private_pat_match;
3294 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3295 
3296 	if (!USES_PPGTT(ppat->i915)) {
3297 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3298 		 * so RTL will always use the value corresponding to
3299 		 * pat_sel = 000".
3300 		 * So let's disable cache for GGTT to avoid screen corruptions.
3301 		 * MOCS still can be used though.
3302 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3303 		 * before this patch, i.e. the same uncached + snooping access
3304 		 * like on gen6/7 seems to be in effect.
3305 		 * - So this just fixes blitter/render access. Again it looks
3306 		 * like it's not just uncached access, but uncached + snooping.
3307 		 * So we can still hold onto all our assumptions wrt cpu
3308 		 * clflushing on LLC machines.
3309 		 */
3310 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3311 		return;
3312 	}
3313 
3314 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3315 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3316 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3317 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3318 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3319 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3320 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3321 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3322 }
3323 
chv_setup_private_ppat(struct intel_ppat * ppat)3324 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3325 {
3326 	ppat->max_entries = 8;
3327 	ppat->update_hw = bdw_private_pat_update_hw;
3328 	ppat->match = chv_private_pat_match;
3329 	ppat->clear_value = CHV_PPAT_SNOOP;
3330 
3331 	/*
3332 	 * Map WB on BDW to snooped on CHV.
3333 	 *
3334 	 * Only the snoop bit has meaning for CHV, the rest is
3335 	 * ignored.
3336 	 *
3337 	 * The hardware will never snoop for certain types of accesses:
3338 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3339 	 * - PPGTT page tables
3340 	 * - some other special cycles
3341 	 *
3342 	 * As with BDW, we also need to consider the following for GT accesses:
3343 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3344 	 * so RTL will always use the value corresponding to
3345 	 * pat_sel = 000".
3346 	 * Which means we must set the snoop bit in PAT entry 0
3347 	 * in order to keep the global status page working.
3348 	 */
3349 
3350 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3351 	__alloc_ppat_entry(ppat, 1, 0);
3352 	__alloc_ppat_entry(ppat, 2, 0);
3353 	__alloc_ppat_entry(ppat, 3, 0);
3354 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3355 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3356 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3357 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3358 }
3359 
gen6_gmch_remove(struct i915_address_space * vm)3360 static void gen6_gmch_remove(struct i915_address_space *vm)
3361 {
3362 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3363 
3364 	iounmap(ggtt->gsm);
3365 	cleanup_scratch_page(vm);
3366 }
3367 
setup_private_pat(struct drm_i915_private * dev_priv)3368 static void setup_private_pat(struct drm_i915_private *dev_priv)
3369 {
3370 	struct intel_ppat *ppat = &dev_priv->ppat;
3371 	int i;
3372 
3373 	ppat->i915 = dev_priv;
3374 
3375 	if (INTEL_GEN(dev_priv) >= 10)
3376 		cnl_setup_private_ppat(ppat);
3377 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3378 		chv_setup_private_ppat(ppat);
3379 	else
3380 		bdw_setup_private_ppat(ppat);
3381 
3382 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3383 
3384 	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3385 		ppat->entries[i].value = ppat->clear_value;
3386 		ppat->entries[i].ppat = ppat;
3387 		set_bit(i, ppat->dirty);
3388 	}
3389 
3390 	ppat->update_hw(dev_priv);
3391 }
3392 
gen8_gmch_probe(struct i915_ggtt * ggtt)3393 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3394 {
3395 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3396 	struct pci_dev *pdev = dev_priv->drm.pdev;
3397 	unsigned int size;
3398 	u16 snb_gmch_ctl;
3399 	int err;
3400 
3401 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3402 	ggtt->gmadr =
3403 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3404 						 pci_resource_len(pdev, 2));
3405 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3406 
3407 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3408 	if (!err)
3409 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3410 	if (err)
3411 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3412 
3413 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3414 	if (IS_CHERRYVIEW(dev_priv))
3415 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3416 	else
3417 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3418 
3419 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3420 	ggtt->vm.cleanup = gen6_gmch_remove;
3421 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
3422 	ggtt->vm.clear_range = nop_clear_range;
3423 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3424 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3425 
3426 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3427 
3428 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3429 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3430 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3431 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3432 		if (ggtt->vm.clear_range != nop_clear_range)
3433 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3434 	}
3435 
3436 	ggtt->invalidate = gen6_ggtt_invalidate;
3437 
3438 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3439 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3440 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3441 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3442 
3443 	setup_private_pat(dev_priv);
3444 
3445 	return ggtt_probe_common(ggtt, size);
3446 }
3447 
gen6_gmch_probe(struct i915_ggtt * ggtt)3448 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3449 {
3450 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3451 	struct pci_dev *pdev = dev_priv->drm.pdev;
3452 	unsigned int size;
3453 	u16 snb_gmch_ctl;
3454 	int err;
3455 
3456 	ggtt->gmadr =
3457 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3458 						 pci_resource_len(pdev, 2));
3459 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3460 
3461 	/* 64/512MB is the current min/max we actually know of, but this is just
3462 	 * a coarse sanity check.
