• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _INTEL_RINGBUFFER_H_
3 #define _INTEL_RINGBUFFER_H_
4 
5 #include <linux/hashtable.h>
6 #include <linux/seqlock.h>
7 
8 #include "i915_gem_batch_pool.h"
9 
10 #include "i915_reg.h"
11 #include "i915_pmu.h"
12 #include "i915_request.h"
13 #include "i915_selftest.h"
14 #include "i915_timeline.h"
15 #include "intel_gpu_commands.h"
16 
17 struct drm_printer;
18 struct i915_sched_attr;
19 
20 #define I915_CMD_HASH_ORDER 9
21 
22 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
23  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
24  * to give some inclination as to some of the magic values used in the various
25  * workarounds!
26  */
27 #define CACHELINE_BYTES 64
28 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
29 
30 struct intel_hw_status_page {
31 	struct i915_vma *vma;
32 	u32 *page_addr;
33 	u32 ggtt_offset;
34 };
35 
36 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
37 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
38 
39 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
40 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
41 
42 #define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
43 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
44 
45 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
46 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
47 
48 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
49 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
50 
51 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
52 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
53 
54 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
55  * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
56  */
57 enum intel_engine_hangcheck_action {
58 	ENGINE_IDLE = 0,
59 	ENGINE_WAIT,
60 	ENGINE_ACTIVE_SEQNO,
61 	ENGINE_ACTIVE_HEAD,
62 	ENGINE_ACTIVE_SUBUNITS,
63 	ENGINE_WAIT_KICK,
64 	ENGINE_DEAD,
65 };
66 
67 static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)68 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
69 {
70 	switch (a) {
71 	case ENGINE_IDLE:
72 		return "idle";
73 	case ENGINE_WAIT:
74 		return "wait";
75 	case ENGINE_ACTIVE_SEQNO:
76 		return "active seqno";
77 	case ENGINE_ACTIVE_HEAD:
78 		return "active head";
79 	case ENGINE_ACTIVE_SUBUNITS:
80 		return "active subunits";
81 	case ENGINE_WAIT_KICK:
82 		return "wait kick";
83 	case ENGINE_DEAD:
84 		return "dead";
85 	}
86 
87 	return "unknown";
88 }
89 
90 #define I915_MAX_SLICES	3
91 #define I915_MAX_SUBSLICES 8
92 
93 #define instdone_slice_mask(dev_priv__) \
94 	(INTEL_GEN(dev_priv__) == 7 ? \
95 	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
96 
97 #define instdone_subslice_mask(dev_priv__) \
98 	(INTEL_GEN(dev_priv__) == 7 ? \
99 	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0])
100 
101 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
102 	for ((slice__) = 0, (subslice__) = 0; \
103 	     (slice__) < I915_MAX_SLICES; \
104 	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
105 	       (slice__) += ((subslice__) == 0)) \
106 		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
107 			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
108 
109 struct intel_instdone {
110 	u32 instdone;
111 	/* The following exist only in the RCS engine */
112 	u32 slice_common;
113 	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
114 	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
115 };
116 
117 struct intel_engine_hangcheck {
118 	u64 acthd;
119 	u32 seqno;
120 	enum intel_engine_hangcheck_action action;
121 	unsigned long action_timestamp;
122 	int deadlock;
123 	struct intel_instdone instdone;
124 	struct i915_request *active_request;
125 	bool stalled:1;
126 	bool wedged:1;
127 };
128 
129 struct intel_ring {
130 	struct i915_vma *vma;
131 	void *vaddr;
132 
133 	struct i915_timeline *timeline;
134 	struct list_head request_list;
135 	struct list_head active_link;
136 
137 	u32 head;
138 	u32 tail;
139 	u32 emit;
140 
141 	u32 space;
142 	u32 size;
143 	u32 effective_size;
144 };
145 
146 struct i915_gem_context;
147 struct drm_i915_reg_table;
148 
149 /*
150  * we use a single page to load ctx workarounds so all of these
151  * values are referred in terms of dwords
152  *
153  * struct i915_wa_ctx_bb:
154  *  offset: specifies batch starting position, also helpful in case
155  *    if we want to have multiple batches at different offsets based on
156  *    some criteria. It is not a requirement at the moment but provides
157  *    an option for future use.
158  *  size: size of the batch in DWORDS
159  */
160 struct i915_ctx_workarounds {
161 	struct i915_wa_ctx_bb {
162 		u32 offset;
163 		u32 size;
164 	} indirect_ctx, per_ctx;
165 	struct i915_vma *vma;
166 };
167 
168 struct i915_request;
169 
170 #define I915_MAX_VCS	4
171 #define I915_MAX_VECS	2
172 
173 /*
174  * Engine IDs definitions.
175  * Keep instances of the same type engine together.
176  */
177 enum intel_engine_id {
178 	RCS = 0,
179 	BCS,
180 	VCS,
181 	VCS2,
182 	VCS3,
183 	VCS4,
184 #define _VCS(n) (VCS + (n))
185 	VECS,
186 	VECS2
187 #define _VECS(n) (VECS + (n))
188 };
189 
190 struct i915_priolist {
191 	struct rb_node node;
192 	struct list_head requests;
193 	int priority;
194 };
195 
196 struct st_preempt_hang {
197 	struct completion completion;
198 	bool inject_hang;
199 };
200 
201 /**
202  * struct intel_engine_execlists - execlist submission queue and port state
203  *
204  * The struct intel_engine_execlists represents the combined logical state of
205  * driver and the hardware state for execlist mode of submission.
