• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
sock_alloc_inode(struct super_block * sb)239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	ei->socket.wq = wq;
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
sock_destroy_inode(struct inode * inode)266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	kfree_rcu(ei->socket.wq, rcu);
272 	kmem_cache_free(sock_inode_cachep, ei);
273 }
274 
init_once(void * foo)275 static void init_once(void *foo)
276 {
277 	struct socket_alloc *ei = (struct socket_alloc *)foo;
278 
279 	inode_init_once(&ei->vfs_inode);
280 }
281 
init_inodecache(void)282 static void init_inodecache(void)
283 {
284 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 					      sizeof(struct socket_alloc),
286 					      0,
287 					      (SLAB_HWCACHE_ALIGN |
288 					       SLAB_RECLAIM_ACCOUNT |
289 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 					      init_once);
291 	BUG_ON(sock_inode_cachep == NULL);
292 }
293 
294 static const struct super_operations sockfs_ops = {
295 	.alloc_inode	= sock_alloc_inode,
296 	.destroy_inode	= sock_destroy_inode,
297 	.statfs		= simple_statfs,
298 };
299 
300 /*
301  * sockfs_dname() is called from d_path().
302  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 				d_inode(dentry)->i_ino);
307 }
308 
309 static const struct dentry_operations sockfs_dentry_operations = {
310 	.d_dname  = sockfs_dname,
311 };
312 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 			    struct dentry *dentry, struct inode *inode,
315 			    const char *suffix, void *value, size_t size)
316 {
317 	if (value) {
318 		if (dentry->d_name.len + 1 > size)
319 			return -ERANGE;
320 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 	}
322 	return dentry->d_name.len + 1;
323 }
324 
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328 
329 static const struct xattr_handler sockfs_xattr_handler = {
330 	.name = XATTR_NAME_SOCKPROTONAME,
331 	.get = sockfs_xattr_get,
332 };
333 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 				     struct dentry *dentry, struct inode *inode,
336 				     const char *suffix, const void *value,
337 				     size_t size, int flags)
338 {
339 	/* Handled by LSM. */
340 	return -EAGAIN;
341 }
342 
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 	.prefix = XATTR_SECURITY_PREFIX,
345 	.set = sockfs_security_xattr_set,
346 };
347 
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 	&sockfs_xattr_handler,
350 	&sockfs_security_xattr_handler,
351 	NULL
352 };
353 
sockfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 			 int flags, const char *dev_name, void *data)
356 {
357 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 				  sockfs_xattr_handlers,
359 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361 
362 static struct vfsmount *sock_mnt __read_mostly;
363 
364 static struct file_system_type sock_fs_type = {
365 	.name =		"sockfs",
366 	.mount =	sockfs_mount,
367 	.kill_sb =	kill_anon_super,
368 };
369 
370 /*
371  *	Obtains the first available file descriptor and sets it up for use.
372  *
373  *	These functions create file structures and maps them to fd space
374  *	of the current process. On success it returns file descriptor
375  *	and file struct implicitly stored in sock->file.
376  *	Note that another thread may close file descriptor before we return
377  *	from this function. We use the fact that now we do not refer
378  *	to socket after mapping. If one day we will need it, this
379  *	function will increment ref. count on file by 1.
380  *
381  *	In any case returned fd MAY BE not valid!
382  *	This race condition is unavoidable
383  *	with shared fd spaces, we cannot solve it inside kernel,
384  *	but we take care of internal coherence yet.
385  */
386 
sock_alloc_file(struct socket * sock,int flags,const char * dname)387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
388 {
389 	struct file *file;
390 
391 	if (!dname)
392 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
393 
394 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395 				O_RDWR | (flags & O_NONBLOCK),
396 				&socket_file_ops);
397 	if (IS_ERR(file)) {
398 		sock_release(sock);
399 		return file;
400 	}
401 
402 	sock->file = file;
403 	file->private_data = sock;
404 	return file;
405 }
406 EXPORT_SYMBOL(sock_alloc_file);
407 
sock_map_fd(struct socket * sock,int flags)408 static int sock_map_fd(struct socket *sock, int flags)
409 {
410 	struct file *newfile;
411 	int fd = get_unused_fd_flags(flags);
412 	if (unlikely(fd < 0)) {
413 		sock_release(sock);
414 		return fd;
415 	}
416 
417 	newfile = sock_alloc_file(sock, flags, NULL);
418 	if (likely(!IS_ERR(newfile))) {
419 		fd_install(fd, newfile);
420 		return fd;
421 	}
422 
423 	put_unused_fd(fd);
424 	return PTR_ERR(newfile);
425 }
426 
sock_from_file(struct file * file,int * err)427 struct socket *sock_from_file(struct file *file, int *err)
428 {
429 	if (file->f_op == &socket_file_ops)
430 		return file->private_data;	/* set in sock_map_fd */
431 
432 	*err = -ENOTSOCK;
433 	return NULL;
434 }
435 EXPORT_SYMBOL(sock_from_file);
436 
437 /**
438  *	sockfd_lookup - Go from a file number to its socket slot
439  *	@fd: file handle
440  *	@err: pointer to an error code return
441  *
442  *	The file handle passed in is locked and the socket it is bound
443  *	to is returned. If an error occurs the err pointer is overwritten
444  *	with a negative errno code and NULL is returned. The function checks
445  *	for both invalid handles and passing a handle which is not a socket.
446  *
447  *	On a success the socket object pointer is returned.
448  */
449 
sockfd_lookup(int fd,int * err)450 struct socket *sockfd_lookup(int fd, int *err)
451 {
452 	struct file *file;
453 	struct socket *sock;
454 
455 	file = fget(fd);
456 	if (!file) {
457 		*err = -EBADF;
458 		return NULL;
459 	}
460 
461 	sock = sock_from_file(file, err);
462 	if (!sock)
463 		fput(file);
464 	return sock;
465 }
466 EXPORT_SYMBOL(sockfd_lookup);
467 
sockfd_lookup_light(int fd,int * err,int * fput_needed)468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
469 {
470 	struct fd f = fdget(fd);
471 	struct socket *sock;
472 
473 	*err = -EBADF;
474 	if (f.file) {
475 		sock = sock_from_file(f.file, err);
476 		if (likely(sock)) {
477 			*fput_needed = f.flags & FDPUT_FPUT;
478 			return sock;
479 		}
480 		fdput(f);
481 	}
482 	return NULL;
483 }
484 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486 				size_t size)
487 {
488 	ssize_t len;
489 	ssize_t used = 0;
490 
491 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492 	if (len < 0)
493 		return len;
494 	used += len;
495 	if (buffer) {
496 		if (size < used)
497 			return -ERANGE;
498 		buffer += len;
499 	}
500 
501 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502 	used += len;
503 	if (buffer) {
504 		if (size < used)
505 			return -ERANGE;
506 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507 		buffer += len;
508 	}
509 
510 	return used;
511 }
512 
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
514 {
515 	int err = simple_setattr(dentry, iattr);
516 
517 	if (!err && (iattr->ia_valid & ATTR_UID)) {
518 		struct socket *sock = SOCKET_I(d_inode(dentry));
519 
520 		if (sock->sk)
521 			sock->sk->sk_uid = iattr->ia_uid;
522 		else
523 			err = -ENOENT;
524 	}
525 
526 	return err;
527 }
528 
529 static const struct inode_operations sockfs_inode_ops = {
530 	.listxattr = sockfs_listxattr,
531 	.setattr = sockfs_setattr,
532 };
533 
534 /**
535  *	sock_alloc	-	allocate a socket
536  *
537  *	Allocate a new inode and socket object. The two are bound together
538  *	and initialised. The socket is then returned. If we are out of inodes
539  *	NULL is returned.
540  */
541 
sock_alloc(void)542 struct socket *sock_alloc(void)
543 {
544 	struct inode *inode;
545 	struct socket *sock;
546 
547 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 	if (!inode)
549 		return NULL;
550 
551 	sock = SOCKET_I(inode);
552 
553 	inode->i_ino = get_next_ino();
554 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
555 	inode->i_uid = current_fsuid();
556 	inode->i_gid = current_fsgid();
557 	inode->i_op = &sockfs_inode_ops;
558 
559 	return sock;
560 }
561 EXPORT_SYMBOL(sock_alloc);
562 
563 /**
564  *	sock_release	-	close a socket
565  *	@sock: socket to close
566  *
567  *	The socket is released from the protocol stack if it has a release
568  *	callback, and the inode is then released if the socket is bound to
569  *	an inode not a file.
570  */
571 
__sock_release(struct socket * sock,struct inode * inode)572 static void __sock_release(struct socket *sock, struct inode *inode)
573 {
574 	if (sock->ops) {
575 		struct module *owner = sock->ops->owner;
576 
577 		if (inode)
578 			inode_lock(inode);
579 		sock->ops->release(sock);
580 		sock->sk = NULL;
581 		if (inode)
582 			inode_unlock(inode);
583 		sock->ops = NULL;
584 		module_put(owner);
585 	}
586 
587 	if (sock->wq->fasync_list)
588 		pr_err("%s: fasync list not empty!\n", __func__);
589 
590 	if (!sock->file) {
591 		iput(SOCK_INODE(sock));
592 		return;
593 	}
594 	sock->file = NULL;
595 }
596 
sock_release(struct socket * sock)597 void sock_release(struct socket *sock)
598 {
599 	__sock_release(sock, NULL);
600 }
601 EXPORT_SYMBOL(sock_release);
602 
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)603 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
604 {
605 	u8 flags = *tx_flags;
606 
607 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
608 		flags |= SKBTX_HW_TSTAMP;
609 
610 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
611 		flags |= SKBTX_SW_TSTAMP;
612 
613 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
614 		flags |= SKBTX_SCHED_TSTAMP;
615 
616 	*tx_flags = flags;
617 }
618 EXPORT_SYMBOL(__sock_tx_timestamp);
619 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)620 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
621 {
622 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
623 	BUG_ON(ret == -EIOCBQUEUED);
624 	return ret;
625 }
626 
sock_sendmsg(struct socket * sock,struct msghdr * msg)627 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
628 {
629 	int err = security_socket_sendmsg(sock, msg,
630 					  msg_data_left(msg));
631 
632 	return err ?: sock_sendmsg_nosec(sock, msg);
633 }
634 EXPORT_SYMBOL(sock_sendmsg);
635 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)636 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
637 		   struct kvec *vec, size_t num, size_t size)
638 {
639 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
640 	return sock_sendmsg(sock, msg);
641 }
642 EXPORT_SYMBOL(kernel_sendmsg);
643 
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)644 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
645 			  struct kvec *vec, size_t num, size_t size)
646 {
647 	struct socket *sock = sk->sk_socket;
648 
649 	if (!sock->ops->sendmsg_locked)
650 		return sock_no_sendmsg_locked(sk, msg, size);
651 
652 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
653 
654 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
655 }
656 EXPORT_SYMBOL(kernel_sendmsg_locked);
657 
skb_is_err_queue(const struct sk_buff * skb)658 static bool skb_is_err_queue(const struct sk_buff *skb)
659 {
660 	/* pkt_type of skbs enqueued on the error queue are set to
661 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
662 	 * in recvmsg, since skbs received on a local socket will never
663 	 * have a pkt_type of PACKET_OUTGOING.
664 	 */
665 	return skb->pkt_type == PACKET_OUTGOING;
666 }
667 
668 /* On transmit, software and hardware timestamps are returned independently.
669  * As the two skb clones share the hardware timestamp, which may be updated
670  * before the software timestamp is received, a hardware TX timestamp may be
671  * returned only if there is no software TX timestamp. Ignore false software
672  * timestamps, which may be made in the __sock_recv_timestamp() call when the
673  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
674  * hardware timestamp.