3463 	 */
3464 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3465 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3466 		return -ENXIO;
3467 	}
3468 
3469 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3470 	if (!err)
3471 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3472 	if (err)
3473 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3474 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3475 
3476 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3477 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3478 
3479 	ggtt->vm.clear_range = gen6_ggtt_clear_range;
3480 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
3481 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3482 	ggtt->vm.cleanup = gen6_gmch_remove;
3483 
3484 	ggtt->invalidate = gen6_ggtt_invalidate;
3485 
3486 	if (HAS_EDRAM(dev_priv))
3487 		ggtt->vm.pte_encode = iris_pte_encode;
3488 	else if (IS_HASWELL(dev_priv))
3489 		ggtt->vm.pte_encode = hsw_pte_encode;
3490 	else if (IS_VALLEYVIEW(dev_priv))
3491 		ggtt->vm.pte_encode = byt_pte_encode;
3492 	else if (INTEL_GEN(dev_priv) >= 7)
3493 		ggtt->vm.pte_encode = ivb_pte_encode;
3494 	else
3495 		ggtt->vm.pte_encode = snb_pte_encode;
3496 
3497 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3498 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3499 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3500 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3501 
3502 	return ggtt_probe_common(ggtt, size);
3503 }
3504 
i915_gmch_remove(struct i915_address_space * vm)3505 static void i915_gmch_remove(struct i915_address_space *vm)
3506 {
3507 	intel_gmch_remove();
3508 }
3509 
i915_gmch_probe(struct i915_ggtt * ggtt)3510 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3511 {
3512 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3513 	phys_addr_t gmadr_base;
3514 	int ret;
3515 
3516 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3517 	if (!ret) {
3518 		DRM_ERROR("failed to set up gmch\n");
3519 		return -EIO;
3520 	}
3521 
3522 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3523 
3524 	ggtt->gmadr =
3525 		(struct resource) DEFINE_RES_MEM(gmadr_base,
3526 						 ggtt->mappable_end);
3527 
3528 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3529 	ggtt->vm.insert_page = i915_ggtt_insert_page;
3530 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3531 	ggtt->vm.clear_range = i915_ggtt_clear_range;
3532 	ggtt->vm.cleanup = i915_gmch_remove;
3533 
3534 	ggtt->invalidate = gmch_ggtt_invalidate;
3535 
3536 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3537 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3538 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3539 	ggtt->vm.vma_ops.clear_pages = clear_pages;
3540 
3541 	if (unlikely(ggtt->do_idle_maps))
3542 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3543 
3544 	return 0;
3545 }
3546 
3547 /**
3548  * i915_ggtt_probe_hw - Probe GGTT hardware location
3549  * @dev_priv: i915 device
3550  */
i915_ggtt_probe_hw(struct drm_i915_private * dev_priv)3551 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3552 {
3553 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3554 	int ret;
3555 
3556 	ggtt->vm.i915 = dev_priv;
3557 	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3558 
3559 	if (INTEL_GEN(dev_priv) <= 5)
3560 		ret = i915_gmch_probe(ggtt);
3561 	else if (INTEL_GEN(dev_priv) < 8)
3562 		ret = gen6_gmch_probe(ggtt);
3563 	else
3564 		ret = gen8_gmch_probe(ggtt);
3565 	if (ret)
3566 		return ret;
3567 
3568 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3569 	 * This is easier than doing range restriction on the fly, as we
3570 	 * currently don't have any bits spare to pass in this upper
3571 	 * restriction!