206  */
207 struct intel_engine_execlists {
208 	/**
209 	 * @tasklet: softirq tasklet for bottom handler
210 	 */
211 	struct tasklet_struct tasklet;
212 
213 	/**
214 	 * @default_priolist: priority list for I915_PRIORITY_NORMAL
215 	 */
216 	struct i915_priolist default_priolist;
217 
218 	/**
219 	 * @no_priolist: priority lists disabled
220 	 */
221 	bool no_priolist;
222 
223 	/**
224 	 * @submit_reg: gen-specific execlist submission register
225 	 * set to the ExecList Submission Port (elsp) register pre-Gen11 and to
226 	 * the ExecList Submission Queue Contents register array for Gen11+
227 	 */
228 	u32 __iomem *submit_reg;
229 
230 	/**
231 	 * @ctrl_reg: the enhanced execlists control register, used to load the
232 	 * submit queue on the HW and to request preemptions to idle
233 	 */
234 	u32 __iomem *ctrl_reg;
235 
236 	/**
237 	 * @port: execlist port states
238 	 *
239 	 * For each hardware ELSP (ExecList Submission Port) we keep
240 	 * track of the last request and the number of times we submitted
241 	 * that port to hw. We then count the number of times the hw reports
242 	 * a context completion or preemption. As only one context can
243 	 * be active on hw, we limit resubmission of context to port[0]. This
244 	 * is called Lite Restore, of the context.
245 	 */
246 	struct execlist_port {
247 		/**
248 		 * @request_count: combined request and submission count
249 		 */
250 		struct i915_request *request_count;
251 #define EXECLIST_COUNT_BITS 2
252 #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
253 #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
254 #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
255 #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
256 #define port_set(p, packed) ((p)->request_count = (packed))
257 #define port_isset(p) ((p)->request_count)
258 #define port_index(p, execlists) ((p) - (execlists)->port)
259 
260 		/**
261 		 * @context_id: context ID for port
262 		 */
263 		GEM_DEBUG_DECL(u32 context_id);
264 
265 #define EXECLIST_MAX_PORTS 2
266 	} port[EXECLIST_MAX_PORTS];
267 
268 	/**
269 	 * @active: is the HW active? We consider the HW as active after
270 	 * submitting any context for execution and until we have seen the
271 	 * last context completion event. After that, we do not expect any
272 	 * more events until we submit, and so can park the HW.
273 	 *
274 	 * As we have a small number of different sources from which we feed
275 	 * the HW, we track the state of each inside a single bitfield.
276 	 */
277 	unsigned int active;
278 #define EXECLISTS_ACTIVE_USER 0
279 #define EXECLISTS_ACTIVE_PREEMPT 1
280 #define EXECLISTS_ACTIVE_HWACK 2
281 
282 	/**
283 	 * @port_mask: number of execlist ports - 1
284 	 */
285 	unsigned int port_mask;
286 
287 	/**
288 	 * @queue_priority: Highest pending priority.
289 	 *
290 	 * When we add requests into the queue, or adjust the priority of
291 	 * executing requests, we compute the maximum priority of those
292 	 * pending requests. We can then use this value to determine if
293 	 * we need to preempt the executing requests to service the queue.
294 	 */
295 	int queue_priority;
296 
297 	/**
298 	 * @queue: queue of requests, in priority lists
299 	 */
300 	struct rb_root_cached queue;
301 
302 	/**
303 	 * @csb_read: control register for Context Switch buffer
304 	 *
305 	 * Note this register is always in mmio.
306 	 */
307 	u32 __iomem *csb_read;
308 
309 	/**
310 	 * @csb_write: control register for Context Switch buffer
311 	 *
312 	 * Note this register may be either mmio or HWSP shadow.
313 	 */
314 	u32 *csb_write;
315 
316 	/**
317 	 * @csb_status: status array for Context Switch buffer
318 	 *
319 	 * Note these register may be either mmio or HWSP shadow.
320 	 */
321 	u32 *csb_status;
322 
323 	/**
324 	 * @preempt_complete_status: expected CSB upon completing preemption
325 	 */
326 	u32 preempt_complete_status;
327 
328 	/**
329 	 * @csb_write_reset: reset value for CSB write pointer
330 	 *
331 	 * As the CSB write pointer maybe either in HWSP or as a field
332 	 * inside an mmio register, we want to reprogram it slightly
333 	 * differently to avoid later confusion.