675  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)676 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
677 {
678 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
679 }
680 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)681 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
682 {
683 	struct scm_ts_pktinfo ts_pktinfo;
684 	struct net_device *orig_dev;
685 
686 	if (!skb_mac_header_was_set(skb))
687 		return;
688 
689 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
690 
691 	rcu_read_lock();
692 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
693 	if (orig_dev)
694 		ts_pktinfo.if_index = orig_dev->ifindex;
695 	rcu_read_unlock();
696 
697 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
698 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
699 		 sizeof(ts_pktinfo), &ts_pktinfo);
700 }
701 
702 /*
703  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
706 	struct sk_buff *skb)
707 {
708 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
709 	struct scm_timestamping tss;
710 	int empty = 1, false_tstamp = 0;
711 	struct skb_shared_hwtstamps *shhwtstamps =
712 		skb_hwtstamps(skb);
713 
714 	/* Race occurred between timestamp enabling and packet
715 	   receiving.  Fill in the current time for now. */
716 	if (need_software_tstamp && skb->tstamp == 0) {
717 		__net_timestamp(skb);
718 		false_tstamp = 1;
719 	}
720 
721 	if (need_software_tstamp) {
722 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
723 			struct timeval tv;
724 			skb_get_timestamp(skb, &tv);
725 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
726 				 sizeof(tv), &tv);
727 		} else {
728 			struct timespec ts;
729 			skb_get_timestampns(skb, &ts);
730 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
731 				 sizeof(ts), &ts);
732 		}
733 	}
734 
735 	memset(&tss, 0, sizeof(tss));
736 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
737 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
738 		empty = 0;
739 	if (shhwtstamps &&
740 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
741 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
742 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
743 		empty = 0;
744 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
745 		    !skb_is_err_queue(skb))
746 			put_ts_pktinfo(msg, skb);
747 	}
748 	if (!empty) {
749 		put_cmsg(msg, SOL_SOCKET,
750 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
751 
752 		if (skb_is_err_queue(skb) && skb->len &&
753 		    SKB_EXT_ERR(skb)->opt_stats)
754 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
755 				 skb->len, skb->data);
756 	}
757 }
758 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
759 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)760 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
761 	struct sk_buff *skb)
762 {
763 	int ack;
764 
765 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
766 		return;
767 	if (!skb->wifi_acked_valid)
768 		return;
769 
770 	ack = skb->wifi_acked;
771 
772 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
773 }
774 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
775 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)776 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
777 				   struct sk_buff *skb)
778 {
779 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
780 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
781 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
782 }
783 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)784 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
785 	struct sk_buff *skb)
786 {
787 	sock_recv_timestamp(msg, sk, skb);
788 	sock_recv_drops(msg, sk, skb);
789 }
790 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
791 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)792 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
793 				     int flags)
794 {
795 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
796 }
797 
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)798 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
799 {
800 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
801 
802 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
803 }
804 EXPORT_SYMBOL(sock_recvmsg);
805 
806 /**
807  * kernel_recvmsg - Receive a message from a socket (kernel space)
808  * @sock:       The socket to receive the message from
809  * @msg:        Received message
810  * @vec:        Input s/g array for message data
811  * @num:        Size of input s/g array
812  * @size:       Number of bytes to read
813  * @flags:      Message flags (MSG_DONTWAIT, etc...)
814  *
815  * On return the msg structure contains the scatter/gather array passed in the
816  * vec argument. The array is modified so that it consists of the unfilled
817  * portion of the original array.
818  *
819  * The returned value is the total number of bytes received, or an error.
820  */
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)821 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
822 		   struct kvec *vec, size_t num, size_t size, int flags)
823 {
824 	mm_segment_t oldfs = get_fs();
825 	int result;
826 
827 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
828 	set_fs(KERNEL_DS);
829 	result = sock_recvmsg(sock, msg, flags);
830 	set_fs(oldfs);
831 	return result;
832 }
833 EXPORT_SYMBOL(kernel_recvmsg);
834 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)835 static ssize_t sock_sendpage(struct file *file, struct page *page,
836 			     int offset, size_t size, loff_t *ppos, int more)
837 {
838 	struct socket *sock;
839 	int flags;
840 
841 	sock = file->private_data;
842 
843 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
844 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
845 	flags |= more;
846 
847 	return kernel_sendpage(sock, page, offset, size, flags);
848 }
849 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)850 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
851 				struct pipe_inode_info *pipe, size_t len,
852 				unsigned int flags)
853 {
854 	struct socket *sock = file->private_data;
855 
856 	if (unlikely(!sock->ops->splice_read))
857 		return -EINVAL;
858 
859 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
860 }
861 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)862 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
863 {
864 	struct file *file = iocb->ki_filp;
865 	struct socket *sock = file->private_data;
866 	struct msghdr msg = {.msg_iter = *to,
867 			     .msg_iocb = iocb};
868 	ssize_t res;
869 
870 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
871 		msg.msg_flags = MSG_DONTWAIT;
872 
873 	if (iocb->ki_pos != 0)
874 		return -ESPIPE;
875 
876 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
877 		return 0;
878 
879 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
880 	*to = msg.msg_iter;
881 	return res;
882 }
883 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)884 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
885 {
886 	struct file *file = iocb->ki_filp;
887 	struct socket *sock = file->private_data;
888 	struct msghdr msg = {.msg_iter = *from,
889 			     .msg_iocb = iocb};
890 	ssize_t res;
891 
892 	if (iocb->ki_pos != 0)
893 		return -ESPIPE;
894 
895 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
896 		msg.msg_flags = MSG_DONTWAIT;
897 
898 	if (sock->type == SOCK_SEQPACKET)
899 		msg.msg_flags |= MSG_EOR;
900 
901 	res = sock_sendmsg(sock, &msg);
902 	*from = msg.msg_iter;
903 	return res;
904 }
905 
906 /*
907  * Atomic setting of ioctl hooks to avoid race
908  * with module unload.
909  */
910 
911 static DEFINE_MUTEX(br_ioctl_mutex);
912 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
913 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))914 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
915 {
916 	mutex_lock(&br_ioctl_mutex);
917 	br_ioctl_hook = hook;
918 	mutex_unlock(&br_ioctl_mutex);
919 }
920 EXPORT_SYMBOL(brioctl_set);
921 
922 static DEFINE_MUTEX(vlan_ioctl_mutex);
923 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
924 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))925 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
926 {
927 	mutex_lock(&vlan_ioctl_mutex);
928 	vlan_ioctl_hook = hook;
929 	mutex_unlock(&vlan_ioctl_mutex);
930 }
931 EXPORT_SYMBOL(vlan_ioctl_set);
932 
933 static DEFINE_MUTEX(dlci_ioctl_mutex);
934 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
935 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))936 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
937 {
938 	mutex_lock(&dlci_ioctl_mutex);
939 	dlci_ioctl_hook = hook;
940 	mutex_unlock(&dlci_ioctl_mutex);
941 }
942 EXPORT_SYMBOL(dlci_ioctl_set);
943 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)944 static long sock_do_ioctl(struct net *net, struct socket *sock,
945 			  unsigned int cmd, unsigned long arg)
946 {
947 	int err;
948 	void __user *argp = (void __user *)arg;
949 
950 	err = sock->ops->ioctl(sock, cmd, arg);
951 
952 	/*
953 	 * If this ioctl is unknown try to hand it down
954 	 * to the NIC driver.
955 	 */
956 	if (err != -ENOIOCTLCMD)
957 		return err;
958 
959 	if (cmd == SIOCGIFCONF) {
960 		struct ifconf ifc;
961 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
962 			return -EFAULT;
963 		rtnl_lock();
964 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
965 		rtnl_unlock();
966 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
967 			err = -EFAULT;
968 	} else {
969 		struct ifreq ifr;
970 		bool need_copyout;
971 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
972 			return -EFAULT;
973 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
974 		if (!err && need_copyout)
975 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
976 				return -EFAULT;
977 	}
978 	return err;
979 }
980 
981 /*
982  *	With an ioctl, arg may well be a user mode pointer, but we don't know
983  *	what to do with it - that's up to the protocol still.
984  */
985 
get_net_ns(struct ns_common * ns)986 struct ns_common *get_net_ns(struct ns_common *ns)
987 {
988 	return &get_net(container_of(ns, struct net, ns))->ns;
989 }
990 EXPORT_SYMBOL_GPL(get_net_ns);
991 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
993 {
994 	struct socket *sock;
995 	struct sock *sk;
996 	void __user *argp = (void __user *)arg;
997 	int pid, err;
998 	struct net *net;
999 
1000 	sock = file->private_data;
1001 	sk = sock->sk;
1002 	net = sock_net(sk);
1003 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1004 		struct ifreq ifr;
1005 		bool need_copyout;
1006 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1007 			return -EFAULT;
1008 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1009 		if (!err && need_copyout)
1010 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1011 				return -EFAULT;
1012 	} else
1013 #ifdef CONFIG_WEXT_CORE
1014 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1015 		err = wext_handle_ioctl(net, cmd, argp);
1016 	} else
1017 #endif
1018 		switch (cmd) {
1019 		case FIOSETOWN:
1020 		case SIOCSPGRP:
1021 			err = -EFAULT;
1022 			if (get_user(pid, (int __user *)argp))
1023 				break;
1024 			err = f_setown(sock->file, pid, 1);
1025 			break;
1026 		case FIOGETOWN:
1027 		case SIOCGPGRP:
1028 			err = put_user(f_getown(sock->file),
1029 				       (int __user *)argp);
1030 			break;
1031 		case SIOCGIFBR:
1032 		case SIOCSIFBR:
1033 		case SIOCBRADDBR:
1034 		case SIOCBRDELBR:
1035 			err = -ENOPKG;
1036 			if (!br_ioctl_hook)
1037 				request_module("bridge");
1038 
1039 			mutex_lock(&br_ioctl_mutex);
1040 			if (br_ioctl_hook)
1041 				err = br_ioctl_hook(net, cmd, argp);
1042 			mutex_unlock(&br_ioctl_mutex);
1043 			break;
1044 		case SIOCGIFVLAN:
1045 		case SIOCSIFVLAN:
1046 			err = -ENOPKG;
1047 			if (!vlan_ioctl_hook)
1048 				request_module("8021q");
1049 
1050 			mutex_lock(&vlan_ioctl_mutex);
1051 			if (vlan_ioctl_hook)
1052 				err = vlan_ioctl_hook(net, argp);
1053 			mutex_unlock(&vlan_ioctl_mutex);
1054 			break;
1055 		case SIOCADDDLCI:
1056 		case SIOCDELDLCI:
1057 			err = -ENOPKG;
1058 			if (!dlci_ioctl_hook)
1059 				request_module("dlci");
1060 
1061 			mutex_lock(&dlci_ioctl_mutex);
1062 			if (dlci_ioctl_hook)
1063 				err = dlci_ioctl_hook(cmd, argp);
1064 			mutex_unlock(&dlci_ioctl_mutex);
1065 			break;
1066 		case SIOCGSKNS:
1067 			err = -EPERM;
1068 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1069 				break;
1070 
1071 			err = open_related_ns(&net->ns, get_net_ns);
1072 			break;
1073 		default:
1074 			err = sock_do_ioctl(net, sock, cmd, arg);
1075 			break;
1076 		}
1077 	return err;
1078 }
1079 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1080 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1081 {
1082 	int err;
1083 	struct socket *sock = NULL;
1084 
1085 	err = security_socket_create(family, type, protocol, 1);
1086 	if (err)
1087 		goto out;
1088 
1089 	sock = sock_alloc();
1090 	if (!sock) {
1091 		err = -ENOMEM;
1092 		goto out;
1093 	}
1094 
1095 	sock->type = type;
1096 	err = security_socket_post_create(sock, family, type, protocol, 1);
1097 	if (err)
1098 		goto out_release;
1099 
1100 out:
1101 	*res = sock;
1102 	return err;
1103 out_release:
1104 	sock_release(sock);
1105 	sock = NULL;
1106 	goto out;
1107 }
1108 EXPORT_SYMBOL(sock_create_lite);
1109 
1110 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1111 static __poll_t sock_poll(struct file *file, poll_table *wait)
1112 {
1113 	struct socket *sock = file->private_data;
1114 	__poll_t events = poll_requested_events(wait), flag = 0;
1115 
1116 	if (!sock->ops->poll)
1117 		return 0;
1118 
1119 	if (sk_can_busy_loop(sock->sk)) {
1120 		/* poll once if requested by the syscall */
1121 		if (events & POLL_BUSY_LOOP)
1122 			sk_busy_loop(sock->sk, 1);
1123 
1124 		/* if this socket can poll_ll, tell the system call */
1125 		flag = POLL_BUSY_LOOP;
1126 	}
1127 
1128 	return sock->ops->poll(file, sock, wait) | flag;
1129 }
1130 
sock_mmap(struct file * file,struct vm_area_struct * vma)1131 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1132 {
1133 	struct socket *sock = file->private_data;
1134 
1135 	return sock->ops->mmap(file, sock, vma);
1136 }
1137 
sock_close(struct inode * inode,struct file * filp)1138 static int sock_close(struct inode *inode, struct file *filp)
1139 {
1140 	__sock_release(SOCKET_I(inode), inode);
1141 	return 0;
1142 }
1143 
1144 /*
1145  *	Update the socket async list
1146  *
1147  *	Fasync_list locking strategy.