3572 	 */
3573 	if (USES_GUC(dev_priv)) {
3574 		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3575 		ggtt->mappable_end =
3576 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3577 	}
3578 
3579 	if ((ggtt->vm.total - 1) >> 32) {
3580 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3581 			  " of address space! Found %lldM!\n",
3582 			  ggtt->vm.total >> 20);
3583 		ggtt->vm.total = 1ULL << 32;
3584 		ggtt->mappable_end =
3585 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3586 	}
3587 
3588 	if (ggtt->mappable_end > ggtt->vm.total) {
3589 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3590 			  " aperture=%pa, total=%llx\n",
3591 			  &ggtt->mappable_end, ggtt->vm.total);
3592 		ggtt->mappable_end = ggtt->vm.total;
3593 	}
3594 
3595 	/* GMADR is the PCI mmio aperture into the global GTT. */
3596 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3597 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3598 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3599 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3600 	if (intel_vtd_active())
3601 		DRM_INFO("VT-d active for gfx access\n");
3602 
3603 	return 0;
3604 }
3605 
3606 /**
3607  * i915_ggtt_init_hw - Initialize GGTT hardware
3608  * @dev_priv: i915 device
3609  */
i915_ggtt_init_hw(struct drm_i915_private * dev_priv)3610 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3611 {
3612 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3613 	int ret;
3614 
3615 	stash_init(&dev_priv->mm.wc_stash);
3616 
3617 	/* Note that we use page colouring to enforce a guard page at the
3618 	 * end of the address space. This is required as the CS may prefetch
3619 	 * beyond the end of the batch buffer, across the page boundary,
3620 	 * and beyond the end of the GTT if we do not provide a guard.
3621 	 */
3622 	mutex_lock(&dev_priv->drm.struct_mutex);
3623 	i915_address_space_init(&ggtt->vm, dev_priv);
3624 
3625 	/* Only VLV supports read-only GGTT mappings */
3626 	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3627 
3628 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3629 		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3630 	mutex_unlock(&dev_priv->drm.struct_mutex);
3631 
3632 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3633 				dev_priv->ggtt.gmadr.start,
3634 				dev_priv->ggtt.mappable_end)) {
3635 		ret = -EIO;
3636 		goto out_gtt_cleanup;
3637 	}
3638 
3639 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3640 
3641 	/*
3642 	 * Initialise stolen early so that we may reserve preallocated
3643 	 * objects for the BIOS to KMS transition.