334 	 */
335 	u32 csb_write_reset;
336 
337 	/**
338 	 * @csb_head: context status buffer head
339 	 */
340 	u8 csb_head;
341 
342 	I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;)
343 };
344 
345 #define INTEL_ENGINE_CS_MAX_NAME 8
346 
347 struct intel_engine_cs {
348 	struct drm_i915_private *i915;
349 	char name[INTEL_ENGINE_CS_MAX_NAME];
350 
351 	enum intel_engine_id id;
352 	unsigned int hw_id;
353 	unsigned int guc_id;
354 
355 	u8 uabi_id;
356 	u8 uabi_class;
357 
358 	u8 class;
359 	u8 instance;
360 	u32 context_size;
361 	u32 mmio_base;
362 
363 	struct intel_ring *buffer;
364 
365 	struct i915_timeline timeline;
366 
367 	struct drm_i915_gem_object *default_state;
368 	void *pinned_default_state;
369 
370 	unsigned long irq_posted;
371 #define ENGINE_IRQ_BREADCRUMB 0
372 
373 	/* Rather than have every client wait upon all user interrupts,
374 	 * with the herd waking after every interrupt and each doing the
375 	 * heavyweight seqno dance, we delegate the task (of being the
376 	 * bottom-half of the user interrupt) to the first client. After
377 	 * every interrupt, we wake up one client, who does the heavyweight
378 	 * coherent seqno read and either goes back to sleep (if incomplete),
379 	 * or wakes up all the completed clients in parallel, before then
380 	 * transferring the bottom-half status to the next client in the queue.
381 	 *
382 	 * Compared to walking the entire list of waiters in a single dedicated
383 	 * bottom-half, we reduce the latency of the first waiter by avoiding
384 	 * a context switch, but incur additional coherent seqno reads when
385 	 * following the chain of request breadcrumbs. Since it is most likely
386 	 * that we have a single client waiting on each seqno, then reducing
387 	 * the overhead of waking that client is much preferred.
388 	 */
389 	struct intel_breadcrumbs {
390 		spinlock_t irq_lock; /* protects irq_*; irqsafe */
391 		struct intel_wait *irq_wait; /* oldest waiter by retirement */
392 
393 		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
394 		struct rb_root waiters; /* sorted by retirement, priority */
395 		struct list_head signals; /* sorted by retirement */
396 		struct task_struct *signaler; /* used for fence signalling */
397 
398 		struct timer_list fake_irq; /* used after a missed interrupt */
399 		struct timer_list hangcheck; /* detect missed interrupts */
400 
401 		unsigned int hangcheck_interrupts;
402 		unsigned int irq_enabled;
403 		unsigned int irq_count;
404 
405 		bool irq_armed : 1;
406 		I915_SELFTEST_DECLARE(bool mock : 1);
407 	} breadcrumbs;
408 
409 	struct {
410 		/**
411 		 * @enable: Bitmask of enable sample events on this engine.
412 		 *
413 		 * Bits correspond to sample event types, for instance
414 		 * I915_SAMPLE_QUEUED is bit 0 etc.
415 		 */
416 		u32 enable;
417 		/**
418 		 * @enable_count: Reference count for the enabled samplers.
419 		 *
420 		 * Index number corresponds to the bit number from @enable.
421 		 */
422 		unsigned int enable_count[I915_PMU_SAMPLE_BITS];
423 		/**
424 		 * @sample: Counter values for sampling events.
425 		 *
426 		 * Our internal timer stores the current counters in this field.
427 		 */
428 #define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
429 		struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
430 	} pmu;
431 
432 	/*
433 	 * A pool of objects to use as shadow copies of client batch buffers
434 	 * when the command parser is enabled. Prevents the client from
435 	 * modifying the batch contents after software parsing.
436 	 */
437 	struct i915_gem_batch_pool batch_pool;
438 
439 	struct intel_hw_status_page status_page;
440 	struct i915_ctx_workarounds wa_ctx;
441 	struct i915_vma *scratch;
442 
443 	u32             irq_keep_mask; /* always keep these interrupts */
444 	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
445 	void		(*irq_enable)(struct intel_engine_cs *engine);
446 	void		(*irq_disable)(struct intel_engine_cs *engine);
447 
448 	int		(*init_hw)(struct intel_engine_cs *engine);
449 
450 	struct {
451 		struct i915_request *(*prepare)(struct intel_engine_cs *engine);
452 		void (*reset)(struct intel_engine_cs *engine,
453 			      struct i915_request *rq);
454 		void (*finish)(struct intel_engine_cs *engine);
455 	} reset;
456 
457 	void		(*park)(struct intel_engine_cs *engine);
458 	void		(*unpark)(struct intel_engine_cs *engine);
459 
460 	void		(*set_default_submission)(struct intel_engine_cs *engine);
461 
462 	struct intel_context *(*context_pin)(struct intel_engine_cs *engine,
463 					     struct i915_gem_context *ctx);
464 
465 	int		(*request_alloc)(struct i915_request *rq);
466 	int		(*init_context)(struct i915_request *rq);
467 
468 	int		(*emit_flush)(struct i915_request *request, u32 mode);
469 #define EMIT_INVALIDATE	BIT(0)
470 #define EMIT_FLUSH	BIT(1)
471 #define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
472 	int		(*emit_bb_start)(struct i915_request *rq,
473 					 u64 offset, u32 length,
474 					 unsigned int dispatch_flags);
475 #define I915_DISPATCH_SECURE BIT(0)
476 #define I915_DISPATCH_PINNED BIT(1)
477 #define I915_DISPATCH_RS     BIT(2)
478 	void		(*emit_breadcrumb)(struct i915_request *rq, u32 *cs);
479 	int		emit_breadcrumb_sz;
480 
481 	/* Pass the request to the hardware queue (e.g. directly into
482 	 * the legacy ringbuffer or to the end of an execlist).