1148  *
1149  *	1. fasync_list is modified only under process context socket lock
1150  *	   i.e. under semaphore.
1151  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1152  *	   or under socket lock
1153  */
1154 
sock_fasync(int fd,struct file * filp,int on)1155 static int sock_fasync(int fd, struct file *filp, int on)
1156 {
1157 	struct socket *sock = filp->private_data;
1158 	struct sock *sk = sock->sk;
1159 	struct socket_wq *wq;
1160 
1161 	if (sk == NULL)
1162 		return -EINVAL;
1163 
1164 	lock_sock(sk);
1165 	wq = sock->wq;
1166 	fasync_helper(fd, filp, on, &wq->fasync_list);
1167 
1168 	if (!wq->fasync_list)
1169 		sock_reset_flag(sk, SOCK_FASYNC);
1170 	else
1171 		sock_set_flag(sk, SOCK_FASYNC);
1172 
1173 	release_sock(sk);
1174 	return 0;
1175 }
1176 
1177 /* This function may be called only under rcu_lock */
1178 
sock_wake_async(struct socket_wq * wq,int how,int band)1179 int sock_wake_async(struct socket_wq *wq, int how, int band)
1180 {
1181 	if (!wq || !wq->fasync_list)
1182 		return -1;
1183 
1184 	switch (how) {
1185 	case SOCK_WAKE_WAITD:
1186 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1187 			break;
1188 		goto call_kill;
1189 	case SOCK_WAKE_SPACE:
1190 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1191 			break;
1192 		/* fall through */
1193 	case SOCK_WAKE_IO:
1194 call_kill:
1195 		kill_fasync(&wq->fasync_list, SIGIO, band);
1196 		break;
1197 	case SOCK_WAKE_URG:
1198 		kill_fasync(&wq->fasync_list, SIGURG, band);
1199 	}
1200 
1201 	return 0;
1202 }
1203 EXPORT_SYMBOL(sock_wake_async);
1204 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1205 int __sock_create(struct net *net, int family, int type, int protocol,
1206 			 struct socket **res, int kern)
1207 {
1208 	int err;
1209 	struct socket *sock;
1210 	const struct net_proto_family *pf;
1211 
1212 	/*
1213 	 *      Check protocol is in range
1214 	 */
1215 	if (family < 0 || family >= NPROTO)
1216 		return -EAFNOSUPPORT;
1217 	if (type < 0 || type >= SOCK_MAX)
1218 		return -EINVAL;
1219 
1220 	/* Compatibility.
1221 
1222 	   This uglymoron is moved from INET layer to here to avoid
1223 	   deadlock in module load.
1224 	 */
1225 	if (family == PF_INET && type == SOCK_PACKET) {
1226 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1227 			     current->comm);
1228 		family = PF_PACKET;
1229 	}
1230 
1231 	err = security_socket_create(family, type, protocol, kern);
1232 	if (err)
1233 		return err;
1234 
1235 	/*
1236 	 *	Allocate the socket and allow the family to set things up. if
1237 	 *	the protocol is 0, the family is instructed to select an appropriate
1238 	 *	default.
1239 	 */
1240 	sock = sock_alloc();
1241 	if (!sock) {
1242 		net_warn_ratelimited("socket: no more sockets\n");
1243 		return -ENFILE;	/* Not exactly a match, but its the
1244 				   closest posix thing */
1245 	}
1246 
1247 	sock->type = type;
1248 
1249 #ifdef CONFIG_MODULES
1250 	/* Attempt to load a protocol module if the find failed.
1251 	 *
1252 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1253 	 * requested real, full-featured networking support upon configuration.
1254 	 * Otherwise module support will break!
1255 	 */
1256 	if (rcu_access_pointer(net_families[family]) == NULL)
1257 		request_module("net-pf-%d", family);
1258 #endif
1259 
1260 	rcu_read_lock();
1261 	pf = rcu_dereference(net_families[family]);
1262 	err = -EAFNOSUPPORT;
1263 	if (!pf)
1264 		goto out_release;
1265 
1266 	/*
1267 	 * We will call the ->create function, that possibly is in a loadable
1268 	 * module, so we have to bump that loadable module refcnt first.
1269 	 */
1270 	if (!try_module_get(pf->owner))
1271 		goto out_release;
1272 
1273 	/* Now protected by module ref count */
1274 	rcu_read_unlock();
1275 
1276 	err = pf->create(net, sock, protocol, kern);
1277 	if (err < 0)
1278 		goto out_module_put;
1279 
1280 	/*
1281 	 * Now to bump the refcnt of the [loadable] module that owns this
1282 	 * socket at sock_release time we decrement its refcnt.
1283 	 */
1284 	if (!try_module_get(sock->ops->owner))
1285 		goto out_module_busy;
1286 
1287 	/*
1288 	 * Now that we're done with the ->create function, the [loadable]
1289 	 * module can have its refcnt decremented
1290 	 */
1291 	module_put(pf->owner);
1292 	err = security_socket_post_create(sock, family, type, protocol, kern);
1293 	if (err)
1294 		goto out_sock_release;
1295 	*res = sock;
1296 
1297 	return 0;
1298 
1299 out_module_busy:
1300 	err = -EAFNOSUPPORT;
1301 out_module_put:
1302 	sock->ops = NULL;
1303 	module_put(pf->owner);
1304 out_sock_release:
1305 	sock_release(sock);
1306 	return err;
1307 
1308 out_release:
1309 	rcu_read_unlock();
1310 	goto out_sock_release;
1311 }
1312 EXPORT_SYMBOL(__sock_create);
1313 
sock_create(int family,int type,int protocol,struct socket ** res)1314 int sock_create(int family, int type, int protocol, struct socket **res)
1315 {
1316 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1317 }
1318 EXPORT_SYMBOL(sock_create);
1319 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1320 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1321 {
1322 	return __sock_create(net, family, type, protocol, res, 1);
1323 }
1324 EXPORT_SYMBOL(sock_create_kern);
1325 
__sys_socket(int family,int type,int protocol)1326 int __sys_socket(int family, int type, int protocol)
1327 {
1328 	int retval;
1329 	struct socket *sock;
1330 	int flags;
1331 
1332 	/* Check the SOCK_* constants for consistency.  */
1333 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1334 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1335 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1336 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1337 
1338 	flags = type & ~SOCK_TYPE_MASK;
1339 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1340 		return -EINVAL;
1341 	type &= SOCK_TYPE_MASK;
1342 
1343 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1344 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1345 
1346 	retval = sock_create(family, type, protocol, &sock);
1347 	if (retval < 0)
1348 		return retval;
1349 
1350 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1351 }
1352 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1353 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1354 {
1355 	return __sys_socket(family, type, protocol);
1356 }
1357 
1358 /*
1359  *	Create a pair of connected sockets.
1360  */
1361 
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1362 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1363 {
1364 	struct socket *sock1, *sock2;
1365 	int fd1, fd2, err;
1366 	struct file *newfile1, *newfile2;
1367 	int flags;
1368 
1369 	flags = type & ~SOCK_TYPE_MASK;
1370 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1371 		return -EINVAL;
1372 	type &= SOCK_TYPE_MASK;
1373 
1374 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1375 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1376 
1377 	/*
1378 	 * reserve descriptors and make sure we won't fail
1379 	 * to return them to userland.
1380 	 */
1381 	fd1 = get_unused_fd_flags(flags);
1382 	if (unlikely(fd1 < 0))
1383 		return fd1;
1384 
1385 	fd2 = get_unused_fd_flags(flags);
1386 	if (unlikely(fd2 < 0)) {
1387 		put_unused_fd(fd1);
1388 		return fd2;
1389 	}
1390 
1391 	err = put_user(fd1, &usockvec[0]);
1392 	if (err)
1393 		goto out;
1394 
1395 	err = put_user(fd2, &usockvec[1]);
1396 	if (err)
1397 		goto out;
1398 
1399 	/*
1400 	 * Obtain the first socket and check if the underlying protocol
1401 	 * supports the socketpair call.
1402 	 */
1403 
1404 	err = sock_create(family, type, protocol, &sock1);
1405 	if (unlikely(err < 0))
1406 		goto out;
1407 
1408 	err = sock_create(family, type, protocol, &sock2);
1409 	if (unlikely(err < 0)) {
1410 		sock_release(sock1);
1411 		goto out;
1412 	}
1413 
1414 	err = security_socket_socketpair(sock1, sock2);
1415 	if (unlikely(err)) {
1416 		sock_release(sock2);
1417 		sock_release(sock1);
1418 		goto out;
1419 	}
1420 
1421 	err = sock1->ops->socketpair(sock1, sock2);
1422 	if (unlikely(err < 0)) {
1423 		sock_release(sock2);
1424 		sock_release(sock1);
1425 		goto out;
1426 	}
1427 
1428 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1429 	if (IS_ERR(newfile1)) {
1430 		err = PTR_ERR(newfile1);
1431 		sock_release(sock2);
1432 		goto out;
1433 	}
1434 
1435 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1436 	if (IS_ERR(newfile2)) {
1437 		err = PTR_ERR(newfile2);
1438 		fput(newfile1);
1439 		goto out;
1440 	}
1441 
1442 	audit_fd_pair(fd1, fd2);
1443 
1444 	fd_install(fd1, newfile1);
1445 	fd_install(fd2, newfile2);
1446 	return 0;
1447 
1448 out:
1449 	put_unused_fd(fd2);
1450 	put_unused_fd(fd1);
1451 	return err;
1452 }
1453 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1454 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1455 		int __user *, usockvec)
1456 {
1457 	return __sys_socketpair(family, type, protocol, usockvec);
1458 }
1459 
1460 /*
1461  *	Bind a name to a socket. Nothing much to do here since it's
1462  *	the protocol's responsibility to handle the local address.
1463  *
1464  *	We move the socket address to kernel space before we call
1465  *	the protocol layer (having also checked the address is ok).