3644 	 */
3645 	ret = i915_gem_init_stolen(dev_priv);
3646 	if (ret)
3647 		goto out_gtt_cleanup;
3648 
3649 	return 0;
3650 
3651 out_gtt_cleanup:
3652 	ggtt->vm.cleanup(&ggtt->vm);
3653 	return ret;
3654 }
3655 
i915_ggtt_enable_hw(struct drm_i915_private * dev_priv)3656 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3657 {
3658 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3659 		return -EIO;
3660 
3661 	return 0;
3662 }
3663 
i915_ggtt_enable_guc(struct drm_i915_private * i915)3664 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3665 {
3666 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3667 
3668 	i915->ggtt.invalidate = guc_ggtt_invalidate;
3669 
3670 	i915_ggtt_invalidate(i915);
3671 }
3672 
i915_ggtt_disable_guc(struct drm_i915_private * i915)3673 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3674 {
3675 	/* We should only be called after i915_ggtt_enable_guc() */
3676 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3677 
3678 	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3679 
3680 	i915_ggtt_invalidate(i915);
3681 }
3682 
i915_gem_restore_gtt_mappings(struct drm_i915_private * dev_priv)3683 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3684 {
3685 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3686 	struct i915_vma *vma, *vn;
3687 
3688 	i915_check_and_clear_faults(dev_priv);
3689 
3690 	/* First fill our portion of the GTT with scratch pages */
3691 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3692 
3693 	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3694 
3695 	/* clflush objects bound into the GGTT and rebind them. */
3696 	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3697 	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3698 		struct drm_i915_gem_object *obj = vma->obj;
3699 
3700 		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3701 			continue;
3702 
3703 		if (!i915_vma_unbind(vma))
3704 			continue;
3705 
3706 		WARN_ON(i915_vma_bind(vma,
3707 				      obj ? obj->cache_level : 0,
3708 				      PIN_UPDATE));
3709 		if (obj)
3710 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3711 	}
3712 
3713 	ggtt->vm.closed = false;
3714 	i915_ggtt_invalidate(dev_priv);
3715 
3716 	if (INTEL_GEN(dev_priv) >= 8) {
3717 		struct intel_ppat *ppat = &dev_priv->ppat;
3718 
3719 		bitmap_set(ppat->dirty, 0, ppat->max_entries);
3720 		dev_priv->ppat.update_hw(dev_priv);
3721 		return;
3722 	}
3723 }
3724 
3725 static struct scatterlist *
rotate_pages(const dma_addr_t * in,unsigned int offset,unsigned int width,unsigned int height,unsigned int stride,struct sg_table * st,struct scatterlist * sg)3726 rotate_pages(const dma_addr_t *in, unsigned int offset,
3727 	     unsigned int width, unsigned int height,
3728 	     unsigned int stride,
3729 	     struct sg_table *st, struct scatterlist *sg)
3730 {
3731 	unsigned int column, row;
3732 	unsigned int src_idx;
3733 
3734 	for (column = 0; column < width; column++) {
3735 		src_idx = stride * (height - 1) + column;
3736 		for (row = 0; row < height; row++) {
3737 			st->nents++;
3738 			/* We don't need the pages, but need to initialize
3739 			 * the entries so the sg list can be happily traversed.
3740 			 * The only thing we need are DMA addresses.
3741 			 */
3742 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3743 			sg_dma_address(sg) = in[offset + src_idx];
3744 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3745 			sg = sg_next(sg);
3746 			src_idx -= stride;
3747 		}
3748 	}
3749 
3750 	return sg;
3751 }
3752 
3753 static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info * rot_info,struct drm_i915_gem_object * obj)3754 intel_rotate_pages(struct intel_rotation_info *rot_info,
3755 		   struct drm_i915_gem_object *obj)
3756 {
3757 	const unsigned long n_pages = obj->base.size / I915_GTT_PAGE_SIZE;
3758 	unsigned int size = intel_rotation_info_size(rot_info);
3759 	struct sgt_iter sgt_iter;
3760 	dma_addr_t dma_addr;
3761 	unsigned long i;
3762 	dma_addr_t *page_addr_list;
3763 	struct sg_table *st;
3764 	struct scatterlist *sg;
3765 	int ret = -ENOMEM;
3766 
3767 	/* Allocate a temporary list of source pages for random access. */
3768 	page_addr_list = kvmalloc_array(n_pages,
3769 					sizeof(dma_addr_t),
3770 					GFP_KERNEL);
3771 	if (!page_addr_list)
3772 		return ERR_PTR(ret);
3773 
3774 	/* Allocate target SG list. */
3775 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3776 	if (!st)
3777 		goto err_st_alloc;
3778 
3779 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3780 	if (ret)
3781 		goto err_sg_alloc;
3782 