483 	 *
484 	 * This is called from an atomic context with irqs disabled; must
485 	 * be irq safe.
486 	 */
487 	void		(*submit_request)(struct i915_request *rq);
488 
489 	/* Call when the priority on a request has changed and it and its
490 	 * dependencies may need rescheduling. Note the request itself may
491 	 * not be ready to run!
492 	 *
493 	 * Called under the struct_mutex.
494 	 */
495 	void		(*schedule)(struct i915_request *request,
496 				    const struct i915_sched_attr *attr);
497 
498 	/*
499 	 * Cancel all requests on the hardware, or queued for execution.
500 	 * This should only cancel the ready requests that have been
501 	 * submitted to the engine (via the engine->submit_request callback).
502 	 * This is called when marking the device as wedged.
503 	 */
504 	void		(*cancel_requests)(struct intel_engine_cs *engine);
505 
506 	/* Some chipsets are not quite as coherent as advertised and need
507 	 * an expensive kick to force a true read of the up-to-date seqno.
508 	 * However, the up-to-date seqno is not always required and the last
509 	 * seen value is good enough. Note that the seqno will always be
510 	 * monotonic, even if not coherent.
511 	 */
512 	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
513 	void		(*cleanup)(struct intel_engine_cs *engine);
514 
515 	/* GEN8 signal/wait table - never trust comments!
516 	 *	  signal to	signal to    signal to   signal to      signal to
517 	 *	    RCS		   VCS          BCS        VECS		 VCS2
518 	 *      --------------------------------------------------------------------
519 	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
520 	 *	|-------------------------------------------------------------------
521 	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
522 	 *	|-------------------------------------------------------------------
523 	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
524 	 *	|-------------------------------------------------------------------
525 	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
526 	 *	|-------------------------------------------------------------------
527 	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
528 	 *	|-------------------------------------------------------------------
529 	 *
530 	 * Generalization:
531 	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
532 	 *  ie. transpose of g(x, y)
533 	 *
534 	 *	 sync from	sync from    sync from    sync from	sync from
535 	 *	    RCS		   VCS          BCS        VECS		 VCS2
536 	 *      --------------------------------------------------------------------
537 	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
538 	 *	|-------------------------------------------------------------------
539 	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
540 	 *	|-------------------------------------------------------------------
541 	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
542 	 *	|-------------------------------------------------------------------
543 	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
544 	 *	|-------------------------------------------------------------------
545 	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
546 	 *	|-------------------------------------------------------------------
547 	 *
548 	 * Generalization:
549 	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
550 	 *  ie. transpose of f(x, y)
551 	 */
552 	struct {
553 #define GEN6_SEMAPHORE_LAST	VECS_HW
554 #define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
555 #define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
556 		struct {
557 			/* our mbox written by others */
558 			u32		wait[GEN6_NUM_SEMAPHORES];
559 			/* mboxes this ring signals to */
560 			i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
561 		} mbox;
562 
563 		/* AKA wait() */
564 		int	(*sync_to)(struct i915_request *rq,
565 				   struct i915_request *signal);
566 		u32	*(*signal)(struct i915_request *rq, u32 *cs);
567 	} semaphore;
568 
569 	struct intel_engine_execlists execlists;
570 
571 	/* Contexts are pinned whilst they are active on the GPU. The last
572 	 * context executed remains active whilst the GPU is idle - the
573 	 * switch away and write to the context object only occurs on the
574 	 * next execution.  Contexts are only unpinned on retirement of the
575 	 * following request ensuring that we can always write to the object
576 	 * on the context switch even after idling. Across suspend, we switch
577 	 * to the kernel context and trash it as the save may not happen
578 	 * before the hardware is powered down.
579 	 */
580 	struct intel_context *last_retired_context;
581 
582 	/* status_notifier: list of callbacks for context-switch changes */
583 	struct atomic_notifier_head context_status_notifier;
584 
585 	struct intel_engine_hangcheck hangcheck;
586 
587 #define I915_ENGINE_USING_CMD_PARSER	BIT(0)
588 #define I915_ENGINE_SUPPORTS_STATS	BIT(1)
589 #define I915_ENGINE_HAS_PREEMPTION	BIT(2)
590 #define I915_ENGINE_REQUIRES_CMD_PARSER	BIT(3)
591 	unsigned int flags;
592 
593 	/*
594 	 * Table of commands the command parser needs to know about
595 	 * for this engine.
596 	 */
597 	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
598 
599 	/*
600 	 * Table of registers allowed in commands that read/write registers.
601 	 */
602 	const struct drm_i915_reg_table *reg_tables;
603 	int reg_table_count;
604 
605 	/*
606 	 * Returns the bitmask for the length field of the specified command.
607 	 * Return 0 for an unrecognized/invalid command.