1466  */
1467 
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1468 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1469 {
1470 	struct socket *sock;
1471 	struct sockaddr_storage address;
1472 	int err, fput_needed;
1473 
1474 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1475 	if (sock) {
1476 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1477 		if (err >= 0) {
1478 			err = security_socket_bind(sock,
1479 						   (struct sockaddr *)&address,
1480 						   addrlen);
1481 			if (!err)
1482 				err = sock->ops->bind(sock,
1483 						      (struct sockaddr *)
1484 						      &address, addrlen);
1485 		}
1486 		fput_light(sock->file, fput_needed);
1487 	}
1488 	return err;
1489 }
1490 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1491 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1492 {
1493 	return __sys_bind(fd, umyaddr, addrlen);
1494 }
1495 
1496 /*
1497  *	Perform a listen. Basically, we allow the protocol to do anything
1498  *	necessary for a listen, and if that works, we mark the socket as
1499  *	ready for listening.
1500  */
1501 
__sys_listen(int fd,int backlog)1502 int __sys_listen(int fd, int backlog)
1503 {
1504 	struct socket *sock;
1505 	int err, fput_needed;
1506 	int somaxconn;
1507 
1508 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1509 	if (sock) {
1510 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1511 		if ((unsigned int)backlog > somaxconn)
1512 			backlog = somaxconn;
1513 
1514 		err = security_socket_listen(sock, backlog);
1515 		if (!err)
1516 			err = sock->ops->listen(sock, backlog);
1517 
1518 		fput_light(sock->file, fput_needed);
1519 	}
1520 	return err;
1521 }
1522 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1523 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1524 {
1525 	return __sys_listen(fd, backlog);
1526 }
1527 
1528 /*
1529  *	For accept, we attempt to create a new socket, set up the link
1530  *	with the client, wake up the client, then return the new
1531  *	connected fd. We collect the address of the connector in kernel
1532  *	space and move it to user at the very end. This is unclean because
1533  *	we open the socket then return an error.
1534  *
1535  *	1003.1g adds the ability to recvmsg() to query connection pending
1536  *	status to recvmsg. We need to add that support in a way thats
1537  *	clean when we restructure accept also.
1538  */
1539 
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1540 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1541 		  int __user *upeer_addrlen, int flags)
1542 {
1543 	struct socket *sock, *newsock;
1544 	struct file *newfile;
1545 	int err, len, newfd, fput_needed;
1546 	struct sockaddr_storage address;
1547 
1548 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1549 		return -EINVAL;
1550 
1551 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1552 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1553 
1554 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 	if (!sock)
1556 		goto out;
1557 
1558 	err = -ENFILE;
1559 	newsock = sock_alloc();
1560 	if (!newsock)
1561 		goto out_put;
1562 
1563 	newsock->type = sock->type;
1564 	newsock->ops = sock->ops;
1565 
1566 	/*
1567 	 * We don't need try_module_get here, as the listening socket (sock)
1568 	 * has the protocol module (sock->ops->owner) held.
1569 	 */
1570 	__module_get(newsock->ops->owner);
1571 
1572 	newfd = get_unused_fd_flags(flags);
1573 	if (unlikely(newfd < 0)) {
1574 		err = newfd;
1575 		sock_release(newsock);
1576 		goto out_put;
1577 	}
1578 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1579 	if (IS_ERR(newfile)) {
1580 		err = PTR_ERR(newfile);
1581 		put_unused_fd(newfd);
1582 		goto out_put;
1583 	}
1584 
1585 	err = security_socket_accept(sock, newsock);
1586 	if (err)
1587 		goto out_fd;
1588 
1589 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1590 	if (err < 0)
1591 		goto out_fd;
1592 
1593 	if (upeer_sockaddr) {
1594 		len = newsock->ops->getname(newsock,
1595 					(struct sockaddr *)&address, 2);
1596 		if (len < 0) {
1597 			err = -ECONNABORTED;
1598 			goto out_fd;
1599 		}
1600 		err = move_addr_to_user(&address,
1601 					len, upeer_sockaddr, upeer_addrlen);
1602 		if (err < 0)
1603 			goto out_fd;
1604 	}
1605 
1606 	/* File flags are not inherited via accept() unlike another OSes. */
1607 
1608 	fd_install(newfd, newfile);
1609 	err = newfd;
1610 
1611 out_put:
1612 	fput_light(sock->file, fput_needed);
1613 out:
1614 	return err;
1615 out_fd:
1616 	fput(newfile);
1617 	put_unused_fd(newfd);
1618 	goto out_put;
1619 }
1620 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1621 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1622 		int __user *, upeer_addrlen, int, flags)
1623 {
1624 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1625 }
1626 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1627 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1628 		int __user *, upeer_addrlen)
1629 {
1630 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1631 }
1632 
1633 /*
1634  *	Attempt to connect to a socket with the server address.  The address
1635  *	is in user space so we verify it is OK and move it to kernel space.
1636  *
1637  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1638  *	break bindings
1639  *
1640  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1641  *	other SEQPACKET protocols that take time to connect() as it doesn't
1642  *	include the -EINPROGRESS status for such sockets.
1643  */
1644 
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1645 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1646 {
1647 	struct socket *sock;
1648 	struct sockaddr_storage address;
1649 	int err, fput_needed;
1650 
1651 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1652 	if (!sock)
1653 		goto out;
1654 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1655 	if (err < 0)
1656 		goto out_put;
1657 
1658 	err =
1659 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1660 	if (err)
1661 		goto out_put;
1662 
1663 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1664 				 sock->file->f_flags);
1665 out_put:
1666 	fput_light(sock->file, fput_needed);
1667 out:
1668 	return err;
1669 }
1670 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1671 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1672 		int, addrlen)
1673 {
1674 	return __sys_connect(fd, uservaddr, addrlen);
1675 }
1676 
1677 /*
1678  *	Get the local address ('name') of a socket object. Move the obtained
1679  *	name to user space.
1680  */
1681 
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1682 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1683 		      int __user *usockaddr_len)
1684 {
1685 	struct socket *sock;
1686 	struct sockaddr_storage address;
1687 	int err, fput_needed;
1688 
1689 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 	if (!sock)
1691 		goto out;
1692 
1693 	err = security_socket_getsockname(sock);
1694 	if (err)
1695 		goto out_put;
1696 
1697 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1698 	if (err < 0)
1699 		goto out_put;
1700         /* "err" is actually length in this case */
1701 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1702 
1703 out_put:
1704 	fput_light(sock->file, fput_needed);
1705 out:
1706 	return err;
1707 }
1708 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1709 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1710 		int __user *, usockaddr_len)
1711 {
1712 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1713 }
1714 
1715 /*
1716  *	Get the remote address ('name') of a socket object. Move the obtained
1717  *	name to user space.
1718  */
1719 
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1720 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1721 		      int __user *usockaddr_len)
1722 {
1723 	struct socket *sock;
1724 	struct sockaddr_storage address;
1725 	int err, fput_needed;
1726 
1727 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 	if (sock != NULL) {
1729 		err = security_socket_getpeername(sock);
1730 		if (err) {
1731 			fput_light(sock->file, fput_needed);
1732 			return err;
1733 		}
1734 
1735 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1736 		if (err >= 0)
1737 			/* "err" is actually length in this case */
1738 			err = move_addr_to_user(&address, err, usockaddr,
1739 						usockaddr_len);
1740 		fput_light(sock->file, fput_needed);
1741 	}
1742 	return err;
1743 }
1744 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1745 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746 		int __user *, usockaddr_len)
1747 {
1748 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1749 }
1750 
1751 /*
1752  *	Send a datagram to a given address. We move the address into kernel
1753  *	space and check the user space data area is readable before invoking
1754  *	the protocol.
1755  */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1756 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1757 		 struct sockaddr __user *addr,  int addr_len)
1758 {
1759 	struct socket *sock;
1760 	struct sockaddr_storage address;
1761 	int err;
1762 	struct msghdr msg;
1763 	struct iovec iov;
1764 	int fput_needed;
1765 
1766 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1767 	if (unlikely(err))
1768 		return err;
1769 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 	if (!sock)
1771 		goto out;
1772 
1773 	msg.msg_name = NULL;
1774 	msg.msg_control = NULL;
1775 	msg.msg_controllen = 0;
1776 	msg.msg_namelen = 0;
1777 	if (addr) {
1778 		err = move_addr_to_kernel(addr, addr_len, &address);
1779 		if (err < 0)
1780 			goto out_put;
1781 		msg.msg_name = (struct sockaddr *)&address;
1782 		msg.msg_namelen = addr_len;
1783 	}
1784 	if (sock->file->f_flags & O_NONBLOCK)
1785 		flags |= MSG_DONTWAIT;
1786 	msg.msg_flags = flags;
1787 	err = sock_sendmsg(sock, &msg);
1788 
1789 out_put:
1790 	fput_light(sock->file, fput_needed);
1791 out:
1792 	return err;
1793 }
1794 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1795 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1796 		unsigned int, flags, struct sockaddr __user *, addr,
1797 		int, addr_len)
1798 {
1799 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1800 }
1801 
1802 /*
1803  *	Send a datagram down a socket.
1804  */
1805 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)1806 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1807 		unsigned int, flags)
1808 {
1809 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1810 }
1811 
1812 /*
1813  *	Receive a frame from the socket and optionally record the address of the
1814  *	sender. We verify the buffers are writable and if needed move the
1815  *	sender address from kernel to user space.
1816  */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)1817 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1818 		   struct sockaddr __user *addr, int __user *addr_len)
1819 {
1820 	struct socket *sock;
1821 	struct iovec iov;
1822 	struct msghdr msg;
1823 	struct sockaddr_storage address;
1824 	int err, err2;
1825 	int fput_needed;
1826 
1827 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1828 	if (unlikely(err))
1829 		return err;
1830 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1831 	if (!sock)
1832 		goto out;
1833 
1834 	msg.msg_control = NULL;
1835 	msg.msg_controllen = 0;
1836 	/* Save some cycles and don't copy the address if not needed */
1837 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1838 	/* We assume all kernel code knows the size of sockaddr_storage */
1839 	msg.msg_namelen = 0;
1840 	msg.msg_iocb = NULL;
1841 	msg.msg_flags = 0;
1842 	if (sock->file->f_flags & O_NONBLOCK)
1843 		flags |= MSG_DONTWAIT;
1844 	err = sock_recvmsg(sock, &msg, flags);
1845 
1846 	if (err >= 0 && addr != NULL) {
1847 		err2 = move_addr_to_user(&address,
1848 					 msg.msg_namelen, addr, addr_len);
1849 		if (err2 < 0)
1850 			err = err2;
1851 	}
1852 
1853 	fput_light(sock->file, fput_needed);
1854 out:
1855 	return err;
1856 }
1857 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)1858 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1859 		unsigned int, flags, struct sockaddr __user *, addr,
1860 		int __user *, addr_len)
1861 {
1862 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1863 }
1864 
1865 /*
1866  *	Receive a datagram from a socket.
1867  */
1868 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)1869 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1870 		unsigned int, flags)
1871 {
1872 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1873 }
1874 
1875 /*
1876  *	Set a socket option. Because we don't know the option lengths we have
1877  *	to pass the user mode parameter for the protocols to sort out.
1878  */
1879 
__sys_setsockopt(int fd,int level,int optname,char __user * optval,int optlen)1880 static int __sys_setsockopt(int fd, int level, int optname,
1881 			    char __user *optval, int optlen)
1882 {
1883 	int err, fput_needed;
1884 	struct socket *sock;
1885 
1886 	if (optlen < 0)
1887 		return -EINVAL;
1888 
1889 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1890 	if (sock != NULL) {
1891 		err = security_socket_setsockopt(sock, level, optname);
1892 		if (err)
1893 			goto out_put;
1894 
1895 		if (level == SOL_SOCKET)
1896 			err =
1897 			    sock_setsockopt(sock, level, optname, optval,
1898 					    optlen);
1899 		else
1900 			err =
1901 			    sock->ops->setsockopt(sock, level, optname, optval,
1902 						  optlen);
1903 out_put:
1904 		fput_light(sock->file, fput_needed);
1905 	}
1906 	return err;
1907 }
1908 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)1909 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1910 		char __user *, optval, int, optlen)
1911 {
1912 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1913 }
1914 
1915 /*
1916  *	Get a socket option. Because we don't know the option lengths we have
1917  *	to pass a user mode parameter for the protocols to sort out.