3783 	/* Populate source page list from the object. */
3784 	i = 0;
3785 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3786 		page_addr_list[i++] = dma_addr;
3787 
3788 	GEM_BUG_ON(i != n_pages);
3789 	st->nents = 0;
3790 	sg = st->sgl;
3791 
3792 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3793 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3794 				  rot_info->plane[i].width, rot_info->plane[i].height,
3795 				  rot_info->plane[i].stride, st, sg);
3796 	}
3797 
3798 	kvfree(page_addr_list);
3799 
3800 	return st;
3801 
3802 err_sg_alloc:
3803 	kfree(st);
3804 err_st_alloc:
3805 	kvfree(page_addr_list);
3806 
3807 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3808 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3809 
3810 	return ERR_PTR(ret);
3811 }
3812 
3813 static noinline struct sg_table *
intel_partial_pages(const struct i915_ggtt_view * view,struct drm_i915_gem_object * obj)3814 intel_partial_pages(const struct i915_ggtt_view *view,
3815 		    struct drm_i915_gem_object *obj)
3816 {
3817 	struct sg_table *st;
3818 	struct scatterlist *sg, *iter;
3819 	unsigned int count = view->partial.size;
3820 	unsigned int offset;
3821 	int ret = -ENOMEM;
3822 
3823 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3824 	if (!st)
3825 		goto err_st_alloc;
3826 
3827 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3828 	if (ret)
3829 		goto err_sg_alloc;
3830 
3831 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3832 	GEM_BUG_ON(!iter);
3833 
3834 	sg = st->sgl;
3835 	st->nents = 0;
3836 	do {
3837 		unsigned int len;
3838 
3839 		len = min(iter->length - (offset << PAGE_SHIFT),
3840 			  count << PAGE_SHIFT);
3841 		sg_set_page(sg, NULL, len, 0);
3842 		sg_dma_address(sg) =
3843 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3844 		sg_dma_len(sg) = len;
3845 
3846 		st->nents++;
3847 		count -= len >> PAGE_SHIFT;
3848 		if (count == 0) {
3849 			sg_mark_end(sg);
3850 			return st;
3851 		}
3852 
3853 		sg = __sg_next(sg);
3854 		iter = __sg_next(iter);
3855 		offset = 0;
3856 	} while (1);
3857 
3858 err_sg_alloc:
3859 	kfree(st);
3860 err_st_alloc:
3861 	return ERR_PTR(ret);
3862 }
3863 
3864 static int
i915_get_ggtt_vma_pages(struct i915_vma * vma)3865 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3866 {
3867 	int ret;
3868 
3869 	/* The vma->pages are only valid within the lifespan of the borrowed
3870 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3871 	 * must be the vma->pages. A simple rule is that vma->pages must only
3872 	 * be accessed when the obj->mm.pages are pinned.
3873 	 */
3874 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3875 
3876 	switch (vma->ggtt_view.type) {
3877 	default:
3878 		GEM_BUG_ON(vma->ggtt_view.type);
3879 		/* fall through */
3880 	case I915_GGTT_VIEW_NORMAL:
3881 		vma->pages = vma->obj->mm.pages;
3882 		return 0;
3883 
3884 	case I915_GGTT_VIEW_ROTATED:
3885 		vma->pages =
3886 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3887 		break;
3888 
3889 	case I915_GGTT_VIEW_PARTIAL:
3890 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3891 		break;
3892 	}
3893 
3894 	ret = 0;
3895 	if (unlikely(IS_ERR(vma->pages))) {
3896 		ret = PTR_ERR(vma->pages);
3897 		vma->pages = NULL;
3898 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3899 			  vma->ggtt_view.type, ret);
3900 	}
3901 	return ret;
3902 }
3903 
3904 /**
3905  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3906  * @vm: the &struct i915_address_space
3907  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3908  * @size: how much space to allocate inside the GTT,
3909  *        must be #I915_GTT_PAGE_SIZE aligned
3910  * @offset: where to insert inside the GTT,
3911  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3912  *          (@offset + @size) must fit within the address space
3913  * @color: color to apply to node, if this node is not from a VMA,
3914  *         color must be #I915_COLOR_UNEVICTABLE
3915  * @flags: control search and eviction behaviour
3916  *
3917  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3918  * the address space (using @size and @color). If the @node does not fit, it
3919  * tries to evict any overlapping nodes from the GTT, including any
3920  * neighbouring nodes if the colors do not match (to ensure guard pages between
3921  * differing domains). See i915_gem_evict_for_node() for the gory details
3922  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3923  * evicting active overlapping objects, and any overlapping node that is pinned
3924  * or marked as unevictable will also result in failure.