608 	 *
609 	 * If the command parser finds an entry for a command in the engine's
610 	 * cmd_tables, it gets the command's length based on the table entry.
611 	 * If not, it calls this function to determine the per-engine length
612 	 * field encoding for the command (i.e. different opcode ranges use
613 	 * certain bits to encode the command length in the header).
614 	 */
615 	u32 (*get_cmd_length_mask)(u32 cmd_header);
616 
617 	struct {
618 		/**
619 		 * @lock: Lock protecting the below fields.
620 		 */
621 		seqlock_t lock;
622 		/**
623 		 * @enabled: Reference count indicating number of listeners.
624 		 */
625 		unsigned int enabled;
626 		/**
627 		 * @active: Number of contexts currently scheduled in.
628 		 */
629 		unsigned int active;
630 		/**
631 		 * @enabled_at: Timestamp when busy stats were enabled.
632 		 */
633 		ktime_t enabled_at;
634 		/**
635 		 * @start: Timestamp of the last idle to active transition.
636 		 *
637 		 * Idle is defined as active == 0, active is active > 0.
638 		 */
639 		ktime_t start;
640 		/**
641 		 * @total: Total time this engine was busy.
642 		 *
643 		 * Accumulated time not counting the most recent block in cases
644 		 * where engine is currently busy (active > 0).
645 		 */
646 		ktime_t total;
647 	} stats;
648 };
649 
650 static inline bool
intel_engine_using_cmd_parser(const struct intel_engine_cs * engine)651 intel_engine_using_cmd_parser(const struct intel_engine_cs *engine)
652 {
653 	return engine->flags & I915_ENGINE_USING_CMD_PARSER;
654 }
655 
656 static inline bool
intel_engine_requires_cmd_parser(const struct intel_engine_cs * engine)657 intel_engine_requires_cmd_parser(const struct intel_engine_cs *engine)
658 {
659 	return engine->flags & I915_ENGINE_REQUIRES_CMD_PARSER;
660 }
661 
662 static inline bool
intel_engine_supports_stats(const struct intel_engine_cs * engine)663 intel_engine_supports_stats(const struct intel_engine_cs *engine)
664 {
665 	return engine->flags & I915_ENGINE_SUPPORTS_STATS;
666 }
667 
668 static inline bool
intel_engine_has_preemption(const struct intel_engine_cs * engine)669 intel_engine_has_preemption(const struct intel_engine_cs *engine)
670 {
671 	return engine->flags & I915_ENGINE_HAS_PREEMPTION;
672 }
673 
__execlists_need_preempt(int prio,int last)674 static inline bool __execlists_need_preempt(int prio, int last)
675 {
676 	return prio > max(0, last);
677 }
678 
679 static inline void
execlists_set_active(struct intel_engine_execlists * execlists,unsigned int bit)680 execlists_set_active(struct intel_engine_execlists *execlists,
681 		     unsigned int bit)
682 {
683 	__set_bit(bit, (unsigned long *)&execlists->active);
684 }
685 
686 static inline bool
execlists_set_active_once(struct intel_engine_execlists * execlists,unsigned int bit)687 execlists_set_active_once(struct intel_engine_execlists *execlists,
688 			  unsigned int bit)
689 {
690 	return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
691 }
692 
693 static inline void
execlists_clear_active(struct intel_engine_execlists * execlists,unsigned int bit)694 execlists_clear_active(struct intel_engine_execlists *execlists,
695 		       unsigned int bit)
696 {
697 	__clear_bit(bit, (unsigned long *)&execlists->active);
698 }
699 
700 static inline void
execlists_clear_all_active(struct intel_engine_execlists * execlists)701 execlists_clear_all_active(struct intel_engine_execlists *execlists)
702 {
703 	execlists->active = 0;
704 }
705 
706 static inline bool
execlists_is_active(const struct intel_engine_execlists * execlists,unsigned int bit)707 execlists_is_active(const struct intel_engine_execlists *execlists,
708 		    unsigned int bit)
709 {
710 	return test_bit(bit, (unsigned long *)&execlists->active);
711 }
712 
713 void execlists_user_begin(struct intel_engine_execlists *execlists,
714 			  const struct execlist_port *port);
715 void execlists_user_end(struct intel_engine_execlists *execlists);
716 
717 void
718 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
719 
720 void
721 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
722 
723 static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)724 execlists_num_ports(const struct intel_engine_execlists * const execlists)
725 {
726 	return execlists->port_mask + 1;
727 }
728 
729 static inline struct execlist_port *
execlists_port_complete(struct intel_engine_execlists * const execlists,struct execlist_port * const port)730 execlists_port_complete(struct intel_engine_execlists * const execlists,
731 			struct execlist_port * const port)
732 {
733 	const unsigned int m = execlists->port_mask;
734 
735 	GEM_BUG_ON(port_index(port, execlists) != 0);
736 	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
737 
738 	memmove(port, port + 1, m * sizeof(struct execlist_port));
739 	memset(port + m, 0, sizeof(struct execlist_port));
740 
741 	return port;
742 }
743 
744 static inline unsigned int
intel_engine_flag(const struct intel_engine_cs * engine)745 intel_engine_flag(const struct intel_engine_cs *engine)
746 {
747 	return BIT(engine->id);
748 }
749 
750 static inline u32
intel_read_status_page(const struct intel_engine_cs * engine,int reg)751 intel_read_status_page(const struct intel_engine_cs *engine, int reg)
752 {
753 	/* Ensure that the compiler doesn't optimize away the load. */
754 	return READ_ONCE(engine->status_page.page_addr[reg]);
755 }
756 
757 static inline void
intel_write_status_page(struct intel_engine_cs * engine,int reg,u32 value)758 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
759 {
760 	/* Writing into the status page should be done sparingly. Since
761 	 * we do when we are uncertain of the device state, we take a bit
762 	 * of extra paranoia to try and ensure that the HWS takes the value
763 	 * we give and that it doesn't end up trapped inside the CPU!