1918  */
1919 
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)1920 static int __sys_getsockopt(int fd, int level, int optname,
1921 			    char __user *optval, int __user *optlen)
1922 {
1923 	int err, fput_needed;
1924 	struct socket *sock;
1925 
1926 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1927 	if (sock != NULL) {
1928 		err = security_socket_getsockopt(sock, level, optname);
1929 		if (err)
1930 			goto out_put;
1931 
1932 		if (level == SOL_SOCKET)
1933 			err =
1934 			    sock_getsockopt(sock, level, optname, optval,
1935 					    optlen);
1936 		else
1937 			err =
1938 			    sock->ops->getsockopt(sock, level, optname, optval,
1939 						  optlen);
1940 out_put:
1941 		fput_light(sock->file, fput_needed);
1942 	}
1943 	return err;
1944 }
1945 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)1946 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1947 		char __user *, optval, int __user *, optlen)
1948 {
1949 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1950 }
1951 
1952 /*
1953  *	Shutdown a socket.
1954  */
1955 
__sys_shutdown(int fd,int how)1956 int __sys_shutdown(int fd, int how)
1957 {
1958 	int err, fput_needed;
1959 	struct socket *sock;
1960 
1961 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 	if (sock != NULL) {
1963 		err = security_socket_shutdown(sock, how);
1964 		if (!err)
1965 			err = sock->ops->shutdown(sock, how);
1966 		fput_light(sock->file, fput_needed);
1967 	}
1968 	return err;
1969 }
1970 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)1971 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1972 {
1973 	return __sys_shutdown(fd, how);
1974 }
1975 
1976 /* A couple of helpful macros for getting the address of the 32/64 bit
1977  * fields which are the same type (int / unsigned) on our platforms.
1978  */
1979 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1980 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1981 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1982 
1983 struct used_address {
1984 	struct sockaddr_storage name;
1985 	unsigned int name_len;
1986 };
1987 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)1988 static int copy_msghdr_from_user(struct msghdr *kmsg,
1989 				 struct user_msghdr __user *umsg,
1990 				 struct sockaddr __user **save_addr,
1991 				 struct iovec **iov)
1992 {
1993 	struct user_msghdr msg;
1994 	ssize_t err;
1995 
1996 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1997 		return -EFAULT;
1998 
1999 	kmsg->msg_control = (void __force *)msg.msg_control;
2000 	kmsg->msg_controllen = msg.msg_controllen;
2001 	kmsg->msg_flags = msg.msg_flags;
2002 
2003 	kmsg->msg_namelen = msg.msg_namelen;
2004 	if (!msg.msg_name)
2005 		kmsg->msg_namelen = 0;
2006 
2007 	if (kmsg->msg_namelen < 0)
2008 		return -EINVAL;
2009 
2010 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2011 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2012 
2013 	if (save_addr)
2014 		*save_addr = msg.msg_name;
2015 
2016 	if (msg.msg_name && kmsg->msg_namelen) {
2017 		if (!save_addr) {
2018 			err = move_addr_to_kernel(msg.msg_name,
2019 						  kmsg->msg_namelen,
2020 						  kmsg->msg_name);
2021 			if (err < 0)
2022 				return err;
2023 		}
2024 	} else {
2025 		kmsg->msg_name = NULL;
2026 		kmsg->msg_namelen = 0;
2027 	}
2028 
2029 	if (msg.msg_iovlen > UIO_MAXIOV)
2030 		return -EMSGSIZE;
2031 
2032 	kmsg->msg_iocb = NULL;
2033 
2034 	return import_iovec(save_addr ? READ : WRITE,
2035 			    msg.msg_iov, msg.msg_iovlen,
2036 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2037 }
2038 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2039 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2040 			 struct msghdr *msg_sys, unsigned int flags,
2041 			 struct used_address *used_address,
2042 			 unsigned int allowed_msghdr_flags)
2043 {
2044 	struct compat_msghdr __user *msg_compat =
2045 	    (struct compat_msghdr __user *)msg;
2046 	struct sockaddr_storage address;
2047 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2048 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2049 				__aligned(sizeof(__kernel_size_t));
2050 	/* 20 is size of ipv6_pktinfo */
2051 	unsigned char *ctl_buf = ctl;
2052 	int ctl_len;
2053 	ssize_t err;
2054 
2055 	msg_sys->msg_name = &address;
2056 
2057 	if (MSG_CMSG_COMPAT & flags)
2058 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2059 	else
2060 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2061 	if (err < 0)
2062 		return err;
2063 
2064 	err = -ENOBUFS;
2065 
2066 	if (msg_sys->msg_controllen > INT_MAX)
2067 		goto out_freeiov;
2068 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2069 	ctl_len = msg_sys->msg_controllen;
2070 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2071 		err =
2072 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2073 						     sizeof(ctl));
2074 		if (err)
2075 			goto out_freeiov;
2076 		ctl_buf = msg_sys->msg_control;
2077 		ctl_len = msg_sys->msg_controllen;
2078 	} else if (ctl_len) {
2079 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2080 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2081 		if (ctl_len > sizeof(ctl)) {
2082 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2083 			if (ctl_buf == NULL)
2084 				goto out_freeiov;
2085 		}
2086 		err = -EFAULT;
2087 		/*
2088 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2089 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2090 		 * checking falls down on this.
2091 		 */
2092 		if (copy_from_user(ctl_buf,
2093 				   (void __user __force *)msg_sys->msg_control,
2094 				   ctl_len))
2095 			goto out_freectl;
2096 		msg_sys->msg_control = ctl_buf;
2097 	}
2098 	msg_sys->msg_flags = flags;
2099 
2100 	if (sock->file->f_flags & O_NONBLOCK)
2101 		msg_sys->msg_flags |= MSG_DONTWAIT;
2102 	/*
2103 	 * If this is sendmmsg() and current destination address is same as
2104 	 * previously succeeded address, omit asking LSM's decision.
2105 	 * used_address->name_len is initialized to UINT_MAX so that the first
2106 	 * destination address never matches.
2107 	 */
2108 	if (used_address && msg_sys->msg_name &&
2109 	    used_address->name_len == msg_sys->msg_namelen &&
2110 	    !memcmp(&used_address->name, msg_sys->msg_name,
2111 		    used_address->name_len)) {
2112 		err = sock_sendmsg_nosec(sock, msg_sys);
2113 		goto out_freectl;
2114 	}
2115 	err = sock_sendmsg(sock, msg_sys);
2116 	/*
2117 	 * If this is sendmmsg() and sending to current destination address was
2118 	 * successful, remember it.
2119 	 */
2120 	if (used_address && err >= 0) {
2121 		used_address->name_len = msg_sys->msg_namelen;
2122 		if (msg_sys->msg_name)
2123 			memcpy(&used_address->name, msg_sys->msg_name,
2124 			       used_address->name_len);
2125 	}
2126 
2127 out_freectl:
2128 	if (ctl_buf != ctl)
2129 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2130 out_freeiov:
2131 	kfree(iov);
2132 	return err;
2133 }
2134 
2135 /*
2136  *	BSD sendmsg interface
2137  */
2138 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2139 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2140 		   bool forbid_cmsg_compat)
2141 {
2142 	int fput_needed, err;
2143 	struct msghdr msg_sys;
2144 	struct socket *sock;
2145 
2146 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2147 		return -EINVAL;
2148 
2149 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2150 	if (!sock)
2151 		goto out;
2152 
2153 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2154 
2155 	fput_light(sock->file, fput_needed);
2156 out:
2157 	return err;
2158 }
2159 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2160 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2161 {
2162 	return __sys_sendmsg(fd, msg, flags, true);
2163 }
2164 
2165 /*
2166  *	Linux sendmmsg interface
2167  */
2168 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2169 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170 		   unsigned int flags, bool forbid_cmsg_compat)
2171 {
2172 	int fput_needed, err, datagrams;
2173 	struct socket *sock;
2174 	struct mmsghdr __user *entry;
2175 	struct compat_mmsghdr __user *compat_entry;
2176 	struct msghdr msg_sys;
2177 	struct used_address used_address;
2178 	unsigned int oflags = flags;
2179 
2180 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2181 		return -EINVAL;
2182 
2183 	if (vlen > UIO_MAXIOV)
2184 		vlen = UIO_MAXIOV;
2185 
2186 	datagrams = 0;
2187 
2188 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2189 	if (!sock)
2190 		return err;
2191 
2192 	used_address.name_len = UINT_MAX;
2193 	entry = mmsg;
2194 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2195 	err = 0;
2196 	flags |= MSG_BATCH;
2197 
2198 	while (datagrams < vlen) {
2199 		if (datagrams == vlen - 1)
2200 			flags = oflags;
2201 
2202 		if (MSG_CMSG_COMPAT & flags) {
2203 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2204 					     &msg_sys, flags, &used_address, MSG_EOR);
2205 			if (err < 0)
2206 				break;
2207 			err = __put_user(err, &compat_entry->msg_len);
2208 			++compat_entry;
2209 		} else {
2210 			err = ___sys_sendmsg(sock,
2211 					     (struct user_msghdr __user *)entry,
2212 					     &msg_sys, flags, &used_address, MSG_EOR);
2213 			if (err < 0)
2214 				break;
2215 			err = put_user(err, &entry->msg_len);
2216 			++entry;
2217 		}
2218 
2219 		if (err)
2220 			break;
2221 		++datagrams;
2222 		if (msg_data_left(&msg_sys))
2223 			break;
2224 		cond_resched();
2225 	}
2226 
2227 	fput_light(sock->file, fput_needed);
2228 
2229 	/* We only return an error if no datagrams were able to be sent */
2230 	if (datagrams != 0)
2231 		return datagrams;
2232 
2233 	return err;
2234 }
2235 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2236 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2237 		unsigned int, vlen, unsigned int, flags)
2238 {
2239 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2240 }
2241 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2242 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2243 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2244 {
2245 	struct compat_msghdr __user *msg_compat =
2246 	    (struct compat_msghdr __user *)msg;
2247 	struct iovec iovstack[UIO_FASTIOV];
2248 	struct iovec *iov = iovstack;
2249 	unsigned long cmsg_ptr;
2250 	int len;
2251 	ssize_t err;
2252 
2253 	/* kernel mode address */
2254 	struct sockaddr_storage addr;
2255 
2256 	/* user mode address pointers */
2257 	struct sockaddr __user *uaddr;
2258 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2259 
2260 	msg_sys->msg_name = &addr;
2261 
2262 	if (MSG_CMSG_COMPAT & flags)
2263 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2264 	else
2265 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2266 	if (err < 0)
2267 		return err;
2268 
2269 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2270 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2271 
2272 	/* We assume all kernel code knows the size of sockaddr_storage */
2273 	msg_sys->msg_namelen = 0;
2274 
2275 	if (sock->file->f_flags & O_NONBLOCK)
2276 		flags |= MSG_DONTWAIT;
2277 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2278 	if (err < 0)
2279 		goto out_freeiov;
2280 	len = err;
2281 
2282 	if (uaddr != NULL) {
2283 		err = move_addr_to_user(&addr,
2284 					msg_sys->msg_namelen, uaddr,
2285 					uaddr_len);
2286 		if (err < 0)
2287 			goto out_freeiov;
2288 	}
2289 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2290 			 COMPAT_FLAGS(msg));
2291 	if (err)
2292 		goto out_freeiov;
2293 	if (MSG_CMSG_COMPAT & flags)
2294 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2295 				 &msg_compat->msg_controllen);
2296 	else
2297 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2298 				 &msg->msg_controllen);
2299 	if (err)
2300 		goto out_freeiov;
2301 	err = len;
2302 
2303 out_freeiov:
2304 	kfree(iov);
2305 	return err;
2306 }
2307 
2308 /*
2309  *	BSD recvmsg interface
2310  */
2311 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2312 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2313 		   bool forbid_cmsg_compat)
2314 {
2315 	int fput_needed, err;
2316 	struct msghdr msg_sys;
2317 	struct socket *sock;
2318 
2319 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2320 		return -EINVAL;
2321 
2322 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2323 	if (!sock)
2324 		goto out;
2325 
2326 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2327 
2328 	fput_light(sock->file, fput_needed);
2329 out:
2330 	return err;
2331 }
2332 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2333 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2334 		unsigned int, flags)
2335 {
2336 	return __sys_recvmsg(fd, msg, flags, true);
2337 }
2338 
2339 /*
2340  *     Linux recvmmsg interface
2341  */
2342 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec * timeout)2343 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2344 		   unsigned int flags, struct timespec *timeout)
2345 {
2346 	int fput_needed, err, datagrams;
2347 	struct socket *sock;
2348 	struct mmsghdr __user *entry;
2349 	struct compat_mmsghdr __user *compat_entry;
2350 	struct msghdr msg_sys;
2351 	struct timespec64 end_time;
2352 	struct timespec64 timeout64;
2353 
2354 	if (timeout &&
2355 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2356 				    timeout->tv_nsec))
2357 		return -EINVAL;
2358 
2359 	datagrams = 0;
2360 
2361 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2362 	if (!sock)
2363 		return err;
2364 
2365 	if (likely(!(flags & MSG_ERRQUEUE))) {
2366 		err = sock_error(sock->sk);
2367 		if (err) {
2368 			datagrams = err;
2369 			goto out_put;
2370 		}
2371 	}
2372 
2373 	entry = mmsg;
2374 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2375 
2376 	while (datagrams < vlen) {
2377 		/*
2378 		 * No need to ask LSM for more than the first datagram.