3925  *
3926  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3927  * asked to wait for eviction and interrupted.
3928  */
i915_gem_gtt_reserve(struct i915_address_space * vm,struct drm_mm_node * node,u64 size,u64 offset,unsigned long color,unsigned int flags)3929 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3930 			 struct drm_mm_node *node,
3931 			 u64 size, u64 offset, unsigned long color,
3932 			 unsigned int flags)
3933 {
3934 	int err;
3935 
3936 	GEM_BUG_ON(!size);
3937 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3938 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3939 	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3940 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3941 	GEM_BUG_ON(drm_mm_node_allocated(node));
3942 
3943 	node->size = size;
3944 	node->start = offset;
3945 	node->color = color;
3946 
3947 	err = drm_mm_reserve_node(&vm->mm, node);
3948 	if (err != -ENOSPC)
3949 		return err;
3950 
3951 	if (flags & PIN_NOEVICT)
3952 		return -ENOSPC;
3953 
3954 	err = i915_gem_evict_for_node(vm, node, flags);
3955 	if (err == 0)
3956 		err = drm_mm_reserve_node(&vm->mm, node);
3957 
3958 	return err;
3959 }
3960 
random_offset(u64 start,u64 end,u64 len,u64 align)3961 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3962 {
3963 	u64 range, addr;
3964 
3965 	GEM_BUG_ON(range_overflows(start, len, end));
3966 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3967 
3968 	range = round_down(end - len, align) - round_up(start, align);
3969 	if (range) {
3970 		if (sizeof(unsigned long) == sizeof(u64)) {
3971 			addr = get_random_long();
3972 		} else {
3973 			addr = get_random_int();
3974 			if (range > U32_MAX) {
3975 				addr <<= 32;
3976 				addr |= get_random_int();
3977 			}
3978 		}
3979 		div64_u64_rem(addr, range, &addr);
3980 		start += addr;
3981 	}
3982 
3983 	return round_up(start, align);
3984 }
3985 
3986 /**
3987  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3988  * @vm: the &struct i915_address_space
3989  * @node: the &struct drm_mm_node (typically i915_vma.node)
3990  * @size: how much space to allocate inside the GTT,
3991  *        must be #I915_GTT_PAGE_SIZE aligned
3992  * @alignment: required alignment of starting offset, may be 0 but
3993  *             if specified, this must be a power-of-two and at least
3994  *             #I915_GTT_MIN_ALIGNMENT
3995  * @color: color to apply to node
3996  * @start: start of any range restriction inside GTT (0 for all),
3997  *         must be #I915_GTT_PAGE_SIZE aligned
3998  * @end: end of any range restriction inside GTT (U64_MAX for all),
3999  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
4000  * @flags: control search and eviction behaviour
4001  *
4002  * i915_gem_gtt_insert() first searches for an available hole into which
4003  * is can insert the node. The hole address is aligned to @alignment and
4004  * its @size must then fit entirely within the [@start, @end] bounds. The
4005  * nodes on either side of the hole must match @color, or else a guard page
4006  * will be inserted between the two nodes (or the node evicted). If no
4007  * suitable hole is found, first a victim is randomly selected and tested
4008  * for eviction, otherwise then the LRU list of objects within the GTT
4009  * is scanned to find the first set of replacement nodes to create the hole.
4010  * Those old overlapping nodes are evicted from the GTT (and so must be
4011  * rebound before any future use). Any node that is currently pinned cannot
4012  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
4013  * active and #PIN_NONBLOCK is specified, that node is also skipped when
4014  * searching for an eviction candidate. See i915_gem_evict_something() for
4015  * the gory details on the eviction algorithm.
4016  *
4017  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
4018  * asked to wait for eviction and interrupted.