764 	 */
765 	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
766 		mb();
767 		clflush(&engine->status_page.page_addr[reg]);
768 		engine->status_page.page_addr[reg] = value;
769 		clflush(&engine->status_page.page_addr[reg]);
770 		mb();
771 	} else {
772 		WRITE_ONCE(engine->status_page.page_addr[reg], value);
773 	}
774 }
775 
776 /*
777  * Reads a dword out of the status page, which is written to from the command
778  * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
779  * MI_STORE_DATA_IMM.
780  *
781  * The following dwords have a reserved meaning:
782  * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
783  * 0x04: ring 0 head pointer
784  * 0x05: ring 1 head pointer (915-class)
785  * 0x06: ring 2 head pointer (915-class)
786  * 0x10-0x1b: Context status DWords (GM45)
787  * 0x1f: Last written status offset. (GM45)
788  * 0x20-0x2f: Reserved (Gen6+)
789  *
790  * The area from dword 0x30 to 0x3ff is available for driver usage.
791  */
792 #define I915_GEM_HWS_INDEX		0x30
793 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
794 #define I915_GEM_HWS_PREEMPT_INDEX	0x32
795 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
796 #define I915_GEM_HWS_SCRATCH_INDEX	0x40
797 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
798 
799 #define I915_HWS_CSB_BUF0_INDEX		0x10
800 #define I915_HWS_CSB_WRITE_INDEX	0x1f
801 #define CNL_HWS_CSB_WRITE_INDEX		0x2f
802 
803 struct intel_ring *
804 intel_engine_create_ring(struct intel_engine_cs *engine,
805 			 struct i915_timeline *timeline,
806 			 int size);
807 int intel_ring_pin(struct intel_ring *ring,
808 		   struct drm_i915_private *i915,
809 		   unsigned int offset_bias);
810 void intel_ring_reset(struct intel_ring *ring, u32 tail);
811 unsigned int intel_ring_update_space(struct intel_ring *ring);
812 void intel_ring_unpin(struct intel_ring *ring);
813 void intel_ring_free(struct intel_ring *ring);
814 
815 void intel_engine_stop(struct intel_engine_cs *engine);
816 void intel_engine_cleanup(struct intel_engine_cs *engine);
817 
818 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
819 
820 int __must_check intel_ring_cacheline_align(struct i915_request *rq);
821 
822 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
823 u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
824 
intel_ring_advance(struct i915_request * rq,u32 * cs)825 static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
826 {
827 	/* Dummy function.
828 	 *
829 	 * This serves as a placeholder in the code so that the reader
830 	 * can compare against the preceding intel_ring_begin() and
831 	 * check that the number of dwords emitted matches the space
832 	 * reserved for the command packet (i.e. the value passed to
833 	 * intel_ring_begin()).
834 	 */
835 	GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
836 }
837 
intel_ring_wrap(const struct intel_ring * ring,u32 pos)838 static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
839 {
840 	return pos & (ring->size - 1);
841 }
842 
843 static inline bool
intel_ring_offset_valid(const struct intel_ring * ring,unsigned int pos)844 intel_ring_offset_valid(const struct intel_ring *ring,
845 			unsigned int pos)
846 {
847 	if (pos & -ring->size) /* must be strictly within the ring */
848 		return false;
849 
850 	if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
851 		return false;
852 
853 	return true;
854 }
855 
intel_ring_offset(const struct i915_request * rq,void * addr)856 static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
857 {
858 	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
859 	u32 offset = addr - rq->ring->vaddr;
860 	GEM_BUG_ON(offset > rq->ring->size);
861 	return intel_ring_wrap(rq->ring, offset);
862 }
863 
864 static inline void
assert_ring_tail_valid(const struct intel_ring * ring,unsigned int tail)865 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
866 {
867 	GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
868 
869 	/*
870 	 * "Ring Buffer Use"
871 	 *	Gen2 BSpec "1. Programming Environment" / 1.4.4.6
872 	 *	Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
873 	 *	Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
874 	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
875 	 * same cacheline, the Head Pointer must not be greater than the Tail
876 	 * Pointer."
877 	 *
878 	 * We use ring->head as the last known location of the actual RING_HEAD,
879 	 * it may have advanced but in the worst case it is equally the same
880 	 * as ring->head and so we should never program RING_TAIL to advance
881 	 * into the same cacheline as ring->head.