2379 		 */
2380 		if (MSG_CMSG_COMPAT & flags) {
2381 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2382 					     &msg_sys, flags & ~MSG_WAITFORONE,
2383 					     datagrams);
2384 			if (err < 0)
2385 				break;
2386 			err = __put_user(err, &compat_entry->msg_len);
2387 			++compat_entry;
2388 		} else {
2389 			err = ___sys_recvmsg(sock,
2390 					     (struct user_msghdr __user *)entry,
2391 					     &msg_sys, flags & ~MSG_WAITFORONE,
2392 					     datagrams);
2393 			if (err < 0)
2394 				break;
2395 			err = put_user(err, &entry->msg_len);
2396 			++entry;
2397 		}
2398 
2399 		if (err)
2400 			break;
2401 		++datagrams;
2402 
2403 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2404 		if (flags & MSG_WAITFORONE)
2405 			flags |= MSG_DONTWAIT;
2406 
2407 		if (timeout) {
2408 			ktime_get_ts64(&timeout64);
2409 			*timeout = timespec64_to_timespec(
2410 					timespec64_sub(end_time, timeout64));
2411 			if (timeout->tv_sec < 0) {
2412 				timeout->tv_sec = timeout->tv_nsec = 0;
2413 				break;
2414 			}
2415 
2416 			/* Timeout, return less than vlen datagrams */
2417 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2418 				break;
2419 		}
2420 
2421 		/* Out of band data, return right away */
2422 		if (msg_sys.msg_flags & MSG_OOB)
2423 			break;
2424 		cond_resched();
2425 	}
2426 
2427 	if (err == 0)
2428 		goto out_put;
2429 
2430 	if (datagrams == 0) {
2431 		datagrams = err;
2432 		goto out_put;
2433 	}
2434 
2435 	/*
2436 	 * We may return less entries than requested (vlen) if the
2437 	 * sock is non block and there aren't enough datagrams...
2438 	 */
2439 	if (err != -EAGAIN) {
2440 		/*
2441 		 * ... or  if recvmsg returns an error after we
2442 		 * received some datagrams, where we record the
2443 		 * error to return on the next call or if the
2444 		 * app asks about it using getsockopt(SO_ERROR).
2445 		 */
2446 		sock->sk->sk_err = -err;
2447 	}
2448 out_put:
2449 	fput_light(sock->file, fput_needed);
2450 
2451 	return datagrams;
2452 }
2453 
do_sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec __user * timeout)2454 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2455 			   unsigned int vlen, unsigned int flags,
2456 			   struct timespec __user *timeout)
2457 {
2458 	int datagrams;
2459 	struct timespec timeout_sys;
2460 
2461 	if (flags & MSG_CMSG_COMPAT)
2462 		return -EINVAL;
2463 
2464 	if (!timeout)
2465 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2466 
2467 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2468 		return -EFAULT;
2469 
2470 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2471 
2472 	if (datagrams > 0 &&
2473 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2474 		datagrams = -EFAULT;
2475 
2476 	return datagrams;
2477 }
2478 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct timespec __user *,timeout)2479 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2480 		unsigned int, vlen, unsigned int, flags,
2481 		struct timespec __user *, timeout)
2482 {
2483 	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2484 }
2485 
2486 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2487 /* Argument list sizes for sys_socketcall */
2488 #define AL(x) ((x) * sizeof(unsigned long))
2489 static const unsigned char nargs[21] = {
2490 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2491 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2492 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2493 	AL(4), AL(5), AL(4)
2494 };
2495 
2496 #undef AL
2497 
2498 /*
2499  *	System call vectors.
2500  *
2501  *	Argument checking cleaned up. Saved 20% in size.
2502  *  This function doesn't need to set the kernel lock because
2503  *  it is set by the callees.
2504  */
2505 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2506 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2507 {
2508 	unsigned long a[AUDITSC_ARGS];
2509 	unsigned long a0, a1;
2510 	int err;
2511 	unsigned int len;
2512 
2513 	if (call < 1 || call > SYS_SENDMMSG)
2514 		return -EINVAL;
2515 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2516 
2517 	len = nargs[call];
2518 	if (len > sizeof(a))
2519 		return -EINVAL;
2520 
2521 	/* copy_from_user should be SMP safe. */
2522 	if (copy_from_user(a, args, len))
2523 		return -EFAULT;
2524 
2525 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2526 	if (err)
2527 		return err;
2528 
2529 	a0 = a[0];
2530 	a1 = a[1];
2531 
2532 	switch (call) {
2533 	case SYS_SOCKET:
2534 		err = __sys_socket(a0, a1, a[2]);
2535 		break;
2536 	case SYS_BIND:
2537 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2538 		break;
2539 	case SYS_CONNECT:
2540 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2541 		break;
2542 	case SYS_LISTEN:
2543 		err = __sys_listen(a0, a1);
2544 		break;
2545 	case SYS_ACCEPT:
2546 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2547 				    (int __user *)a[2], 0);
2548 		break;
2549 	case SYS_GETSOCKNAME:
2550 		err =
2551 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2552 				      (int __user *)a[2]);
2553 		break;
2554 	case SYS_GETPEERNAME:
2555 		err =
2556 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2557 				      (int __user *)a[2]);
2558 		break;
2559 	case SYS_SOCKETPAIR:
2560 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2561 		break;
2562 	case SYS_SEND:
2563 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2564 				   NULL, 0);
2565 		break;
2566 	case SYS_SENDTO:
2567 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2568 				   (struct sockaddr __user *)a[4], a[5]);
2569 		break;
2570 	case SYS_RECV:
2571 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2572 				     NULL, NULL);
2573 		break;
2574 	case SYS_RECVFROM:
2575 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2576 				     (struct sockaddr __user *)a[4],
2577 				     (int __user *)a[5]);
2578 		break;
2579 	case SYS_SHUTDOWN:
2580 		err = __sys_shutdown(a0, a1);
2581 		break;
2582 	case SYS_SETSOCKOPT:
2583 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2584 				       a[4]);
2585 		break;
2586 	case SYS_GETSOCKOPT:
2587 		err =
2588 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2589 				     (int __user *)a[4]);
2590 		break;
2591 	case SYS_SENDMSG:
2592 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2593 				    a[2], true);
2594 		break;
2595 	case SYS_SENDMMSG:
2596 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2597 				     a[3], true);
2598 		break;
2599 	case SYS_RECVMSG:
2600 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2601 				    a[2], true);
2602 		break;
2603 	case SYS_RECVMMSG:
2604 		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2605 				      a[3], (struct timespec __user *)a[4]);
2606 		break;
2607 	case SYS_ACCEPT4:
2608 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2609 				    (int __user *)a[2], a[3]);
2610 		break;
2611 	default:
2612 		err = -EINVAL;
2613 		break;
2614 	}
2615 	return err;
2616 }
2617 
2618 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2619 
2620 /**
2621  *	sock_register - add a socket protocol handler
2622  *	@ops: description of protocol
2623  *
2624  *	This function is called by a protocol handler that wants to
2625  *	advertise its address family, and have it linked into the
2626  *	socket interface. The value ops->family corresponds to the
2627  *	socket system call protocol family.
2628  */
sock_register(const struct net_proto_family * ops)2629 int sock_register(const struct net_proto_family *ops)
2630 {
2631 	int err;
2632 
2633 	if (ops->family >= NPROTO) {
2634 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2635 		return -ENOBUFS;
2636 	}
2637 
2638 	spin_lock(&net_family_lock);
2639 	if (rcu_dereference_protected(net_families[ops->family],
2640 				      lockdep_is_held(&net_family_lock)))
2641 		err = -EEXIST;
2642 	else {
2643 		rcu_assign_pointer(net_families[ops->family], ops);
2644 		err = 0;
2645 	}
2646 	spin_unlock(&net_family_lock);
2647 
2648 	pr_info("NET: Registered protocol family %d\n", ops->family);
2649 	return err;
2650 }
2651 EXPORT_SYMBOL(sock_register);
2652 
2653 /**
2654  *	sock_unregister - remove a protocol handler
2655  *	@family: protocol family to remove
2656  *
2657  *	This function is called by a protocol handler that wants to
2658  *	remove its address family, and have it unlinked from the
2659  *	new socket creation.
2660  *
2661  *	If protocol handler is a module, then it can use module reference
2662  *	counts to protect against new references. If protocol handler is not
2663  *	a module then it needs to provide its own protection in
2664  *	the ops->create routine.
2665  */
sock_unregister(int family)2666 void sock_unregister(int family)
2667 {
2668 	BUG_ON(family < 0 || family >= NPROTO);
2669 
2670 	spin_lock(&net_family_lock);
2671 	RCU_INIT_POINTER(net_families[family], NULL);
2672 	spin_unlock(&net_family_lock);
2673 
2674 	synchronize_rcu();
2675 
2676 	pr_info("NET: Unregistered protocol family %d\n", family);
2677 }
2678 EXPORT_SYMBOL(sock_unregister);
2679 
sock_is_registered(int family)2680 bool sock_is_registered(int family)
2681 {
2682 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2683 }
2684 
sock_init(void)2685 static int __init sock_init(void)
2686 {
2687 	int err;
2688 	/*
2689 	 *      Initialize the network sysctl infrastructure.
2690 	 */
2691 	err = net_sysctl_init();
2692 	if (err)
2693 		goto out;
2694 
2695 	/*
2696 	 *      Initialize skbuff SLAB cache
2697 	 */
2698 	skb_init();
2699 
2700 	/*
2701 	 *      Initialize the protocols module.