4019  */
i915_gem_gtt_insert(struct i915_address_space * vm,struct drm_mm_node * node,u64 size,u64 alignment,unsigned long color,u64 start,u64 end,unsigned int flags)4020 int i915_gem_gtt_insert(struct i915_address_space *vm,
4021 			struct drm_mm_node *node,
4022 			u64 size, u64 alignment, unsigned long color,
4023 			u64 start, u64 end, unsigned int flags)
4024 {
4025 	enum drm_mm_insert_mode mode;
4026 	u64 offset;
4027 	int err;
4028 
4029 	lockdep_assert_held(&vm->i915->drm.struct_mutex);
4030 	GEM_BUG_ON(!size);
4031 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
4032 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
4033 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
4034 	GEM_BUG_ON(start >= end);
4035 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
4036 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4037 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4038 	GEM_BUG_ON(drm_mm_node_allocated(node));
4039 
4040 	if (unlikely(range_overflows(start, size, end)))
4041 		return -ENOSPC;
4042 
4043 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
4044 		return -ENOSPC;
4045 
4046 	mode = DRM_MM_INSERT_BEST;
4047 	if (flags & PIN_HIGH)
4048 		mode = DRM_MM_INSERT_HIGHEST;
4049 	if (flags & PIN_MAPPABLE)
4050 		mode = DRM_MM_INSERT_LOW;
4051 
4052 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
4053 	 * so we know that we always have a minimum alignment of 4096.
4054 	 * The drm_mm range manager is optimised to return results
4055 	 * with zero alignment, so where possible use the optimal
4056 	 * path.
4057 	 */
4058 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4059 	if (alignment <= I915_GTT_MIN_ALIGNMENT)
4060 		alignment = 0;
4061 
4062 	err = drm_mm_insert_node_in_range(&vm->mm, node,
4063 					  size, alignment, color,
4064 					  start, end, mode);
4065 	if (err != -ENOSPC)
4066 		return err;
4067 
4068 	if (mode & DRM_MM_INSERT_ONCE) {
4069 		err = drm_mm_insert_node_in_range(&vm->mm, node,
4070 						  size, alignment, color,
4071 						  start, end,
4072 						  DRM_MM_INSERT_BEST);
4073 		if (err != -ENOSPC)
4074 			return err;
4075 	}
4076 
4077 	if (flags & PIN_NOEVICT)
4078 		return -ENOSPC;
4079 
4080 	/* No free space, pick a slot at random.
4081 	 *
4082 	 * There is a pathological case here using a GTT shared between
4083 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4084 	 *
4085 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4086 	 *         (64k objects)             (448k objects)
4087 	 *
4088 	 * Now imagine that the eviction LRU is ordered top-down (just because
4089 	 * pathology meets real life), and that we need to evict an object to
4090 	 * make room inside the aperture. The eviction scan then has to walk
4091 	 * the 448k list before it finds one within range. And now imagine that
4092 	 * it has to search for a new hole between every byte inside the memcpy,
4093 	 * for several simultaneous clients.
4094 	 *
4095 	 * On a full-ppgtt system, if we have run out of available space, there
4096 	 * will be lots and lots of objects in the eviction list! Again,
4097 	 * searching that LRU list may be slow if we are also applying any
4098 	 * range restrictions (e.g. restriction to low 4GiB) and so, for
4099 	 * simplicity and similarilty between different GTT, try the single
4100 	 * random replacement first.
4101 	 */
4102 	offset = random_offset(start, end,
4103 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4104 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4105 	if (err != -ENOSPC)
4106 		return err;
4107 
4108 	/* Randomly selected placement is pinned, do a search */
4109 	err = i915_gem_evict_something(vm, size, alignment, color,
4110 				       start, end, flags);
4111 	if (err)
4112 		return err;
4113 
4114 	return drm_mm_insert_node_in_range(&vm->mm, node,
4115 					   size, alignment, color,
4116 					   start, end, DRM_MM_INSERT_EVICT);
4117 }
4118 
4119 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4120 #include "selftests/mock_gtt.c"
4121 #include "selftests/i915_gem_gtt.c"
4122 #endif
4123