882 	 */
883 #define cacheline(a) round_down(a, CACHELINE_BYTES)
884 	GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
885 		   tail < ring->head);
886 #undef cacheline
887 }
888 
889 static inline unsigned int
intel_ring_set_tail(struct intel_ring * ring,unsigned int tail)890 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
891 {
892 	/* Whilst writes to the tail are strictly order, there is no
893 	 * serialisation between readers and the writers. The tail may be
894 	 * read by i915_request_retire() just as it is being updated
895 	 * by execlists, as although the breadcrumb is complete, the context
896 	 * switch hasn't been seen.
897 	 */
898 	assert_ring_tail_valid(ring, tail);
899 	ring->tail = tail;
900 	return tail;
901 }
902 
903 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
904 
905 void intel_engine_setup_common(struct intel_engine_cs *engine);
906 int intel_engine_init_common(struct intel_engine_cs *engine);
907 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
908 
909 int intel_engine_create_scratch(struct intel_engine_cs *engine,
910 				unsigned int size);
911 void intel_engine_cleanup_scratch(struct intel_engine_cs *engine);
912 
913 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
914 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
915 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
916 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
917 
918 int intel_engine_stop_cs(struct intel_engine_cs *engine);
919 
920 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
921 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
922 
intel_engine_get_seqno(struct intel_engine_cs * engine)923 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
924 {
925 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
926 }
927 
intel_engine_last_submit(struct intel_engine_cs * engine)928 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
929 {
930 	/* We are only peeking at the tail of the submit queue (and not the
931 	 * queue itself) in order to gain a hint as to the current active
932 	 * state of the engine. Callers are not expected to be taking
933 	 * engine->timeline->lock, nor are they expected to be concerned
934 	 * wtih serialising this hint with anything, so document it as
935 	 * a hint and nothing more.
936 	 */
937 	return READ_ONCE(engine->timeline.seqno);
938 }
939 
940 void intel_engine_get_instdone(struct intel_engine_cs *engine,
941 			       struct intel_instdone *instdone);
942 
943 /*
944  * Arbitrary size for largest possible 'add request' sequence. The code paths
945  * are complex and variable. Empirical measurement shows that the worst case
946  * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
947  * we need to allocate double the largest single packet within that emission
948  * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
949  */
950 #define MIN_SPACE_FOR_ADD_REQUEST 336
951 
intel_hws_seqno_address(struct intel_engine_cs * engine)952 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
953 {
954 	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
955 }
956 
intel_hws_preempt_done_address(struct intel_engine_cs * engine)957 static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
958 {
959 	return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
960 }
961 
962 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
963 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
964 
intel_wait_init(struct intel_wait * wait)965 static inline void intel_wait_init(struct intel_wait *wait)
966 {
967 	wait->tsk = current;
968 	wait->request = NULL;
969 }
970 
intel_wait_init_for_seqno(struct intel_wait * wait,u32 seqno)971 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
972 {
973 	wait->tsk = current;
974 	wait->seqno = seqno;
975 }
976 
intel_wait_has_seqno(const struct intel_wait * wait)977 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
978 {
979 	return wait->seqno;
980 }
981 
982 static inline bool
intel_wait_update_seqno(struct intel_wait * wait,u32 seqno)983 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
984 {
985 	wait->seqno = seqno;
986 	return intel_wait_has_seqno(wait);
987 }
988 
989 static inline bool
intel_wait_update_request(struct intel_wait * wait,const struct i915_request * rq)990 intel_wait_update_request(struct intel_wait *wait,
991 			  const struct i915_request *rq)
992 {
993 	return intel_wait_update_seqno(wait, i915_request_global_seqno(rq));
994 }
995 
996 static inline bool
intel_wait_check_seqno(const struct intel_wait * wait,u32 seqno)997 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
998 {
999 	return wait->seqno == seqno;
1000 }
1001 
1002 static inline bool
intel_wait_check_request(const struct intel_wait * wait,const struct i915_request * rq)1003 intel_wait_check_request(const struct intel_wait *wait,
1004 			 const struct i915_request *rq)
1005 {
1006 	return intel_wait_check_seqno(wait, i915_request_global_seqno(rq));
1007 }
1008 
intel_wait_complete(const struct intel_wait * wait)1009 static inline bool intel_wait_complete(const struct intel_wait *wait)
1010 {
1011 	return RB_EMPTY_NODE(&wait->node);
1012 }
1013 
1014 bool intel_engine_add_wait(struct intel_engine_cs *engine,
1015 			   struct intel_wait *wait);
1016 void intel_engine_remove_wait(struct intel_engine_cs *engine,
1017 			      struct intel_wait *wait);
1018 bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup);
1019 void intel_engine_cancel_signaling(struct i915_request *request);
1020 
intel_engine_has_waiter(const struct intel_engine_cs * engine)1021 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
1022 {
1023 	return READ_ONCE(engine->breadcrumbs.irq_wait);
1024 }
1025 
1026 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
1027 #define ENGINE_WAKEUP_WAITER BIT(0)
1028 #define ENGINE_WAKEUP_ASLEEP BIT(1)
1029 
1030 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
1031 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
1032 
1033 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
1034 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
1035 
1036 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
1037 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
1038 
gen8_emit_pipe_control(u32 * batch,u32 flags,u32 offset)1039 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
1040 {
1041 	memset(batch, 0, 6 * sizeof(u32));
1042 
1043 	batch[0] = GFX_OP_PIPE_CONTROL(6);
1044 	batch[1] = flags;
1045 	batch[2] = offset;
1046 
1047 	return batch + 6;
1048 }
1049 
1050 static inline u32 *
gen8_emit_ggtt_write_rcs(u32 * cs,u32 value,u32 gtt_offset)1051 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
1052 {
1053 	/* We're using qword write, offset should be aligned to 8 bytes. */
1054 	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
1055 
1056 	/* w/a for post sync ops following a GPGPU operation we
1057 	 * need a prior CS_STALL, which is emitted by the flush
1058 	 * following the batch.