2702 	 */
2703 
2704 	init_inodecache();
2705 
2706 	err = register_filesystem(&sock_fs_type);
2707 	if (err)
2708 		goto out_fs;
2709 	sock_mnt = kern_mount(&sock_fs_type);
2710 	if (IS_ERR(sock_mnt)) {
2711 		err = PTR_ERR(sock_mnt);
2712 		goto out_mount;
2713 	}
2714 
2715 	/* The real protocol initialization is performed in later initcalls.
2716 	 */
2717 
2718 #ifdef CONFIG_NETFILTER
2719 	err = netfilter_init();
2720 	if (err)
2721 		goto out;
2722 #endif
2723 
2724 	ptp_classifier_init();
2725 
2726 out:
2727 	return err;
2728 
2729 out_mount:
2730 	unregister_filesystem(&sock_fs_type);
2731 out_fs:
2732 	goto out;
2733 }
2734 
2735 core_initcall(sock_init);	/* early initcall */
2736 
2737 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)2738 void socket_seq_show(struct seq_file *seq)
2739 {
2740 	seq_printf(seq, "sockets: used %d\n",
2741 		   sock_inuse_get(seq->private));
2742 }
2743 #endif				/* CONFIG_PROC_FS */
2744 
2745 #ifdef CONFIG_COMPAT
do_siocgstamp(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2746 static int do_siocgstamp(struct net *net, struct socket *sock,
2747 			 unsigned int cmd, void __user *up)
2748 {
2749 	mm_segment_t old_fs = get_fs();
2750 	struct timeval ktv;
2751 	int err;
2752 
2753 	set_fs(KERNEL_DS);
2754 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2755 	set_fs(old_fs);
2756 	if (!err)
2757 		err = compat_put_timeval(&ktv, up);
2758 
2759 	return err;
2760 }
2761 
do_siocgstampns(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2762 static int do_siocgstampns(struct net *net, struct socket *sock,
2763 			   unsigned int cmd, void __user *up)
2764 {
2765 	mm_segment_t old_fs = get_fs();
2766 	struct timespec kts;
2767 	int err;
2768 
2769 	set_fs(KERNEL_DS);
2770 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2771 	set_fs(old_fs);
2772 	if (!err)
2773 		err = compat_put_timespec(&kts, up);
2774 
2775 	return err;
2776 }
2777 
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)2778 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2779 {
2780 	struct compat_ifconf ifc32;
2781 	struct ifconf ifc;
2782 	int err;
2783 
2784 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2785 		return -EFAULT;
2786 
2787 	ifc.ifc_len = ifc32.ifc_len;
2788 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2789 
2790 	rtnl_lock();
2791 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2792 	rtnl_unlock();
2793 	if (err)
2794 		return err;
2795 
2796 	ifc32.ifc_len = ifc.ifc_len;
2797 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2798 		return -EFAULT;
2799 
2800 	return 0;
2801 }
2802 
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)2803 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2804 {
2805 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2806 	bool convert_in = false, convert_out = false;
2807 	size_t buf_size = 0;
2808 	struct ethtool_rxnfc __user *rxnfc = NULL;
2809 	struct ifreq ifr;
2810 	u32 rule_cnt = 0, actual_rule_cnt;
2811 	u32 ethcmd;
2812 	u32 data;
2813 	int ret;
2814 
2815 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2816 		return -EFAULT;
2817 
2818 	compat_rxnfc = compat_ptr(data);
2819 
2820 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2821 		return -EFAULT;
2822 
2823 	/* Most ethtool structures are defined without padding.
2824 	 * Unfortunately struct ethtool_rxnfc is an exception.
2825 	 */
2826 	switch (ethcmd) {
2827 	default:
2828 		break;
2829 	case ETHTOOL_GRXCLSRLALL:
2830 		/* Buffer size is variable */
2831 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2832 			return -EFAULT;
2833 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2834 			return -ENOMEM;
2835 		buf_size += rule_cnt * sizeof(u32);
2836 		/* fall through */
2837 	case ETHTOOL_GRXRINGS:
2838 	case ETHTOOL_GRXCLSRLCNT:
2839 	case ETHTOOL_GRXCLSRULE:
2840 	case ETHTOOL_SRXCLSRLINS:
2841 		convert_out = true;
2842 		/* fall through */
2843 	case ETHTOOL_SRXCLSRLDEL:
2844 		buf_size += sizeof(struct ethtool_rxnfc);
2845 		convert_in = true;
2846 		rxnfc = compat_alloc_user_space(buf_size);
2847 		break;
2848 	}
2849 
2850 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2851 		return -EFAULT;
2852 
2853 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2854 
2855 	if (convert_in) {
2856 		/* We expect there to be holes between fs.m_ext and
2857 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2858 		 */
2859 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2860 			     sizeof(compat_rxnfc->fs.m_ext) !=
2861 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2862 			     sizeof(rxnfc->fs.m_ext));
2863 		BUILD_BUG_ON(
2864 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2865 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2866 			offsetof(struct ethtool_rxnfc, fs.location) -
2867 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2868 
2869 		if (copy_in_user(rxnfc, compat_rxnfc,
2870 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2871 				 (void __user *)rxnfc) ||
2872 		    copy_in_user(&rxnfc->fs.ring_cookie,
2873 				 &compat_rxnfc->fs.ring_cookie,
2874 				 (void __user *)(&rxnfc->fs.location + 1) -
2875 				 (void __user *)&rxnfc->fs.ring_cookie))
2876 			return -EFAULT;
2877 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2878 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
2879 				return -EFAULT;
2880 		} else if (copy_in_user(&rxnfc->rule_cnt,
2881 					&compat_rxnfc->rule_cnt,
2882 					sizeof(rxnfc->rule_cnt)))
2883 			return -EFAULT;
2884 	}
2885 
2886 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2887 	if (ret)
2888 		return ret;
2889 
2890 	if (convert_out) {
2891 		if (copy_in_user(compat_rxnfc, rxnfc,
2892 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2893 				 (const void __user *)rxnfc) ||
2894 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2895 				 &rxnfc->fs.ring_cookie,
2896 				 (const void __user *)(&rxnfc->fs.location + 1) -
2897 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2898 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2899 				 sizeof(rxnfc->rule_cnt)))
2900 			return -EFAULT;
2901 
2902 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2903 			/* As an optimisation, we only copy the actual
2904 			 * number of rules that the underlying
2905 			 * function returned.  Since Mallory might
2906 			 * change the rule count in user memory, we
2907 			 * check that it is less than the rule count
2908 			 * originally given (as the user buffer size),
2909 			 * which has been range-checked.
2910 			 */
2911 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2912 				return -EFAULT;
2913 			if (actual_rule_cnt < rule_cnt)
2914 				rule_cnt = actual_rule_cnt;
2915 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2916 					 &rxnfc->rule_locs[0],
2917 					 rule_cnt * sizeof(u32)))
2918 				return -EFAULT;
2919 		}
2920 	}
2921 
2922 	return 0;
2923 }
2924 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)2925 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2926 {
2927 	compat_uptr_t uptr32;
2928 	struct ifreq ifr;
2929 	void __user *saved;
2930 	int err;
2931 
2932 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2933 		return -EFAULT;
2934 
2935 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2936 		return -EFAULT;
2937 
2938 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2939 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2940 
2941 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2942 	if (!err) {
2943 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2944 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2945 			err = -EFAULT;
2946 	}
2947 	return err;
2948 }
2949 
2950 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)2951 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2952 				 struct compat_ifreq __user *u_ifreq32)
2953 {
2954 	struct ifreq ifreq;
2955 	u32 data32;
2956 
2957 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2958 		return -EFAULT;
2959 	if (get_user(data32, &u_ifreq32->ifr_data))
2960 		return -EFAULT;
2961 	ifreq.ifr_data = compat_ptr(data32);
2962 
2963 	return dev_ioctl(net, cmd, &ifreq, NULL);
2964 }
2965 
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)2966 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
2967 			      unsigned int cmd,
2968 			      struct compat_ifreq __user *uifr32)
2969 {
2970 	struct ifreq __user *uifr;
2971 	int err;
2972 
2973 	/* Handle the fact that while struct ifreq has the same *layout* on
2974 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
2975 	 * which are handled elsewhere, it still has different *size* due to
2976 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
2977 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
2978 	 * As a result, if the struct happens to be at the end of a page and
2979 	 * the next page isn't readable/writable, we get a fault. To prevent
2980 	 * that, copy back and forth to the full size.
2981 	 */
2982 
2983 	uifr = compat_alloc_user_space(sizeof(*uifr));
2984 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2985 		return -EFAULT;
2986 
2987 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2988 
2989 	if (!err) {
2990 		switch (cmd) {
2991 		case SIOCGIFFLAGS:
2992 		case SIOCGIFMETRIC:
2993 		case SIOCGIFMTU:
2994 		case SIOCGIFMEM:
2995 		case SIOCGIFHWADDR:
2996 		case SIOCGIFINDEX:
2997 		case SIOCGIFADDR:
2998 		case SIOCGIFBRDADDR:
2999 		case SIOCGIFDSTADDR:
3000 		case SIOCGIFNETMASK:
3001 		case SIOCGIFPFLAGS:
3002 		case SIOCGIFTXQLEN:
3003 		case SIOCGMIIPHY:
3004 		case SIOCGMIIREG:
3005 		case SIOCGIFNAME:
3006 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3007 				err = -EFAULT;
3008 			break;
3009 		}
3010 	}
3011 	return err;
3012 }
3013 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3014 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3015 			struct compat_ifreq __user *uifr32)
3016 {
3017 	struct ifreq ifr;
3018 	struct compat_ifmap __user *uifmap32;
3019 	int err;
3020 
3021 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3022 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3023 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3024 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3025 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3026 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3027 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3028 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3029 	if (err)
3030 		return -EFAULT;
3031 
3032 	err = dev_ioctl(net, cmd, &ifr, NULL);
3033 
3034 	if (cmd == SIOCGIFMAP && !err) {
3035 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3036 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3037 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3038 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3039 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3040 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3041 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3042 		if (err)
3043 			err = -EFAULT;
3044 	}
3045 	return err;
3046 }
3047 
3048 struct rtentry32 {
3049 	u32		rt_pad1;
3050 	struct sockaddr rt_dst;         /* target address               */
3051 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3052 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3053 	unsigned short	rt_flags;
3054 	short		rt_pad2;
3055 	u32		rt_pad3;
3056 	unsigned char	rt_tos;
3057 	unsigned char	rt_class;
3058 	short		rt_pad4;
3059 	short		rt_metric;      /* +1 for binary compatibility! */
3060 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3061 	u32		rt_mtu;         /* per route MTU/Window         */
3062 	u32		rt_window;      /* Window clamping              */
3063 	unsigned short  rt_irtt;        /* Initial RTT                  */
3064 };
3065 
3066 struct in6_rtmsg32 {
3067 	struct in6_addr		rtmsg_dst;
3068 	struct in6_addr		rtmsg_src;
3069 	struct in6_addr		rtmsg_gateway;
3070 	u32			rtmsg_type;
3071 	u16			rtmsg_dst_len;
3072 	u16			rtmsg_src_len;
3073 	u32			rtmsg_metric;
3074 	u32			rtmsg_info;
3075 	u32			rtmsg_flags;
3076 	s32			rtmsg_ifindex;
3077 };
3078 
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)3079 static int routing_ioctl(struct net *net, struct socket *sock,
3080 			 unsigned int cmd, void __user *argp)
3081 {
3082 	int ret;
3083 	void *r = NULL;
3084 	struct in6_rtmsg r6;
3085 	struct rtentry r4;
3086 	char devname[16];
3087 	u32 rtdev;
3088 	mm_segment_t old_fs = get_fs();
3089 
3090 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3091 		struct in6_rtmsg32 __user *ur6 = argp;
3092 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3093 			3 * sizeof(struct in6_addr));
3094 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3095 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3096 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3097 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3098 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3099 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3100 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3101 
3102 		r = (void *) &r6;
3103 	} else { /* ipv4 */
3104 		struct rtentry32 __user *ur4 = argp;
3105 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3106 					3 * sizeof(struct sockaddr));
3107 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3108 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3109 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3110 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3111 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3112 		ret |= get_user(rtdev, &(ur4->rt_dev));
3113 		if (rtdev) {
3114 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3115 			r4.rt_dev = (char __user __force *)devname;
3116 			devname[15] = 0;
3117 		} else
3118 			r4.rt_dev = NULL;
3119 
3120 		r = (void *) &r4;
3121 	}
3122 
3123 	if (ret) {
3124 		ret = -EFAULT;
3125 		goto out;
3126 	}
3127 
3128 	set_fs(KERNEL_DS);
3129 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3130 	set_fs(old_fs);
3131 
3132 out:
3133 	return ret;
3134 }
3135 
3136 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3137  * for some operations; this forces use of the newer bridge-utils that
3138  * use compatible ioctls
3139  */
old_bridge_ioctl(compat_ulong_t __user * argp)3140 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3141 {
3142 	compat_ulong_t tmp;
3143 
3144 	if (get_user(tmp, argp))
3145 		return -EFAULT;
3146 	if (tmp == BRCTL_GET_VERSION)
3147 		return BRCTL_VERSION + 1;
3148 	return -EINVAL;
3149 }
3150 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3151 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3152 			 unsigned int cmd, unsigned long arg)
3153 {
3154 	void __user *argp = compat_ptr(arg);
3155 	struct sock *sk = sock->sk;
3156 	struct net *net = sock_net(sk);
3157 
3158 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3159 		return compat_ifr_data_ioctl(net, cmd, argp);
3160 
3161 	switch (cmd) {
3162 	case SIOCSIFBR:
3163 	case SIOCGIFBR:
3164 		return old_bridge_ioctl(argp);
3165 	case SIOCGIFCONF:
3166 		return compat_dev_ifconf(net, argp);
3167 	case SIOCETHTOOL:
3168 		return ethtool_ioctl(net, argp);
3169 	case SIOCWANDEV:
3170 		return compat_siocwandev(net, argp);
3171 	case SIOCGIFMAP:
3172 	case SIOCSIFMAP:
3173 		return compat_sioc_ifmap(net, cmd, argp);
3174 	case SIOCADDRT:
3175 	case SIOCDELRT:
3176 		return routing_ioctl(net, sock, cmd, argp);
3177 	case SIOCGSTAMP:
3178 		return do_siocgstamp(net, sock, cmd, argp);
3179 	case SIOCGSTAMPNS:
3180 		return do_siocgstampns(net, sock, cmd, argp);
3181 	case SIOCBONDSLAVEINFOQUERY:
3182 	case SIOCBONDINFOQUERY:
3183 	case SIOCSHWTSTAMP:
3184 	case SIOCGHWTSTAMP:
3185 		return compat_ifr_data_ioctl(net, cmd, argp);
3186 
3187 	case FIOSETOWN:
3188 	case SIOCSPGRP:
3189 	case FIOGETOWN:
3190 	case SIOCGPGRP:
3191 	case SIOCBRADDBR:
3192 	case SIOCBRDELBR:
3193 	case SIOCGIFVLAN:
3194 	case SIOCSIFVLAN:
3195 	case SIOCADDDLCI:
3196 	case SIOCDELDLCI:
3197 	case SIOCGSKNS:
3198 		return sock_ioctl(file, cmd, arg);
3199 
3200 	case SIOCGIFFLAGS:
3201 	case SIOCSIFFLAGS:
3202 	case SIOCGIFMETRIC:
3203 	case SIOCSIFMETRIC:
3204 	case SIOCGIFMTU:
3205 	case SIOCSIFMTU:
3206 	case SIOCGIFMEM:
3207 	case SIOCSIFMEM:
3208 	case SIOCGIFHWADDR:
3209 	case SIOCSIFHWADDR:
3210 	case SIOCADDMULTI:
3211 	case SIOCDELMULTI:
3212 	case SIOCGIFINDEX:
3213 	case SIOCGIFADDR:
3214 	case SIOCSIFADDR:
3215 	case SIOCSIFHWBROADCAST:
3216 	case SIOCDIFADDR:
3217 	case SIOCGIFBRDADDR:
3218 	case SIOCSIFBRDADDR:
3219 	case SIOCGIFDSTADDR:
3220 	case SIOCSIFDSTADDR:
3221 	case SIOCGIFNETMASK:
3222 	case SIOCSIFNETMASK:
3223 	case SIOCSIFPFLAGS:
3224 	case SIOCGIFPFLAGS:
3225 	case SIOCGIFTXQLEN:
3226 	case SIOCSIFTXQLEN:
3227 	case SIOCBRADDIF:
3228 	case SIOCBRDELIF:
3229 	case SIOCGIFNAME:
3230 	case SIOCSIFNAME:
3231 	case SIOCGMIIPHY:
3232 	case SIOCGMIIREG:
3233 	case SIOCSMIIREG:
3234 	case SIOCBONDENSLAVE:
3235 	case SIOCBONDRELEASE:
3236 	case SIOCBONDSETHWADDR:
3237 	case SIOCBONDCHANGEACTIVE:
3238 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3239 
3240 	case SIOCSARP:
3241 	case SIOCGARP:
3242 	case SIOCDARP:
3243 	case SIOCOUTQNSD:
3244 	case SIOCATMARK:
3245 		return sock_do_ioctl(net, sock, cmd, arg);
3246 	}
3247 
3248 	return -ENOIOCTLCMD;
3249 }
3250 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3251 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3252 			      unsigned long arg)
3253 {
3254 	struct socket *sock = file->private_data;
3255 	int ret = -ENOIOCTLCMD;
3256 	struct sock *sk;
3257 	struct net *net;
3258 
3259 	sk = sock->sk;
3260 	net = sock_net(sk);
3261 
3262 	if (sock->ops->compat_ioctl)
3263 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3264 
3265 	if (ret == -ENOIOCTLCMD &&
3266 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3267 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3268 
3269 	if (ret == -ENOIOCTLCMD)
3270 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3271 
3272 	return ret;
3273 }
3274 #endif
3275 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3276 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3277 {
3278 	return sock->ops->bind(sock, addr, addrlen);
3279 }
3280 EXPORT_SYMBOL(kernel_bind);
3281 
kernel_listen(struct socket * sock,int backlog)3282 int kernel_listen(struct socket *sock, int backlog)
3283 {
3284 	return sock->ops->listen(sock, backlog);
3285 }
3286 EXPORT_SYMBOL(kernel_listen);
3287 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3288 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3289 {
3290 	struct sock *sk = sock->sk;
3291 	int err;
3292 
3293 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3294 			       newsock);
3295 	if (err < 0)
3296 		goto done;
3297 
3298 	err = sock->ops->accept(sock, *newsock, flags, true);
3299 	if (err < 0) {
3300 		sock_release(*newsock);
3301 		*newsock = NULL;
3302 		goto done;
3303 	}
3304 
3305 	(*newsock)->ops = sock->ops;
3306 	__module_get((*newsock)->ops->owner);
3307 
3308 done:
3309 	return err;
3310 }
3311 EXPORT_SYMBOL(kernel_accept);
3312 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3313 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3314 		   int flags)
3315 {
3316 	return sock->ops->connect(sock, addr, addrlen, flags);
3317 }
3318 EXPORT_SYMBOL(kernel_connect);
3319 
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3320 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3321 {
3322 	return sock->ops->getname(sock, addr, 0);
3323 }
3324 EXPORT_SYMBOL(kernel_getsockname);
3325 
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3326 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3327 {
3328 	return sock->ops->getname(sock, addr, 1);
3329 }
3330 EXPORT_SYMBOL(kernel_getpeername);
3331 
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3332 int kernel_getsockopt(struct socket *sock, int level, int optname,
3333 			char *optval, int *optlen)
3334 {
3335 	mm_segment_t oldfs = get_fs();
3336 	char __user *uoptval;
3337 	int __user *uoptlen;
3338 	int err;
3339 
3340 	uoptval = (char __user __force *) optval;
3341 	uoptlen = (int __user __force *) optlen;
3342 
3343 	set_fs(KERNEL_DS);
3344 	if (level == SOL_SOCKET)
3345 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3346 	else
3347 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3348 					    uoptlen);
3349 	set_fs(oldfs);
3350 	return err;
3351 }
3352 EXPORT_SYMBOL(kernel_getsockopt);
3353 
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3354 int kernel_setsockopt(struct socket *sock, int level, int optname,
3355 			char *optval, unsigned int optlen)
3356 {
3357 	mm_segment_t oldfs = get_fs();
3358 	char __user *uoptval;
3359 	int err;
3360 
3361 	uoptval = (char __user __force *) optval;
3362 
3363 	set_fs(KERNEL_DS);
3364 	if (level == SOL_SOCKET)
3365 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3366 	else
3367 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3368 					    optlen);
3369 	set_fs(oldfs);
3370 	return err;
3371 }
3372 EXPORT_SYMBOL(kernel_setsockopt);
3373 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3374 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3375 		    size_t size, int flags)
3376 {
3377 	if (sock->ops->sendpage)
3378 		return sock->ops->sendpage(sock, page, offset, size, flags);
3379 
3380 	return sock_no_sendpage(sock, page, offset, size, flags);
3381 }
3382 EXPORT_SYMBOL(kernel_sendpage);
3383 
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3384 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3385 			   size_t size, int flags)
3386 {
3387 	struct socket *sock = sk->sk_socket;
3388 
3389 	if (sock->ops->sendpage_locked)
3390 		return sock->ops->sendpage_locked(sk, page, offset, size,
3391 						  flags);
3392 
3393 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3394 }
3395 EXPORT_SYMBOL(kernel_sendpage_locked);
3396 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3397 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3398 {
3399 	return sock->ops->shutdown(sock, how);
3400 }
3401 EXPORT_SYMBOL(kernel_sock_shutdown);
3402 
3403 /* This routine returns the IP overhead imposed by a socket i.e.
3404  * the length of the underlying IP header, depending on whether
3405  * this is an IPv4 or IPv6 socket and the length from IP options turned
3406  * on at the socket. Assumes that the caller has a lock on the socket.
3407  */
kernel_sock_ip_overhead(struct sock * sk)3408 u32 kernel_sock_ip_overhead(struct sock *sk)
3409 {
3410 	struct inet_sock *inet;
3411 	struct ip_options_rcu *opt;
3412 	u32 overhead = 0;
3413 #if IS_ENABLED(CONFIG_IPV6)
3414 	struct ipv6_pinfo *np;
3415 	struct ipv6_txoptions *optv6 = NULL;
3416 #endif /* IS_ENABLED(CONFIG_IPV6) */
3417 
3418 	if (!sk)
3419 		return overhead;
3420 
3421 	switch (sk->sk_family) {
3422 	case AF_INET:
3423 		inet = inet_sk(sk);
3424 		overhead += sizeof(struct iphdr);
3425 		opt = rcu_dereference_protected(inet->inet_opt,
3426 						sock_owned_by_user(sk));
3427 		if (opt)
3428 			overhead += opt->opt.optlen;
3429 		return overhead;
3430 #if IS_ENABLED(CONFIG_IPV6)
3431 	case AF_INET6:
3432 		np = inet6_sk(sk);
3433 		overhead += sizeof(struct ipv6hdr);
3434 		if (np)
3435 			optv6 = rcu_dereference_protected(np->opt,
3436 							  sock_owned_by_user(sk));
3437 		if (optv6)
3438 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3439 		return overhead;
3440 #endif /* IS_ENABLED(CONFIG_IPV6) */
3441 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3442 		return overhead;
3443 	}
3444 }
3445 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3446