1059 	 */
1060 	*cs++ = GFX_OP_PIPE_CONTROL(6);
1061 	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1062 		PIPE_CONTROL_QW_WRITE;
1063 	*cs++ = gtt_offset;
1064 	*cs++ = 0;
1065 	*cs++ = value;
1066 	/* We're thrashing one dword of HWS. */
1067 	*cs++ = 0;
1068 
1069 	return cs;
1070 }
1071 
1072 static inline u32 *
gen8_emit_ggtt_write(u32 * cs,u32 value,u32 gtt_offset)1073 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
1074 {
1075 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1076 	GEM_BUG_ON(gtt_offset & (1 << 5));
1077 	/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
1078 	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
1079 
1080 	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1081 	*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
1082 	*cs++ = 0;
1083 	*cs++ = value;
1084 
1085 	return cs;
1086 }
1087 
1088 void intel_engines_sanitize(struct drm_i915_private *i915);
1089 
1090 bool intel_engine_is_idle(struct intel_engine_cs *engine);
1091 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
1092 
1093 bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
1094 void intel_engine_lost_context(struct intel_engine_cs *engine);
1095 
1096 void intel_engines_park(struct drm_i915_private *i915);
1097 void intel_engines_unpark(struct drm_i915_private *i915);
1098 
1099 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
1100 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
1101 
1102 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
1103 
1104 __printf(3, 4)
1105 void intel_engine_dump(struct intel_engine_cs *engine,
1106 		       struct drm_printer *m,
1107 		       const char *header, ...);
1108 
1109 struct intel_engine_cs *
1110 intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
1111 
intel_engine_context_in(struct intel_engine_cs * engine)1112 static inline void intel_engine_context_in(struct intel_engine_cs *engine)
1113 {
1114 	unsigned long flags;
1115 
1116 	if (READ_ONCE(engine->stats.enabled) == 0)
1117 		return;
1118 
1119 	write_seqlock_irqsave(&engine->stats.lock, flags);
1120 
1121 	if (engine->stats.enabled > 0) {
1122 		if (engine->stats.active++ == 0)
1123 			engine->stats.start = ktime_get();
1124 		GEM_BUG_ON(engine->stats.active == 0);
1125 	}
1126 
1127 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1128 }
1129 
intel_engine_context_out(struct intel_engine_cs * engine)1130 static inline void intel_engine_context_out(struct intel_engine_cs *engine)
1131 {
1132 	unsigned long flags;
1133 
1134 	if (READ_ONCE(engine->stats.enabled) == 0)
1135 		return;
1136 
1137 	write_seqlock_irqsave(&engine->stats.lock, flags);
1138 
1139 	if (engine->stats.enabled > 0) {
1140 		ktime_t last;
1141 
1142 		if (engine->stats.active && --engine->stats.active == 0) {
1143 			/*
1144 			 * Decrement the active context count and in case GPU
1145 			 * is now idle add up to the running total.
1146 			 */
1147 			last = ktime_sub(ktime_get(), engine->stats.start);
1148 
1149 			engine->stats.total = ktime_add(engine->stats.total,
1150 							last);
1151 		} else if (engine->stats.active == 0) {
1152 			/*
1153 			 * After turning on engine stats, context out might be
1154 			 * the first event in which case we account from the
1155 			 * time stats gathering was turned on.
1156 			 */
1157 			last = ktime_sub(ktime_get(), engine->stats.enabled_at);
1158 
1159 			engine->stats.total = ktime_add(engine->stats.total,
1160 							last);
1161 		}
1162 	}
1163 
1164 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1165 }
1166 
1167 int intel_enable_engine_stats(struct intel_engine_cs *engine);
1168 void intel_disable_engine_stats(struct intel_engine_cs *engine);
1169 
1170 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
1171 
1172 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1173 
inject_preempt_hang(struct intel_engine_execlists * execlists)1174 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
1175 {
1176 	if (!execlists->preempt_hang.inject_hang)
1177 		return false;
1178 
1179 	complete(&execlists->preempt_hang.completion);
1180 	return true;
1181 }
1182 
1183 #else
1184 
inject_preempt_hang(struct intel_engine_execlists * execlists)1185 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
1186 {
1187 	return false;
1188 }
1189 
1190 #endif
1191 
1192 #endif /* _INTEL_RINGBUFFER_H_ */
1193